-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
305 lines (243 loc) · 14.6 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
import os
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
import torch
import argparse
import random
# import itertools
import h5py
from script.nets import *
from script.utils import *
from script.models import *
def get_args(argv=None):
parser = argparse.ArgumentParser(description = 'Put your hyperparameters')
parser.add_argument('-dp', '--data_path', default='dt_0.01_fr_1.0', type=str, help='data path name')
parser.add_argument('-lf', '--logs_fname', default='new_physics_8', type=str, help='logs file name')
parser.add_argument('-dc', '--dict', default='nse', type=str, help='dict name')
parser.add_argument('-dr', '--data_rate', default=1, type=float, help='logs file name')
parser.add_argument('-L', '--L', default=4, type=int, help='the number of layers')
parser.add_argument('-m', '--modes', default=12, type=int, help='the number of modes of Fourier layer')
parser.add_argument('-w', '--width', default=32, type=int, help='the number of width of FNO layer')
parser.add_argument('--drop', default=0.1, type=float, help='Dropout of unet')
parser.add_argument('-ch', '--channel', default=32, type=int, help='channels of unet')
parser.add_argument('--phys_gap', default=40, type=int, help = 'Number of gap of Phys')
parser.add_argument('--phys_epochs', default=10, type=int, help = 'Number of Phys Epochs')
parser.add_argument('--phys_steps', default=2, type=int, help = 'Number of Phys Steps')
parser.add_argument('--phys_scale', default=0.1, type=float, help = 'Number of Phys Scale')
parser.add_argument('--phys_random_select', default=False, type=bool, help = 'Whether random select')
parser.add_argument('--batch_size', default=32, type=int, help = 'batch size')
parser.add_argument('--epochs', default=100, type=int, help = 'Number of Epochs')
parser.add_argument('--re_epochs', default=0, type=int, help = 'Number of Phys Retrain Epochs')
parser.add_argument('--tune_epochs', default=0, type=int, help = 'Number of Data Retrain Epochs')
parser.add_argument('--loop', default=2, type=int, help = 'Number of Total Loop')
parser.add_argument('--lr', default=1e-3, type=float, help='learning rate')
parser.add_argument('--wd', default=1e-4, type=float, help='weight decay')
parser.add_argument('--step_size', default=100, type=int, help='scheduler step size')
parser.add_argument('--gamma', default=0.5, type=float, help='scheduler factor')
parser.add_argument('--gpu', default=0, type=int, help='device number')
parser.add_argument('-tg', '--tg', default=1, type=int, help = 'time gap')
parser.add_argument('-Ng', '--Ng', default=1, type=int, help = 'N gap')
parser.add_argument('-l1', '--lambda1', default=1, type=float, help='weight of data losses1')
parser.add_argument('-l2', '--lambda2', default=0, type=float, help='weight of encode losses1')
parser.add_argument('-l3', '--lambda3', default=0, type=float, help='weight of encode losses2')
parser.add_argument('-l4', '--lambda4', default=0, type=float, help='weight of physics losses')
parser.add_argument('-l5', '--lambda5', default=0, type=float, help='weight of physics losses of encoder')
parser.add_argument('-l6', '--lambda6', default=0, type=float, help='weight of hidden loss')
parser.add_argument('-fc', '--f_channels', default=0, type=int, help='channels of f encode')
parser.add_argument('--re', default=0.1, type=float, help='re number')
parser.add_argument('--lx', default=2.05, type=float, help='Lx')
parser.add_argument('--ly', default=2.05, type=float, help='Ly')
parser.add_argument('--en_dim', default=3, type=int, help='the input dimension of first layer of encoder')
parser.add_argument('--gap_sample', default=5, type=int, help='sample gap from origin uvp in space')
parser.add_argument('--obs_num', default=7, type=int, help='width and length of observation')
parser.add_argument('--state_num', default=32, type=int, help='width and length of of state')
parser.add_argument('--recall_size', default=4, type=int, help='recall history observation')
parser.add_argument('--with_next', default=1, type=int, help='with ut+1 or not')
parser.add_argument('--start_phys', default=500, type=int, help='with ut+1 or not')
parser.add_argument('--seed', default=333, type=int, help='set random seed')
parser.add_argument('--traj_str_tr', default=0, type=int, help='select the train set start')
parser.add_argument('--traj_end_tr', default=400, type=int, help='select the train set end')
parser.add_argument('--traj_str_ts', default=450, type=int, help='select the test set start')
parser.add_argument('--traj_end_ts', default=500, type=int, help='select the test set end')
parser.add_argument('-trsta', '--train_str', default=0, type=int, help='start position train')
parser.add_argument('-trend', '--train_end', default=14, type=int, help='end position train')
parser.add_argument('-tssta', '--test_str', default=0, type=int, help='start position test')
parser.add_argument('-tsend', '--test_end', default=14, type=int, help='end position test')
parser.add_argument('--unlabel_size', default=1/4, type=float, help='select the unlabel set scale')
parser.add_argument('--ups', default=1, type=int, help='how to upsample in unet')
parser.add_argument('--full', default=False, type=int, help='if the trans phys loss backward to encoder')
return parser.parse_args(argv)
if __name__=='__main__':
# args parser
args = get_args()
# args = torch.load('arg')
print(args)
# torch.save(args, 'arg')
# assert 1 == 2
# logs
logs = dict()
logs['args'] = args
logs['mean'] = []
logs['std'] = []
logs['full'] = args.full
device = torch.device('cuda:{}'.format(args.gpu) if torch.cuda.is_available() else 'cpu')
logs_fname = f'/users/swe_code/logs/model_{args.dict}/phase_{args.logs_fname}'
data_path = '/users/swe_data/swe_part_data'
full_data_path = '/users/swe_data/swe_data'
data_run = torch.load(data_path, map_location=device)
full_data = torch.load(full_data_path, map_location=device) # uvp, traj, t, x, y
num_obs = args.obs_num
num_state = args.state_num
gap = args.gap_sample
trsta = args.train_str
trend = args.train_end
tssta = args.test_str
tsend = args.test_end
traj_str_tr = args.traj_str_tr
traj_end_tr = args.traj_end_tr
traj_str_ts = args.traj_str_ts
traj_end_ts = args.traj_end_ts
unlabel_size = args.unlabel_size
data_train = data_run[:,traj_str_tr:traj_end_tr] # uvp, traj, t, ox*oy
full_train = full_data[:,traj_str_tr:traj_end_tr] # uvp, traj, t, x, y
data_test = data_run[:,traj_str_ts:traj_end_ts]
full_test = full_data[:,traj_str_ts:traj_end_ts]
data_train = data_train.permute(1,0,2,3) # traj, uvp, t, ox*oy
data_train = data_train[:,:,trsta:trend]
data_test = data_test.permute(1,0,2,3) # traj, uvp, t, ox*oy
data_test = data_test[:,:,tssta:tsend]
full_train = full_train.permute(1,0,2,3,4) # traj, uvp, t, ox*oy
full_train = full_train[:,:,trsta:trend]
full_test = full_test.permute(1,0,2,3,4) # traj, uvp, t, ox*oy
full_test = full_test[:,:,tssta:tsend]
data_run_train, data_run_test, full_train, full_test, logs = normal(data_train, data_test, full_train, full_test, logs) # traj, uvp, t, ox*oy
data_run_train = data_run_train.permute(1,0,2,3) # uvp, traj, t, ox*oy
data_run_test = data_run_test.permute(1,0,2,3)
data_train_re = data_repeat(data_run_train, num_obs, num_state, gap) # uvp, t, traj, x, y
data_test_re = data_repeat(data_run_test, num_obs, num_state, gap)
data_train_re = data_train_re.permute(2,0,1,3,4) # traj, uvp, t, x, y
data_test_re = data_test_re.permute(2,0,1,3,4)
data_run = torch.cat((data_train_re, full_train.to(data_train_re.device)), axis=1) # traj, uvp*2, t, x, y
data_test = torch.cat((data_test_re, full_test.to(data_test_re.device)), axis=1) # traj, uvp*2, t, x, y
tg = args.tg
Ng = args.Ng
batch_size=args.batch_size
dt = tg*0.01
ctr_boun_ini = torch.tensor(np.zeros((batch_size, data_run.shape[3], data_run.shape[4], 1)), dtype=torch.float64) # (16,41,41,1)
N0, nt, nx, ny = data_run.shape[0], data_run.shape[2], data_run.shape[3], data_run.shape[4]
shape = [nx, ny]
recall_size = args.recall_size
input_data =data_run[:, :, :-1, :] # traj, uvp*2, t, x, y
output_data = data_run[:, :, 1:, :]
input_data_test = data_test[:, :, :-1, :]
output_data_test = data_test[:, :, 1:, :]
data_in = input_data.permute(0,2,1,3,4) # traj, t, uvp*2, x, y
labels_out = output_data.permute(0,2,1,3,4)
data_in_ensmble = np.empty((data_in.shape[0],data_in.shape[1]-recall_size+1,recall_size*6,data_in.shape[-2],data_in.shape[-1]))
labels_out_ensmble = np.empty((labels_out.shape[0],labels_out.shape[1]-recall_size+1,recall_size*6,labels_out.shape[-2],labels_out.shape[-1]))
data_in_test = input_data_test.permute(0,2,1,3,4) # # traj, t, uvp*2, x, y
labels_out_test = output_data_test.permute(0,2,1,3,4)
data_in_test_ensmble = np.empty((data_in_test.shape[0],data_in_test.shape[1]-recall_size+1,recall_size*6,data_in_test.shape[-2],data_in_test.shape[-1]))
labels_out_test_ensmble = np.empty((labels_out_test.shape[0],labels_out_test.shape[1]-recall_size+1,recall_size*6,labels_out_test.shape[-2],labels_out_test.shape[-1]))
for i in range(data_in_ensmble.shape[1]):
data_in_ensmble[:,i] = data_in[:,i:i+recall_size].reshape(-1,recall_size*6,data_in.shape[-2],data_in.shape[-1])
labels_out_ensmble[:,i] = labels_out[:,i:i+recall_size].reshape(-1,recall_size*6,labels_out.shape[-2],labels_out.shape[-1])
for i in range(data_in_test_ensmble.shape[1]):
data_in_test_ensmble[:,i] = data_in_test[:,i:i+recall_size].reshape(-1,recall_size*6,data_in_test.shape[-2],data_in_test.shape[-1])
labels_out_test_ensmble[:,i] = labels_out_test[:,i:i+recall_size].reshape(-1,recall_size*6,labels_out_test.shape[-2],labels_out_test.shape[-1])
train_data = torch.tensor(data_in_ensmble, dtype=torch.float64) # traj, t_en, uvp*2*n, x, y
train_labels = torch.tensor(labels_out_ensmble, dtype=torch.float64)
unlabel_data = train_data[-int(N0*unlabel_size):]
unlabel_lab = train_labels[-int(N0*unlabel_size):]
train_data = train_data[:-int(N0*unlabel_size)]
train_labels = train_labels[:-int(N0*unlabel_size)]
unlabel_data = unlabel_data.view(-1, unlabel_data.shape[2], unlabel_data.shape[3], unlabel_data.shape[4])
unlabel_lab = unlabel_lab.view(-1, unlabel_lab.shape[2], unlabel_lab.shape[3], unlabel_lab.shape[4])
train_data = train_data.view(-1, train_data.shape[2], train_data.shape[3], train_data.shape[4])
train_labels = train_labels.view(-1, train_labels.shape[2], train_labels.shape[3], train_labels.shape[4])
retrain_dataset = MyDataset(unlabel_data, unlabel_lab)
train_dataset = MyDataset(train_data, train_labels)
retrain_dataloader = DataLoader(retrain_dataset, batch_size=batch_size, shuffle=False, drop_last=True)
train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=False, drop_last=True)
test_data = torch.tensor(data_in_test_ensmble, dtype=torch.float64)
test_labels = torch.tensor(labels_out_test_ensmble, dtype=torch.float64)
test_data = test_data.view(-1, test_data.shape[2], test_data.shape[3], test_data.shape[4])
test_labels = test_labels.view(-1, test_labels.shape[2], test_labels.shape[3], test_labels.shape[4])
test_dataset = MyDataset(test_data, test_labels)
test_dataloader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False, drop_last=True)
logs['pred_model'] = []
logs['phys_inform_model'] = []
logs['test_loss_pre'] = []
logs['test_loss_state'] = []
logs['test_loss_ctr'] = []
logs['test_loss_outen'] = []
logs['test_loss_encode'] = []
logs['test_loss_phys'] = []
logs['train_loss_pre'] = []
logs['train_loss_state'] = []
logs['train_loss_ctr'] = []
logs['train_loss_outen'] = []
logs['train_loss_encode'] = []
logs['train_loss_phys'] = []
logs['train_loss_pde_phys'] = []
logs['ori_data_loss'] = []
logs['gen_ctr_data_mean'] = []
logs['gen_ctr_data_std'] = []
logs['gen_in_data_mean'] = []
logs['gen_in_data_std'] = []
logs['gen_data_loss'] = []
logs['ori_ctr_data_mean'] = []
logs['ori_ctr_data_std'] = []
logs['ori_in_data_mean'] = []
logs['ori_in_data_std'] = []
logs['compare_error'] = []
logs['baseline_error'] = []
logs['mod'] = []
logs['Cd_loss'] = []
logs['Cl_loss'] = []
logs['out_loss'] = []
logs['abs_loss'] = []
logs['test_compare_error'] = []
logs['train_data'] = []
logs['test_data'] = []
logs['test_encoder_input'] = []
logs['test_encoder_output'] = []
logs['train_pred_loss'] = []
logs['train_input_en_loss'] = []
logs['train_output_en_loss'] = []
logs['train_physics_loss'] = []
logs['train_phys_encode_loss'] = []
logs['train_hidden_loss'] = []
logs['train_error_pred'] = []
logs['train_error_input'] = []
logs['train_error_output'] = []
logs['test_pred_loss'] = []
logs['test_input_en_loss'] = []
logs['test_output_en_loss'] = []
logs['test_physics_loss'] = []
logs['test_phys_encode_loss'] = []
logs['test_hidden_loss'] = []
logs['test_error_pred'] = []
logs['test_error_input'] = []
logs['test_error_output'] = []
logs['retrain_phys_loss'] = []
logs['retrain_data_loss'] = []
# model setting
nse_model = NSEModel_FNO(shape, dt, args)
params_num = nse_model.count_params()
print('N0: {}, nt: {}, nx: {}, ny: {}, device: {}'.format(N0, nt, nx, ny, nse_model.device))
print(f'param numbers of the model: {params_num}')
# train process
for loop in range(1,nse_model.params.loop+1):
for epoch in range(1, nse_model.params.epochs+1):
nse_model.phys_inform(epoch, train_dataloader, ctr_boun_ini, logs)
if epoch % 1 == 0:
nse_model.phys_test(test_dataloader, ctr_boun_ini, logs)
for epoch in range(1, nse_model.params.re_epochs+1):
nse_model.phys_retrain(epoch, retrain_dataloader, ctr_boun_ini, logs)
if epoch % 1 == 0:
nse_model.phys_test(test_dataloader, ctr_boun_ini, logs)
for epoch in range(1, nse_model.params.tune_epochs+1):
nse_model.data_retrain(epoch, train_dataloader, ctr_boun_ini, logs)
if epoch % 1 == 0:
nse_model.phys_test(test_dataloader, ctr_boun_ini, logs)
torch.save([nse_model.phys_inform_model.state_dict(), logs], logs_fname)