forked from dmlc/dgl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmnist.py
208 lines (173 loc) · 5.6 KB
/
mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import argparse
import time
import dgl
import networkx as nx
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from coarsening import coarsen
from coordinate import get_coordinates, z2polar
from dgl.data import load_data, register_data_args
from dgl.nn.pytorch.conv import ChebConv, GMMConv
from dgl.nn.pytorch.glob import MaxPooling
from grid_graph import grid_graph
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
argparser = argparse.ArgumentParser("MNIST")
argparser.add_argument(
"--gpu", type=int, default=-1, help="gpu id, use cpu if set to -1"
)
argparser.add_argument(
"--model", type=str, default="chebnet", help="model to use, chebnet/monet"
)
argparser.add_argument("--batch-size", type=int, default=100, help="batch size")
args = argparser.parse_args()
grid_side = 28
number_edges = 8
metric = "euclidean"
A = grid_graph(28, 8, metric)
coarsening_levels = 4
L, perm = coarsen(A, coarsening_levels)
g_arr = [dgl.from_scipy(csr) for csr in L]
coordinate_arr = get_coordinates(g_arr, grid_side, coarsening_levels, perm)
str_to_torch_dtype = {
"float16": torch.half,
"float32": torch.float32,
"float64": torch.float64,
}
coordinate_arr = [
coord.to(dtype=str_to_torch_dtype[str(A.dtype)]) for coord in coordinate_arr
]
for g, coordinate_arr in zip(g_arr, coordinate_arr):
g.ndata["xy"] = coordinate_arr
g.apply_edges(z2polar)
def batcher(batch):
g_batch = [[] for _ in range(coarsening_levels + 1)]
x_batch = []
y_batch = []
for x, y in batch:
x = torch.cat([x.view(-1), x.new_zeros(len(perm) - 28**2)], 0)
x = x[perm]
x_batch.append(x)
y_batch.append(y)
for i in range(coarsening_levels + 1):
g_batch[i].append(g_arr[i])
x_batch = torch.cat(x_batch).unsqueeze(-1)
y_batch = torch.LongTensor(y_batch)
g_batch = [dgl.batch(g) for g in g_batch]
return g_batch, x_batch, y_batch
trainset = datasets.MNIST(
root=".", train=True, download=True, transform=transforms.ToTensor()
)
testset = datasets.MNIST(
root=".", train=False, download=True, transform=transforms.ToTensor()
)
train_loader = DataLoader(
trainset,
batch_size=args.batch_size,
shuffle=True,
collate_fn=batcher,
num_workers=6,
)
test_loader = DataLoader(
testset,
batch_size=args.batch_size,
shuffle=False,
collate_fn=batcher,
num_workers=6,
)
class MoNet(nn.Module):
def __init__(self, n_kernels, in_feats, hiddens, out_feats):
super(MoNet, self).__init__()
self.pool = nn.MaxPool1d(2)
self.layers = nn.ModuleList()
self.readout = MaxPooling()
# Input layer
self.layers.append(GMMConv(in_feats, hiddens[0], 2, n_kernels))
# Hidden layer
for i in range(1, len(hiddens)):
self.layers.append(
GMMConv(hiddens[i - 1], hiddens[i], 2, n_kernels)
)
self.cls = nn.Sequential(
nn.Linear(hiddens[-1], out_feats), nn.LogSoftmax()
)
def forward(self, g_arr, feat):
for g, layer in zip(g_arr, self.layers):
u = g.edata["u"]
feat = (
self.pool(layer(g, feat, u).transpose(-1, -2).unsqueeze(0))
.squeeze(0)
.transpose(-1, -2)
)
return self.cls(self.readout(g_arr[-1], feat))
class ChebNet(nn.Module):
def __init__(self, k, in_feats, hiddens, out_feats):
super(ChebNet, self).__init__()
self.pool = nn.MaxPool1d(2)
self.layers = nn.ModuleList()
self.readout = MaxPooling()
# Input layer
self.layers.append(ChebConv(in_feats, hiddens[0], k))
for i in range(1, len(hiddens)):
self.layers.append(ChebConv(hiddens[i - 1], hiddens[i], k))
self.cls = nn.Sequential(
nn.Linear(hiddens[-1], out_feats), nn.LogSoftmax()
)
def forward(self, g_arr, feat):
for g, layer in zip(g_arr, self.layers):
feat = (
self.pool(
layer(g, feat, [2] * g.batch_size)
.transpose(-1, -2)
.unsqueeze(0)
)
.squeeze(0)
.transpose(-1, -2)
)
return self.cls(self.readout(g_arr[-1], feat))
if args.gpu == -1:
device = torch.device("cpu")
else:
device = torch.device(args.gpu)
if args.model == "chebnet":
model = ChebNet(2, 1, [32, 64, 128, 256], 10)
else:
model = MoNet(10, 1, [32, 64, 128, 256], 10)
model = model.to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
log_interval = 50
for epoch in range(10):
print("epoch {} starts".format(epoch))
model.train()
hit, tot = 0, 0
loss_accum = 0
for i, (g, x, y) in enumerate(train_loader):
x = x.to(device)
y = y.to(device)
g = [g_i.to(device) for g_i in g]
out = model(g, x)
hit += (out.max(-1)[1] == y).sum().item()
tot += len(y)
loss = F.nll_loss(out, y)
loss_accum += loss.item()
if (i + 1) % log_interval == 0:
print(
"loss: {}, acc: {}".format(loss_accum / log_interval, hit / tot)
)
hit, tot = 0, 0
loss_accum = 0
optimizer.zero_grad()
loss.backward()
optimizer.step()
model.eval()
hit, tot = 0, 0
for g, x, y in test_loader:
x = x.to(device)
y = y.to(device)
g = [g_i.to(device) for g_i in g]
out = model(g, x)
hit += (out.max(-1)[1] == y).sum().item()
tot += len(y)
print("test acc: ", hit / tot)