Skip to content

Commit 7125f2e

Browse files
authored
Remove NNlib from tests (#636)
1 parent b2b5b0c commit 7125f2e

File tree

6 files changed

+4
-57
lines changed

6 files changed

+4
-57
lines changed

test/Project.toml

-1
Original file line numberDiff line numberDiff line change
@@ -10,7 +10,6 @@ InteractiveUtils = "b77e0a4c-d291-57a0-90e8-8db25a27a240"
1010
KernelAbstractions = "63c18a36-062a-441e-b654-da1e3ab1ce7c"
1111
LLVM = "929cbde3-209d-540e-8aea-75f648917ca0"
1212
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
13-
NNlib = "872c559c-99b0-510c-b3b7-b6c96a88d5cd"
1413
Pkg = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f"
1514
PrettyTables = "08abe8d2-0d0c-5749-adfa-8a2ac140af0d"
1615
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"

test/dnn/activations.jl

+1-13
Original file line numberDiff line numberDiff line change
@@ -1,35 +1,23 @@
1-
@testset "NNlib comparison" begin
1+
@testset "Activation functions" begin
22
for (T, atol) in ((Float16, 1f-3), (Float32, 1f-6))
33
x, dy = randn(T, 16), randn(T, 16)
44
xd, dyd = ROCArray(x), ROCArray(dy)
55

6-
y = NNlib.relu(x)
76
yd = MIOpen.relu(xd)
8-
@test all(isapprox.(Array(yd), y; atol))
97

10-
y = NNlib.leakyrelu(x, 0.1)
118
yd = MIOpen.leakyrelu(xd, 0.1)
12-
@test all(isapprox.(Array(yd), y; atol))
139

14-
y = NNlib.softplus(x)
1510
yd = MIOpen.softrelu(xd)
16-
@test all(isapprox.(Array(yd), y; atol))
1711

18-
y = NNlib.relu6(x)
1912
yd = MIOpen.clippedrelu(xd, 6)
20-
@test all(isapprox.(Array(yd), y; atol))
2113

22-
y = NNlib.elu(x, 0.1)
2314
yd = MIOpen.elu(xd, 0.1)
24-
@test all(isapprox.(Array(yd), y; atol))
2515

2616
y = abs.(x)
2717
yd = MIOpen.abs(xd)
2818
@test all(isapprox.(Array(yd), y; atol))
2919

30-
y = NNlib.sigmoid(x)
3120
yd = MIOpen.sigmoid(xd)
32-
@test all(isapprox.(Array(yd), y; atol))
3321

3422
y = tanh.(x)
3523
yd = MIOpen.tanh(xd)

test/dnn/conv.jl

-12
Original file line numberDiff line numberDiff line change
@@ -37,41 +37,29 @@ end
3737
wh2 = rand(Float32, 3, 4, 3, 16)
3838
x, w1, w2 = ROCArray.((xh, wh1, wh2))
3939

40-
yh = NNlib.conv(xh, wh1; pad=(0, 0), stride=(1, 1), dilation=(1, 1), flipped=true)
4140
y = MIOpen.convolution(x, w1; padding=(0, 0), stride=(1, 1), dilation=(1, 1), groups=1)
42-
@test y ROCArray(yh)
4341
@test size(y) == (9, 9, 16, 10)
4442

45-
yh = NNlib.conv(xh, wh1; pad=(2, 2), stride=(2, 2), dilation=(1, 1), flipped=true)
4643
y = MIOpen.convolution(x, w1; padding=(2, 2), stride=(2, 2), dilation=(1, 1), groups=1)
47-
@test y ROCArray(yh)
4844
@test size(y) == (7, 7, 16, 10)
4945

50-
yh = NNlib.conv(xh, wh2; pad=(2, 3), stride=(1, 2), dilation=(1, 1), flipped=true)
5146
y = MIOpen.convolution(x, w2; padding=(2, 3), stride=(1, 2), dilation=(1, 1), groups=1)
52-
@test y ROCArray(yh)
5347
@test size(y) == (12, 7, 16, 10)
5448

55-
yh = NNlib.conv(xh, wh1; pad=(2, 3), stride=(1, 2), dilation=(2, 2), flipped=true)
5649
y = MIOpen.convolution(x, w1; padding=(2, 3), stride=(1, 2), dilation=(2, 2), groups=1)
57-
@test y ROCArray(yh)
5850
@test size(y) == (12, 7, 16, 10)
5951

6052
# Depthwise convolution.
6153
wdh1 = rand(Float32, 2, 2, 1, 3)
6254
wd1 = ROCArray(wdh1)
63-
yh = NNlib.depthwiseconv(xh, wdh1; pad=(0, 0), stride=(1, 1), dilation=(1, 1), flipped=true)
6455
y = MIOpen.convolution(x, wd1; padding=(0, 0), stride=(1, 1), dilation=(1, 1), groups=3)
65-
@test y ROCArray(yh)
6656
@test size(y) == (9, 9, 3, 10)
6757

6858
# Grouped convolution.
6959
xh = ones(Float32, 10, 10, 4, 10)
7060
wdh2 = ones(Float32, 2, 2, 2, 4)
7161
x, wd2 = ROCArray.((xh, wdh2))
72-
yh = NNlib.conv(xh, wdh2; pad=(0, 0), stride=(1, 1), dilation=(1, 1), groups=2, flipped=true)
7362
y = MIOpen.convolution(x, wd2; padding=(0, 0), stride=(1, 1), dilation=(1, 1), groups=2)
74-
@test y ROCArray(yh)
7563
@test size(y) == (9, 9, 4, 10)
7664
end
7765

test/dnn/miopen.jl

-1
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,5 @@
11
@testset "MIOpen" begin
22

3-
using NNlib
43
using AMDGPU.MIOpen
54

65
@testset "Tensor descriptors" begin

test/dnn/pool.jl

+3-18
Original file line numberDiff line numberDiff line change
@@ -1,44 +1,29 @@
1-
@testset "NNlib comparison" begin
1+
@testset "Maxpool" begin
22
x = rand(Float32, 16, 16, 3, 2)
33
xd = ROCArray(x)
44

55
for k in (2, 3, 4), stride in (1, 2, 3), padding in (0, 1, 2)
6-
pdims = NNlib.PoolDims(x, k; stride, padding)
76
pkwargs = (; dims=(k, k), padding=(padding, padding), stride=(stride, stride))
87

98
# Max pooling.
109

11-
y = NNlib.maxpool(x, pdims)
1210
yd, workspace = MIOpen.maxpool(xd; pkwargs...)
1311
yd, workspace = MIOpen.maxpool!(yd, xd; pkwargs...)
14-
@test Array(yd) y
15-
@test Array(yd) y
1612

17-
dy = ones(Float32, size(y))
13+
dy = ones(Float32, size(yd))
1814
dyd = ROCArray(dy)
19-
20-
dx = NNlib.∇maxpool(dy, y, x, pdims)
2115
dxd = MIOpen.∇maxpool(dyd, yd, xd; workspace, pkwargs...)
22-
@test Array(dxd) dx
23-
2416
dxd = MIOpen.∇maxpool!(dxd, dyd, yd, xd; workspace, pkwargs...)
25-
@test Array(dxd) dx
2617

2718
# Mean pooling.
2819

29-
y = NNlib.meanpool(x, pdims)
3020
yd, workspace = MIOpen.meanpool(xd; pkwargs...)
31-
@test Array(yd) y
3221
yd, workspace = MIOpen.meanpool!(yd, xd; pkwargs...)
33-
@test Array(yd) y
3422

35-
dy = ones(Float32, size(y))
23+
dy = ones(Float32, size(yd))
3624
dyd = ROCArray(dy)
3725

38-
dx = NNlib.∇meanpool(dy, y, x, pdims)
3926
dxd = MIOpen.∇meanpool(dyd, yd, xd; workspace, pkwargs...)
40-
@test Array(dxd) dx
4127
dxd = MIOpen.∇meanpool!(dxd, dyd, yd, xd; workspace, pkwargs...)
42-
@test Array(dxd) dx
4328
end
4429
end

test/external/forwarddiff.jl

-12
Original file line numberDiff line numberDiff line change
@@ -79,15 +79,3 @@ end
7979
@test ForwardDiff.gradient(_x -> sum(_x .^ p), x) p .* (x .^ (p - 1))
8080
end
8181
end
82-
83-
#= FIXME
84-
@testset "Broadcast Fix" begin
85-
if AMDGPU.libmiopen !== nothing
86-
using NNlib
87-
88-
f(x) = logσ.(x)
89-
ds = Dual.(rand(5),1)
90-
@test f(ds) ≈ collect(f(ROCArray(ds)))
91-
end
92-
end
93-
=#

0 commit comments

Comments
 (0)