forked from dmlc/dgl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
40 lines (32 loc) · 867 Bytes
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import numpy as np
import torch
from sklearn.metrics import (
accuracy_score,
average_precision_score,
f1_score,
log_loss,
ndcg_score,
roc_auc_score,
)
def evaluate_auc(pred, label):
res = roc_auc_score(y_score=pred, y_true=label)
return res
def evaluate_acc(pred, label):
res = []
for _value in pred:
if _value >= 0.5:
res.append(1)
else:
res.append(0)
return accuracy_score(y_pred=res, y_true=label)
def evaluate_f1_score(pred, label):
res = []
for _value in pred:
if _value >= 0.5:
res.append(1)
else:
res.append(0)
return f1_score(y_pred=res, y_true=label)
def evaluate_logloss(pred, label):
res = log_loss(y_true=label, y_pred=pred, eps=1e-7, normalize=True)
return res