-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_vqe.py
245 lines (186 loc) · 7.9 KB
/
run_vqe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import argparse
import _pickle as pickle
from collections import namedtuple
import copy
import multiprocessing as mp
import numpy as np
import os
import pandas as pd
import sys
import time
import tequila as tq
from constants import ROOT_DIR, DATA_DIR
from lib.make_ansatz import make_ansatz
from lib.molecule_initializer import get_molecule_initializer
from lib.helpers import print_summary, timestamp_human, Logger
from lib.noise_model import get_noise_model
parser = argparse.ArgumentParser()
parser.add_argument("--molecule", type=str, choices=['h2', 'lih', 'beh2'])
parser.add_argument("--ansatz", type=str, required=True, choices=['upccgsd', 'spa-gas', 'spa-gs', 'spa-s', 'spa'])
parser.add_argument("--basis-set", "-bs", type=str, default=None)
parser.add_argument("--noise", type=str, default=None, choices=[None, 'bitflip-depol', 'device'])
parser.add_argument("--error-rate", type=float, default=1e-2)
parser.add_argument("--samples", "-s", type=int, default=None)
parser.add_argument("--device", type=str, default=None)
parser.add_argument("--results-dir", type=str, default=os.path.join(ROOT_DIR, "results/"))
parser.add_argument("--optimizer", type=str, default='COBYLA')
parser.add_argument("--backend", type=str, default="qulacs")
parser.add_argument("--restarts", type=int, default=1)
args = parser.parse_args()
n_pno = None
transformation = 'JORDANWIGNER'
geom_strings = {
'h2': 'H .0 .0 .0\nH .0 .0 {r}',
'lih': 'H .0 .0 .0\nLi .0 .0 {r}',
'beh2': 'Be .0 .0 .0\nH .0 .0 {r}\nH .0 .0 -{r}'
}
active_orbitals = {
'h2': None,
'lih': None,
'beh2': None
}
columns = ["r", "fci", "mp2", "ccsd", "vqe"]
def main():
molecule_name = args.molecule.lower()
ansatz_name = args.ansatz
if args.basis_set is None:
bond_dists = filtered_dists(DATA_DIR, args.molecule.lower())
else:
bond_dists = list(np.arange(start=0.4, stop=5.0, step=0.2).round(2))
molecule_initializer = get_molecule_initializer(geometry=geom_strings[molecule_name],
active_orbitals=active_orbitals[molecule_name])
noise = get_noise_model(error_rate=args.error_rate, noise_type=args.noise)
if args.noise is None:
backend = 'qulacs'
device = None
samples = None
args.error_rate = 0
elif args.noise == 'bitflip-depol':
backend = args.backend
samples = args.samples
device = None
elif args.noise == 'device': # emulate device noise
backend = args.backend
device = args.device
samples = args.samples
else:
raise NotImplementedError('noise model {} unknown'.format(args.noise))
# build dir structure
save_dir = os.path.join(args.results_dir, f"./{molecule_name}/")
save_dir = os.path.join(save_dir, f"{'basis-set-free' if args.basis_set is None else args.basis_set}/")
save_dir = os.path.join(save_dir, f"{ansatz_name}/")
save_dir = os.path.join(save_dir, f"noise={args.noise if device is None else device}_error-rate={args.error_rate}/")
save_dir = os.path.join(save_dir, f"{timestamp_human()}/".replace(':', '-').replace(' ', '_'))
if not os.path.exists(save_dir):
os.makedirs(save_dir)
results_file = os.path.join(save_dir, 'energies.pkl')
vqe_result_fn = save_dir + 'vqe_result_r={r}.pkl'
args_fn = os.path.join(save_dir, 'args.pkl')
with open(args_fn, 'wb') as f:
pickle.dump(args, f)
print(f'saved args to {args_fn}')
chemistry_data_dir = DATA_DIR + f'{molecule_name}' + '_{r}'
# save terminal output to file
sys.stdout = Logger(print_fp=os.path.join(save_dir, 'vqe_out.txt'))
# classical calculations before multiprocessing
bond_distances_final = []
fci_vals, mp2_vals, ccsd_vals, hf_vals = [], [], [], []
molecules = []
ansatzes, hamiltonians = [], []
for r in bond_dists:
molecule = molecule_initializer(
r=r, name=chemistry_data_dir, basis_set=args.basis_set, transformation=transformation, n_pno=n_pno)
if molecule is None:
continue
# make classical computations
hf_vals.append(compute_energy_classical('hf', molecule))
fci_vals.append(compute_energy_classical('fci', molecule))
mp2_vals.append(compute_energy_classical('mp2', molecule))
ccsd_vals.append(compute_energy_classical('ccsd', molecule))
# build ansatz
ansatz = make_ansatz(molecule, ansatz_name)
hamiltonian = molecule.make_hamiltonian()
ansatzes.append(ansatz)
hamiltonians.append(hamiltonian)
bond_distances_final.append(r)
molecules.append(molecule)
print_summary(molecules[0], hamiltonians[0], ansatzes[0], ansatz_name, None)
del molecules
num_processes = min(len(bond_dists), mp.cpu_count()) + 2
manager = mp.Manager()
q = manager.Queue()
pool = mp.Pool(num_processes)
# put listener to work first
_ = pool.apply_async(listener, (q, results_file))
print(f'start_time\t: {timestamp_human()}')
# print progress header
print("\n{:^25} | ".format("timestamp") + " | ".join(["{:^12}".format(v) for v in columns]))
print("-" * 26 + "+" + "+".join(["-" * 14 for _ in range(len(columns))]))
start_time = time.time()
# fire off workers
jobs = []
for r, ansatz, hamiltonian, fci, mp2, ccsd in zip(bond_distances_final, ansatzes, hamiltonians, fci_vals, mp2_vals,
ccsd_vals):
job = pool.apply_async(
worker,
(r, ansatz, hamiltonian, args.optimizer, backend, device, noise, samples, fci, mp2, ccsd,
args.restarts, vqe_result_fn, q))
jobs.append(job)
# collect results
for i, job in enumerate(jobs):
job.get()
q.put('kill')
pool.close()
pool.join()
print(f'\nend_time\t: {timestamp_human()}')
print(f'elapsed_time\t: {time.time() - start_time:.4f}s')
def listener(q, df_save_as):
df = pd.DataFrame(columns=columns)
while 1:
m = q.get()
if m == "kill":
df.sort_values('r', inplace=True)
df.set_index('r', inplace=True)
df.to_pickle(path=df_save_as)
break
print("{:^14} | ".format("[" + timestamp_human() + "]") + " | ".join(["{:^12}".format(round(v, 6)) for v in m]))
# add to df
df.loc[-1] = m
df.index += 1
df.sort_index()
def worker(r, ansatz, hamiltonian, optimizer, backend, device, noise, samples, fci, mp2, ccsd, restarts, vqe_fn, q):
# run vqe
objective = tq.ExpectationValue(U=ansatz, H=hamiltonian, optimize_measurements=False)
Result = namedtuple('result', 'energy')
result = Result(energy=np.inf)
# restart optimization n_reps times
for _ in range(restarts):
init_vals = {k: np.random.normal(loc=0, scale=np.pi / 4.0) for k in objective.extract_variables()}
temp_result = tq.minimize(objective, method=optimizer, initial_values=init_vals, silent=True,
backend=backend, device=device, noise=noise, samples=samples)
if temp_result.energy <= result.energy:
result = copy.deepcopy(temp_result)
# save SciPyResults
with open(vqe_fn.format(r=r), 'wb') as f:
pickle.dump(result, f)
# put data in queue
q.put([r, fci, mp2, ccsd, result.energy])
def filtered_dists(data_dir, mol_str):
"""
returns the list of bond distances corresponding to molecule files in data_dir
"""
dists = []
for fn in os.listdir(data_dir):
if mol_str in fn and "_htensor.npy" in fn:
if len(fn.split(mol_str)[0]) == 0:
dist = float(fn.split(f"{mol_str}_")[-1].split("_htensor.npy")[0])
dists.append(dist)
return dists
def compute_energy_classical(method, molecule):
try:
return molecule.compute_energy(method)
except Exception as e:
print(f'caught exception! {e}')
return np.nan
if __name__ == '__main__':
main()