forked from dmlc/dgl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathppi.py
174 lines (150 loc) · 5.14 KB
/
ppi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import argparse
import numpy as np
import torch as th
import torch.optim as optim
from dgl.data import PPIDataset
from dgl.dataloading import GraphDataLoader
from model import GeniePath, GeniePathLazy
from sklearn.metrics import f1_score
def evaluate(model, loss_fn, dataloader, device="cpu"):
loss = 0
f1 = 0
num_blocks = 0
for subgraph in dataloader:
subgraph = subgraph.to(device)
label = subgraph.ndata["label"].to(device)
feat = subgraph.ndata["feat"]
logits = model(subgraph, feat)
# compute loss
loss += loss_fn(logits, label).item()
predict = np.where(logits.data.cpu().numpy() >= 0.0, 1, 0)
f1 += f1_score(label.cpu(), predict, average="micro")
num_blocks += 1
return f1 / num_blocks, loss / num_blocks
def main(args):
# Step 1: Prepare graph data and retrieve train/validation/test index ============================= #
# Load dataset
train_dataset = PPIDataset(mode="train")
valid_dataset = PPIDataset(mode="valid")
test_dataset = PPIDataset(mode="test")
train_dataloader = GraphDataLoader(
train_dataset, batch_size=args.batch_size
)
valid_dataloader = GraphDataLoader(
valid_dataset, batch_size=args.batch_size
)
test_dataloader = GraphDataLoader(test_dataset, batch_size=args.batch_size)
# check cuda
if args.gpu >= 0 and th.cuda.is_available():
device = "cuda:{}".format(args.gpu)
else:
device = "cpu"
num_classes = train_dataset.num_labels
# Extract node features
graph = train_dataset[0]
feat = graph.ndata["feat"]
# Step 2: Create model =================================================================== #
if args.lazy:
model = GeniePathLazy(
in_dim=feat.shape[-1],
out_dim=num_classes,
hid_dim=args.hid_dim,
num_layers=args.num_layers,
num_heads=args.num_heads,
residual=args.residual,
)
else:
model = GeniePath(
in_dim=feat.shape[-1],
out_dim=num_classes,
hid_dim=args.hid_dim,
num_layers=args.num_layers,
num_heads=args.num_heads,
residual=args.residual,
)
model = model.to(device)
# Step 3: Create training components ===================================================== #
loss_fn = th.nn.BCEWithLogitsLoss()
optimizer = optim.Adam(model.parameters(), lr=args.lr)
# Step 4: training epochs =============================================================== #
for epoch in range(args.max_epoch):
model.train()
tr_loss = 0
tr_f1 = 0
num_blocks = 0
for subgraph in train_dataloader:
subgraph = subgraph.to(device)
label = subgraph.ndata["label"]
feat = subgraph.ndata["feat"]
logits = model(subgraph, feat)
# compute loss
batch_loss = loss_fn(logits, label)
tr_loss += batch_loss.item()
tr_predict = np.where(logits.data.cpu().numpy() >= 0.0, 1, 0)
tr_f1 += f1_score(label.cpu(), tr_predict, average="micro")
num_blocks += 1
# backward
optimizer.zero_grad()
batch_loss.backward()
optimizer.step()
# validation
model.eval()
val_f1, val_loss = evaluate(model, loss_fn, valid_dataloader, device)
print(
"In epoch {}, Train F1: {:.4f} | Train Loss: {:.4f}; Valid F1: {:.4f} | Valid loss: {:.4f}".format(
epoch,
tr_f1 / num_blocks,
tr_loss / num_blocks,
val_f1,
val_loss,
)
)
# Test after all epoch
model.eval()
test_f1, test_loss = evaluate(model, loss_fn, test_dataloader, device)
print("Test F1: {:.4f} | Test loss: {:.4f}".format(test_f1, test_loss))
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="GeniePath")
parser.add_argument(
"--gpu", type=int, default=-1, help="GPU Index. Default: -1, using CPU."
)
parser.add_argument(
"--hid_dim", type=int, default=256, help="Hidden layer dimension"
)
parser.add_argument(
"--num_layers", type=int, default=3, help="Number of GeniePath layers"
)
parser.add_argument(
"--max_epoch",
type=int,
default=1000,
help="The max number of epochs. Default: 1000",
)
parser.add_argument(
"--lr",
type=float,
default=0.0004,
help="Learning rate. Default: 0.0004",
)
parser.add_argument(
"--num_heads",
type=int,
default=1,
help="Number of head in breadth function. Default: 1",
)
parser.add_argument(
"--residual", type=bool, default=False, help="Residual in GAT or not"
)
parser.add_argument(
"--batch_size",
type=int,
default=2,
help="Batch size of graph dataloader",
)
parser.add_argument(
"--lazy", type=bool, default=False, help="Variant GeniePath-Lazy"
)
args = parser.parse_args()
print(args)
th.manual_seed(16)
main(args)