-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtag_file_ai.py
506 lines (391 loc) · 17.6 KB
/
tag_file_ai.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
import base64
import json
import shutil
from datetime import datetime
from typing import Any, Union, Optional
import anchorpoint as ap
import apsync as aps
import os
import tempfile
import hashlib
import requests
from ai.api import init_openai_key, OPENAI_API_URL
from ai.response_schema import get_file_properties, get_file_response_format
from ap_tools.dialogs import CreateTagFilesDialogData, create_tag_files_dialog
from common.logging import log, log_err
from image.resize import resize_image
from labels.attributes import ensure_attribute, replace_tag, check_or_update_attribute
from labels.extensions import extensions_without_preview, filter_ignored_extensions
from labels.variants import types_variants, genres_variants, objects_variants
from ai.constants import INPUT_PIXEL_PRICE, INPUT_TOKEN_PRICE, OUTPUT_TOKEN_PRICE, MAX_RETRIES
from ai.tokens import count_tokens
from common.settings import tagger_settings
prompt = (
"You are a file tagging AI. When asked, write tags for each file in the order they were presented: "
)
if tagger_settings.file_label_ai_types:
prompt += "content types (Texture, Sprite, Model, VFX, SFX, etc.) (min 1),"
if tagger_settings.file_label_ai_genres:
prompt += "detailed genres (min 1),"
if tagger_settings.file_label_ai_objects:
prompt += f"objects and other keywords in the image (min {tagger_settings.file_label_ai_objects_min}, max {tagger_settings.file_label_ai_objects_max}), "
prompt += "fill all tags for each image. Use Capitalized Words"
output_token_count = 200
images_per_request = 10
proceed_dialog: ap.Dialog
all_variants = {
"AI-Types": types_variants,
"AI-Genres": genres_variants,
"AI-Objects": objects_variants
}
items = get_file_properties()
response_format = get_file_response_format(items)
def calculate_file_hash(file_path, hash_algorithm="sha256", length: int = 8):
hash_func = hashlib.new(hash_algorithm)
with open(file_path, "rb") as f:
while chunk := f.read(8192):
hash_func.update(chunk)
return hash_func.hexdigest()[:length]
def encode_image(image_path):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode("utf-8")
def create_temp_directory():
# Create a temporary directory
temp_dir_root = os.path.join(tempfile.gettempdir(), "anchorpoint", "ai_tagger", "previews")
if not os.path.exists(temp_dir_root):
os.makedirs(temp_dir_root)
return temp_dir_root
def get_preview_image(workspace_id, input_path, output_folder):
file_hash = calculate_file_hash(input_path)
# get the proper filename, rename it because the generated PNG file has a _pt appendix
file_name = os.path.basename(input_path).split(".")[0]
image_path = os.path.join(output_folder, f"{file_name}_{file_hash}_pt.png")
existing_preview = aps.get_thumbnail(input_path, False)
if existing_preview:
# copy the existing preview to the output folder because we can not modify the existing preview
if not os.path.exists(image_path):
os.makedirs(output_folder, exist_ok=True)
shutil.copy(existing_preview, image_path)
log(f"Existing preview found: {existing_preview}\nCopying to {image_path}")
return image_path
log(f"Existing preview not found for {input_path}, generating new one")
if not os.path.exists(image_path):
aps.generate_thumbnails(
[input_path],
output_folder,
with_detail=False,
with_preview=True,
workspace_id=workspace_id,
)
generated_path = os.path.join(output_folder, f"{file_name}_pt.png")
if not os.path.exists(generated_path):
# preview was not generated
return ""
log(f"Generated preview for {input_path}")
os.rename(generated_path, image_path)
else:
log(f"Load cached preview for {input_path}")
return image_path
OPENAI_API_KEY = init_openai_key()
def get_openai_response_images(in_prompt, image_paths: list[str], model="gpt-4o-mini") -> list[Any]:
if len(image_paths) == 0 or len(image_paths) > images_per_request:
raise ValueError(f"The number of images should be between 1 and {images_per_request}")
uploads_base64 = [encode_image(image_path) for image_path in image_paths]
original_file_names = [os.path.basename(image_path) for image_path in image_paths]
content = [{
"type": "text",
"text": "Please tag these images: " + ", ".join(original_file_names)
}]
for upload in uploads_base64:
content.append({
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{upload}"}
})
headers = {
"Authorization": f"Bearer {OPENAI_API_KEY}",
"Content-Type": "application/json"
}
payload = {
"model": model,
"messages": [
{"role": "system", "content": in_prompt},
{"role": "user", "content": content}
],
"response_format": response_format
}
log(f"Body: {payload}")
try:
response = requests.post(OPENAI_API_URL, headers=headers, json=payload)
response.raise_for_status()
result = response.json()
result_content = result["choices"][0]["message"]["content"].strip()
parsed = json.loads(result_content)
return parsed.get("tags", [])
except requests.exceptions.RequestException as e:
log_err(f"Request error: {e}")
return []
except json.JSONDecodeError:
log_err("Failed to parse the response")
return []
except KeyError:
log_err("Wrong response from OpenAI")
return []
previews_sliced = []
original_files: dict[str, str] = {}
def change_slices_to_skip(database):
new_previews = []
prev_count = 0
global previews_sliced
for p in previews_sliced:
for preview in p:
original_file = original_files[preview]
prev_count += 1
ai_types_attr: Union[aps.apsync.Attribute, str] = database.attributes.get_attribute_value(
original_file,
"AI-Types")
if ai_types_attr and len(ai_types_attr) > 0:
continue
new_previews.append(preview)
new_previews_sliced = [
new_previews[i:i + images_per_request] for i in
range(0, len(new_previews), images_per_request)]
delta = prev_count - len(new_previews)
if delta > 0:
msg = f"Reduced previews by {delta}: from {prev_count} to {len(new_previews)}"
log(msg)
ap.UI().show_info("Skipped files", msg)
previews_sliced = new_previews_sliced
def proceed_callback(database):
proceed_dialog.close()
skip_existing_tags = proceed_dialog.get_value("skip_existing_tags")
if skip_existing_tags:
change_slices_to_skip(database)
def run():
progress = ap.Progress(
"Requesting AI tags", "Processing", infinite=False, show_loading_screen=True, cancelable=True)
global start_time
start_time = datetime.now()
log(f"Started tagging {len(previews_sliced)} previews")
progress.report_progress(0)
for i, p in enumerate(previews_sliced):
if progress.canceled:
progress.finish()
ap.UI().navigate_to_folder(initial_folder)
return
retries = MAX_RETRIES
response = None
while retries > 0:
retries -= 1
response = get_openai_response_images(prompt, p)
progress.report_progress((i + 1) / len(previews_sliced))
log(response)
if len(response) < len(p):
ap.UI().navigate_to_folder(initial_folder)
ap.UI().show_error(
"Error",
f"Not all images were tagged [Received {len(response)}, requested {len(p)}], retrying {retries} more times")
log_err(
f"Not all images were tagged [Received {len(response)}, requested {len(p)}], retrying {retries} more times")
continue
break
if retries <= 0:
ap.UI().navigate_to_folder(initial_folder)
ap.UI().show_error(
"Error", f"Not all files were tagged after {MAX_RETRIES} retries, aborting")
return
progress2 = ap.Progress("Updating tags", "Processing", infinite=False, show_loading_screen=True)
for j, preview in enumerate(p):
progress2.report_progress(j / len(p))
tags = response[j]
# ap.UI().navigate_to_folder(os.path.dirname(original_files[p[j]]))
ap.UI().navigate_to_file(original_files[p[j]])
if tagger_settings.file_label_ai_types:
types = tags["types"]
if "types_additional" in tags:
types += tags["types_additional"]
types_tags = aps.AttributeTagList()
for k, tag in enumerate(types):
types[k] = replace_tag(tag, all_variants["AI-Types"])
new_tag = check_or_update_attribute(attributes[0], types[k], database)
types_tags.append(new_tag)
database.attributes.set_attribute_value(original_files[p[j]], "AI-Types", types_tags)
if tagger_settings.file_label_ai_genres:
genres = tags["genres"]
if "genres_additional" in tags:
genres += tags["genres_additional"]
genres_tags = aps.AttributeTagList()
for k, tag in enumerate(genres):
genres[k] = replace_tag(tag, all_variants["AI-Genres"])
new_tag = check_or_update_attribute(attributes[1], genres[k], database)
genres_tags.append(new_tag)
database.attributes.set_attribute_value(original_files[p[j]], "AI-Genres", genres_tags)
if tagger_settings.file_label_ai_objects:
objects = tags["objects"]
objects_tags = aps.AttributeTagList()
for k, tag in enumerate(objects):
objects[k] = replace_tag(tag, all_variants["AI-Objects"])
new_tag = check_or_update_attribute(attributes[2], objects[k], database)
objects_tags.append(new_tag)
database.attributes.set_attribute_value(original_files[p[j]], "AI-Objects", objects_tags)
progress2.finish()
progress.finish()
finish_time = datetime.now()
log(f"Finished tagging in {finish_time - start_time}")
ap.UI().navigate_to_folder(initial_folder)
ctx.run_async(run)
previews = []
file_input_paths = []
last_index = -1
generating_previews_count = 0
generating_previews_progress: Optional[ap.Progress] = None
cancel_generating_previews = False # hack
ctx: Optional[ap.Context] = None
start_time = datetime.now()
previews_start_time = datetime.now()
def proceed_generating_previews(workspace_id, database, output_folder):
if cancel_generating_previews:
return
if generating_previews_progress.canceled:
return
if generating_previews_count > len(file_input_paths):
return
if generating_previews_count == len(file_input_paths):
finish_generating_previews(previews, database)
return
if last_index >= len(file_input_paths) - 1:
return
input_path = file_input_paths[last_index + 1]
generate_preview_async(workspace_id, input_path, output_folder, database)
def generate_previews(workspace_id, input_paths, database):
if len(input_paths) == 0:
ap.UI().navigate_to_folder(initial_folder)
ap.UI().show_error("No supported files selected", "Please select files to tag")
log_err("No supported files selected")
return
global previews_start_time
previews_start_time = datetime.now()
log(f"Started generating previews for {len(input_paths)} files")
# start progress
global generating_previews_progress
generating_previews_progress = ap.Progress(
"Generating previews", "Processing", infinite=False,
show_loading_screen=True,
cancelable=True)
output_folder = create_temp_directory()
global previews
previews = []
global file_input_paths
file_input_paths = input_paths
log("Output folder: {}".format(output_folder.replace("\\", "\\\\")))
proceed_generating_previews(workspace_id, database, output_folder)
# start generating first 10 previews
for i in range(min(images_per_request, len(input_paths))):
input_path = input_paths[i]
ctx.run_async(generate_preview_async, workspace_id, input_path, output_folder, database)
def generate_preview_async(workspace_id, input_path, output_folder, database):
global last_index
if last_index >= len(file_input_paths) - 1:
return
last_index += 1
global cancel_generating_previews
if cancel_generating_previews:
return
image_path = get_preview_image(workspace_id, input_path, output_folder)
if not image_path == "":
previews.append(image_path)
original_files[image_path] = input_path
global generating_previews_count
generating_previews_count += 1
log(f"Progress cancelled: {generating_previews_progress.canceled}")
if generating_previews_progress.canceled:
cancel_generating_previews = True
generating_previews_progress.finish()
ap.UI().navigate_to_folder(initial_folder)
return
generating_previews_progress.report_progress(generating_previews_count / len(file_input_paths))
proceed_generating_previews(workspace_id, database, output_folder)
def finish_generating_previews(input_paths, database):
if generating_previews_progress.canceled:
return
generating_previews_progress.finish()
log(f"Finished generating previews for {len(input_paths)} files")
current_time = datetime.now()
log(f"Generated {len(input_paths)} previews in {current_time - previews_start_time}")
if len(input_paths) == 0:
ap.UI().navigate_to_folder(initial_folder)
ap.UI().show_error("No supported files selected", "Please select files to tag")
log_err("No supported files selected")
return
process_images(input_paths, database)
max_dimension = 128
def process_images(input_paths, database):
# calculate pixel count
pixel_count = 0
asset_names = []
progress = ap.Progress("Calculating pixel count", "Processing", infinite=False, show_loading_screen=True)
for i, preview_path in enumerate(previews):
[width, height] = resize_image(preview_path, max_dimension)
pixel_count += width * height
progress.report_progress(i / len(previews))
asset_names.append(os.path.basename(original_files[preview_path]))
global previews_sliced
# slice previews by images_per_request
previews_sliced = [previews[i:i + images_per_request] for i in range(0, len(previews), images_per_request)]
# calculate token count
pixel_price = pixel_count * INPUT_PIXEL_PRICE
log(f"Pixel count: {pixel_count}")
log(f"Pixel price: {pixel_price}")
progress.finish()
token_prompts = count_tokens(prompt) * len(previews_sliced)
token_count = count_tokens(", ".join(asset_names))
total_tokens = token_prompts + token_count
combined_output_tokens = len(previews_sliced) * output_token_count
total_price = total_tokens * INPUT_TOKEN_PRICE + pixel_price + combined_output_tokens * OUTPUT_TOKEN_PRICE
req_count = len(previews_sliced)
not_none_attr = len(attributes) - attributes.count(None)
attr_count = len(input_paths) * not_none_attr
data = CreateTagFilesDialogData(
input_paths, total_tokens, combined_output_tokens, pixel_count, total_price,
req_count, attr_count
)
global proceed_dialog
proceed_dialog = create_tag_files_dialog(data, lambda d: proceed_callback(database))
proceed_dialog.show()
attributes = []
ignored_extensions = extensions_without_preview
def get_all_files_recursive(folder_path) -> list[str]:
files = []
for root, _, file_names in os.walk(folder_path):
for file_name in file_names:
files.append(str(os.path.join(root, file_name)))
return files
initial_folder = ""
def main():
if not tagger_settings.any_file_tags_selected():
ap.UI().show_error("No tags selected", "Please select at least one tag type in the settings")
return
global ctx
ctx = ap.get_context()
database = ap.get_api()
# Create or get the "AI Tags" attributes
types_attribute = ensure_attribute(database, "AI-Types") if tagger_settings.file_label_ai_types else None
genres_attribute = ensure_attribute(database, "AI-Genres") if tagger_settings.file_label_ai_genres else None
objects_attribute = ensure_attribute(database, "AI-Objects") if tagger_settings.file_label_ai_objects else None
global attributes
attributes = [types_attribute, genres_attribute, objects_attribute]
selected_files = ctx.selected_files
selected_folders = ctx.selected_folders
log(selected_folders)
if len(selected_folders) > 0:
for folder in selected_folders:
inner_files = get_all_files_recursive(folder)
log(inner_files)
selected_files.extend(inner_files)
filtered_files = filter_ignored_extensions(selected_files, ignored_extensions)
global initial_folder
initial_folder = os.path.dirname(ctx.path)
log(f"Initial folder: {initial_folder}")
ctx.run_async(generate_previews, ctx.workspace_id, filtered_files, database)
return
if __name__ == "__main__":
main()