forked from dmlc/dgl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbipointnet2.py
150 lines (130 loc) · 4.25 KB
/
bipointnet2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import torch
import torch.nn as nn
import torch.nn.functional as F
from basic import (
BiConv2d,
BiLinearLSR,
FixedRadiusNNGraph,
RelativePositionMessage,
)
from dgl.geometry import farthest_point_sampler
class BiPointNetConv(nn.Module):
"""
Feature aggregation
"""
def __init__(self, sizes, batch_size):
super(BiPointNetConv, self).__init__()
self.batch_size = batch_size
self.conv = nn.ModuleList()
self.bn = nn.ModuleList()
for i in range(1, len(sizes)):
self.conv.append(BiConv2d(sizes[i - 1], sizes[i], 1))
self.bn.append(nn.BatchNorm2d(sizes[i]))
def forward(self, nodes):
shape = nodes.mailbox["agg_feat"].shape
h = (
nodes.mailbox["agg_feat"]
.view(self.batch_size, -1, shape[1], shape[2])
.permute(0, 3, 2, 1)
)
for conv, bn in zip(self.conv, self.bn):
h = conv(h)
h = bn(h)
h = F.relu(h)
h = torch.max(h, 2)[0]
feat_dim = h.shape[1]
h = h.permute(0, 2, 1).reshape(-1, feat_dim)
return {"new_feat": h}
def group_all(self, pos, feat):
"""
Feature aggregation and pooling for the non-sampling layer
"""
if feat is not None:
h = torch.cat([pos, feat], 2)
else:
h = pos
B, N, D = h.shape
_, _, C = pos.shape
new_pos = torch.zeros(B, 1, C)
h = h.permute(0, 2, 1).view(B, -1, N, 1)
for conv, bn in zip(self.conv, self.bn):
h = conv(h)
h = bn(h)
h = F.relu(h)
h = torch.max(h[:, :, :, 0], 2)[0] # [B,D]
return new_pos, h
class BiSAModule(nn.Module):
"""
The Set Abstraction Layer
"""
def __init__(
self,
npoints,
batch_size,
radius,
mlp_sizes,
n_neighbor=64,
group_all=False,
):
super(BiSAModule, self).__init__()
self.group_all = group_all
if not group_all:
self.npoints = npoints
self.frnn_graph = FixedRadiusNNGraph(radius, n_neighbor)
self.message = RelativePositionMessage(n_neighbor)
self.conv = BiPointNetConv(mlp_sizes, batch_size)
self.batch_size = batch_size
def forward(self, pos, feat):
if self.group_all:
return self.conv.group_all(pos, feat)
centroids = farthest_point_sampler(pos, self.npoints)
g = self.frnn_graph(pos, centroids, feat)
g.update_all(self.message, self.conv)
mask = g.ndata["center"] == 1
pos_dim = g.ndata["pos"].shape[-1]
feat_dim = g.ndata["new_feat"].shape[-1]
pos_res = g.ndata["pos"][mask].view(self.batch_size, -1, pos_dim)
feat_res = g.ndata["new_feat"][mask].view(self.batch_size, -1, feat_dim)
return pos_res, feat_res
class BiPointNet2SSGCls(nn.Module):
def __init__(
self, output_classes, batch_size, input_dims=3, dropout_prob=0.4
):
super(BiPointNet2SSGCls, self).__init__()
self.input_dims = input_dims
self.sa_module1 = BiSAModule(
512, batch_size, 0.2, [input_dims, 64, 64, 128]
)
self.sa_module2 = BiSAModule(
128, batch_size, 0.4, [128 + 3, 128, 128, 256]
)
self.sa_module3 = BiSAModule(
None, batch_size, None, [256 + 3, 256, 512, 1024], group_all=True
)
self.mlp1 = BiLinearLSR(1024, 512)
self.bn1 = nn.BatchNorm1d(512)
self.drop1 = nn.Dropout(dropout_prob)
self.mlp2 = BiLinearLSR(512, 256)
self.bn2 = nn.BatchNorm1d(256)
self.drop2 = nn.Dropout(dropout_prob)
self.mlp_out = BiLinearLSR(256, output_classes)
def forward(self, x):
if x.shape[-1] > 3:
pos = x[:, :, :3]
feat = x[:, :, 3:]
else:
pos = x
feat = None
pos, feat = self.sa_module1(pos, feat)
pos, feat = self.sa_module2(pos, feat)
_, h = self.sa_module3(pos, feat)
h = self.mlp1(h)
h = self.bn1(h)
h = F.relu(h)
h = self.drop1(h)
h = self.mlp2(h)
h = self.bn2(h)
h = F.relu(h)
h = self.drop2(h)
out = self.mlp_out(h)
return out