-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathtrain.py
160 lines (118 loc) · 5.46 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import sys
import os
from optparse import OptionParser
import numpy as np
import torch
import torch.nn as nn
from torch import optim
from tensorboardX import SummaryWriter
from model import UNet, make_dataloaders, eval_net_loader, make_checkpoint_dir
from lib import plot_net_predictions
def train_epoch(epoch,train_loader,criterion,optimizer,batch_size,scheduler):
net.train()
epoch_loss = 0
for i, sample_batch in enumerate(train_loader):
imgs = sample_batch['image']
true_masks = sample_batch['mask']
imgs = imgs.to(device)
true_masks = true_masks.to(device)
outputs = net(imgs)
probs = torch.softmax(outputs, dim=1)
masks_pred = torch.argmax(probs, dim=1)
loss = criterion(outputs, true_masks)
epoch_loss += loss.item()
print(f'epoch = {epoch+1:d}, iteration = {i:d}/{len(train_loader):d}, loss = {loss.item():.5f}')
# save to summary
if i%100==0:
writer.add_scalar('train_loss_iter',
loss.item(),
i + len(train_loader) * epoch)
writer.add_figure('predictions vs. actuals',
plot_net_predictions(imgs, true_masks, masks_pred, batch_size),
global_step = i + len(train_loader) * epoch)
optimizer.zero_grad()
loss.backward()
optimizer.step()
print(f'Epoch finished ! Loss: {epoch_loss/i:.2f}, lr:{scheduler.get_lr()}')
def validate_epoch(epoch,train_loader,val_loader,device):
class_iou, mean_iou = eval_net_loader(net, val_loader, 3, device)
print('Class IoU:', ' '.join(f'{x:.3f}' for x in class_iou), f' | Mean IoU: {mean_iou:.3f}')
# save to summary
writer.add_scalar('mean_iou', mean_iou, len(train_loader) * (epoch+1))
return mean_iou
def train_net(train_loader, val_loader, net, device, epochs=5, batch_size=1, lr=0.1, save_cp=True):
# params = {'batch_size': batch_size, 'shuffle': True, 'num_workers': 4}
# train_loader, val_loader = make_dataloaders(dir_data, val_ratio, params)
print(f'''
Starting training:
Epochs: {epochs}
Batch size: {batch_size}
Learning rate: {lr}
Training size: {len(train_loader.dataset)}
Validation size: {len(val_loader.dataset)}
Checkpoints: {str(save_cp)}
Device: {str(device)}
''')
optimizer = optim.SGD(net. parameters(),lr=lr, momentum=0.9, weight_decay=0.0005)
# multiply learning rate by 0.1 after 30% of epochs
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=int(0.3*epochs), gamma=0.1)
criterion = nn.CrossEntropyLoss()
# weighted cross entropy loss
# criterion = nn.CrossEntropyLoss(weight=torch.tensor([0.3, 8.2, 1.0]).cuda())
best_precision = 0
for epoch in range(epochs):
print('Starting epoch {}/{}.'.format(epoch + 1, epochs))
train_epoch(epoch,train_loader,criterion,optimizer,batch_size,scheduler)
precision = validate_epoch(epoch,train_loader,val_loader,device)
scheduler.step()
if save_cp and (precision>best_precision):
state_dict = net.state_dict()
if device=="cuda":
state_dict = net.module.state_dict()
torch.save(state_dict, dir_checkpoint+f'CP{epoch + 1}.pth')
print('Checkpoint {} saved !'.format(epoch + 1))
best_precision = precision
writer.close()
def get_args():
parser = OptionParser()
parser.add_option('-e', '--epochs', dest='epochs', default=5, type='int',
help='number of epochs')
parser.add_option('-b', '--batch-size', dest='batchsize', default=8,
type='int', help='batch size')
parser.add_option('-l', '--learning-rate', dest='lr', default=0.1,
type='float', help='learning rate')
parser.add_option('-c', '--load', dest='load',
default=False, help='load file model')
parser.add_option('-f', '--folder', dest='folder',
default='', help='folder name')
(options, args) = parser.parse_args()
return options
if __name__ == '__main__':
device = ("cuda" if torch.cuda.is_available() else "cpu" )
args = get_args()
dir_data = f'./data/{args.folder}'
dir_checkpoint = f'./checkpoints/{args.folder}_b{args.batchsize}/'
dir_summary = f'./runs/{args.folder}_b{args.batchsize}'
params = {'batch_size': args.batchsize, 'shuffle': True, 'num_workers': 4}
make_checkpoint_dir(dir_checkpoint)
writer = SummaryWriter(dir_summary)
val_ratio=0.1
train_loader, val_loader = make_dataloaders(dir_data, val_ratio, params)
net = UNet(n_channels=3, n_classes=3)
net.to(device)
if args.load:
net.load_state_dict(torch.load(args.load))
print('Model loaded from {}'.format(args.load))
# train model in parallel on multiple-GPUs
if torch.cuda.device_count() > 1:
print("Model training on", torch.cuda.device_count(), "GPUs")
net = nn.DataParallel(net)
try:
train_net(train_loader, val_loader, net, device, epochs=args.epochs, batch_size=args.batchsize, lr=args.lr)
except KeyboardInterrupt:
torch.save(net.state_dict(), 'INTERRUPTED.pth')
print('Saved interrupt')
try:
sys.exit(0)
except SystemExit:
os._exit(0)