forked from jungla/ICOM-fluidity-toolbox
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlagrangian_stats.py
256 lines (225 loc) · 6.23 KB
/
lagrangian_stats.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
#!/share/apps/python/2.7.2/bin/python
import os
import numpy as np
import csv
import fluidity_tools
import myfun
global os, np, csv, fluidity_tools, myfun
def read_dispersion(filename):
RD = [] #np.zeros((tt_B,nl))
time = []
with open(filename, 'r') as csvfile:
spamreader = csv.reader(csvfile)
spamreader.next()
for row in spamreader:
time.append(row[0])
RD.append(row[1:])
time = np.asarray(time).astype(float)
RD = np.asarray(RD).astype(float)
return time, RD
def read_Tracer(filepath,pd,zn,yn,xn,timeTr):
# pd - list of tracer's name
# zn,xn,yn - tracer's dims
# timeTr - tracer's time series
nl = len(pd)
Tr = np.zeros((nl,zn,xn,yn,len(timeTr)))
for t in range(len(timeTr)):
print t
for z in range(nl):
print 'Tracer_',pd[z]
#
f = open(filepath+'_Tr'+str(pd[z])+'_'+str(t)+'.csv','r')
reader = csv.reader(f)
j = 0
k = 0
for row in reader:
if j == yn: k = k + 1; j = 0
i = 0
for item in row[:-1]: # new line character !!
Tr[z,k,i,j,t] = item
i = i + 1
j = j + 1
# print np.amax(Tr[z,k,:,:,t])
# Tr[:,:,:,t] = Tr[:,:,:,t]/3
f.close()
# TrT = np.reshape(Tr[0,:,:,t],)
# TrT = Tr[:,:,:,t]
return Tr
def read_Scalar(filepath,zn,yn,xn):
# pd - list of tracer's name
# zn,xn,yn - tracer's dims
# timeTr - tracer's time series
Tr = np.zeros((zn,xn,yn))
f = open(filepath,'r')
reader = csv.reader(f)
j = 0
k = 0
for row in reader:
if j == yn: k = k + 1; j = 0
i = 0
for item in row[:-1]: # new line character !!
Tr[k,i,j] = item
i = i + 1
j = j + 1
# print np.amax(Tr[z,k,:,:,t])
# Tr[:,:,:,t] = Tr[:,:,:,t]/3
f.close()
# TrT = np.reshape(Tr[0,:,:,t],)
# TrT = Tr[:,:,:,t]
return Tr
#
#def read_particles(filepath):
# det = fluidity_tools.stat_parser(filepath)
# pt = int(os.popen('grep position '+filepath+'| wc -l').read()) # read the number of particles grepping all the positions in the file
# time = det['ElapsedTime']['value']
# tt = len(time)
# par = np.zeros((pt,3,tt))
# #
# for d in xrange(pt):
# temp = det['particles_'+myfun.digit(d+1,len(str(pt)))]['position']
# par[d,:,:] = temp[:,:]
# #
# return time, par
#
#
def periodicCoords(par,xlim,ylim):
pt,poop,tt = par.shape
s = np.zeros(par.shape)
parP = np.zeros(par.shape)
xlimD = xlim-xlim/5.0
ylimD = ylim-ylim/5.0
for p in xrange(pt):
for t in xrange(tt-1):
if par[p,0,t] - par[p,0,t+1] > xlimD:
s[p,0,t+1:] = s[p,0,t+1:] + xlim
if par[p,0,t] - par[p,0,t+1] < -xlimD:
s[p,0,t+1:] = s[p,0,t+1:] - xlim
if par[p,1,t] - par[p,1,t+1] > ylimD:
s[p,1,t+1:] = s[p,1,t+1:] + ylim
if par[p,1,t] - par[p,1,t+1] < -ylimD:
s[p,1,t+1:] = s[p,1,t+1:] - ylim
for p in xrange(pt):
for t in xrange(tt-1):
parP[p,:,t] = par[p,:,t] + s[p,:,t]
return parP
# WRONG!!
def tracer_d2(Xlist,Ylist,deltax,Tr):
S00 = 0
S01 = 0
S02 = 0
N = len(Ylist)
A = float(max(Xlist)-min(Xlist))
Xlist = Xlist - deltax
for j in range(N):
# strip nans
Tn = Tr[j,~np.isnan(Tr[j,:])]
Xln = Xlist[~np.isnan(Tr[j,:])]
S00 = S00 + np.trapz(Tn, Xln, 0)/A
S01 = S01 + np.trapz(Tn*(Xln), Xln, 0)/A
S02 = S02 + np.trapz(Tn*(Xln)**2, Xln, 0)/A
S00 = S00/float(N); S01 = S01/float(N); S02 = S02/float(N)
return (S02-S01**2)/S00
def tracer_d2_bis(Xlist,Ylist,deltax,Tr):
S00 = 0
S01 = 0
S02 = 0
S = 0
N = len(Ylist)
A = float(max(Xlist)-min(Xlist))
Xlist = Xlist - deltax
for j in range(N):
# strip nans
Tn = Tr[~np.isnan(Tr[:,j]),j]
Xln = Xlist[~np.isnan(Tr[:,j])]
S00 = np.trapz(Tn, Xln, 0)/A
S01 = np.trapz(Tn*(Xln), Xln, 0)/A
S02 = np.trapz(Tn*(Xln)**2, Xln, 0)/A
S = S + (S02-S01**2)/S00
S = S/float(N)
return S
def tracer_d1_z(Zlist,Tr,deltaz):
S01 = 0
S = 0
N = len(Zlist)
H = float(max(Zlist)-min(Zlist))
Zlist = Zlist - deltaz # center of the distribution
# strip nans
S01 = np.trapz(Tn*(Xlist), Xlist, 0)/H
return S01
################# PARTICLES
def ED_t(par2Dz,tt):
D_2D = np.zeros(tt)
for t in range(tt):
x2 = par2Dz[:,0,t]
y2 = par2Dz[:,1,t]
#
# x2 = x2[~np.isnan(x2)]
# y2 = y2[~np.isnan(y2)]
#
if len(x2) > 1 and len(y2) > 1:
xt2 = x2 - np.mean(x2)
yt2 = y2 - np.mean(y2)
cov2 = np.cov(xt2, yt2)
if ~np.isnan(cov2).any():
lambda_2, v = np.linalg.eig(cov2)
lambda_2 = np.sqrt(lambda_2)
D_2D[t] = 2*lambda_2[0]*lambda_2[1]
else:
D_2D[t] = np.nan
else:
D_2D[t] = np.nan
return D_2D
def ED2_t(par2Dz,tt):
D_2D = np.zeros(tt)
for t in range(tt):
x2 = par2Dz[:,0,t]
y2 = par2Dz[:,1,t]
#
# x2 = x2[~np.isnan(x2)]
# y2 = y2[~np.isnan(y2)]
#
if len(x2) > 1 and len(y2) > 1:
xt2 = x2 - np.mean(x2)
yt2 = y2 - np.mean(y2)
cov = np.cov(xt2, yt2)
if ~np.isnan(cov).any():
term1 = (cov[0,0]+cov[1,1])
term2 = np.sqrt((cov[0,0]-cov[1,1])**2 + 4*cov[1,0]**2)
lambda_1 = np.sqrt(.5*(term1+term2))
lambda_2 = np.sqrt(.5*(term1-term2))
# lambda_2, v = np.linalg.eig(cov2)
# lambda_2 = np.sqrt(lambda_2)
D_2D[t] = 2*lambda_1*lambda_2
else:
D_2D[t] = np.nan
else:
D_2D[t] = np.nan
return D_2D
def CD_t(par2Dz,tt):
Pt2D = np.zeros((2,tt))
Pt2D[:] = np.mean(par2Dz[:,0,:],0),np.mean(par2Dz[:,1,:],0)
return np.mean((par2Dz[:,0,:] - Pt2D[0,:])**2 + (par2Dz[:,1,:] - Pt2D[1,:])**2,0)
def CDx_t(par2Dz,tt):
Pt2D = np.zeros((tt))
Pt2D[:] = np.mean(par2Dz[:,0,:],0)
#
return np.mean((par2Dz[:,0,:] - Pt2D[:])**2,0)
def AD_t(par2Dz,tt):
temp = np.zeros((len(par2Dz[:,0,0]),len(par2Dz[0,0,:])))
for p in range(len(par2Dz[:,0,0])):
temp[p,:] = (par2Dz[p,0,:] - par2Dz[p,0,0])**2 + (par2Dz[p,1,:] - par2Dz[p,1,0])**2
return np.mean(temp,0)
# return np.mean(((par2Dz[p,0,:] - par2Dz[p,0,0])**2 + (par2Dz[p,1,:] - par2Dz[p,1,0])**2),0)**2
def AD_t_v(par2Dz,tt):
temp = np.zeros((len(par2Dz[:,0,0]),len(par2Dz[0,0,:])))
for p in range(len(par2Dz[:,0,0])):
temp[p,:] = (par2Dz[p,2,:] - par2Dz[p,2,0])**2
return np.mean(temp,0)
# return np.mean(((par2Dz[p,0,:] - par2Dz[p,0,0])**2 + (par2Dz[p,1,:] - par2Dz[p,1,0])**2),0)**2
def RD_t(par2Dzr,tt,px,py):
RD_2Dm = [] #np.zeros((px+py,tt))
for i in range(px):
RD_2Dm.append(np.mean(((par2Dzr[i+1,:,0,:] - par2Dzr[i,:,0,:])**2 + (par2Dzr[i+1,:,1,:] - par2Dzr[i,:,1,:])**2),0))
for j in range(py):
RD_2Dm.append(np.mean(((par2Dzr[:,j+1,0,:] - par2Dzr[:,j,0,:])**2 + (par2Dzr[:,j+1,1,:] - par2Dzr[:,j,1,:])**2),0))
return np.mean(RD_2Dm,0)