forked from dmlc/dgl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexplain_main.py
84 lines (71 loc) · 2.17 KB
/
explain_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import argparse
import os
import dgl
import torch as th
from dgl import load_graphs
from dgl.data import (
BACommunityDataset,
BAShapeDataset,
TreeCycleDataset,
TreeGridDataset,
)
from dgl.nn import GNNExplainer
from gnnlens import Writer
from models import Model
def main(args):
if args.dataset == "BAShape":
dataset = BAShapeDataset(seed=0)
elif args.dataset == "BACommunity":
dataset = BACommunityDataset(seed=0)
elif args.dataset == "TreeCycle":
dataset = TreeCycleDataset(seed=0)
elif args.dataset == "TreeGrid":
dataset = TreeGridDataset(seed=0)
graph = dataset[0]
labels = graph.ndata["label"]
feats = graph.ndata["feat"]
num_classes = dataset.num_classes
# load an existing model
model_path = os.path.join("./", f"model_{args.dataset}.pth")
model_stat_dict = th.load(model_path)
model = Model(feats.shape[-1], num_classes)
model.load_state_dict(model_stat_dict)
# Choose the first node of the class 1 for explaining prediction
target_class = 1
for n_idx, n_label in enumerate(labels):
if n_label == target_class:
break
explainer = GNNExplainer(model, num_hops=3)
new_center, sub_graph, feat_mask, edge_mask = explainer.explain_node(
n_idx, graph, feats
)
# gnnlens2
# Specify the path to create a new directory for dumping data files.
writer = Writer("gnn_subgraph")
writer.add_graph(
name=args.dataset,
graph=graph,
nlabels=labels,
num_nlabel_types=num_classes,
)
writer.add_subgraph(
graph_name=args.dataset,
subgraph_name="GNNExplainer",
node_id=n_idx,
subgraph_nids=sub_graph.ndata[dgl.NID],
subgraph_eids=sub_graph.edata[dgl.EID],
subgraph_eweights=edge_mask,
)
# Finish dumping.
writer.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Demo of GNN explainer in DGL")
parser.add_argument(
"--dataset",
type=str,
default="BAShape",
choices=["BAShape", "BACommunity", "TreeCycle", "TreeGrid"],
)
args = parser.parse_args()
print(args)
main(args)