forked from AkariUeda/mc886-MachineLearning-Assignment1
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexp5_featureengineering.py
131 lines (105 loc) · 3.86 KB
/
exp5_featureengineering.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import numpy as np
from numpy import linalg
import matplotlib
import matplotlib.pyplot as plt
import pandas as pd
import sys
import warnings
from subprocess import call
warnings.filterwarnings('ignore')
def shape_csv(name):
file = pd.read_csv(name,header=None)
file = np.array(file)
file = file.astype(np.float)
return file
def main():
# Adjusting training parameters
iteracoes = int(sys.argv[1])
alpha =float(sys.argv[2])
gradient = sys.argv[3]
#Plot settings
matplotlib.style.use('seaborn')
fig = plt.figure()
train_plot = fig.add_subplot(2,1,1)
train_plot.set_ylabel('Training cost')
valid_plot = fig.add_subplot(2,1,2)
valid_plot.set_ylabel('Validation cost')
valid_plot.set_xlabel('Iterations')
fig_pred = plt.figure()
pred = fig_pred.add_subplot(1,1,1)
pred.set_ylabel('Price')
pred.set_xlabel('Examples')
cores = ['tab:blue', 'tab:orange']
train_features = shape_csv('train_features.csv')
train_labels = shape_csv('train_labels.csv')
valid_features = shape_csv('valid_features.csv')
valid_labels = shape_csv('valid_labels.csv')
print(train_features.shape)
print(train_features.shape)
#Drop feature x, y and z (columns 7, 8 and 9)
a = train_features[:,[1,2,3,4]]
a = np.power(a,-1,dtype=float)
a = a.sum(1)
a = np.power(a,-1,dtype=float)
a = 9*a
a = a.reshape(-1,1)
b = valid_features[:,[1,2,3,4]]
b = np.append(b,np.square(valid_features[:,[1,2,3,4]]),axis=1)
b = np.power(b,-1,dtype=float)
b = b.sum(1)
b = np.power(b,-1,dtype=float)
b = 9*b
b = b.reshape(-1,1)
valid_features = np.append(valid_features,b,axis=1)
train_features = np.append(train_features,a,axis=1)
print(train_features.shape)
np.savetxt("dropped_valid_features.csv", valid_features, delimiter=",")
np.savetxt("dropped_train_features.csv", train_features, delimiter=",")
np.savetxt("dropped_valid_labels.csv", valid_labels, delimiter=",")
np.savetxt("dropped_train_labels.csv", train_labels, delimiter=",")
#Setttings training parameters
prog=[]
prog.append("./linearRegressionFlex")
prog.append("-a="+str(alpha))
prog.append("-i="+str(iteracoes))
prog.append("-dvl=1")
prog.append("-async=1")
prog.append("-vr=1")
prog.append("-rd=1")
prog.append("-f=11")
prog.append("-tf=dropped_train_features.csv")
prog.append("-tl=dropped_train_labels.csv")
prog.append("-vf=dropped_valid_features.csv")
prog.append("-vl=dropped_valid_labels.csv")
if(gradient == 'batch'):
prog.append("-sgd=0")
elif(gradient == 'sgd'):
prog.append("-sgd=1")
elif(gradient == 'minibatch'):
prog.append("-mb=1")
#Executes the call for C code
call(prog)
#train_lr(theta, train_features, train_labels, iterations, alpha)
costs = shape_csv('costs.csv')
theta = shape_csv('theta.csv')
predictions = shape_csv('predictCosts.csv')
#timestamps = shape_csv('times.csv')
#Plotting
if np.isfinite(costs[0]).all():
train_plot.plot(range(0,len(costs[0])), costs[0], cores[0], label=str(alpha), linestyle='-')
if np.isfinite(predictions[0]).all():
valid_plot.plot(range(0,len(predictions[0])), predictions[0], cores[1], label=str(alpha), linestyle='-')
h = np.dot(valid_features, theta[0])
valid_labels, H = zip(*sorted(zip(valid_labels, h)))
pred.plot(range(0, len(H)),H, 'b.', label="Predicted")
pred.plot(range(0, len(valid_labels)), valid_labels, 'r.', label="Target")
print(len(valid_labels))
pred.legend()
train_plot.legend()
valid_plot.legend()
fig_pred.show()
fig_pred.savefig('drop_prediction_'+str(alpha)+"_"+gradient+"_"+str(iteracoes)+'.png')
fig.show()
fig.savefig('drop_training_'+str(alpha)+"_"+gradient+"_"+str(iteracoes)+'.png')
if __name__ == "__main__":
main()