forked from dmlc/dgl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_sampling.py
266 lines (242 loc) · 8.07 KB
/
main_sampling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import argparse
import dgl
import torch as th
import torch.nn.functional as F
import torch.optim as optim
from dataloader import GASDataset
from model_sampling import GAS
from sklearn.metrics import f1_score, precision_recall_curve, roc_auc_score
def evaluate(model, loss_fn, dataloader, device="cpu"):
loss = 0
f1 = 0
auc = 0
rap = 0
num_blocks = 0
for input_nodes, edge_subgraph, blocks in dataloader:
blocks = [b.to(device) for b in blocks]
edge_subgraph = edge_subgraph.to(device)
u_feat = blocks[0].srcdata["feat"]["u"]
v_feat = blocks[0].srcdata["feat"]["v"]
f_feat = blocks[0].edges["forward"].data["feat"]
b_feat = blocks[0].edges["backward"].data["feat"]
labels = edge_subgraph.edges["forward"].data["label"].long()
logits = model(edge_subgraph, blocks, f_feat, b_feat, u_feat, v_feat)
loss += loss_fn(logits, labels).item()
f1 += f1_score(labels.cpu(), logits.argmax(dim=1).cpu())
auc += roc_auc_score(labels.cpu(), logits[:, 1].detach().cpu())
pre, re, _ = precision_recall_curve(
labels.cpu(), logits[:, 1].detach().cpu()
)
rap += re[pre > args.precision].max()
num_blocks += 1
return (
rap / num_blocks,
f1 / num_blocks,
auc / num_blocks,
loss / num_blocks,
)
def main(args):
# Step 1: Prepare graph data and retrieve train/validation/test index ============================= #
# Load dataset
dataset = GASDataset(args.dataset)
graph = dataset[0]
# generate mini-batch only for forward edges
sampler = dgl.dataloading.MultiLayerNeighborSampler([10, 10])
tr_eid_dict = {}
val_eid_dict = {}
test_eid_dict = {}
tr_eid_dict["forward"] = (
graph.edges["forward"].data["train_mask"].nonzero().squeeze()
)
val_eid_dict["forward"] = (
graph.edges["forward"].data["val_mask"].nonzero().squeeze()
)
test_eid_dict["forward"] = (
graph.edges["forward"].data["test_mask"].nonzero().squeeze()
)
sampler = dgl.dataloading.as_edge_prediction_sampler(sampler)
tr_loader = dgl.dataloading.DataLoader(
graph,
tr_eid_dict,
sampler,
batch_size=args.batch_size,
shuffle=True,
drop_last=False,
num_workers=args.num_workers,
)
val_loader = dgl.dataloading.DataLoader(
graph,
val_eid_dict,
sampler,
batch_size=args.batch_size,
shuffle=True,
drop_last=False,
num_workers=args.num_workers,
)
test_loader = dgl.dataloading.DataLoader(
graph,
test_eid_dict,
sampler,
batch_size=args.batch_size,
shuffle=True,
drop_last=False,
num_workers=args.num_workers,
)
# check cuda
if args.gpu >= 0 and th.cuda.is_available():
device = "cuda:{}".format(args.gpu)
else:
device = "cpu"
# binary classification
num_classes = dataset.num_classes
# Extract node features
e_feats = graph.edges["forward"].data["feat"].shape[-1]
u_feats = graph.nodes["u"].data["feat"].shape[-1]
v_feats = graph.nodes["v"].data["feat"].shape[-1]
# Step 2: Create model =================================================================== #
model = GAS(
e_in_dim=e_feats,
u_in_dim=u_feats,
v_in_dim=v_feats,
e_hid_dim=args.e_hid_dim,
u_hid_dim=args.u_hid_dim,
v_hid_dim=args.v_hid_dim,
out_dim=num_classes,
num_layers=args.num_layers,
dropout=args.dropout,
activation=F.relu,
)
model = model.to(device)
# Step 3: Create training components ===================================================== #
loss_fn = th.nn.CrossEntropyLoss()
optimizer = optim.Adam(
model.parameters(), lr=args.lr, weight_decay=args.weight_decay
)
# Step 4: training epochs =============================================================== #
for epoch in range(args.max_epoch):
model.train()
tr_loss = 0
tr_f1 = 0
tr_auc = 0
tr_rap = 0
tr_blocks = 0
for input_nodes, edge_subgraph, blocks in tr_loader:
blocks = [b.to(device) for b in blocks]
edge_subgraph = edge_subgraph.to(device)
u_feat = blocks[0].srcdata["feat"]["u"]
v_feat = blocks[0].srcdata["feat"]["v"]
f_feat = blocks[0].edges["forward"].data["feat"]
b_feat = blocks[0].edges["backward"].data["feat"]
labels = edge_subgraph.edges["forward"].data["label"].long()
logits = model(
edge_subgraph, blocks, f_feat, b_feat, u_feat, v_feat
)
# compute loss
batch_loss = loss_fn(logits, labels)
tr_loss += batch_loss.item()
tr_f1 += f1_score(labels.cpu(), logits.argmax(dim=1).cpu())
tr_auc += roc_auc_score(labels.cpu(), logits[:, 1].detach().cpu())
tr_pre, tr_re, _ = precision_recall_curve(
labels.cpu(), logits[:, 1].detach().cpu()
)
tr_rap += tr_re[tr_pre > args.precision].max()
tr_blocks += 1
# backward
optimizer.zero_grad()
batch_loss.backward()
optimizer.step()
# validation
model.eval()
val_rap, val_f1, val_auc, val_loss = evaluate(
model, loss_fn, val_loader, device
)
# Print out performance
print(
"In epoch {}, Train R@P: {:.4f} | Train F1: {:.4f} | Train AUC: {:.4f} | Train Loss: {:.4f}; "
"Valid R@P: {:.4f} | Valid F1: {:.4f} | Valid AUC: {:.4f} | Valid loss: {:.4f}".format(
epoch,
tr_rap / tr_blocks,
tr_f1 / tr_blocks,
tr_auc / tr_blocks,
tr_loss / tr_blocks,
val_rap,
val_f1,
val_auc,
val_loss,
)
)
# Test with mini batch after all epoch
model.eval()
test_rap, test_f1, test_auc, test_loss = evaluate(
model, loss_fn, test_loader, device
)
print(
"Test R@P: {:.4f} | Test F1: {:.4f} | Test AUC: {:.4f} | Test loss: {:.4f}".format(
test_rap, test_f1, test_auc, test_loss
)
)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="GCN-based Anti-Spam Model")
parser.add_argument(
"--dataset", type=str, default="pol", help="'pol', or 'gos'"
)
parser.add_argument(
"--gpu", type=int, default=-1, help="GPU Index. Default: -1, using CPU."
)
parser.add_argument(
"--e_hid_dim",
type=int,
default=128,
help="Hidden layer dimension for edges",
)
parser.add_argument(
"--u_hid_dim",
type=int,
default=128,
help="Hidden layer dimension for source nodes",
)
parser.add_argument(
"--v_hid_dim",
type=int,
default=128,
help="Hidden layer dimension for destination nodes",
)
parser.add_argument(
"--num_layers", type=int, default=2, help="Number of GCN layers"
)
parser.add_argument(
"--max_epoch",
type=int,
default=100,
help="The max number of epochs. Default: 100",
)
parser.add_argument(
"--lr", type=float, default=0.001, help="Learning rate. Default: 1e-3"
)
parser.add_argument(
"--dropout", type=float, default=0.0, help="Dropout rate. Default: 0.0"
)
parser.add_argument(
"--batch_size",
type=int,
default=64,
help="Size of mini-batches. Default: 64",
)
parser.add_argument(
"--num_workers", type=int, default=4, help="Number of node dataloader"
)
parser.add_argument(
"--weight_decay",
type=float,
default=5e-4,
help="Weight Decay. Default: 0.0005",
)
parser.add_argument(
"--precision",
type=float,
default=0.9,
help="The value p in recall@p precision. Default: 0.9",
)
args = parser.parse_args()
print(args)
main(args)