-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
59 lines (44 loc) · 1.81 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import os
import random
from argparse import ArgumentParser
import numpy as np
import tensorflow as tf
import models
from utils import resampling
def main(args):
random.seed(args.seed)
np.random.seed(args.seed)
tf.keras.utils.set_random_seed(args.seed)
tf.config.experimental.enable_op_determinism()
model = getattr(models, args.model)(winsize=args.winsize,
sampling_rate=args.sampling_rate,
verbose=args.verbose)
if args.show_summary:
model.summary()
need_co2 = args.model == "RespNet"
# Load data
x = np.load(f"data/{args.dataset}/X_{args.winsize}.npy", allow_pickle=True)
y = np.load(f"data/{args.dataset}/RR_{args.winsize}.npy", allow_pickle=True)
# Resampling
x = resampling(x, args.winsize, args.sampling_rate)
if need_co2:
co2 = np.load(f"data/{args.dataset}/CO2_{args.winsize}.npy", allow_pickle=True)
co2 = resampling(co2, args.winsize, args.sampling_rate)
# Train
folder = f"results/{args.dataset}/{args.model}_{args.winsize}"
if not os.path.exists(folder):
os.makedirs(folder)
if need_co2:
model.train(x, co2, folder, rr=y)
else:
model.train(x, y, folder)
if __name__ == "__main__":
args_parser = ArgumentParser()
args_parser.add_argument("--model", type=str, default="RRWaveNet")
args_parser.add_argument("--dataset", type=str, required=True)
args_parser.add_argument("--winsize", type=int, required=True)
args_parser.add_argument("--sampling_rate", type=int, default=50)
args_parser.add_argument("--show_summary", action="store_true")
args_parser.add_argument("--seed", type=int, default=69420)
args_parser.add_argument("--verbose", type=int, default=0)
main(args_parser.parse_args())