-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapp.py
136 lines (114 loc) · 4.42 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import langchain
import openai
import os
from langchain import OpenAI
import langchain
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain.text_splitter import CharacterTextSplitter
from langchain.chains import RetrievalQA
from langchain import OpenAI
from langchain.document_loaders import DirectoryLoader
from langchain.prompts import PromptTemplate
from langchain.memory import ConversationBufferMemory
from langchain.llms import OpenAI
from langchain.chat_models import ChatOpenAI
from langchain.callbacks.manager import AsyncCallbackManager
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
import magic
import nltk
import time
import re
import gradio as gr
from fastapi import FastAPI
import argparse
parser = argparse.ArgumentParser(description='TLDR Bot')
parser.add_argument('-k', '--key', type=str, required=True,
help='OpenAI API Key, format = sk-XXZXXXXXXXXXXXXXX')
args = parser.parse_args()
OPENAI_API_KEY = args.key
# Paste your OpenAI API key in the file OPENAI_API_KEY.txt (format: sk-XXZXXXXXXXXXXXXXX)
if not OPENAI_API_KEY:
with open('OPENAI_API_KEY.txt') as f:
OPENAI_API_KEY = f.read().strip()
os.environ['OPENAI_API_KEY'] = OPENAI_API_KEY
TLDR_APP_PATH = "/tldr-bot"
tldr_app = FastAPI()
source_requests = [
'source?',
'source',
]
class Engine:
title: str = ""
qa = None
source_document = None
def setup_file(self, filepath):
nltk.download('averaged_perceptron_tagger')
try:
loader = DirectoryLoader('/', glob = filepath[1:])
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size = 1000, chunk_overlap = 0)
texts = text_splitter.split_documents(documents)
embeddings = OpenAIEmbeddings(openai_api_key = os.getenv('OPENAI_API_KEY'))
docsearch = Chroma.from_documents(texts, embeddings)
chain_type_kwargs = {
"memory": ConversationBufferMemory()
}
llm = ChatOpenAI(temperature = 0,
verbose = True)
self.qa = RetrievalQA.from_chain_type(llm = llm,
chain_type = 'stuff',
retriever=docsearch.as_retriever(),
chain_type_kwargs = chain_type_kwargs,
return_source_documents = True)
self.title = filepath
except:
raise Exception("Something went wrong when processing the txt file")
engine = Engine()
def add_text(history, text):
history = history + [(text, None)]
return history
def add_file(history, file):
engine.setup_file(file.name)
history = history + [("File succesfully uploaded. Prompt away! ✅", None)]
return history
def bot(history, text):
if engine.qa:
response = engine.qa({'query': text})
if text.lower() in source_requests:
history[-1][1] = engine.source_document
yield history, ""
else:
history[-1][1] = ""
for info in re.split("(,|[\n\s+])", response['result']):
history[-1][1] += info
time.sleep(0.075)
engine.source_document = "\"" + response['source_documents'][0].page_content + " \""
yield history, ""
else:
history[-1][1] = "Upload a document first"
yield history, ""
with gr.Blocks(theme=gr.themes.Soft()) as demo:
chatbot = gr.Chatbot([], elem_id="chatbot", label = "TLDR the T&C").style(height = 750)
with gr.Row():
with gr.Column(scale=0.85):
txt = gr.Textbox(
show_label=False,
placeholder="Upload a T&C file (pdf or txt), then enter prompt",
).style(container=False)
with gr.Column(scale=0.15, min_width=0):
btn = gr.UploadButton(f"📄", file_types=["text", "pdf"])
txt.submit(add_text, [chatbot, txt], [chatbot]).then(
bot, [chatbot, txt], [chatbot, txt]
)
btn.upload(add_file, [chatbot, btn], [chatbot])
demo.queue()
tldr_app = gr.mount_gradio_app(tldr_app, demo, path=TLDR_APP_PATH)
@tldr_app.get("/")
def root():
return {
"response": "Welcome to the TLDR bot API"
}
if __name__ == '__main__':
import uvicorn
uvicorn.run(tldr_app, host='0.0.0.0', port=10000)