forked from dmlc/dgl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
302 lines (269 loc) · 9.25 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import argparse
import collections
import os
import time
import warnings
import zipfile
os.environ["DGLBACKEND"] = "mxnet"
os.environ["MXNET_GPU_MEM_POOL_TYPE"] = "Round"
import dgl
import dgl.data as data
import mxnet as mx
import numpy as np
from mxnet import gluon
from tree_lstm import TreeLSTM
SSTBatch = collections.namedtuple(
"SSTBatch", ["graph", "mask", "wordid", "label"]
)
def batcher(ctx):
def batcher_dev(batch):
batch_trees = dgl.batch(batch)
return SSTBatch(
graph=batch_trees,
mask=batch_trees.ndata["mask"].as_in_context(ctx),
wordid=batch_trees.ndata["x"].as_in_context(ctx),
label=batch_trees.ndata["y"].as_in_context(ctx),
)
return batcher_dev
def prepare_glove():
if not (
os.path.exists("glove.840B.300d.txt")
and data.utils.check_sha1(
"glove.840B.300d.txt",
sha1_hash="294b9f37fa64cce31f9ebb409c266fc379527708",
)
):
zip_path = data.utils.download(
"http://nlp.stanford.edu/data/glove.840B.300d.zip",
sha1_hash="8084fbacc2dee3b1fd1ca4cc534cbfff3519ed0d",
)
with zipfile.ZipFile(zip_path, "r") as zf:
zf.extractall()
if not data.utils.check_sha1(
"glove.840B.300d.txt",
sha1_hash="294b9f37fa64cce31f9ebb409c266fc379527708",
):
warnings.warn(
"The downloaded glove embedding file checksum mismatch. File content "
"may be corrupted."
)
def main(args):
np.random.seed(args.seed)
mx.random.seed(args.seed)
best_epoch = -1
best_dev_acc = 0
cuda = args.gpu >= 0
if cuda:
if args.gpu in mx.test_utils.list_gpus():
ctx = mx.gpu(args.gpu)
else:
print(
"Requested GPU id {} was not found. Defaulting to CPU implementation".format(
args.gpu
)
)
ctx = mx.cpu()
else:
ctx = mx.cpu()
if args.use_glove:
prepare_glove()
trainset = data.SSTDataset()
train_loader = gluon.data.DataLoader(
dataset=trainset,
batch_size=args.batch_size,
batchify_fn=batcher(ctx),
shuffle=True,
num_workers=0,
)
devset = data.SSTDataset(mode="dev")
dev_loader = gluon.data.DataLoader(
dataset=devset,
batch_size=100,
batchify_fn=batcher(ctx),
shuffle=True,
num_workers=0,
)
testset = data.SSTDataset(mode="test")
test_loader = gluon.data.DataLoader(
dataset=testset,
batch_size=100,
batchify_fn=batcher(ctx),
shuffle=False,
num_workers=0,
)
model = TreeLSTM(
trainset.vocab_size,
args.x_size,
args.h_size,
trainset.num_classes,
args.dropout,
cell_type="childsum" if args.child_sum else "nary",
pretrained_emb=trainset.pretrained_emb,
ctx=ctx,
)
print(model)
params_ex_emb = [
x
for x in model.collect_params().values()
if x.grad_req != "null" and x.shape[0] != trainset.vocab_size
]
params_emb = list(model.embedding.collect_params().values())
for p in params_emb:
p.lr_mult = 0.1
model.initialize(mx.init.Xavier(magnitude=1), ctx=ctx)
model.hybridize()
trainer = gluon.Trainer(
model.collect_params("^(?!embedding).*$"),
"adagrad",
{"learning_rate": args.lr, "wd": args.weight_decay},
)
trainer_emb = gluon.Trainer(
model.collect_params("^embedding.*$"),
"adagrad",
{"learning_rate": args.lr},
)
dur = []
L = gluon.loss.SoftmaxCrossEntropyLoss(axis=1)
for epoch in range(args.epochs):
t_epoch = time.time()
for step, batch in enumerate(train_loader):
g = batch.graph
n = g.number_of_nodes()
# TODO begin_states function?
h = mx.nd.zeros((n, args.h_size), ctx=ctx)
c = mx.nd.zeros((n, args.h_size), ctx=ctx)
if step >= 3:
t0 = time.time() # tik
with mx.autograd.record():
pred = model(batch, h, c)
loss = L(pred, batch.label)
loss.backward()
trainer.step(args.batch_size)
trainer_emb.step(args.batch_size)
if step >= 3:
dur.append(time.time() - t0) # tok
if step > 0 and step % args.log_every == 0:
pred = pred.argmax(axis=1).astype(batch.label.dtype)
acc = (batch.label == pred).sum()
root_ids = [
i
for i in range(batch.graph.number_of_nodes())
if batch.graph.out_degrees(i) == 0
]
root_acc = np.sum(
batch.label.asnumpy()[root_ids] == pred.asnumpy()[root_ids]
)
print(
"Epoch {:05d} | Step {:05d} | Loss {:.4f} | Acc {:.4f} | Root Acc {:.4f} | Time(s) {:.4f}".format(
epoch,
step,
loss.sum().asscalar(),
1.0 * acc.asscalar() / len(batch.label),
1.0 * root_acc / len(root_ids),
np.mean(dur),
)
)
print(
"Epoch {:05d} training time {:.4f}s".format(
epoch, time.time() - t_epoch
)
)
# eval on dev set
accs = []
root_accs = []
for step, batch in enumerate(dev_loader):
g = batch.graph
n = g.number_of_nodes()
h = mx.nd.zeros((n, args.h_size), ctx=ctx)
c = mx.nd.zeros((n, args.h_size), ctx=ctx)
pred = model(batch, h, c).argmax(1).astype(batch.label.dtype)
acc = (batch.label == pred).sum().asscalar()
accs.append([acc, len(batch.label)])
root_ids = [
i
for i in range(batch.graph.number_of_nodes())
if batch.graph.out_degrees(i) == 0
]
root_acc = np.sum(
batch.label.asnumpy()[root_ids] == pred.asnumpy()[root_ids]
)
root_accs.append([root_acc, len(root_ids)])
dev_acc = (
1.0 * np.sum([x[0] for x in accs]) / np.sum([x[1] for x in accs])
)
dev_root_acc = (
1.0
* np.sum([x[0] for x in root_accs])
/ np.sum([x[1] for x in root_accs])
)
print(
"Epoch {:05d} | Dev Acc {:.4f} | Root Acc {:.4f}".format(
epoch, dev_acc, dev_root_acc
)
)
if dev_root_acc > best_dev_acc:
best_dev_acc = dev_root_acc
best_epoch = epoch
model.save_parameters("best_{}.params".format(args.seed))
else:
if best_epoch <= epoch - 10:
break
# lr decay
trainer.set_learning_rate(max(1e-5, trainer.learning_rate * 0.99))
print(trainer.learning_rate)
trainer_emb.set_learning_rate(
max(1e-5, trainer_emb.learning_rate * 0.99)
)
print(trainer_emb.learning_rate)
# test
model.load_parameters("best_{}.params".format(args.seed))
accs = []
root_accs = []
for step, batch in enumerate(test_loader):
g = batch.graph
n = g.number_of_nodes()
h = mx.nd.zeros((n, args.h_size), ctx=ctx)
c = mx.nd.zeros((n, args.h_size), ctx=ctx)
pred = model(batch, h, c).argmax(axis=1).astype(batch.label.dtype)
acc = (batch.label == pred).sum().asscalar()
accs.append([acc, len(batch.label)])
root_ids = [
i
for i in range(batch.graph.number_of_nodes())
if batch.graph.out_degrees(i) == 0
]
root_acc = np.sum(
batch.label.asnumpy()[root_ids] == pred.asnumpy()[root_ids]
)
root_accs.append([root_acc, len(root_ids)])
test_acc = 1.0 * np.sum([x[0] for x in accs]) / np.sum([x[1] for x in accs])
test_root_acc = (
1.0
* np.sum([x[0] for x in root_accs])
/ np.sum([x[1] for x in root_accs])
)
print(
"------------------------------------------------------------------------------------"
)
print(
"Epoch {:05d} | Test Acc {:.4f} | Root Acc {:.4f}".format(
best_epoch, test_acc, test_root_acc
)
)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--gpu", type=int, default=0)
parser.add_argument("--seed", type=int, default=41)
parser.add_argument("--batch-size", type=int, default=256)
parser.add_argument("--child-sum", action="store_true")
parser.add_argument("--x-size", type=int, default=300)
parser.add_argument("--h-size", type=int, default=150)
parser.add_argument("--epochs", type=int, default=100)
parser.add_argument("--log-every", type=int, default=5)
parser.add_argument("--lr", type=float, default=0.05)
parser.add_argument("--weight-decay", type=float, default=1e-4)
parser.add_argument("--dropout", type=float, default=0.5)
parser.add_argument("--use-glove", action="store_true")
args = parser.parse_args()
print(args)
main(args)