-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
335 lines (291 loc) · 12.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
"""
Main python script
This script will calculate diffusion tensor maps
from a set of dicom files.
"""
import os
import sys
import matplotlib
import pyautogui
from extensions.complex_averaging import complex_averaging
from extensions.crop_fov import crop_fov, record_image_registration
from extensions.extensions import (
export_results,
get_cardiac_coordinates_short_axis,
get_colourmaps,
get_ha_line_profiles,
get_lv_segments,
get_snr_maps,
query_yes_no,
remove_outliers,
remove_slices,
)
from extensions.folder_loop_initial_setup import folder_loop_initial_setup
from extensions.get_eigensystem import get_eigensystem
from extensions.get_fa_md import get_fa_md
from extensions.get_tensor_orientation_maps import get_tensor_orientation_maps
from extensions.heart_segmentation import get_average_images, heart_segmentation
from extensions.image_registration import image_registration
from extensions.initial_setup import initial_setup
from extensions.phase_correction_for_complex_averaging import phase_correction_for_complex_averaging
from extensions.read_data.read_and_pre_process_data import read_data
from extensions.select_outliers import select_outliers
from extensions.tensor_fittings import dipy_tensor_fit
# # for debugging numpy warnings
# np.seterr(all="raise")
# matplotlib
# better looking
matplotlib.rcParams["font.size"] = 10
# more suitable for manuscripts
# matplotlib.rcParams["font.size"] = 15
# to run efficiently
matplotlib.rcParams["toolbar"] = "None"
# Faster interactive matplotlib
if sys.platform != "darwin":
matplotlib.use("qtagg")
# script path
abspath = os.path.abspath(sys.argv[0])
script_path = os.path.dirname(abspath)
# In TensorFlow 2.16+, to keep using Keras 2, you can first install tf_keras, and then export the environment
# variable TF_USE_LEGACY_KERAS=1. This will direct TensorFlow 2.16+ to resolve tf.keras to the locally-installed
# tf_keras package.
os.environ["TF_USE_LEGACY_KERAS"] = "1"
# ITK
# import itk
# limit the amount of parallel threads during registration
# itk.MultiThreaderBase.SetGlobalMaximumNumberOfThreads(1)
# DTCMR tailored colormaps
colormaps = get_colourmaps(script_path)
# initial setup before going into the folder loop
dti, settings, logger, log_format, all_to_be_analysed_folders = initial_setup(script_path)
# screen size
settings["screen_size"] = pyautogui.size()
# Warning about deleting DICOM data
if settings["workflow_mode"] == "anon":
answer = query_yes_no("Are you sure you want to archive all DICOM files?")
if answer:
logger.info("Archiving DICOMs in an encrypted 7z file!")
else:
logger.error("Exiting, no permission to archive DICOM data.")
sys.exit()
for current_folder in all_to_be_analysed_folders:
# initial setup
info, settings, logger = folder_loop_initial_setup(current_folder, settings, logger, log_format)
# =========================================================
# START processing
# read and pre-process data
# =========================================================
[data, info, slices] = read_data(settings, info, logger)
# =========================================================
# Option to perform only reading of data and anonymisation
# =========================================================
if settings["workflow_mode"] == "anon":
logger.info("Anonymisation of data only mode is True. Stopping here.")
continue
# =========================================================
# phase correction for complex averaging
# =========================================================
if settings["complex_data"]:
data = phase_correction_for_complex_averaging(data, logger, settings)
# =========================================================
# DWIs registration
# =========================================================
data, registration_image_data, ref_images, reg_mask = image_registration(data, slices, info, settings, logger)
# =========================================================
# Option to perform only registration
# =========================================================
if settings["workflow_mode"] == "reg":
logger.info("Registration only mode is True. Stopping here.")
continue
# =========================================================
# Remove outliers (pre-segmentation)
# =========================================================
if settings["remove_outliers_manually_pre"]:
logger.info("Manual removal of outliers pre segmentation")
[data, info, slices] = select_outliers(
data,
slices,
registration_image_data,
settings,
info,
logger,
stage="pre",
segmentation={},
mask=reg_mask,
)
else:
# initialise some variables if we are not removing outliers manually
logger.info("Manual removal of outliers pre segmentation is False")
info["rejected_indices"] = []
info["n_images_rejected"] = 0
# =========================================================
# Average images
# =========================================================
# get average denoised normalised image for each slice
average_images = get_average_images(
data,
slices,
info,
logger,
)
# =========================================================
# Heart segmentation
# =========================================================
segmentation, mask_3c = heart_segmentation(
data, average_images, slices, info["n_slices"], colormaps, settings, info, logger
)
# =========================================================
# Remove non segmented slices
# =========================================================
data, slices, segmentation = remove_slices(data, slices, segmentation, logger)
# =========================================================
# Crop image data
# =========================================================
# crop the images to the region around the segmented area only
# use the same crop for all slices and then pad with 3 pixels on all sides
dti, data, mask_3c, reg_mask, segmentation, average_images, info, crop_mask = crop_fov(
dti,
data,
mask_3c,
reg_mask,
segmentation,
slices,
average_images,
registration_image_data,
ref_images,
info,
logger,
settings,
)
# =========================================================
# Remove outliers (post-segmentation)
# =========================================================
logger.info("Manual removal of outliers post segmentation")
[data, info, slices] = select_outliers(
data,
slices,
registration_image_data,
settings,
info,
logger,
stage="post",
segmentation=segmentation,
mask=reg_mask,
)
# =========================================================
# Remove outliers and other data from table
# =========================================================
data, info = remove_outliers(data, info)
# =========================================================
# Get line profile off all remaining images to
# assess registration
# =========================================================
record_image_registration(registration_image_data, ref_images, mask_3c, slices, settings, logger)
# =========================================================
# Get SNR maps
# =========================================================
[dti["snr"], noise, snr_b0_lv, info] = get_snr_maps(data, mask_3c, average_images, slices, settings, logger, info)
# =========================================================
# complex averaging
# =========================================================
if settings["complex_data"]:
data = complex_averaging(data, logger)
# =========================================================
# Calculate tensor
# =========================================================
dti["tensor"], dti["s0"], dti["residuals_plot"], dti["residuals_map"], info = dipy_tensor_fit(
slices,
data,
info,
settings,
mask_3c,
average_images,
logger,
method=settings["tensor_fit_method"],
quick_mode=False,
)
# =========================================================
# Denoise tensor with uformer models
# =========================================================
if settings["uformer_denoise"]:
try:
from extensions.uformer_denoising import denoise_tensor
except ImportError:
logger.error("Could not import uformer_denoising module")
raise ImportError("Could not import uformer_denoising module. Please install torch")
logger.info("Denoising tensor with uformer model: breatholds " + str(settings["uformer_breatholds"]))
dti["tensor"] = denoise_tensor(dti["tensor"], settings)
else:
logger.info("Denoising tensor with uformer model is False")
# =========================================================
# Get Eigensystems
# =========================================================
dti, info = get_eigensystem(
dti,
slices,
info,
average_images,
settings,
mask_3c,
logger,
)
# =========================================================
# Get dti["fa"] and dti["md"] maps
# =========================================================
dti["md"], dti["fa"], dti["mode"], dti["frob_norm"], dti["mag_anisotropy"], info = get_fa_md(
dti["eigenvalues"], info, mask_3c, slices, logger
)
# =========================================================
# Get cardiac coordinates
# =========================================================
local_cardiac_coordinates, lv_centres, phi_matrix = get_cardiac_coordinates_short_axis(
mask_3c, segmentation, slices, info["n_slices"], settings, dti, average_images, info
)
# =========================================================
# Segment heart
# =========================================================
dti["lv_sectors"] = get_lv_segments(segmentation, phi_matrix, mask_3c, lv_centres, slices, logger)
# =========================================================
# Get dti["ha"] and dti["e2a"] maps
# =========================================================
dti["ha"], dti["ta"], dti["e2a"], info = get_tensor_orientation_maps(
slices, mask_3c, local_cardiac_coordinates, dti, settings, info, logger
)
# =========================================================
# Get HA line profiles
# =========================================================
dti["ha_line_profiles"], dti["wall_thickness"] = get_ha_line_profiles(
dti["ha"], lv_centres, slices, mask_3c, segmentation, settings, info
)
# =========================================================
# Copy diffusion maps to an xarray dataset
# =========================================================
# ds = get_xarray(info, dti, crop_mask, slices)
# =========================================================
# Plot main results and save data
# =========================================================
export_results(data, dti, info, settings, mask_3c, slices, average_images, segmentation, colormaps, logger)
# =========================================================
# Cleanup before the next folder
# =========================================================
logger.info("Cleaning up before the next folder")
del (
average_images,
crop_mask,
data,
info,
local_cardiac_coordinates,
lv_centres,
mask_3c,
noise,
phi_matrix,
ref_images,
registration_image_data,
segmentation,
slices,
snr_b0_lv,
)
dti = {}
logger.info("============================================================")
logger.info("====================== FINISHED ============================")
logger.info("============================================================")