-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathai.py
executable file
·472 lines (386 loc) · 17 KB
/
ai.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
# AI
import numpy as np
import pandas as pd
import sys
import json
from sklearn import preprocessing, metrics
from sklearn.externals import joblib
from sklearn.model_selection import train_test_split
from sklearn.pipeline import Pipeline, FeatureUnion
from sklearn.ensemble import GradientBoostingRegressor,GradientBoostingClassifier
from sklearn.preprocessing import FunctionTransformer
from keras.models import Sequential, load_model
from keras.layers import Dense, Conv1D, Flatten, MaxPool1D
from keras.optimizers import SGD, Adam
from keras import backend
# extras
import extras
# plots
import matplotlib.pyplot as plt
default_params = {
'layer1_basic':'',
'layer2_basic':'',
'activation_basic':'relu',
'epochs_basic':str(100),
'optimizer_advanced':'sgd',
'norm_advanced':None,
'quad_advanced':None,
'noise_advanced':None,
'timeseries_advanced':None,
'sine_advanced':None,
'timeseries_advanced':None,
'layer1-advanced':'',
'layer2-advanced':'',
'layer3-advanced':'',
'activation_advanced':'relu',
'epochs_advanced':str(100),
'batch_advanced':str(32),
'learning_rate_advanced':str(1),
}
def decider(d: dict):
if (
(d.get('learning_rate_advanced')!=default_params['learning_rate_advanced']) or
(d.get('batch_advanced')!=default_params['batch_advanced']) or
(d.get('epochs_advanced')!=default_params['epochs_advanced']) or
(d.get('activation_advanced')!=default_params['activation_advanced']) or
(d.get('layer3-advanced')!=default_params['layer3-advanced']) or
(d.get('layer2-advanced')!=default_params['layer2-advanced']) or
(d.get('layer1-advanced')!=default_params['layer1-advanced']) or
(d.get('sine_advanced')!=default_params['sine_advanced']) or
(d.get('noise_advanced')!=default_params['noise_advanced']) or
(d.get('quad_advanced')!=default_params['quad_advanced']) or
(d.get('norm_advanced')!=default_params['norm_advanced']) or
(d.get('optimizer_advanced')!=default_params['optimizer_advanced']) or
(d.get('timeseries_advanced')!=default_params['timeseries_advanced'])
): return 2
elif (
(d.get('epochs_basic')!=default_params['epochs_basic']) or
(d.get('activation_basic')!=default_params['activation_basic']) or
(d.get('layer2_basic')!=default_params['layer2_basic']) or
(d.get('layer1_basic')!=default_params['layer1_basic'])
): return 1
else: return 0
def flags_constructor(d: dict):
flags = []
check = ['sine_advanced','quad_advanced','norm_advanced']
for x in check:
if d.get(x)=='true': flags.append(x)
return flags
def add_noise(x):
u, s = np.mean(x,0), np.std(x,0)
length,width = x.shape
noise = np.zeros((length,width))
for i in range(width):
noise[:,i] += np.random.normal(u[i], s[i]/2, length)
return x+noise
def scaler_constructor(flags: list):
if ('sine_advanced' in flags) or ('quad_advanced' in flags):
if ('sine_advanced' in flags) and ('quad_advanced' in flags):
features = FeatureUnion([("sine", preprocessing.FunctionTransformer(np.sin)),
("quadratic", preprocessing.FunctionTransformer(np.square))])
print('a')
elif ('sine_advanced' in flags):
features = preprocessing.FunctionTransformer(np.sin)
print('b')
else:
features = preprocessing.FunctionTransformer(np.square)
print('c')
if ('norm_advanced' in flags):
scaler = Pipeline([
('features', features),
('norm', preprocessing.StandardScaler()),
('final_operation', preprocessing.MinMaxScaler())
])
print('d')
else:
scaler = Pipeline([
('features', features),
('final_operation', preprocessing.MinMaxScaler())
])
print('e')
elif ('norm_advanced' in flags):
scaler = Pipeline([
('norm', preprocessing.StandardScaler()),
('final_operation', preprocessing.MinMaxScaler())
])
print('f')
else:
scaler = preprocessing.MinMaxScaler()
print('g')
return scaler
def function_for_timeseries(x):
return ((x-np.min(x))/(np.max(x)-np.min(x))).reshape(x.shape[0],1,x.shape[1])
class AImodel:
def __init__(self, dataset, networkname):
dimensions = dataset.shape[1]-1
try:
with open(networkname+'/NetworkParams.json', 'r') as f:
self.params = json.load(f)
except Exception as ins:
print('\n\nFAILED TO LOAD CUSTOM PARAMETERS:\n\n\n',ins.args,'\n\n\n\n\n')
self.params = default_params
# for debugging:
print(f'\n\n\nparameters are: {self.params}\n\n\n')
self.customization_level = decider(self.params)
print('IT IS LEVEL ',self.customization_level)
X = dataset[:,0:dimensions]
Y = dataset[:,dimensions]
if self.customization_level!=2:
scaler = preprocessing.MinMaxScaler()
else:
if self.params.get('timeseries_advanced',None):
scaler = FunctionTransformer(func=function_for_timeseries)
else:
scaler = scaler_constructor(flags_constructor(self.params))
print(f'before scaling data had MAX,MIN={np.max(X)}{np.min(X)} and shape {X.shape}')
X_scale = scaler.fit_transform(X)
print(f'after scaling data had MAX,MIN={np.max(X_scale)}{np.min(X_scale)} and shape {X_scale.shape}')
if self.params.get('noise_advanced')=='true':
X_scale = add_noise(X_scale)
X_train, X_val_and_test, Y_train, Y_val_and_test = train_test_split(X_scale, Y, test_size=0.3)
X_val, X_test, Y_val, Y_test = train_test_split(X_val_and_test, Y_val_and_test, test_size=0.5)
if self.customization_level==0:
self.model = Sequential([
Dense(32, activation='relu', input_shape=(dimensions,)),
Dense(32, activation='relu'),
Dense(1, activation='sigmoid'),
])
elif self.customization_level==1:
self.model = Sequential([
Dense(int((self.params['layer1_basic'] if self.params.get('layer1_basic','')!='' else 16) if 'layer1_basic' in self.params else 8),
activation=self.params.get('activation_basic','relu'),
input_shape=(dimensions,)),
Dense(int((self.params['layer2_basic'] if self.params.get('layer2_basic','')!='' else 16) if 'layer2_basic' in self.params else 8),
activation=self.params.get('activation_basic','relu')),
Dense(1, activation='sigmoid'),
])
else:
architecture = []
if self.params.get('timeseries_advanced',None):
architecture += [Conv1D(8,2,padding='same',activation=self.params.get('activation_advanced','relu')),
Conv1D(16,2,padding='same',activation=self.params.get('activation_advanced','relu')),
MaxPool1D(pool_size=2,strides=1,padding='same'),
Flatten(),]
architecture += [
Dense(int((self.params['layer1_advanced'] if self.params['layer1_advanced']!='' else 16) if 'layer1_advanced' in self.params else 8),
activation=self.params.get('activation_advanced','relu')),
Dense(int((self.params['layer2_advanced'] if self.params['layer2_advanced']!='' else 16) if 'layer2_advanced' in self.params else 8),
activation=self.params.get('activation_advanced','relu')),
Dense(int((self.params['layer3_advanced'] if self.params['layer3_advanced']!='' else 16) if 'layer3_advanced' in self.params else 8),
activation=self.params.get('activation_advanced','relu')),
]
architecture.append(Dense(1, activation='sigmoid'))
self.model = Sequential(architecture)
if self.customization_level!=2:
optimizer = 'sgd'
else:
if self.params.get('optimizer_advanced','sgd')=='sgd':
optimizer = SGD(lr=float(self.params.get('learning_rate_advanced',10))/1000)
elif self.params.get('optimizer_advanced','sgd')=='adam':
optimizer = Adam(lr=float(self.params.get('learning_rate_advanced',1))/1000)
self.model.compile(optimizer=optimizer,
loss='binary_crossentropy',
metrics=['accuracy'])
self.dimensions = dimensions
self.scaler = scaler
self.X_train = X_train
self.Y_train = Y_train
self.X_val = X_val
self.Y_val = Y_val
self.X_test = X_test
self.Y_test = Y_test
self.history = None
self.confidence = None
def trainModel(self):
if self.customization_level==0:
batch_size, epochs = 32,100
elif self.customization_level==1:
batch_size, epochs = 32, int(self.params.get('epochs_basic',100))
else:
batch_size, epochs = int(self.params.get('batch_advanced',32)), int(self.params.get('epochs_advanced',50))
self.history = self.model.fit(self.X_train, self.Y_train,
batch_size=batch_size, epochs=epochs, verbose=0,
validation_data=(self.X_val, self.Y_val))
self.confidence = self.model.evaluate(self.X_test, self.Y_test, verbose=0)[1]
return self.model
def readDataFromFile(filename):
df = pd.read_excel(filename, header=None)
data = (df.to_numpy())
try:
[float(x) for x in data[0]]
print('La primera fila parecen datos... no hay nombres de columna')
columnNames = []
except:
print('Usando nombres para las columnas')
columnNames = data[0]
print(columnNames)
df = pd.read_excel(filename, header=0)
data = df.to_numpy()
return data, columnNames
def processInData(model, scaler, inDataset):
inDataset_scale = scaler.fit_transform(inDataset)
result = model.predict_classes(inDataset_scale)
output = np.hstack((inDataset, result))
return output
def process(dir):
print(' ========== AI PROCESS ========== ')
#model tasks
LCFILE = extras.LearnCardFile(dir)
dataset, columnNames = readDataFromFile( dir + r'/%s'%LCFILE )
if columnNames != []: resultTag = columnNames[-1]
else: resultTag = 'prediction'
nNetwork = AImodel(dataset,dir)
nNetwork.trainModel()
nNetwork.model.save(dir + r'/model.h5')
joblib.dump(nNetwork.scaler, dir + r'/scaler.dat')
result = {}
result['confidence'] = nNetwork.confidence
#process inCard
ICFILE = extras.InCardsFiles(dir)[0]
testdata, columnNames = readDataFromFile( dir + r'/%s'%ICFILE )
output = processInData(nNetwork.model, nNetwork.scaler, testdata)
output = pd.DataFrame(output)
if columnNames != []: output.columns = np.append(columnNames, resultTag)
#save output
nIC = extras.nCardFile(ICFILE)
S = extras.uploadedFilesFilenameSize
OCFILE = "OC_%03i_%s"%(nIC, ICFILE[S:])
if columnNames != []: output.to_excel(dir + '/%s'%OCFILE, index=False, header=True)
else: output.to_excel(dir + '/%s'%OCFILE, index=False, header=False)
# PLOTS <<<<<<
plotPerformance(nNetwork.X_test, nNetwork.Y_test, nNetwork.model)
plt.savefig(dir + r'/figPerf.png', bbox_inches='tight')
plt.close()
plotLoss(nNetwork.history)
plt.savefig(dir + r'/figLoss.png', bbox_inches='tight')
plt.close()
plotAcc(nNetwork.history)
plt.savefig(dir + r'/figAcc.png', bbox_inches='tight')
plt.close()
try:
plotFeatureImportance(nNetwork.X_train, nNetwork.Y_train)
plt.savefig(dir + r'/figFeature.png', bbox_inches='tight')
except:
pass
plt.close()
backend.clear_session()
return OCFILE
def loadModelAndProcess(_dir, ICFILE):
model = load_model(_dir + r'/model.h5')
scaler = joblib.load(_dir + r'/scaler.dat')
LCFILE = extras.LearnCardFile(_dir)
dataset, columnNames = readDataFromFile( _dir + r'/%s'%LCFILE )
if columnNames != []: resultTag = columnNames[-1]
else: resultTag = 'prediction'
testdata, columnNames = readDataFromFile( _dir + r'/%s'%ICFILE )
output = processInData(model, scaler, testdata)
output = pd.DataFrame(output)
if columnNames != []: output.columns = np.append(columnNames, resultTag)
backend.clear_session()
#save output
nIC = extras.nCardFile(ICFILE)
S = extras.uploadedFilesFilenameSize
OCFILE = "OC_%03i_%s"%(nIC, ICFILE[S:])
if columnNames != []: output.to_excel( _dir + '/%s'%OCFILE, index=False, header=True)
else: output.to_excel( _dir + '/%s'%OCFILE, index=False, header=False)
return
def plotPerformance(X_test, Y_test, model):
y_true = Y_test
print(f'X_test shape is {X_test.shape} and Y_test.shape is {Y_test.shape}')
Ytoshuffle=np.zeros(len(Y_test))
for i in range(len(Y_test)):
Ytoshuffle[i]=Y_test[i]
np.random.shuffle(Ytoshuffle)
y_scoresrandom = Ytoshuffle
_y_true = list(y_true) + [0,1] # Protect against only-one-class-errors
_y_scoresrandom = list(y_scoresrandom) + [1,0] # Protect against only-one-class-errors
print('AUC Random tagger %8.3f \n' % metrics.roc_auc_score(_y_true, _y_scoresrandom))
try:
print(f'About to call the metrics roc curve with first and second arguments of length {len(_y_true)} {len(_y_scoresrandom)}')
fprr, tprr, thresholdsr = metrics.roc_curve(_y_true, _y_scoresrandom)
except Exception as ins:
print(f'[E]: ')
print(ins.args)
raise Exception(ins)
print('success')
plt.plot(fprr,tprr, label = 'random')
y_scores = model.predict_proba(X_test)
print('moved on...')
_y_scores = list(y_scores) + [1,0] # Protect against only-one-class-errors
fpr, tpr, thresholds = metrics.roc_curve(_y_true, _y_scores)
plt.plot(fpr,tpr, label = 'NN AUC '+ str(round(metrics.roc_auc_score(_y_true, _y_scores),2)))
plt.xlabel('False Positive rate')
plt.ylabel('True Positive rate')
plt.yscale('linear')
plt.legend(loc = 'lower right')
plt.title('Neural Network performance')
return
def plotLoss(history):
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('Model loss')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.legend(['Train', 'Test'], loc='upper right')
return
def plotAcc(history):
plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])
plt.title('Model accuracy')
plt.ylabel('Accuracy')
plt.xlabel('Epoch')
plt.legend(['Train', 'Test'], loc='upper left')
return
def plotFeatureImportance(X_train, Y_train):
# Compile Gradient Boosting Regressor
#gb = GradientBoostingRegressor(n_estimators=100)
gb = GradientBoostingClassifier(n_estimators=100)
if len(X_train.shape)==3:
try:
X_train = X_train.reshape(X_train.shape[0], X_train.shape[1]*X_train.shape[2])
except:
X_train = X_train.reshape(X_train.shape[0], X_train.shape[2])
gb.fit(X_train, Y_train)
# Show results
plt.bar(range(X_train.shape[1]), gb.feature_importances_)
plt.xticks(range(X_train.shape[1]))
plt.title('Feature importances\n through Gradient Boosting\n')
plt.xlabel('LearnCard columns')
plt.ylabel('Relative importance')
#plt.show()
#print("Vector of relative importances: "+str(gb.feature_importances_.round(2)))
return
def test():
LCFILE = "static/LearnCard_House.xlsx"
ICFILE = "static/InCard_House.xlsx"
#LCFILE = "util/LearnCard_Increasing.xlsx"
#ICFILE = "util/InCard_Increasing.xlsx"
LCFILE = "static/LearnCard_Islands.xlsx"
ICFILE = "static/InCard_Islands.xlsx"
data, columnNames = readDataFromFile(LCFILE)
if columnNames != []: resultTag = columnNames[-1]
nNetwork = AImodel(data)
nNetwork.trainModel()
print("=============== PLOT")
print(nNetwork.X_test)
print(nNetwork.Y_test)
plotPerformance(nNetwork.X_test, nNetwork.Y_test, nNetwork.model)
plt.show()
plotLoss(nNetwork.history)
plt.show()
plotAcc(nNetwork.history)
plt.show()
plotFeatureImportance(nNetwork.X_train, nNetwork.Y_train)
plt.show()
testdata, columnNames = readDataFromFile( ICFILE )
output = processInData(nNetwork.model, nNetwork.scaler, testdata)
output = pd.DataFrame(output)
if columnNames != []: output.columns = np.append(columnNames, resultTag)
print(testdata)
print(output)
return
if __name__ == '__main__':
import sys
test()
#test("util/LearnCard_Increasing.xlsx")
#process(str(sys.argv[1]))