-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathv1.cu
607 lines (544 loc) · 19.2 KB
/
v1.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
#include <stdio.h>
#include <cmath>
#include <iostream>
#include <vector>
#include <unordered_map>
#include <fstream>
#include <string>
#include <sstream>
#include <stdexcept>
using namespace std;
#define CHECK(call) \
do \
{ \
const cudaError_t error_code = call; \
if (error_code != cudaSuccess) \
{ \
printf("CUDA Error:\n"); \
printf(" File: %s\n", __FILE__); \
printf(" Line: %d\n", __LINE__); \
printf(" Error code: %d\n", error_code); \
printf(" Error text: %s\n", \
cudaGetErrorString(error_code)); \
exit(1); \
} \
} while (0)
class Kmeans {
public:
Kmeans(int numClusters, int numFeatures, float *clusters, int nsamples);
Kmeans(int numClusters, int numFeatures, float *clusters, int nsamples,
int maxIters, float epsilon);
~Kmeans();
virtual void getDistance(const float *v_data);
virtual void updateClusters(const float *v_data);
virtual void fit(const float *v_data);
virtual float accuracy(const int *v_label);
float *m_clusters; //[numClusters, numFeatures]
int m_numClusters;
int m_numFeatures;
float *m_distances; // [nsamples, numClusters]
int *m_sampleClasses; // [nsamples, ]
int m_nsamples;
float m_optTarget;
int m_maxIters;
float m_epsilon;
private:
Kmeans(const Kmeans& model);
Kmeans& operator=(const Kmeans& model);
};
Kmeans::Kmeans(int numClusters, int numFeatures, float *clusters, int nsamples) : m_numClusters(numClusters), m_numFeatures(numFeatures), m_maxIters(50),
m_optTarget(1e7), m_epsilon(0.001), m_nsamples(nsamples)
{
m_clusters = new float[numClusters * numFeatures];
for (int i = 0; i < this->m_numClusters * this->m_numFeatures; ++i)
{
this->m_clusters[i] = clusters[i];
}
m_distances = new float[nsamples * numClusters]{0.0};
m_sampleClasses = new int[nsamples]{0};
}
Kmeans::Kmeans(int numClusters, int numFeatures, float *clusters, int nsamples,
int maxIters, float epsilon) : m_numClusters(numClusters), m_numFeatures(numFeatures), m_maxIters(maxIters),
m_optTarget(1e7), m_epsilon(epsilon), m_nsamples(nsamples)
{
m_clusters = new float[numClusters * numFeatures];
for (int i = 0; i < this->m_numClusters * this->m_numFeatures; ++i)
{
this->m_clusters[i] = clusters[i];
}
m_distances = new float[nsamples * numClusters]{0.0};
m_sampleClasses = new int[nsamples]{0};
}
Kmeans::~Kmeans()
{
if (m_clusters)
delete[] m_clusters;
if (m_distances)
delete[] m_distances;
if (m_sampleClasses)
delete[] m_sampleClasses;
}
void Kmeans::getDistance(const float *v_data)
{
/*
v_data: [nsamples, numFeatures, ]
*/
float loss = 0.0;
for (int i = 0; i < m_nsamples; ++i)
{
float minDist = 1e8;
int minIdx = -1;
for (int j = 0; j < m_numClusters; ++j)
{
float sum = 0.0;
for (int k = 0; k < m_numFeatures; ++k)
{
sum += (v_data[i * m_numFeatures + k] - m_clusters[j * m_numFeatures + k]) *
(v_data[i * m_numFeatures + k] - m_clusters[j * m_numFeatures + k]);
}
this->m_distances[i * m_numClusters + j] = sqrt(sum);
if (sum <= minDist)
{
minDist = sum;
minIdx = j;
}
}
m_sampleClasses[i] = minIdx;
loss += m_distances[i * m_numClusters + minIdx];
}
m_optTarget = loss;
}
void Kmeans::updateClusters(const float *v_data)
{
for (int i = 0; i < m_numClusters * m_numFeatures; ++i)
this->m_clusters[i] = 0.0;
for (int i = 0; i < m_numClusters; ++i)
{
int cnt = 0;
for (int j = 0; j < m_nsamples; ++j)
{
if (i != m_sampleClasses[j])
continue;
for (int k = 0; k < m_numFeatures; ++k)
{
this->m_clusters[i * m_numFeatures + k] += v_data[j * m_numFeatures + k];
}
cnt++;
}
for (int ii = 0; ii < m_numFeatures; ii++)
this->m_clusters[i * m_numFeatures + ii] /= cnt;
}
}
void Kmeans::fit(const float *v_data)
{
float lastLoss = this->m_optTarget;
for (int i = 0; i < m_maxIters; ++i)
{
this->getDistance(v_data);
this->updateClusters(v_data);
if (std::abs(lastLoss - this->m_optTarget) < this->m_epsilon){
std::cout << "迭代步长已经小于epsilon!!!" << std:: endl;
break;
}
lastLoss = this->m_optTarget;
std::cout << "Iters: " << i + 1 << " current loss : " << m_optTarget << std::endl;
}
}
float Kmeans::accuracy(const int *v_label){
// map clusters to labels
int* mappedLabels = new int[this->m_nsamples];
for(int clusterNum = 0; clusterNum < this->m_numClusters; clusterNum++){
std::vector<int> clusterIndices;
// 找到属于当前簇的数据点的索引
for (size_t i = 0; i < this->m_nsamples; ++i) {
if (this->m_sampleClasses[i] == clusterNum) {
clusterIndices.push_back(i);
}
}
// 统计当前簇中真实标签出现的频率
std::unordered_map<int, int> labelFreq;
for (int index : clusterIndices) {
++labelFreq[v_label[index]];
}
// 找到当前簇中出现频率最高的真实标签
int mostFrequentLabel = -1;
int maxFreq = 0;
for (const auto& pair : labelFreq) {
if (pair.second > maxFreq) {
mostFrequentLabel = pair.first;
maxFreq = pair.second;
}
}
// 将当前簇中的标签映射为出现频率最高的真实标签
for (int index : clusterIndices) {
mappedLabels[index] = mostFrequentLabel;
}
}
int count = 0;
for(int i = 0; i < this->m_nsamples; i++){
// if(i < 100){
// std::cout << "--------------------------------------------------------" << std:: endl;
// std::cout << "m_sampleClasses[i]: " << m_sampleClasses[i] << std::endl;
// std::cout << "v_label[i]: " << v_label[i] << std::endl;
// }
if(v_label[i] == mappedLabels[i]) count++;
}
float res = float(count) / float(this->m_nsamples);
return res;
}
class KmeansGPU : public Kmeans
{
public:
KmeansGPU(int numClusters, int numFeatures, float *clusters, int nsamples);
KmeansGPU(int numClusters, int numFeatures, float *clusters, int nsamples,
int maxIters, float eplison);
~KmeansGPU();
virtual void getDistance(const float *d_data);
virtual void updateClusters(const float *d_data);
virtual void fit(const float *v_data);
float *d_clusters; // [numClusters, numFeatures]
int *d_sampleClasses;
float *d_distances;
float *d_minDist; // [nsamples, ]
float *d_loss; // [nsamples, ]
int *d_clusterSize; //[numClusters, ]
private:
KmeansGPU(const Kmeans &model);
KmeansGPU &operator=(const Kmeans &model);
};
KmeansGPU::KmeansGPU(int numClusters, int numFeatures, float *clusters, int nsamples) : Kmeans(numClusters, numFeatures, clusters, nsamples) {}
KmeansGPU::KmeansGPU(int numClusters, int numFeatures, float *clusters, int nsamples,
int maxIters, float epsilon) : Kmeans(numClusters, numFeatures, clusters, nsamples,
maxIters, epsilon) {}
template <typename T>
__global__ void init(T *x, const T value, const int N)
{
const int n = threadIdx.x + blockIdx.x * blockDim.x;
if (n < N)
x[n] = value;
}
__global__ void calDistKernel(
const float *d_data,
const float *d_clusters, // [numClusters, numFeatures]
float *d_distance, // [nsamples, numClusters]
const int numClusters,
const int clusterNo,
const int nsamples,
const int numFeatures)
{
int n = threadIdx.x + numFeatures * blockIdx.x;
int m = threadIdx.x + numFeatures * clusterNo;
extern __shared__ float s_c[];
s_c[threadIdx.x] = 0.0;
if (n < numFeatures * nsamples && threadIdx.x < numFeatures)
{
s_c[threadIdx.x] = powf(d_data[n] - d_clusters[m], 2);
}
__syncthreads();
for (int offset = blockDim.x >> 1; offset >= 32; offset >>= 1)
{
if (threadIdx.x < offset)
s_c[threadIdx.x] += s_c[threadIdx.x + offset];
__syncthreads();
}
for (int offset = 16; offset > 0; offset >>= 1)
{
if (threadIdx.x < offset)
s_c[threadIdx.x] += s_c[threadIdx.x + offset];
__syncwarp();
}
if (threadIdx.x == 0)
d_distance[blockIdx.x * numClusters + clusterNo] = sqrt(s_c[0]);
}
__global__ void reduceMin(
float *d_distance,
int *d_sampleClasses,
int *d_clusterSize,
int numClusters,
int nsamples,
float *d_minDist)
{
int n = threadIdx.x + blockDim.x * blockIdx.x;
if (n < nsamples)
{
float minDist = d_distance[n * numClusters + 0];
int minIdx = 0;
float tmp;
for (int i = 1; i < numClusters; i++)
{
tmp = __ldg(&d_distance[n * numClusters + i]);
if (tmp < minDist)
{
minDist = tmp;
minIdx = i;
}
}
d_sampleClasses[n] = minIdx;
d_minDist[n] = minDist;
}
}
__global__ void reduceSum(
float *d_minDist,
float *d_loss,
int nsamples)
{
int n = threadIdx.x + blockIdx.x * blockDim.x;
extern __shared__ float s_y[];
float y = 0.0;
const int stride = blockDim.x * gridDim.x;
for (; n < nsamples; n += stride)
y += d_minDist[n];
s_y[threadIdx.x] = y;
__syncthreads();
for (int offset = blockDim.x >> 1; offset >= 32; offset >>= 1)
{
if (threadIdx.x < offset)
s_y[threadIdx.x] += s_y[threadIdx.x + offset];
__syncthreads();
}
for (int offset = 16; offset > 0; offset >>= 1)
{
if (threadIdx.x < offset)
s_y[threadIdx.x] += s_y[threadIdx.x + offset];
__syncwarp();
}
if (threadIdx.x == 0)
d_loss[blockIdx.x] = s_y[0];
}
__global__ void countCluster(int *d_sampleClasses, int *d_clusterSize, int nsamples)
{
int n = threadIdx.x + blockDim.x * blockIdx.x;
if (n < nsamples)
{
int clusterID = d_sampleClasses[n];
atomicAdd(&(d_clusterSize[clusterID]), 1);
}
}
__global__ void update(
const float *d_data,
float *d_clusters,
int *d_sampleClasses,
int *d_clusterSize,
const int nsamples,
const int numFeatures)
{
int n = threadIdx.x + numFeatures * blockIdx.x;
int clusterId = d_sampleClasses[blockIdx.x];
int clustercnt = d_clusterSize[clusterId];
if (threadIdx.x < numFeatures)
{
atomicAdd(&(d_clusters[clusterId * numFeatures + threadIdx.x]), d_data[n] / clustercnt);
}
}
void updateClusterWithCuda(
const float *d_data,
float *d_clusters,
int *d_sampleClasses,
int *d_clusterSize,
const int nsamples,
const int numClusters,
const int numFeatures)
{
init<float><<<1, 1024>>>(d_clusters, 0.0, numClusters * numFeatures);
int blockSize = 1024;
int gridSize = (nsamples - 1) / blockSize + 1;
countCluster<<<gridSize, blockSize>>>(d_sampleClasses, d_clusterSize, nsamples);
update<<<nsamples, 128>>>(d_data, d_clusters, d_sampleClasses, d_clusterSize, nsamples, numFeatures);
}
void calDistWithCuda(
const float *d_data,
float *d_clusters,
float *d_distance,
int *d_sampleClasses,
float *d_minDist,
float *d_loss,
int *d_clusterSize,
const int numClusters,
const int nsamples,
const int numFeatures)
{
init<int><<<1, 128>>>(d_clusterSize, 0, numClusters);
int smem = sizeof(float) * 128;
cudaStream_t streams[20];
for (int i = 0; i < numClusters; i++)
{
CHECK(cudaStreamCreate(&(streams[i])));
}
for (int i = 0; i < numClusters; i++)
{
calDistKernel<<<nsamples, 128, smem, streams[i]>>>(d_data, d_clusters,
d_distance, numClusters, i, nsamples, numFeatures);
}
for (int i = 0; i < numClusters; ++i)
{
CHECK(cudaStreamDestroy(streams[i]));
}
int blockSize = 256;
int gridSize = (nsamples - 1) / blockSize + 1;
reduceMin<<<gridSize, blockSize, sizeof(int) * blockSize>>>(d_distance, d_sampleClasses,
d_clusterSize, numClusters, nsamples, d_minDist);
reduceSum<<<256, 256, sizeof(float) * 256>>>(d_minDist, d_loss, nsamples);
reduceSum<<<1, 256, sizeof(float) * 256>>>(d_loss, d_loss, 256);
}
void KmeansGPU::getDistance(const float *d_data)
{
calDistWithCuda(d_data, d_clusters, d_distances, d_sampleClasses, d_minDist,
d_loss, d_clusterSize, m_numClusters, m_nsamples, m_numFeatures);
}
void KmeansGPU::updateClusters(const float *d_data)
{
updateClusterWithCuda(d_data,
d_clusters,
d_sampleClasses,
d_clusterSize,
m_nsamples,
m_numClusters,
m_numFeatures);
}
void KmeansGPU::fit(const float *v_data)
{
float *d_data;
int datamem = sizeof(float) * m_nsamples * m_numFeatures;
int clustermem = sizeof(float) * m_numClusters * m_numFeatures;
int sampleClassmem = sizeof(int) * m_nsamples;
int distmem = sizeof(float) * m_nsamples * m_numClusters;
int *h_clusterSize = new int[m_numClusters]{0};
float *h_loss = new float[m_nsamples]{0.0};
CHECK(cudaMalloc((void **)&d_data, datamem));
CHECK(cudaMalloc((void **)&d_clusters, clustermem));
CHECK(cudaMalloc((void **)&d_sampleClasses, sampleClassmem));
CHECK(cudaMalloc((void **)&d_distances, distmem));
CHECK(cudaMalloc((void **)&d_minDist, sizeof(float) * m_nsamples));
CHECK(cudaMalloc((void **)&d_loss, sizeof(float) * m_nsamples));
CHECK(cudaMalloc((void **)&d_clusterSize, sizeof(int) * m_numClusters));
CHECK(cudaMemcpy(d_data, v_data, datamem, cudaMemcpyHostToDevice));
CHECK(cudaMemcpy(d_clusters, m_clusters, clustermem, cudaMemcpyHostToDevice));
float lastLoss = 0;
for (int i = 0; i < m_maxIters; ++i)
{
this->getDistance(d_data);
this->updateClusters(d_data);
CHECK(cudaMemcpy(h_loss, d_loss, sampleClassmem, cudaMemcpyDeviceToHost));
this->m_optTarget = h_loss[0];
// if (std::abs(lastLoss - this->m_optTarget) < this->m_epsilon){
// std::cout << "迭代步长已经小于epsilon!!!" << std:: endl;
// break;
// }
lastLoss = this->m_optTarget;
std::cout << "Iters: " << i + 1 << " current loss : " << m_optTarget << std::endl;
}
CHECK(cudaMemcpy(m_clusters, d_clusters, clustermem, cudaMemcpyDeviceToHost));
CHECK(cudaMemcpy(m_sampleClasses, d_sampleClasses, sampleClassmem, cudaMemcpyDeviceToHost));
CHECK(cudaMemcpy(m_distances, d_distances, distmem, cudaMemcpyDeviceToHost));
CHECK(cudaFree(d_data));
CHECK(cudaFree(d_clusters));
CHECK(cudaFree(d_sampleClasses));
CHECK(cudaFree(d_distances));
CHECK(cudaFree(d_minDist));
CHECK(cudaFree(d_loss));
CHECK(cudaFree(d_clusterSize));
delete[] h_clusterSize;
delete[] h_loss;
}
void readCoordinate(float *data, int *label, const int n_features, int &n, string file) {
std::ifstream ifs;
ifs.open(file, std::ios::in);
if (ifs.fail()) {
std::cout << "No such file or directory: "<< file << std::endl;
exit(1);
}
std::string line;
while (std::getline(ifs, line)) {
std::stringstream sstream(line);
if (line.empty()) continue;
int m = 0;
std::string s_fea;
while (std::getline(sstream, s_fea, ',')) {
if (m < n_features) data[n * n_features + m] = std::stod(s_fea);
else label[n] = std::stoi(s_fea);
m++;
}
n++;
}
ifs.close();
}
template <typename T>
void printVecInVec(const T* vecInVec, int rows, int cols, const std::string& title) {
std::cout << title << ":" << std::endl;
for (int i = 0; i < rows; ++i) {
for (int j = 0; j < cols; ++j) {
std::cout << vecInVec[i * cols + j] << " ";
}
std::cout << std::endl;
}
}
void timing(
float *data,
int *label,
float *clusters,
const int numClusters,
const int n_features,
const int n_samples,
const int method) {
Kmeans *model;
switch (method)
{
case 0:
model = new Kmeans(numClusters, n_features, clusters, n_samples, 50, 1e-5);
break;
case 1:
model = new KmeansGPU(numClusters, n_features, clusters, n_samples, 50, 1e-5);
break;
default:
break;
}
std::cout << "*********starting fitting*********" << std::endl;
cudaEvent_t start, stop;
CHECK(cudaEventCreate(&start));
CHECK(cudaEventCreate(&stop));
CHECK(cudaEventRecord(start));
cudaEventQuery(start);
model->fit(data);
CHECK(cudaEventRecord(stop));
CHECK(cudaEventSynchronize(stop));
float elapsedTime;
CHECK(cudaEventElapsedTime(&elapsedTime, start, stop));
CHECK(cudaEventDestroy(start));
CHECK(cudaEventDestroy(stop));
printf("Time = %g ms.\n", elapsedTime);
// std::cout << "********* final clusters**********" << std::endl;
// printVecInVec<float>(model->m_clusters, 4, 4, "clusters");
// std::cout << "********* accuracy **********" << std::endl;
// std::cout << "model accuracy : " << model->accuracy(label) << std::endl;
// printVecInVec<int>(model->m_sampleClasses, 1, 10, "sampleClasses_10");
delete model;
}
int main() {
string file = "/home/gg/Desktop/kmeans/data/test_1e8.csv";
int N = 0; // 实际读取的样本数量
const int n_nums = 100000000; // 数据中,有100个样本
const int n_features = 4; // 每个样本有4个特征
const int n_classes = 4;
float *data = new float[n_features * n_nums];
int *label = new int[n_nums];
readCoordinate(data, label, n_features, N, file);
std::cout << "num of samples : " << N << std::endl;
// 数据初始化
int cidx[4] = {0};
srand(time(NULL));
for(int i = 0; i < n_classes; i++) cidx[i] = rand() % 100;
float clusters[n_classes * n_features] = {0};
for(int i = 0; i < n_classes; i++){
for(int j = 0; j < n_features; j++){
clusters[i * n_features + j] = data[cidx[i] * n_features + j];
}
}
// printVecInVec<float>(clusters, 4, 4, "clusters");
// std::cout << "Using CPU:" << std::endl;
// timing(data, label, clusters, n_classes, n_features, N, 0);
std::cout << "Using CUDA:" << std::endl;
timing(data, label, clusters, n_classes, n_features, N, 1);
delete[] data;
delete[] label;
return 0;
}