-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcompute_stats.py
297 lines (227 loc) · 10.9 KB
/
compute_stats.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import argparse
import _pickle as pickle
import multiprocessing as mp
import os
import pandas as pd
import sys
import numpy as np
import time
import tequila as tq
from constants import DATA_DIR
from lib.make_ansatz import make_ansatz
from lib.molecule_initializer import get_molecule_initializer
from lib.pauliclique import make_paulicliques
from lib.ground_state_fidelity import estimate_ground_state_fidelity
from lib.helpers import print_summary, timestamp_human, Logger
from lib.noise_model import get_noise_model
parser = argparse.ArgumentParser()
parser.add_argument("--results-dir", type=str, required=True, help='dir from which to load results')
parser.add_argument("--which", type=str, required=False, default='all',
choices=['pauli', 'paulicliques', 'hamiltonian', 'all'])
parser.add_argument("--samples", "-s", type=int, default=None)
parser.add_argument("--reps", type=int, default=20)
args = parser.parse_args()
geom_strings = {
'h2': 'H .0 .0 .0\nH .0 .0 {r}',
'lih': 'H .0 .0 .0\nLi .0 .0 {r}',
'beh2': 'Be .0 .0 .0\nH .0 .0 {r}\nH .0 .0 -{r}'
}
active_orbitals = {
'h2': None,
'lih': None,
'beh2': None
}
n_pno = None
transformation = 'JORDANWIGNER'
columns = ["r", "E0", "E1", "gs_fidelity_reps",
"hamiltonian_expectations", "hamiltonian_variances",
"pauli_strings", "pauli_coeffs", "pauli_expectations", "pauli_eigenvalues",
"paulicliques", "paulicliques_expectations", "paulicliques_variances", "paulicliques_eigenvalues",
"nreps", "samples"]
def main(results_dir, nreps, which_stats, samples=None):
with open(os.path.join(results_dir, 'args.pkl'), 'rb') as f:
loaded_args = pickle.load(f)
if samples is not None and loaded_args.samples is not None:
loaded_args.samples = samples
molecule_name = loaded_args.molecule
ansatz_name = loaded_args.ansatz
energies_df = pd.read_pickle(os.path.join(results_dir, 'energies.pkl'))
bond_dists = energies_df.index.to_list()
molecule_initializer = get_molecule_initializer(geometry=geom_strings[molecule_name],
active_orbitals=active_orbitals[molecule_name])
noise = get_noise_model(error_rate=loaded_args.error_rate, noise_type=loaded_args.noise)
if loaded_args.noise is None:
backend = 'qulacs'
device = None
samples = None
loaded_args.error_rate = 0
elif loaded_args.noise == 'bitflip-depol':
backend = loaded_args.backend
samples = loaded_args.samples
device = None
elif loaded_args.noise == 'device': # emulate device noise
backend = loaded_args.backend
device = loaded_args.device
samples = args.samples
else:
raise NotImplementedError('noise model {} unknown'.format(loaded_args.noise))
vqe_result_fn = os.path.join(results_dir, 'vqe_result_r={r}.pkl')
chemistry_data_dir = DATA_DIR + f'{molecule_name}' + '_{r}'
# save terminal output to file
sys.stdout = Logger(print_fp=os.path.join(results_dir, f'{which_stats}_stats_out.txt'))
print('\n----------------------\n')
for k, v in args.__dict__.items():
print('{0:20}: {1}'.format(k, v))
print('\n----------------------\n')
# classical calculations before multiprocessing
bond_distances_final = []
molecules, ansatzes, hamiltonians = [], [], []
for r in bond_dists:
molecule = molecule_initializer(r=r, name=chemistry_data_dir,
basis_set=loaded_args.basis_set,
transformation=transformation,
n_pno=n_pno)
if molecule is None:
continue
ansatz = make_ansatz(molecule, ansatz_name)
hamiltonian = molecule.make_hamiltonian()
ansatzes.append(ansatz)
hamiltonians.append(hamiltonian)
bond_distances_final.append(r)
molecules.append(molecule)
print_summary(molecules[0], hamiltonians[0], ansatzes[0], ansatz_name, None)
del molecules
num_processes = min(len(bond_distances_final), mp.cpu_count()) + 2
manager = mp.Manager()
q = manager.Queue()
pool = mp.Pool(num_processes)
# put listener to work first
_ = pool.apply_async(listener, (q, results_dir, which_stats))
# set nreps to 1 if no sampling
if samples is None and nreps > 1:
print('setting nreps to 1 since no sampling')
nreps = 1
print(f'start_time\t: {timestamp_human()}')
start_time = time.time()
# fire off workers
jobs = []
for r, ansatz, hamiltonian in zip(bond_distances_final, ansatzes, hamiltonians):
job = pool.apply_async(
worker, (r, ansatz, hamiltonian, backend, device, noise, samples, vqe_result_fn, nreps, which_stats, q))
jobs.append(job)
# collect results
for i, job in enumerate(jobs):
job.get()
q.put('kill')
pool.close()
pool.join()
print(f'\nend_time\t: {timestamp_human()}')
print(f'elapsed_time\t: {time.time() - start_time:.4f}s\n')
def listener(q, df_save_path, which_stats):
df = pd.DataFrame(columns=columns)
while 1:
data = q.get()
if data == "kill":
df.sort_values('r', inplace=True)
df.set_index('r', inplace=True)
print('saving data as', os.path.join(df_save_path, f'{which_stats}_statistics.pkl'))
df.to_pickle(path=os.path.join(df_save_path, f'{which_stats}_statistics.pkl'))
break
try:
df = df.append(data, ignore_index=True)
except Exception as e:
print('exception occured!', e)
df.sort_index()
def worker(r, ansatz, hamiltonian, backend, device, noise, samples, vqe_fn, nreps, which_stats, q):
# load vqe
with open(vqe_fn.format(r=r), 'rb') as f:
vqe = pickle.load(f)
print(f'\n[{timestamp_human()}] start computing statistics for r={r}')
# compute exact solution and spectral gap
hamiltonian_matrix = hamiltonian.to_matrix()
eigenvalues, eigenstates = np.linalg.eigh(hamiltonian_matrix)
min_eigval = min(eigenvalues) # ground state energy
second_eigval = min(eigenvalues[eigenvalues > min_eigval]) # energy of first excited state
# compute ground state fidelity
ground_state_fidelity_reps = estimate_ground_state_fidelity(eigenvalues, eigenstates, ansatz, vqe.variables,
backend, device, noise, samples, nreps=nreps)
data_basic = {'r': r,
'E0': min_eigval,
'E1': second_eigval,
'gs_fidelity_reps': ground_state_fidelity_reps,
'nreps': nreps,
'samples': samples}
# compute stats for hamiltonian
data_hamiltonian = {}
if which_stats.lower() in ['hamiltonian', 'all']:
hamiltonian_expectations, hamiltonian_variances = [], []
for _ in range(nreps):
# compute expectation
e = tq.simulate(tq.ExpectationValue(U=ansatz, H=hamiltonian),
variables=vqe.variables, samples=samples, backend=backend, device=device,
noise=noise)
# compute variance
v = tq.simulate(tq.ExpectationValue(U=ansatz, H=(hamiltonian - e) ** 2),
variables=vqe.variables, samples=samples, backend=backend, device=device, noise=noise)
hamiltonian_expectations.append(e)
hamiltonian_variances.append(v)
data_hamiltonian = {'hamiltonian_expectations': hamiltonian_expectations,
'hamiltonian_variances': hamiltonian_variances}
# compute stats for individual pauli terms
data_paulis = {}
if which_stats.lower() in ['pauli', 'all']:
pauli_strings = [ps.naked() for ps in hamiltonian.paulistrings]
pauli_coeffs = [ps.coeff.real for ps in hamiltonian.paulistrings]
pauli_expectations, pauli_variances = [], []
for _ in range(nreps):
# compute expectations
ee = [tq.simulate(tq.ExpectationValue(H=tq.QubitHamiltonian.from_paulistrings([p_str]), U=ansatz),
variables=vqe.variables, samples=samples, backend=backend, device=device, noise=noise)
for p_str in pauli_strings]
# compute variances
vv = [
tq.simulate(tq.ExpectationValue(U=ansatz, H=(tq.QubitHamiltonian.from_paulistrings([p_str]) - e) ** 2),
variables=vqe.variables, samples=samples, backend=backend, device=device, noise=noise)
for p_str, e in zip(pauli_strings, ee)
]
pauli_expectations.append(ee)
pauli_variances.append(vv)
pauli_eigenvalues = [(-1.0, 1.0) for _ in hamiltonian.paulistrings]
data_paulis = {'pauli_strings': pauli_strings,
'pauli_coeffs': pauli_coeffs,
'pauli_expectations': pauli_expectations,
'pauli_variances': pauli_variances,
'pauli_eigenvalues': pauli_eigenvalues}
# compute stats for pauli cliques
data_paulicliques = {}
if which_stats.lower() in ['paulicliques', 'all']:
# compute pauli expectations w/ grouping
paulicliques = make_paulicliques(hamiltonian)
objectives = [tq.ExpectationValue(U=ansatz + clique.U, H=clique.H) for clique in paulicliques]
paulicliques_expectations, paulicliques_variances = [], []
for _ in range(nreps):
# compute expectations
ee = [tq.simulate(o, variables=vqe.variables, samples=samples, backend=backend, device=device, noise=noise)
for o in objectives]
# compute variances
vv = [
tq.simulate(tq.ExpectationValue(U=ansatz + clique.U, H=(clique.H - e) ** 2),
variables=vqe.variables, samples=samples, backend=backend, device=device, noise=noise)
for clique, e in zip(paulicliques, ee)
]
paulicliques_expectations.append(ee)
paulicliques_variances.append(vv)
pauliclique_eigenvalues = [clique.compute_eigenvalues() for clique in paulicliques]
data_paulicliques = {'paulicliques': paulicliques,
'paulicliques_coeffs': np.ones_like(paulicliques_expectations[0]).tolist(),
'paulicliques_expectations': paulicliques_expectations,
'paulicliques_variances': paulicliques_variances,
'paulicliques_eigenvalues': pauliclique_eigenvalues}
print(f'\n[{timestamp_human()}] finished computing statistics for r={r}')
# put data in queue
data = {**data_basic, **data_hamiltonian, **data_paulis, **data_paulicliques}
data.update({k: np.nan for k in columns if k not in data})
q.put(data)
return
if __name__ == '__main__':
main(args.results_dir, args.reps, args.which, args.samples)