-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtwo_class_nn.py
169 lines (142 loc) · 6.46 KB
/
two_class_nn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import pandas
from pylab import *
import keras as ks
from keras.layers import Dense, Activation
import matplotlib.pyplot as plt
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import roc_curve
from sklearn.metrics import auc
import numpy as np
from sklearn.preprocessing import StandardScaler, label_binarize
from sklearn.model_selection import train_test_split
from sklearn.metrics import recall_score,accuracy_score
from sklearn.metrics import precision_score,f1_score
from keras.optimizers import Adam,SGD,sgd
from keras.models import load_model
from sklearn.metrics import accuracy_score, roc_curve, auc, roc_auc_score, confusion_matrix
# ...
# save loss and acc
class LossHistory(ks.callbacks.Callback):
def on_train_begin(self, logs={}):
self.losses = {'batch': [], 'epoch': []}
self.accuracy = {'batch': [], 'epoch': []}
self.val_loss = {'batch': [], 'epoch': []}
self.val_acc = {'batch': [], 'epoch': []}
def on_batch_end(self, batch, logs={}):
self.losses['batch'].append(logs.get('loss'))
self.accuracy['batch'].append(logs.get('acc'))
self.val_loss['batch'].append(logs.get('val_loss'))
self.val_acc['batch'].append(logs.get('val_acc'))
def on_epoch_end(self, batch, logs={}):
self.losses['epoch'].append(logs.get('loss'))
self.accuracy['epoch'].append(logs.get('acc'))
self.val_loss['epoch'].append(logs.get('val_loss'))
self.val_acc['epoch'].append(logs.get('val_acc'))
def loss_plot(self, loss_type):
iters = [i for i in range(len(self.losses[loss_type]))]
iindex = np.arange(0, len(self.losses[loss_type]), len(self.losses[loss_type]) / 200)
iindex = list(iindex)
plt.figure()
# acc
plt.plot(iters[iindex], np.array(self.accuracy[loss_type])[iindex], 'r', label='train acc')
# loss
plt.plot(iters[iindex], np.array(self.losses[loss_type])[iindex], 'g', label='train loss')
if loss_type == 'epoch':
# val_acc
plt.plot(iters[iindex], np.array(self.val_acc[loss_type])[iindex], 'b', label='val acc')
# val_loss
plt.plot(iters[iindex], np.array(self.val_loss[loss_type])[iindex], 'k', label='val loss')
plt.grid(True)
plt.xlabel(loss_type)
plt.ylabel('acc-loss')
ylim(0, 1.5)
plt.legend(loc="upper right")
plt.savefig('fig.png')
plt.show()
col_names = ["duration","protocol_type","service","flag","src_bytes",
"dst_bytes","land","wrong_fragment","urgent","hot","num_failed_logins",
"logged_in","num_compromised","root_shell","su_attempted","num_root",
"num_file_creations","num_shells","num_access_files","num_outbound_cmds",
"is_host_login","is_guest_login","count","srv_count","serror_rate",
"srv_serror_rate","rerror_rate","srv_rerror_rate","same_srv_rate",
"diff_srv_rate","srv_diff_host_rate","dst_host_count","dst_host_srv_count",
"dst_host_same_srv_rate","dst_host_diff_srv_rate","dst_host_same_src_port_rate",
"dst_host_srv_diff_host_rate","dst_host_serror_rate","dst_host_srv_serror_rate",
"dst_host_rerror_rate","dst_host_srv_rerror_rate","label"]
kdd_data_10percent = pandas.read_csv("kddcup.data_10_percent_corrected.csv", header=None, names = col_names)
kdd_data_test = pandas.read_csv("corrected.csv", header=None, names = col_names)
kdd_data_10percent.describe()
features = kdd_data_10percent[col_names[:-1]].astype(float)
np_features = np.array(features)
test_features = kdd_data_test[col_names[:-1]].astype(float)
test_np_features = np.array(test_features)
# labels
labels = kdd_data_10percent['label'].copy()
np_labels = np.array(labels)
np_labels = np.array(np_labels, dtype = np.float)
test_labels = kdd_data_test['label'].copy()
test_np_labels = np.array(test_labels)
test_np_labels = np.array(test_np_labels, dtype = np.float)
# Feature scaling
np_features = StandardScaler().fit_transform(np_features)
test_np_features = StandardScaler().fit_transform(test_np_features)
labels_for_nn = []
np_labels_test_nn = []
for label in np_labels:
tmp_label = [0] * 2
tmp_label[int(label)] = 1
labels_for_nn.append(tmp_label)
for label in test_np_labels:
tmp_label = [0] * 2
tmp_label[int(label)] = 1
np_labels_test_nn.append(tmp_label)
train_data_num = int(len(np_features) * 0.8)
model = ks.models.Sequential()
model.add(Dense(16, input_dim=41))
model.add(Activation('relu'))
model.add(Dense(128))
model.add(Activation('relu'))
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dense(32))
model.add(Activation('relu'))
model.add(Dense(16))
model.add(Activation('relu'))
model.add(Dense(2))
model.add(Activation('softmax'))
history = LossHistory()
model.compile(loss='categorical_crossentropy',optimizer='adadelta',metrics=['accuracy'])
# model.fit(x=data_train,y=labels_train,batch_size=128,nb_epoch=5000,verbose=1,validation_data=(data_test,labels_test),callbacks=[history])
model.fit(x=np_features[:train_data_num],y=labels_for_nn[:train_data_num],batch_size=100,nb_epoch=2,verbose=1,validation_data=(np_features[train_data_num:],labels_for_nn[train_data_num:]), callbacks=[history])
# history.loss_plot('epoch')
predicts = model.predict(test_np_features)
np_labels_test_nn = np.array(np_labels_test_nn)
# Y_pred = [np.argmax(y) for y in predicts]
# Y_valid = [np.argmax(y) for y in np_labels_test_nn]
# precision = precision_score(Y_valid, Y_pred, average='weighted')
# recall = recall_score(Y_valid, Y_pred, average='weighted')
# f1_score = f1_score(Y_valid, Y_pred, average='weighted')
# accuracy_score = accuracy_score(Y_valid, Y_pred)
# precision = precision_score(np_labels_test_nn[:, 1], predicts[:, 1], average='weighted')
# recall = recall_score(np_labels_test_nn[:, 1], predicts[:, 1], average='weighted')
# f1_score = f1_score(np_labels_test_nn[:, 1], predicts[:, 1], average='weighted')
# accuracy_score = accuracy_score(np_labels_test_nn[:, 1], predicts[:, 1])
# print("Precision_score:",precision)
# print("Recall_score:",recall)
# print("F1_score:",f1_score)
# print("Accuracy_score:",accuracy_score)
fpr, tpr, thresholds_keras = roc_curve(np_labels_test_nn[:, 1], predicts[:, 1])
auc = auc(fpr, tpr)
print("AUC : ", auc)
plt.figure()
plt.plot(fpr, tpr, label='DNN Model area = {:.3f})'.format(auc))
plt.plot([0, 1], [0, 1], 'r--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic')
plt.legend(loc="lower right")
plt.savefig('all_Log_ROC_DNN')
plt.show()