diff --git a/algorithms/algebraic/discrete_log/discrete_log.ipynb b/algorithms/algebraic/discrete_log/discrete_log.ipynb index 960d8353..e8e9ccd3 100644 --- a/algorithms/algebraic/discrete_log/discrete_log.ipynb +++ b/algorithms/algebraic/discrete_log/discrete_log.ipynb @@ -65,16 +65,9 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 1, "id": "2bbc4aa3-8f61-433d-a1cd-c58df445a2fd", - "metadata": { - "execution": { - "iopub.execute_input": "2024-05-07T14:37:07.913701Z", - "iopub.status.busy": "2024-05-07T14:37:07.912478Z", - "iopub.status.idle": "2024-05-07T14:37:11.003827Z", - "shell.execute_reply": "2024-05-07T14:37:11.003192Z" - } - }, + "metadata": {}, "outputs": [], "source": [ "from classiq.qmod import (\n", @@ -122,16 +115,9 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 2, "id": "d7fb63ac-023d-40ac-9395-13c1274d446f", - "metadata": { - "execution": { - "iopub.execute_input": "2024-05-07T14:37:11.006726Z", - "iopub.status.busy": "2024-05-07T14:37:11.006374Z", - "iopub.status.idle": "2024-05-07T14:37:11.011232Z", - "shell.execute_reply": "2024-05-07T14:37:11.010657Z" - } - }, + "metadata": {}, "outputs": [], "source": [ "from classiq.qmod import hadamard_transform, invert, qft\n", @@ -140,9 +126,9 @@ "\n", "@qfunc\n", "def discrete_log(\n", - " g_generator: CInt,\n", - " x_element: CInt,\n", - " N_modulus: CInt,\n", + " g: CInt,\n", + " x: CInt,\n", + " N: CInt,\n", " order: CInt,\n", " x1: Output[QArray[QBit]],\n", " x2: Output[QArray[QBit]],\n", @@ -155,7 +141,7 @@ " hadamard_transform(x1)\n", " hadamard_transform(x2)\n", "\n", - " discrete_log_oracle(g_generator, x_element, N_modulus, order, x1, x2, func_res)\n", + " discrete_log_oracle(g, x, N, order, x1, x2, func_res)\n", "\n", " invert(lambda: qft(x1))\n", " invert(lambda: qft(x2))" @@ -209,16 +195,9 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 3, "id": "8ef24bb4-b063-42d6-a5ea-ddcd5310ae13", - "metadata": { - "execution": { - "iopub.execute_input": "2024-05-07T14:37:11.014022Z", - "iopub.status.busy": "2024-05-07T14:37:11.013527Z", - "iopub.status.idle": "2024-05-07T14:37:11.017516Z", - "shell.execute_reply": "2024-05-07T14:37:11.016883Z" - } - }, + "metadata": {}, "outputs": [], "source": [ "from classiq import Constraints, create_model\n", @@ -240,22 +219,15 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 4, "id": "8e9d0b08-f3f8-4e95-a468-bfeec010d97c", - "metadata": { - "execution": { - "iopub.execute_input": "2024-05-07T14:37:11.019590Z", - "iopub.status.busy": "2024-05-07T14:37:11.019416Z", - "iopub.status.idle": "2024-05-07T14:40:05.740675Z", - "shell.execute_reply": "2024-05-07T14:40:05.739982Z" - } - }, + "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Opening: https://platform.classiq.io/circuit/2f88183e-39d4-4d7d-8a4c-fc6acdce4b40?version=0.41.0.dev39%2B79c8fd0855\n" + "Opening: http://localhost:4200/circuit/41ec5ffb-0221-449a-962a-a438c8c1a193?version=0.0.0\n" ] } ], @@ -272,36 +244,29 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "id": "0aef2760-aa9a-4710-8c60-08333a0a9b0b", - "metadata": { - "execution": { - "iopub.execute_input": "2024-05-07T14:40:05.743207Z", - "iopub.status.busy": "2024-05-07T14:40:05.742818Z", - "iopub.status.idle": "2024-05-07T14:40:17.227966Z", - "shell.execute_reply": "2024-05-07T14:40:17.227272Z" - } - }, + "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "[{'x1': 2.0, 'x2': 2.0, 'func_res': 2.0}: 78,\n", - " {'x1': 2.0, 'x2': 2.0, 'func_res': 1.0}: 77,\n", - " {'x1': 0.0, 'x2': 0.0, 'func_res': 2.0}: 73,\n", - " {'x1': 3.0, 'x2': 1.0, 'func_res': 2.0}: 72,\n", - " {'x1': 3.0, 'x2': 1.0, 'func_res': 1.0}: 69,\n", - " {'x1': 1.0, 'x2': 3.0, 'func_res': 4.0}: 68,\n", - " {'x1': 0.0, 'x2': 0.0, 'func_res': 4.0}: 62,\n", - " {'x1': 1.0, 'x2': 3.0, 'func_res': 2.0}: 60,\n", - " {'x1': 3.0, 'x2': 1.0, 'func_res': 4.0}: 60,\n", - " {'x1': 2.0, 'x2': 2.0, 'func_res': 4.0}: 58,\n", - " {'x1': 1.0, 'x2': 3.0, 'func_res': 3.0}: 58,\n", - " {'x1': 2.0, 'x2': 2.0, 'func_res': 3.0}: 57,\n", - " {'x1': 0.0, 'x2': 0.0, 'func_res': 3.0}: 54,\n", - " {'x1': 3.0, 'x2': 1.0, 'func_res': 3.0}: 54,\n", - " {'x1': 0.0, 'x2': 0.0, 'func_res': 1.0}: 53,\n", - " {'x1': 1.0, 'x2': 3.0, 'func_res': 1.0}: 47]" + "[{'x1': 3.0, 'x2': 1.0, 'func_res': 4.0}: 79,\n", + " {'x1': 1.0, 'x2': 3.0, 'func_res': 1.0}: 67,\n", + " {'x1': 0.0, 'x2': 0.0, 'func_res': 1.0}: 66,\n", + " {'x1': 2.0, 'x2': 2.0, 'func_res': 3.0}: 66,\n", + " {'x1': 0.0, 'x2': 0.0, 'func_res': 2.0}: 66,\n", + " {'x1': 0.0, 'x2': 0.0, 'func_res': 3.0}: 66,\n", + " {'x1': 2.0, 'x2': 2.0, 'func_res': 2.0}: 64,\n", + " {'x1': 1.0, 'x2': 3.0, 'func_res': 2.0}: 63,\n", + " {'x1': 2.0, 'x2': 2.0, 'func_res': 4.0}: 62,\n", + " {'x1': 3.0, 'x2': 1.0, 'func_res': 1.0}: 62,\n", + " {'x1': 3.0, 'x2': 1.0, 'func_res': 2.0}: 61,\n", + " {'x1': 0.0, 'x2': 0.0, 'func_res': 4.0}: 60,\n", + " {'x1': 1.0, 'x2': 3.0, 'func_res': 3.0}: 57,\n", + " {'x1': 1.0, 'x2': 3.0, 'func_res': 4.0}: 56,\n", + " {'x1': 3.0, 'x2': 1.0, 'func_res': 3.0}: 55,\n", + " {'x1': 2.0, 'x2': 2.0, 'func_res': 1.0}: 50]" ] }, "execution_count": 5, @@ -332,14 +297,7 @@ "cell_type": "code", "execution_count": 6, "id": "4aa286cd-7e4e-408f-90ed-910485becd71", - "metadata": { - "execution": { - "iopub.execute_input": "2024-05-07T14:40:17.230735Z", - "iopub.status.busy": "2024-05-07T14:40:17.230196Z", - "iopub.status.idle": "2024-05-07T14:40:17.234073Z", - "shell.execute_reply": "2024-05-07T14:40:17.233495Z" - } - }, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -357,14 +315,7 @@ "cell_type": "code", "execution_count": 7, "id": "444d0916-e611-49fa-afc4-324e65240b34", - "metadata": { - "execution": { - "iopub.execute_input": "2024-05-07T14:40:17.236527Z", - "iopub.status.busy": "2024-05-07T14:40:17.236174Z", - "iopub.status.idle": "2024-05-07T14:40:17.239674Z", - "shell.execute_reply": "2024-05-07T14:40:17.239031Z" - } - }, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -382,14 +333,7 @@ "cell_type": "code", "execution_count": 8, "id": "cbb1b0b3-6091-421b-85bb-7b9b8da0b724", - "metadata": { - "execution": { - "iopub.execute_input": "2024-05-07T14:40:17.242019Z", - "iopub.status.busy": "2024-05-07T14:40:17.241522Z", - "iopub.status.idle": "2024-05-07T14:40:17.245044Z", - "shell.execute_reply": "2024-05-07T14:40:17.244483Z" - } - }, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -447,7 +391,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.9" + "version": "3.11.4" } }, "nbformat": 4, diff --git a/algorithms/algebraic/discrete_log/discrete_log.json b/algorithms/algebraic/discrete_log/discrete_log.metadata.json similarity index 100% rename from algorithms/algebraic/discrete_log/discrete_log.json rename to algorithms/algebraic/discrete_log/discrete_log.metadata.json diff --git a/algorithms/algebraic/discrete_log/discrete_log.qmod b/algorithms/algebraic/discrete_log/discrete_log.qmod index d2b4ae34..0d1dd4b7 100644 --- a/algorithms/algebraic/discrete_log/discrete_log.qmod +++ b/algorithms/algebraic/discrete_log/discrete_log.qmod @@ -5,12 +5,12 @@ qfunc discrete_log_oracle(func_res, x2); } -qfunc discrete_log(output x1: qbit[], output x2: qbit[], output func_res: qbit[]) { +qfunc discrete_log(output x1: qbit[], output x2: qbit[], output func_res: qbit[]) { allocate(x1); allocate(x2); hadamard_transform(x1); hadamard_transform(x2); - discrete_log_oracle(x1, x2, func_res); + discrete_log_oracle(x1, x2, func_res); invert { qft(x1); } @@ -22,4 +22,3 @@ qfunc discrete_log qfunc main(output x1: qnum, output x2: qnum, output func_res: qnum) { discrete_log<3, 2, 5, 4>(x1, x2, func_res); } - diff --git a/algorithms/algebraic/hidden_shift/hidden_shift_complex.json b/algorithms/algebraic/hidden_shift/hidden_shift_complex.metadata.json similarity index 100% rename from algorithms/algebraic/hidden_shift/hidden_shift_complex.json rename to algorithms/algebraic/hidden_shift/hidden_shift_complex.metadata.json diff --git a/algorithms/algebraic/hidden_shift/hidden_shift_complex.qmod b/algorithms/algebraic/hidden_shift/hidden_shift_complex.qmod index d3d809ed..8e4b31e2 100644 --- a/algorithms/algebraic/hidden_shift/hidden_shift_complex.qmod +++ b/algorithms/algebraic/hidden_shift/hidden_shift_complex.qmod @@ -52,13 +52,13 @@ qfunc hidden_shift(s); - hidden_shift(arg0); - }, lambda(arg0) { - phase_oracle(arg0); + hidden_shift(y); + }, lambda(y) { + phase_oracle(y); }>(s); } diff --git a/algorithms/algebraic/hidden_shift/hidden_shift_no_dual.json b/algorithms/algebraic/hidden_shift/hidden_shift_no_dual.metadata.json similarity index 100% rename from algorithms/algebraic/hidden_shift/hidden_shift_no_dual.json rename to algorithms/algebraic/hidden_shift/hidden_shift_no_dual.metadata.json diff --git a/algorithms/algebraic/hidden_shift/hidden_shift_no_dual.qmod b/algorithms/algebraic/hidden_shift/hidden_shift_no_dual.qmod index ec410b87..6be97f1c 100644 --- a/algorithms/algebraic/hidden_shift/hidden_shift_no_dual.qmod +++ b/algorithms/algebraic/hidden_shift/hidden_shift_no_dual.qmod @@ -53,9 +53,9 @@ qfunc hidden_shift_no_dual(target); allocate<1>(ind); - hidden_shift_no_dual(target, ind); } diff --git a/algorithms/algebraic/hidden_shift/hidden_shift_simple.json b/algorithms/algebraic/hidden_shift/hidden_shift_simple.metadata.json similarity index 100% rename from algorithms/algebraic/hidden_shift/hidden_shift_simple.json rename to algorithms/algebraic/hidden_shift/hidden_shift_simple.metadata.json diff --git a/algorithms/algebraic/hidden_shift/hidden_shift_simple.qmod b/algorithms/algebraic/hidden_shift/hidden_shift_simple.qmod index 1cb74934..dbfb9ee6 100644 --- a/algorithms/algebraic/hidden_shift/hidden_shift_simple.qmod +++ b/algorithms/algebraic/hidden_shift/hidden_shift_simple.qmod @@ -28,13 +28,13 @@ qfunc hidden_shift(s); - hidden_shift(arg0); - }, lambda(arg0) { - phase_oracle(arg0); + hidden_shift(y); + }, lambda(y) { + phase_oracle(y); }>(s); } diff --git a/algorithms/algebraic/shor/doubly_controlled_modular_adder.json b/algorithms/algebraic/shor/doubly_controlled_modular_adder.metadata.json similarity index 100% rename from algorithms/algebraic/shor/doubly_controlled_modular_adder.json rename to algorithms/algebraic/shor/doubly_controlled_modular_adder.metadata.json diff --git a/algorithms/algebraic/shor/doubly_controlled_modular_adder.qmod b/algorithms/algebraic/shor/doubly_controlled_modular_adder.qmod index e435021d..c7f2c335 100644 --- a/algorithms/algebraic/shor/doubly_controlled_modular_adder.qmod +++ b/algorithms/algebraic/shor/doubly_controlled_modular_adder.qmod @@ -58,7 +58,7 @@ qfunc ccmod_add(phi_b: qbit[], c1: qbit, c2: qbit, aux: qbit) { ctrl -> {c1, c2}; } -qfunc main(output b: qnum, output ctrl: qbit[], output aux: qbit) { +qfunc main(output b: qnum, output ctrl: qbit[2], output aux: qbit) { allocate<5>(b); allocate<2>(ctrl); allocate<1>(aux); diff --git a/algorithms/algebraic/shor/shor.json b/algorithms/algebraic/shor/shor.metadata.json similarity index 100% rename from algorithms/algebraic/shor/shor.json rename to algorithms/algebraic/shor/shor.metadata.json diff --git a/algorithms/algebraic/shor/shor_modular_exponentiation.json b/algorithms/algebraic/shor/shor_modular_exponentiation.metadata.json similarity index 100% rename from algorithms/algebraic/shor/shor_modular_exponentiation.json rename to algorithms/algebraic/shor/shor_modular_exponentiation.metadata.json diff --git a/algorithms/algebraic/shor/shor_modular_exponentiation.qmod b/algorithms/algebraic/shor/shor_modular_exponentiation.qmod index 300cb590..4324dc69 100644 --- a/algorithms/algebraic/shor/shor_modular_exponentiation.qmod +++ b/algorithms/algebraic/shor/shor_modular_exponentiation.qmod @@ -93,7 +93,7 @@ qfunc mod_exp_func(x: qbit[], m: qbit[], aux: qbit) { } } -qfunc main(output x: qbit[], output power: qbit[], output aux: qbit) { +qfunc main(output x: qbit[], output power: qbit[6], output aux: qbit) { allocate<3>(x); allocate<6>(power); allocate<1>(aux); diff --git a/algorithms/amplitude_estimation/qmc_user_defined/qmc_user_defined.json b/algorithms/amplitude_estimation/qmc_user_defined/qmc_user_defined.metadata.json similarity index 79% rename from algorithms/amplitude_estimation/qmc_user_defined/qmc_user_defined.json rename to algorithms/amplitude_estimation/qmc_user_defined/qmc_user_defined.metadata.json index 32be60ee..d2dbb48e 100644 --- a/algorithms/amplitude_estimation/qmc_user_defined/qmc_user_defined.json +++ b/algorithms/amplitude_estimation/qmc_user_defined/qmc_user_defined.metadata.json @@ -1,7 +1,7 @@ { "friendly_name": "Amplitude Estimation", "description": "Integral Evaluation using Amplitude Estimation", - "problem_domain_tags": [], + "problem_domain_tags": ["risk analysis"], "qmod_type": ["algorithms"], "level": ["demos"] } diff --git a/algorithms/amplitude_estimation/quantum_counting/quantum_counting_iqae.json b/algorithms/amplitude_estimation/quantum_counting/quantum_counting_iqae.metadata.json similarity index 100% rename from algorithms/amplitude_estimation/quantum_counting/quantum_counting_iqae.json rename to algorithms/amplitude_estimation/quantum_counting/quantum_counting_iqae.metadata.json diff --git a/algorithms/amplitude_estimation/quantum_counting/quantum_counting_iqae.qmod b/algorithms/amplitude_estimation/quantum_counting/quantum_counting_iqae.qmod index ad819a1c..ec09c135 100644 --- a/algorithms/amplitude_estimation/quantum_counting/quantum_counting_iqae.qmod +++ b/algorithms/amplitude_estimation/quantum_counting/quantum_counting_iqae.qmod @@ -50,10 +50,10 @@ qfunc my_iqae_algorithm(output ind_reg: qbit) { full_reg: qbit[]; allocate<5>(full_reg); - my_iqae_algorithm(full_reg); state_reg: qbit[4]; full_reg -> {state_reg, ind_reg}; diff --git a/algorithms/amplitude_estimation/quantum_counting/quantum_counting_qpe.json b/algorithms/amplitude_estimation/quantum_counting/quantum_counting_qpe.metadata.json similarity index 100% rename from algorithms/amplitude_estimation/quantum_counting/quantum_counting_qpe.json rename to algorithms/amplitude_estimation/quantum_counting/quantum_counting_qpe.metadata.json diff --git a/algorithms/amplitude_estimation/quantum_counting/quantum_counting_qpe.qmod b/algorithms/amplitude_estimation/quantum_counting/quantum_counting_qpe.qmod index 79df473e..659d527a 100644 --- a/algorithms/amplitude_estimation/quantum_counting/quantum_counting_qpe.qmod +++ b/algorithms/amplitude_estimation/quantum_counting/quantum_counting_qpe.qmod @@ -47,10 +47,10 @@ qfunc main(output phase_reg: qnum) { allocate_num<5, False, 5>(phase_reg); hadamard_transform(state_reg); qpe(state_reg); }>(phase_reg); } diff --git a/algorithms/bernstein_vazirani/bernstein_vazirani.ipynb b/algorithms/bernstein_vazirani/bernstein_vazirani.ipynb index f17c8d65..d6c6aee1 100644 --- a/algorithms/bernstein_vazirani/bernstein_vazirani.ipynb +++ b/algorithms/bernstein_vazirani/bernstein_vazirani.ipynb @@ -107,7 +107,6 @@ "\n", "@qfunc\n", "def bv_predicate(a: CInt, x: QArray, res: QBit):\n", - "\n", " repeat(\n", " x.len,\n", " lambda i: if_(\n", @@ -165,7 +164,6 @@ "\n", "@qfunc\n", "def bv_function(a: CInt, x: QArray):\n", - "\n", " aux = QBit(\"aux\")\n", " hadamard_transform(x)\n", " within_apply(\n", @@ -414,7 +412,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.9" + "version": "3.11.7" } }, "nbformat": 4, diff --git a/algorithms/bernstein_vazirani/bernstein_vazirani_example.json b/algorithms/bernstein_vazirani/bernstein_vazirani_example.metadata.json similarity index 100% rename from algorithms/bernstein_vazirani/bernstein_vazirani_example.json rename to algorithms/bernstein_vazirani/bernstein_vazirani_example.metadata.json diff --git a/algorithms/deutsch_jozsa/complex_deutsch_jozsa.json b/algorithms/deutsch_jozsa/complex_deutsch_jozsa.metadata.json similarity index 100% rename from algorithms/deutsch_jozsa/complex_deutsch_jozsa.json rename to algorithms/deutsch_jozsa/complex_deutsch_jozsa.metadata.json diff --git a/algorithms/deutsch_jozsa/complex_deutsch_jozsa.qmod b/algorithms/deutsch_jozsa/complex_deutsch_jozsa.qmod index 8c44f294..29eeb7aa 100644 --- a/algorithms/deutsch_jozsa/complex_deutsch_jozsa.qmod +++ b/algorithms/deutsch_jozsa/complex_deutsch_jozsa.qmod @@ -19,15 +19,15 @@ qfunc my_oracle(target: qnum) { qfunc deutsch_jozsa(x: qnum) { hadamard_transform(x); - my_oracle(x); hadamard_transform(x); } qfunc main(output x: qnum) { allocate<3>(x); - deutsch_jozsa(x); } diff --git a/algorithms/deutsch_jozsa/simple_deutsch_jozsa.json b/algorithms/deutsch_jozsa/simple_deutsch_jozsa.metadata.json similarity index 100% rename from algorithms/deutsch_jozsa/simple_deutsch_jozsa.json rename to algorithms/deutsch_jozsa/simple_deutsch_jozsa.metadata.json diff --git a/algorithms/deutsch_jozsa/simple_deutsch_jozsa.qmod b/algorithms/deutsch_jozsa/simple_deutsch_jozsa.qmod index af23eee0..0b00eb4f 100644 --- a/algorithms/deutsch_jozsa/simple_deutsch_jozsa.qmod +++ b/algorithms/deutsch_jozsa/simple_deutsch_jozsa.qmod @@ -19,15 +19,15 @@ qfunc my_oracle(target: qnum) { qfunc deutsch_jozsa(x: qnum) { hadamard_transform(x); - my_oracle(x); hadamard_transform(x); } qfunc main(output x: qnum) { allocate<4>(x); - deutsch_jozsa(x); } diff --git a/algorithms/glued_trees/figures/10_qubits.png b/algorithms/glued_trees/figures/10_qubits.png index 3268da7b..c6b7f940 100644 Binary files a/algorithms/glued_trees/figures/10_qubits.png and b/algorithms/glued_trees/figures/10_qubits.png differ diff --git a/algorithms/glued_trees/figures/20_qubits.png b/algorithms/glued_trees/figures/20_qubits.png index 1803bc43..bbfe2621 100644 Binary files a/algorithms/glued_trees/figures/20_qubits.png and b/algorithms/glued_trees/figures/20_qubits.png differ diff --git a/algorithms/glued_trees/glued_trees.ipynb b/algorithms/glued_trees/glued_trees.ipynb index 8e3a0d71..b0024f7c 100644 --- a/algorithms/glued_trees/glued_trees.ipynb +++ b/algorithms/glued_trees/glued_trees.ipynb @@ -28,16 +28,36 @@ "metadata": {}, "outputs": [], "source": [ + "import json\n", + "import pathlib\n", + "import random\n", "from typing import cast\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import tqdm\n", + "\n", "from classiq import *\n", "from classiq.execution import ExecutionPreferences\n", - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "import random\n", - "import json\n", - "%config InlineBackend.figure_format = 'retina' # improve graph image quality\n", - "#from qiskit.quantum_info import SparsePauliOp\n", - "#import networkx as nx" + "\n", + "# from qiskit.quantum_info import SparsePauliOp\n", + "# import networkx as nx" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# notebooks path issue\n", + "def get_path(file_name):\n", + " path = (\n", + " pathlib.Path(__file__).parent.resolve()\n", + " if \"__file__\" in globals()\n", + " else pathlib.Path(\".\")\n", + " )\n", + " return path / file_name" ] }, { @@ -78,15 +98,17 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "CHAR_TO_STUCT_DICT = {\"I\": Pauli.I, \"X\": Pauli.X, \"Y\": Pauli.Y, \"Z\": Pauli.Z}\n", "\n", + "\n", "def pauli_str_to_enums(pauli):\n", " return [CHAR_TO_STUCT_DICT[s] for s in pauli]\n", "\n", + "\n", "def pauli_list_to_hamiltonian(pauli_list):\n", " return [\n", " PauliTerm(\n", @@ -113,7 +135,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -122,10 +144,10 @@ " return pauli\n", " result = []\n", " idx = 0\n", - " while len(result) < round(size*0.6):\n", - " for i in range(len(pauli[0][0])-1, -1, -1):\n", + " while len(result) < round(size * 0.6):\n", + " for i in range(len(pauli[0][0]) - 1, -1, -1):\n", " for k in pauli:\n", - " if k[0][i] == 'IXYZ'[idx%4] and k not in result:\n", + " if k[0][i] == \"IXYZ\"[idx % 4] and k not in result:\n", " result.append(k)\n", " break\n", " idx += 1\n", @@ -136,33 +158,52 @@ " result.append(i)\n", " return result\n", "\n", + "\n", "def generate_pauli_list(qubits):\n", - " dim = qubits-2\n", - " T1 = nx.balanced_tree(2, dim-1)\n", - " T2 = nx.relabel_nodes(T1, lambda x: 2**(dim+1)-3-x)\n", + " dim = qubits - 2\n", + " T1 = nx.balanced_tree(2, dim - 1)\n", + " T2 = nx.relabel_nodes(T1, lambda x: 2 ** (dim + 1) - 3 - x)\n", " T = nx.union(T1, T2)\n", - " edges = {i:0 for i in range(2**dim-1, 2**(dim-1)+2**dim-1)}\n", - " for i in range(2**(dim-1)-1, 2**dim-1):\n", - " nums = [j for j in range(2**dim-1, 2**(dim-1)+2**dim-1) if edges[j] < 1]\n", + " edges = {i: 0 for i in range(2**dim - 1, 2 ** (dim - 1) + 2**dim - 1)}\n", + " for i in range(2 ** (dim - 1) - 1, 2**dim - 1):\n", + " nums = [\n", + " j for j in range(2**dim - 1, 2 ** (dim - 1) + 2**dim - 1) if edges[j] < 1\n", + " ]\n", " if len(nums) == 0:\n", - " nums = [j for j in range(2**dim-1, 2**(dim-1)+2**dim-1) if edges[j] < 2]\n", + " nums = [\n", + " j\n", + " for j in range(2**dim - 1, 2 ** (dim - 1) + 2**dim - 1)\n", + " if edges[j] < 2\n", + " ]\n", " vals = random.sample(nums, k=2)\n", " for j in vals:\n", " edges[j] += 1\n", " T.add_edges_from([(i, vals[0]), (i, vals[1])])\n", - " A = 3*np.identity(2**(dim+1)-2)-np.array(nx.adjacency_matrix(T, nodelist=sorted(T.nodes())).todense())\n", - " B = np.hstack((np.linalg.cholesky(A), np.zeros((2**(dim+1)-2, 4))))\n", - " H = -np.block([[np.zeros((B.shape[0], B.shape[0])), B], [B.conj().T, np.zeros((B.shape[1], B.shape[1]))]])\n", + " A = 3 * np.identity(2 ** (dim + 1) - 2) - np.array(\n", + " nx.adjacency_matrix(T, nodelist=sorted(T.nodes())).todense()\n", + " )\n", + " B = np.hstack((np.linalg.cholesky(A), np.zeros((2 ** (dim + 1) - 2, 4))))\n", + " H = -np.block(\n", + " [\n", + " [np.zeros((B.shape[0], B.shape[0])), B],\n", + " [B.conj().T, np.zeros((B.shape[1], B.shape[1]))],\n", + " ]\n", + " )\n", " c = SparsePauliOp.from_operator(H)\n", " result = [(str(c.paulis[i]), c.coeffs[i].real) for i in range(len(c))]\n", " return crop_pauli_list(sorted(result, key=lambda x: abs(x[1]), reverse=True), 200)\n", "\n", + "\n", "def pauli_str(qubits, recalculate=False):\n", - " cache = json.load(open('glued_trees_cache.json', 'r'))\n", + " with open(get_path(\"glued_trees_cache.json\"), \"r\") as f:\n", + " cache = json.load(f)\n", " if not recalculate and str(qubits) in cache:\n", " return cache[str(qubits)]\n", " if qubits > 13:\n", - " return [(i[0][0]+i[0][1]*(qubits-len(i[0]))+i[0][1:], i[1]) for i in generate_pauli_list(13)]\n", + " return [\n", + " (i[0][0] + i[0][1] * (qubits - len(i[0])) + i[0][1:], i[1])\n", + " for i in generate_pauli_list(13)\n", + " ]\n", " return generate_pauli_list(qubits)" ] }, @@ -199,7 +240,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ @@ -213,17 +254,28 @@ " max_depth=1400,\n", " qbv=state,\n", " )\n", + "\n", " execution_preferences = ExecutionPreferences(num_shots=8192)\n", " model = set_execution_preferences(create_model(main), execution_preferences)\n", " quantum_program = synthesize(model)\n", " job = execute(quantum_program)\n", - " filename = str(qubits)+'-qubits/2n'+(str(t-2*qubits+4) if t < 2*qubits-4 else '+'+str(t-2*qubits+4))\n", - " json.dump(dict(job.result()[0].value), open('results/'+filename+'.json', 'w'))\n", + " filename = (\n", + " str(qubits)\n", + " + \"-qubits/2n\"\n", + " + (\n", + " str(t - 2 * qubits + 4)\n", + " if t < 2 * qubits - 4\n", + " else \"+\" + str(t - 2 * qubits + 4)\n", + " )\n", + " )\n", + " with open(get_path(\"results/\" + filename + \".json\"), \"w\") as f:\n", + " json.dump(dict(job.result()[0].value), f)\n", + "\n", "\n", "def run_range(qubits, recalculate=False):\n", " pauli_list = pauli_str(qubits, recalculate)\n", - " for i in range(-12, 13, 2):\n", - " run_point(qubits, 2*qubits-4+i, pauli_list)" + " for i in tqdm.tqdm(range(-12, 13, 2)):\n", + " run_point(qubits, 2 * qubits - 4 + i, pauli_list)" ] }, { @@ -237,9 +289,17 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 13/13 [00:52<00:00, 4.01s/it]\n" + ] + } + ], "source": [ "run_range(10)" ] @@ -257,9 +317,17 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 7, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 13/13 [01:13<00:00, 5.65s/it]\n" + ] + } + ], "source": [ "run_range(20)" ] @@ -273,24 +341,34 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "def graph_results(qubits):\n", - " states = [(str(i) if i < 0 else '+'+str(i)) for i in range(-12, 13, 2)]\n", - " times = [2*qubits-4+int(i) for i in states]\n", + " states = [(str(i) if i < 0 else \"+\" + str(i)) for i in range(-12, 13, 2)]\n", + " times = [2 * qubits - 4 + int(i) for i in states]\n", " data = []\n", " for i in states:\n", - " with open('results/'+str(qubits)+'-qubits'+'/2n'+i+'.json', 'r') as f:\n", + " with open(\n", + " get_path(\"results/\" + str(qubits) + \"-qubits\" + \"/2n\" + i + \".json\"), \"r\"\n", + " ) as f:\n", " j = json.load(f)\n", - " key = str('0'+bin(2**(qubits-1)-3)[2:])\n", - " data.append(j['counts'][key]/j['num_shots'] if key in j['counts'] else 0)\n", + " key = str(\"0\" + bin(2 ** (qubits - 1) - 3)[2:])\n", + " data.append(j[\"counts\"][key] / j[\"num_shots\"] if key in j[\"counts\"] else 0)\n", " plt.plot(times, data)\n", - " plt.xlabel('Time (s)')\n", - " plt.ylabel(\"Proportion of |\"+str(2**(qubits-1)-3)+\"> shots\")\n", - " plt.title(r'Glued Trees System at $t \\approx 2n$ for '+str(qubits)+r' Qubits ($n='+str(qubits-2)+r'$)')\n", - " plt.savefig('figures/'+str(qubits)+'_qubits.png', bbox_inches='tight', dpi=300)\n", + " plt.xlabel(\"Time (s)\")\n", + " plt.ylabel(\"Proportion of |\" + str(2 ** (qubits - 1) - 3) + \"> shots\")\n", + " plt.title(\n", + " r\"Glued Trees System at $t \\approx 2n$ for \"\n", + " + str(qubits)\n", + " + r\" Qubits ($n=\"\n", + " + str(qubits - 2)\n", + " + r\"$)\"\n", + " )\n", + " plt.savefig(\n", + " get_path(\"figures/\" + str(qubits) + \"_qubits.png\"), bbox_inches=\"tight\", dpi=300\n", + " )\n", " plt.show()" ] }, @@ -303,22 +381,17 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 9, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABIEAAAOOCAYAAACXxwKaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd3hUZfr/8c9Jb5DQSQiC0hEUqdJEELEgCvaCNMWu6OJXV3RX3F11EUWxiyAIFlBRXMVlEaV3EEWkCdJCQgmQ3pPz+4NfjpmZlEkyLZn367pyXVOec86TmcnMyT33c9+GaZqmAAAAAAAAUKsFeHsCAAAAAAAAcD+CQAAAAAAAAH6AIBAAAAAAAIAfIAgEAAAAAADgBwgCAQAAAAAA+AGCQAAAAAAAAH6AIBAAAAAAAIAfIAgEAAAAAADgBwgCAQAAAAAA+AGCQAAAAAAAAH6AIBAAAAAAAIAfIAgEAAAAAADgBwgCAQAAAAAA+AGCQAAAAAAAAH6AIBAAAAAAAIAfIAgEAAAAAADgBwgCAQAAAAAA+AGCQAAAAAAAAH6AIBAAAAAAAIAfIAgEAAAAAADgBwgCAQAAAAAA+AGCQEAt17JlSxmGIcMwdPDgQW9Px6MuvfRS63dfsWKFt6cDAKilTp06peeee069evVSvXr1FBgYaH3+zJkzx9vTQy1S/LoyDMNl+6yt54qPPvqoDMNQRESEEhISvD2dWu3kyZOqW7euDMPQ+PHjvT0dVIAgEOBjMjMz9eWXX+qhhx5S9+7ddc455ygyMlJhYWFq2rSpLrzwQo0aNUpvvPGGDh8+7O3p1moHDx60Odlyxc/kyZO9/WvVeitWrNADDzyg7t27q1GjRgoJCVF4eLgaN26s7t276/bbb9err76qLVu2yDRNb08X8CsHDx7U+++/r5EjR+rCCy9UvXr1FBwcrPr16+uCCy7Qvffeq5UrV3p7mpXyxx9/6MILL9TkyZO1adMmpaSkqKioyNvTcpnCwkJt375ds2bN0v3336/u3bsrJCTE+ly79NJLq7zvvLw8zZs3T1dffbVatGihsLAwxcbGqk+fPnr55ZeVnJzsul+kHIcOHdLrr7+uq666Sm3btlV0dLTCw8PVsmVL9e3bV3//+9+1ZcsWj8wFrrFjxw699dZbkqQJEyYoPj7eyzPyXevXr9cDDzygrl27qn79+goODlbdunXVpk0b3Xzzzfrkk0+Um5tb7j4aNWqkiRMnSpI++OAD/l58nQnAJ2RlZZlTpkwxGzVqZEpy+qdPnz7mt99+W+Z+W7RoYY09cOCA534hHzBgwADrd1++fHmltz9w4EClngtnfp599lmX/544a+fOnebFF19cqefj/PPP9/a0K82f/6Z9hSeeg7y8PDM0NNSUZAYHB5s5OTluOY6n/PTTT2bPnj2d/tu89NJLzUOHDnl72k4ZPHiwNe/w8HBz2LBh5n333Wc++OCD5oMPPmhu2LDB21Ossq+++sqMiIgo97kaMGBAlfa9a9cus0uXLuXuu3HjxubixYtd+0uVcPLkSfPBBx80g4KCnHpdXnnlleaOHTvcNh9nlJyPqzjznlbTPnuuuuoqU5IZGRlpJicne3s6Pik5Odm87rrrnHrtt2rVylyzZk25+0tJSTHr1q1rvYfDdwWVHR4C4CmHDh3Sddddp19++cXm9kaNGqlr165q2LChIiIilJycrKNHj+qnn35SQUGBJGndunW65pprNG3aND322GPemH6tVbduXT344IPljtm0aZM2b94sSYqLi9OIESPKHd+zZ0+XzQ9/2rZtmwYNGqSUlBTrtiZNmqh79+5q2rSpDMPQqVOntGPHDu3bt8/KACo5HvAlO3bssL557dSpk0JDQ708o+rZs2ePNm3aZHNb27Zt1alTJzVs2FApKSlat26dtWRjxYoV6t27t1avXq3zzjvPG1N2SlJSkpYtWyZJCg0N1S+//KI2bdp4eVauk5KSoqysLJfvNyEhQZdddpkSExMlnV3idMkll6hVq1Y6efKkli1bpuzsbJ04cULDhw/XkiVLNGjQIJfOYefOnbryyit15MgR67agoCBdfPHFatGihUJDQ5WYmKh169YpLS1NkrRkyRKtWLFCn3zySYWf9/CetWvX6r///a8kafz48WrQoIGXZ+R7srOzNXjwYP3888/WbY0aNdJFF12k+Ph4nTx5Ur/99pv++OMPSdL+/fs1ZMgQ/fjjj+rVq1ep+4yOjtZ9992nl156SStWrNCyZcs0ePBgT/w6qCxvR6EAf7d//36zcePGVqTdMAzzpptuMrds2WIWFRWVuk1aWpr51VdfmZdddpm13T//+c9Sx9a0b25cqbqZQM549tlnq/1tKKonLy/PbN++vfU8xMXFmV999ZVZWFhY6vgTJ06Y77//vnnJJZeY8fHxHp5t9fnz37Sv8MRz8P7771vHuPvuu91yDE/69NNPTUlm69atzX//+99mQkKCw5jCwkJz1qxZNpknF198cZmfhb5g8eLF1lwHDx7s7em43OzZs01JZpMmTcxrrrnGfO6558zvvvvOnDBhQrU++/r3729t36JFC/Pnn3+2uf/kyZM25zj169c3z5w545pfyjTN3377zaxXr561/+DgYPOpp54qNWMkJyfH/PDDD20ytQMCAsxPP/3UZfOpjOI5ePrfuJr02XPNNddY59R79+719nR8UsnzV8MwzH/9619mVlaWzZiioiLz008/NaOjo62xnTt3Lne/+/fvNw3DqLXvibUFQSDAi7KysmxSoSMiIsxFixZVah8bN240O3fuTBCoFASB/MNnn31msxRjz549Tm+7b98+N87MPfz5b9pXeOI5uO+++6xjvPPOO245hietWLHCnD17tllQUFDh2C+//NLmH90lS5Z4YIZV89FHH1nzvPPOO709HZdLSkoqdVledT77SgbOQkJCzO3bt5c6LiMjwzzvvPOssU899VRVfgUH2dnZZqdOnWzOvVasWFHhdomJiWabNm2s7erUqeOVzxCCQOXbu3evFYTgvKxsJZ/PCRMmlDv2888/t3ndlfU3W6xkAPfXX3914azhKhSGBrzopZdesknD/Pjjj3XddddVah89e/bUli1bSEuG31q6dKl1+brrrlPbtm2d3rZVq1bumBJQbVu3brUud+vWzYszcY0BAwZozJgxCgwMrHDsiBEjbJbOLl682J1Tq5b8/HzrckBA7Tutbtq0qc455xyX7rO4WK8kjR49Wp07dy51XGRkpP7xj39Y19977z1rKXx1vPDCC9qxY4d1fd68eRowYECF28XGxur7779XnTp1JEnp6em65557qj0fuNbs2bOtJd+33HKLl2fjm9LS0nTo0CHr+m233Vbu+OHDhysiIsK6vnfv3nLH33zzzdbl2bNnV3GWcKfa92kF1BCZmZl6/fXXreu33Xabhg8fXqV9hYSE6Pzzz6/yXEp2wWrZsqVT21S2neipU6f0yiuv6PLLL1fz5s0VFhammJgYdezYUQ8++GCluggUFRXpww8/1OWXX66mTZsqLCxMLVu21HXXXadFixY5vR9fUFqr119++UUTJkxQp06dVL9+fRmGUeZrw5WPq6v3eeTIET333HO65JJL1KRJE4WGhiokJEQNGjTQhRdeqNtvv13vvPOOjh07Vuk5lnT06FHrcosWLaq1L0m68MILrefk008/dXq70aNHW9v95S9/KXVMVR+Tkn+jJU/czj333FK70K1YsaLMebri+S3tdfvzzz/r/vvvV7t27RQVFaWoqCj16tVLb7/9dqn/uG3ZskVjxoxRhw4dFBkZqQYNGmjgwIH6+OOPKzx+ZR06dEjvvPOObrvtNnXq1EnR0dEKDg5WgwYN1LlzZ91///3asGFDuftw5XNQlueff97avrjWmHQ22G+//6CgIOXk5FT6GDVF3759rcsVfcbMnDnTelzuvvtu6/YffvhBY8aMUfv27RUZGam6deuqd+/eeu+996rVvWvFihXW8caOHWvd/uGHHzo8T2PGjCl1Hxs2bNBDDz2k888/X/Xq1VNYWJji4+N15ZVX6s0331RmZqZTc6nuZ4inZWRk6IcffrCul3z8SnPDDTcoKipKknT69GmtWrWqWsfPysqyCUINHz5c119/vdPbt2jRQs8995x1/ccff9RPP/3kMM4T51Ulbd68WXfffbfatm2ryMhI1a9fXz179tSLL75o1TOqyrFd8b7nqXOBYiU/Q5x93Xv6PcTbMjIybK7Xq1ev3PFBQUGqW7eudb2i33348OHWe9Inn3xCJ1Zf5O1UJMBfFa+zL/7ZtGmTW47jTPpuyS5YLVq0cNl+i7355ps264lL+zEMwxw3bpyZm5tb7r6SkpLMXr16lbuvESNGmGlpaTViOVjJeRfvLzAw0OF3uu666xy2deXj6up9vvfee2Z4eHi5+yn+6du3b6Uft5KGDh1q7evmm2+u1r5M0zTfeOMNa3/OrmdPTU21qWPy22+/OYypzmNS2U51Zb3eXfX82r9up0yZUurrtvjniiuusLpbFRQUmPfff3+5c7j11ludWjbkjMcff9xaGlDRz6233mpmZmaWuh9XPQfluemmm5zef7t27ar5yPi2v/zlL9bvevXVV5c79sEHH7TGTp8+3dy/f7/NcoTSfm666aYq1xpavny508/T6NGjbbbNyMgwb7nllgq3i42NNb/77rsK52L/t1iZz5DqqOpn3//+9z9ru8jISDM/P7/CbS6//HJrm6effroaszbNOXPm2Dwuq1atqvQ+0tPTzaioKGsfpdXscud5VWnPeUBAQJmvpWbNmpnr1q2r0rGr+77nyXMB0zTNX375xdpf+/btnd7O0+8h3paXl2eGhYVZv8uXX35Z7vgTJ07YvMacWXZfcsmlu/7HQdXRHQzwkuXLl1uXzz33XPXo0cOLs3GfRx99VNOnT7euN2zYUL1791bTpk2Vk5Ojbdu2aceOHTJNUx988IESExO1ePHiUtPqU1JSNGjQIO3atcu67dxzz1Xv3r0VGhqq3377TZs2bdJXX31VI9Pyp06dan3D2KpVK/Xs2VMRERE6ePCggoODbca68nF19T4XLVqke++917pe/M1ZfHy8goKClJqaqr1792rHjh3Ky8ur1mMm2S7p+uabb7Rz50517NixyvsbOXKknnjiCWVnZ+uHH37QwYMHK/wm99NPP7U66PTu3dvh+NV9TEp2qps7d67S09MlSaNGjbKWJpTUrFkzh9vc8ZqRzi7RePLJJyVJF1xwgbp06aLAwEBt3LhRO3fulCT973//0yOPPKL33ntPDzzwgGbMmKGAgAD16NFDHTp0UFFRkVavXq0DBw5IkubPn68LL7xQf/3rX8s9tjOOHDki0zRlGIbatWundu3aqUGDBgoODtapU6e0bds27d+/3zpuWlqavv32W5vMCsk1z0FFunXrpsaNG2vPnj1Wx6l27dqV2l2lU6dOld6/KxQVFSkxMVHx8fFuPc6vv/5qXW7evHm5Y+07a/bq1UvJycmKiYlRv3791LRpUyUlJWn58uXW3+nnn3+u4cOH6/bbb6/03Jo1a2a9Fnbv3m1ltrRv316XXXaZzdiLL77YupyVlaVBgwbZdEmLi4tT//79FRUVpX379mnNmjUqLCxUUlKSrr32Wn366ae68cYbnZpXZT5DvKXk53fnzp0VFFTxvyJdu3bV999/77B9VZQ892revLn69+9f6X1ERUXpuuuuszJOSu7T015//XXrOW/durV69eqlkJAQ/frrr1ZW59GjR3XllVdq5cqV6tKlS6X2X533PU+fC0iyXieSKvXcevo9xNuCg4N11VVX6auvvpIk/etf/9IVV1xhs+SrpCeffNLK/rnsssucWnbfv39/a9nl999/X2v/z6mxvBqCAvzYueeea/Pts7t4MxNo1qxZ1pi6deua77//vpmXl+cw7scffzSbNWtmjZ0yZUqp+xs3bpw1JiQkxJw1a5bDmI0bN1pzCwkJKfPbKVdxZSZQUFCQGR0dbX711VcO44qzKEzT9Y+rq/dZstj5Qw89VGZmRXp6uvnZZ5+ZTz75ZJnzcsaPP/5o8zg2aNDAfOmll0rtPuSs0aNHW/v7+9//XuH4Hj16WONLe1268jGpSnFOV79mSj7eoaGhZtOmTUv9G3v55ZdtXt/Tpk0zJZkdOnRw6AZUUFBgPvroo9b4qKgoMyMjw6nfrzwvvfSSOXv2bPPkyZNljlm1apXZunVr69jz5s0rd5/uLpD697//3dr/5MmTXbLPgoIC89NPPzWvv/56My4uzgwKCjIbNGhg9ujRw3z66afNLVu2VLiPo0ePmoMHDzbfeOMNl8ypLIcOHbLJZvn888/LHFtUVGTWrVvXGhseHm6GhoaaU6dOtXnfNE3TTEhIMNu1a2eNHTZsWLXnWjKr1z7rx17JDLjAwEDztddec+hiuHfvXrNbt242f6/OZoU4+xniClX97Cv5GNxyyy1ObfPWW29Z23Ts2LGKMz6rVatW1r5uvPHGKu/n9ddft3nsk5KSbO73VCZQSEiIGRYWZn700UcO49asWWPzft65c+dS3/edPXZl3/c8fS5gmrbZlM6+T3n6PWTx4sXmgw8+6NKfDRs2VHoeu3btssloa9WqlTlnzhzz999/N7Ozs83Dhw+b3377rdmvXz+bv7/Dhw87tf/33nvP2s7VmYioPoJAgJcEBQVZb47PPfec247jrSBQWlqaGRMTY52kVPQBtXPnTis1tUGDBg4nC3v27LFZ0jFnzpwy97Vnzx6bpTk1JQgUEBBgrly5stzxrn5cXb3P9PR06/dp3ry5x1Klhw0bZvNYSmeXNbVr18688847zenTp5sbN250aumBaZrm2rVrrf2cc845ZbabN03T3L59uzW2Tp06DoELVz8mlT0Rd8drpuTjHBYWZu7YsaPM/Q0ePNhmfOPGjc3jx4+XOragoMDmBHvBggUV/n6ucuDAAev37tmzZ7lj3R0EKvl6/vrrr6u9vyVLltj881vWT7t27cxnnnnG/Omnn2yW4+3evducNGmS9b7q7iDQDTfcYPP3V14AY//+/Q6vx/LeRxctWmSNbdu2bbXn6mwQaN++fTbLKd58880yx54+fdps2bKlNXbs2LFljq3sZ4irVPWz7+abb7a2e+SRR5zaZuHChdY2TZs2reKMzyp57lWdAKv9lw9r1661ud9TQSBJ5vz588scu2PHDjM0NNQaW9qXFM4euzLve946Fyj5+fH99987tY2n30NK/u246mf27NmVnodpnl0+d84551S4/5iYGPPhhx8209LSnN73qlWrrO1btmxZpfnBfWreegmgFkhLS7MplBoTE1PhNt99950eeuihcn9Onz7txllXzgcffKCUlBRJ0gMPPKBevXqVO75Dhw4aPXq0pLOFa5csWWJz/6xZs6zCcj179rTGlqZt27Z69NFHqz55L7nxxht1ySWXlDvG1Y+rq/dZsgBlgwYNHJbUuMsnn3zi0CHPNE3t2bNH8+bN04QJE9SrVy/FxMTo1ltvrTB9v0+fPlax9cOHD9ukmNubNWuWdfnWW29VZGSkzf3eekyKueM1U9K9995bbmF6+64jkyZNUuPGjUsdGxgYaNNVpOSyGXdr2bKlBg4cKOlskVVniqm6S8mukZVdvmHvww8/1JVXXmkteYuIiFDPnj111VVX6YILLrDp1rVnzx7961//UteuXRUeHq6WLVsqJiZG7du31wsvvKCsrCxFRERUa7mlM/NduHChdf3FF19UaGhomeNLPlaS9PLLL5f7PlrytVpYWFj1iVbS+++/by2n6NKlix544IEyx9arV09Tpkyxrn/yySdKTU2t8BjOfIZ4W8mCtOHh4U5tU3KcfUHbyrA/96qoGG557Lf11vlX//79y+2Adf7551vLuaSzr0NP8MbnnmmaNsWrnV2yWlPeQ9zhggsu0N69e/Xmm286nLuUdMUVV+i2224rdQlgWUouDUxISKjxj1VtQxAI8ILiNdXFynvjLbZp0ya99dZb5f54858We99995112dn10oMGDbIur1mzxua+kv+033nnnRXuq7wgka+69dZbKxzj6sfV1fts2LChwsLCJEk7duzQ2rVrndpfdUVFRenLL7/U4sWLdfnll5dZxyYzM1MLFizQoEGDdN111+nMmTNl7nP8+PHW5ZKBnpLy8vL00UcfWddLdhUp5q3HpJg7XjMlVVSvxL79c0XjS9a6Ka4R5CqHDx/WF198oRdeeEFPPPGEHn74YZtAevHxTNN0qBHhKadOndKRI0ckSfXr1692e+6kpCRJ0jnnnKM5c+bo5MmT2rhxo7777jv98ssvOnHihGbNmqV+/frZbJefn69Dhw7ZBB/69++vn376yeb14UpbtmzRfffdZ12/7bbbKnzNlvwHrlWrVrr//vvLHV/y92nYsGHVJloFP/74o3V5zJgxFf5TPGLECNWvX1+SlJubq/Xr11d4DGc+Q7ytZEe7kJAQp7YpGQTMzs6u8rGrcu5VluKOZcWcCdK5w6hRoyocU/J8aPPmzU53nqsOb3zupaam2ry+GjRo4NR2nn4PmTx5ssyzq3Fc9lNWF8KKJCcn6/7779djjz2mzMxMNW3aVNdff73uuece3XzzzVbH1QULFqhPnz669957nQ7mlHxsCgoKlJycXKU5wj0oDA14gX0k3RMfyJ5W8oR1xowZ+vDDDyvcJiEhwbpc/E+Q5PgPWe/evSvcV9u2bVW/fn2fyo6qSLdu3Soc48rH1R37DAkJ0fDhwzV//nwVFBRo0KBBuuWWW6xvqJ3JequOq6++WldffbVOnjypFStWaN26ddq6dau2bdvm8A3yf/7zH/Xv31/r168v9dutUaNG6a9//atycnL09ddf69SpUw4nlYsWLdKpU6cknQ129OzZ02E/3n5M3PGaKamiAsUlvzGPjo6usGBy8T++klwW2F6/fr3++te/avXq1U63qvXWCasrs4Cksy3Ex48fr+nTp5eaeVG/fn2NGzdO48aN0549e7RgwQL973//0/79+5WamqqmTZuqf//+uvPOO3X55ZdXez5lOXDggIYNG2b9E3fBBRfo3XffrXC7kp8NY8aMqbCQecnCws4UN3UF0zRtntc+ffpUuE1wcLB69uxpZeL99NNPuvLKK8vdxpnPEG8rDgxIcroYcG5urnXZ2eyh0rjy3Mv+86Tk7+VJzpwPde7cWVFRUcrIyFBhYaG2b9/u1HbV4Y3PPfvns6wix/ZqwnuIO/z+++8aNGiQEhISFBoaqjfffFP33nuvTbF20zQ1f/583XfffUpLS9OMGTMUGBiot99+u8L92z/+tfF/nZqMIBDgBXXr1lVQUJCVlly8VKM8kydP1uTJk21uO3jwoM4991w3zLB6MjIybL5xmzlzZqX3UTJDIzU11eZk0dlvxs8555waFQRq1KhRufe7+nF11z5fffVVbd26Vb///rvy8vI0b948zZs3TwEBATr//PPVv39/XX755brqqqvKXeZRHY0aNdJNN92km266SdLZb6E2bNig2bNna+7cudbf3m+//aann35ar7/+usM+6tWrpxtvvFEfffSR9XvYLzMsmSFUWhZQMW89Ju54fu1FR0eXe3/JE8qKxtqPz8/Pr3B8RT744APdfffdTgd/itlnDXjKtm3brMsXXXRRtfd39913O/2NeLt27fT3v/9df//738sdV1RU5NIOjElJSbr88st17NgxSdJ5552nJUuWqG7duhVuWzK44kyQquQ/fPZZau6Smppq81ou/na9IiW7EjoTlKzoM8QXlMygcTarp+Q4+wycyrA/96rO+YH9+6K7g/llceZ8yDAMxcfHa/fu3ZKkkydPuntakrx/LuDse35NeA9xtYKCAl1//fXWFz7vvvtuqdlEhmHotttuU8OGDTVkyBBJ0jvvvKMxY8aU+qVXSZX9zIVnsRwM8JKSH9zFbZRrC1ekRZdct2//jZuz3+5UJ9XbGyr6htPVj6u79tm0aVNt2bJFzzzzjJo0aWLdXlRUpF9//VVvv/22RowYodjYWP373//2yDrxoKAg9evXT7NmzdLKlStt/pF4//33y/xn5J577rEu2y8JO3z4sNXGOzQ0VCNHjizz+N56TNzx/NqrTK0HT9dD2rlzp+69917rZPT888/X9OnTtWnTJh0/flzZ2dk2KfUll00U12/xNFdnApUMAO3evVuvvPKK7rjjDl1xxRW66aabNHHiRH311VdOvVZyc3P1t7/9rUrBxLKcOnVKl19+uVWzKDY2VsuWLVNsbGyF26akpOjw4cOSzv6NO/N4uTrI5gz7zzBnP5tKjnMmKFmdLBlPKfl6PH78uFPbFAcHJdtMwaooGYArbl9dFfbbtmnTpsr7qo6qnA95KsDt6c89+78rZ4KMNeU9xNUWLlxovYbbtWtXYQmFyy+/XIMHD7auz549u8Jj2D/+Ne2cvLYjEwjwkv79++uPP/6Q5Nnip65S3j9I9m/0p0+frlYBRvtv/rKyspz6MKltqaeuflzdtU/p7Deu//znPzV58mRt2bJFq1ev1tq1a7VmzRrrG+0zZ87oqaee0oYNG/TVV195LEDQp08fTZo0SZMmTZJ0tkbF5s2bSy0E2b9/f7Vv3167d+/Wjh07tGnTJuvbr9mzZ1t/B9dff32F/5x44zFx1/NbU7z22mtWEOuKK67Qf/7zn3LrkHgr+6ckd/yDsWnTJk2aNEk//PBDqfdPmzZNQUFBGjRokK655hpdccUVatOmjfX6O3TokL744gtNmzZNiYmJeuONN1wyr7S0NF1xxRX67bffJJ2tIbFs2TKnM1xLBsw6duzoVDZByW089Q+c/WdYZmZmpT/DKlOQ1Ze1a9fOulyyiG95iv9Jl6T27dtX6/j9+vWzAo4bN26s8n5KbuuK2l1S1QLPWVlZTr02vPVa8uTnXnR0tMLCwqwlpcnJyRVmx3njPeS7776zqdXnCnfeeWeFTR9KKtnwYeDAgU495oMGDbK++NqyZUuF40tmnAUFBXm0BhsqRhAI8JKBAwdatTkOHDhg88+lpwUHB1uXK/rWv1h53xrHxMQoNDTUWsd/7Nixav3jGR0drZCQEGtJ2OHDh51Ke6+olklN4+rH1V37LCkwMFC9evVSr1699Pjjj6uoqEjr1q3T1KlT9Z///EeS9PXXX2vhwoUVFgx2pSuvvNIKAkl/Fs8tzfjx4zVx4kRJZ7OBevbsKdM0bb4JK28pmD1PPibufn59Xcmgx7/+9a8KC9E6+0+pu2RnZ2vPnj2SztYYqe4/vJI0b948jR492sqGioiI0Pnnn6+GDRvq6NGj+u2331RYWKiCggItXbpUS5culXQ2uy02NlZpaWk2y2ZcNa/MzExdffXV2rp1q6Sz7/NLliypVOexkssyunbtWuH4I0eOWDW8mjdv7vQyueqKjo5WcHCwtSTs8OHDZXbIK+ngwYPW5dryD1SHDh2sy7/++qsKCgpsloCW5qeffip1+6ooee6VkJCgVatWVbqjWkZGhr7++mvr+tVXX+0wxtXnVWU5fPhwud0ZpbPLco4ePWpd98ZryROfe4ZhqGXLltayt4SEhApfL954Dylu9OJK3bt3r1QQqOTrwdnfoeTrxpnXasljxMfH23SihPexHAzwkhtvvNHmjfe1117z2lxK1l04c+ZMhet4Dx8+XGHB1pIBrep2hTAMQxdeeKF1fcOGDRVu8/vvv1sf1LWJKx9Xd+6zLAEBAerXr58WLVpks/a++CTQU+yLeJb37d/o0aOt++fPn6+srCwtW7bMChicd955VmvxqqjsY1LZb0k9+fz6msTEROtyRbUbUlNTtX37dqf2666stR07dlhLIjp16uSSk+ajR4/KNE01a9ZMM2fO1PHjx7Vp0yaH7mD2xYpzc3N18OBBmwBQ7969tXXrVptlAVWRk5Oja6+91no9RkREaPHixZUubFzZb+S9tYzDMAybZSbr1q2rcJuCggJt3rzZuu7MP6g1QZ8+faz308zMzAozCnJzc20+86vbme6mm26yydqcNm1apffx/vvv2yzxu+OOOxzGuOO8qjTOnA/t2LHDynIMDAy0OZ+qDFe+77nrXOCCCy6wLhcH1MtTU95DXK3k0lFna2OVPKd2pgZWyQLaVX3NwX0IAgFeEhkZqYcffti6/umnn2rRokVemUudOnWsk6KsrCzt3bu33PGfffZZhfu85pprrMvvvPNOtQvElfwnu2RL7rLMnTu3WsfzVa5+XN21z4oYhqFhw4ZZ152tDeEq9u2/y0vlb9Cgga6//npJZ5evfP755zb1gcaNG+eSk2NnH5OSASxnCid74/n1FSWLF2dlZZU7dubMmU4Xoq7sc+Cskv+0VDfjoaQ777xTe/bs0V133eWwNKm4O9jatWu1e/duPffcc+rTp4+aNGmi0NBQtWjRQnfccYe+++47rVu3rlKZOqXJz8/XDTfcYLVMDw0N1ddff62+fftWel8l/4FzJkjizX/gSgYvPvzwwwr/Dkt2HgwLC3N7NydPiYqK0mWXXWZdnzNnTrnjv/zySyuAUb9+/Upn7diLiIjQQw89ZF3/+uuv9dVXXzm9/aFDh2wKp1900UWldm1zx3lVaSp7PtSjR48q12Zxx/ueq88FSn7pYf85XxpvvIf4Qov4kuc8y5cvd2qb4vdsSWrdunWF40s+/t5a6YCyEQQCvOjJJ5+0+RC54447bFKMPalkGml5J2UJCQl68cUXK9zfvffea31T8NNPP+m5555zei7JyckOBQLvuusu6/KGDRvKPfHZt2+fXn31VaePV5O4+nF19T7T09OdbvtbcrmeM0sjyjJt2jRrnbozsrKy9MILL1jXmzRpUmExyJIFol977TUrYBsYGKixY8eWu62rH5OSGYQl063L4o7XTE1x3nnnWZfL+4b5999/r9TjUtnnwFklv2l1Vd2OMWPGaO7cuU7941fcHWzt2rU6duyYcnJydPDgQX300Ue66qqrqj2XwsJC3X777VY9jKCgIH322WdVyizKz8+3mirYZ9qUxZtBoPHjx1tByZ9++kkzZswoc2xKSoqeeOIJ6/ptt93mVGe9muKBBx6wLs+ZM8eqCWUvKyvLJuByzz33VLh0zBlPPfWUOnXqZF0fOXKkVq1aVeF2x44d05AhQ6wsoMDAQL377rtljnf1eVVpVqxYoS+++KLM+3ft2qU333zTul6Zpcv2KvO+541zAcm2u9eaNWvKHVvT3kNcqeR77u7duzVv3rxyx//444/6/vvvretXXHFFhcdYvXq1ddmZrmvwMBOAV/3xxx9m48aNTUmmJNMwDPPmm282t27dahYVFZW6TWFhobl8+XLz8ssvt7aTZB44cMBhbIsWLcq9v9i8efOscSEhIeYXX3zhMGb9+vXmeeedZxqGYYaEhFS439mzZ9vMb9SoUeahQ4dKHVtUVGSuWbPGvP/++83w8HAzPT3dYcyYMWOsfYWGhppz5sxxGLN582azZcuW1u9RPH758uVl/u7V8eyzz1rHGDBgQKW3L/n4OMvVj6sr97l8+XIzNjbWfPbZZ83ffvut1O0LCgrM+fPnm2FhYdbxPv74Y6d/f3u33HKLKcns3r27+dZbb5nHjh0rc+yGDRvM7t272/yu06ZNc+o4bdq0sdlOknnNNddUuJ2rH5N7773XGvPAAw84NXdXv2Yq87o9cOCANbZFixYVjl++fHm1/qZKeuqpp6x91a9f31yyZInDmGXLlplxcXGmJDMyMtIaP3v27DL3W5XnwBkln6d27dqZWVlZLtu3txUVFZmjR4+2fr+AgADz008/rfL+fvnlF2tfbdu2dWqbc845x9qmrNd/ZZV8zkaPHl3u2Pvvv98aGxQUZL755ptmYWGhzZjff//d7NGjhzWubt265X52V+UzxBWq+9nXv39/a/uWLVuav/zyi839ycnJNuc49evXN8+cOeOayZum+dtvv5n16tWz9h8cHGxOmjTJTE5Odhibm5trfvjhhzbnapLMV155pdxjuOO8yjRtn/OQkBAzPDzc/OSTTxzGrVu3zmzevLk19vzzzzdzc3NL3acz54qVed/zxrlAsZJ/54mJiWWO85X3EG/Iz88327Zta/0uYWFh5jvvvGMWFBTYjCsqKjIXLFhgRkdHW2ObN29u5uTklLv/48ePm4ZhmJLMpk2bOrzPwfsM0/SjvHDARx06dEjXXXedQ+pqo0aN1K1bNzVs2FBRUVHKzMxUQkKCtm/f7lDvZuDAgfr6668dvj1u2bKlVbvkwIEDatmyZalzKCgoUPfu3R2K5HXp0kWFhYXavn279Q3I5MmTNXv2bKf2+/e//13//Oc/reuBgYHq0qWL2rdvr6ioKGVkZCghIUE///yzTaG59PR0h2ULZ86cUe/evW2WTJx33nnq3bu3QkND9dtvv2nTpk0yTVPXX3+9Tp06pZUrV0o6m+566aWXljrH6pg8ebKVQTBgwACtWLGiUtuXXEZUmbdjVz6urtznihUrbJbuNW3aVF26dFHTpk0VFBSk48ePa+vWrTa1Wvr3768VK1bYLN2pjFtvvVULFiywua1Vq1ZW8dugoCCdPHlSP//8sw4cOGAzbsSIEfrss8+c+nZ56tSpNt/OS2eXbFx33XXlbufqx+T777/XkCFDrOu9evVS165dbVoF33///WrVqpXNdq58zVTmdXvw4EGr21OLFi1sit2WpuTjVZW/qZJOnDihTp062XQp6dq1qzp27CjDMPTTTz9ZWQhXXHGFGjdubH0jOnv27DJT7Kv6HFTkwIEDat26tdUlqFmzZhowYIBNMe+//e1vNu2Wa4q3335bDz74oHW9TZs2No9hRUpmM0hnC16PGjVK0tn3gE8//bTc7U+fPm1lMtSvX99lNePmzJljZQOOHj263IyPrKwsXXrppTa1fuLj49WvXz9FRUVp//79WrVqlZV9FxQUpE8//bTcQrlV/QypjKuvvtrm/Uk6mxVTvHQnMjKy1OUh3333neLi4krdZ0JCgnr27GkV5TcMQwMGDFCrVq108uRJLVu2zFrCGRQUpCVLltgsI3OF3377TVdeeaUSEhKs24KCgtS7d2+1aNFCISEhSkpK0rp162zeEwMCAvTiiy86fB7Yc9d5Vcnn/LXXXtOjjz4q6ezfVK9evRQcHKwdO3bYvM6ioqK0YsWKMutuOXOuWJn3PW+cCxSbNGmSlVn19ttv6/777y91nK+8h3jLxo0bNWjQIJul0rGxserTp48aNmyo1NRUbdiwweYzOzQ0VMuWLVO/fv3K3feMGTN07733SpIee+yxKtXegpt5MwIF4E+ZmZnmiy++aDZs2NAh26CsH8MwzP79+5uLFi0qc7/OZgKZ5tmspPPOO6/c4z399NNmUVFRpfa7YMEC65t2Z3569uxZ5rcMR48edcjksP+59tprzbS0NHPAgAHWbbUpE6iYKx9XV+1zw4YNZlBQkNPb33jjjWZaWlqlf/eSZsyYYZ577rlOH1OSGR4ebv7jH/8w8/PznT7OiRMnbL6pjY2NdWp7dzwmt912W7n7KOv17qrXTGVet97MBDLNs9+GV/S+Onz4cDMlJcUmU6W8TCDTrPpzUJGnn366zH2GhISU+U2+ryv5XlmVH3t/+ctfrPumTJlS4fGXLVtmjb/ssstc9ntVJhPINE0zPT3dvPnmmyv8fWNjY83vvvuuwv1V5m+xqkp+3lfmp6Jzg127dpldunQpdx+NGjUyv/32W7f9bidOnDAfeOABp9+jO3bsaP74449O798d51X2z/nf/vY3K+uitJ+4uDhzzZo15c7T2WM7+77njXOBYnv37rUej/I+Q3zlPcSbNm7caJMRVN7PueeeW+HrqNjgwYOt7bZv3+7m3wJVQRAI8DEZGRnmF198Yd5///1m165dzfj4eDM8PNwMDQ01mzRpYnbq1MkcOXKkOX36dHP//v0V7q8ywZri47/44otmjx49zOjoaDMsLMw877zzzNGjR5sbNmyo8n5zcnLMOXPmmLfddpvZunVrMzo62gwMDDTr1q1rdujQwbz++uvNV1991dyzZ0+F+yooKDA/+OAD87LLLjMbNWpkhoSEmM2bNzevueYa8/PPP7eW0dX2IJBpuvZxddU+T58+bX722WfmI488Yvbv39+Mi4szQ0NDzaCgILN+/fpmjx49zIcfftjcuHFjlX7nsvz666/mm2++aY4cOdLs3r279doIDg4269evb3bs2NG89dZbzffee888ffp0lY4xaNAg6/n661//6vR2rn5MioqKzI8//ti85pprzPj4eJt0+ope7654zVTmdevtIJBpnk1Nf+qpp8xOnTqZERERZkREhNmqVSvz5ptvNv/zn/9Y4yoTBKrOc1CRRYsWmUOHDjWbNm1q849U165dq7xPb3N1EOiyyy6z7vv+++8rPP7UqVOt8RMnTnTZ71XZIFCxdevWmffff7/ZoUMHMzo62gwJCTHj4uLMIUOGmK+//rqZkZHh1H6q+xniDHcFgUzzz6VWV155pdm8eXMzJCTEbNy4sXnxxRebL730knny5Em3/V4lHTx40Hz11VfNK664wmzVqpVZp04dh98nJibGTEpKqvS+XX1eVdpzvn79enPs2LFm69atzYiICDM6Otrs1q2b+fzzz5spKSkVztHZY1fmfc9b5wKmaZrXXHONNae9e/eWOsZX3kO8LT8/31y4cKF55513Wu9HxecEbdq0MW+99Vbzk08+MfPy8pza3x9//GEF4WpLsKw2YjkYAABOyMzMVNOmTZWRkSHDMLR3716nOmQAAGqm/fv3q0+fPjpx4oQkqVu3blq+fLnLCrfDPdatW2d1HJwwYYJee+01707Ijzz55JN66aWXJElLly6lKLSPojsYAABOWLBggdUV5tJLLyUABAC1XKtWrfTdd99ZddG2bt2q4cOHKzc318szQ3n69OljdTScOXNmja/fU1OkpqZaHfMGDBhAAMiHEQQCAKACpmnqjTfesK7fd999XpwNAMBTunXrpoULFyo4OFjS2XbZd9xxh1XAHb7ppZdeUlBQkDIzM/Xyyy97ezp+Yfr06UpLS1NAQICmTp3q7emgHASBAACowJtvvqmff/5Z0tkuKiNGjPDuhAAAHjNkyBB98MEHVmeuhQsXltl1Cr6hU6dOVkfC6dOn6+jRo16eUe128uRJK9g2btw49ejRw8szQnmoCQQAgJ1Nmzbpk08+UV5enrZv3661a9da982dO1d33nmnF2cHAAAAVE2QtycAAICv2blzp6ZPn+5w+0033UQACAAAADUWQSAAAMoRFhamtm3bauzYsXr44Ye9PR0AAACgylgOBgAAAAAA4AcoDA0AAAAAAOAHCAIBAAAAAAD4AYJAAAAAAAAAfoAgEAAAAAAAgB8gCAQAAAAAAOAHCAIBAAAAAAD4gSBvTwA1R05Ojn799VdJUqNGjRQUxMsHAAAAAABXKygo0MmTJyVJnTt3VlhYmEv2y3/xcNqvv/6qnj17ensaAAAAAAD4jU2bNqlHjx4u2RfLwQAAAAAAAPwAmUBwWqNGjazLmzZtUmxsrBdnAwAAAABA7ZSUlGStxCn5v3h1EQSC00rWAIqNjVV8fLwXZwMAAAAAQO3nynq8LAcDAAAAAADwAwSBAAAAAAAA/ABBIAAAAAAAAD9AEAgAAAAAAMAPEAQCAAAAAADwAwSBAAAAAAAA/ABBIAAAAAAAAD9AEAgAAAAAAMAPEAQCAAAAAADwAwSBAAAAAAAA/ABBIAAAAAAAAD9AEAgAAAAAAMAPEAQCAAAAAADwAwSBAAAAAAAA/ABBIAAAAAAAAD9AEAgAAAAAAMAPEAQCAAAAAADwAwSBAAAAAAAA/ABBIAAAAAAAAD9AEAgAAAAAAMAPEAQCAAAAAADwAwSBAAAAAAAA/ABBIAAAAAAAAD9AEAgAAAAAAMAPEAQCAAAAAADwAwSBAAAAAAAA/ABBIAAAAAAAAD9AEOj/O3TokCZOnKj27dsrMjJS9evXV48ePTR16lRlZWVVa99FRUXauXOn5syZowceeEA9evRQaGioDMOQYRhasWJFpfeZmZmpt956S5dddpmaNWum0NBQNWnSRF27dtXDDz+spUuXVmvOAAAAAACgdgny9gR8wTfffKORI0cqLS3Nui0rK0tbtmzRli1bNHPmTC1evFitW7eu0v7nzZunMWPGuGi20vLlyzV27FgdOnTI5vYTJ07oxIkT2rZtm1avXq0hQ4a47JgAAKDmOpWRq4zcArVoEOntqQAAAC/y+yDQtm3bdMsttyg7O1tRUVF66qmnNHDgQGVnZ2v+/Pl6//33tXfvXg0dOlRbtmxRnTp1Kn0M0zSty8HBwercubPy8/P166+/Vnpfy5Yt07Bhw5STk6OYmBjdd999uvTSS9W4cWNlZWVp165d+vbbb3X8+PFK7xsAANQ+S3Yk6dEFPysnv0jXX9RM027p4u0pAQAAL/H7INCECROUnZ2toKAgLV26VL1797buGzRokNq0aaMnnnhCe/fu1SuvvKLJkydX+hgdO3bU66+/rh49eqhLly4KCwvT5MmTKx0EOnnypG699Vbl5OSoS5cuWrJkiZo0aWIzpm/fvrr77ruVl5dX6XkCAIDa59Xvf1dOfpEk6cttR3V3//PUMa6ul2cFAAC8wa9rAm3atEmrV6+WJN111102AaBiEydOVIcOHSRJ06dPV35+fqWP07NnTz388MO6+OKLFRYWVuX5PvXUUzp16pQiIiK0aNEihwBQSSEhIVU+DgAAqB0Ki0ztO5lhc9ue42lljAYAALWdXweBFi1aZF0eO3ZsqWMCAgI0atQoSVJKSoqWL1/uiak5OHPmjD755BNJ0siRI9WiRQuvzAMAANQcJ9JzVFhk2tx29Ey2l2YDAAC8za+DQGvWrJEkRUZGqlu3bmWOGzBggHV57dq1bp9Xab799ltlZ589abv22mut27OysrRv3z4dO3bMpvYQAABAYkqOw21HUwgCAQDgr/w6CLRr1y5JUuvWrRUUVHZ5pPbt2zts42kbNmywLnfu3FmbN2/WkCFDVKdOHbVp00axsbFq0qSJHnroIYpCAwAASVJSqmPAJ4FMIAAA/JbfFobOyclRcnKyJCk+Pr7csfXq1VNkZKQyMzN15MgRT0zPwc6dO63Ly5cv1913362CggKbMSdPntRbb72lhQsXasmSJbrwwgsrdYyEhIRy709KSqrU/gAAgHcllZYJRBAIAAC/5bdBoPT0dOtyVFRUheOLg0AZGRkVjnWH06dPW5fvu+8+GYahf/3rXxo1apSaNGmiffv2aerUqZozZ46OHTum4cOH65dfflHdus53/2jevLk7pg4AALwksZRMoKMp2TJNU4ZheGFGAADAm/x2OVhOzp/fjDnTSSs0NFSSrLo8npaZmWldzsnJ0axZs/T000+refPmCgkJUceOHTV79mzdc889kqSDBw/qnXfe8cpcAQCAb0gspf5PbkGRkjPyvDAbAADgbX4bBCrZqj0vr+ITodzcXElSeHi42+ZUnpLzveCCC3TnnXeWOu6FF16wAlYLFiyo1DGOHDlS7s+mTZuq/gsAAACPS0p1XA4mURwaAAB/5bfLwerUqWNddmaJV3EmjjNLx9yh5HyHDBlS5rgGDRqoe/fuWrt2rX755Rfl5eU5lekkVVwbCQAA1CyldQeTztYF6tI8xrOTAQAAXufXmUANGjSQVHFB5DNnzlhBIG/VzSl53IrmUHx/UVGRTS0hAADgP3ILCpWckVvqfQlnsjw8GwAA4Av8NggkSR07dpQk7du3z6HTVkm7d++2Lnfo0MHt8yrN+eefb10uLCwsd2zJ+4OC/DbZCwAAv3Y8tfQAkMRyMAAA/JVfB4H69esn6exSr61bt5Y5buXKldblvn37un1epbnkkkusy3/88Ue5Y/fv3y/pbLZT/fr13TovAADgm0rrDFaMNvEAAPgnvw4CDR8+3Lo8e/bsUscUFRVp7ty5kqSYmBgNHDjQE1NzcMkll6hRo0aSpG+++abMbKADBw7o559/lnQ2YBUQ4NdPMQAAfiupvCAQmUAAAPglv44Q9OzZU/3795ckzZo1S+vXr3cY88orr2jXrl2SpAkTJig4ONjm/hUrVsgwDBmGoTFjxrhtroGBgXr88cclSYcOHdI///lPhzEFBQV64IEHVFRUJEm677773DYfAADg28oqCi2RCQQAgL/y+4Ix06dPV9++fZWdna0hQ4Zo0qRJGjhwoLKzszV//nzNmDFDktS2bVtNnDixyseZM2eOzfXibB1JWrJkiQ4ePGhdb926tbVUraRHHnlECxYs0E8//aTnnntOe/bs0ejRo9W4cWPt379fr776qhXIuvrqq3XDDTdUeb4AAKBmKy8TKD23QKnZ+YoODy5zDAAAqH38Pgh00UUXacGCBRo5cqTS0tI0adIkhzFt27bV4sWLbdq0V9bYsWPLvG/KlCk210ePHl1qECgsLEzffvuthg0bpq1bt2r+/PmaP3++w7irr75a8+fPl2EYVZ4vAACo2crLBJLOZgMRBAIAwL/49XKwYsOGDdP27dv12GOPqW3btoqIiFBMTIy6d++uKVOmaNu2bWrdurW3pylJio2N1YYNG/Tuu+9qwIABatSokYKDg9W0aVNde+21+vLLL6sdsAIAADVfYgV1f2gTDwCA/zFM0zS9PQnUDAkJCWrevLkk6ciRI4qPj/fyjAAAQFkufG6pUrPzresBhlRU4qzv2WEdNbbvuV6YGQAAqIi7/v8mEwgAAKCWycorsAkASVKH2Lo21ykODQCA/yEIBAAAUMuUVg+oR8v6NtdpEw8AgP8hCAQAAFDL2HcGi4kIVqvGUTa3EQQCAMD/EAQCAACoZZLsMoFio8MVXy/c5jaWgwEA4H8IAgEAANQyiXaZQHHRYYqPsQ0CncrMU3ZeoSenBQAAvIwgEAAAQC3jkAkUE6ZmdplAknQ0hTbxAAD4E4JAAAAAtYx9JlBsdLgiQoJULyLY5vYEloQBAOBXCAIBAADUMol2RZ/jYsIkySEbiOLQAAD4F4JAAAAAtYhpmkpKdSwMLUnNYigODQCAPyMIBAAAUIukZRcoy67gc5wVBIqwuZ1MIAAA/AtBIAAAgFrEvh6QYUhNokMliTbxAAD4OYJAAAAAtUiSXRCoYVSoQoMCJTnWBKIwNAAA/oUgEAAAQC2SaNcePi46zLpsXxPoeHqO8gqKPDIvAADgfQSBAAAAahH7TKDiotCS43Iw05SO2RWRBgAAtRdBIAAAgFokyS4TKDbmz0yg6PBgRYYE2tyfkJLlkXkBAADvIwgEAABQi9h3/IorkQlkGIZDXSCKQwMA4D8IAgEAANQiSallZwJJUnw92sQDAOCvCAIBAADUEkVFpkONn5I1gSTH4tBkAgEA4D8IAgEAANQSpzLzlFdo2+0rzi4TiDbxAAD4L4JAAAAAtYR9Z7DAAEON69gFgewzgVgOBgCA3yAIBAAAUEsk2nUGa1o3TIEBhs1t9plASanZKioy3T43AADgfQSBAAAAagn7TKDY6DCHMfF2mUD5haZOpOe6dV4AAMA3EAQCAACoJRw7g4U7jGkYFaqQQNtTwKMpWW6dFwAA8A0EgQAAAGoJ+/o+caVkAgUEGBSHBgDATxEEAgAAqCWSUipeDiY5FocmCAQAgH8gCAQAAFBLOLMcTKJDGAAA/oogEAAAQC1QUFik42m2QaC46DKCQHbLwY6SCQQAgF8gCAQAAFALnEjPlX2n99gY55aDkQkEAIB/IAgEAABQC9i3hw8JClCDyJBSx5aWCWSaZqljAQBA7UEQCAAAoBZITLFfChYmwzBKHRtvFwTKzi/Umax8t80NAAD4BoJAAAAAtYB9JlBsGfWAJKlp3TAFBtgGiKgLBABA7UcQCAAAoBawzwQqqx6QJAUFBqhpXdv7E85kuWVeAADAdxAEAgAAqAUS7Yo7l9UZrBjFoQEA8D8EgQAAAGqBpFTnM4Ekx+LQCSwHAwCg1iMIBAAAUAvY1wQiEwgAANgjCAQAAFDD5RYUKjkjz+a2ymYCURgaAIDajyAQAABADXfMbimYJMXFlJ8JZN8mnkwgAABqP4JAAAAANZx9Z7Co0CDVDQsudxv75WCp2flKz8l3+dwAAIDvIAgEAABQw9nXA4qNLn8pmFR6phDZQAAA1G4EgQAAAGo4x85g5S8Fk6Sw4EA1jAq1uY26QAAA1G4EgQAAAGq4xBT7zmAVZwJJpRSHJhMIAIBajSAQAABADWcfBIqtoD18sXj7NvFkAgEAUKsRBAIAAKjhHJeDOZcJZN8hLIFMIAAAajWCQAAAADWc43Iw5zKBHJaDkQkEAECtRhAIAACgBsvMLVBaToHNbc5mAtm3iU8gCAQAQK1GEAgAAKAGs28PL1U9Eyg5I1c5+YUumRcAAPA9BIEAAABqsMQU23pA9SKCFR4S6NS29plAZ/dHNhAAALUVQSAAAIAazD4TyNnOYJJUJyxYdcOCbG6jTTwAALUXQSAAAIAazD4TKM7JekDFmtWLsLlOcWgAAGovgkAAAAA1WHUygSTHNvFkAgEAUHsRBAIAAKjB7DOBnO0MVsy+LhCZQAAA1F4EgQAAAGqwRLtMIGc7gxWzzwSiTTwAALUXQSAAAIAayjRNJdlnAkVXMxOI5WAAANRaBIEAAABqqNTsfGXnF9rcFldK2/fyNLPLBDqWlqOCwqJqzw0AAPgegkAAAAA1lH09IMOQmtStXiZQYZGpY2k5ZYwGAAA1GUEgAACAGsq+M1ijqFCFBFXu9K5+ZIjCgwNtbqM4NAAAtRNBIAAAgBoqMdW+M1jlloJJkmEYDkvCqAsEAEDtRBAIAACghkpKse8MVrmlYMXsl4TRIQwAgNqJIBAAAEANlWSfCVTJ9vDFHDKBCAIBAFArEQQCAACooeyXbcXFuCYTiOVgAADUTgSBAAAAaij7wtBVzQSKpyYQAAB+gSDQ/3fo0CFNnDhR7du3V2RkpOrXr68ePXpo6tSpysrKqta+i4qKtHPnTs2ZM0cPPPCAevToodDQUBmGIcMwtGLFimrt/7///a+1L8MwNHny5GrtDwAA+L6iIlPHHApDuy4TqKjIrPLcAACAbwry9gR8wTfffKORI0cqLS3Nui0rK0tbtmzRli1bNHPmTC1evFitW7eu0v7nzZunMWPGuGi2tjIzM3X//fe7Zd8AAMB3JWfmKr/QNlATV+VMoAib63kFRUrOzFXjOlULKgEAAN/k95lA27Zt0y233KK0tDRFRUXp+eef17p16/TDDz9o/PjxkqS9e/dq6NChSk9Pr9IxTPPPE7Tg4GB17dpVnTt3dsn8//a3v+nQoUNq3LixS/YHAABqhqQU2yygoABDjeqEVmlfjeuEKjjQsLmN4tAAANQ+fh8EmjBhgrKzsxUUFKSlS5dq0qRJ6t27twYNGqQZM2bopZdeknQ2EPTKK69U6RgdO3bU66+/rvXr1ystLU1bt27V9ddfX+25b926Va+//rpCQ0P1/PPPV3t/AACg5rCvB9SkbpgCA4wyRpcvIMBwqCdEm3gAAGofvw4Cbdq0SatXr5Yk3XXXXerdu7fDmIkTJ6pDhw6SpOnTpys/P7/Sx+nZs6cefvhhXXzxxQoLc01adWFhocaPH6/CwkJNmjSpykvVAABAzZRolwlU1c5gxegQBgBA7efXQaBFixZZl8eOHVvqmICAAI0aNUqSlJKSouXLl3tiahV69dVXtW3bNrVt21ZPPvmkt6cDAAA8zFWdwYo1s+8QRiYQAAC1jl8HgdasWSNJioyMVLdu3cocN2DAAOvy2rVr3T6vihw8eFDPPvusJOmdd95RaGjV1v8DAICaK9FFncGKkQkEAEDt59dBoF27dkmSWrduraCgshultW/f3mEbb7r//vuVlZWlO+64Q4MGDfL2dAAAgBck2gVpqtoZrFg8mUAAANR6ftsiPicnR8nJyZKk+Pj4csfWq1dPkZGRyszM1JEjRzwxvTJ98sknWrJkiWJiYjRt2jSX7jshIaHc+5OSklx6PAAAUHX23cFio6uZCWQfBErJlmmaMoyqFZsGAAC+x2+DQCXbvUdFRVU4vjgIlJGR4c5plev06dN67LHHJEkvvviiy9vCN2/e3KX7AwAA7lFQWKQT6faFoauZCRQTYXM9I7dAqdn5iokIqdZ+AQCA7/Db5WA5OX+eOIWEVHxyU1x3Jzvbe6nRjz/+uE6cOKFevXrpnnvu8do8AACAdx1Pz1WRaXtbdYNATaPDZJ/0Q5t4AABqF7/NBCrZqj0vL6/C8bm5uZKk8PDqnWBV1YoVKzR79mwFBgbq3XffVUCA6+N3FS11S0pKUs+ePV1+XAAAUDlJdvWAQoMCVC8iuFr7DAkKUJM6YTqW9ucXZUdTstWpWXS19gsAAHyH3waB6tSpY112ZolXZmamJOeWjrlabm6u7r33XknSI488oi5durjlOBXVRgIAAL7BvjNYXEy4S2r3NKsXbhsEIhMIAIBaxW+DQGFhYWrQoIFOnTpVYUHkM2fOWEEgb9TN+fLLL7V3714FBwerY8eOmj9/vsOYnTt3Wpd37NhhjenVq5fOPfdcj80VAAC4n30mUHWLQhdrFhOurYfOWNdpEw8AQO3it0EgSerYsaNWr16tffv2qaCgoMw28bt377Yud+jQwVPTsxQvRcvPz9f48eMrHL9w4UItXLhQkjR79myCQAAA1DJJqfadwVyzXJ028QAA1G5+Wxhakvr16yfp7FKvrVu3ljlu5cqV1uW+ffu6fV4AAADlsc/QiYtxUSZQKW3iAQBA7eHXQaDhw4dbl2fPnl3qmKKiIs2dO1eSFBMTo4EDB3piajbGjBkj0zTL/Vm+fLk1/tlnn7VuHzNmjMfnCwAA3Csp1X45mGsygZrZdRhLOJPlkv0CAADf4NdBoJ49e6p///6SpFmzZmn9+vUOY1555RXt2rVLkjRhwgQFB9t23lixYoUMw5BhGARcAACARySl2C0Hc1EmkP1ysDNZ+crKK3DJvgEAgPf5dU0gSZo+fbr69u2r7OxsDRkyRJMmTdLAgQOVnZ2t+fPna8aMGZKktm3bauLEiVU+zpw5c2yu//zzz9blJUuW6ODBg9b11q1bW0vVAAAASsrJL9SpzDyb2+JclAkUF+O4n6NnstWmSZ1SRgMAgJrG74NAF110kRYsWKCRI0cqLS1NkyZNchjTtm1bLV682KatfGWNHTu2zPumTJlic3306NEEgQAAQKmO2RWFllxXEygiJEj1I0N0ukSQKSGFIBAAALWFXy8HKzZs2DBt375djz32mNq2bauIiAjFxMSoe/fumjJlirZt26bWrVt7e5oAAABKtKsHVCc0SHXCgssYXXl0CAMAoPby+0ygYi1atNC0adM0bdq0Sm136aWXyjTNCsc5M6Y6nJ0HAACo2dxVD6hYs5hwbU9Ita7TIQwAgNqDTCAAAIAaxF2dwYrZdwgjEwgAgNqDIBAAAEANkmhXE8hV9YCKNatHm3gAAGorgkAAAAA1SGKKhzOBWA4GAECtQRAIAACgBnGoCRTt3kygE+m5yisocukxAACAdxAEAgAAqEHsu4PFxbg2Eyg+JsLmumk61iECAAA1E0EgAACAGiIjt0DpOQU2t7k6E6hueJDqhNo2kKU4NAAAtQNBIAAAgBoiqZT6PK7OBDIMw7E4NHWBAACoFQgCAQAA1BD2ncHqR4YoLDjQ5cexLw6dQCYQAAC1AkEgAACAGsI+E8jVS8GK2WcCsRwMAIDagSAQAABADWGfCeTq9vDFHNvEZ7nlOAAAwLMIAgEAANQQ9plAcTEeygSiJhAAALUCQSAAAIAawr49vLsygeLr2baJT0rJUWGR6ZZjAQAAzyEIBAAAUEMkpdguB3NbJpDdcrCCIlMn0nPKGA0AAGoKgkAAAAA1gGmaHssEahgVotAg29NEikMDAFDzEQQCAACoAVKy8pWTX2Rzm7u6gxmGQZt4AABqIYJAAAAANYB9FpBhSE3dFASSKA4NAEBtRBAIAACgBrCvB9S4TqiCA913KkcmEAAAtQ9BIAAAgBogyUP1gIrZB4HIBAIAoOYjCAQAAFADJKZ6pjNYsfj6dkGgM1luPR4AAHA/gkAAAAA1QFKKpzOBImyuH03Jlmmabj0mAABwL4JAAAAANUCiXU0gd3UGK2ZfGDonv0inMvPcekwAAOBeBIEAAABqAPvuYHEx7s0EalInVIEBhs1tRykODQBAjUYQCAAAwMcVFZk6nubZTKCgwAA1rWt7DIpDAwBQsxEEAgAA8HHJGbnKL7Stx2Pfvcsd7JeEkQkEAEDNRhAIAADAx9l3BgsONNQwKtTtx423DwKRCQQAQI1GEAgAAMDH2XcGa1I3TAF29XrcId4u2yiBTCAAAGo0gkAAAAA+zj4TKM7N7eGLOSwHIxMIAIAajSAQAACAj7PPBIqNcW9R6GLNYiJsriecyfLIcQEAgHsQBAIAAPBxSan2ncG8kwmUnlOgtJx8jxwbAAC4HkEgAAAAH2e/DCvOQ5lApbWhp0MYAAA1F0EgAAAAH5eUarcczEOZQGHBgWpUx7YLGUEgAABqLoJAAAAAPiy/sEgn0nNtbistQ8ddaBMPAEDtQRAIAADAhx1Py5Fp2t7WLMYzmUClHYsgEAAANRdBIAAAAB9mXxQ6LDhAMRHBHju+Q5t4loMBAFBjEQQCAADwYYn2RaGjw2UYhseOH2+XCUSbeAAAai6CQAAAAD7MoT28hzqDFXPIBGI5GAAANRZBIAAAAB+WlOKdzmDFmsVE2FxPzshTTn6hR+cAAABcgyAQAACAD0u0ywSK82BnMMkxE0giGwgAgJqKIBAAAIAPs68JFOvBzmCSFBUa5FCImuLQAADUTASBAAAAfJhDTSAPZwJJtIkHAKC2IAgEAADgo3LyC3U6M8/mtjgPZwJJjkEgOoQBAFAzEQQCAADwUfZZQJKXMoHsO4SxHAwAgBqJIBAAAICPsu8MVicsSHXCgssY7T4sBwMAoHYgCAQAAOCjHDuDeX4pmCTFkwkEAECtQBAIAADAR9lnAsXGeH4pmCTF14uwuX4sLUf5hUVemQsAAKg6gkAAAAA+yj4TKNZLmUD2y8GKTOlYKfWKAACAbyMIBAAA4KMS7TKB4rxQFFqSYiKCFRESaHMbdYEAAKh5CAIBAAD4qKRU++Vg3skEMgyjlDbxBIEAAKhpCAIBAAD4qKQU+8LQ3skEkmgTDwBAbUAQCAAAwAel5+QrPbfA5jZvZQJJpbWJz/LSTAAAQFURBAIAAPBBSaUUXo71YiaQfYcwagIBAFDzEAQCAADwQfZFoRtEhigsOLCM0e7HcjAAAGo+gkAAAAA+yD4TKDbGe1lAkuNysMSUHBUVmV6aDQAAqAqCQAAAAD4oyS4TKDbae/WAJCneLhMor7BIJzNyvTQbAABQFQSBAAAAfFBiqu90BpOkRlGhCgm0PXWkTTwAADULQSAAAAAfZF8TyJudwSQpIMBwWJJGcWgAAGoWgkAAAAA+yKEmkJczgaRS2sSTCQQAQI1CEAgAAMDHmKbpkAkU5+VMIMmxLtDRlCwvzQQAAFQFQSAAAAAfcyYrX7kFRTa3+UIQqFlMhM11MoEAAKhZfCoIlJubq+PHj6uoqKjiwQAAALWUfRZQgCE1qRPqpdn8qZlDJhBBIAAAahKPBIEyMjL03Xff6bvvvlNGRobD/cnJybrhhhtUt25dxcXFqV69epo4caJyc2k7CgAA/I99PaDGdcIUFOj97+7sawIlnMmWaZpemg0AAKisIE8cZOHChRo7dqzi4+N18OBBm/uKiop01VVX6aeffrJOItLT0/Xaa6/p4MGDWrhwoSemCAAA4DOSUu07g3m/KLTkWBMoK69QKVn5qhcZ4qUZAQCAyvDIV0r/+9//JEkjRoxQQIDtIRcsWKCtW7dKkrp27arHHntMXbt2lWmaWrRokZYsWeKJKerQoUOaOHGi2rdvr8jISNWvX189evTQ1KlTlZVVvaKHRUVF2rlzp+bMmaMHHnhAPXr0UGhoqAzDkGEYWrFihVP7OXjwoN544w3dcMMNatOmjSIiIhQWFqb4+HgNHz5c8+fPV0FBQbXmCgAAvC8xxTYTKC7a+/WAJKlpdJgCDNvbWBIGAEDN4ZFMoB07dsgwDPXp08fhvrlz50qSunXrpnXr1ikoKEj5+fnq37+/Nm/erA8//FBXXnmlW+f3zTffaOTIkUpLS7Nuy8rK0pYtW7RlyxbNnDlTixcvVuvWrau0/3nz5mnMmDHVmuPf/vY3Pf/886WmXB89elRHjx7V119/rWnTpumLL77QOeecU63jAQAA73HIBPKB9vCSFBwYoKZ1w5RYYrlawplsdWoW7cVZAQAAZ3kkE+jEiROSpHPPPdfm9vz8fK1atUqGYejBBx9UUNDZmFRwcLDuu+8+maapTZs2uXVu27Zt0y233KK0tDRFRUXp+eef17p16/TDDz9o/PjxkqS9e/dq6NChSk9Pr9IxSgZugoOD1bVrV3Xu3LlS+0hKSpJpmoqMjNTIkSM1e/ZsrVmzRlu2bNG8efPUo0cPSdLmzZs1ePDgUmsvAQCAmsG+MHSsD3QGK0ZxaAAAai6PBIFOnz4tSQoJsV0vvnnzZmVnnz1xsM/2adu2rSTp2LFjbp3bhAkTlJ2draCgIC1dulSTJk1S7969NWjQIM2YMUMvvfSSpLOBoFdeeaVKx+jYsaNef/11rV+/Xmlpadq6dauuv/76Su2jQYMGmjJlipKSkqzMor59+6pbt24aOXKk1q9fr5tvvlmS9Pvvv2vatGlVmisAAPA+x+VgvpEJJDkWh6ZNPAAANYdHgkARERGS/swIKrZq1SpJUuvWrdWkSROb+8LD3f+N16ZNm7R69WpJ0l133aXevXs7jJk4caI6dOggSZo+fbry8/MrfZyePXvq4Ycf1sUXX6ywsKqdxE2ZMkVPPPGE6tSpU+r9gYGBevvtt61A2xdffFGl4wAAAO8qLDJ1PM02COTLmUAJZ6pXOxEAAHiOR4JArVq1kiSHAshfffWVDMPQJZdc4rDNyZMnJUmNGzd227wWLVpkXR47dmypYwICAjRq1ChJUkpKipYvX+62+VRXgwYNdMEFF0iS9u/f7+XZAACAqkjOyFVBkW0NwDgf6Q4mSc1iImyusxwMAICawyNBoMsvv1ymaertt9/Wf//7X2VkZOiNN97Q5s2bJUnDhg1z2Gb79u2SpLi4OLfNa82aNZKkyMhIdevWrcxxAwYMsC6vXbvWbfNxhdzcXElnM4MAAEDNY18PKDjQUMPIUC/NxhE1gQAAqLk80h1swoQJevfdd5Wenq5rrrnG5r4OHTqUGgRavHixDMPQRRdd5LZ57dq1S9LZ5WjFRalL0759e4dtfNGJEyes+RUvYauMhISEcu9PSkqq0rwAAIDzklJtl4I1jQ5TgH1fdi+yrwmUkpWvzNwCRYZ65LQSAABUg0c+rWNjY/XNN9/o1ltvtQkknHfeefriiy9kGLYnNvv377dq9QwePNgtc8rJyVFycrIkKT4+vtyx9erVU2RkpDIzM3XkyBG3zMcVpk6dqoKCAkmyikRXRvPmzV09JQAAUEkOncGifacekCTF13Ocz9GUbLVtUnrdQgAA4Ds89pVN//79deDAAa1du1bHjh1TbGys+vXrV2oGTlJSkv72t79JkoYMGeKW+ZRs9x4VFVXh+OIgkK+2Xt+4caNee+01SWeDWvfff793JwQAAKrEPhPIlzqDSVJYcKAaRoUoOSPPuu3oGYJAAADUBB7N2w0JCdHAgQMrHNevXz/169fPrXPJyfnzBMu+dX1pQkPPrsUvbmnvS44fP64bb7xRBQUFMgxDH374odWRrTIqynJKSkpSz549qzpNAADghKRUu0wgH+oMVqxZTLhNECiBukAAANQIHgkCzZ07V5I0fPhw1a1b16ltMjIy9OWXX0qS1Z3LlUq2as/Lyytn5FnFBZc90bq+MtLT0zV06FCrns+///1vDRo0qEr7qmhZHAAAcL+jKb6dCSSdLQ79S0KqdZ028QAA1AweCQKNGTNGhmGoe/fu6tixo1PbHD9+XGPGjLFp0e5Kder8mbLszBKvzMxMSc4tHfOUnJwcXXfdddq6dask6fHHH9cTTzzh5VkBAIDqSPLxmkCSY3Hoo2fIBAIAoCbwSIv46jBN0y37DQsLU4MGDSRV3BXrzJkzVhDIV4onFxQU6Oabb9by5cslSXfffbemTp3q5VkBAIDqyCso0smMXJvbYmN8MBPIPgjEcjAAAGoEnw0CFRYWSlK5rdurqzgrad++fVZXrdLs3r3bulyV1uuuVlRUpDvvvFPffPONJOmWW27Re++95+VZAQCA6jqeliP777/sAy6+oFk929qDZAIBAFAz+GwQaM+ePZKk+vXru+0YxcWnMzMzrSVVpVm5cqV1uW/fvm6bj7PuvfdezZ8/X5I0bNgwffTRRwoI8NmnEgAAOMm+M1h4cKCiw4O9NJuy2beJP5Geq9yCQi/NBgAAOMstaTarVq0q9fbNmzcrOTm53G1zc3O1f/9+vfzyyzIMQ126dHHDDM8aPny4XnzxRUnS7Nmz1atXL4cxRUVFVmHrmJgYp7qbudNf/vIXzZw5U5J02WWX6fPPP3drthQAAPAcx85gYTIMw0uzKVuzeo7ZSUkpOWrZMNILswEAAM5yS/Tg0ksvdThhMU1T48aNc3ofpmnKMAzde++9rp6epWfPnurfv79Wr16tWbNmafTo0erdu7fNmFdeeUW7du2SJE2YMEHBwbbfxq1YscIKDI0ePVpz5sxx23wnT56sV199VZLUp08fff3111bregAAUPMlOnQG872lYJJUNyxYdcKClJ7z53L6oynZBIEAAPBxbkshKa2gc2WKPMfHx2vSpEkaPny4C2flaPr06erbt6+ys7M1ZMgQTZo0SQMHDlR2drbmz5+vGTNmSJLatm2riRMnVvk49sGhn3/+2bq8ZMkSHTx40LreunVra6lasTfeeEPPPfecJKlZs2Z66aWXdODAgXKP2a5dO4egFQAA8F0OmUA+2B6+WLOYcO0+lm5dp008AAC+zy1BoOKOVdLZwM+gQYNkGIZmzZqlc889t8ztDMNQWFiYYmNjPdaF66KLLtKCBQs0cuRIpaWladKkSQ5j2rZtq8WLF9u0la+ssWPHlnnflClTbK6PHj3aIQi0cOFC6/LRo0cd7i/NgQMH1LJly8pNFAAAeI19JlCsDxaFLhZfzzYIRHFoAAB8n1uCQAMGDCj19p49e1oduXzJsGHDtH37dk2fPl2LFy9WQkKCQkJC1Lp1a91000166KGHFBERUfGOAAAAqiHRrtV6nI9nApWUQJt4AAB8nkcqChcvW2rWrJknDlclLVq00LRp0zRt2rRKbXfppZc6tcytMkvhSrNixYpqbQ8AAHyfY2FoX84Eok08AAA1jUeCQC1atPDEYQAAAGqs7LxCncnKt7nNpzOB7DqEHSUTCAAAn+eV3uLHjx/XihUrtGPHDp0+fVqSVL9+fXXq1EmXXnqpmjRp4o1pAQAAeI19FpDk25lA9svBjqXmqKCwSEGBAV6aEQAAqIhHg0BJSUn6y1/+oi+//FIFBQWljgkKCtINN9ygV155RbGxsZ6cHgAAgNckpdoWha4bFqSoUK98X+cU+0yggiJTx9NzHYJDAADAd3jsq5pffvlFF1xwgT777DPl5+fLNM1Sf/Lz87VgwQJdeOGF+vXXXz01PQAAAK9yKArt48GUBpEhCgu2PZWkLhAAAL7NI0GgzMxMDR06VKdOnZJpmho8eLAWLFiggwcPKicnRzk5OTp48KA+++wzDRkyRKZpKjk5WUOHDlVWVpYnpggAAOBV9plAsT5cD0iSDMNwCFQdTeG8DQAAX+aRINCbb76pxMREBQQE6P3339fSpUt100036ZxzzlFISIhCQkJ0zjnn6MYbb9SSJUs0c+ZMGYaho0eP6q233vLEFAEAALyqJnUGK2a/9ItMIAAAfJtHgkBff/21DMPQmDFjdNddd1U4fty4cRo7dqxM09RXX33lgRkCAAB4V2KKbSaQL3cGK+bQJp4OYQAA+DSPBIH27t0rSbr11lud3ua2226z2RYAAKA2s68JFBvt+5lA8XbFoRPIBAIAwKd5JAiUkZEh6WwbeGfVq1dP0tl6QgAAALWdQ02gGN/PBHJYDkYmEAAAPs0jQaBGjRpJknbt2uX0Nrt375YkNWzY0C1zAgAA8BVpOfnKyC2wua0mtFq3bxN/9Ey2TNP00mwAAEBFPBIEuvjii2WapqZNm6aCgoIKxxcUFGjatGkyDEMXX3yxB2YIAADgPUl29YAkqWkNqAlkH6jKLShSckael2YDAAAq4pEg0KhRoyRJP//8s4YOHarExMQyxyYmJmrYsGH66aefJEljxozxxBQBAAC8JtGuM1jDqBCFBgV6aTbOa1I3TEEBhs1tLAkDAMB3BXniIMOGDdPw4cO1aNEiLVu2TOedd56GDBmiXr16qXHjxjIMQ8ePH9fGjRv1/fffKy/v7DdII0aM0NChQz0xRQAAAK+xzwSqCUWhJSkwwFBsTJiOnP4z8HP0TLa6NI/x3qQAAECZPBIEkqRPP/1Uo0aN0ueff668vDwtXrxYixcvdhhXvI78pptu0ty5cz01PQAAAK9JSrXvDOb7S8GKNYsJtw0CpWR5cTYAAKA8HlkOJkmhoaFasGCBvvnmG1111VUKDw+XaZo2P+Hh4brqqqv07bffasGCBQoNDfXU9AAAALwm0S4TKK4GFIUu1iwmwub6UdrEAwDgszyWCVRs6NChGjp0qAoLC/XHH3/o9OnTks62jz/vvPMUGOj7698BAABcKTGlBmcC2XUISyAIBACAz/J4EKhYYGCg2rRp463DAwAA+AyH5WA1KBMo3m6uFIYGAMB3eWw5GAAAAByZpqmkVLvlYDU4E4jlYAAA+C6CQAAAAF50OjNPuQVFNrfVrJpAtnNNzy1Qana+l2YDAADK49HlYKdOndJHH32k1atX648//lB6eroKCwvL3cYwDO3fv99DMwQAAPAs+yygAENqXKfmNMeIjQmTYUj/v8GrpLPZQNHhwd6bFAAAKJXHgkCff/657rnnHqWlpUn6sxV8RQzDcOe0AAAAvMq+KHSTumEKCqw5ydqhQYFqXCdUx9NyrduOpmSrY1xdL84KAACUxiNBoI0bN+r2229XUVGRTNNUXFycLrroItWvX18BATXnJAcAAMDV7DOBalJnsGLNYsJtg0Bnsrw4GwAAUBaPBIGmTJmiwsJChYeH6/3339ftt9/uicMCAAD4vMQa3BmsWLN6EfrpcIp1nTbxAAD4Jo+k4axbt06GYeivf/0rASAAAIASklJqbmewYvbFoWkTDwCAb/JIECglJUWSdMUVV3jicAAAADWGfU2g2OiamAlEEAgAgJrAI0Gg2NhYSRR5BgAAsGdfEygupuZlAsXbB4FYDgYAgE/ySBBo8ODBkqStW7d64nAAAAA1QmGRqWNp9oWha14mULzdcrBTmXnKziv00mwAAEBZPBIEevzxxxUWFqaXX35ZGRkZnjgkAACAzzuZnqvCItPmtrgaWRjacc4sCQMAwPd4JAjUrl07ffzxx0pMTNRll12m3377zROHBQAA8Gn2ncFCAgPUIDLES7OpuoiQINWLCLa5jSAQAAC+x6Ut4seNG1fu/R07dtTmzZt1wQUXqHPnzmrfvr0iIiLK3cYwDM2aNcuV0wQAAPAJ9p3BmkaHKSCgZtZQbFYvXGey8q3rCWeyvDgbAABQGpcGgebMmVNh8WfDMGSapn799Vf9+uuv5Y41TZMgEAAAqLWSUu07g9W8otDFmsWEa8fRNOs6xaEBAPA9Lg0CnXPOOXQAAwAAcFJiin1nsJpXD6hYsxjb7G6WgwEA4HtcGgQ6ePCgK3cHAABQq9WmTCDaxAMA4Ps8UhgaAAAAjhLtsmVia3ImkH0QiEwgAAB8DkEgAAAAL0lMtVsOVoMzgZrZBbCOp+Uor6DIS7MBAACl8akg0P79+7Vx40YdP37c21MBAABwq7yCIiVn5NrcFhtdczOB7JeDFZnSMbsgFwAA8C6PBIFOnDiht99+W2+//bZSU1Md7t+3b5+6deumtm3bqk+fPmrWrJluuOEGnTlzxhPTAwAA8LjjaTkyTdvb7LNpapLo8GBFhgTa3JaQQpt4AAB8iUeCQF9++aUeeughTZ8+XdHR0Tb35ebm6qqrrtLPP/8s0zRlmqaKioq0aNEiXXfddZ6YHgAAgMfZ1wOKCAlU3XCX9uzwKMMwHOsCURwaAACf4pEg0NKlS2UYhkaMGOFw35w5c7R//35J0rXXXqvp06dr2LBhMk1Ta9eu1YIFCzwxRQAAAI9KslsqFRsdJsMwvDQb14ivR5t4AAB8mUeCQHv27JEkXXzxxQ73ffLJJ5KkQYMGadGiRXr44Yf19ddfa/DgwTJNU/Pnz/fEFAEAADwq0a49fFwNXgpWzH45G5lAAAD4Fo8EgU6ePClJio+Pt7k9OztbGzZskGEYuueee2zuGzdunCTpp59+8sQUAQAAPCopxTETqKajTTwAAL7NI0GglJSUswcLsD3chg0blJ+fL8MwNHjwYJv7zj33XElni0oDAADUNkl2mUA1uTNYMYdMIIJAAAD4FI8EgaKioiRJx44ds7l9xYoVkqSOHTuqXr16NvcFBwdLkoKCam6BRAAAgLIctcsEioupfZlAiSnZKioyyxgNAAA8zSNBoPbt20uSlixZYnP7woULZRiGBgwY4LBNccCoSZMm7p8gAACAh9XGTKB4u0yg/EJTJ9JzvTQbAABgzyNBoKFDh8o0Tc2YMUPvvPOOduzYoccff1w7d+6UJF1//fUO2xTXAmrWrJknpggAAOAx2XmFSsnKt7mtNhSGbhgVqpBA29PLoylZXpoNAACw55G1Vg899JDefvttJSUl6aGHHrK5r3fv3ho4cKDDNt98840Mw1CPHj08MUUAAACPse8MJtWO5WABAYaa1QvXgeRM67aEM9nq1sKLkwIAABaPZAJFR0dr2bJl6tq1q0zTtH769++vzz77zGH8L7/8os2bN0uSLr/8ck9MEQAAwGPsO4NFhwcrIqR21EGkODQAAL7LY2cbHTp00JYtW3TgwAEdO3ZMsbGxatmyZZnjZ8+eLUkaNGiQh2YIAADgGfaZQLWhPXwxhyDQGYJAAAD4Co9/5XTuueda7d/LcuGFF+rCCy/00IwAAAA8yz4TqDbUAypm3yEsgSAQAAA+wyPLwQAAAPAnx85gtTgTiOVgAAD4DIJAAAAAHpaY6j+ZQEfPZMs0TS/NBgAAlEQQCAAAwMMSU2pvJlC8XRAoO79QZ7LyvTQbAABQEkEgAAAADzJNU0kOQaDakwnUtG6YAgMMm9soDg0AgG8gCAQAAOBBaTkFyswrtLnNvo5OTRYUGKCmdW0zm46mZHlpNgAAoCSCQAAAAB5kXxRakppEh3phJu5jH9SiQxgAAL6BIBAAAIAH2beHbxgVqtCgQC/Nxj1oEw8AgG8iCAQAAOBBiXaZQHExtacodDHaxAMA4JsIAgEAAHiQfSZQbeoMVqy0NvEAAMD7CAIBAAB4kH0mUG3qDFbMvk08mUAAAPgGgkAAAAAelJjif8vBUrPzlZFb4KXZAACAYl4LAuXm5mrVqlVatWqV0tLSvDUNAAAAj0pKtV8OVvsygeJKaXnPkjAAALzPa0Ggjz/+WAMHDtTAgQP11ltveWsalkOHDmnixIlq3769IiMjVb9+ffXo0UNTp05VVlZWtfZdVFSknTt3as6cOXrggQfUo0cPhYaGyjAMGYahFStWVGp/WVlZeumll9SjRw/Vr19fkZGRat++vSZOnKhDhw5Va64AAMB9TNN0CALVxkygsOBANYyybXt/NKV651MAAKD6grx14A8//FCmaVqXn3rqKW9NRd98841Gjhxpk5GUlZWlLVu2aMuWLZo5c6YWL16s1q1bV2n/8+bN05gxY1wy13379unqq6/W77//bnP7nj17tGfPHs2cOVMff/yxrrnmGpccDwAAuM6pzDzlFRTZ3FZa1kxt0KxeuJIzcq3rtIkHAMD7vJIJ9Mcff2j16tUyDEOS9Pvvv2v9+vXemIq2bdumW265RWlpaYqKitLzzz+vdevW6YcfftD48eMlSXv37tXQoUOVnp5epWMUB7skKTg4WF27dlXnzp0rvZ/09HQNHTrUCgCNHz9eP/zwg9atW6fnn39eUVFRSktL0y233KKff/65SnMFAADuY98ZLDDAUOM6tS8TSJLi7dvEEwQCAMDrvBIE+vDDDyVJDRo0UKdOnSRJc+fO9cZUNGHCBGVnZysoKEhLly7VpEmT1Lt3bw0aNEgzZszQSy+9JOlsIOiVV16p0jE6duyo119/XevXr1daWpq2bt2q66+/vtL7mTp1qvbu3StJeumllzRjxgwNGjRIvXv31qRJk/S///1PQUFBysrK0qOPPlqluQIAAPex7wzWpE6oAgMML83Gvew7hCXQIQwAAK/zShBo7ty5MgxDt956q8aMGSPTNLVgwQLl5uZWvLELbdq0SatXr5Yk3XXXXerdu7fDmIkTJ6pDhw6SpOnTpys/P7/Sx+nZs6cefvhhXXzxxQoLq9q3ffn5+Xr99dclSR06dNDEiRMdxvTp00d33XWXJGnlypXavHlzlY4FAADcI8kuEBJbS5eCSWeXg5VEJhAAAN7n8SDQihUrrOLFo0aN0u23367AwEClpqbq66+/9uhcFi1aZF0eO3ZsqWMCAgI0atQoSVJKSoqWL1/uiak5WL58uVJTUyVJo0ePVkBA6U9dydpDX331lSemBgAAnOTYGax2LgWTHNvEHyUTCAAAr/N4EKh4KVj79u3VvXt3NW3aVIMHD5ZpmpozZ45H57JmzRpJUmRkpLp161bmuAEDBliX165d6/Z5laZ4rpLtfOx1795dERERkrw3VwAAULpEh85g/pMJdDI9Vzn5hV6aDQAAkDwcBMrMzNQXX3whwzB05513WrcXX/7++++VlJTksfns2rVLktS6dWsFBZXdKK19+/YO23jazp07rcsl52MvKCjI6mLmrbkCAIDSJdovB/OjTCDJ8fcHAACe5dEg0MKFC5WZmamAgACbINCIESMUFRWloqIiffTRRx6ZS05OjpKTkyVJ8fHx5Y6tV6+eIiMjJUlHjhxx+9xKk5CQIOls1lJMTEy5Y5s3by5JOnnyZKXqLCUkJJT748kAHQAAtZFDTaDo2psJVCcsWHXDbL9kY0kYAADeVXb6ixsUL/caMGCAmjVrZt0eHh6u66+/XnPnztWcOXP0f//3f26fS8l271FRURWOj4yMVGZmpjIyMtw5rTIVz9fZuRbLyMhQaGioU8coDh4BAADXKywydTzd9suZuJjamwkkSc3qRSgtKc26TnFoAAC8y2OZQIcOHdLKlStlGIZVaLmk0aNHS5J2797tka5WOTl/rskPCQmpcHxxICU72zsnL8XzrcxcJe/NFwAA2DqRnqPCItPmttpcE0hybBNPJhAAAN7lsUyguXPnyjRNRUZG6sYbb3S4/9JLL1V8fLyOHj2qDz/8UD169HDrfEq2as/Ly6twfPGyqvBw75ysFc+3MnOVKjffipa6JSUlqWfPnk7vDwAA/CkxxbYodEhQgBpEVvzlTk3m0CGMTCAAALzKY5lAc+fOlWEYGjFihNW9qiTDMHT77bfLNE3Nnz9f+fn5bp1PnTp1rMvOLPHKzMyU5NxyLHconm9l5ipVbr7x8fHl/sTGxlZ+4gAAQJKUlOpYFNowDC/NxjPsM4ESyAQCAMCrPBIEWrNmjfbv3y9JpS4FK1a8JOzMmTP6z3/+49Y5hYWFqUGDBpL+LLpcljNnzliBFW/VzSkuXp2ZmamUlJRyxxZn9DRq1MjpekAAAMC9kuwygWpzZ7BiZAIBAOBbPBIE+vDDDyVJzZo10+DBg8sc16FDB3Xt2tVmG3fq2LGjJGnfvn0qKCgoc9zu3butyx06dHD7vEpTPFfJdj72CgoKrICbt+YKAAAcJdplAsXV4s5gxZrZZQIdS8tRQWGRl2YDAADcHgTKzs7WZ599JsMwdMcdd1Q4/s4775RpmlqyZIlOnDjh1rn169dP0tnsmq1bt5Y5buXKldblvn37unVOZSmeq2Q7H3tbtmyxspa8NVcAAODIIROolncGkxwzgQqLTB1LyyljNAAAcDe3B4G+/PJLq715eUvBit1+++0KDAxUQUGB5s2b59a5DR8+3Lo8e/bsUscUFRVp7ty5kqSYmBgNHDjQrXMqy6WXXqro6GhJZ7OkTNMsddycOXOsyyNGjPDE1AAAgBPsM4Fi/SATqH5kiMKDA21uY0kYAADe4/Yg0NVXX60DBw7o4MGDTi1PatSokQ4dOqQDBw5YNYLcpWfPnurfv78kadasWVq/fr3DmFdeeUW7du2SJE2YMEHBwcE2969YsUKGYcgwDI0ZM8Ztcw0JCdEjjzwiSdq1a5defvllhzHr16/XrFmzJEkDBgxwe4c1AADgPPvuYHF+kAlkGIbDkjDaxAMA4D1ubxFfr1491atXr1LbxMXFuWk2jqZPn66+ffsqOztbQ4YM0aRJkzRw4EBlZ2dr/vz5mjFjhiSpbdu2mjhxYpWPUzJDR5J+/vln6/KSJUt08OBB63rr1q1tln8V+7//+z8tWLBAe/fu1RNPPKF9+/bp1ltvVXh4uJYvX64XXnhBBQUFCg8P12uvvVbluQIAANfKLShUckauzW1xMbU/E0g6uyRs34k/u5uSCQQAgPe4PQjk6y666CItWLBAI0eOVFpamiZNmuQwpm3btlq8eLFNW/nKGjt2bJn3TZkyxeb66NGjSw0C1alTR4sXL9bVV1+t33//XTNmzLCCVMXq1q2rjz/+WF26dKnyXAEAgGsdT811uM0floNJjsWhyQQCAMB7PNIdzNcNGzZM27dv12OPPaa2bdsqIiJCMTEx6t69u6ZMmaJt27apdevW3p6mpLNZQtu2bdOUKVPUvXt3xcTEKCIiQu3atdNjjz2m7du365prrvH2NAEAQAn29YAiQwJVN8w/vouzLw6dQCYQAABe4x9nH05o0aKFpk2bpmnTplVqu0svvbTMIs0lOTPGWZGRkXriiSf0xBNPuGyfAADAfZLsi0LHhMswDC/NxrPiyQQCAMBnuD0IZJqmVq9erVWrVmnnzp06fPiw0tPTlZ2drTp16qhevXo6//zz1bNnTw0bNkx169Z195QAAAA8yr4odGx07S8KXcw+E+hoSraKikwFBPhHEAwAAF/itiBQXl6e3nzzTU2dOlUnTpywua84K6b4G7Dly5dLksLDwzVy5Eg9//zzatCggbumBgAA4FH2mUBxflIPSJLi60XYXM8rKFJyZq4a1/GfQBgAAL7CLTWBjh07pr59++r//u//dPz4cZmmafNTHPyxvz0rK0vvv/++OnTooB9//NEdUwMAAPC4JPtMID9oD1+scZ1QBQfaZv3QIQwAAO9weRCosLBQw4YN09atW2Wapvr27at//vOfmjFjhqZOnaphw4bJMAyFhobq/fff17Fjx7R69Wq99tpr6tu3r0zTVHJysoYNG6aVK1e6enoAAAAeZ18Hx58ygQICDIdOaNQFAgDAO1y+HGzWrFnaunWrAgMDNXPmTI0ePdrm/okTJ2rNmjUaOnSoHnjgAXXu3Fl9+/ZV37599cgjj2jp0qW68847dfLkSY0ZM0Y7d+5UeLj/nCgBAIDaJynVfzOBpLN1gQ6fzrKukwkEAIB3uDwT6NNPP5VhGLr77rsdAkDF+vXrpxdeeEH5+fl6+umnbe4bMmSIli1bptDQUB0+fFizZ8929RQBAAA8JiuvQKnZ+Ta3xcX41xdczerRJh4AAF/g8iDQrl27JEk33nhjueOK71++fLmys21PBDp37qxx48bJNE0tXLjQ1VMEAADwGPvOYJJ/LQeTSu8QBgAAPM/lQaAzZ85IUoXdvYrvN01TiYmJDvcPHTpUkrR7924XzxAAAMBz7DuDxUQEKzwk0Euz8Y54u0wgloMBAOAdLg8C1a9fX5J04MCBcscdPHjQuhwREeFwf1xcnCTp1KlTrpscAACAhzl0BvOzLCDJcTnY0ZRsmabppdkAAOC/XB4E6tatm0zT1HvvvVfuuLfffluSFBMTo9jYWIf7MzIyrPsBAABqqsRU+85g/lUUWpLiY2y/8MvILVBadoGXZgMAgP9yeRDotttukyR9//33Gj9+vNLT023uLygo0JQpUzR9+nQZhqFrr7221P38/PPPkv7MCAIAAKiJHDKB/KwzmCQ1jQ6TYdjelpCSVfpgAADgNi5vEX/bbbfpzTff1MaNG/XBBx9owYIF6t27t5o0aaLU1FRt2LBBycnJMk1TderU0TPPPFPqfr7++msZhqG+ffu6eooAAAAeY58J5I/LwUKCAtSkTpiOpf0ZEEs4k63z46K9OCsAAPyPy4NAAQEB+uqrr3TVVVfpl19+UUZGhpYtW2bdX7z+u06dOlqwYIFatWrlsI/ExEQdP35cHTt21LBhw1w9RQAAAI9JtOuEFeeHmUDS2bpAJYNAFIcGAMDzXL4cTJKaNm2q9evX66WXXtL5558v0zStn9jYWN1777365ZdfdOWVV5a6fVxcnLZv365ff/1VQ4YMcccUAQAA3M40TSWlUhhaok08AAC+wOWZQMXCwsL0+OOP6/HHH1dOTo5Onz6tqKgo1a1b112HBAAA8Clp2QXKyiu0uc0+GOIvaBMPAID3uS0IVFJYWBgFngEAgN+xrwdkGFKTuv67HKwkMoEAAPA8tywHAwAAgJRkFwRqGBWqkCD/PP1iORgAAN7nkUygYtnZ2UpISFBGRoays7MVHh6uqKgoxcfHKzzcP1OjAQBA7ZVo1x4+Lto/s4Akx+VgpzPzlJVXoIgQj56OAgDg19z6qVtUVKSvvvpKX331ldauXasjR45Y3cFKMgxDzZs3V9++fTVixAiNGDFCAQH++S0ZAACoPewzgfy1KLQkxZVSC+nomWy1aVLHC7MBAMA/uS0I9L///U+PPPKI9u3bJ0mlBn+KmaapQ4cO6fDhw/r000/Vpk0bvf7663QGAwAANVqSXSZQrJ+2h5ekiJAg1Y8M0enMPOu2hBSCQAAAeJJbgkCzZs3Sfffdp6KiIiv407ZtW7Vv317NmzdXZGSkQkNDlZubq8zMTB05ckS7d+/W3r17JUl79+7V0KFDNWPGDI0dO9YdUwQAAHA7+8LQcX6cCSSdXRJWMghEhzAAADzL5UGgnTt36qGHHlJhYaHq1q2rp556SmPGjFGTJk0q3Pb48eOaPXu2/v3vfystLU0PPvigLr74YnXo0MHV0wQAAHA7+5pA/pwJJJ0tDr09IdW6TnFoAAA8y+WFd15//XXl5uaqSZMm2rp1q5588kmnAkCS1KRJE/31r3/V1q1b1bhxY+Xm5ur111939RQBAADcrqjI1LFUuyCQn2cCOXQIIxMIAACPcnkQaNmyZTIMQ88884xatWpVpX20atVKzzzzjEzT1LJly1w8QwAAAPc7lZmnvMIim9vsgyD+plk92sQDAOBNLg8CJSYmSpJ69epVrf0Ub1+8PwAAgJrEvjNYUIChRnVCvTQb30AmEAAA3uXyIFBUVJQk6fTp09Xaz5kzZyRJkZGR1Z4TAACAp9nXA2pSN0yBAYaXZuMb7DOBjqfnKK+gqIzRAADA1VweBGrfvr0kaebMmdXaz/vvvy9JFIUGAAA1kn0mUGy0fxeFlqT4mAib66bp+DgBAAD3cXkQ6Pbbb5dpmlq4cKEeeeQR5eTkVLxRCTk5OXrkkUe0cOFCGYah22+/3dVTBAAAcLsk+6LQfl4PSJLqhgepTqhtc1qWhAEA4DkuDwKNHz9e3bt3l2maeuutt9S8eXM9+OCD+uyzz7R9+3adPn1aeXl5kqS8vDydPn1a27dv12effaYHH3xQzZs311tvvSVJ6tGjh8aPH+/qKQIAALhdol3R4zgygWQYhsOSsASKQwMA4DFBFQ+pnMDAQP33v//V8OHDtXbtWp06dUrvvvuu3n33Xae2N01TktS3b18tWrRIAQEuj1MBAAC4nX0QiOVgZzWLCdfuY+nWdTKBAADwHLdEWBo0aKCVK1dq5syZ6tChg0zTdPqnQ4cOmjVrllauXKkGDRq4Y3oAAABux3Kw0tEmHgAA73F5JlCxgIAAjRs3TuPGjdPvv/+uNWvWaOfOnUpISFB6erpycnIUFhamOnXqKD4+Xh07dlS/fv3Upk0bd00JAADAIwoKi3Q8zTYIZN8e3V/ZPw4JZ7K8NBMAAPyP24JAJbVp04bgDgAA8Bsn0nNVZNrexnKws8gEAgDAeyi4AwAA4GL2bc9DgwJUPzLES7PxLfH1bNvEJ6XkqNA+YgYAANyCIBAAAICLJabY1QOKDpNhGF6ajW+xXw5WUGTqRHpOGaMBAIArEQQCAABwMftMoNho6gEVaxgVotAg21NQOoQBAOAZXgsC/frrr7r33nvVvn171alTR3Xq1FG7du10zz33aNu2bd6aFgAAQLU5ZALFUA+omGEYDtlA1AUCAMAzXB4E+sc//qF//OMfSk5OLnPMM888o4suukgzZ87U77//rszMTGVmZmrfvn2aNWuWevTooaeeesrVUwMAAPAI+0ygODKBbNgXh04gEwgAAI9weXewyZMnyzAM3XjjjWrYsKHD/c8995xeeOEF63rdunXVtm1bGYahvXv3KjU1VaZp6qWXXlJkZKSeeeYZV08RAADArcgEKp9jm3iCQAAAeIJHl4P9/vvv+uc//ynDMBQdHa158+bp1KlT2rRpkzZu3Kjk5GTNmzdPMTExMk1T//jHP3T48GFPThEAAKDayAQqH8vBAADwDo8Ggd555x0VFRUpODhY33//ve644w4FBgZa9wcGBuqOO+7QkiVLFBISosLCQs2cOdOTUwQAAKiW3IJCJWfk2dwWF0MQqKT4+nZBoDNZXpoJAAD+xaNBoBUrVsgwDI0aNUrdu3cvc1zPnj01cuRImaapFStWeG6CAAAA1XQs1bHdOcvBbDWLibC5fjQlW6Zpemk2AAD4D48GgQ4ePChJuuaaayocO2zYMEnSnj173DklAAAAl7KvBxQVGqS6YcFemo1vsi8MnZNfpNOZeWWMBgAAruLRIFBW1tlU33POOafCscVjUlNT3TonAAAAV7KvBxQbTRaQvSZ1QhUYYNjcRl0gAADcz6NBoKZNm0qSCgoKKhxbWFgoSQoL48QJAADUHEmp9p3BqAdkLygwQE3r2p7j0SEMAAD3c3mL+GKbN29WcnKyzW3x8fE6cuSI/vjjj3JrAklSUlKSJJXaZh4AAMBXJabYdwbjC63SNKsXbpP9c5QgEAAAbue2INC4cePKvG/t2rW6+eaby91+69atkqRmzZq5dF4AAADu5JAJRHv4UsXXC9emA39eZzkYAADu55blYKZplvuzcOFCa7lXWRYtWiTDMNSzZ093TBEAAMAt7DOB6AxWuni7ZXIsBwMAwP1cngm0fPlyp8bl5eUpPLz0b8ZWrlyp7du3S5J69+7tsrkBAAC4m+NyMDKBSmPfIYxMIAAA3M/lQaABAwZUex8XXnihDhw4mx8cFxdX7f0BAAB4QmZugdJybBtgxJEJVKpmMRE214+eyfLSTAAA8B9uqwlUHTExMYqJifH2NAAAACrFvj28RE2gsthnAqXlFCgtJ191w4K9NCMAAGo/j7aIBwAAqM0SU2yLQteLCFZ4SKCXZuPbYkvpmkaHMAAA3IsgEAAAgIvYZwKRBVS2sOBANaoTanMbQSAAANyLIBAAAICL2GcCUQ+ofPEUhwYAwKNcWhNo1apVrtxdhVq2bKlzzjnHo8cEAAAoC5lAldMsJlzbDqdY1wkCAQDgXi4NAl166aUyDMOVuyzXs88+q7///e8eOx4AAEB5klJtM4FiyQQql0ObeJaDAQDgVi7vDmaapqt3CQAAUCPYZ7LEkQlUrvgY28cngUwgAADcyqVBoKKiIlfuDgAAoMYwTVNJdjWBSuuAhT+RCQQAgGdRGBoAAMAFUrPzlZ1faHNbXAyZQOVpFhNhcz05I1c5do8hAABwHYJAAAAALmDfGcwwpKZkApXLPhNIojg0AADuRBAIAADABew7gzWKClVwIKda5YkKDVJMRLDNbSwJAwDAfTgz+f8OHTqkiRMnqn379oqMjFT9+vXVo0cPTZ06VVlZWS47zn//+1+NGDFC8fHxCg0NVXx8vEaMGKH//ve/Tu9j/fr1GjdunNq1a6eoqCiFhoYqNjZWV1xxhd5//33l5eW5bL4AAMA5iQ6dwVgK5oxmdo8TmUAAALiPy7uD1UTffPONRo4cqbS0NOu2rKwsbdmyRVu2bNHMmTO1ePFitW7dusrHKCoq0j333KNZs2bZ3H706FEdPXpUixYt0t1336333ntPAQGlx+ZM09SECRP0xhtvONx37NgxHTt2TEuXLtX06dP13Xff6ZxzzqnyfAEAQOUkOXQGYymYM5rFhOu3xD/PwcgEAgDAffw+E2jbtm265ZZblJaWpqioKD3//PNat26dfvjhB40fP16StHfvXg0dOlTp6elVPs7TTz9tBYAuuugiffrpp9q0aZM+/fRTXXTRRZKkmTNn6plnnilzH//+97+tAFCdOnX07LPPaunSpVq3bp1mz56tTp06SZJ+++03DR06VAUFBVWeLwAAqJwk+0wg2sM7xaFDGJlAAAC4jd9nAk2YMEHZ2dkKCgrS0qVL1bt3b+u+QYMGqU2bNnriiSe0d+9evfLKK5o8eXKlj7F37169/PLLkqTu3btr1apVCg8/e8LTo0cPXXvttRowYIC2bNmiqVOnaty4cQ5ZR/n5+XrppZckSSEhIVq1apW6dOli3d+7d2+NHDlS/fr108aNG7Vjxw4tWrRIN954Y6XnCwAAKi/RPhMohkwgZ9gvB0s447pl+AAAwJZfZwJt2rRJq1evliTdddddNgGgYhMnTlSHDh0kSdOnT1d+fn6lj/Paa69ZWTlvvPGGFQAqFhERYWX4FBQU6NVXX3XYx65du5SSkiJJuuaaa2wCQMWCgoI0adIk6/r69esrPVcAAFA1iXaFockEck68fSYQy8EAAHAbvw4CLVq0yLo8duzYUscEBARo1KhRkqSUlBQtX768UscwTVNff/21JKl9+/a6+OKLSx138cUXq127dpKkr7/+WqZp2txfstjzeeedV+bxWrVqVeo2AADAfYqKTB2zWw5GJpBz4utF2Fw/lpaj/MIiL80GAIDaza+DQGvWrJEkRUZGqlu3bmWOGzBggHV57dq1lTrGgQMHlJiY6LCf8o5z9OhRHTx40Oa+Nm3ayDAMSdIff/xR5j72799vXS4OKgEAAPdKzsxVfqHtFzhxdAdziv1ysCJTDgE1AADgGi4NAm3fvl3bt2+vMRkou3btkiS1bt1aQUFll0dq3769wzbO2rlzZ6n7qexxoqOjddttt0mSvv32W23fvt1h+4KCAr344osO4wEAgHslpdgGLYICDDWMCvXSbGqWmIhgRYQE2txGcWgAANzDpYWhu3TpooCAAG3fvl0dO3a0bv/HP/4hSXrggQfUsGFDVx6yynJycpScnCxJio+PL3dsvXr1FBkZqczMTB05cqRSx0lISLAuV3Sc5s2bW5dLO860adO0e/du/fTTT+rfv78mTpyoPn36KCoqSnv27NGrr76qX375RREREZo7d64aNGhQ5bmWJikpqVL7AwDAXyTZ1QNqUjdMgQGGl2ZTsxiGoWYx4fr9RIZ1G3WBAABwD5d3B7OvZSNJkydPlmEYuvHGG30mCFSy3XtUVFSF44uDQBkZGRWOrepxIiMjrculHadJkyZavXq13n//fb344ot69tlnbe43DEN33323Jk6cWGHWUWlKBqEAAIDzElOoB1QdzerZBYHIBAIAwC1cuhwsODhYkpSd7fsf3Dk5f56shYSEVDg+NPRsSndlf7fKHKf4GOUd58cff9RHH32k48ePO9xXXIR6zpw5NWZJHgAAtYF9JhCdwSqHNvEAAHiGS4NATZo0kSRt3brVlbt1i7CwP7+hcyZgkpubK0kO7d1deZziY5R1nOnTp+vaa6/Vli1bdMkll+j7779XamqqcnNztXPnTj3++OM6ffq0pkyZokGDBlU6a+nIkSPl/mzatKlS+wMAwF8k2hUyjiUTqFKa2beJJxMIAAC3cOlysEsuuUSffPKJnnzySe3fv19t27a1soOks63Pt2zZUun9Frdod6U6depYl50JlmRmZkpybulYVY9TfIzSjrN9+3b95S9/kWmaGjx4sJYsWaLAwD+LKHbo0EFTp05Vhw4ddNddd2nt2rV69tln9corrzg914pqFgEAgNIl2QUt4sgEqhT7NvHUBAIAwD1cGgR66qmn9NVXXyk1NVUvv/yyzX2maeqZZ56p9D4Nw3BLECgsLEwNGjTQqVOnKiyIfObMGStAU9m6OSUDKxUdp2QxaPvjzJ49W0VFRZKk5557ziYAVNK4ceP073//W7///rvmzJmjl19+2WotDwAA3MO+JlBsNJlAlWG/HCwxJUdFRaYCKK4NAIBLuXQ52Pnnn69Vq1Zp8ODBCg4OlmmaNoWii69X9sddijuY7du3TwUFBWWO2717t3W5Q4cOVTqG/X4qe5ySLeO7du1a7n6K7z99+rROnDjh9FwBAEDlFRQW6US6fWFoMoEqI95uOVheYZGSM3LLGA0AAKrK5d3BunXrpqVLl6qgoEDJycnKycnReeedJ8Mw9L///U9t2rRx9SGrrF+/flq9erUyMzO1detW9erVq9RxK1eutC737du3Usc499xzFRcXp8TERJv9lGbVqlWSpGbNmqlly5Y29wUF/flUlRewkqT8/PxStwMAAK53PD1XRXbfWREEqpxGUaEKCQxQXmGRdVtCSrYa1yWjCgAAV3JpJlBJQUFBatq0qU0wIy4uTi1atKj0j7sMHz7cujx79uxSxxQVFWnu3LmSpJiYGA0cOLBSxzAMQ9ddd52ks5k+GzZsKHXchg0brEyg6667zmEJ17nnnmtdXr16dZnHy8/P1/r16yVJ0dHRql+/fqXmCwAAKse+HlBoUIDqRQSXMRqlCQgwHIppJ1AXCAAAl3NbEKikZ599Vn//+9/VuHFjTxzOaT179lT//v0lSbNmzbKCJyW98sor1lKsCRMm2BS6lqQVK1bIMAwZhqExY8aUepxHH33UquHz8MMPO7R/z87O1sMPPyzpbPDs0UcfddjHsGHDrMt//etflZaWVuqxnn32WSUlJUmSrr76auoBAQDgZvadweJiwvn8rQL7ukAUhwYAwPU8slbo2Wef9cRhqmT69Onq27evsrOzNWTIEE2aNEkDBw5Udna25s+frxkzZkiS2rZtq4kTJ1bpGG3bttX//d//6d///re2bNmivn376sknn1SrVq20f/9+TZkyRdu2bZMk/d///V+pS+aGDBmiQYMG6ccff9T27dvVpUsXTZgwQT179lRYWJj27dunDz74QEuWLJEkRUZG+vTjDgBAbWGfCURR6Kqxrwt0NCXLSzMBAKD28lrBmOPHj2vHjh06ffq0JKl+/frq1KmTmjRp4tF5XHTRRVqwYIFGjhyptLQ0TZo0yWFM27ZttXjxYpt275X1/PPP68SJE/rggw+0bds23XrrrQ5j7rrrLv3rX/8qcx9ffPGFbrjhBi1fvlwHDhwoNWNIkho1aqRPPvlE7dq1q/J8AQCAc5JS7TuDUQ+oKprF0CYeAAB382gQyDRNzZgxQ2+++aZ27txZ6piOHTvq4Ycf1vjx4z2WSj1s2DBt375d06dP1+LFi5WQkKCQkBC1bt1aN910kx566CFFRERUvKNyBAQEaNasWbrhhhs0Y8YMbd68WcnJyWrYsKF69Oihe++9V1dddVW5+6hXr55++OEH/ec//9Enn3yizZs369ixYyooKFBMTIzOP/98XXXVVbr77rupBQQAgIck2mUCxcWQCVQVzRwygQgCAQDgaobpzh7sJZw5c0bXXnut1q1bJ0lltn4vDvz06dNH33zzjWJiYjwxPTghISFBzZs3lyQdOXJE8fHxXp4RAADed80bq7Xj6J+1+l4Y0Vm39zrHizOqmdbvP6Xb3v+zgUZkSKB2PHcF9ZUAAH7JXf9/eyQTyDRNXXfddVq7dq0kqUGDBrr55pvVq1cvNW3aVJJ07Ngxbdq0SZ999pmSk5O1bt06XXfddRW2VQcA4P+xd9/xUdf3H8Bf3xu57L0HM4RA2BCGbEGQUVFbFP0pShVta60Tqau1Vat1tc4WCo66wFFRQAXZoEAIIiGQEDbZe++7+/7+iLnk+707Mri7743X8/HgYb6ffO/7/QgZd+97DyIlFVbJysGYCdQr8p5A9S0GVDe2ItjXS6EdERERuR+HBIE++ugj7Nu3D4Ig4Oabb8Zbb71lsb/O0qVL8fzzz+Oee+7B+++/j3379uHjjz/GTTfd5IhtEhEREfVIU6sB5fUtkjX5lCvqnuggb6gEwNgpWTyvspFBICIiIhtyyIj4jz76CAAwffp0vP/++5dssOzv74/33nsP06dPhyiK+OCDDxyxRSIiIqIeK5I1hQY4Hay3tGoVogKlf3d5bA5NRERkUw4JAv34448QBAG///3vu/2Ye++9FwBMo9OJiIiInE1BtTRIEaDTIMBbq9BuXJ/5mHgGgYiIiGzJIUGg9jHw/fv37/Zj2s9tfywRERGRs2E/INuSl9JxTDwREZFtOSQIFBQUBAAoKCjo9mMKCwsBAIGBgXbZExEREdHlKpRlAsUEsR/Q5TAfE9+g0E6IiIjck0OCQMOGDQMAvPPOO91+TPu57Y8lIiIicjYFsp5AscwEuixxwb6SY5aDERER2ZZDgkC/+tWvIIoivvjiCzz11FMQRfGS5z/99NP4/PPPIQgCFi9e7IgtEhEREfVYYRUzgWxJngnExtBERES25ZAR8cuXL8frr7+OkydP4umnn8b//vc/3H777ZgwYQIiIyMhCAKKi4tx8OBBvPfee8jMzAQAJCcnY/ny5Y7YIhEREVGPFch7AnEy2GWR9wSqamhFfbMefjqHPGUlIiJyew75jarVavHNN99g1qxZOHfuHI4fP44VK1ZYPV8URQwYMADffPMNNBr+0iciIiLnJJ8OFhvMTKDLIZ8OBrSVhCVFBSiwGyIiIvfjkHIwAOjXrx8yMjLw0EMPISgoCKIoWvwTFBSEhx9+GD/99BP69OnjqO0RERER9Uhdsx61TXrJGoNAl8dbq0a4v5dkjRPCiIiIbMehaTZ+fn548cUX8eyzz+Lw4cPIzMw0jYAPDQ3FsGHDMHbsWHh5eXVxJSIiIiJlyfsBASwHs4W4YB+U1bWYjvPYHJqIiMhmFKm18vLywqRJkzBp0iQlbk9ERER02eSTwUL9vOCtVSu0G/cRF+KDo3nVpmNmAhEREdmOw8rBiIiIiNyJ+WQwZgHZgrw5NMfEExER2Q6DQERERES9IM8E4nh425AHgfIqGxTaCRERkfthEIiIiIioF+SZQLHBzASyhbgQX8kxy8GIiIhsh0EgIiIiol4oZCaQXcjHxJfUNqNZb1BoN0RERO6FQSAiIiKiXihgJpBdxIWYB9MKq5osnElEREQ9xSAQERERUQ+JooiCankQiJlAthDorUWAt3SALZtDExER2QaDQEREREQ9VNXQiqZWo2SN08Fsx2xCGPsCERER2QSDQEREREQ9JM8CEgQgKpBBIFuR9wXKYyYQERGRTTAIRERERNRD8h41kQE6aNV8WmUrHBNPRERkH3y2QkRERNRDhbJMIE4Gs614joknIiKyCwaBiIiIiHqoQDYenpPBbEs+IYyNoYmIiGxD0/UptqPX67F582bs3bsXZ8+eRW1tLQwGwyUfIwgCtm/f7qAdEhEREXWtsIqZQPYkLwcrqm6CwShCrRIU2hEREZF7cFgQaN++fbj11ltx8eJF05ooilbPFwQBoihCEPjLnoiIiJyLPBOIk8FsS54JpDeKKK5pQmwwg21ERESXwyFBoOzsbFx99dVobGyEKIrw8vLCoEGDEBoaCpWKFWlERETkWgpkmUAMTthWmJ8XvLUqNLUaTWv5VY38eyYiIrpMDgkC/e1vf0NDQwPUajX+8pe/4A9/+AP8/f0dcWsiIiIimzL+nJXSGYMTtiUIAmKDfXC2tN60llfZgNR+oQruiuQ+Sc/F3lNlmDk4AtePiVd6O0RE1A0OCQLt2LEDgiDgvvvuw2OPPeaIWxIRERHZRVldM1oN0pL2WJaD2VycLAjECWHOZXNGIR75LAMAsPFoAXy9NLh6WLTCuyIioq44pBarrKwMAHDdddc54nZEREREdiPvB6RVCwj31ym0G/dlNiaeE8Kcynv7z0uOV+05o8xGiIioRxwSBIqIiAAA+PgwVZqIiIhcm3wyWFSgN1ScWmVz8bLm0HnMBHIa5XXNSD9fIVk7crEKJ4tqFdoRERF1l0OCQFOmTAEAZGZmOuJ2RERERHYjzwSK5Xh4u5CPiWcmkPPYllUMo4Uhv+sOXTRfJCIip+KQINCDDz4ItVqNV199FXq93hG3JCIiIrILeSZQTDD7AdmDfEx8QVXblFlS3pbjxRbXvziSj6ZWg4N3Q0REPeGQIFBqair++c9/4ujRo7j++utNPYKIiIiIXE2hLBMohplAdiHPBGpqNaK8vkWh3VC7umY99p2y/Fy+qqEVW44XOXhHRETUEw6ZDvbXv/4VADB+/Hhs2rQJffv2xVVXXYXk5GT4+vp28WjgT3/6k723SERERNQtBdXSTKBYZgLZRVSgNzQqAfpOdUd5lY1swq2wXSdL0GIwWv38urRcLBoV58AdERFRTzgkCPTUU09BENoaJgqCgMbGRmzcuBEbN27s1uMZBCIiIiJnUSAvB2MmkF2oVQJigr2RW9Hx951f2YhRCcHKbYrwbaY00ydAp0Ftc0e7h/1ny3G+rB79wv0cvTUiIuoGh5SDAYAoiqY/8uOu/hARERE5g1aDESW1zZI1ZgLZj3lz6AaFdkIA0Kw3YNfJUsnaA1clIcRXK1lbn57ryG0REVEPOCQIZDQaL+sPERERkTMormmC/P0pTgezn7hgaduAfI6JV9QPp8tR1ynrRxCAhSNicP2YeMl5n6bnofUSJWNERKQch2UCEREREbk6eVNob60KwbIsCLId+YQwjolXlrzp85g+IYgM9MaS1ATJelldM3Zklzhya0RE1E0MAhERERF1k7wfUGyQj6nvIdlevKwcLI+ZQIoxGEV8d0I6Gn5uShQAYFBUAMb2DZF8bl3aRYftjYiIuo9BICIiIqJuMhsPz35AdmWWCcQgkGIOX6hEeX2LZG1uSrTp4xtl2UC7c0rNgqZERKQ8hweBKioq8PLLL2PevHlISEiAn58f/Pz8kJCQgHnz5uHll19GRUWFo7dFRERE1KVCTgZzKHlj6NpmPaobWxXajWeTTwVLjg5A37COCWALR8QgQNcxeNgotvUGIiIi5+LQINCqVavQt29fPPLII9i6dSvy8/PR2NiIxsZG5OfnY+vWrXjkkUfQt29frF692pFbIyIiIupSgSwTKDaImUD2FBPsDXm1HbOBHE8URbN+QHM6ZQEBgK+XBteMipWsfZKeC4ORk36JiJyJw4JAzz//PH73u9+hvr4eoigiMDAQM2bMwJIlS7BkyRLMmDEDgYGBEEUR9fX1+O1vf4sXXnjBUdsjIiIi6lJhtSwTKJiZQPak06gRGaCTrLE5tOMdL6gx+3tv7wfU2ZLUPpLj/KpG7DtdZte9ERFRzzgkCJSZmYknn3wSoigiJiYGH3zwAUpKSrBjxw589NFH+Oijj7Bjxw6Ulpbiww8/RGxsLERRxBNPPIHjx487YotEREREXSqokvUEYiaQ3clLwvIrGxTaiefaKssCSgj1wdCYQLPzhscHISVWus4G0UREzsUhQaA33ngDBoMBERER2L9/P26++WZotebjVDUaDW666Sbs378fkZGRMBgMeOONNxyxRSIiIqJLamo1oELWGFceoCDbiwvxlRwzE8jxthyXTQUbGm11Kp58XPx3J4pRVtdst70REVHPOCQItGPHDgiCgEcffRR9+vTp8vyEhASsXLkSoihi+/btDtghERER0aXJJ4MBLAdzBLNMIAaBHOp8WT1OFtdK1uYOi7ZyNrBodBy8tR0vMfRGEZ8fZoNoIiJn4ZAgUH5+PgDgiiuu6PZjJk+eDAAoKCiwy56IiIiIekI+GSzAWwP/TtOQyD7kY+Lz2BjaoeQNocP9vTCmT4jV8wO9tVgwXNogev2hXIgiG0QTETkDhwSB1Go1AECv13f7MQaDAQCgUjl8ij0RERGRGfPJYMwCcoT4EHlPIAaBHOlbWRDoqqFRUKssl4K1WzJeWhJ2tqweaecqbL43IiLqOYdEWNpLwHpS2tV+bnfKx4iIiIjsTZ4JFBPMptCOEC8rByuvb0Fji0Gh3XiW4pomHLlYJVmTj4a3ZFzfEAyM8JOsrTuUa8utERFRLzkkCHTVVVdBFEW89NJLOHbsWJfnZ2Zm4sUXX4QgCJgzZ44DdkhERER0afJMoBhmAjmEvBwMYF8gR9l6QtoQOkCnwRUDw7p8nCAIZuPivz5WiOqGVpvuj8jTiaKIzPxqnC2tU3or5EIcEgS6//77odPpUFdXhylTpuCll15CeXm52Xnl5eV46aWXMHXqVNTW1kKn0+H+++93xBaJiIiILqmwWhp4iOV4eIfw9dIgxFc6VZZBIMeQj4afmRwJnUbdrcdePyYOWnVH2Viz3ogNP+XbdH9Enu7xDZlY+Po+XPnybry167TS2yEX4ZAgUN++fbFq1SoAQF1dHVauXImoqCgMGjQIkydPxpQpUzBo0CBERUVh5cqVqK6uhiAIWLVqFcvBiIiIyCkUmJWDMRPIUeTZQOwLZH/VDa3Yf0b6pu3cbpSCtQvz12HOUOn5H6ddZINoIhs5XVKLjw5eNB2/sjUHlfUtCu6IXIXDui4vXboUX331FWJiYiCKIoxGI86cOYMDBw5g//79OHPmDIxGI0RRRGxsLDZu3Ihbb73VUdsjIiIiuqTCKlljaPYEchjzMfENCu3Ec+w4WQy9sSNg46VRYcbgiB5dQ94gOruoFhl51TbZH5Gn++5EieRYbxTNpvkRWeLQuaYLFizA+fPn8cUXX2Dbtm3IzMxERUXbpIDQ0FAMGzYMs2fPxrXXXgutVtvF1YiIiIgco7apFbXN0imnnA7mOHHBvpJjjom3v28zpS8mpyaGw0/Xs5cOkweGIz7ER/Lvte5QLkYmBNtii0QebXtWsdnapoxCLBnPShq6NIcGgQBAo9Fg8eLFWLx4saNvTURERNQrhbKm0AAQzZ5ADsMx8Y7V2GLA7pxSyVpPSsHaqVQCbhyXgJe/yzGtffVTPp5YMKTHASUi6lBR34IfL1aarf9wpgxldc0I99cpsCtyFQ4rByMiIiJyVfJ+QGF+XvDWdq9BLl0+s55AbAxtV3tOlaKp1Wg6VgnArCGRvbrW4nEJUHX0h0Z9iwGbMgoud4tEHm1ndgmMFtprGUXgm0yWhNGlMQhERERE1AV5JlAM+wE5lLwnUHFNE1oNRitn0+WS9xUZ3z8UYb3MLIgO8sbMwdIA0rpDub3eGxEB27PNS8HabTrKICtdGoNARERERF0olE8GYz8gh5KXgxlFoMhCiR5dvlaDEduzpA1ne1MK1pm8R8mRi1U4WVR7Wdck8lTNegN2nyy1+vm08xUoruHPR7LOpkEgtVoNtVoNjUZjcb03f+TXIiIiInK0AlnAIZb9gBwqyEcLPy9p+R2bQ9tH2rkKVDe2StbmXGYQaObgCEQGSDOJ1h26aOVsIrqUg2crUN9iMB0LAuDb6eejKAJfHytUYmvkImwaBBJF0fTH2npv/hAREREpqbBalgkUzEwgRxIEwawvUF4lx8Tbg7wUbHhckFk5Xk9p1CosHhcvWfviSD6aWg1WHkFE1singo1KCDbL1tucwSAQWWfTNJs///nPPVonIiIicgUFVbKeQMwEcrj4EF/kFNeZjtkc2vaMRtEsCDQ3Jcom175xXB+8ufOM6biqoRVbjhdh0ag4m1yfyBOIoohtsnLN2UOikBwdgC+O5JvW0i9UoqCqEbF8w4IsYBDoZxcuXMBrr72GzZs3Izc3FzqdDgMHDsQNN9yAe+65B76+vja5zzfffIPVq1fj0KFDKC0tRUREBFJTU3HXXXdh3rx53b5Oa2srPvzwQ3z66ac4duwYiouLERAQgJiYGEyYMAFz587F4sWLbbJnIiIiTyaKotl0sMvNjKCek/+dc0y87R3Nq0JxTbNk7XL7AbXrE+aLyYlh+P50uWltXVoug0BEPXCyuNYsAD5rSCQGhPsj0FuDmia9af3rY4W4c+oAR2+RXAAb7gDYuHEjbrnlFtTU1JjWGhoakJ6ejvT0dKxZswabN29GYmJir+9hNBpx1113Ye3atZL1/Px85OfnY8OGDbjzzjuxatUqqFSXrtLLyMjA//3f/yEzM1OyXl5ejvLycmRmZuKzzz5jEIiIiMgGKhta0ayXTqJiOZjjcUy8/W05Li0zGRDhh8RIf5tdf0lqH0kQaP/Zcpwvq0e/cD+b3YPIncmbtscF+2BwVAAEQcDclGh8ejjP9LmNGQwCkWUOmQ62Z88e7NmzB42N3f9l3dTUZHqcPR05cgQ33ngjampq4O/vj2effRY//PADtm/fjuXLlwMAcnJysGDBAtTW9n6KweOPP24KAI0ePRoff/wx0tLS8PHHH2P06NEAgDVr1uCJJ5645HUyMjIwc+ZMZGZmwtvbG7///e/x1Vdf4fDhw9i/fz/++9//4uabb0ZgYGCv90pEREQd5FlAKgGICujduGzqPbNMIAaBbEoURWw1KwWLhiAINrvHnJQohPhqJWvr0zkunqi7vjshDdReNTTK9D26cGSs5HNHc6uQW8HeaWTOIZlAM2bMgEqlQkZGBoYOHdqtx+Tn55sep9fru35AL913331obGyERqPB1q1bMWnSJNPnrrzySgwaNAiPPPIIcnJy8PLLL+Opp57q8T1ycnLw0ksvAQDGjRuHPXv2wMen7YlMamoqrrnmGkyfPh3p6el48cUX8etf/9pi1lFTUxMWL16MiooK9OnTB9u2bcOgQYMk50ycOBG33norWlpaerxPIiIiMlcomwwWGeANjdoh76NRJ/JMoMKqJhiNIlQq2wUpPNnpkjqcLauXrNmqFKydTqPG9WPisXbfOdPap+l5ePCqJGj5PUV0SaW1zTiaVyVZmzUk0vTxFQPDEOKrRWVDx3S/TRmF+O2MgY7aIrkIh/207e2UL3tOB0tLS8PevXsBAHfccYckANTuoYcewpAhQwAAr776KlpbW83O6co///lPUyDr9ddfNwWA2vn6+uL1118HAOj1evzjH/+weJ2XXnoJOTk5UKlU+OSTT8wCQJ15eXn1eJ9ERERkznwyGJtCKyFelgnUYjCitK7ZytnUU/KG0NGB3hgRF2Tz+yxJTZAcl9U1Y0d2iZWziajdzuwSdH5p7K/TYEL/MNOxVq3C1cOkgdtNGQWO2h65EKcNuRuNbbX3arXabvfYsGGD6eNly5ZZPEelUmHp0qUAgKqqKuzcubNH9xBFEV9++SUAIDk5GRMnTrR43sSJEzF48GAAwJdffmkW/DIYDPj3v/8NAJg9ezYmTJjQo30QERFR78gng8UGsR+QEsL9dfCSZYtwTLztfCsLAs1JibJLltWgqACM7RsiWVuXdtHm9yFyN9tko+GnJYXDSyP9mbhwhLQk7HhBDc7JMvyInDYIdOHCBQBAUJDt34Fot2/fPgCAn58fxo4da/W86dOnmz7+/vvve3SPc+fOoaCgwOw6l7pPfn4+zp8/L/ncDz/8gPz8trF/11xzjWm9qakJZ86cQX5+PgwGQ4/2RkRERF0zywTieHhFqFSCWUlYHieE2UReZQMy82ska7YuBetMng20O6fUrPcWEXVoajVg76kyydqs5Ciz8yb0D0W4v7QiZNNRZgORlF16Al28aDmaX1hYCH//S08YaG5uxpkzZ/Dkk09CEASkpKTYY4sAgKysLABAYmIiNBrrfxXJyclmj+muEydOWLxOd+7Tv39/0/GBAwdMHw8fPhynTp3CH//4R2zcuNFUohYUFIRrrrkGf/7znzFwYM9rP/Py8i75+cLCwh5fk4iIyNUVyjKBOBlMOXHBPpJ3tdkc2ja2yqaCBftqMb5/qN3ut2BEDP668QRqm9vaJRjFtt5A98223uqAyJPtP1OOxtaON/xVAjAzOdLsPI1ahXnDYvD+gQumtU0Zhbh3Fr+3qINdgkCdgxftRFHEnDlzenyt9lIsW2tqakJZWVs0NT4+/pLnhoSEwM/PD/X19cjN7dkEg86Bla7uk5DQ8a6I/D6dg0nZ2dmYP38+6uulqX3V1dV4//33sWHDBvzvf//D7Nmze7TXzvcnIiKiNvJAQywzgRRjNiGMmUA2Ie8HNCs5yq6Nmn29NLhmVCw+PNjxxvEn6bn4/ZWJULPRN5EZeSnY2L4hCPWz3AN24QhpEOhkcS1OFddiUFSAXfdIrsMuP91FUZT8sbZ+qT86nQ4rVqzAr3/9a3tsUTLuvavsJKCtZAwA6urq7Haf9ntYuk9FRYXp4/vuuw/19fV44IEHcOrUKVP21IoVKyAIAmpra7F48WKrGVlERETUPQajiOIaWU8gZgIpRl4Oxkygy1de14xD5yska3NTzMtMbG1Jah/JcX5VI/adLrNyNpHnEkXRrHn6rCHWv0dT+4UiKlAnWduYwYoO6mCXTKB33nlHcrxs2TIIgoCnn34acXFxVh8nCAK8vb0RExOD0aNHdys401tNTR1P6LozSUuna/tGamzs2ZONntyn/R6W7tM566epqQl//etf8eSTT5rWBgwYgBdeeAEhISF47LHHUFVVheeeew7/+te/ur3XrrKcCgsLMX78+G5fj4iIyNWV1TVDb5QOa+B0MOUwE8j2tmeVoPOXuI9WjWlJEXa/7/D4IKTEBuJ4QUcvonVpFzHdAfcmciXHC2pQWC19M2L2EPNSsHYqlYD5w2PwzvfnTWubMgrwwOxBEARm2pGdgkC33Xab5Lh98ta1116LoUOH2uOWPebt3fEErqWlpcvzm5vbRpDKx7vb8j7t97B0n87XCQ8Px8qVKy1eY8WKFXjttddQVFSETz75BG+99Va3v9m7KlcjIiLyNPJmtVq1gHA/nZWzyd4sNYYWRZEvbC6DfCrY9KQIeGvtN523syXj++DJDZmm4+9OFKO0thkRAfweI2q3PUuaBdQ3zBcDIy6dLLFwRKwkCHS2tB5ZhbUYGhtojy2Si3HIdLCdO3di586dFnsFKSUgoKMmsjslXu2ZOD3NTurJfTpn+8jv0/k6M2bMsJpVpNFoMGvWLABtJWRnz57t0X6JiIiog/zd1+ggb7uMzabuiZcFgRpbDahsaFVoN66vrlmPfbKJQ3OH2b8UrN2iUbHw1na8HNEbRfzvx0sPKiHyNPJ+QLOSo7oMfI/pE2yWObkpg1PCqI1DgkDLli3D7bffjrVr1zridt3i7e2NsLAwAF1PxaqsrDQFaHraPLlzdk1X9+lcjiW/T+fjrvbQ+fOlpaXd2icRERGZk2cCxQSxH5CSogO9zRoHsySs93adLEGLwWg61qgEXDnYcUGgQG8tFgyPlaytP5Qr6SlK5MmKa5pwLL9asjZ7qPVSsHaCIGDBiBjJ2qaMQn5vEQAHBYHy8vJw4cIFjBo1yhG367b20rTTp09Dr9dbPS87O9v08ZAhQ3p1D/l1enqflJQU08cGgwGX0vnzGo1dKv6IiIg8gjwTiJPBlKVRqxAdKP03yK9qUGg3rm+LbDT8pIFhCPLVOnQPS8ZL39w8W1aPtHMVVs4m8izyUrAAbw1S+4V267ELZUGgixUNyMyvsXI2eRKHBIGio6MB9Lyfjr1NmTIFQFsZ1uHDh62et3v3btPHkydP7tE9+vfvj9jYWLPrWLJnzx4AQFxcHPr16yf53LRp00wfd1XidebMGdPHl2rETURERJdWWC3LBOJkMMXJSxzymAnUK816A3bKJg7NTYl2+D7G9Q3BwAg/ydq6Q5ceVkLkKbbLSsFmDI6EVt29l/DD44LQJ9RXssaSMAIcFASaMGECAOD48eOOuF23XXvttaaP5RPN2hmNRvz3v/8FAAQHB2PmzJk9uocgCFi0aBGAtkyfAwcOWDzvwIEDpkygRYsWmdV59u/fH6NHjwbQ1mOpurra7BpA20j6bdu2AQAGDhyImJgYi+cRERFR1wqqmAnkbDgm3jZ+OFOOuuaOTHhBAOYMdVwpWMd9BbNx8V8fK0Q1ez2Rh2tsMWDfaWnPrktNBZMTBMEsG4glYQQ4KAj029/+FqIo4h//+AdaW53nB/r48eMxdepUAMDatWuxf/9+s3NefvllZGVlAQDuu+8+aLXSFNldu3ZBEAQIgoDbb7/d4n3uv/9+qNVtUxbuvfdes/HvjY2NuPfeewG0lW/df//9Fq/zxz/+EUBb5pK1cx588EHU1LSl+f3mN7+xeA4RERF1j7wnUCwzgRTHMfG2sVU2FWx0QjAiA5UJcl4/Jg5adccboM16Izb8lK/IXoicxfeny9Cs7+jZpVYJmJHU/SAQ0DYlrLP8qkYcya2yxfbIhTkkCHTllVfi0UcfxdGjR7Fw4UJJA2Slvfrqq/Dx8YFer8ecOXPw3HPP4cCBA9i5cyfuvvtuPPLIIwCApKQkPPTQQ726R1JSElasWAEASE9Px+TJk7F+/Xqkp6dj/fr1mDx5MtLT0wG0jXgfNGiQxevccMMNmD9/PgDg3XffxdVXX40vv/wSR44cwVdffYUFCxZgzZo1AIDRo0fj97//fa/2S0RERECL3ojSumbJGhtDK8/SmHjqGYNRxFZZPyAlSsHahfnrMEd2/4/TLjJjgTyafCpYar+QHvfsGhITgAGycstNRwsve2/k2hzSNfivf/0rdDodhg8fju+++w4DBgzA5MmTMWLECISEhJiyZKz505/+ZLe9jR49GuvXr8ctt9yCmpoaPPbYY2bnJCUlYfPmzZIx7T317LPPoqSkBG+//TaOHDmCJUuWmJ1zxx134JlnnrnkddavX49f/vKX2Lp1K7Zs2YItW7aYnZOamoqvvvoK3t5MWSciIuqt4pomyF+Dxgbzd6vS5GPiWQ7Wc4cvVKK8vkWypmQQCACWpCZgc0bHi9Psolpk5FVjZEKwcpsiUojRKGK7rGfX7CE9L9dsKwmLxWvbT5nWvj5WiCcWDIFKdekx8+S+HBIEeuqpp0w9bgRBgMFgwN69e7F3795uPd6eQSAA+MUvfoGMjAy8+uqr2Lx5M/Ly8uDl5YXExEQsXrwYv//97+Hr69v1hS5BpVJh7dq1+OUvf4nVq1fj0KFDKCsrQ3h4OFJTU3H33Xdj3rx5XV7H398f3377LdavX4/33nsPP/30E8rLyxEcHIxRo0bhpptuwtKlS7sMrBEREdGlySeD+WjVCPJx7OQkMicvB6tubEVdsx7+Ok5E7a4tslKw5OgA9Av3s3K2Y0weGI74EB9JZte6QxcZBCKPdCy/GqW10kzUWb0IAgFtU8I6B4GKapqQfqES4/t3b8oYuR+H/baUp3M6W3pn37598corr+CVV17p0eNmzJjRo/+X+fPnm0q6eksQBCxZssRiNhERERHZhvlkMG+zwQ3keJb6MuVXNmJwdO8ztj2JKIpmQSB5KZYSVCoBN45LwMvf5ZjWvvqpAE8sGAo/BvjIw8ingg2I8EP/XgZqk6ICkBTlj5ziOtPapowCBoE8mEN6AhmNxsv6Q0RERORo5pPB2A/IGXhr1Qj310nW8qsaFNqN6zlRWGPWR2luiuOnglmyeFwCOleo1LcYONKaPNK2rMsvBetM3iD662NFMBidKymDHMchQSAiIiIiV2OWCcTx8E7DbEw8m0N32xZZQ+j4EB8MjQlUaDdS0UHeuDJZOv1o3SHnGShD5Aj5VY04UVgjWZuV3LOpYHLyUfFldc04eLb8sq5JrotBICIiIiIL5JlAMRwP7zTiZf8WeWwO3W1bMqWlYHNTop2qzPHG1D6S4yMXq3CyqFah3RA53g5ZKViwrxZj+4Zc1jUHRPibBXs3ZnBKmKdiEIiIiIjIAnkmUCwzgZyGfEIYx8R3z/myepwslgZUlJ4KJjdzcAQiA6Tlfh+nXVRoN0SOJy8Fmzk4Ehr15b9sXzhSmg30bWYhWg1sveKJHB4EqqiowMsvv4x58+YhISEBfn5+8PPzQ0JCAubNm4eXX34ZFRUVjt4WERERkUSBLLvEUkNiUgbLwXpH3hA63N/rsjMMbE2jVmHxuHjJ2hdH8tHUalBoR0SOU9+sx/4z0jKtWUMurxSs3cLh0r5AlQ2t+OEMS8I8kUODQKtWrULfvn3xyCOPYOvWrcjPz0djYyMaGxuRn5+PrVu34pFHHkHfvn2xevVqR26NiIiIyKSxxYDKhlbJWmwwM4GchXxMfD7LwbpFHgS6amgU1CrnKQVrd+M4aUlYdWOr2d6J3NHeU2Vo6ZSdo1EJmJYUYZNr9wnzxcj4IMnapqNsvO6JHBYEev755/G73/0O9fX1EEURgYGBmDFjhmnU+YwZMxAYGAhRFFFfX4/f/va3eOGFFxy1PSIiIiITeSkYAMRwOpjTkGcCldY2M1OkCyU1TfjxYpVkzRlGw1vSJ8wXkxPDJGvr0tggmtyffDT8hAGhCPTW2uz68ilhW44XoUXPkjBP45AgUGZmJp588kmIooiYmBh88MEHKCkpwY4dO/DRRx/ho48+wo4dO1BaWooPP/wQsbGxEEURTzzxBI4fP+6ILRIRERGZFFZLm0IHemvgp9MotBuSk2cCAeb/ZiS19YT0xaW/ToMrBoZZOVt5S2QNovefLcf5snqFdkNkfwajiB3Zth0NL7dANiWspkmPvadKbXoPcn4OCQK98cYbMBgMiIiIwP79+3HzzTdDqzWPaGo0Gtx0003Yv38/IiMjYTAY8MYbbzhii0REREQm7Afk3AK8tQj0lgbl2Bfo0uTlVDOTI6HTqBXaTdfmpEQhxFf6eoHj4smd/ZRbhfL6FsmarYNAscE+Zn3ANnFKmMdxSBBox44dEAQBjz76KPr06dPl+QkJCVi5ciVEUcT27dsdsEMiIiKiDvKskhhOBnM6cSG+kuO8ygaFduL8qhtazZrNzk2x7YtLW9Np1Lh+jLRB9GeH8zjNiNyWvBQsKcofCaG+Vs7uvYWybKDvThSznNbDOCQIlJ+fDwC44ooruv2YyZMnAwAKCtisioiIiBxL3hMohplATkc+Jp7Noa3bcbIYeqNoOvbSqDBjsG0mDtnTktQEyXFZXTO2y8ZnE7kL+df2LBtnAbWbPzwGQqd+8HXNeuzOYUmYJ3FIEEitbks11ev13X6MwdAWjVSpHD7FnoiIiDxcQZU0EyiWmUBOx2xCGMvBrNqSKc0wmJoYDn8X6HE1KCrArHRl/aGLCu2GyH5yKxpwsrhWsjbbRqPh5aICvTG+X6hkjSVhnsUhEZb2ErCelHa1n9ud8jEiIiIiWzLLBOJkMKcjzwTKYyaQRU2tBrN3+ec66VQwS+TZQLtzSs16dhG5um2yUrBQPy+MSgixcvblWzhSOiVse1YxGltYEuYpHBIEuuqqqyCKIl566SUcO3asy/MzMzPx4osvQhAEzJkzxwE7JCIiIupglgnEcjCnw0yg7tmTU4rGTv0+VAIwy04ZBvawYEQMAjplLRlF4NP0PAV3RGR78lKwK5MjoVYJVs6+fPOGRaPz5RtaDGaTych9OSQIdP/990On06Gurg5TpkzBSy+9hPLycrPzysvL8dJLL2Hq1Kmora2FTqfD/fff74gtEhEREQEAappaUdcsLWGPDWY5mLOJk2UCFdU0Qc+mwWa2HJdmGKT2C0WYv06h3fScr5cG14ySZi18kp4LQ6ceR0SurLapFQfPSV8b26sUrF24vw5XDAyXrG3KYC9eT+GQIFDfvn2xatUqAEBdXR1WrlyJqKgoDBo0CJMnT8aUKVMwaNAgREVFYeXKlaiuroYgCFi1ahXLwYiIiMihCmVZQAAQzZ5ATkeeCWQwiiiubVZoN86p1WA0KzNxpVKwdjeNl74eyK9qxN5TbGRL7mFPThlaDZ0at6tVmDoowu73XSCbErYju8TsDRByTw7rurx06VJ89dVXiImJgSiKMBqNOHPmDA4cOID9+/fjzJkzMBqNEEURsbGx2LhxI2699VZHbY+IiIgIAFAg6wcU7u8FnUat0G7ImlA/L/hopf8ueRUcE99Z2rkKVDe2StbmOPloeEuGxQUhJTZQsrb+UK5CuyGyLflo+IkDw+DngMbtV6dEQ9OpJqxZbzTbC7knh44FWLBgAc6fP48vvvgC27ZtQ2ZmJioqKgAAoaGhGDZsGGbPno1rr70WWq3WkVsjIiIiAmCeCcSm0M5JEATEhfjgdEmdaY1j4qW2HC+SHA+PC0J8iK9Cu7k8S8b3wZMbMk3H350oRmltMyICXKe0jUhObzBix0lpLx57l4K1C/HzwuTEcEnj+I1HC7FoVJxD7k/KcfhsSI1Gg8WLF2Px4sWOvjURERFRl8wng7EUzFnFBcuCQGwObWI0ith6XF4K5npZQO0WjYrFs5tPoKm1re+T3ijifz/m4e7pAxXeGVHv/XixClUN0my9K5Md17h94YgYSRBoT04pqhtbEeTDhAx35rByMCIiIiJXwMlgrkPeHJqZQB0y8qtRVCP9WnbFfkDtAr21WDBc2iB6/aFciCIbRJPrkpdfDYkJdGi23pyUaHipO0ICLQYjvjvBkjB3p2gQSK/Xo7S0FKWlpdDr2YSKiIiIlMdMINdhNiaeQSATeSnYgHA/JEb6K7Qb21gyPkFyfLasHgfPVSi0G6LLJ2/c7qhSsHZBPlpMS+KUME/j8CDQiRMn8Ic//AFDhw6Ft7c3oqOjER0dDW9vbwwZMgT33nsvMjMzu74QERERkR0UyAIJMcwEclrx8kwgloMBAERRxJZMaRBoTko0BEGw8gjXMK5viFkgiw2iyVWdL6vHmdJ6ydqsIY4v2Vw4Qppht+9UGSrrWxy+D3IchwWBjEYjHnroIYwcORJvvvkmsrOzTdPA2qeFnTx5Em+99RZGjx6NBx54AEaj0VHbIyIiIoIoiiislpbQxAUzE8hZyTOB8qoaYTSyPOh0SR3OlklfXLpyP6B2giBgSao0G+jrY4WolvVUIXIF8iygiAAdRsQFOXwfs4dGQafpCAvojaJZJiG5F4c1hr755pvx6aefmup2U1JSMH78eERFtf1CKi4uxqFDh5CZmQmDwYDXXnsNBQUFWL9+vaO2SERERB6uor4FzXrpm1CcDua85L0zWvRGlNU3IzLAswN38hdw0YHeGBkfrMxmbOy60XH4+7fZaDW0vaZo1hux4ad83HZFP2U3RtRD8iDQlYMjoVI5PlvPX6fBzMGR+LbTz41NGYVYMr6Pw/dCjuGQINC6devwySefQBAEjBw5EqtXr0ZqaqrFcw8dOoTf/OY3OHLkCD777DOsW7cOS5YsccQ2iYiIyMPJs4BUAhDJEdROKzJAB61aMAUEgLaSMAaBpC8u56REKfLi0h7C/HWYkxKNzRmFprWP0y5i6aS+Ll/uRp6juqEVh85XStZmD1UuW2/hyBhJEOiHM2Uoq2tGuD9//7kjh5SDrV69GgCQlJSEffv2WQ0AAUBqair27NmDwYMHQxRFrFq1yhFbJCIiIjLrBxQV6A2NmsNUnZVKJZhlanl6c+j8qkYcy6+WrLnyVDBL5CVh2UW1yMirtnI2kfPZlVMCQ6fSVZ1GhSmJ4Zd4hH1dmRwJH63adGwUgW8zWRLmrhzyrObo0aMQBAErV66En59fl+f7+flh5cqVpscSEREROYI8E4iTwZyf2YQwD28OvVVWChbko8X4/qEK7cY+Jg8MR0Ko9N993aGLCu2GqOe2Z5VIjicnhsPHS23lbPvz9dJglmwyGaeEuS+HBIFaWtq6i48YMaLbj2k/t7WVjd6IiIjIMQrk4+E5GczpxcknhHl4JpC8H9CsIZHQulk2m0ol4MZx0mygr34qQH2zXqEdEXVfq8GIXSelQSB5AEYJ8ilhB89VoKSmycrZ5Moc8huhb9++AIDq6u6nadbU1EgeS0RERGRvhVXSJ7yxzARyeswE6lBe14y0cxWSNXcrBWv3q7EJ6NzmqL7FwMwFcgmHzlegpkkasJyVrPz0vhmDI+Cv62gZLIpt0/fI/TgkCPTLX/4Soiji888/7/ZjPvvsMwiCgOuuu86OOyMiIiLqUCjPBOJkMKcXL8sEyvPgIND2rBJ0ajMCH60a0wZFKLchO4oO8saVydLsiY/TchXaDVH3yUvBhsUFItoJ3nDw1qpxlaw59aYMBoHckUOCQA8++CAGDBiAVatW4ZNPPuny/M8++wyrVq1C//798fDDDztgh0RERERAgTwTiOVgTs9SOZgoilbOdm/yUrDpSRGK9hmxtxtTpSOsf8qtQnZRjUK7IeqaKIrYLhsNP3uI8llA7RaOiJEcp1+oNBuYQK7PIUGgoKAgbNu2DWPGjMFNN92Ea6+9Fhs2bEB+fj5aW1uh1+uRn5+PDRs24LrrrsONN96IMWPGYPv27QgKCnLEFomIiMjDGYwiimrkQSDl352lS4sP9pUc1zXrUdPoeb1h6pr12Hu6TLI2d5jzvLi0h5mDIxAZIB1hvY7ZQOTEzpTW43x5g2TNmYJAUwdFIMBbI1ljSZj70XR9yuVTqzvegRBFERs3bsTGjRutni+KItLT0zFgwACr5wiCAL3e837BExERkX2U1jZLRvYCLAdzBdFB3hCEtv4V7fKqGhDk61lvJO4+WYoWvdF0rFEJuHKw87y4tAeNWoXF4+Lx5s4zprUvjuTjj/OS4a113wwocl3yLKDoQG+kxAYqtBtzXhoV5qZE47PDeaa1jRmFuHOq9dfl5HockgkkiqLpj/zY0p/unOOpab5ERERkH/LJYF5qFcL8vBTaDXWXl0aFqABpxpYnNoeWl4JNGhiGIF+tQrtxnBvHSUvCqhtbzf4uiJyFvB/QlUMiIQiClbOVIS8JO5pbhdyKBitnkytySCbQn//8Z0fchoiIiKjX5JPBooO8oVI515NzsiwuxEdSyudpY+Kb9QbszJa+uJzjplPB5PqE+WJKYjj2dSqF+zjtIhaNilNwV0TmKutbkH5BOr1vthOMhpebnBiOEF8tKhtaTWubMgrx2xkDFdwV2RKDQERERESwNBmM/YBcRVywDw5fqDQde9qEsB/OlKO2uaNNgiAAc4e6dylYZzemJkiCQAfOVuBcWT36h/spuCsiqZ0nzaf3XTEwXLkNWaFVq3D1sGjJtL1NGQUMArkRh5SDERERETk7TgZzXfIx8Z5WDrZVVv40OiEYkYGeE8SckxKFEFnp2/pDbBBNzkVeCjZlULjT9q5aOCJWcny8oAbnyuoV2g3ZGoNARERERGAmkCuzNCbeUxiMIr47IW02O9dDSsHa6TRqXD8mXrL22eE8tBqMVh5B5FgteiN255RK1pyxFKzdhP6hCPeX9sTbdLRAod2QrTmkHEyutbUVP/74IzIzM1FR0VYXGRoaimHDhmHMmDHQat2/iR0RERE5l4JqaSZQDDOBXEZcsOcGgX68WImyuhbJmqcFgQBgSWoC1u47Zzouq2vG9qwSXD3M8/4uyPmknatAXbN0svXMZOcNAmnUKswbFoP3D1wwrW3KKMS9swYpuCuyFYcGgRoaGvD000/jP//5DyorKy2eExISgrvuugtPPPEEfH19Hbk9IiIi8mAFssBBXDAzgVyFvBysor4FDS16+Hop8n6nQ23JlJaCDY4KQD8P7IUzKCoAY/uGSHpDrTt0kUEgcgrbZKPhRyYEIzLAuX/HLBwhDQKdLK7FqeJaDIoKUHBXZAsOKwe7ePEiRo0ahRdeeAEVFRVWx75XVFTg73//O0aPHo28vDxHbY+IiIg8WIveiLK6ZslaTBAzgVyFpf5N8qCeOxJFEVtOSINAc1M8pyG03JLUBMnx7pxSj/g6IOcmiqJZEGi2E2cBtUvtF4qoQJ1kbWNGoUK7IVtySBCotbUV8+bNw+nTpyGKIpKTk/H3v/8du3btQnZ2NrKzs7Fr1y688MILGDp0KERRxKlTpzBv3jzo9fqub0BERER0GYprmiCK0rVYBoFchq+XBqF+0v4VnjAh7ERhDXIrpP+fnjIa3pIFI2IQoOvI/hJF4JN0NogmZeUU15n9PJrtAtP7VCoB84fHSNY2ZxRAlP+yJJfjkCDQmjVrkJWVBUEQ8Pjjj+PYsWNYsWIFpk2bhqSkJCQlJWHatGl4+OGHkZGRgSeeeAIAcOLECaxZs8YRWyQiIiIPJs8W8PVSI9DH/UuJ3Im8L5AnBIG2HJdmF8SH+CAlNlCh3SjP10uDa0ZJpxp9mp4Hg5EvWkk58iyguGAfJEe7RkmVfErYmdJ6ZBfVKrQbshWHBIE+/fRTCIKAa6+9Fk8//TTUauuj8FQqFf7617/iuuuugyiK+PTTTx2xRSIiIvJghfKm0EHeEARBod1Qb5iNifeAMiD5aPi5KdEe/3V70/g+kuP8qkbsPVVq5Wwi+9suCwLNGhLpMt+nY/oEmwXYN2VwSpirc0gQKDMzEwDw61//utuPueOOOwAAx44ds8ueiIiIiNoVyMbDW+oxQ87NbEKYm2cCXSg3f0feE6eCyQ2LCzLLhlp/iCVhpIyyumYcya2SrM0a4vylYO0EQcCCEdKSsE0ZhSwJc3EOCQJVV1cDAGJjY7s4s0NMTNsXW01NjV32RERERNSusMo8E4hcS5yHZQJtkWUBhfl5YWzfEIV241yWyLKBvjtRjNLaZitnE9nPjuwSSb85Py81Jg4IVW5DvbBQFgS6UN6AzHy+RndlDgkChYa2faGfO3eu249pP7f9sURERET2UijLBOJkMNfjaZlA8n5AVw2NglrlGiUm9rZoVCy8tR0vc/RGEZ//yKnD5HjyUrBpSRHQaay3RnFGw+OC0CfUV7LGkjDX5pAg0JgxYyCKIt58881uP+att96CIAgYPXq0HXdGREREBBTIMoFig5kJ5GrkmUDFtU1o0RsV2o19ldQ04fCFSskaS8E6BHprsWC4tAJh/aFclrCQQzW1GrD3VJlkzZVKwdoJgmCWDcSSMNfmkCDQTTfdBADYtWsXfv3rX6O+vt7quQ0NDbjzzjuxY8cOAMDNN9/siC0SERGRB2NPINcXHyx9p1oUgSJZw293sfWENLvAX6fBFYlhCu3GOd00PkFyfK6sHgfPVSi0G/JEB86Wo6HFYDoWBGDm4AgFd9R78r5A+VWNZr2OyHU4ZPbp//3f/+Hf//43fvjhB7z33nv4+uuvccMNN2DChAmIjGzrjl5cXIyDBw/ik08+QWlpWwf/yZMn4//+7/8csUUiIiLyUI0tBlQ1tErWWA7megJ9NAjQaVDbrDet5VU2oE+Y7yUe5Zrk/YBmJke6XImJvY3tG4LESH+cLqkzra0/lIuJAxgsI8fYnlUiOR7TJwRh/jqFdnN5hsYEYkC4H86WdSRzbDpaiDF92IfMFTkkE0gQBGzcuBETJ06EKIooKSnBm2++iaVLl+Lqq6/G3LlzsXTpUrz55psoKSmBKIqYNGkSvvzyS0dsj4iIiDyYPAsIYDmYKxIEwawkLM8Nm0NXN7Zi/5lyydrcFNcrMbE3QRCwJFWaDfT1sUJUywK+RPYgiqLF0fCuylJJ2NfHCmE0siTMFTkkCAQAISEh2LdvH15//XUMGTIEoiha/DNkyBC88cYb2Lt3L0JCGFkkIiIi+5JPBgvy0cLXyyHJ0mRjntAcemd2CfSdXnh5aVSYMdh1X1za03Wj46BVdzTLbtYb8cURNogm+ztRWIMCWTnqbBfsB9TZwpHSPltFNU1Il/UmI9fg0Gc4KpUK99xzD+655x4UFhYiMzMTFRVttbmhoaEYNmyYaTQ8ERERkSPIM4E4Ht51ecKYeHkp2JTEcPjrGLS0JMxfhzkp0dicUWhaW3coF7dd0Q+CwElqZD/yUrA+ob4YFOmv0G5sIykqAElR/sgp7iix3JRRgPH9Oc3b1TjkN8avf/1rAMC8efOwePFiAEBMTAwDPkRERKQ4eSYQm0K7LnfPBGpqNWDXyVLJGkvBLu2m1D6SIFB2US2O5lVjVEKwcpsit2epFMwdAo8LR8Tile9yTMdfHyvCn3+RArXK9f/fPIlDysHee+89vPfeewgMDHTE7YiIiIi6rZCZQG7D3TOB9uSUorG1Y9qQSnD9EhN7u2JgGBJCpV8X6w9dVGg35AlKappwNK9asuYu36fyvkBldc04eLbcytnkrBwSBIqIaBuFFxXlHl/8RERE5D7kfRuYCeS65JlABVWNMLhR49Itx6XZBan9Ql122pCjqFQCbhwnbRD91U8FqO80RY7IlrZnS0vBAnQapPZzj5KpARH+GBojTezY2CnTjlyDQ4JAQ4cOBQBcuHDBEbcjIiIi6rbCKmYCuYv4EOk4eL1RREltk5WzXYveYMT2bGkQaG5KtEK7cS2/GpuAztUq9S0GbMooUG5D5NbkpWDTBkfAS+OweUx2t3CkNBvo28xCtBqMCu2GesMhX4233HILRFHEe++954jbEREREXWLKIookAWBmAnkusL9vaCTvdhyl75AaecqUCUbbz6H/YC6JTrIG1cmSyeofZyWq9BuyJ01tRqw73SZZG22C4+Gt2ThcOmUsMqGVuw/w5IwV+KQINCyZcswa9YsfPnll3jqqacgiu6TlktERESuq6ZJj/oWg2QtNohBIFclCIJ5c2g36Qsknwo2LC7QLPOJrLsxtY/k+KfcKmQX1Si0G3JX358uQ1NrR1aMWiVg5mD3CgL1CfPFyPggyRoz61yLQ6aD7d27Fw8//DBKS0vx9NNPY/369bjxxhsxYsQIhISEQK1WX/Lx06ZNc8Q2iYiIyMPIm0IDQFQQe6y4srgQH5wtqzcd57lBJpDRKJr1A5o7lKVgPTFzcASiAnUormk2ra1Ly8VT16QouCtyN9tko+HH9g1BsK+XQruxn4UjYiXNr7/NLMIz1w53q7I3d+aQINCMGTMkI/FycnLw9NNPd+uxgiBAr2fjNiIiIrI9+Xj4cH8ddJpLvzlFzs0dM4Ey8qtRVCP9Wr16GINAPaFRq7B4bALe2HnatPbFkXz8cV4yvLX8nqfLZzSK2CHr2+VupWDtFoyIwbNfZ5mOa5r02He6FFcms0TVFTgsVCeKYq//OMKFCxfw0EMPITk5GX5+fggNDUVqaipefPFFNDQ02Ow+33zzDa677jrEx8dDp9MhPj4e1113Hb755pteXzMjIwNarRaCIEAQBNx+++022y8REZE7K6iW9wNiU2hXZxYEcoNMIHkp2IBwPyRG+iu0G9d1g2xKWHVjq9nfLVFvZRZUSzLNAGCWm4yGl4sN9sHYviGStU1HOSXMVTgkE2jnzp2OuE2vbdy4EbfccgtqajrqghsaGpCeno709HSsWbMGmzdvRmJiYq/vYTQacdddd2Ht2rWS9fz8fOTn52PDhg248847sWrVKqhU3Y/NGY1GLF++nNlSREREvSDPBOJkMNcXHyoNAuVV2u7NPKXIAxVzUqIlWfbUPX3CfDElMVzSuPfjtItYNCpOwV2Ru5CXgvUP98PACPcN1i4cEYPDFypNx1tPFKOp1cDMOhfgkCDQ9OnTHXGbXjly5AhuvPFGNDY2wt/fH48++ihmzpyJxsZGrFu3Dv/5z3+Qk5ODBQsWID09HQEBAb26z+OPP24KAI0ePRqPPPIIBg4ciDNnzuCFF17AkSNHsGbNGkREROBvf/tbt6/7xhtvIC0tDZGRkSgpKen6AURERGQizwSKYVNolxcXLG2WnF/VCFEUXTZocrqkFmdL6yVrczkVrNduTE2QBIEOnK3AubJ69A/3U3BX5A7ko+HdtRSs3fzhMfjrphNoL9ypa9Zjd04p5qawVNXZeXznpvvuuw+NjY3QaDTYunUrHnvsMUyaNAlXXnklVq9ejRdeeAFAWx+jl19+uVf3yMnJwUsvvQQAGDduHL7//nssWbIEqampWLJkCfbt24dx48YBAF588UWcPn36UpczycvLwxNPPAFBEPDiiy/2am9ERESeTJ4JxHIw1xcXIg3kNbUaUVHfotBuLp+8IXRUoA4j44OV2YwbmJMShRBfrWRt/SGOi6fLU1jdiOMF0mlz7loK1i4q0Bup/UIla5syWBLmCuwaBNq8eTPuvfdeXHPNNViwYAGWL1+ODz/8EK2trfa8bbelpaVh7969AIA77rgDkyZNMjvnoYcewpAhQwAAr776aq/2/s9//tNUrvX666/Dx0f65MTX1xevv/46AECv1+Mf//hHt657zz33oLa2FrfffjsnqBEREfWCfDpYbDAzgVxdVIAOapU068eVm0OblYINjYZK5ZpZTc5Ap1Hjl2PiJWufHc5Dq8Fo5RFEXdsuKwUL8tFinKxnjjv6xYgYyfH2rGI0thgU2g11l12CQMXFxZg0aRKuueYavPXWW9i8eTO+/fZbvP3221i6dCmSk5Nx7Ngxe9y6RzZs2GD6eNmyZRbPUalUWLp0KQCgqqqqx/2NRFHEl19+CQBITk7GxIkTLZ43ceJEDB48GADw5ZdfdtkQ+7PPPsNXX32FsLAwZgERERH1giiKKKiW9wRiEMjVadQqRAdKM7pctTl0flUjMjqNYQbAUgsbWDJe2iC6rK7Z7EU8UU9sk5WCzRgcAY3a/Yturh4Wg84x6YYWA3Zk83vJ2dn8K9NgMOCaa67BwYMHrU77OnfuHObOnYuysrKuL2hH+/btAwD4+flh7NixVs/r3NPo+++/79E9zp07h4KCArPrXOo++fn5OH/+vNXzqqur8Yc//AEA8MILLyAsLKxHeyIiIiKgvL4FLXrpu/8sB3MP8pIwV80E2irLAgry0WLCgFArZ1N3JUYGmGVprDt0UaHdkKtraNHjhzPlkjV3LwVrFxGgw6SB0teimzIKFNoNdZfNg0CffPIJDh06BEEQkJiYiLVr1+LYsWPIzs7Gp59+asqEKS4u7nWPHVvJysoCACQmJkKjsd4jOzk52ewx3XXixAmL17mc+6xcuRKFhYWYOnWq1QwmIiIiujR5PyC1SkBkAINA7iA+WD4hzDWDQPJSsFlDIqH1gOwCR7gxVZoNtDunFAUuGiwkZe09VSZ5Q0GjEjA9KULBHTnWwhGxkuMd2SWoa+bkamdmlyAQAPTr1w9paWlYtmwZUlJSkJSUhF/+8pfYu3cvpk+fDlEU8emnn9r69t3W1NRkykSKj4+/5LkhISHw82ubGJCb27PGcXl5eaaPu7pPQkLHLyNr9/n++++xevVqaLVa/Otf/7LppIu8vLxL/iksZKMvIiJyH/LJYJZ6yZBrig9x/SBQRX0L0s5VSNZYCmY7C0bEIEDX8SawKAKfpLNBNPWcfCrY+P6hCPLRWjnb/VydEg1Np9+dzXqj2d8JORebB4GOHDkCQRDw0EMPITg42OzzarUaf/nLXwC0lUrV1tbaegvd0vm+/v7+XZ7fHgSqq6uz233a72HtPi0tLbjrrrsgiiIefPBBpKSk9GgvXUlISLjkn/Hjx9v0fkREREoqlL3rH8Om0G7DHcrBtmUVw9ipRaS3VoVpgzwnu8DefL00uGaUNIPhk0O5MBgv3ZeTqDOjUcSO7FLJmqeUgrUL8fPC5MRwydrGo0wecGY2DwKVlrZ9E7SPPLek8+eU6gvU1NSRAu7l5dXl+TqdDgDQ2NizJxE9uU/7Pazd5/nnn8eJEyfQr18//OlPf+rRPoiIiEiq0KwpNEvB3EVcsK/kOL+yQaGd9J68H9D0pAj4eKkV2o17uml8H8lxQXUT9p4qtXI2kbmjeVUoq2uWrM0eEqnQbpSzUDYlbE9OKaobnWMiOJmzeRCoPXhxqawXX9+OX8ydgySO5O3d8USvpaWly/Obm9u+ueXj3W15n/Z7WLrPyZMn8be//Q1A25j5zn+HtpKbm3vJP2lpaTa/JxERkVLkk8E4Ht59yDOBapr0qG1ynRck9c167DklfaOUpWC2NywuCMPiAiVr69JYEkbdJ58Klhjpj75hflbOdl9zUqLh1alfWYvBiO9OsCTMWVnvhuwgXY1Ct5eAgADTx90p8aqvrwfQvdKx3t6n/R7y+4iiiLvvvhvNzc247rrrsHDhwh7tobu66llERETkTszKwZgJ5DYs/VvmVzUiOdo1+nTsOllq1mh2VrJnlZg4yo2pfZCZn2k63pZVjNLaZkQE6C7xKKI227Ok49BneWAWENA2uXBaUji2dfr72JxRgF+N5etLZ6R4EEgp3t7eCAsLQ3l5uaR5syWVlZWmAE3n5s3d0Tmw0tV9OjeD7nyfAwcOYPfu3QCAK664AuvWrTN7bHsZHtDWa6n9nGHDhmHYsGE92jMREZEnkE8CYiaQ+/DWqhERoENpbUeWdX5lI5KjAy/xKOchnwo2aWAYgnxdI4DlahaNisWzm0+gqbUt6KY3ivj8xzz8ZvpAhXdGzi6vsgHZRdL+tld5WD+gzhaOiJUEgfaeKkNVQwuCfbtuvUKOZbcg0FtvvYXIyK4jod05z179b4YOHYq9e/fi9OnT0Ov1VsfEZ2dnmz4eMmRIj+9h6To9uU/nMrEVK1Z0ec89e/Zgz549AIA///nPDAIRERHJGIwiimulfRxigxgEcifxIT6SIJCrTAhr0RuxM1uaXTCHpWB2E+itxYLhsfj8x443a9cfysXd0wbYdAovuR95FlConxdG9wlRaDfKmz00CjqNCs36joDqluNFuDG1TxePJEezWxDoX//61yU/3/5DtavzAPsFgaZMmYK9e/eivr4ehw8fxoQJEyye156FAwCTJ0/u0T369++P2NhYFBQUSK5jSXvgJi4uDv369evRfYiIiKj7SmqbzKYAxQSzHMydxAX74MjFKtOxq0wI++FMGWqb9ZK1OUM9N7vAEW4anyAJAp0rq8fBcxWYOCBMwV2Rs5P3A5oxOAJqlecGDv11GswcHIlvO2UybsooZBDICdm8MTTQ1sPGVn/s6dprrzV9/M4771g8x2g04r///S8AIDg4GDNnzuzRPQRBwKJFiwC0ZfocOHDA4nkHDhwwZQItWrRI8s7DjBkzuvx7OnfunOn82267zbT+1FNP9Wi/REREnqCgStoU2kujQpgfU9bdidmYeBfJBNpyXPrCcnSfYEQFMkBpT2P7hiAxUtr3c13aRYV2Q66gtqkVB86WS9Zme3ApWLuFI6VTwn44U45y2fQ0Up7NM4F27txp60vazfjx4zF16lTs3bsXa9euxW233YZJkyZJznn55ZeRlZUFALjvvvug1UrrsXft2mUKDN1222149913ze5z//33Y/Xq1TAYDLj33nuxZ88eyfSvxsZG3HvvvQAAjUaD+++/34b/l0RERCRXWG3eFJqlH+4lXtbjKc8FMoEMRtFsog6ngtmfIAhYkpqAZzZnmda+zizCXxpa2YuJLNp7qgytho6EBa1awNRB4QruyDlcmRwJH60aja0GAG0/077JLMItE/sqvDPqzOZBoOnTp9v6knb16quvYvLkyWhsbMScOXPw2GOPYebMmWhsbMS6deuwevVqAEBSUhIeeuihXt0jKSkJK1aswPPPP4/09HRMnjwZK1euxMCBA3HmzBn8/e9/x5EjRwC09fwZNGiQzf7/iIiIyFyhLBOIk8HcjytmAh25WIky2bvmDAI5xvVj4vH3b7NNL+xb9EZ8cSQPt0/ur/DOyBnJS8EmDghDgDcDhr5eGswaEolNGYWmtU0ZBQwCORmPnQ7WbvTo0Vi/fj1uueUW1NTU4LHHHjM7JykpCZs3b5aMe++pZ599FiUlJXj77bdx5MgRLFmyxOycO+64A88880yv70FERETdUyDLBGJTaPcTF+wrOS6ra0ZTqwHeWrVCO+rat5nSqWCDowLQP9xPod14llA/L8xJicbmTi9e1x3KxW1X9GOWIEkYjCJ2nSyVrLEUrMPCEbGSINDBcxUoqWlCJMtanYZdegK5ml/84hfIyMjAAw88gKSkJPj6+iI4OBjjxo0zZekkJiZe1j1UKhXWrl2LzZs3Y9GiRYiNjYWXlxdiY2OxaNEifP3111izZg1UKv6TEBER2ZtZJhCbQrsdeSYQABQ4cUmYKIrYckIaBJqbwheWjnSTrIFtdlEtjuZVK7QbclZHLlaior5FsjZrSNdTsT3FjMER8PPqCLaLIvD1scJLPIIczeMzgdr17dsXr7zyCl555ZUePa69aXN3zZ8/H/Pnz+/p9rrUr18/uzfSJiIichfmPYGYCeRu/HUaBPtqUdXQalrLq2zEgAj/SzxKOVmFtcitkH5dcjS8Y10xMAwJoT6Sf4d1aRcxKiFYuU2R0/lOVgqWHB2A+BBfK2d7Hm+tGlcNjcKGnwpMa5syClla6USYdkJEREQeJ1+WCRQXzCCQO5L/uzrzmPgtx6VZQHHBPkiJDVRoN55JpRJw47gEydpXRwtQ16xXaEfkjLZnlUiOmQVkbuGIWMlx+oVKp87E9DQMAhEREZFHadYbzJrvshzMPZkFgZy4ObQ8CDQ3JZq9aBSweFwCVJ3+2htaDNh0tMD6A8ijXCivx+mSOsnaLPYDMjM1KRwB3tKiI5aEOQ8GgYiIiMijFFc3m62xHMw9mU0Ic9J3oi+U1yO7qFaydvUwloIpISrQG1cmSzM71h3KVWg35Gy2ybKAwv29MCo+WJnNODGdRm022XBjBoNAzoJBICIiIvIo8slgfl5qBHqzTaI7cpVMIHkWUJifF8b2DVFoN7RE1iD6p9wqZBfVKLQbcibbZf2ArkyOhErFjD1LFo6IkRwfza1CbkWDQruhzhgEIiIiIo9i1hQ62IdlN24q3kUygbYcl76wvGpoFNR8YamYGYMjEBWok6ytS2M2kKerbmxF2rkKyRpLwaybnBiOEF+tZG0Ts4GcAoNARERE5FEK5OPhg9gPyF3JJ/YUVjei1WBUaDeWldQ24ceLlZI1eRkFOZZGrcLisdIG0V8cyUdTq0GhHZEz2J1TCr2xYxqzl0aFqYPCFdyRc9OqVWZlrZsy2F/LGTAIRERERB5FngkUy35AbkteDmYUgaLqJitnK+O7E8UQO15Xwl+nwRWJYcptiAAAN8imhFU3tuLbzCIrZ5MnkJeCXTEwDL5eLCW+FPmUsOMFNThXVq/Qbqgdg0BERETkUQrlmUCcDOa2gn218PVSS9acrSRMXgo2Y3AEdBq1lbPJUfqE+WJKojTLY92hiwrthpSmNxix62SpZI2lYF2b0D8U4f5ekrXNzAZSHINARERE5FEKZJkgzARyX4IgOHVz6JqmVuw/UyZZYymY81gyXpoNdOBsBbMYPFT6hUpUN7ZK1mYPibRyNrXTqFWYN0zaIJp9gZTHIBARERF5lAJZJkhsMINA7syZx8TvzC5Bq6FTjxG1CjOT+cLSWVw1NMqsse16jov3SPJSsJTYQMTwDYRukU8Jyy6qxemSWoV2QwCDQERERORBGlr0Zu/mshzMvTlzJpC8x8yUQeHw17HHiLPQadT45Zh4ydpnh/Ocrrk42d+2rBLJMUvBui+1X6jZtL2NR5kNpCQGgYiIiMhjyCeDASwHc3fOmgnU1Gow6zEyN4UvLJ2NvCSsrK7ZLCuE3NuZ0jqzMkCWgnWfSiVg/nB5SVgBxM4d8cmhGAQiIiIijyGfDBbsq4WPF5vwujP5mPi8ygaFdiK191QZGjuNHFcJwGxmFzidxMgAjOsbIllbx5IwjyIP+kUG6DAsNkih3bgm+ZSwM6X1yC5iSZhSGAQiIiIij2E2GYxZQG5PXg5WUNUEo1H5d6C3HJeWgo3rF4owf52Vs0lJN6ZKs4F255Q6TUYZ2Z+lUjCVSlBoN65pTJ9gs5/FmzglTDEMAhEREZHHKJBlAsUGsR+Qu4uXlYO1GIwoq2tWaDdt9AajWXYBp4I5rwUjYhDQqVeTKAKfpjMbyBNUNbTg8IVKyRpLwXpOEATMHy79Gbcpo5AlYQphEIiIiIg8hlkmEJtCu70Ifx281NKnvHkKZ3Gkna9AZYO0QTn7ATkvXy8NFo2WlrN8cigXBifIKCP72nWyVPLv7K1VYXJiuII7cl3ykrAL5Q3IzK9RaDeejUEgIiIi8hjyTCCWg7k/lUowC/YpPSFsi2wq2LC4QLPeReRclqT2kRwXVDdh76lSK2eTu/hOlrE3JTEc3lr2keuNEfFB6BMq/TnHkjBlMAhEREREHqOwWpoJJO9RQO7JbEy8gplAoihi6wlZKdhQloI5u2FxQRgWFyhZW5fGkjB31qI3Yo9sgh9Hw/eeIAhYMEI+JYwlYUpgEIiIiIg8giiKKKiSZwKxHMwTyPsCKTkhLCOv2iwYOXcYg0Cu4EZZNtC2rGKU1irbX4rs59D5CtQ26yVrs5LZD+hyLJQFgfKrGnEkt0qZzXgwBoGIiIjII9Q06tHQYpCsxTITyCPEBUtLEJQsB5NPBesf7odBkf4K7YZ6YtGoWPh0KgXSG0V8/mOegjsie9omKwUbGR+EyEC+cXA5hsYEYkC4n2Rt09FChXbjuRgEIiIiIo8g7wckCEAUn9B7hLgQ5ykHkweB5qREQRA4btoVBHprzcpZ1h/KZTmLGxJF0SwIxFKwyycIglk20NfHCmFkk3WHYhCIiIiIPEKhLAgU7q+Dl4ZPhTyBWU+gykZFXrifLqnDmdJ6ydrVHA3vUpakJkiOz5XV4+C5CoV2Q/ZyqqQOuRXS3xmzOBreJhaOlE4JK6ppQvqFSoV245n4zIeIiIg8QoFsPHws+wF5DHlPoPoWA6obW62cbT/yLKCoQB1Gxgc7fB/Ue2P7hiBRVr63Lu2iQrshe5FnAcUGeWNoTKCVs6knkqICkBQl/R7ilDDHYhCIiIiIPII8E4jj4T1HdJA3VLKKqzwF+gKZlYINjYZKvjFyaoIgmGUDfZ1ZhKqGFoV2RPawPatEcnzlkEiWbdrQwhHSbKCvjxXBwJIwh2EQiIiIiDxCoSwTKCaYmUCeQqtWmfV/cnRfoIKqRmTkVUvW5rIUzCVdPyYeWnVHQKBFb8SGI/kK7ohsqbyuGT9elJYnsR+Qbcn7ApXVNePguXKFduN5GAQiIiIijyBvDB3LTCCPYj4m3rFBoK2yLKAgHy0mDAh16B7INkL9vDBHFsBbxwbRbmPnyVJ0/qf09VJj0oAw5TbkhgZE+JuV123K4JQwR2EQiIiIiDxCYbWsJxDHw3sUS82hHWnLcdmkoeRIaNV8Ku6qbkrtIznOLqrFUVmmF7mmbSek36tTB4XDW6tWaDfua+FIaTbQt5lF0BuMCu3Gs/A3DxEREbk9o1FkOZiHMx8T3+Cwe1fWtyDtvHSC1NxhLAVzZVcMDENCqPRrig2iXV+z3oC9p0olaywFs4+Fw6V9gSrqW/DDGZaEOQKDQEREROT2yutb0CJ7h5HlYJ4lLthXcuzInkDbsoolTU+9tSpMGxThsPuT7alUAm4cJ20Q/dXRAtQ16xXaEdnCgbMVqG8xmI4FAbgymaPh7aFPmC9GxgdJ1jglzDEYBCIiIiK3J58MplEJiAjQKbQbUoJZJpADy8HkU8GmJ0XAx4vlJa5u8bgEydS5hhYDNh3li1hXtl02Gn5UQjDC/fm7wl7kU8K+zSxCi54lYfbGIBARERG5vQJZKVhUoDfUHM3tUeQ9gSobWtHQYv+sjfpmPfacKpOscSqYe4gK9DbLEvn4UK5Cu6HLJYqi2Wj42SwFs6v5silhNU167DtdauVsshUGgYiIiMjtyTOBYoLYD8jTyKeDAY7JBtqdUyp5Z1ujEjArmS8s3cUSWYPoo7lVyCqsUWg3dDmyi2rNykQZBLKvuGAfjOkTLFnbdJRTwuyNQSAiIiJye/LJYDGcDOZxvLVqhPt7SdYcMSZeXgo2cUAYgny1dr8vOcaMwRGICpSWC61nNpBLkk8Fiw/xQVKUv0K78RzykrCtJ4rR1GqwcjbZAoNARERE5PYKZO/uxjITyCPJS8Ly7NwcukVvxI5saXnJ3BRmFrgTjVqFxWOlDaL/92MeX8S6oG3Z5qVggsCyYXtbMCIGnf+a65r12J3DkjB7YhCIiIiI3J5ZJhCDQB7J0c2h958tR22TtO/QHPYDcjs3pkqDQDVNenybWWTlbHJGJbVNOJpbJVmbNYRTwRwhKtAbqf1CJWubMlgSZk8MAhEREZHbK5RnArEczCPJM4HsPSZeHggY3ScYUYEMQLqbhFBfTEkMl6x9nHZRod1Qb+yUZQH56zSY0D9Mod14nl/IGkRvzypGYwuz6eyFQSAiIiJya3qDEUU10kwgBoE8k1kQqLLBbvcyGEV8J+sxwqlg7mvJeGk20MFzFThbWqfQbqintsmmgk1PioCXhi+VHeXqYTHoPLCzocVgVkpLtsOvbCIiInJrJbXNMIrSNZaDeaa4EF/JsT0zgY5crERZXbNkjUEg93XV0CiEyBp+r09ng2hX0NRqwN5T0h40LAVzrIgAHSYNlGZebcooUGg37o9BICIiInJr8vHwOo0KoX5eVs4mdyYfE19c04xmvX1KDuRTwZKi/NE/3M8u9yLl6TRq/HJMvGTt88N5aDUYFdoRddcPZ8rQ1Nrx76QSgJmDGQRyNPmUsB3ZJahr1ls5my4Hg0BERETk1gqqzJtCc+KLZ5I3hgaAQtnXhy2Ioogtx1kK5mnkJWFldS3YnlVs5WxyFvJSsLF9QxDCNwoc7uqUaGg61YQ16438/rETBoGIiIjIrckzgWKC2A/IUwV6axHgrZGs2aMkLLuoFhcrpP2GGARyf4mRARjXN0Sytu4QS8KcmSiK2CELAs0aEqXQbjxbiJ8XJssarHNKmH0wCERERERuzSwTKJj9gDyZeXNo2weB5KVgccE+SIkNtPl9yPksGd9Hcrw7p9TuU+io944X1JgNDpjNIJBiFsqmhO0+WYqaplaFduO+GAQiIiIitybPBIplJpBHk/cFyrPDC3T5aPi5KdEsQfQQ84dHI0DXkW0misAnzAZyWttk5Ub9wnwxMIK9u5QyJyUaXuqOEEWLwYjvjrMkzNYYBCIiIiK3VljNTCDqYO9MoIvlDcguqpWszU1hZoGn8PXSYNFoaYPbT9NzYZCPKCSnIA8CzRoSxYCtgoJ8tJiWJC8J45QwW2MQiIiIiNxagSzTIzaYmUCeLN5sTHyDlTN7R14KFubnhXH9Qm16D3JuS1KlJWEF1U3YIxtBTsorqm5CZn6NZI2j4ZUnnxK291QZqhpaFNqNe2IQiIiIiNxWs96Asjrpk0eWg3k2+YSwPBtnAsmDQLOHREGtYmaBJxkWF4RhcdIeUOvTWBLmbLZnS7OAArw1SGXAVnGzh0ZBp+kIU+iNotnPVbo8DAIRERGR2yqqNh//zXIwzyYvByuqbrJZqU5pbTMOX6yUrF09jFPBPJE8G2hbVjFKa5sV2g1Zsl02FWzG4Eho1Xx5rDR/nQYzB0szsjglzLb4VU5ERERuSz4ZzF+nQaC3VqHdkDOQZwLpjSKKa8yDhb3x3YliiJ3iSf46Da5IDLPJtcm1XDMqFj5atelYbxTx+Y95Cu6IOmto0eP702WStdksBXMaC2RTwn44U47yOgZRbYVBICIiInJb8slgMUHMAvJ0YX5e8NZKnwLbaoT3t7KShRmDI6DTqK2cTe4s0Ftr9kJ2/aFciCIbRDuDfafK0Kw3mo7VKgEzkhgEchazhkRKgqgGo4hvMlkSZisMAhEREZHbMp8Mxn5Ank4QBLPm4LaYEFbT1Ir9Z6SZBXNTWArmyZakJkiOz5XV48DZCoV2Q53JS8FS+4UgyJdZos7C10uDK4fIS8I4JcxWGAQiIiIit2U2GYyZQAQLY+JtkAm0M7sErYaOLA8vtQozBkdc9nXJdY3tG4LESH/J2vpDFxXaDbUzGkVsz5YGgWYPiVJoN2TNL2SZdAfPVaDERqW7no5BICIiInJbZplAnAxGMB8Tn1d5+WPi5dNrJieGIYD9pzyaIAhm2UBfZxZx3LXCMvKrUSbrLzOLQSCnM2NwJPy8OkrCRBH4+hgbRNsCg0BERETktswygTgZjADE23hMfFOrAbtOlkrWOBWMAOD6MfHw6jRxqkVvxLs/nFduQ4TtWdLR8AMj/NA/3E+h3ZA13lo1rhoqDc5xSphtMAhEREREbss8CMRMILJ9Odi+U2VoaDGYjlUCy0uoTaifF+akSL8W/rntFDYcyVdoR/TdCWkQiN+rzmvhiFjJcfqFSrPf69RzDAIRERGRW6pv1qOmSS9Z43QwAszHxBdUNV7W1CZ5Kdi4fqEI89f1+nrkXpZN7me29tCnR7Eju9j8ZLKrvMoGZBfVStZYCua8piaFI8BbI1ljSdjlYxCIiIiI3JJ8PDzAnkDURp4J1NRqRHl97/q06A1GbJOVl3AqGHU2tm8oVswdLFkzGEX89oMfkXaO08IcaYesIXSwrxZj+gQrsxnqkk6jNvt5ypKwy8cgEBEREbmlgippU+gQXy18OjWZJM8VFegNjUqQrPV2THza+QpUNrRK1uYMZWYBSf1uxkDcOaW/ZK1Zb8Qd7x3CiYIahXblebbJRsPPHBwJjZoviZ3ZQtmUsJ9yq5BbcfnN/D0Zv+KJiIjILckzgZgFRO3UKgExsibhve0LtPW4NAsoJTYQCaG+Vs4mTyUIAh6bPwS/HBMvWa9t0mPp22k4X1av0M48R12zHgfOlEvWZg2JVGg31F2TE8MR4iudtLiZJWGXhUEgIiIickvyTCBOBqPO5CVhvRkTL4oitsr6AbEUjKxRqQT8/ZfDzRoRl9U145a1B1Fc02TlkWQL+06VosVgNB1r1QKmJUUouCPqDq1aZTZtcVNGgUK7cQ8MAhEREZFbYiYQXUpcsDRbpzflYMfyq1FQLX3hztHwdCkatQpv3DwaE/qHStbzKhuxdG0aqmWlhWQ7352QloJN6B+GQG+tlbPJmcinhGXm1zB77jIwCERERERuqVD24lxe/kOeTT4hrDflYPKpYP3D/TAo0v+y9kXuz1urxn9uG4eU2EDJ+sniWix7Nw0NLXorj6TeMhhF7DwpDQKxFMx1TOgfinB/L8kas4F6j0Ggn124cAEPPfQQkpOT4efnh9DQUKSmpuLFF19EQ4PtGk998803uO666xAfHw+dTof4+Hhcd911+Oabb7p8bHFxMdasWYObb74ZQ4cOhb+/P7y8vBATE4Orr74aq1evRmNj7+rZiYiI3E2B7EW9vPyHPFu8WTlYz59DfZspDQLNSYmCIAhWzibqEOitxXu/Ho/+4X6S9R8vVuG3H/yIFr3RyiOpN37KrUSFbAKgvCyPnJdGrcK8YdIG0ZwS1nsMAgHYuHEjRowYgVdeeQUnT55EQ0MDKisrkZ6ejkceeQSjR4/G6dOnL+seRqMRd955J+bPn48NGzYgPz8fLS0tyM/Px4YNGzB//nwsX74cRqPlH/j/+c9/EBcXh+XLl+Pjjz9GVlYW6uvr0draiqKiImzZsgV33303Ro4ciYyMjMvaKxERkasTRdGsJxDLwaizy80EOl1ShzOl0nIE9gOingj31+H9O8YjOlCapbg7pxQPfXoUBqOo0M7cj3wqWFKUPxu4uxj5lLDsolqcLqlVaDeuzeODQEeOHMGNN96Impoa+Pv749lnn8UPP/yA7du3Y/ny5QCAnJwcLFiwALW1vf8ie/zxx7F27VoAwOjRo/Hxxx8jLS0NH3/8MUaPHg0AWLNmDZ544gmLjy8uLobBYICXlxeuv/56/Pvf/8bu3bvx448/4tNPP8WcOXMAAKdOncLs2bORl5fX670SERG5uurGVjS2GiRrMUEsB6MO8syw2iY9qhu7349FXgoWGaDDqPhgW2yNPEh8iC/ev2M8gmXTjzYeLcBTXx2HKDIQZAvbs6RT/GYxC8jlpPYLRWSATrK28SizgXrD44NA9913HxobG6HRaLB161Y89thjmDRpEq688kqsXr0aL7zwAoC2QNDLL7/cq3vk5OTgpZdeAgCMGzcO33//PZYsWYLU1FQsWbIE+/btw7hx4wAAL774osWsIz8/P6xcuRJ5eXn4/PPPcffdd2PatGkYPXo0fvWrX2HLli148MEHAQClpaX405/+1Ku9EhERuQN5FpAgANEMAlEnMcHekFdu9aQ5tHwq2JyUKKhULAWjnhsUFYB3bk+Fr5dasv7+gQv4x7ZTCu3KfVwsb0BOcZ1kjaVgrkelEjB/uLwkrICB0l7w6CBQWloa9u7dCwC44447MGnSJLNzHnroIQwZMgQA8Oqrr6K1tecd+//5z39Cr29r8Pb666/Dx0f6zpOvry9ef/11AIBer8c//vEPs2s88MADeP755xERYX2M4XPPPYeYmLZvjP/9739WS8uIiIjcnXwyWIS/Dlq1Rz/tIRmdRm32rnJ3S8IKqxtxNK9asnZ1SoyVs4m6NrpPCFbdOhZatTSQ+Nr2U3jn+3MK7co9bJNlAYX5eWFUQrAym6HL8ouR0p+zZ0rrkV3EkrCe8uhnQxs2bDB9vGzZMovnqFQqLF26FABQVVWFnTt39ugeoijiyy+/BAAkJydj4sSJFs+bOHEiBg8eDAD48ssvexXR9PLywuTJkwEA1dXVKC8v7/E1iIiI3IF8bHcMm0KTBfKSsPzK7g0D2Xpc+qIyyEeLCQNCrZxN1D1TB0XgnzeONstQ+8vGE/jiCFs99Nb2bOn368zkSKiZteeSRieEIFaW1cspYT3n0UGgffv2AWgrtRo7dqzV86ZPn276+Pvvv+/RPc6dO4eCggKz61zqPvn5+Th//nyP7tOuubnZ9LFarb7EmURERO6rUJbRIX/SSAQAcSHSxrDdzQSS9wOalRzJTDOyiQUjYvDstcPN1h/+NAM7ZMEM6lpNUysOnq2QrM3maHiXpVIJWDDCfEoYS8J6xqN/W2VlZQEAEhMTodForJ6XnJxs9pjuOnHihMXr2Po+ANDa2or9+/cDAKKiohAaynekiIjIMxXKM4E4GYwsMMsE6kYQqLK+BQfPSV9UzuFUMLKhmyf0wYq5gyVrBqOI337wI9JkX3t0aXtySqHvNGXNS63C1EHW22uQ81s4IlZyfKG8AZn5NQrtxjVZj3y4uaamJpSVlQEA4uPjL3luSEgI/Pz8UF9fj9zc3B7dp/OUrq7uk5CQYPq4p/cBgNWrV5v+nxYvXtzjx3c1UaywkN3XiYjINRTIM4GCmQlE5szGxHejMfS2rGLJ6G5vrQrTk/iikmzrdzMGorK+BWv2dfQDatYbcce7h7Du7olIiQ1ScHeuY7tsNPykgWHw03nsS2C3MCI+CH1CfXGxoqN8d1NGAYbH83uiuzz2O6DzuHd/f/8uz28PAtXV1XV5bm/v4+fnZ/q4p/c5e/YsHn/8cdN9Hn300R49HpAGoYiIiFyZPBMolj2ByIJ4eRCoG5lAW2T9gKYNioCPF0vwybYEQcDjC4agqrEVnx3ueKO2tlmP294+hM9+Mwn9wv0ucQXSG4zYkS0NArEUzPUJQltJ2L92nTGtbcooxB/nJUOQN9Qiizy2HKypqePJoZeXV5fn63Rt0yMaG7s/OrSn92m/R0/v09DQgOuvvx7V1W1TKl5//XXExsZ28SgiIiL3ZDSKZtPBYtgTiCyIlwUHy+pa0NhisHp+Q4see0+VStauHsZSMLIPQRDw/PXDcdVQ6Tjzsrpm3LL2IIprmqw8kgDg8IVKVDdKJztfydHwbmGhrC9QflUjfsqtUmYzLshjg0De3h1PBltaWro8v73hsny8uy3v07mpc3fvo9frsXjxYhw9ehQA8Nvf/ha33357j/bYLjc395J/0tLSenVdIiIiRyqrb0arQdokkplAZIm8HAy4dDbQ7pOlaNYbTccalYBZyXxRSfajUavw+k2jMaG/tNdnXmUjlq5NQ1VD169jPNV2WRbQkJhAsz5g5JqGxgRigCwTblMGW5d0l8cGgQICAkwfd6f0qr6+HkD3Ssd6e5/2e3T3PqIo4vbbb8fXX38NALjhhhvwxhtv9Gh/ncXHx1/yT0xMTNcXISIiUlhhlfTdcY1KQLi/zsrZ5Ml8vTQI8dVK1i4VBJJPBZs4IAxBsscT2Zq3Vo01t43DsLhAyfrJ4lr8+t1DaGjRK7Qz57YtS1q6yVIw9yEIglk20OaMQhiNnBLWHR4bBPL29kZYWBiArhsiV1ZWmgI0Pe2b07kZdFf36dwMujv3ueeee/Dhhx8CAObNm4cPPvgAKpXH/pMSEREBgFkpWFSgN9Qq9gkgy7rbHLpFbzTLLJibwiwgcowAby3eXTbeLPvhx4tV+M0HP6KlU4YaAWdL63C2tF6yNoulYG5l4Uhp+5OimiYcvlip0G5ci0dHDIYOHQoAOH36NPR66xH07Oxs08dDhgzp1T3k17nc+6xcuRL/+te/AADTpk3D559/Dq2W70QREREVVMmbQrMfEFlnPia+weJ5+8+Wo7ZJ+nzxqqHsB0SOE+6vw3/vGI/oQOnPtD05pXjwk58kU+s8nXwqWESADiPiOD3KnSRFBSApSlo9s+logUK7cS0eHQSaMmUKgLYyrMOHD1s9b/fu3aaPJ0+e3KN79O/f39SkufN1LNmzZw8AIC4uDv369bN63jPPPIMXXngBAJCamopNmzb1uFcRERGRuzJvCs3fkWRdXLCv5NhaJpC8FGxUQjCi2XCcHCw+xBfv3zEewbIyxE0ZhfjzV5kQRQaCAPNSsFnJkVAxI9TtLBwhzQb6OrOIwdBu8Ogg0LXXXmv6+J133rF4jtFoxH//+18AQHBwMGbOnNmjewiCgEWLFgFoy/Q5cOCAxfMOHDhgygRatGiR1fF2r776Kp588kkAwPDhw/Htt99K+g4RERF5ugLZePgYZgLRJXRnTLzRKOK7E9IXlXNTmAVEyhgUFYB3l42Hr5dasv7BgYv4x3c5Cu3KeVQ3tCL9grQsiKVg7kneF6i0thkHz5UrtBvX4dFBoPHjx2Pq1KkAgLVr12L//v1m57z88svIysoCANx3331mJVe7du2CIAgQBMHqVK77778fanXbD+l7773XbPx7Y2Mj7r33XgCARqPB/fffb/E677zzDh544AEAQFJSEr777juEhoZaPJeIiMhTFcpexMcyE4guQd4TKM9CJtCR3EqU1jZL1tgPiJQ0KiEYq28dB61a+sbxaztO4+195xTalXPYlVMiyQbRaVSYkhiu4I7IXgZE+GNojLRhOqeEdc2jg0BAW2aNj48P9Ho95syZg+eeew4HDhzAzp07cffdd+ORRx4B0BZ0eeihh3p1j6SkJKxYsQIAkJ6ejsmTJ2P9+vVIT0/H+vXrMXnyZKSnpwMAVqxYgUGDBpldY8OGDVi+fDlEUURgYCBeffVVlJaWIjMz0+qfztPGiIiIPEVhtbwnEINAZJ28J1BxTRNaDdImu1uOS7OAkqL8MSCiZxNjiWxtyqBwvLpkNORVTn/ddAL/+/HSA2nc2TZZP6DJieHwkWVNkftYOFKaDfRtZhH0BjZKvxSN0htQ2ujRo7F+/XrccsstqKmpwWOPPWZ2TlJSEjZv3nxZZVfPPvssSkpK8Pbbb+PIkSNYsmSJ2Tl33HEHnnnmGYuP37BhAwwGAwCgpqYG8+bN6/KeO3fuxIwZM3q9ZyIiIlejNxhRXCMrB2PfFroEeTmYUQSKqpuQENrWK0gURbN+QCwFI2cxf3gMnr1uOB793zHJ+orPMhDorcXsoZ6VsdZqMGLXSWkQaDZLwdzawuGxeOHbk6bjivoW/HCmHNOSIhTclXPz+EwgAPjFL36BjIwMPPDAA0hKSoKvry+Cg4Mxbtw4/P3vf8eRI0eQmJh4WfdQqVRYu3YtNm/ejEWLFiE2NhZeXl6IjY3FokWL8PXXX2PNmjUc8U5ERHQZimubIe8JyUwgupQgHy38ZFkCnUvCsotqcaFcOjGMQSByJjeN74NHrh4sWTMYRdzz0Y84eNaz+qMcOldhNsVv1pBIhXZDjtAnzBcj4qWT3zZlcErYpXh8JlC7vn374pVXXsErr7zSo8fNmDGjR13458+fj/nz5/d0e3j33Xfx7rvv9vhxREREnkTeD0inUSFENkWHqDNBEBAX4oOc4jrTWufm0PIsoLhgH6TESntQECntt9MHorK+Bf/Z29EPqFlvxJ3vpWPd3ROREusZ49HlpWDD44IQFchsUHe3cEQMMvKqTcffZhbhmWuHw0vDBAtL+LdCREREbkM+GSw22MfqxE2idvEh1sfEy/sBzUmJ4tcUOR1BEPDY/CFYPDZesl7brMdtb6fhXJn79woVRRHbs2Wj4ZkF5BEWyEbF1zTpse90qUK7cX4MAhEREZHbkGcCsR8QdYe8OXReZVv5V25FA7IKaySfu5qlYOSkBEHAc9cPx1WyPkBldS24de1BFMmC5O7mTGmdWekm+wF5hrhgH4zpEyxZ23SUU8KsYRCIiIiI3IZ8MlgMx8NTN8jHxLeXg8lLwcL8vDCuX6jD9kXUUxq1Cq/fNBoTB0i/TvMqG7H07YOoamhRaGf2Jy8Fiw70ZummB1koywbaeqIYTa0GhXbj3BgEIiIiIrdRIMsEig1mJhB1TZ4JZC0INHtIFNTyedxETsZbq8Z/lo7DsDhpACSnuA7L3j2Ehha9lUe6tm0nzEvBWLrpORaMiEHnf+66Zj1257AkzBIGgYiIiMhtyDOBOBmMukOeCVRY1YSSmiakX6iUrM8dxtIScg0B3lq8u2w8BoT7SdaPXKzC3e8fRoveqNDO7KOivgU/XpR+v7IUzLNEBXojVZapuSmDJWGWMAhEREREbqOwmj2BqOfiZcHCFoMRH6VdROcBsH5ealwxMNzBOyPqvXB/Hf57x3izn4N7T5XhwU9+gsHY/QnHzm5ndgk6/+/4aNWYNDBMuQ2RIn4xIkZyvD2rGI0tLAmTYxCIiIiI3EJTqwFlddJ+F8wEou4I99fBSy19WvzBgQuS4xnJkfDWqh25LaLLFh/ii/fvGI8QX61kfVNGIf70ZSZE0T0CQfKpYFMGhfP71QNdPSwGnSt2G1oM2HmyxPoDPBSDQEREROQWLE2+YSYQdYdKJZiVhMkDipwKRq4qMTIA7ywbD18vaVDkw4MX8cp3OQrtynaa9QbsySmTrM3maHiPFBGgM8sA25RRoNBunBeDQEREROQWCmSlYAE6DQK8tVbOJpKSN4fuzEutwozBEQ7cDZFtjUoIxupbx5llvL2+4zTW7jun0K5s4+DZCtQ1dzS7FgTgymT2A/JU8ilhO7JLUN/sns3Qe4tBICIiInILhVWy8fCcDEY9cKkg0OTEMAYUyeVNGRSOV5eMpEXFpwAAOBtJREFUgnzA3dObTuDzw3nKbMoGtmdJS8FGxgcjIkCn0G5IaVenREPT6Yu8qdWIbbKvEU/HIBARERG5BfOm0OwHRN0nLwfrbC5LwchNzBseg2evG262/sjnGWYj1l2BKIrYliXt+cJSMM8W4ueFyYnSJv6cEibFIBARERG5hQKz8fDMBKLus5YJpBKA2UNZWkLu46bxfbDy6mTJmsEo4p6PfsTBs+UK7ap3ThbXIr9K+gbALI6G93gLZVPCdp8sRU1Tq0K7cT4MAhEREZFbKKxiJhD1nrVMoHF9QxHuz9ISci+/mT4Ad00bIFlr1htx53vpyMyvVmhXPbddlgUUF+yD5OgAhXZDzmJOSrSk/1WLwYjvjrteppu9MAhEREREbqHQLBOIQSDqvngrQaC5w1gKRu5HEAQ8Oi8Zi8fGS9Zrm/W4/Z00nCurV2hnPSPv9TJrSCQEQbByNnmKIB8tpiXJS8I4Jawdg0BERETkFuQlAbEcD089EB3oDbW8Yy6AOSwFIzclCAKeu3642dd4WV0LbllzEEWywLqzKa1txk+5VZK12SwFo58tkJWE7T1VhqqGFoV241wYBCIiIiKXV9esR22TdARsDDOBqAc0ahWiA6WBw5TYQCSE+iq0IyL706hVeO2m0Zg0IEyynl/ViFvXHnTqF807s0sgih3Hfl5qTBgQqtyGyKnMHhIFL01HuENvFLHleJGCO3IeDAIRERE5kfpmPfQGo9LbcDnyfkAAEMNMIOqhPrKAD6eCkSfw1qqxeulYDI8LkqyfKqnD7e8cQn2z3sojlSUvBZuWFAGdRq3QbsjZBHhrMXNwhGSNU8LaMAhERETkBMrrmvHgJz9h1F+3YuRftuK5r7NQ3cBJFt0lnwwW6ucFby1fDFDPLBmfYPo4yEcrOSZyZwHeWry7LBUDwv0k6z/lVuE3HxxGs96g0M4sa2o1YO+pMskap4KR3MIRsZLjH86Uo7yuWaHdOA8GgYiIiBQkiiI+O5yHWa/sxv9+zEerQUR9iwGr9pzFtBd3YvWeM2hqda4n387IfDIYs4Co5xaNisO6uybiL9ekYMv90xAZwK8j8hxh/jq8f+cEs5+fe0+V4cFPjsJgFK080vH2ny1HY6ffjYIAs6wPollDIuHT6Q0hg1HEN5ksCWMQiIiISCEXyutx69o0PPzpUVRZyPqpbmzF377OxpUv7cJnh/Oc6gm4s5FnAnE8PPXWxAFhuO2KfohmIJE8UFywD96/YzxCfLWS9c0ZhXjyy0yIonP8Htp2QloKNrZPCML8dQrthpyVr5cGVw6JlKxxShiDQERERA6nNxjx791nMPefe7DvdFmX5xdUN+HhT49iwWt7f26E6RxPwp2JPBMoNpgv4ImIeiMxMgDvLhsPXy9pSe1HBy/i5a05Cu2qgyiK2JFdIlljKRhZ8wvZlLCD5ypQUuPck+/sjUEgIiIiBzqWV41r3vgez3+TjaZW8wbQC4bHYMHwGAuPBLKLarHs3UO46T8HcFQ2FtfTFTITiIjIZkYmBOM/S8fBSy19ufjGztNYs/esQrtqc7ygxuxn/mxZtgdRuxmDI+HXKaApivD4kjAGgYiIiBygoUWPZzadwKI39+FEYY3Z52OCvLFm6Ti8+X9j8Ob/jcGGeyZjopVRtwfOVmDRm9/jng9/xPmyentv3SUUVDMTiIjIliYnhuO1m0ZBJUjXn9mchc8P5ymzKQDbs6RZQH1CfZEY6a/QbsjZeWvVuGqoNFPM00vCGAQiIiKys905pZjzjz1Ys+8c5G19BAG4/Yp++O7B6Zjd6UnKqIRgfLx8It65PRWDowIsXnfzsULMfmU3ntyQidJaz512IYoiCszKwZgJRER0ua4eFoO/XTfcbP2RzzPwnawvj6Nsz5bed9aQSAiCYOVsIvMpYYfOV6JQ9uaRJ2EQiIiIyE7K65px37ojuO3tNORVmj/ZGBwVgM9/ewWeuiYF/jqN2ecFQcDM5Eh8fd9UvLR4JGItNKrVG0W8f+ACZry4E//cloP6Zr1d/l+cWVVDq1lpHaeDERHZxpLxfbDy6mTJmsEo4p6PfsSBs+UO3UtxTRMy8qola7PZD4i6MDUpHAHe0udZmzMKFdqN8hgEIiIisrHOY9+//Mk85dhLo8LDc5Kw8d4pGNMnpMvrqVUCfjU2HjsenoHH5icjyEdrdk59iwH/3HYK01/ciff3n0erwbzfkLuSl4IJAhAVyCAQEZGt/HbGQNw9bYBkrUVvxPL30pGZX23lUbYnLwUL8NZgfH/LpdNE7XQaNeamRJuOx/UNQZwHZwybv+1IREREvXahvB6Pf5FpderXhP6heO764RgQ0fP+Bd5aNe6aNhA3juuDt3adxjs/nEeLXhrsKatrwZNfHsfafeewYm4y5g+Pdvs0+cIqaYPQyAAdtGq+z0VEZEt/nJeMyoYWfJLe0Q+otlmP295Ow6e/mdSr32s9tT1LWgo2PSmCP++pW24a3wfJ0QGYPzzG40vG+R1DRERkA12NfQ/01uD564fj4+UTL/uJcpCvFo/OH4JdD8/Ar8bGw1KM53x5A+756Edc+9YP2H/Gsen6jiav6+dkMCIi2xMEAX+7bjjmpkjLr8rrW3Dr2jS791hpbDGY/X5lKRh119i+Ibhz6gCPDwABDAIRERFdti7Hvo+IwbaHpmPJ+D5QycesXIbYYB+8tHgkvrlvKq5Mtjwe92huFW76zwEseycN2UXmU8ncQYFsVDAngxER2YdGrcKrS0Zj0oAwyXp+VSOWrk1DZX2L3e79/ekyNHfKflWrBMwYHGG3+xG5KwaBiIiIeqnbY99vHoPIAPsFJpKjA/H27alYd9dEjEwItnjOzpOlmPfqXjz86VHkV7nXRIzCKmYCERE5irdWjdVLx2J4XJBk/VRJHZa9e8huAwrkU8HG9g1BsK+XXe5F5M4YBCIiIuqFXSdLcNUrPRv7bm8TB4Rhw++uwFv/Nwb9w/3MPi+KwGeH8zDzpV147ussVDe0Omxv9iTPBOJkMCIi+wrw1uLdZakYECH9XfNTbhV+88FhNOsNNr2f0Shim6wp9OwhljNgiejSGAQiIiLqgfax77e/c8hiRk1XY9/tTRAEzB8eg60PTMPT1w5DuL/O7JwWvRGr9pzF1Bd2YNXuM2hqte2TdUeT96Hw5IkfRESOEuavw/t3TDALvO89VYYH1x+FQf4OyWU4ll+N0tpmyRr7ARH1DoNARERE3WDrse/2plWrcOvEvti9YgYemJ0EPy+12Tk1TXo89002rnxpFz5Nz7XpE3ZHMRpFFMkzgRgEIiJyiLhgH7x/x3iE+Gol65uPFeLJLzMhirb5vSKfCjYg3M8h08iI3BGDQERERF24UF6PW9em4eFPj6LKQgnVhP6h+Pa+qfj9lYPgpXGuX61+Og3umz0Iu1bMxNJJfaGx0Ji6oLoJKz7LwILX9mJndonNnrQ7QlldM1oN0v3GshyMiMhhEiMD8O6y8WZvNnx08CJe2nrSJveQl4LNYikYUa851zNVIiIiJ9Kdse9//+VwrLvr8se+21tEgA5/XTQM2x6cjgUjYiyek11Ui2XvHsKS1QfwU26VYzfYS/J+QFq1YLEEjoiI7GdkQjBWLx0HL7X05eWbO89gzd6zl3XtgqpGs+ELs1gKRtRrDAIRERFZkJFX1a2x7zem9oEg2G7su731C/fDmzePwZf3TMbEAaEWzzl4rgLXvvk9fvfhYZwrq3fwDntGPhksKtAbKgvZTkREZF+TE8Px2k2jIP8R/MzmLHx2OK/X15WXggX5aDGur/Jl10SuikEgIiKiThpa9Hh60wlc++b3io59t7eRCcH4ePlEvLMsFcnRARbP+fpYEa56ZTee3JBp1pDTWcgzgWI5Hp6ISDFXD4vBc9cPN1tf+XkGth4v6tU15aVgMwdHQKPmy1ii3uJ3DxER0c/ax76vdaKx7/YkCAJmDo7E5j9MxcuLR1qcqqU3inj/wAVMf3En/vFdDuqa9Qrs1Dp5JlBMsOsG5oiI3MGNqX3wx3nJkjWDUcTvPz6CA2fLe3St+mY99p+RPoalYESXh0EgIiLyeM4+9t3e1CoBvxwbj+0PTcfj84cgyEdrdk5DiwGvbj+FGS/uxH/3n0erwbxETgmF8slgzAQiIlLcb6YPxN3TB0jWWvRG3PleOjLzq7t9nb2nytDS6feNRiVg+uAIm+2TyBMxCERERB7L1ca+25u3Vo3l0wZgz4qZuHv6AIuTzsrqWvCnL4/jqld2Y1NGgeKTxAqqpUG7OGYCERE5hT9enYwbxyVI1uqa9bjt7TScLa3r1jXk/YDG9w9FoLf5GxVE1H0MAhERkUdy5bHv9hbkq8Wj84Zg18MzsHhsvFmTTwA4X96A3390BNe++b1Zqr4jFVYxE4iIyBkJgoBnrxuGuSnS8q3y+hbcujYNhdXmmbedGYwidmTLR8OzFIzocnnWs1oiIvJ47jT23d5ig33w4uKR+Oa+aZiVHGnxnKN51bjpPwdw+ztpyLLQSNueWg1GFNfKgkDMBCIichoatQqvLhmNKwaGSdbzqxqxdG0aKutbrD72p9wqlMs+P3uI5d9FRNR9DAIREZHHcNex7/Y2ODoAa29Pxfq7JmJUQrDFc3adLMX81/bioU+OWuyrZA/FNU2QV6NxOhgRkXPx1qqxeuk4jIgPkqyfKqnD7e8eQr2VgQPyUrBBkf7oG+Znt30SeQoGgYiIyO15yth3e5swIAxf/O4K/Ov/xqB/uPkTcVEEPv8xDzNf2oW/fZ2Fqgbr7/DagrwptLdWhWBf9oogInI2/joN3rk9FQMipL87juZW4e73D6NZbzB7zPYsloIR2QODQERE5NY8bey7vQmCgHnDY7D1gWl45tphCPfXmZ3Tojdi9Z6zmPbCTvx79xk0tZo/ubeFAlnGUWyQDzO4iIicVJi/Dh/cMQGxQdI3W/adLsMD63+CodMv6dyKBpwsrpWcx1IwIttgEIiIiNxSmYePfbc3rVqFWyb2xe4VM/DA7CT4eanNzqlp0uP5b7Ix86Vd+CQ9V/IE3xbMxsOzHxARkVOLDfbBf++YgFA/L8n618eK8MSGTNPESXkpWKifF0Z7wJROIkdgEIiIiNxK+9j32ZcY+75i7mCPGftub346De6bPQi7H5mJ2yb1hcbCKLHC6iY88lkG5r+6Fzuyi202Vr5QFtzjZDAiIueXGOmPd5elmr158HHaRby45SQAYJusFGzG4AioLY2qJKIe41ufRETkNi6U1+PxLzItTv0CgIkDQvG364Z7/NQvewj31+Evi4Zh2eT+eGnrSWzKKDQ752RxLX79bjrG9w/Fo/OSL/td3QJZJpC8xICIiJzTiPhg/GfpONz+ziG0GDoGNby16wy0ahUOniuXnH8V+wER2QwzgYiIyOW1dnPs+8fLOfbd3vqF++GNm8fgy3smY9KAMIvnpJ2rwHVv/YDffXgYZ0vren2vwmpZT6BgZgIREbmKKxLD8dpNoyFP8Hl1+ym0GjoyRr3UKkxNinDw7ojcF4NARETk0jj23TmNTAjGR8sn4N1lqUiODrB4ztfHinDVP/bgiQ3HUFLbZPGcSymskvcEYhCIiMiVXD0sGs9fP+KS50wYEMrefUQ2xO8mIiJySQ0tery8NQfvfG8+9QtoG/v+zLXDOFJWQYIgYMbgSEwdFIEvf8rHy1tzzJp0G4wiPjhwEf/7MR93Th2Au6YN6NaT/aZWA8rrpSPoWQ5GROR6bkhNQGVDC577Jtvi52fz9ziRTTEIRERELmfXyRI8/kWmxalfggDcNqkfHp47mO8cOgm1SsD1Y+Ixf3gM3t9/AW/sPI3qxlbJOQ0tBry2/RQ+PHABf5g1CDeN7wMvjfWEZflkMICZQEREruru6QNR0dCCVbvPmn1uFkfDE9kUnx0TEZHLKKtrxtObTlic+gW0jX1/7pfDOfXLSXlr1Vg+bQBuSE3Av3adwTvfn0OzXlrCV17fgj9/dRxvf38OK+YOxoLhMRbL+OSTwQK8NQz6ERG5sD9enYyq+lasT881rQ2PC0J8iK+CuyJyP+wJRERETq+7Y983/YFj311BkI8Wf5yXjF0rZuCGcfFmTUEB4EJ5A37/0REsevN7/HDGvNm3+WQwZgEREbkyQRDwt+uH47ZJfQG0lXX/ZVGKwrsicj98y4yIiJzahfJ6PPbFMXx/utzi5zn23XXFBPnghV+NxB1TBuDFLdnYllVidk5GXjVu/s9BTE+KwB/nJWNITCAA80ygmGD2AyIicnVqlYC/LBqGxxcMhUoANGrmLBDZGoNARETklFoNRqzZew7/3JZjVjIEtI19f3zBENwwLoFTv1zc4OgArLktFQfPluP5b7Nx5GKV2Tm7c0qx51QprhsdhwevSjLLBIphJhARkdu4VE84Iro8DAIREXWhRW/EhfJ6nC6pw6mSOtN/C6oaEeijQWyQD2KDfRAb7I2YIB/EBfsgJtgbscE+CPTWKr19l5SRV4WVnx9DVmGNxc8vGBGDP/9iKCIDmP3hTiYMCMP/fnsFthwvwgvfnsTZsnrJ50UR+N+P+diUUYgAWf8fTgYjIiIi6hqDQEREP2tqNeBMaVuQ53RJHU4V1+F0aR3Ol9VDb2kGOYDqxlbkVphPqGrnr9OYgkOxwT6IDfJGzM8Bo9ggH0QHecNbq7bX/5LLqW/W45XvOPbdkwmCgKuHxWDWkCisP5SLf247hbK6Zsk5LXojyvWy8fCcDEZERETUJQaBiMjj1Da14kxpPU4V13YEfErqkFvZANFyrKfX6pr1yCmuQ05xndVzwv29EBvsg5gg758DRW0Bo5ifA0URATqoLXXOdTMc+06dadUq3DKxL64bHYe1+85h1e4zqG8xWD2fPYGIiIiIusZn0kTktirrW3CqpA6nSjqCPadL6lAo6yWitLK6FpTVtSAjr9ri5zUqAVGB3pIys9ifA0bt5WeBPhqX7YvT1dj35OgAPHf9cIzm1C+P5KfT4A+zBuHmCX3wxo7T+PDgBbQazKO1nA5GRERE1DUGgYjIpYmiiJLa5p/Lt2pNPXtOl9ShvL6l6wv0QGSADomR/hgU6Y/EqAD0C/NFTaMehdWNKKhqQkFVIwqrG5Ff1WRWvnI59EYR+VWNFjNk2vl6qS1mEsV1yjBytrIzURTx+Y/5eGbzCVQ1tJp93kujwn2zBuGuaQOg5XQQjxfur8NT16Rg2eR+eGlrDjYe7QgaDo0JRN8wXwV3R0REROQaGAQiIpdg/DkQcrpTZk97wKe2SW/Te8UF+2BQ1M/Bnkh/JEYGIDHSH0E+3W/y3Kw3oKi6ySw4VFjdiMKf12qbbbfvhhYDzpTW40xpvdVzQv28OvoTtWcSBfsg7ue1yACdw0axcuw79VbfMD+8ftNoLJ/aH//7MR+tBiN+M32gy2bCERERETkSg0AALly4gNdeew2bN29Gbm4udDodBg4ciBtuuAH33HMPfH1t8+7iN998g9WrV+PQoUMoLS1FREQEUlNTcdddd2HevHnduoZer8eaNWvw4YcfIjs7G3V1dYiNjcXs2bPxhz/8ASkpKTbZK5FS9AYjLlQ0dGrOXIvTpXU4U1KPxlbr/UB6SiUA/cL8fg7y+GNQlD8SIwIwMNIPvl6X/6NRp1Gjb5gf+ob5WT2npqm1LSBU3dgWKPo5OFTwc2ZRUXUTWgzmo9F7q6K+BRX1LcjMtzxxS60SEBWgMwWH2ptXmzKMgn0Q4qu9rBfbHPtOtjIiPhgj4oOV3gYRERGRSxFE0dZtUF3Lxo0bccstt6CmxvKLoqSkJGzevBmJiYm9vofRaMRdd92FtWvXWj3nzjvvxKpVq6BSWX8XvqysDPPnz8ehQ4csfl6n0+GNN97AnXfe2eu9XkpeXh4SEhIAALm5uYiPj7fLfcgzNOsNOFdW3zaBy9ScuRbnyxpsGvjwUqvQP9wPiZ0yewZFBqBfuC90Gucqj5IzGkWU17dIM4k6BYkKqhpRWtds82bWl+KtVXWUm5mCQx39iWKDva0G0Tj2nYiIiIioe+z1+tujg0BHjhzB5MmT0djYCH9/fzz66KOYOXMmGhsbsW7dOvznP/8B0BYISk9PR0BAQK/u8+ijj+L5558HAIwePRqPPPIIBg4ciDNnzuCFF17AkSNHTOf97W9/s3gNg8GAGTNmYN++fQCA66+/HsuXL0doaCgOHjyIZ555BiUlJVCpVNi0aVO3M4t6gkEg6o36Zr1p7Hrnfj0XyustjgDvLR+t2tSvZ2BkR8CnT6ivw0qclNCiN6K4pr3krAn5PweM2oNEBVWNqLFxuVxXgn21Pzes/rn0LNgHRdWNeP/ABYv/5rFB3niaY9+JiIiIiEwYBLKDadOmYe/evdBoNNizZw8mTZok+fyLL76IRx55BADw5z//GU899VSP75GTk4OUlBTo9XqMGzcOe/bsgY9PxwSThoYGTJ8+Henp6dBoNMjKyrKYdfT222/jjjvuAAD87ne/w5tvvin5/OnTpzF27FjU1NQgMTERWVlZ0GhsW+3HIBBdSnVDK06X1poye9oDPpdqZtwbgd4aUzbPoKiOgE9skA9UHjBGvTfqmvU/ZxD9HCzq/PHPgaMWC6VZ9sax70REREREljEIZGNpaWmYMGECAODuu+/Gv//9b7NzjEYjhg0bhqysLAQHB6OkpARabfcbwwJtAZt//etfAID9+/dj4sSJZuccOHDAFICyFOABgKFDhyIrKwuhoaHIzc212Kfo+eefx6OPPgoA+OSTT7B48eIe7bUrDAKRKIooq2vBqZJanOkU6DlVUofSWttNwwKAcH8vU7AnsVNmT0SAjr1ibEwURVTUt7RlD7X3J2rPKvr54+KaJptmbnHsOxERERGRdfZ6/e2xb71u2LDB9PGyZcssnqNSqbB06VI8+uijqKqqws6dOzFnzpxu30MURXz55ZcAgOTkZIsBIACYOHEiBg8ejJMnT+LLL7/EG2+8IXmRm5OTg6ysLADADTfcYLVR9e23324KAn3xxRc2DwKR5xBFEYXVTTj1c2PmM6V1OFXcFuypbjQf5X05YoO8f87macvsSYz0R2KEP0L8vGx6H7JOEASE+esQ5q/D8Pggi+e0GowoqW02lZgV/DzprP3jgupGi2Pe5Tj2nYiIiIhIOR4bBGrvrePn54exY8daPW/69Ommj7///vseBYHOnTuHgoICs+tYu8/JkyeRn5+P8+fPo3///mZ77eo60dHRSEpKQk5ODr7//vtu79OdZeZXo6HFAKMoQhTbghtGEW3H+Pm/P3/OtC47Nv6cLGcURRiNkDzOKOLnczsfd9zD9DjTObD+OFg+z9rexZ/3I/1/sfA4dJzXlskh/bz8v3XNepwtrUN9i+0mcQkC0CfU9+dsngBJ7x6WAbkGrVqFuGAfxAX7WD2noUWPQlPJmbQ/UWltMwZG+uHhOYM59p2IiIiISCEe++qrPbMmMTHxkr1zkpOTzR7TXSdOnLB4ne7cp3MQqKfXycnJQW5uLurr6+HnZ308tVxeXt4lP19YWNjtazmLhz89iuyiWqW34TE0KgH9w/1+Hrfuj8SoACRG+GNAhB+8tc49iYsun6+XBgMj/DGQQR4iIiIiIqfkkUGgpqYmlJWVAUCXdXUhISHw8/NDfX09cnNze3SfzkGVru7TXusHwOw+vbmOKIrIy8vD4MGDu73fznsguhSdRtVWttWpV09iZAD6hvmyxIeIiIiIiMhJeWQQqLa2IzPE37/rd6zbg0B1dXV2u0/njB35fWx1HU+kYgPhy+Kv00gCPW0ZPgGIC/GBmpO4iIiIiIiIXIpHBoGamppMH3t5dd18VqfTAQAaG3s26ron92m/h6X72Oo6Xekq06mwsBDjx4/v0TWV5u+tQZCPFoLQFhBSCW1NcAXIjuWf73yMTseqtuP28+T/NV1X1RGAar+O6ufrChaP2x/bvt5+T8vHZtdWtT2+Yy8dj2v/fzCd1/nYwp40auHn/j0BiArkJC4iIiIiIiJ34ZFBIG9vb9PHLS0tXZ7f3Nw2+trHx3pD1Mu9T/s9LN1Hfp3Oxz25TlfcceT7J3dPUnoLRERERERERE7BI5t3BAQEmD7uTslUfX09gO6VjvX2Pu33sHQfW12HiIiIiIiIiDyXRwaBvL29ERYWBqDriViVlZWmwEpPGyd3zqzp6j6dS7Hk9+nNdQRBcMvMHiIiIiIiIiLqHY8MAgHA0KFDAQCnT5+GXq+3el52drbp4yFDhvTqHvLr9PQ+vblOQkJCj8bDExEREREREZF789gg0JQpUwC0lU8dPnzY6nm7d+82fTx58uQe3aN///6IjY01u44le/bsAQDExcWhX79+Fvfa1XWKioqQk5PTq70SERERERERkXvz2CDQtddea/r4nXfesXiO0WjEf//7XwBAcHAwZs6c2aN7CIKARYsWAWjL0Dlw4IDF8w4cOGDK4Fm0aJHZNKakpCRTdtAnn3yChoYGi9d59913TR9fd911PdorEREREREREbk3jw0CjR8/HlOnTgUArF27Fvv37zc75+WXX0ZWVhYA4L777oNWq5V8fteuXT+P7hZw++23W7zP/fffD7VaDQC49957zca2NzY24t577wUAaDQa3H///Rav8/DDDwMAKioq8Mgjj5h9/syZM3juuecAAImJiQwCEREREREREZGExwaBAODVV1+Fj48P9Ho95syZg+eeew4HDhzAzp07cffdd5uCLUlJSXjooYd6dY+kpCSsWLECAJCeno7Jkydj/fr1SE9Px/r16zF58mSkp6cDAFasWIFBgwZZvM5tt91mKvF688038atf/QpbtmxBWloa3njjDVxxxRWoqamBSqXCa6+9Bo1G06v9EhEREREREZF7EkRRFJXehJI2btyIW265BTU1NRY/n5SUhM2bNyMxMdHsc7t27TKViN12222ScqzOjEYjli9fjrffftvqPu644w6sXr0aKpX1uFxZWRnmz5+PQ4cOWfy8TqfDG2+8gTvvvNPqNS5HXl6eaXJZbm4up48RERERERER2YG9Xn97dCYQAPziF79ARkYGHnjgASQlJcHX1xfBwcEYN24c/v73v+PIkSMWA0A9oVKpsHbtWmzevBmLFi1CbGwsvLy8EBsbi0WLFuHrr7/GmjVrLhkAAoDw8HD88MMPeOuttzBlyhSEhYXB29sbAwYMwPLly3H48GG7BYCIiIiIiIiIyLV5fCYQdR8zgYiIiIiIiIjsj5lARERERERERETUawwCERERERERERF5AAaBiIiIiIiIiIg8AINAREREREREREQegEEgIiIiIiIiIiIPwCAQEREREREREZEHYBCIiIiIiIiIiMgDMAhEREREREREROQBGAQiIiIiIiIiIvIADAIREREREREREXkABoGIiIiIiIiIiDwAg0BERERERERERB6AQSAiIiIiIiIiIg/AIBARERERERERkQdgEIiIiIiIiIiIyAMwCERERERERERE5AEYBCIiIiIiIiIi8gAMAhEREREREREReQCN0hsg16HX600fFxYWKrgTIiIiIiIiIvfV+TV359fil4tBIOq20tJS08fjx49XcCdEREREREREnqG0tBT9+vWzybVYDkb/396dB1V13mEcf64gi4GEFJeILCpK0cSmFjes+1pjGoMkdlKrYDRUSUmNGatjqhltzNhMrKk2RS0qpiamgqlGW1pNooTNIGIXqyHKNhUQJbU0CgjI7R8Z7mDY4cLlcr6fGWeO97znfX935p1XeXjPOQAAAAAAwABMZrPZbOsiYB8qKir0z3/+U5LUp08fOTqykaytioqKLLup0tPT1b9/fxtXBHQc5juMhPkOo2Cuw0iY77CF6upqy904I0aMkIuLi1X65ad4tJiLi4tGjx5t6zK6nf79+8vb29vWZQCdgvkOI2G+wyiY6zAS5js6k7VuAauL28EAAAAAAAAMgBAIAAAAAADAAAiBAAAAAAAADIAQCAAAAAAAwAAIgQAAAAAAAAyAEAgAAAAAAMAACIEAAAAAAAAMwGQ2m822LgIAAAAAAAAdi51AAAAAAAAABkAIBAAAAAAAYACEQAAAAAAAAAZACAQAAAAAAGAAhEAAAAAAAAAGQAgEAAAAAABgAIRAAAAAAAAABkAIBAAAAAAAYACEQAAAAAAAAAZACAQAAAAAAGAAhEBAJzCZTC36M2XKFFuXCjTp+vXrOn78uDZs2KA5c+aod+/elvkbHh7e6v4SEhIUEhIib29vOTs7y9vbWyEhIUpISLB+8UArWWO+x8bGtvjfgNjY2A79PkBTMjIytGnTJs2aNcuyJru5uSkgIEBLlixRcnJyq/pjfUdXZo35zvoOe+Vo6wIAAPajX79+VumnpqZGERER2rNnzz2fFxQUqKCgQEeOHNGyZcu0a9cu9ejB7ytgG9aa70BXN2nSJCUlJdX7vLKyUpcvX9bly5cVGxurxYsX63e/+52cnJwa7Yv1HV2dNec7YI8IgYBOtGLFCkVGRjZ6/r777uvEaoD28fX1VWBgoE6cONHqa19++WXLDwgjR47Uz372M/n7+ys7O1uvv/66zp8/r5iYGPXp00evvfaatUsHWq09873WX//6V3l5eTV63tvbu819A+1RWFgoSfLy8tLTTz+tiRMnytfXV3fv3lVaWpq2bt2qgoICvf3226qqqtK7777baF+s7+jqrDnfa7G+w66YAXQ4SWZJ5ldeecXWpQDtsmHDBvOxY8fM165dM5vNZnNubq5lfoeFhbWoj6ysLLOjo6NZknnUqFHmsrKye87fvn3bPGrUKLMks6Ojo/ny5cvW/hpAi1hjvu/bt89yTW5ubscVC7TD3LlzzX/4wx/M1dXVDZ6/ceOGOSAgwDKXExMTG2zH+g57YK35zvoOe8UeTABAi23cuFGPP/54u26TefPNN1VdXS1J2rFjh1xdXe8536tXL+3YsUOSVF1drW3btrW9YKAdrDHfAXtw/PhxLViwQA4ODg2e7927t7Zu3Wr5e3x8fIPtWN9hD6w13wF7RQgEAOg0ZrNZR48elSQFBgZq3LhxDbYbN26cvvnNb0qSjh49KrPZ3Gk1AgDqmzp1quU4Ozu73nnWd3Qnzc13wJ4RAgEAOk1ubq7lXvzJkyc32bb2fEFBgfLy8jq6NABAE+7cuWM5bmgHBes7upPm5jtgzwiBgE4UFxen4cOHq1evXnJ3d9fQoUMVFhamU6dO2bo0oFNcvHjRchwYGNhk27rnL1261GE1AZ1lyZIl8vLykpOTk3r37q1x48bp5z//uQoKCmxdGtCsxMREy/GwYcPqnWd9R3fS3Hz/OtZ32BNCIKATXbx4UZcuXVJ5eblu3bqlK1eu6O2339a0adMUEhKi0tJSW5cIdKirV69ajpt7U4aPj4/l+N///neH1QR0ltOnT6uoqEhVVVX64osv9Omnn2rz5s0aMmSIdu3aZevygEbV1NRoy5Ytlr8vWLCgXhvWd3QXLZnvX8f6DnvCK+KBTtCrVy898cQTmj59ugIDA+Xm5qYbN24oMTFRO3fu1BdffKEjR45o3rx5OnnypHr27GnrkoEO8eWXX1qO3dzcmmx73333WY5v3brVYTUBHW3w4MGaP3++goODLT/85uTk6PDhw4qPj1dFRYWWL18uk8mkiIgIG1cL1Ldt2zalp6dLkubPn6+goKB6bVjf0V20ZL7XYn2HPSIEAjpBQUGBPDw86n0+c+ZMRUVFac6cOTp//rwSExMVHR2tF154ofOLBDpBRUWF5djJyanJts7Ozpbj8vLyDqsJ6EghISEKCwuTyWS65/PRo0frBz/4gY4fP6758+erqqpKL774op544gk99NBDNqoWqC8xMVFr166VJPXt21fR0dENtmN9R3fQ0vkusb7DfnE7GNAJGgqAavXr10/x8fGW3T+1r04FuiMXFxfLcWVlZZNt6z6U8euvGQbsxQMPPFDvB4S6Hn/8cW3YsEGSVFZWpj179nRWaUCz/vWvfykkJETV1dVycXFRXFyc+vbt22Bb1nfYu9bMd4n1HfaLEAjoAgYPHqyZM2dKkq5cuWJ5uwbQ3bi7u1uOm7sF4Pbt25bj5m4tAOxZRESE5QeJug8jBWwpNzdXs2bN0s2bN+Xg4KD33ntPkyZNarQ96zvsWWvne0uxvqMrIgQCuojhw4dbjnmTALqrug8LrfsQ0YbUfVho3YeIAt1N37595enpKYn1H11DYWGhZsyYocLCQplMJu3du1fz5s1r8hrWd9irtsz3lmJ9R1dECAR0EU1tJwW6i7ph52effdZk27rnW/J6VsCe8W8AuoqSkhLNnDlTOTk5kr66TX3x4sXNXsf6DnvU1vneGqzv6GoIgYAu4uLFi5ZjLy8vG1YCdJxBgwZZ5ndz26I/+eQTSdKAAQM0cODAji4NsJkbN26opKREEus/bKu0tFSzZ8+2/J9ky5Ytev7551t0Les77E175ntLsb6jKyIEArqA3NxcnTx5UpLk7++vAQMG2LgioGOYTCbLFuvPPvtMZ86cabDdmTNnLL8pnjdvHr9FQ7e2e/dumc1mSdLkyZNtXA2MqqysTHPnzlVmZqYk6eWXX9aaNWtafD3rO+xJe+d7S7G+oysiBAI62LFjx1RdXd3o+eLiYoWGhlrepBEZGdlZpQE2sXLlSjk4OEiSoqKi6r0euLy8XFFRUZIkR0dHrVy5srNLBKwiLy9P58+fb7LN8ePHtWnTJklfvSVpyZIlnVEacI/KykqFhIQoJSVFkvTTn/5Ur776aqv7YX2HPbDGfGd9hz1ztHUBQHcXFRWlqqoqhYaGKjg4WAMHDpSrq6tKSkp0+vRp7dq1y7JNdMKECVbfhgpYU3Jysq5cuWL5e+3clb56s11sbOw97cPDw+v1ERAQoNWrV2vLli3KyMjQd7/7Xa1Zs0b+/v7Kzs7WL3/5S8t/rFavXq2hQ4d2yHcBmtPe+Z6Xl6epU6cqODhY3//+9/Xoo49aXjeck5Oj+Ph4xcfHW35L/MYbb7ATFDbxzDPP6MSJE5KkadOmaenSpbpw4UKj7Z2cnBQQEFDvc9Z32ANrzHfWd9gzk7l2ZgLoEAMHDlR+fn6z7UJDQxUTEyMPD4+OLwpoo/DwcO3fv7/F7Rv7J6ampkbPPfec9u7d2+i1S5cu1e7du9WjB5tWYRvtne+nT5/W1KlTm72uV69e2rZtmyIiIlpdI2ANrb0ly8/PT3l5eQ2eY31HV2eN+c76DnvGTiCgg+3fv1+JiYlKS0tTTk6OSkpK9L///U9ubm7y8fHR+PHjFRYWpuDgYFuXCnSaHj16aM+ePQoNDdXu3bt19uxZlZSUqHfv3ho9erR+/OMfa86cObYuE2iXoKAgHThwQGlpacrIyFBRUZFKSkpUXV2tBx98UA8//LCmT5+uZcuWWX6DDNg71ncYAes77Bk7gQAAAAAAAAyAPZgAAAAAAAAGQAgEAAAAAABgAIRAAAAAAAAABkAIBAAAAAAAYACEQAAAAAAAAAZACAQAAAAAAGAAhEAAAAAAAAAGQAgEAAAAAABgAIRAAAAAAAAABkAIBAAAAAAAYACEQAAAAAAAAAZACAQAAAAAAGAAhEAAAAAAAAAGQAgEAAAAAABgAIRAAAAAAAAABkAIBAAAAAAAYACEQAAAAAAAAAZACAQAAGBFsbGxMplMMplMysvLs3U5nS4rK0tOTk5ycXFRQUGB1fp9/vnnZTKZFBYWZrU+AQAwGkIgAAAASXl5eZbwpj1/jG7VqlWqqqrS0qVLNWDAAKv1u2bNGjk5Oen3v/+9zp07Z7V+AQAwEkIgAAAAWEVqaqr+/Oc/y8nJSWvXrrVq376+vgoLC5PZbNb69eut2jcAAEZhMpvNZlsXAQAAYGtVVVXKyspq9PyIESMkSaNGjdK+ffsabffII49YvTZ78dhjjykhIUELFy7UgQMHrN5/VlaWAgMDJUkZGRkKCgqy+hgAAHRnhEAAAAAtUHur1+TJk3X69GnbFtMFZWVladiwYTKbzUpISND3vve9DhknKChImZmZCgsLU2xsbIeMAQBAd8XtYAAAAGi3ffv2yWw2q2/fvpoxY0aHjbNw4UJJUlxcnL788ssOGwcAgO6IEAgAAMCKmns72JQpU2QymTRlyhRJ0pUrV7R8+XINHjxYrq6uGjhwoJYuXar8/Px7rrtw4YKWLFmiwYMHy8XFRT4+PlqxYoWuX7/eorqOHDmip59+Wr6+vnJxcZGHh4dGjRqljRs36ubNm+392jp06JAkad68eXJ0dGyy7R//+Ec9+eST8vb2lrOzs9zd3TV48GBNnDhR69evV3p6eqPXhoaGSpLKysp09OjRdtcNAICRNP0vNAAAADrMhx9+qPnz59+zoyU/P1979+7V8ePHlZiYqMDAQB08eFDh4eGqrKy0tLt69ap27typhIQEpaamysvLq8Exbt68qaeeekoff/zxPZ/fuXNH586d07lz5/Tb3/5WR48e1bhx49r0PfLz85WbmytJTfZx9+5dPfPMM4qLi7vn88rKSt26dUu5ublKTk5WQkKCMjIyGuzDz89PDz30kK5du6aEhAT96Ec/alPNAAAYETuBAAAAbKCwsFALFiyQh4eHduzYoU8//VRJSUlauXKlTCaTrl+/rmXLluns2bNavHix/P39FRMTo/T0dJ06dUqLFi2S9FUAs2rVqgbHuHPnjmbMmKGPP/5YDg4OWrRokQ4ePKgzZ84oKSlJmzdvlqenp65fv67HHnus3u6jlkpKSrIcjx49utF20dHRlgBowoQJio2NVVJSkjIzM3Xy5Elt3bpVM2fOlIODQ5PjjRkzRpKUmJjYpnoBADAqdgIBAADYwOXLlzV06FClpKSoT58+ls8nTJggR0dHvfHGG0pJSdHcuXM1ZswYnTx5Ur169bK0mzJliioqKhQXF6fDhw/rxo0b9/QjSZs2bVJmZqY8PDz04Ycf1nub1oQJE7Rw4UIFBwerqKhI69at0zvvvNPq75KamipJcnJy0vDhwxttV3vL2NixY3Xq1Kl6t43NmDFDq1at0n/+858mxwsKCtIHH3yggoICFRcXq1+/fq2uGQAAI2InEAAAgI1s3769XnAjSZGRkZbjkpISxcTE3BMA1VqxYoUkqbq6Wmlpafecu3Xrlt566y1J0i9+8YtGX6fu5+en9evXS/rqYcu3b99u9fe4evWqJMnT07PJXTzXrl2TJI0fP77J5wZ94xvfaHK8vn37Wo5zcnJaUyoAAIZGCAQAAGADHh4emj17doPnBg0aJHd3d0nSt771LQ0bNqzBdo8++qjl+OthSGJiokpLSyVJTz31VJO1TJo0SZJUVVWlc+fOtewL1HHjxg1J0oMPPthku/79+0uSjh07ppKSklaPU6tuSFQbLAEAgOYRAgEAANjA0KFDZTKZGj3v4eEhSQoICGi2jaR6r0uv+2Dl/v37W95Y1tCfRx55xNK2LaFK7e1bzYVAYWFhkr56I9qQIUP07LPP6uDBg5adRC1Vd5y27FwCAMCoCIEAAABsoKHbu+rq0aNHs+1q20hfvXmrrpa+Ov7rysrKWn2Ni4uLJKm8vLzJds8++6zWrVsnR0dHlZaWat++ffrhD38oHx8fDRkyRC+99FKLbu+qO07Pnj1bXS8AAEbFg6EBAAC6obqhUGZmZovDEm9v71aPVftco+Ye6CxJmzdvVkREhN555x199NFHOnPmjMrKypSdna1f/epX2rFjh7Zv367ly5c32kfdceruhgIAAE0jBAIAAOiGPD09Lcd9+vRpU7jTUrUh0M2bN1vU3s/PT+vWrdO6detUVVWls2fP6tChQ9q1a5cqKioUGRmpsWPHauTIkQ1eX3ccX1/f9n8BAAAMgtvBAAAAuqG6AUpKSkqHjjVixAhJUmlpaatvQ+vZs6fGjx+vN998U++++64kyWw2Kz4+vtFrPv/8c0mSs7OzhgwZ0saqAQAwHkIgAACAbmjGjBmW5wlt375dZrO5w8aaOHGi5fjs2bNt7mf69OmW46beHlY7xsiRI3kmEAAArUAIBAAA0A15eHjoJz/5iSQpNTVVL774ompqahptX1xcrJiYmDaNNWbMGDk7O0uS0tPTG2134MABVVdXN3r+xIkTluNBgwY12ObOnTv6xz/+IUmaNWtWW8oFAMCwCIEAAAC6qU2bNmns2LGSpF//+tf6zne+o7feekspKSn629/+plOnTuk3v/mNnnzySfn6+mrnzp1tGsfZ2VmzZ8+WJH300UeNtlu0aJG8vb0VGRmpAwcOKC0tTefPn9df/vIXvfTSS1q8eLEkyc3NTQsXLmywj08++URVVVWSpJCQkDbVCwCAUfFgaAAAgG7K2dlZJ0+eVHh4uN5//339/e9/t+wOasj999/f5rGee+45ffDBB0pNTVV+fr78/PwabFdcXKzo6GhFR0c3eP6BBx7Qe++9Jx8fnwbP1z436OGHH9a3v/3tNtcLAIAREQIBAAB0Y+7u7jp8+LCSk5O1f/9+JSUlqbCwUOXl5br//vvl7++vMWPGaO7cue26vWrOnDny9vbW1atXdfDgQa1du7ZemwsXLuhPf/qTkpOTlZ2dreLiYv33v/+Vu7u7AgMDNXv2bK1YsUL9+vVrcIyKigq9//77kqTIyMg21woAgFGZzB35lEAAAAAYxuuvv641a9YoICBAly5dUo8e1n3ywIEDB7Ro0SJ5enoqLy9Pbm5uVu0fAIDujmcCAQAAwCqioqI0YMAAff755zp06JBV+66pqdFrr70mSVq9ejUBEAAAbUAIBAAAAKtwdXXVxo0bJUmvvvqqVV9LHxcXp0uXLsnX11cvvPCC1foFAMBIeCYQAAAArCY8PFzFxcWqrKxUUVGRvLy8rNLv3bt39corr2jatGlydXW1Sp8AABgNzwQCAAAAAAAwAG4HAwAAAAAAMABCIAAAAAAAAAMgBAIAAAAAADAAQiAAAAAAAAADIAQCAAAAAAAwAEIgAAAAAAAAAyAEAgAAAAAAMABCIAAAAAAAAAMgBAIAAAAAADAAQiAAAAAAAAADIAQCAAAAAAAwAEIgAAAAAAAAAyAEAgAAAAAAMABCIAAAAAAAAAMgBAIAAAAAADAAQiAAAAAAAAADIAQCAAAAAAAwAEIgAAAAAAAAAyAEAgAAAAAAMABCIAAAAAAAAAP4P6q0vs5pUtyHAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkkAAAHJCAYAAACR2K1xAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAACKHUlEQVR4nO3dd3iT5foH8G+SNmnTPeguLbvMgoxSlCFUChxBBBRwMERUZAg4OJyfguMow4XriHqUoSAcFFFRQURAkbJlb2hpobulu03b5P390b6hadM2aZNmfT/XlQt48ybvnZC2d+/nee5HIgiCACIiIiLSIbV0AERERETWiEkSERERkR5MkoiIiIj0YJJEREREpAeTJCIiIiI9mCQRERER6cEkiYiIiEgPJklEREREejBJIiIiItKDSRIRERGRHkySiIiIiPRgkkR1rF27FhKJBElJSRa5/ssvvwyJRGKRaxPZoiNHjmDAgAFwc3ODRCLBiRMnLB2S1RO/z2RnZzd4Xkt+P1y5ciWioqKg0WjMfi1TWr16NVq3bg2VSmXpUEyOSZIDSUxMxJw5c9CxY0colUoolUp06dIFs2fPxqlTpywdnlEkEolBt71791o6VIOdPn0aEyZMQEREBFxcXBAaGop77rkHH3zwgVmud+DAAbz88svIy8szy/ObW1PiFwQBr776Kv7880/zBYaqpGXOnDno2rUr3Nzc0Lp1azz44IO4dOmSya9VUVGBBx54ALm5uXj33Xfx5ZdfIiIiwuTXERUVFWHp0qUYMWIEfH19IZFIsHbtWr3nqlQqLFq0CCEhIXB1dUVMTAx27dpl1PXOnj2LRx55BKGhoVAoFAgJCcEjjzyCc+fOmeDVNI05vnYKCgqwYsUKLFq0CFKp9fxovnz5MiZNmoSwsDAolUpERUXh1VdfRUlJifacadOmoby8HJ988okFIzUTgRzCjz/+KCiVSsHT01OYNWuWsHr1auHTTz8VFi5cKERGRgoSiURISkoSBEEQ1qxZIwAQEhMTLRLr0qVLhcY+ml9++aXO7Z577hEA1Dmenp7eQlE3z19//SXI5XKhffv2wmuvvSZ89tlnwpIlS4Thw4cL7dq1M8s133zzTYv+PzdXU+K/cOGCAEDYvHmz+QITBGH8+PFCUFCQMHfuXOGzzz4TXnvtNSEwMFBwc3MTTp8+bdJrnT9/XgAgfPbZZyZ93vokJiYKAITWrVsLQ4YMEQAIa9as0XvupEmTBCcnJ+G5554TPvnkEyE2NlZwcnIS/vzzT4Ou9e233wpyuVwICgoS/u///k/473//K7z44otCcHCwoFAohG3btjX5dYjfZ7Kysho8r7KyUigtLRU0Go32mDm+dt59913B09NTKC0tNdlzNldycrLg7e0tRERECMuWLRM++eQTYdq0aQIAYcyYMTrnvvDCC0JERITO+2QPmCQ5gCtXrghubm5C586dhdTU1Dr3V1RUCO+9956QnJwsCIJtJEm1zZ4926jHFBUVGRuWWY0aNUpo1aqVcOvWrTr3ZWRkmOWajpgkbdiwQQAgXL582XyBCVVJr0ql0jl26dIlQaFQCA8//LBJr7Vv3z4BgLBlyxaTPWdDXx9lZWVCWlqaIAiCcOTIkXqTpEOHDgkAhDfffFN7rLS0VGjXrp0QGxvbaAxXrlwRlEqlEBUVJWRmZurcl5WVJURFRQnu7u7CtWvXDHxVugxNkvQxx9dOjx49hEceecRkz2cKr7/+ugBAOHPmjM7xKVOmCACE3Nxc7bGjR48KAITdu3e3dJhmxSTJATzxxBMCAOHgwYMGna8vSZo6daoQERFR59z6EpobN24I06dPFwICAgS5XC506dJF+Pzzz+uc9+effwp9+vQRFAqF0LZtW2H16tUmT5LE5zt79qwwefJkwdvbW+jZs6fRsRpyXkFBgfDMM88IERERglwuF1q1aiXExcUJx44dazD+Tp06CUOGDGn0df7+++8CAGHr1q117hMTgAMHDjQah/ie1L7V/D835PWKz3Px4kXh4YcfFjw9PQV/f3/hxRdfFDQajZCcnCyMGTNG8PDwEAIDA4W33nqr0deYlJQkzJo1S+jYsaPg4uIi+Pr6ChMmTNCJzZD4a+vbt2+d8728vBqNx5TuuOMO4Y477qhzfMiQIcLAgQOFY8eOCSNGjBDc3d2FkJAQYdWqVQ0+39SpU+u8psGDBwuCIAjHjx8XRowYIXh4eAhubm7C0KFDhYSEhDrP0djXR0MaSpKef/55QSaTCfn5+TrH33jjDQGA9pey+jz55JMCAOGPP/7Qe7+YHM6aNUt7zJjvU+Kx8+fPCw888IDg4eEh+Pr6CvPmzdOp5tT+ftjQZ6+pX//Xrl0TAAhr167Ve39TPx/NtWjRIr2J5KJFiwSpVFonmRbfP3vi1LzBOrIF27dvR/v27RETE9Mi18vIyED//v0hkUgwZ84ctGrVCr/88gtmzJiBgoICzJ8/H0DVHJzhw4ejVatWePnll1FZWYmlS5ciMDDQLHE98MAD6NChA9544w0IgmBUrIae99RTT+Gbb77BnDlz0KVLF+Tk5GD//v04f/487rjjjnpji4iIQEJCAs6cOYNu3brVe96QIUMQHh6ODRs24P7779e5b8OGDWjXrh1iY2Px8MMPNxjHuHHjcOnSJXz99dd499134e/vDwBo1aqVUa9XNHHiRHTu3BnLly/HTz/9hH//+9/w9fXFJ598gqFDh2LFihXYsGEDnnvuOfTt2xeDBg2q9zUeOXIEBw4c0M6DSEpKwscff4whQ4bg3LlzUCqVjcavz6JFi/Dyyy9DpVJhyZIlAABvb+96z6+srMS1a9fg7u6OkJCQOvcXFRVBo9HA09Oz3ueoSRAEZGRkoGvXrnXuO336NEJCQjB69GhMnz4dY8eOxWeffYYFCxZg6NCh6N69u97nfPLJJxEaGoo33ngD8+bNQ9++fREYGIizZ89i4MCB8PT0xAsvvABnZ2d88sknGDJkCPbt26f3e4G+r4/m+Pvvv9GxY8c670+/fv0AACdOnEB4eHi9j//xxx8RGRmJgQMH6r1/0KBBiIyMxI8//oj//Oc/TY7zwQcfRGRkJJYtW4aDBw/i/fffx61bt7B+/Xq95zf02XviiSea9PV/4MABAKj3nKZ8PioqKpCfn2/Qe+Dr66t3HtSQIUOwYsUKzJgxA6+88gr8/Pxw4MABfPzxx5g3bx7c3Nx0zr/jjjvw119/GXRNm2HhJI3MLD8/XwAgjB07ts59t27dErKysrS3kpISQRCaX0maMWOGEBwcLGRnZ+scnzRpkuDl5aW9ztixYwUXFxfh+vXr2nPOnTsnyGQys1SSJk+eXOc+Q2M19DwvLy9h9uzZRsUuCILw66+/CjKZTJDJZEJsbKzwwgsvCDt37hTKy8vrnLt48WJBoVAIeXl52mOZmZmCk5OTsHTpUoPjaGjIwNDXK763TzzxhPacyspKISwsTJBIJMLy5cu1x2/duiW4uroKU6dObTAu8blrSkhIEAAI69evNyj++rRu3VqYNm1ag+dUVlYKK1euFHx9fbVVgk6dOgmvvPKKcOzYMSElJUX4+uuvhQ4dOhg1v+jLL78UANSpxqWmpgoAhFatWgkpKSna4+fOnRMACOvWrWvweffs2VNnuG3s2LGCXC4Xrl69qnMdDw8PYdCgQTqPb+jrozENVZK6du0qDB06tM7xs2fPCgCE1atX1/u8eXl5AgDhvvvua/D6Y8aMEQAIBQUFgiA0rZJUe27N008/LQAQTp48KQiC/u+H9X32mvr1/+KLLwoAhMLCwjr3NfXzIX4uDLk19DX02muvCa6urjrn/9///Z/ec5944gnB1dXVuBdv5axnCj2ZRUFBAQDA3d29zn1DhgxBq1attLePPvqo2dcTBAHffvstRo8eDUEQkJ2drb3Fx8cjPz8fx48fh1qtxs6dOzF27Fi0bt1a+/jOnTsjPj6+2XHo89RTTzUpVkPPA6oqE4cOHUJqaqpRsd1zzz1ISEjAmDFjcPLkSaxcuRLx8fEIDQ3FDz/8oHPulClToFKp8M0332iPbd68GZWVlXjkkUeaFYcx70tNjz/+uPbvMpkMffr0gSAImDFjhva4t7c3OnXqhGvXrjV4fVdXV+3fKyoqkJOTg/bt28Pb27vOdY2Rn5+P5ORk9OjRo8HzxGrCK6+8goSEBHz77bfo378/3nrrLfTu3Rvh4eGYPn06xo8fj44dOxp07QsXLmD27NmIjY3F1KlTde47ffo0AGDp0qUICwvTHnd2dgYAyOVyY14m1Go1fv31V4wdOxZt27bVHg8ODsZDDz2E/fv3a78v1FT766O5SktLoVAo6hx3cXHR3l+fwsJCAICHh0eD1xDvF89vitmzZ+v8e+7cuQCAn3/+2ejnaurXXU5ODpycnPR+n27q5yM6Ohq7du0y6BYUFFRvbJGRkRg0aBA+/fRTfPvtt3jsscfwxhtv4MMPP6xzro+PD0pLS3VWvtk6DrfZOfGbSFFRUZ37PvnkExQWFiIjI0P7w7W5srKykJeXh08//RSffvqp3nMyMzORlZWF0tJSdOjQoc79nTp1atI3qMa0adOmybEach5Q1edk6tSpCA8PR+/evTFq1ChMmTJF54dVffr27YutW7eivLwcJ0+exHfffYd3330XEyZMwIkTJ9ClSxcAQFRUFPr27YsNGzZok5ANGzagf//+aN++fbPjMOb1imomugDg5eUFFxcX7VBEzeM5OTkNXr+0tBTLli3DmjVrcPPmTZ2hH0OHD/QR21w0liS1a9cOp0+f1hmKGzduHFavXo2jR4+itLQUffr0gbe3NyoqKhq9bnp6Ov7xj3/Ay8sL33zzDWQymc794g/BsWPH6hy/cOECgKqvB2NkZWWhpKRE7+M6d+4MjUaDlJSUOsN+tb8+msvV1VVv35yysjLt/fUxNPkpLCyERCKp8zkzRu3vQe3atYNUKm1SX6TmfN3Vp6mfDx8fH8TFxTX5ugCwadMmPPHEE7h06ZI2QRs3bhw0Gg0WLVqEyZMnw8/PT3u++LVqT33umCTZOS8vLwQHB+PMmTN17hPnJRjyzaC+D71ardb5t9gE7ZFHHqnzG7OoR48eFmmWVvubsrGxNnYeUDW/YeDAgfjuu+/w66+/4s0338SKFSuwdetWjBw50qA45XI5+vbti759+6Jjx46YPn06tmzZgqVLl2rPmTJlCp555hncuHEDKpUKBw8e1PnNrjlxGPN6RbV/8Nd3DECj813mzp2LNWvWYP78+YiNjYWXlxckEgkmTZrUrM+NmCRFR0c3eF5QUBA2b96Md999F8ePH4ebmxsGDhyIcePG4Z577oGfnx8OHTqEl19+GR988EGDc8jy8/MxcuRI5OXl4c8//9Q7t+nUqVMICgpCaGiozvGTJ0/CyclJmxybW0NJS1MEBwfj5s2bdY6npaUBgN73QuTl5YWQkJBG+7edOnUKYWFh2mqKod+nGtKcH/BN/brz8/NDZWUlCgsL61TPmvr5KC8vR25urkFxt2rVSu/X63/+8x/06tVLp4IFAGPGjMHatWvx999/6yRit27dglKpNPlnyZKYJDmAf/zjH/jvf/+Lw4cPaydNGsvHx0dv47Tr16/r/LtVq1bw8PCAWq1u8LcYtVoNV1dXXL58uc59Fy9ebFKMxjImVkPOEwUHB+Ppp5/G008/jczMTNxxxx14/fXXDU6SaurTpw+A2z9YRJMmTcLChQvx9ddfo7S0FM7Ozpg4caJRcdT3w8DQ98VcvvnmG0ydOhVvv/229lhZWVmdz5+xP8xOnTqF4ODgRqsOBw4cwKxZs/DMM8/g5Zdfxo0bN7Bt2zbMnDkTlZWVAKoSwMceewzt2rWr93nKysowevRoXLp0Cb/99lu9P8xOnz6tN3E7deoUOnbsqHfIqiGtWrWCUqnU+3V04cIFSKXSBidMm0rPnj2xZ88eFBQU6EzePnTokPb+howePRqffPIJ9u/fj7vuuqvO/X/++SeSkpKwcOFC7TFDv0/VdPnyZZ0q2pUrV6DRaBAZGVnvYxr67DXl6z8qKgpAVcPf2r+ANPXzceDAAdx99931XrOmxMREva83IyMDPj4+dY6LFVTx66Hm83Tu3Nmga9oKzklyAC+88AKUSiUee+wxZGRk1Lm/sd/sgaoSdH5+vs5vdmlpafjuu+90zpPJZBg/fjy+/fZbvdWrrKws7Xnx8fHYtm0bkpOTtfefP38eO3fuNPi1NYcxsRpynlqtrjMcFBAQgJCQkEbb9e/Zs0fv/4M47Fi7pO7v74+RI0fiq6++woYNGzBixAjtD39D4xBXptT+oWLo6zUXmUxW57344IMP6lQD6ou/PsnJyXV+I9YnPDwcZ86c0XaVfvzxx7F9+3ZkZGTghx9+wP/+9z8kJSXh008/rfc3ZrVajYkTJyIhIQFbtmxBbGxsveedP39e7w/BkydPNjo0qI9MJsPw4cPx/fff61SJMzIysHHjRtx1110Gr8hrjgkTJkCtVusM2apUKqxZswYxMTGNJmrPPfcclEolnnzyyTpDtLm5uXjqqafg6emJOXPmaI8b+n2qptpzMcUO9w0lNfo+e835+hc/H0ePHtU53pzPhynmJHXs2BF///13nU7xX3/9NaRSaZ3rHz9+HAMGDGjwtdoaVpIcQIcOHbBx40ZMnjwZnTp1wsMPP4zo6GgIgoDExERs3LgRUqm0wR8gkyZNwqJFi3D//fdj3rx5KCkpwccff4yOHTvWmUy7fPly7NmzBzExMZg5cya6dOmC3NxcHD9+HL/99pu2BPzKK69gx44dGDhwIJ5++mlUVlbigw8+QNeuXVtsmxRDYzXkvMLCQoSFhWHChAmIjo6Gu7s7fvvtNxw5ckSnKqLP3LlzUVJSgvvvvx9RUVEoLy/HgQMHsHnzZkRGRmL69Ol1HjNlyhRMmDABAPDaa69pjxsaR+/evQEA//d//4dJkybB2dkZo0ePhpubm8Hviznce++9+PLLL+Hl5YUuXbogISEBv/32m87ch8bi16dNmzb4/fffsXLlSoSEhKBz587a56ipvh/evr6+GD16tEGv4dlnn8UPP/yA0aNHIzc3F1999ZXO/eIcwMuXL6OsrKzOD8HS0lJcuXKl3uHOxvz73//Grl27cNddd+Hpp5+Gk5MTPvnkE6hUKqxcubJJz1nThx9+iLy8PO0E5R9//BE3btwAUPVZ9vLyQkxMDB544AEsXrwYmZmZaN++PdatW4ekpCR8/vnnjV6jffv2WL9+PSZPnozu3btjxowZaNOmjfbxt27dwqZNm3SqQMZ8nxIlJiZizJgxGDFiBBISEvDVV1/hoYceanBYVt9nb+DAgejUqVOTvv7btm2Lbt264bfffsNjjz2mPd6cz4cp5iQ9//zz+OWXXzBw4EDMmTMHfn5+2L59O3755Rc8/vjjOkOmx44dQ25uLu67775mXdPqtPyCOrKUK1euCLNmzRLat28vuLi4CK6urkJUVJTw1FNPCSdOnNCeV1/H7V9//VXo1q2bIJfLhU6dOglfffVVvY0fMzIyhNmzZwvh4eGCs7OzEBQUJAwbNkz49NNPdc7bt2+f0Lt3b0Eul5u9mWR9nXUNjbWx81QqlfD8888L0dHR2gZ+0dHRwn/+859G4//ll1+Exx57TNtFWNyiZO7cufV23FapVIKPj4/g5eWl0/zOmDhee+01ITQ0VJBKpXX+zw15X+p7b6dOnSq4ubnVud7gwYOFrl27Nvhe3Lp1S5g+fbrg7+8vuLu7C/Hx8cKFCxeEiIiIOu0DGoq/tps3bwrx8fGCu7u7AEB4//33G4yjOQYPHtzgkmvR//73PwF6OhofPnxYACBs37690WvpawEgCFXNJMXXq1Qqhbvvvls4cOBAncc3pfN0RESEQcvJS0tLheeee04ICgoSFAqF0LdvX2HHjh0GX0cQBOH06dPCQw89JAQFBWn/n11cXISzZ8/qPd/Q71PisXPnzgkTJkwQPDw8BB8fH2HOnDkNNpMU1f7sXbx4sclf/4IgCO+8847g7u6u0wLDFJ+P5jp06JAwcuRIISgoSHB2dhY6duwovP7660JFRYXOeYsWLRJat25td9uSSATBBF3DiKjFVVZWahvMGfKbOZE9WL9+PaZNm4ZHHnmk3oaPtig/Px9t27bFypUrdVpn2AKVSoXIyEj885//xDPPPGPpcEyKc5KIbNS2bduQlZWFKVOmWDoUohYzZcoULFu2DF9++SX+9a9/WTock/Hy8sILL7yAN9980yKrf5tjzZo1cHZ2NnmvLWvAShKRjTl06BBOnTqF1157Df7+/s1qsEhERPVjJYnIxnz88ceYNWsWAgIC7Gq4gYjI2rCSRERERKQHK0lEREREejBJIiIiItKDzSSbSKPRIDU1FR4eHna1mR8REZE9EwQBhYWFCAkJgVTacK2ISVITpaamtsj+R0RERGR6KSkpjW5VxCSpicSdmlNSUlpkHyQiIiJqvoKCAoSHh2t/jjeESVITiUNsnp6eTJKIiIhsjCFTZThxm4iIiEgPJklEREREejBJIiIiItKDSRIRERGRHkySiIiIiPRgkkRERESkB5MkIiIiIj2YJBERERHpwSSJiIiISA8mSURERER6MEkiIiIi0oNJEhEREZEeTJKIiGoRBAGl5WpLh0FEFsYkiYiolld+PIfoV3/FlcxCS4dCRBbEJImIqJY/L2ehvFKDw4m3LB0KEVkQkyQiohoEQUBafhkAIDWv1MLREJElMUkiIqqhoLQSJdXzkW4ySSJyaEySiIhqSM2/nRjdvMUkiciRMUkiIqohvXqoDWAlicjRMUkiIqqhZiUpvaAMlWqNBaMhIktikkREVENa3u1KklojIL2grIGzicieMUkiIqqhZiUJ4LwkIkfGJImIqIaalSSgbtJERI6DSRIRUQ1p1UlRa18lAFaSiBwZkyQiomo1G0n2ifQBwBVuRI6MSRIRUbVbJRVQVVatZusdUZUk3WAlichhMUkiIqombkPi7y5HGz83AKwkETkyJklERNXEobZgL1eEeLsCqEqcBEGwZFhEZCFMkoiIqomTtoO9XBDs7QIAKKvQIKe43JJhEZGFMEkiIqqWWr38P8TbFQonGQI8FNXHOeRG5IiYJBERVUuvUUkCgFCfqiE3tgEgckxMkoiIqqWKc5Kq5yOFVv/JydtEjolJEhFRtbR6KklsA0DkmJgkEREB0GgEpGtXt1UlSWGsJBE5NCZJREQAsotVqFALkEiAQM+qJElsA8A5SUSOiUkSERFub2wb4KGAs6zqW6N24jYrSUQOiUkSERFqzkdy1R4TJ27nl1agSFVpkbiIyHKYJBER4Xa37ZDqJpIA4OHiDE8XJwDslUTkiKwiSfroo48QGRkJFxcXxMTE4PDhw/Wee/bsWYwfPx6RkZGQSCRYtWpVnXNefvllSCQSnVtUVJTOOWVlZZg9ezb8/Pzg7u6O8ePHIyMjw9QvjYhsRM0tSWoK9VEC4LwkIkdk8SRp8+bNWLhwIZYuXYrjx48jOjoa8fHxyMzM1Ht+SUkJ2rZti+XLlyMoKKje5+3atSvS0tK0t/379+vcv2DBAvz444/YsmUL9u3bh9TUVIwbN86kr42IbIdYKRJXtonEIbcbrCQRORyLJ0nvvPMOZs6cienTp6NLly5YvXo1lEolvvjiC73n9+3bF2+++SYmTZoEhUJR7/M6OTkhKChIe/P399fel5+fj88//xzvvPMOhg4dit69e2PNmjU4cOAADh48aPLXSETWr75KUhi7bhM5LIsmSeXl5Th27Bji4uK0x6RSKeLi4pCQkNCs5758+TJCQkLQtm1bPPzww0hOTtbed+zYMVRUVOhcNyoqCq1bt673uiqVCgUFBTo3IrIfaWIlyVu3kiTOUeIKNyLHY9EkKTs7G2q1GoGBgTrHAwMDkZ6e3uTnjYmJwdq1a7Fjxw58/PHHSExMxMCBA1FYWAgASE9Ph1wuh7e3t8HXXbZsGby8vLS38PDwJsdHRNZFrRGQUagCAITUnpPkLc5JKmnxuIjIsiw+3GYOI0eOxAMPPIAePXogPj4eP//8M/Ly8vC///2vyc+5ePFi5Ofna28pKSkmjJiILCmrUAW1RoCTVIJWHrrD+GKvpNTqPkpE5DicLHlxf39/yGSyOqvKMjIyGpyUbSxvb2907NgRV65cAQAEBQWhvLwceXl5OtWkhq6rUCganANFRLYrtbpHUqCnC2RSic594sTtjMIylFdqIHeyy98tiUgPi361y+Vy9O7dG7t379Ye02g02L17N2JjY012naKiIly9ehXBwcEAgN69e8PZ2VnnuhcvXkRycrJJr0tEtkHsth1Ua2UbAPi7y6FwkkIQoN3bjYgcg0UrSQCwcOFCTJ06FX369EG/fv2watUqFBcXY/r06QCAKVOmIDQ0FMuWLQNQNdn73Llz2r/fvHkTJ06cgLu7O9q3bw8AeO655zB69GhEREQgNTUVS5cuhUwmw+TJkwEAXl5emDFjBhYuXAhfX194enpi7ty5iI2NRf/+/S3wLhCRJd3utl03SZJIJAj1dsW17GLcyCtBaz9lS4dHRBZi8SRp4sSJyMrKwpIlS5Ceno6ePXtix44d2sncycnJkEpvF7xSU1PRq1cv7b/feustvPXWWxg8eDD27t0LALhx4wYmT56MnJwctGrVCnfddRcOHjyIVq1aaR/37rvvQiqVYvz48VCpVIiPj8d//vOflnnRRGRVxPlG4oa2tYX6VCVJbANA5FgkgiAIlg7CFhUUFMDLywv5+fnw9PS0dDhE1AyzvjqGX86kY+noLph+Z5s69//z21PYdCQF8+M6YH5cRwtESESmYszPb85AJCKHl1pPI0mRWGFiJYnIsTBJIiKHl149JynEu+6cJOD2CjdxFRwROQYmSUTk0CrUGmRWN5LUt7oNuN0riZUkIsfCJImIHFpGQRkEAXCWSeDvpr8XmraSlFcGjYbTOIkcBZMkInJo4sa2QV4ukNZqJCkK8nKBVAKUqzXILlK1ZHhEZEFMkojIoaWKG9vWM2kbAJxlUgR5Vg3F3eBGt0QOg0kSETk0sZIUUs98JBHnJRE5HiZJROTQxK1GgutpJCnStgFgJYnIYTBJIiKHJg63NVpJ0k7eZpJE5CiYJBGRQ7s9cbvhShKH24gcD5MkInJoDW1uW1Moh9uIHA6TJCJyWKpKNbKLygHUv7mtKIyVJCKHwySJiByWOGlb4SSFj9K5wXPFJKpQVYn80gqzx0ZElsckiYgcVmpe9fJ/b1dIJPobSYqUcif4uskBsJpE5CiYJBGRw0ovMGw+kkjcAJfzkogcA5MkInJYYiWpvo1ta2MbACLHwiSJiByWuLItpJHl/6JQbyUAVpKIHAWTJCJyWGl5YrdtAytJXOFG5FCYJBGRw0rV7ttmaCWp6jxuckvkGJgkEZHD0jaSNLCSxF5JRI6FSRIROaTScjXySqr6HQUbWUnKLlKhrEJtttiIyDowSSIihyRWkZRyGTxdnAx6jLfSGa7OMgBc4UbkCJgkEZFDEje2DfZyabSRpEgikWgnb4vtA4jIfjFJIiKHJFaCGtuzrbbbG92WmDwmIrIuTJKIyCHVrCQZg20AiBwHkyQickjalW0GTtoWsQ0AkeNgkkREDkmsJIUYuPxfxDYARI6DSRIROSRtt+0mVpK4NQmR/WOSREQOKVU73GZcJUmc6J2eXwa1RjB5XERkPZgkEZHDKVJVorCsEgAQbOTqtkBPFzhJJajUCMgsZBsAInvGJImIHE5a9VCZh4sT3BWGNZIUyaQSBFVXnzgvici+MUkiIodj7Ma2tXFeEpFjYJJERA5HrCQZurFtbWKvpBusJBHZNSZJRORwbjeSbFolKYyVJCKHwCSJiBxOWhNXtonYdZvIMTBJIiKH09QtSUQhrCQROQQmSUTkcJq6ua1InLidmlcKQWCvJCJ7xSSJiByKIAgmqySVlKuRV1JhstiIyLowSSIih1JQWomScjWApk/cdnGWwd9dAYBDbkT2jEkSETmUtIKqpMZH6QxXuazJz8M2AET2zyqSpI8++giRkZFwcXFBTEwMDh8+XO+5Z8+exfjx4xEZGQmJRIJVq1bVOWfZsmXo27cvPDw8EBAQgLFjx+LixYs65wwZMgQSiUTn9tRTT5n6pRGRlWnqxra1sQ0Akf2zeJK0efNmLFy4EEuXLsXx48cRHR2N+Ph4ZGZm6j2/pKQEbdu2xfLlyxEUFKT3nH379mH27Nk4ePAgdu3ahYqKCgwfPhzFxcU6582cORNpaWna28qVK03++ojIujR1Y9va2AaAyP4Zt2mRGbzzzjuYOXMmpk+fDgBYvXo1fvrpJ3zxxRf45z//Wef8vn37om/fvgCg934A2LFjh86/165di4CAABw7dgyDBg3SHlcqlfUmWkRkn7SVpCZ22xaFiPu35ZU0OyYisk4WrSSVl5fj2LFjiIuL0x6TSqWIi4tDQkKCya6Tn58PAPD19dU5vmHDBvj7+6Nbt25YvHgxSkr4zY7I3t2uJDVvuC3UR1n1fNVJFxHZH4tWkrKzs6FWqxEYGKhzPDAwEBcuXDDJNTQaDebPn48777wT3bp10x5/6KGHEBERgZCQEJw6dQqLFi3CxYsXsXXrVr3Po1KpoFKptP8uKCgwSXxE1LLESlJIMytJ3OSWyP4ZnSSVllY1T1Mqq36Lun79Or777jt06dIFw4cPN3mAzTV79mycOXMG+/fv1zn+xBNPaP/evXt3BAcHY9iwYbh69SratWtX53mWLVuGV155xezxEpF5pZmsklT1+NzicpSUV0Ipt/jsBSIyMaOH2+677z6sX78eAJCXl4eYmBi8/fbbuO+++/Dxxx8b9Vz+/v6QyWTIyMjQOZ6RkWGSuUJz5szB9u3bsWfPHoSFhTV4bkxMDADgypUreu9fvHgx8vPztbeUlJRmx0dELatmI8mQZiZJXq7O8FBUJUaprCYR2SWjk6Tjx49j4MCBAIBvvvkGgYGBuH79OtavX4/333/fqOeSy+Xo3bs3du/erT2m0Wiwe/duxMbGGhualiAImDNnDr777jv8/vvvaNOmTaOPOXHiBAAgODhY7/0KhQKenp46NyKyLbdKKqCq1AAAAr0UzX4+9koism9G14dLSkrg4eEBAPj1118xbtw4SKVS9O/fH9evXzc6gIULF2Lq1Kno06cP+vXrh1WrVqG4uFi72m3KlCkIDQ3FsmXLAFRN9j537pz27zdv3sSJEyfg7u6O9u3bA6gaYtu4cSO+//57eHh4ID09HQDg5eUFV1dXXL16FRs3bsSoUaPg5+eHU6dOYcGCBRg0aBB69Ohh9GsgItsgVnz83eVQODW9kaQo1NsVF9ILOS+JyE4ZnSS1b98e27Ztw/3334+dO3diwYIFAIDMzMwmVVcmTpyIrKwsLFmyBOnp6ejZsyd27NihncydnJwMqfR2wSs1NRW9evXS/vutt97CW2+9hcGDB2Pv3r0AoB32GzJkiM611qxZg2nTpkEul+O3337TJmTh4eEYP348XnzxRaPjJyLbcXvPtuYNtYnEPdzYK4nIPhmdJC1ZsgQPPfQQFixYgGHDhmmHxX799Ved5MUYc+bMwZw5c/TeJyY+osjIyEZ33W7s/vDwcOzbt8+oGInI9qWZqJGkSBxu45wkIvtkdJI0YcIE3HXXXUhLS0N0dLT2+LBhwzBu3DiTBkdEZEqp2uX/pqkksQ0AkX0zeuL2Y489Bjc3N/Tq1UtnGKxr165YsWKFSYMjIjKldDNVkjjcRmSfjE6S1q1bh9LSut8QSktLta0BiIisUWr1nKQgEyVJ4ia36QVlqFBrTPKcRGQ9DB5uKygogCAIEAQBhYWFcHG5/U1GrVbj559/RkBAgFmCJCIyBXFOkqmG2/zdFZDLpChXa5CeX4ZwX6VJnpeIrIPBSZK3tzckEgkkEgk6duxY536JRMKO1ERktTQaAena1W2mqSRJpRKEeLsgKacEN/NKmSQR2RmDk6Q9e/ZAEAQMHToU3377rc5msXK5XLsPGhGRNcouVqFCLUAiAQI9TZMkAVVVqaScEs5LIrJDBidJgwcPBgAkJiYiPDxcZ9I2EZG1Eze2DfBQwFlmuu9f4go3tgEgsj9GtwCIiIhAXl4ePv/8c5w/fx5A1cq2xx57DF5eXiYPkIjIFEy1sW1t2hVuTJKI7I7Rv04dPXoU7dq1w7vvvovc3Fzk5ubinXfeQbt27XD8+HFzxEhE1GzajW29TTfUBrBXEpE9M7qStGDBAowZMwafffYZnJyqHl5ZWYnHH38c8+fPxx9//GHyIImImktMkoI8zVRJ4pwkIrtjdJJ09OhRnQQJAJycnPDCCy+gT58+Jg2OiMhUxDlDpq4khXlXrWi7mVcKQRAgkUhM+vxEZDlGD7d5enoiOTm5zvGUlBR4eHiYJCgiIlMz9ea2oiAvF0gkgKpSg+yicpM+NxFZltFJ0sSJEzFjxgxs3rwZKSkpSElJwaZNm/D4449j8uTJ5oiRiKjZ0qorScEmriTJnaQI9Kh6Ts5LIrIvRg+3vfXWW5BIJJgyZQoqKysBAM7Ozpg1axaWL19u8gCJiJpLrRGQUagCAISYuJIEVA3hpReUITWvFD3DvU3+/ERkGUYnSXK5HO+99x6WLVuGq1evAgDatWsHpZKdZonIOmUVqqDWCJBJJWjloTD584f6KHE8OY+Tt4nsjNFJkkipVKJ79+6mjIWIyCxSq3skBXooIJOafmI12wAQ2Sejk6Ti4mIsX74cu3fvRmZmJjQa3Z2vr127ZrLgiIhMQey2HWyijW1rE9sA3GAliciuGJ0kPf7449i3bx8effRRBAcHc7krEVm92922TTtpWxTGShKRXTI6Sfrll1/w008/4c477zRHPEREJpeaJ3bbNm8l6eatErM8PxFZhtEtAHx8fODr62uOWIiIzMLclSQx+Sooq0RhWYVZrkFELc/oJOm1117DkiVLUFLC35iIyDakmqmRpMhd4QQvV+eqa1VXrYjI9hk03NarVy+duUdXrlxBYGAgIiMj4ezsrHMuN7klImuTnm+eLUlqCvV2RX5pBW7mlaBTEHcfILIHBiVJY8eONXMYRETmUaHWILO6kWSQmYbbgKp5SefSCtgriciOGJQkLV261NxxEBGZRUZBGQQBcJZJ4O9m+kaSIrFX0g2ucCOyG0bPSUpJScGNGze0/z58+DDmz5+PTz/91KSBERGZgrixbZCXC6RmaCQpCtOucGOSRGQvjE6SHnroIezZswcAkJ6ejri4OBw+fBj/93//h1dffdXkARIRNUequLGtmSZti9h1m8j+GJ0knTlzBv369QMA/O9//0P37t1x4MABbNiwAWvXrjV1fEREzSJWkkLMOB8JqNkriUkSkb0wOkmqqKiAQlE1rv/bb79hzJgxAICoqCikpaWZNjoiomZKzzfvliQisVdSZqEKqkq1Wa9FRC3D6CSpa9euWL16Nf7880/s2rULI0aMAACkpqbCz8/P5AESETXH7eE281aS/NzkcHGu+pYqJmZEZNuMTpJWrFiBTz75BEOGDMHkyZMRHR0NAPjhhx+0w3BERNYizcyNJEUSiURbTeKQG5F9MHrvtiFDhiA7OxsFBQXw8fHRHn/iiSegVCpNGhwRUXOZe0uSmkK9XXEtq5htAIjshNFJEgDIZDKdBAkAIiMjTREPEZHJqCrVyC4qB2C+zW1rYhsAIvti9HAbEZGtEOcGKZyk8FE6N3J287ENAJF9YZJERHZLu/zf21Vn/0lzYRsAIvvCJImI7JY4HynI0/zzkQAgpHpyeGo+kyQie8AkiYjsVmqe2COpZZIksZKUllcGjUZokWsSkfk0OUkqKyvDDz/8gOLiYlPGQ0RkMmIlKcTMy/9FQZ4ukEklKFdrkFWkapFrEpH5NDlJ+uabb3D//fdjw4YNpoyHiMhk0lq4kuQkk2qH9m5wXhKRzWtykrRu3Tq0adMGa9asMWU8REQmk6rdt61lKkkAV7gR2ZMmJUk3btzAvn378PXXX+P48eO4dOmSqeMiImo2bSPJFqokAVzhRmRPmpQkffnllxgwYAD69u2L+Ph4rFu3ztRxERE1S2m5GnklFQDMvyVJTbcrSSUtdk0iMo8mJUnr1q3Do48+CgB49NFH8dVXXzUriI8++giRkZFwcXFBTEwMDh8+XO+5Z8+exfjx4xEZGQmJRIJVq1Y16TnLysowe/Zs+Pn5wd3dHePHj0dGRkazXgcRWQ+xiqSUy+Dp0qTNBZpE7OwtrqwjIttldJJ08OBBpKSk4MEHHwQAjBkzBgUFBdi9e3eTAti8eTMWLlyIpUuX4vjx44iOjkZ8fDwyMzP1nl9SUoK2bdti+fLlCAoKavJzLliwAD/++CO2bNmCffv2ITU1FePGjWvSayAi63N7Y1uXFmkkKeJwG5H9MDpJWrduHcaMGQMPDw8AgEKhwAMPPIC1a9c2KYB33nkHM2fOxPTp09GlSxesXr0aSqUSX3zxhd7z+/btizfffBOTJk2CQqFo0nPm5+fj888/xzvvvIOhQ4eid+/eWLNmDQ4cOICDBw826XUQkXVJrZ443RJ7ttVUc+K2ILBXEpEtMypJUqlU2Lx5M6ZMmaJz/NFHH8XWrVtRVFRk1MXLy8tx7NgxxMXF3Q5IKkVcXBwSEhKMei5jnvPYsWOoqKjQOScqKgqtW7eu97oqlQoFBQU6NyKyXjUrSS1JTJKKVJUoKK1s0WsTkWkZlSQVFhZi1apViI+P1zk+cOBAfPLJJ0YnSdnZ2VCr1QgMDNQ5HhgYiPT0dKOey5jnTE9Ph1wuh7e3t8HXXbZsGby8vLS38PDwJsVHRC1Du7KtBSdtA4CrXAY/NzkA4AYnbxPZNKOSJH9/f0yZMgVSad2HPfLII/XOEbIHixcvRn5+vvaWkpJi6ZCIqAG3N7dt2UoSwHlJRPaiSUs+1Go1srOzIZVK0apVqyZf3N/fHzKZrM6qsoyMjCYnXIY8Z1BQEMrLy5GXl6dTTWrougqFot45UERkfcRu20EtXEkCqobcTt3IZ0NJIhtnVCXpp59+wqBBg+Dm5oaQkBAEBQXB29sbjz76KJKTk42+uFwuR+/evXVWxmk0GuzevRuxsbFGP5+hz9m7d284OzvrnHPx4kUkJyc3+bpEZF1Stfu2tXwl6XYbACZJRLbM4ErSl19+idmzZ+OJJ57AoEGD8Pnnn2PatGmIiIjApk2b0Lt3bxw4cAAdOnQwKoCFCxdi6tSp6NOnD/r164dVq1ahuLgY06dPBwBMmTIFoaGhWLZsGYCqidnnzp3T/v3mzZs4ceIE3N3d0b59e4Oe08vLCzNmzMDChQvh6+sLT09PzJ07F7Gxsejfv79R8ROR9SlSVaKwrGrSdHALr24DuDUJkd0QDBQVFSVs2rRJ++8jR44IYWFhgkajEQRBECZOnCjcf//9hj6djg8++EBo3bq1IJfLhX79+gkHDx7U3jd48GBh6tSp2n8nJiYKAOrcBg8ebPBzCoIglJaWCk8//bTg4+MjKJVK4f777xfS0tIMjjk/P18AIOTn5zfpNROR+VxKLxAiFm0Xui3dYZHr7ziTJkQs2i6M+eBPi1yfiOpnzM9viSAY1shDqVTi3LlziIyM1B5zdnbG9evXERISgsOHDyM+Ph63bt0yeSJnjQoKCuDl5YX8/Hx4enpaOhwiqmHfpSxM/eIwOgV6YOeCQS1+/TM383HvB/vh7y7H0RfvafHrE1H9jPn5bfCcpMjISBw9elT77+PHj0MqlWqX2vv6+qKioqKJIRMRmU5aXstvbFtTWPXqtuyicpRVqC0SAxE1n8FzkmbPno3HH38cR44cgYuLC/773//i0UcfhUwmAwAcOnQIHTt2NFugRESGslQjSZGXqzPc5DIUl6txM68U7Vq5WyQOImoeo5IkqVSKr776CiqVCtOmTcNLL72kvb9fv37YuHGjWYIkIjKGpRpJiiQSCUJ9XHEpowg3bzFJIrJVRvVJmjVrFmbNmqX3PmNXtRERmYulK0lAVRuASxlFbANAZMOMbiZZWVmJs2fParfvCAoKQpcuXeDs7Gzy4IiImsJSm9vWxDYARLbP4CRJo9FgyZIl+Oijj5Cfn69zn5eXF+bMmYNXXnlF75YlREQtRRAEq6gkcWsSIttncJL0z3/+E2vXrsXy5csRHx+vXdWWkZGBX3/9FS+99BLKy8uxYsUKswVLRNSYgtJKlJRXrSiz1Jwk4HYl6QYrSUQ2y+Akaf369fjyyy8RHx+vczwyMhJPPPEEIiIiMGXKFCZJRGRRaQVVSYmP0hmucpnF4ghjJYnI5hk8NlZYWIiQkJB67w8ODkZxcbFJgiIiaipLbmxbU6i3EgCQXlCGSrXGorEQUdMYnCQNGTIEzz33HLKzs+vcl52djUWLFmHIkCGmjI2IyGiW3Ni2pgAPBZxlEqg1AjIKVRaNhYiaxuDhttWrV2PUqFEIDg5G9+7ddeYknT59Gl26dMH27dvNFigRkSHESpKlum2LpFIJgrxckJJbitS8Uu0cJSKyHQYnSeHh4Th58iR27tyJgwcPalsA9OvXD2+88QaGDx/OlW1EZHGpFm4kWVOotytScktx81Yp+kZaOhoiMpZRfZKkUilGjhyJkSNHmiseIqJmEStJIRauJAHivKRc9koislFGN5OsKTExEVeuXEFwcDC6detmqpiIiJrM0luS1CT2SrrBFW5ENsng8bGnn34aRUVFAIDS0lJMmDAB7dq1Q3x8PKKjozF06FDt/URElmAtjSRFYey6TWTTDE6SPvnkE5SUlAAAXnvtNRw6dAi7d+9GUVER/vjjDyQnJ+P11183W6BERI25VVIBVWXVcvsgK0iSbnfdLrFwJETUFAYnSYIgaP/+448/YuXKlbj77ruhVCpx55134p133sHWrVvNEiQRkSHEPdv83eVQOFmukaSo5v5tNb+HEpFtMGo5mkQiAQCkp6ejR48eOvdFR0cjJSXFdJERERnp9lCb5ecjAberWWUVGtwqqbBwNERkLKMmbr/00ktQKpWQSqVITU1F165dtffl5OTAzc3N5AESERnq9qRtyw+1AYCLswytPBTIKlTh5q1S+LrJLR0SERnB4CRp0KBBuHjxIgCgS5cuuH79us79P//8s07SRETU0lK1y/+to5IEVA25ZRWqcDOvBN3DvCwdDhEZweAkae/evQ3e/9BDD2HatGnNDIeIqOnSraySBFRN3j6Rksc2AEQ2qFl9kmpq27atqZ6KiKhJUvPFzW2tJ0liGwAi28V9RIjIbohzkqxquE3bBoBJEpGtMShJkkqlkMlkRt9effVVc8dPRAQA0GgEpFtRI0lRKCtJRDbLoOG2xMTEJj25t7d3kx5HRGSs7GIVKtQCJBIg0NN6kiSxqpXKJInI5hiUJEVERJg7DiKiZhE3tg3wUMBZZj0zCcThtlslFSgpr4RSbrKpoERkZtbznYSIqBmsrZGkyNPFGR4uVYkR5yUR2RYmSURkF6ytkWRN4rykGxxyI7IpTJKIyC5YayUJAMK4wo3IJjFJIiK7IE6MDvG23koSV7gR2RaDkiRfX19kZ2cDAB577DEUFhaaNSgiImNZcyWJvZKIbJNBSVJ5eTkKCgoAAOvWrUNZWZlZgyIiMlZadZUm2CorSUoAbANAZGsMWosaGxuLsWPHonfv3hAEAfPmzYOrq/7f1r744guTBkhE1Bi1RkBGoQoAEGKFlSRxCJDDbUS2xaAk6auvvsK7776Lq1evQiKRID8/n9UkIrIaWYUqqDUCZFIJWnkoLB1OHeJwW0ZBGSrUGqvq40RE9TMoSQoMDMTy5csBAG3atMGXX34JPz8/swZGRGSo1Orl/4EeCsikEgtHU5e/mwJyJynKKzVIzy9DuK/S0iERkQGM/nUmMTGRCRIRWRWx23awFW1sW5NUKrndK4mTt4lsRpNqvvv27cPo0aPRvn17tG/fHmPGjMGff/5p6tiIiAxizY0kRWwDQGR7jE6SvvrqK8TFxUGpVGLevHnaSdzDhg3Dxo0bzREjEVGDUqsrSSFWWkkCaiRJrCQR2Qyjd1p8/fXXsXLlSixYsEB7bN68eXjnnXfw2muv4aGHHjJpgEREjbGJSlL15G22ASCyHUZXkq5du4bRo0fXOT5mzBgkJiaaJCgiImNYcyNJUQiH24hsjtFJUnh4OHbv3l3n+G+//Ybw8PAmBfHRRx8hMjISLi4uiImJweHDhxs8f8uWLYiKioKLiwu6d++On3/+Wed+iUSi9/bmm29qz4mMjKxzv7iCj4hsi01UkpgkEdkco4fbnn32WcybNw8nTpzAgAEDAAB//fUX1q5di/fee8/oADZv3oyFCxdi9erViImJwapVqxAfH4+LFy8iICCgzvkHDhzA5MmTsWzZMtx7773YuHEjxo4di+PHj6Nbt24AgLS0NJ3H/PLLL5gxYwbGjx+vc/zVV1/FzJkztf/28PAwOn4isqwKtQaZ1Y0krbHbtki7yW1eKTQaAVIrbFVARLokgiAIxj7ou+++w9tvv43z588DADp37oznn38e9913n9EBxMTEoG/fvvjwww8BABqNBuHh4Zg7dy7++c9/1jl/4sSJKC4uxvbt27XH+vfvj549e2L16tV6rzF27FgUFhbqVMAiIyMxf/58zJ8/3+iYAaCgoABeXl7Iz8+Hp6dnk56DiJrvxq0S3LViD5xlElx8baTVJh8Vag06vfgLNAJw+P+GIcDDehM6IntmzM/vJrUAuP/++7F//37k5OQgJycH+/fvb1KCVF5ejmPHjiEuLu52QFIp4uLikJCQoPcxCQkJOucDQHx8fL3nZ2Rk4KeffsKMGTPq3Ld8+XL4+fmhV69eePPNN1FZWVlvrCqVCgUFBTo3IrI8cT5SkJeL1SZIAOAskyLQs3p7Eq5wI7IJFu2Nn52dDbVajcDAQJ3jgYGBSE9P1/uY9PR0o85ft24dPDw8MG7cOJ3j8+bNw6ZNm7Bnzx48+eSTeOONN/DCCy/UG+uyZcvg5eWlvTV1/hURmZa4WsyaJ22LOC+JyLYYPSfJ1nzxxRd4+OGH4eKiW9peuHCh9u89evSAXC7Hk08+iWXLlkGhqLv30+LFi3UeU1BQwESJyAqIlaQQK560LQr1ccXR67fYBoDIRlg0SfL394dMJkNGRobO8YyMDAQFBel9TFBQkMHn//nnn7h48SI2b97caCwxMTGorKxEUlISOnXqVOd+hUKhN3kiIstK1w63WX8lKYQNJYlsikWH2+RyOXr37q0zoVqj0WD37t2IjY3V+5jY2Ng6LQh27dql9/zPP/8cvXv3RnR0dKOxnDhxAlKpVO+KOiKyXmJVJsSKV7aJONxGZFssPty2cOFCTJ06FX369EG/fv2watUqFBcXY/r06QCAKVOmIDQ0FMuWLQMAPPPMMxg8eDDefvtt/OMf/8CmTZtw9OhRfPrppzrPW1BQgC1btuDtt9+uc82EhAQcOnQId999Nzw8PJCQkIAFCxbgkUcegY+Pj/lfNBGZjC00khSJXbe5yS2RbTA6SVKr1Vi7di12796NzMxMaDQanft///13o55v4sSJyMrKwpIlS5Ceno6ePXtix44d2snZycnJkEpvF7wGDBiAjRs34sUXX8S//vUvdOjQAdu2bdP2SBJt2rQJgiBg8uTJda6pUCiwadMmvPzyy1CpVGjTpg0WLFigM+eIiGyDLTSSFIWxkkRkU4zukzRnzhysXbsW//jHPxAcHAyJRHfJ7bvvvmvSAK0V+yQRWZ6qUo1OL+4AABx/6R74usktHFHDSsor0WXJTgDAqZeHw9PF2cIRETkeY35+G11J2rRpE/73v/9h1KhRTQ6QiMgUxEnbCicpfJTWn3Ao5U7wUTrjVkkFbt4qhWew9cdM5MiMnrgtl8vRvn17c8RCRGSU2/ORXOpUta2VOC+JbQCIrJ/RSdKzzz6L9957D03YzYSIyKRuz0ey/knbohAvzksi63IxvRB7LmRaOgyrZPRw2/79+7Fnzx788ssv6Nq1K5yddcvFW7duNVlwREQNSc2rriTZwPJ/kVhJYq8ksgYajYDpaw4jNb8M38++E9Hh3pYOyaoYnSR5e3vj/vvvN0csRERGEStJITZUSRJ7Jd2wk0rSudQCfL4/Ec/Fd7Spih5VOZdWgNTqYetfz6UzSarF6CRpzZo15oiDiMhoaTZYSQqzs0rSsl/O48/L2dAIAt6d2NPS4ZCR9l68Pcy2+3wmno+PsmA01qfJHbezsrKwf/9+7N+/H1lZWaaMiYjIIKnafdtsp4IR6q0EYB9zkvJLKpBwNQcA8NOpNGQVqiwcERlr78XbP78vpBfixq0SC0ZjfYxOkoqLi/HYY48hODgYgwYNwqBBgxASEoIZM2agpIRvLhG1HO3EbRuqJIlzkrIKVSirUFs4mubZfSEDlZqqRTzlag02H0m2cERkjPySChxPvgUAiPCrSt45gVuX0UnSwoULsW/fPvz444/Iy8tDXl4evv/+e+zbtw/PPvusOWIkIqqjtFyNvJIKAECwp+1UknyUznB1lgG43efJVu04kw4A6BToAQD46mAyKtWahh5CVuTPK1nQCED7AHdM6tsaALCbSZIOo5Okb7/9Fp9//jlGjhwJT09PeHp6YtSoUfjss8/wzTffmCNGIqI6xCqSUi6Dp6vFt6E0mEQi0W7Ga8tDbiXlldh3qWqoZsWEHvB3lyO9oAy/nsuwcGRkKHGobUjHVhjWuWpz9wNXc1BSXmnJsKyK0UlSSUmJdl+1mgICAjjcRkQtxhYbSYpCfarnJdnw5O19F7OgqtSgta8S0WFeeKhfVSVi3YEkywZGBtFoBG2SO6RTADoEuCPc1xXllRr8dSXHwtFZD6OTpNjYWCxduhRlZbfLxKWlpXjllVcQGxtr0uCIiOojdqwO8badoTaRPbQB2HG2aqhtRLcgSCQSPBQTAZlUgkOJubiQXmDh6Kgx59IKkFWoglIuQ982PpBIJBgWVVUA+f0Cq4Eio5Ok9957D3/99RfCwsIwbNgwDBs2DOHh4Thw4ADee+89c8RIRFRHzUqSrbH1NgCqSjV+P181dyW+axAAIMjLBSOq/77uwHWLxUaGEatIA9r5QeFUNUduaFTVkNvu85ncVaOa0UlSt27dcPnyZSxbtgw9e/ZEz549sXz5cly+fBldu3Y1R4xERHXY4pYkIrGSdDPPNqcoHLiag0JVJQI8FOhVo/ng1AGRAIBtf99EfvWkerJOYn+kwZ0CtMdi2vpCKZchs1CFs6msBgJNaCYJAEqlEjNnzjR1LEREBrPlSpJ2axIbHW7bWb2qLb5rEKTS2/PB+kb6ICrIAxfSC7HlWAoeH9jWUiFSA/JLK3A8OQ9A1aRtkcJJhoEd/LHzbAZ+O5+BbqFeForQehiUJP3www8YOXIknJ2d8cMPPzR47pgxY0wSGBFRQ25327bdSlJ6fhnUGgEyqe1MPFdrBO0KthHdgnTuk0gkmDogEou3nsaXB6/jsTvb6CRRZB32X86GWiOgXSs3hPsqde4bFhWInWcz8PuFTMyP62ihCK2HQUnS2LFjkZ6ejoCAAIwdO7be8yQSCdRq226ORkS2IVW7b5vtVZICPBSQSSWoUAvIKlQhyIZew5GkXOQWl8Nb6Yx+bXzr3D+2ZyiW/Xwe13NKsO9SFu6OCtDzLGRJ4lDbkE51/2+GRFVVlk7dyEdmQRkCPG3ns2kOBs1J0mg0CAgI0P69vhsTJCJqCUWqShSWVfVyscVKkpNMiiBPsVeSbc1LEhtIxnUOhLOs7o8QV7kME/uGAwDWJSS1ZGhkAEGoufS/VZ37AzxctJvc7rnIxpJGT9xev349VKq6+/OUl5dj/fr1JgmKiKghadVzeTxcnOCusJ1GkjWJ85Ju2NAKN0EQsFNc+t81qN7zHukfAYmkqllhYnZxS4VHBjifVojMQhVcnWV6K4EAMKzGKjdHZ3SSNH36dOTn59c5XlhYiOnTp5skKCKihtjixra1hXnb3uTtUzfykZZfBqVchrs6+Nd7XoSfG+6uHsr5MoHtAKzJ3ktViU/Npf+1ia0A9l/Jtvn9BZvL6CRJEAS93W1v3LgBLy/OhCci8xMrSba0sW1toTbYK0lsIHl3VABcnPX/gBWJ7QC2HEtBsYrbXFgL7VYkeobaRF1DPBHoqUBJuRqHEnNbKjSrZHCdulevXpBIJFVdOYcNg5PT7Yeq1WokJiZixIgRZgmSiKgmW17+Lwq1sUqSIAja+UgNDbWJBrb3Rxt/NyRmF+O7v2/ikf4R5g6RGlFQVoFj128B0D9pWySRSDA0KhBfH07G7vMZGNyx/oTK3hmcJImr2k6cOIH4+Hi4u7tr75PL5YiMjMT48eNNHiARUW223EhSJFaSUm0kSbqcWYTE7GLIZVKDVqxJpRI82j8Cr24/h/UJSXg4prXN7bFnb/6qXvrfVs/S/9qGRQVUJ0mZeGWM/hEkR2BwkrR06VKo1WpERkZi+PDhCA4ONmdcRET1sodKkrjn3M1bpfVOY7AmYhVpYAd/gyfLT+gThrd+vYhLGUU4eC0Xse38zBkiNUI71Nax8ST3zvb+UDhJcTOvFJcyitApyMPc4Vklo+YkyWQyPPnkkzqb2xIRtTRb3txWJA63FZerkV9q/Vt4iElSfLfGh9pEni7OGHdHKABgPdsBWFRjS/9rc5XLcGf7qsn5ux14w9sm7d127do1c8RCRNQoQRDsopLk4iyDv7scgPW3AUjOKcG5tALIpBLEdQ406rFTYiMBAL+ey7CZoUV7dCG9EOkFZXBxlta79L82cZXb7w7cCsDoJOnf//43nnvuOWzfvh1paWkoKCjQuRERmVNBaSVKyquWJdvynCTAdiZvi72RYtr4wtdNbtRjOwZ6YEA7P6g1AjYcYjsASxGH2mLb+jW6MlEkJknHk28ht7jcbLFZM6OTpFGjRuHkyZMYM2YMwsLC4OPjAx8fH3h7e8PHx8ccMRIRaaUVVCUU3kpnuMoN+2ZvrWylDYC49L/2Xm2GEqtJXx9Ocfi+O5bS0FYk9QnxdkXnYE9oBGDfJcesJhndqnbPnj3miIOIyCDajW1tvIoE2EYlKbOgTLtsfHiXpiVJcZ0DEOLlgtT8Mvx0Kg3je4eZMkRqRKHO0n/jlvMPiwrA+bQC7D6fift7Od7/m9FJ0uDBg80RBxGRQWx5Y9vaxCTJmufq7DxXNWm3V2vvJm/E6yST4uH+EXhz50WsT0hiktTC/rqSjUqNgDb+bojwczPqsUM7B+DDPVew71IWKtQavfv12bMmbXqUl5eHzz//HOfPnwcAdO3aFY899hg7bhOR2WkrSTbcbVsUYgOVpJ1GNJBsyKS+4Xhv92WcvJGPEyl56Fm9iSqZnzgfqSlNIaPDvOHnJkdOcTmOJOViQLv6t6OxR0anhEePHkW7du3w7rvvIjc3F7m5uXjnnXfQrl07HD9+3BwxEhFppdpBI0mRtc9JyispR8K1HABAfDOTJD93BUb3CAEArDuQ1NzQyECCIBi0FUl9ZFKJdh6TI65yMzpJWrBgAcaMGYOkpCRs3boVW7duRWJiIu69917Mnz/fDCESEd0mVpJC7KCSFOZd1fU4p7gcpeXWN6H5t/OZUGsERAV5INLfuGEafaYOqNqa5KdTacgqVDX7+ahxFzOqlv4rnKTo37ZpzTzjOlcnSReYJDXq6NGjWLRokc7ebU5OTnjhhRdw9OhRkwZHRFRbekFVkhTkafuVJE9XJ233amscctPu1dbEVW219QjzRq/W3ihXa7D5SLJJnpMapl36387wpf+13dXBH84yCa5lF+NaVpEpw7N6RidJnp6eSE6u++FOSUmBh4djti0nopYhCEKNbtu2X0mSSCRWu8KtWFWJPy5X/YA1VZIEAFOr2wF8dTAZFWqNyZ6X9NMu/W/GJrUeLs6IaVNVhXK0apLRSdLEiRMxY8YMbN68GSkpKUhJScGmTZvw+OOPY/LkyeaIkYgIAHCrpAKqyqofrE1daWVtrHVe0t6LWSiv1CDST4lOgab7BXhk9yD4u8uRXlCGXeccd7uLllBYVoGjSeLSf8P7I+mj7b7tYEmS0avb3nrrLUgkEkyZMgWVlZUAAGdnZ8yaNQvLly83eYBERCKxiuTvLofCybYbSYqstQ2A2EAyvluQSTffVTjJ8FC/1nj/9ytYdyAJo7pzs3Rz+etKDio1AiL9lM2eUzascwBe3X4OhxNzUVBWAU8XZxNFad2MriTJ5XK89957uHXrFk6cOIETJ04gNzcX7777LhQKhTliJCICgBp7ttn+fCSRNbYBKKtQ4/fzVVWe5i791+ehmAjIpBIcSszFhXRuZ2UuYpfs5laRACDCzw3tWrmhUiPgj+qNch1Bk7tCKZVKeHt7w9vbG0ql0pQxERHplaZd/m8fQ22AdQ63HbiajeJyNYI8XRAd5m3y5w/yctEmX+sOcD83c6i59H9wE5b+6zOsenNjR2oFYHSSVFlZiZdeegleXl6IjIxEZGQkvLy88OKLL6KiosIcMRIRAQBStcv/7aeSZI0Tt8VVbfFdAyGVmm6oraYpsVXtALb9fRP5JfzZYWqXMoqQll+19D+2iUv/axtWPS9pz8Wq1hCOwOgkae7cufj000+xcuVK/P333/j777+xcuVKfP7555g3b16Tgvjoo48QGRkJFxcXxMTE4PDhww2ev2XLFkRFRcHFxQXdu3fHzz//rHP/tGnTIJFIdG4jRozQOSc3NxcPP/wwPD094e3tjRkzZqCoyLGWNhLZmvTqSpK9TNoGgLDqSlJ6QRkqrWC1V6Vao51QHW/CVW219Wvji6ggD5RWqLHlWIrZruOoxFVt/ds2fel/bb0jfODp4oRbJRU4kXLLJM9p7YxOkjZu3Ii1a9fiySefRI8ePdCjRw88+eST+Pzzz7Fx40ajA9i8eTMWLlyIpUuX4vjx44iOjkZ8fDwyM/WX8w4cOIDJkydjxowZ+PvvvzF27FiMHTsWZ86c0TlvxIgRSEtL096+/vprnfsffvhhnD17Frt27cL27dvxxx9/4IknnjA6fiJqOanaOUn2kyS1cldALpNCrRG0PaAs6XBSLm6VVMBH6Yx+kb5mu45EIsHUAZEAgC8PXofGQSoTLaU5Xbbr4ySTauc37XaQITejkySFQoHIyMg6x9u0aQO5XG50AO+88w5mzpyJ6dOno0uXLli9ejWUSiW++OILvee/9957GDFiBJ5//nl07twZr732Gu644w58+OGHdeIMCgrS3nx8fLT3nT9/Hjt27MB///tfxMTE4K677sIHH3yATZs2ITU11ejXQEQtQ5yTZE/DbVKpRLsPnTXMSxL3arunSyCczLyZ6X09Q+Dp4oTrOSXY50CTgc2tSFWJo9dzAZhm0nZNwxys+7bRXwFz5szBa6+9BpXqdkt5lUqF119/HXPmzDHqucrLy3Hs2DHExcXdDkgqRVxcHBISEvQ+JiEhQed8AIiPj69z/t69exEQEIBOnTph1qxZyMnJ0XkOb29v9OnTR3ssLi4OUqkUhw4d0ntdlUqFgoICnRsRtRyNRkC6HVaSgBptAPItmyRpNAJ2nq1e1WbGoTaRUu6EiX3DAQDrEpLMfj1H8deVbFSoBUT4KdHGBNvJ1DS4YytIJcCF9ELcuFVi0ue2RkYnSX///Te2b9+OsLAwxMXFIS4uDmFhYfjxxx9x8uRJjBs3TntrTHZ2NtRqNQIDA3WOBwYGIj09Xe9j0tPTGz1/xIgRWL9+PXbv3o0VK1Zg3759GDlyJNRqtfY5AgJ0s2snJyf4+vrWe91ly5bBy8tLewsPD2/09RGR6WQXq1ChFiCRAIGe9pUkadsAWLiSdPJGHtILyuCucGqx3d4f6R8BiaRqeCgxu7hFrmnvtENtzeiyXR9vpRx9IqqGYR2hmmR0M0lvb2+MHz9e55i1JQyTJk3S/r179+7o0aMH2rVrh71792LYsGFNes7Fixdj4cKF2n8XFBRY3esmsmfixrYBHgo4m3kYqKVZywo3sYHk3VEBJpvs25gIPzfc3SkAv1/IxJcJ17FkdJcWua69EgQB+y6arj+SPkM7B+BwUi52n8/ElOptZuyV0UnSmjVrTHZxf39/yGQyZGTotqbPyMhAUJD+Um9QUJBR5wNA27Zt4e/vjytXrmDYsGEICgqqMzG8srISubm59T6PQqFgs0wiCxIbSQbZUSNJkdgr6YYFK0mCIGjnI5mjgWRDpg6IxO8XMrHlWAqeHd4RbgqjfzRRtSuZRUjNL4PcSYr+Jlr6X9uwqAAs/+UCEq7moFhVadf/X03+dSwrKwv79+/H/v37kZXVtAl3crkcvXv3xu7du7XHNBoNdu/ejdjYWL2PiY2N1TkfAHbt2lXv+QBw48YN5OTkIDg4WPsceXl5OHbsmPac33//HRqNBjExMU16LURkXtpJ23Y2HwkAwqygknQxoxBJOSWQO0lNuiLKEAPb+6ONvxsKyyrx3d83W/Ta9kYcauvf1g+ucvNUA9sHuKO1rxLlag3+upJtlmtYC6OTpOLiYjz22GMIDg7GoEGDMGjQIISEhGDGjBkoKTF+EtfChQvx2WefYd26dTh//jxmzZqF4uJiTJ8+HQAwZcoULF68WHv+M888gx07duDtt9/GhQsX8PLLL+Po0aPaSeNFRUV4/vnncfDgQSQlJWH37t2477770L59e8THxwMAOnfujBEjRmDmzJk4fPgw/vrrL8yZMweTJk1CSEiI0a+BiMzPHrckEYmVpNS8UgiCZZbCiw0kB3Vo1eKVAalUgkf7VzWXXJ+QZLH3wB7sFbciMcN8JJFEInGYDW+NTpIWLlyIffv24ccff0ReXh7y8vLw/fffY9++fXj22WeNDmDixIl46623sGTJEvTs2RMnTpzAjh07tJOzk5OTkZaWpj1/wIAB2LhxIz799FNER0fjm2++wbZt29CtWzcAgEwmw6lTpzBmzBh07NgRM2bMQO/evfHnn3/qDJdt2LABUVFRGDZsGEaNGoW77roLn376qdHxE1HLEDeADfG2v0pSsJcrJBKgrEKDnOJyi8QgJkktsapNnwl9wqCUy3ApowgHr+VaJAZbV6yqxJHEqiaP5q4G1mwFYM89roz+deHbb7/FN998gyFDhmiPjRo1Cq6urnjwwQfx8ccfGx3EnDlz6m0fsHfv3jrHHnjgATzwwAN6z3d1dcXOnTsbvaavr2+Tml8SkWXYcyVJ7iRFgIcCGQUqpOaVwt+9Zec/JmUX40J6IWRSCeI6m2eyb2M8XZwx7o5QfHUwGesOJCG2nXnm09izA1dzUK7WoLWv6Zf+19avjS/c5DJkFqpwNrUA3cO8zHo9SzG6klRSUlJnCT4ABAQENGm4jYjIEGnVlaRgO6wkATVWuFlg8vbO6lVtsW394K00vimwqYgrpX49l27xlX62aK92VVsrSCTm2XNPpHCSYWCHqmrVb+czGjnbdhmdJMXGxmLp0qUoK7vdPr+0tBSvvPJKg5OniYiaSq0RkFFY1cDW3hpJikIsOHlbXPpvzr3aDNEx0AOxbf2gEYCNh65bNBZbIwiCdtL2YDPOR6ppqAN03zZ6uG3VqlUYMWIEwsLCEB0dDQA4efIkXFxcDBrmIiIyVlahCmqNAJlUggAP+0ySLNUGID2/DH8n50EiAeK71B0laGlTB0Qi4VoOvj6cgrlDO7RYvyZbdzWrCDfzSiGXSVtsqPLuTgGQSIDTN/ORUVBmd01egSZUkrp3747Lly9j2bJl6NmzJ3r27Inly5fj8uXL6Nq1qzliJCIHJ27XEeihgExq3mEES7FUG4Bfz1VVke5o7YMAK/ghF9c5ACFeLsgtLsdPp9IafwABuL30P6atL5Tyllmd2MpDgegwbwDAHjutJhn1TlZUVCAqKgrbt2/HzJkzzRUTEZEOsdt2sB1tbFubWElq6TlJOyzUQLI+TjIpHu4fgTd3XsT6hCSM7x1m6ZBsQksPtYmGRQXgREoedl/IxKR+rVv02i3BqEqSs7OzzlwkIqKWIDaStNf5SAAQ6q0E0LKVpNzichxKrFpuH28lSRIATOobDrmTFCdv5ONESp6lw7F6xapKHK7+fzTXViT1Eecl7b+cjbIKdYteuyUYPdw2e/ZsrFixApWVleaIh4iojtTqSlKIA1SS8ksrUKRqme+vv53PgFojoEuwJ1r7KVvkmobwc1dgdI+qxr7rDiRZNhgbkFC99D/MxxXtWpl36X9tXYI9EeTpgtIKNQ5ey2nRa7cEo5OkI0eOYOvWrWjdujXi4+Mxbtw4nRsRkak5QiXJXeEEL1dnALcbZ5rbTgs3kGzI1AFVHbh/OpWGrOqVjaSftst2Cyz9r00ikWirSbvP29+8JKOTJG9vb4wfPx7x8fEICQmBl5eXzo2IyNRuN5K03yQJqNEGoAXmJRWpKvHn5ap9t6wxSeoR5o1erb1RrtZg85FkS4djtWou/R/S0TKNQIfV2KLE3raUMXoK/Jo1a8wRBxFRvW5Xkux3uA2oaih5Pq0AN1qgkrTnQibK1Rq09XdDhwB3s1+vKabGRuLv5BP46mAynhzcDs6yJu/JbreuZhXjxq2qpf8D2lumS/mAdv5QOElxM68UFzMKERXkaZE4zMHgT5xGo8GKFStw5513om/fvvjnP/+J0lJ2RCUi86pQa5ApNpK0027borAWXOG2s0YDyZYeojHUyO5B8HeXI72gDLvO2W9X5+YQu2z3a9NyS/9rc5XLcFd7fwD2N+RmcJL0+uuv41//+hfc3d0RGhqK9957D7NnzzZnbEREyCgogyAAzjIJ/N1adk+zlhbaQr2SyirU2r421rL0Xx+FkwyTq5eVcwK3fvsuVQ+1mXlD28bYa/dtg5Ok9evX4z//+Q927tyJbdu24ccff8SGDRug0WjMGR8ROThxPlKQlwukdtpIUnS7V5J598H860o2isvVCPZyQQ8r35j04ZgIyKQSHErMxfm0AkuHY1VKyitx6Jq49N/CSVL1vKTjybeQW1xu0VhMyeAkKTk5GaNGjdL+Oy4uDhKJBKmpqWYJjIgIuL3Sy97nIwG3K0liywNzERtIxne13qE2UZCXi7batT6B+7nVJC79D/V2RbtWlp1XFuzlii7BnhCE20OA9sDgJKmyshIuLrrzAZydnVFRUWHyoIiIRI6ysg24XUnKKCxDeaV5qvSVag12Ve/abk0NJBsyJbaqHcC2v28iv4Q/c0TaVW0WWPqvzzCxFYAdDbkZPMtLEARMmzYNCsXtOQFlZWV46qmn4OZ2u3nV1q1bTRshETm0dG2SZP+VJD83ORROUqgqNUjPLzNLg8fDibnIK6mAr5scfSN9TP785tCvjS+igjxwIb0QW46l4PGBbS0dksUJglCjP5Jllv7XNjQqAB/8fgV/XMxCeaUGcifbX41o8CuYOnUqAgICdHoiPfLII3V6JRERmZI43BZi5yvbgKrGfOKQ240888xL2lG9qu2ezoFwspEl9RKJBFMHRAIAvjx4HRqNffXiaYpr2cVIya1e+t/OMkv/a4sO84afmxyFqkocTcq1dDgmYXAlif2RiMgS0hyokgRUDbldyy42SxsAjUbQLv23xgaSDbmvZwiW/Xwe13NKsO9SFu6Oso7qiaWIQ2192/jATWGZpf+1SaUS3B0VgG+O3cDuC5kYUN0WwJbZxq8RROSwHGFLkprM2QbgxI08ZBSo4K5wsljjwaZSyp0wsW84AGBdQpJlg7EC4uRoS3XZrk+cnbUCYJJERFZLValGdlHVcmJ73ty2plAzbk0i7tU2NCoACieZyZ/f3B7pHwGJpKqKkphdbOlwLKa0XI1Didax9L+2uzq0grNMgsTsYlzLKrJ0OM3GJImIrJY4aVvhJIWP0tnC0bQMcYVbar5pkyRBELTzkWxtqE0U4eeGu6snKX/pwO0AEq5lo7yyaul/eyvbUsZd4YT+bauqlPZQTWKSRERWq+byf2tY4twSzFVJupBeiOs5JVA4STG4o3VVH4whtgPYciwFxapKC0djGeJ8pMFWsvS/NrGxpD1sUcIkiYislqNsbFtTSI2GkqZcxSU2kBzUsZXVTPRtikEdWqGNvxsKyyrx3d83LR1OixME4XZ/JCtNdsUk6UhSLvJLbbuvFZMkIrJaYudpe9/YtqYgLxdIJUC5WoPsIpXJnle7qs1GGkjWRyqV4NH+VdWk9QlJEATHageQmF2M5NwSOMskVrt6LMLPDe0D3FGpEfBH9d5ytopJEhFZLbGSFOJAlSRnmRRBnlVJ4Q0TrXBLzC7GhfRCOEkl2q7ItmxCnzAo5TJcyijCwWv20Y/HUOKGtn0jfeFuxRXBYVH2scqNSRIRWa00B6wkATU3ujVNkiRWkWLb+cFbKTfJc1qSp4szxt0RCgBYdyDJssG0sJpbkVizYZ0DAQB7LmZCbcPNP5kkEZHVSq2euO1IlSTA9L2Sam5oay+mxEYCAH49l26WnlLWqKxCjYPXcgBYz1Yk9bmjtTe8XJ2RV1KBv5NvWTqcJmOSRERWK716uC3IQRpJirRtAEzwwz8tvxQnUvIgkQDDuwQ2+/msRcdAD8S29YNGADYecox2AAnXcqCq1CDEywUdrGzpf21OMqm22mXLG94ySSIiq1Rarsat6h3fHa+SVLWxrSmG2349mwEA6N3aBwGe9pVsivu5fX04BWUVassG0wL2aZf+B1jl0v/axFVuv9twKwAmSURklcRJ20q5DJ6u1jtB1RzEzXxNMYwkDrXZagPJhsR1DkCIlwtyi8vx06k0S4djduJWJLbS52pwx1aQSSW4mFGIlFzzbNhsbkySiMgqOWIjSVGYiSZu5xaX41Bi1RwWe5qPJHKSSfFwjXYA9iwpuxhJOSVwkkpwp43su+etlKN3hA8A213lxiSJiKySOB/HUfZsq0l8zYWqymY14/vtXAY0AtA1xBPhvkpThWdVJvUNh9xJipM38nEiJc/S4ZiNWEXqE+kDDxfb2aJHbAVgq/OSmCQRkVWqWUlyNEq5E3zdqpbqN6eatMNOGkg2xM9dgdE9QgDYdzuAvZfEpf/WvaqtNrEVwMGrOTa5jQyTJCKySmnalW2OV0kCmt8GoLCsAvsvZwOwz/lINU0dUDXk9tOpNGQVmq5LubUoq1Aj4aq49N825iOJ2rVyQ4SfEuVqDfZfybZ0OEZjkkREVilN2yPJ8SpJwO0kqaltAPZczEK5WoO2rdysbqd4U+sR5o2e4d4oV2uw+UiypcMxuYPVS/+DPF3QKdDD0uEYRSKR2PQqNyZJRGSVbnfbdtBKkk/zKkk7z9weanOEie/TqtsBfHUwGRVqjWWDMbGaXbZt8f9yWFTVkNvvFzNNumlzS2CSRERWKVW7b5tjVpLEydtNmZNUVqHGnuqJvvY+1CYa2T0I/u5ypBeUYde5DEuHY1L7LtnGViT16dfGF25yGbIKVTiTmm/pcIzCJImIrE6RqhKFZVWTPB22klT9upuyye2fl7NRUq5GiJcLuod6mTo0q6RwkmFyv9YA7GsC9/WcYiRmF1cv/fe3dDhNIneSYlB1b6ffbGzIjUkSEVmdtOrEwMPFyap3Ojen5vRK0u7V1s0xhtpED8dEQCaV4FBiLs6nFVg6HJMQh9p6R9jW0v/atPOSLthWlY9JEhFZHUfd2LYmsZKUXaQyasuNCrUGv52v+kFkz0v/9QnyctG+5vUJ9rGfm9gfydaW/td2d1QAJBLgzM0CpFd/fdsCq0iSPvroI0RGRsLFxQUxMTE4fPhwg+dv2bIFUVFRcHFxQffu3fHzzz9r76uoqMCiRYvQvXt3uLm5ISQkBFOmTEFqaqrOc0RGRkIikejcli9fbpbXR0TGcdSNbWvyVjpDKZcBMG6F26FrucgvrYCfmxx9In3NFZ7VmhJb1Q5g2983kV/S9Eac1qCsQo2Ea7a59L82f3cFeoZ7A4B2vpwtsHiStHnzZixcuBBLly7F8ePHER0djfj4eGRm6n8TDxw4gMmTJ2PGjBn4+++/MXbsWIwdOxZnzpwBAJSUlOD48eN46aWXcPz4cWzduhUXL17EmDFj6jzXq6++irS0NO1t7ty5Zn2tRGSY1OqVbeIeZo5IIpHUaANg+G/eO85W7WE2vGsgZFLHGWoT9Wvji6ggD5RWqLHlWIqlw2mWQ4m5KKuoWvofFWRbS//10XbftqF5SRZPkt555x3MnDkT06dPR5cuXbB69WoolUp88cUXes9/7733MGLECDz//PPo3LkzXnvtNdxxxx348MMPAQBeXl7YtWsXHnzwQXTq1An9+/fHhx9+iGPHjiE5Wbd/hoeHB4KCgrQ3Nzc3s79eImqc2Egy2IGH24CabQAM2xxUoxGw82zVUJs97tVmCIlEgqnV7QDWHkiyyS7Popob2trD3LKh1a0A/rqSbdQQsiVZNEkqLy/HsWPHEBcXpz0mlUoRFxeHhIQEvY9JSEjQOR8A4uPj6z0fAPLz8yGRSODt7a1zfPny5fDz80OvXr3w5ptvorLSdr+YiOyJI29JUpOxbQD+TrmFrEIVPBROGNDONldCmcJ9PUPg767AjVuleOqrYyivtM2+Sfsu2vbS/9o6B3sg2MsFpTWGEa2dRZOk7OxsqNVqBAYG6hwPDAxEenq63sekp6cbdX5ZWRkWLVqEyZMnw9PTU3t83rx52LRpE/bs2YMnn3wSb7zxBl544YV6Y1WpVCgoKNC5EZF5OPLmtjUZ2wZAXNU2rHMA5E4WHyiwGKXcCf+d2gdKuQx/Xs7Gc1tO2lwTw+ScElwTl/53sI+Et2b37d3nbWOVm11/FVVUVODBBx+EIAj4+OOPde5buHAhhgwZgh49euCpp57C22+/jQ8++AAqlf59f5YtWwYvLy/tLTw8vCVeApHDEQSBlaRqxrQBEATh9oa2DtJAsiE9w72x+pHecJJK8MPJVLy6/RwEwXYSpb2Xqoba7ojwgacNL/2vbVjn21uU2ML/h0WTJH9/f8hkMmRk6GaUGRkZCArS/0UeFBRk0PlignT9+nXs2rVLp4qkT0xMDCorK5GUlKT3/sWLFyM/P197S0mx7QmBRNaqoLQSJeVV8xUcfk6SEZvcnksrQEpuKVycbzfuc3SDOrbC2w9GA6ian/SfvVctHJHh9trZUJtoQDt/uDhLkZpfhgvphZYOp1EWTZLkcjl69+6N3bt3a49pNBrs3r0bsbGxeh8TGxurcz4A7Nq1S+d8MUG6fPkyfvvtN/j5+TUay4kTJyCVShEQoL8XhUKhgKenp86NiEwvraAqIfBWOsO1egm8oxInbqfnl0HdyHCRuFfb4I6toJQ7ZgNOfe7rGYol93YBALy58yK+Pmz9G+CWVahx4Go2AGBIR9vuj1Sbi7MMd1V3Dv/9gvWvcrP4cNvChQvx2WefYd26dTh//jxmzZqF4uJiTJ8+HQAwZcoULF68WHv+M888gx07duDtt9/GhQsX8PLLL+Po0aOYM2cOgKoEacKECTh69Cg2bNgAtVqN9PR0pKeno7y8HEDV5O9Vq1bh5MmTuHbtGjZs2IAFCxbgkUcegY+PT8u/CUSkpd3Y1sGrSAAQ4OECJ6kElRoBmYUNtwHgUFv9HrurDZ4e0g4A8H/fndbO3bJWh6uX/gd6KtA52PaX/tcmrnKzhXlJFv91Y+LEicjKysKSJUuQnp6Onj17YseOHdrJ2cnJyZBKb+dyAwYMwMaNG/Hiiy/iX//6Fzp06IBt27ahW7duAICbN2/ihx9+AAD07NlT51p79uzBkCFDoFAosGnTJrz88stQqVRo06YNFixYgIULF7bMiyaiejn6xrY1yaQSBHu7ICW3FDdvldabOF7NKsKljCI4SSXaH0Ck6/n4TsgpKsfmoymYt+lvrH+sH/q3bXyUwRLEoTZ7Wfpfmzh5+++UPOQUqeDnrrBwRPWzeJIEAHPmzNFWgmrbu3dvnWMPPPAAHnjgAb3nR0ZGNjoZ7I477sDBgweNjpOIzE9bSXLgRpI1hXi5ViVJeaXoU885O6urSAPa+8PL1X4m+ZqSRCLB6/d3Q25JOXady8DMdUex+clYdAmxvqkT4qRtW9+KpD5BXi7oGuKJs6kF2HsxC+N7h1k6pHpZfLiNiKimVDaS1CHOS7rRwAo3cT6So+3VZiwnmRQfTO6FfpG+KFRVYuqaw0jOMaxRZ0tJyS3BtaxiyKQS3NnePpb+6zNMu+Gtdc9LYpJERFbl9pwkVpIAIKyRFW4380px8kY+JBLgni4camuMi7MMn03tg6ggD2QVqjDli0PILtLf+sUSxC7bvVv72HVVcGjnqs/qvktZVt3sk0kSEVmV9AJO3K4ptJFeSb9WD7X1jfBFKw/rndthTbxcnbHusX4I83FFUk4Jpq05jMIy69gMVzsfyc6W/tfWI9QL/u4KFKkqcSQp19Lh1ItJEhFZDUEQanTbZiUJAEK9lQDqrySJK7XiuarNKIGeLlj/WD/4uslx5mYBnvzyGFSVlt1PTFWpxoGrVdt12Ft/pNqkUgmGRlW9Rmve8JZJEhFZjVslFVBVl96DONwG4HYlKTWvtM6ilOwilfa38PiuHGozVttW7lg7vS/c5DIcuJqDhZtPNtqPypyOJN5CaYUarTwU6BJsfRPKTU3bCuBChtV232aSRERWQ6wi+bvLoXBy7EaSInFuVkm5GnklukNCv53LgEYAuod6IcxHaYnwbF6PMG988mgfOMsk+Ol0Gl7+4azFfmCL85Hsdel/bXd18IdcJsX16n3qrBGTJCKyGrf3bON8JJGLswz+1X1kag+5sYGkadzVwR/vPNgTEgnw5cHreH/3FYvEsfeSfW5FUh93hRNi2voCqNrLzRoxSSIiq5GmXf7Pobaa9LUBKCirwF9XqrauiOfS/2YbHR2Cl0d3BQC8+9slfHXweote/8atElzJLIJUAgxs7xhJEnC7FcDuC9bZfZtJEhFZjVQu/9dLXxuAPRcyUaEW0D7AHe0D3C0Vml2ZOiASc4e2BwC89P0Z/HI6rcWuLa5qu6O1D7yU9rv0vzZxXtKRpFvIL7GOFYY1MUkiIquRLlaSvDncVpO+NgA72EDSLBbe0xGT+7WGIADPbDqh3WjW3MQkyVGG2kSt/ZToEOAOtUbAvstZlg6nDiZJRGQ1UvNZSdInVFtJquoOXVqu1v5Q5Xwk05JIJPj32G6I7xqIcrUGT6w/hjM38816zaql/1XJmL1uRdKQoZ2ru29b4Ya3TJKIyGqIc5JCWEnSISZJ4nDkH5ezUFqhRqi3K7pa4d5jtk4mleC9Sb0Q08YXRapKTFtzBNdzzLf66mjSLZSUq+Hv7hhL/2uLq+6+vfdSFirV1tV9m0kSEVkFjUZAOitJemmH26rnJGn3ausW5BBLxS1B3L6kc7AnsotUePTzw8gsLDPLtWou/ZdKHe//s1e4N7yVzsgrqcDfKXmWDkcHkyQisgrZxSpUqAVIJFXdkOk2sbKWW1yO/NIK/FY9LMGhNvPydHHGuul9Ee7riuTcEkz74ggKzLB9iaPORxI5yaQY0tE6u28zSSIiqyBubNvKXQFnGb811eTl6gwPhRMAYOvxGygoq4S/uwJ3tPaxcGT2L8DTBV8+FgN/dznOpRXgifVHUVZhuu1LbuaV4rK49L+Dv8me19aIG97+bmWtAPidiIisgraRJOcj6SUOua35KwkAMLxrIGQOODRjCZH+blg7vR/cFU44eC0X8zedMNn2JeJQW6/WPvBWyk3ynLZocIdWkEkluJRRhJTcEkuHo8UkichBXMooxIEr2Va7R5J20jbnI+klTt5Orv4BwqX/LatbqBc+ndIbcpkUO86m46Xvz5jka0k71NbRMYfaRF5KZ/SJqKqM7raiVW5MkojsXFmFGit2XMDI9/7EQ/89hJnrjyGjwDwTUJuDW5I0TKwkAYCnixP6t/WzYDSOaUA7f6yaVLV9ycZDyXj3t8vNer7ySg0OXHHcpf+1Dessdt+2nnlJTJKI7Nix67fwj/f/xMd7r0KtESCVAL+dz8A97+zDlqMpVlVVEje3DfFmJUmf0BrDkHGdAyF34rdvSxjVPRiv3dcNAPD+7sv4MiGpyc91NCkXxeVq+LvL2coBwLDqeUmHruWiSFVp4Wiq8KuMyA6Vlqvx7+3nMGH1AVzNKkYrDwU+fbQ3fn5mIHqEeaGgrBLPf3MK09ce0SYnlsZKUsNqVpLiuarNoh7pH4H5cR0AAEt+OIvtp1Kb9DzihraDHHTpf21t/d0Q6adEuVqD/ZdbptN5Y5gkEdmZQ9dyMPK9P/Df/YkQBGD8HWHYtWAQhncNQlSQJ7bOGoBFI6Igd5Ji78UsDH/3D3x9ONniVaW0PHFLElaS9GntqwQAuDrLMKiDY89fsQbPDOuAR/tHQBCABZtPaDcbNoY4aZtDbVUkEol2LzdrWeXGJInIThSrKrH0+zOY+OlBJOWUIMjTBWum9cXbD0brrJpxkkkxa0g7/DxvIHq19kaRqhKLt57GI58fstiqErVGQEahCgAbSdane6gXFsR1xDsPRsNVLrN0OA5PIpHg5TFdMap7ECrUAp5YfxSnbxi+fUlqXikuZVQt/R/kwEv/axPnJf1+IQsaE60gbA4mSUR24MCVbIx47w+sS7gOAJjUNxy/LhyEu6Pq/w21fYA7vnlqAF78R2e4OEvx15UcxK/6A+sTklr8m1NWoQpqjQCZVIIADyZJ+kgkEjwT1wEjuwdbOhSqJpNK8O7EnhjQzg/F5WpMW3MYidmGbV8irmrrGe7t0Ev/a+sb6Qt3hROyi1Q4beY98wzBJInIhhWWVWDx1tN46L+HkJJbilBvV3w5ox+Wj+8BTxfnRh8vk0rw+MC2+OWZQejXxhcl5Wos+f4sJn12EEkGfrM3hdTq5f+BHgr2/iGbonCS4ZNHe6NbqCdyisvx6OeHkGnA6lEOteknd5JiUMeqypo1tAJgkkRko/ZdykJ89XwiAHi0fwR2LhiEgU2Yr9LG3w2bZvbHK2O6QimX4XBiLka89wf+++c1kzXNa4jYbZuNJMkWebg4Y820fojwU+LGrVJM+eIw8kvr376kvFKjncPkqFuRNEScl2QNrQCYJBHZmPySCjy/5SSmfnEYqfllaO2rxNcz++O1sd3gXr11RVNIpRJMHRCJnfMH4c72fiir0ODfP53HA6sP4EpmkQlfQV1iI0nORyJb1cpDgS8fi0ErDwUupBdiZgPblxy9fnvpf7cQrxaO1PoN6dQKEglwNrVAu+m1pTBJIrIhv53LwD3v7sOWYzcgkQCP3dkGO+YPRGw70zUWDPdV4qsZMXjj/u5wVzjheHIeRlX3WqpUa0x2nZpSqytJIawkkQ1r7afEuun94KFwwuHEXMz7+m+9XzP7qucjDerApf/6+Lsr0CvcGwDwu4WrSUySiGzAreJyzN/0Nx5ffxSZhSq09XfDlidjsWR0FyjlTa8e1UcikeChmNb4dcEgDO7YCuWVGqzYcQHjPz6Ai+mFJr+eWEkK8mQliWxblxBPfDa1D+ROUvx6LgMvbqu7fYk4aXswh9rqNcxKNrxlkkRk5X45nYZ73t2HbSdSIZUATw5qi5+fGYg+kb5mv3aItyvWTu+LNyf0gKeLE07eyMe9H/yJD3ZfRoUJq0piI0l22yZ70L+tH96f1AtSCbDpSAre/vWS9r7UvFJczCisXvrPJKk+Q6MCIJUAqkqNRXu4MUkislLZRSrM3nAcszYcR3ZROToEuGPr03di8ajOcHFuuT45EokED/QJx66FgxHXOQAVagFv77qE+z78C2dTTbNE9/acJA63kX0Y0S0Ir9/fHQDw4Z4rWPtXIoCqBRcAEB3uDR83Lv2vT1SQB469eA++nBEDicRyQ5JMkoisjCAI+OFkKoa/+wd+Op0GmVSCOXe3x/Z5d6Fn9Ti9JQR6uuCzKX3w3qSe8FY641xaAe778C+88+tFlFc2vapUodYgU2wkyUoS2ZHJ/Vrj2Xs6AgBe2X4OP5xMvb30vyOX/jdEIpFYRRJp+skMRNRkmQVl+L9tZ7DrXNU4fFSQB956IBrdQq1jBYxEIsF9PUMxoJ0/lnx/Br+cScf7v1/BzrMZePOBHugR5m30c2YUlEEQAGeZBP5uCtMHTWRBc4a2R3aRCusSruPZ/53Q9gHj0n/bwEoSkRUQBAHfHruBe979A7vOZcBZJsGCuI74Yc5dVpMg1dTKQ4GPH+mN/zx8B/zc5LiYUYixH/2F5b9cqHfZc33E+UhBXi5c6UN2RyKRYOnorri3RzAq1ALKKjTwdZOjuxV+XVNdrCQRWVhafin+tfU09lSveOke6oU3H+iBqCBPC0fWuFHdg9G/rR9e/uEsfjiZitX7rmLXuXSsnBCN3hE+Bj1HqrixrSfnI5F9kkolePvBaOSVVGD/leyqScn8hcAmMEkishBBELD5SApe/+k8ClWVkMukeCauA54c1BZOMtsp8vq6yfH+5F64t0cw/m/bGVzNKsaE1Qcw4842eHZ4p0Y3YxWbxXE+EtkzhZMMn03pgx1n0zCY85FsBpMksmmFZRUQAIP2KbMmKbklWLz1NPZXb03Qq7U33pzQA+0DPCwcWdMN7xqEmDZ+eHX7OXx7/Ab+uz8Rv53PwIrxPRDTtv5ml+JwG1e2kb1zlctwf68wS4dBRmCSRDYjv7QCZ2/m43T17czNfCTllAAA/NzkiPR3Q5sat0g/N0T6K83SbLGpNBoBGw5dx/JfLqC4XA2FkxTPDe+Ex+5qYxcbu3opnfH2g9G4NzoY/9p6Gkk5JZj46UFMjY3ACyOi4KZn2xRxuI09kojI2ljPTw+iGhpKiPTJKS5HTnE5jl2/Vee+IE+XqqTJ3w1tq/9s4++G1r5KyJ1abljrek4xFn17Cgev5QIA+kX6YsWEHmjj79ZiMbSUuzsFYOeCQVj283l8fTgF6xKuY/eFTKwY3wN3tvfXOZeVJCKyVkySyOJqJ0Snb+bjej0JUZiPK7qHeqFbqBe6V9+cnaRIyi5GUk4xErOKkZhTjMTsYiRlF+NWSQXSC8qQXlCGhGs5Os8llQBhPsrbyZOfEm1auaONnxtCfVxNVtlRawSsO5CEN3deRGmFGq7OMiwa0QlTYiPtevKmp4szlo3rgX90D8Gib0/hxq1SPPzfQ5jcrzX+NSoKHtVDpNzcloislUSwZL9vG1ZQUAAvLy/k5+fD09P6VyFZCzEhOlWjQtRQQtQj7HZC1C3Ey+jmYnkl5UjMvp00XauRTBWX179UXS6TItzXFW383dHGX4k2/u6I9Feirb87Aj0VBneAvZpVhBe+OaWtcMW29cOK8T3Q2k9p1OuwdUWqSqzccQHrE64DqEqIlo3rjth2fuj04g4AwPGX7oGvFTSPIyL7ZszPbyZJTcQkqXH5JRU4k6o7ZFZfQhTuq1shakpCZAxBEJBVpEJiVlXSdK06iUrMLkZSTkmDHaRdnWXVQ3ZK7dyntq2q/vR1k0MikaBSrcHn+xPxzq5LUFVq4K5wwuJRUZjct7VdV48ac/BaDhZ9e0r7OYjrHIDfzmdC4STFhddGWHT7ASJyDDaXJH300Ud48803kZ6ejujoaHzwwQfo169fvedv2bIFL730EpKSktChQwesWLECo0aN0t4vCAKWLl2Kzz77DHl5ebjzzjvx8ccfo0OHDtpzcnNzMXfuXPz444+QSqUYP3483nvvPbi7uxsUM5MkXU1NiHqEeqNbqCe8ldZTQdBoBKTmlyIpuwSJ2UVIrP4zKacEybklUGvq/5LxcHFCW383lFVocDGjEAAwsIM/lo/vgVBvzrkBgJLySry18xLWHEiE+N0n0k+Jvc/fbdnAiMgh2FSStHnzZkyZMgWrV69GTEwMVq1ahS1btuDixYsICKjbS+LAgQMYNGgQli1bhnvvvRcbN27EihUrcPz4cXTr1g0AsGLFCixbtgzr1q1DmzZt8NJLL+H06dM4d+4cXFyq5j2MHDkSaWlp+OSTT1BRUYHp06ejb9++2Lhxo0FxO3KSpJMQ3aj6MzlXf0LU2lepWyGysoTIWBVqDW7cKtVNnrJLkJhdjNT8UtT8avJwccJL/+iCB/qEsUKix7HruXj+m1O4llWMoVEB+GJaX0uHREQOwKaSpJiYGPTt2xcffvghAECj0SA8PBxz587FP//5zzrnT5w4EcXFxdi+fbv2WP/+/dGzZ0+sXr0agiAgJCQEzz77LJ577jkAQH5+PgIDA7F27VpMmjQJ58+fR5cuXXDkyBH06dMHALBjxw6MGjUKN27cQEhISKNxmytJUlWqkV1UDrVagFoQoNbUutVzTKMRUFnPMe19ggC1WgO1gNv3CQIq1bXOrz6mqb6W+BwFZRU4m1rgMAmRscoq1LieU5Uw5RaXY1jnAAR6cjJyQ8oq1PjpVBpi2voizMex5mkRkWUY8/PboqvbysvLcezYMSxevFh7TCqVIi4uDgkJCXofk5CQgIULF+oci4+Px7Zt2wAAiYmJSE9PR1xcnPZ+Ly8vxMTEICEhAZMmTUJCQgK8vb21CRIAxMXFQSqV4tChQ7j//vvrXFelUkGlUmn/XVBQ0KTX3JgzN/Mx/mP9r92atPZVonvY7RVm3UK84KW0rYaOpubiLEOnIA90CrLdhpAtzcVZhvG92VyPiKyTRZOk7OxsqNVqBAYG6hwPDAzEhQsX9D4mPT1d7/np6ena+8VjDZ1TeyjPyckJvr6+2nNqW7ZsGV555RUDX1nTOUmlUDhJIZNKIJNIIJNV/ymtukklEjjVc0xa45isnmO1n0/vsRr3SaUSOFX/W+EkRedgTyZERETkENgnyUCLFy/WqWAVFBQgPDzc5NeJDvfGxX+PNPnzEhERkXEsuoumv78/ZDIZMjIydI5nZGQgKChI72OCgoIaPF/8s7FzMjMzde6vrKxEbm5uvddVKBTw9PTUuREREZH9smiSJJfL0bt3b+zevVt7TKPRYPfu3YiNjdX7mNjYWJ3zAWDXrl3a89u0aYOgoCCdcwoKCnDo0CHtObGxscjLy8OxY8e05/z+++/QaDSIiYkx2esjIiIi22Xx4baFCxdi6tSp6NOnD/r164dVq1ahuLgY06dPBwBMmTIFoaGhWLZsGQDgmWeeweDBg/H222/jH//4BzZt2oSjR4/i008/BQBIJBLMnz8f//73v9GhQwdtC4CQkBCMHTsWANC5c2eMGDECM2fOxOrVq1FRUYE5c+Zg0qRJBq1sIyIiIvtn8SRp4sSJyMrKwpIlS5Ceno6ePXtix44d2onXycnJkEpvF7wGDBiAjRs34sUXX8S//vUvdOjQAdu2bdP2SAKAF154AcXFxXjiiSeQl5eHu+66Czt27ND2SAKADRs2YM6cORg2bJi2meT777/fci+ciIiIrJrF+yTZKkduJklERGSrjPn5bdE5SURERETWikkSERERkR5MkoiIiIj0YJJEREREpAeTJCIiIiI9mCQRERER6cEkiYiIiEgPJklEREREejBJIiIiItLD4tuS2CqxUXlBQYGFIyEiIiJDiT+3DdlwhElSExUWFgIAwsPDLRwJERERGauwsBBeXl4NnsO925pIo9EgNTUVHh4ekEgklg6nXgUFBQgPD0dKSgr3mGtBfN9bHt9zy+D7bhl835tOEAQUFhYiJCQEUmnDs45YSWoiqVSKsLAwS4dhME9PT34hWQDf95bH99wy+L5bBt/3pmmsgiTixG0iIiIiPZgkEREREenBJMnOKRQKLF26FAqFwtKhOBS+7y2P77ll8H23DL7vLYMTt4mIiIj0YCWJiIiISA8mSURERER6MEkiIiIi0oNJEhEREZEeTJLs0MsvvwyJRKJzi4qKsnRYduePP/7A6NGjERISAolEgm3btuncLwgClixZguDgYLi6uiIuLg6XL1+2TLB2pLH3fdq0aXU+/yNGjLBMsHZk2bJl6Nu3Lzw8PBAQEICxY8fi4sWLOueUlZVh9uzZ8PPzg7u7O8aPH4+MjAwLRWwfDHnfhwwZUucz/9RTT1koYvvCJMlOde3aFWlpadrb/v37LR2S3SkuLkZ0dDQ++ugjvfevXLkS77//PlavXo1Dhw7Bzc0N8fHxKCsra+FI7Utj7zsAjBgxQufz//XXX7dghPZp3759mD17Ng4ePIhdu3ahoqICw4cPR3FxsfacBQsW4Mcff8SWLVuwb98+pKamYty4cRaM2vYZ8r4DwMyZM3U+8ytXrrRQxHZGILuzdOlSITo62tJhOBQAwnfffaf9t0ajEYKCgoQ333xTeywvL09QKBTC119/bYEI7VPt910QBGHq1KnCfffdZ5F4HElmZqYAQNi3b58gCFWfb2dnZ2HLli3ac86fPy8AEBISEiwVpt2p/b4LgiAMHjxYeOaZZywXlB1jJclOXb58GSEhIWjbti0efvhhJCcnWzokh5KYmIj09HTExcVpj3l5eSEmJgYJCQkWjMwx7N27FwEBAejUqRNmzZqFnJwcS4dkd/Lz8wEAvr6+AIBjx46hoqJC5zMfFRWF1q1b8zNvQrXfd9GGDRvg7++Pbt26YfHixSgpKbFEeHaHG9zaoZiYGKxduxadOnVCWloaXnnlFQwcOBBnzpyBh4eHpcNzCOnp6QCAwMBAneOBgYHa+8g8RowYgXHjxqFNmza4evUq/vWvf2HkyJFISEiATCazdHh2QaPRYP78+bjzzjvRrVs3AFWfeblcDm9vb51z+Zk3HX3vOwA89NBDiIiIQEhICE6dOoVFixbh4sWL2Lp1qwWjtQ9MkuzQyJEjtX/v0aMHYmJiEBERgf/973+YMWOGBSMjMr9JkyZp/969e3f06NED7dq1w969ezFs2DALRmY/Zs+ejTNnznCuYwur731/4okntH/v3r07goODMWzYMFy9ehXt2rVr6TDtCofbHIC3tzc6duyIK1euWDoUhxEUFAQAdVb2ZGRkaO+jltG2bVv4+/vz828ic+bMwfbt27Fnzx6EhYVpjwcFBaG8vBx5eXk65/Mzbxr1ve/6xMTEAAA/8ybAJMkBFBUV4erVqwgODrZ0KA6jTZs2CAoKwu7du7XHCgoKcOjQIcTGxlowMsdz48YN5OTk8PPfTIIgYM6cOfjuu+/w+++/o02bNjr39+7dG87Ozjqf+YsXLyI5OZmf+WZo7H3X58SJEwDAz7wJcLjNDj333HMYPXo0IiIikJqaiqVLl0Imk2Hy5MmWDs2uFBUV6fymlpiYiBMnTsDX1xetW7fG/Pnz8e9//xsdOnRAmzZt8NJLLyEkJARjx461XNB2oKH33dfXF6+88grGjx+PoKAgXL16FS+88ALat2+P+Ph4C0Zt+2bPno2NGzfi+++/h4eHh3aekZeXF1xdXeHl5YUZM2Zg4cKF8PX1haenJ+bOnYvY2Fj079/fwtHbrsbe96tXr2Ljxo0YNWoU/Pz8cOrUKSxYsACDBg1Cjx49LBy9HbD08joyvYkTJwrBwcGCXC4XQkNDhYkTJwpXrlyxdFh2Z8+ePQKAOrepU6cKglDVBuCll14SAgMDBYVCIQwbNky4ePGiZYO2Aw297yUlJcLw4cOFVq1aCc7OzkJERIQwc+ZMIT093dJh2zx97zkAYc2aNdpzSktLhaefflrw8fERlEqlcP/99wtpaWmWC9oONPa+JycnC4MGDRJ8fX0FhUIhtG/fXnj++eeF/Px8ywZuJySCIAgtmZQRERER2QLOSSIiIiLSg0kSERERkR5MkoiIiIj0YJJEREREpAeTJCIiIiI9mCQRERER6cEkiYiIiEgPJklEREREejBJIiK7MW3aNItu+/Loo4/ijTfeMOjcSZMm4e233zZzRETUHOy4TUQ2QSKRNHj/0qVLsWDBAgiCAG9v75YJqoaTJ09i6NChuH79Otzd3Rs9/8yZMxg0aBASExPh5eXVAhESkbGYJBGRTRA39gSAzZs3Y8mSJbh48aL2mLu7u0HJibk8/vjjcHJywurVqw1+TN++fTFt2jTMnj3bjJERUVNxuI2IbEJQUJD25uXlBYlEonPM3d29znDbkCFDMHfuXMyfPx8+Pj4IDAzEZ599huLiYkyfPh0eHh5o3749fvnlF51rnTlzBiNHjoS7uzsCAwPx6KOPIjs7u97Y1Go1vvnmG4wePVrn+H/+8x906NABLi4uCAwMxIQJE3TuHz16NDZt2tT8N4eIzIJJEhHZtXXr1sHf3x+HDx/G3LlzMWvWLDzwwAMYMGAAjh8/juHDh+PRRx9FSUkJACAvLw9Dhw5Fr169cPToUezYsQMZGRl48MEH673GqVOnkJ+fjz59+miPHT16FPPmzcOrr76KixcvYseOHRg0aJDO4/r164fDhw9DpVKZ58UTUbMwSSIiuxYdHY0XX3wRHTp0wOLFi+Hi4gJ/f3/MnDkTHTp0wJIlS5CTk4NTp04BAD788EP06tULb7zxBqKiotCrVy988cUX2LNnDy5duqT3GtevX4dMJkNAQID2WHJyMtzc3HDvvfciIiICvXr1wrx583QeFxISgvLycp2hRCKyHkySiMiu9ejRQ/t3mUwGPz8/dO/eXXssMDAQAJCZmQmgagL2nj17tHOc3N3dERUVBQC4evWq3muUlpZCoVDoTC6/5557EBERgbZt2+LRRx/Fhg0btNUqkaurKwDUOU5E1oFJEhHZNWdnZ51/SyQSnWNiYqPRaAAARUVFGD16NE6cOKFzu3z5cp3hMpG/vz9KSkpQXl6uPebh4YHjx4/j66+/RnBwMJYsWYLo6Gjk5eVpz8nNzQUAtGrVyiSvlYhMi0kSEVENd9xxB86ePYvIyEi0b99e5+bm5qb3MT179gQAnDt3Tue4k5MT4uLisHLlSpw6dQpJSUn4/ffftfefOXMGYWFh8Pf3N9vrIaKmY5JERFTD7NmzkZubi8mTJ+PIkSO4evUqdu7cienTp0OtVut9TKtWrXDHHXdg//792mPbt2/H+++/jxMnTuD69etYv349NBoNOnXqpD3nzz//xPDhw83+moioaZgkERHVEBISgr/++gtqtRrDhw9H9+7dMX/+fHh7e0Mqrf9b5uOPP44NGzZo/+3t7Y2tW7di6NCh6Ny5M1avXo2vv/4aXbt2BQCUlZVh27ZtmDlzptlfExE1DZtJEhGZQGlpKTp16oTNmzcjNja20fM//vhjfPfdd/j1119bIDoiagpWkoiITMDV1RXr169vsOlkTc7Ozvjggw/MHBURNQcrSURERER6sJJEREREpAeTJCIiIiI9mCQRERER6cEkiYiIiEgPJklEREREejBJIiIiItKDSRIRERGRHkySiIiIiPRgkkRERESkx/8DeU/0vm1TE/oAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, - "metadata": { - "image/png": { - "height": 455, - "width": 576 - } - }, + "metadata": {}, "output_type": "display_data" } ], @@ -335,22 +408,17 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 10, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABKQAAAOOCAYAAAA+s8oOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd3xUVf7/8fekk4QkhJZEkGooooJ0ECliQ5CiYlkUpMhaWHWxrLoqfl3Wgg3BgtKUVUSlqYAFBUEQEESpEqUJJAEChEB6ub8/+GXM3JkkM8m0JK/n45HHY+bOueecKZm585nP+VyLYRiGAAAAAAAAAC8J8PUEAAAAAAAAULMQkAIAAAAAAIBXEZACAAAAAACAVxGQAgAAAAAAgFcRkAIAAAAAAIBXEZACAAAAAACAVxGQAgAAAAAAgFcRkAIAAAAAAIBXEZACAAAAAACAVxGQAgAAAAAAgFcRkAIAAAAAAIBXEZACAAAAAACAVxGQAgAAAAAAgFcRkAIAAAAAAIBXEZACAAAAAACAVxGQAgAAAAAAgFcRkAIAAAAAAIBXEZACAAAAAACAVxGQAgAAAAAAgFcRkAIAAAAAAIBXEZACAAAAAACAVxGQAlBpTZs2lcVikcVi0YEDB3w9Ha/q06eP9b6vXr3a19MBAFRTJ06c0DPPPKOuXbuqTp06CgwMtH7+zJ0719fTQzVS/LqyWCxu67O6His+8MADslgsCg8P1+HDh309HVTA8ePHFRUVJYvFonHjxvl6OjUOASmgBsrMzNSiRYt03333qVOnTjr//PMVERGhsLAwxcXF6ZJLLtEdd9yhadOm6c8///T1dKu1AwcO2Bz4ueNv0qRJvr5b1d7q1at1zz33qFOnTqpfv75CQkJUq1YtNWjQQJ06ddJtt92mV199VZs3b5ZhGL6eLlCjHDhwQO+++65GjBihSy65RHXq1FFwcLBiY2N18cUXa/z48fr+++99PU2X7Nu3T5dccokmTZqkTZs2KT09XUVFRb6eltt48jnLy8vTvHnzNGDAADVp0kRhYWGKj49Xjx499NJLLyktLc3N98axgwcP6vXXX9e1116rxMRERUdHq1atWmratKl69uypp556Sps3b/bKXOAeO3bs0BtvvCFJuv/++9WoUSMfz8j/FBYWatu2bZo1a5buvvtuderUSSEhIdZj1j59+lS47x9//FH33HOPLr30UsXGxio4OFhRUVG64IILNHz4cH344YfKzc0tt5/69etr4sSJkqTZs2fzf+htBoAaIysry3jhhReM+vXrG5Kc/uvRo4fxxRdflNpvkyZNrG3379/vvTvkB3r37m2976tWrXJ5//3797v0XDjz9/TTT7v9fuKcXbt2Gd26dXPp+bjwwgt9PW2X1eT/aX/hjecgLy/PCA0NNSQZwcHBRk5OjkfG8Zaff/7Z6NKli9P/m3369DEOHjzo62k7pX///tZ516pVyxg0aJDx97//3bj33nuNe++919iwYYOvp1ghnn7Odu/ebbRv377MPhs0aGAsW7bMY/fx+PHjxr333msEBQU5dR+vueYaY8eOHR6bjzNKzsddnHlPq2qfPddee60hyYiIiDDS0tJ8PR2/s3jxYiM8PLzM13vv3r1d7jctLc0YPHiwU/9PLVq0MH744Ydy+0xPTzeioqKs7zPwniBzgApA9XTw4EENHjxYv/76q832+vXr69JLL1W9evUUHh6utLQ0HTlyRD///LMKCgokSevXr9fAgQP1yiuv6MEHH/TF9KutqKgo3XvvvWW22bRpk3766SdJUkJCgoYOHVpm+y5durhtfvjL1q1b1a9fP6Wnp1u3NWzYUJ06dVJcXJwsFotOnDihHTt26I8//rBmRpVsD/iTHTt2WH89bteunUJDQ308o8rZs2ePNm3aZLMtMTFR7dq1U7169ZSenq7169dbl9WsXr1a3bt319q1a9W8eXNfTNkpKSkpWrlypSQpNDRUv/76qy644AIfz8o9PPmcHT58WFdccYWSk5MlnVuGdvnll6tFixY6fvy4Vq5cqezsbB07dkxDhgzRl19+qX79+rn1/u3atUvXXHONDh06ZN0WFBSkbt26qUmTJgoNDVVycrLWr1+vjIwMSdKXX36p1atX68MPPyz38x6+s27dOq1YsUKSNG7cONWtW9fHM/I/6enpysrKcmuf2dnZ6t+/v3755Rfrtvr166tDhw5q1KiRjh8/rp07d2rfvn2SpL179+qqq67Sd999p65du5bab3R0tP7+97/rxRdf1OrVq7Vy5Ur179/frXNHKXwdEQPgeXv37jUaNGhg/bXAYrEYN910k7F582ajqKjI4T4ZGRnG4sWLjSuuuMK637PPPuuwbVX7RcudKpsh5Yynn366Ur8kofLy8vKM1q1bW5+HhIQEY/HixUZhYaHD9seOHTPeffdd4/LLLzcaNWrk5dlWXk3+n/YX3ngO3n33XesYY8eO9cgY3jR//nxDktGyZUvj+eefNw4fPmzXprCw0Jg1a5bNr/bdunUr9bPQHyxbtsw61/79+/t6Om7lyeesV69e1vZNmjQxfvnlF5vbjx8/bnOMExsba5w6dcpt923nzp1GnTp1rP0HBwcbjz32mMNMmpycHOO9996zyWAPCAgw5s+f77b5uKJ4Dt7+qliVPnsGDhxoPaZOSkry9XT80pw5cwxJRsOGDY2BAwcazzzzjLF8+XLj/vvvr/BxbcljYovFYvznP/8xsrKybNoUFRUZ8+fPN6Kjo61tL7roonL73rt3r2GxWKrle60/IyAFVHNZWVk26erh4eHGkiVLXOpj48aNxkUXXURAygECUjXDxx9/bLNcZs+ePU7v+8cff3hwZp5Rk/+n/YU3noO///3v1jHeeustj4zhTatXrzbmzJljFBQUlNt20aJFNl+6v/zySy/MsGL+97//Wed5++23+3o6buWp56xkEC8kJMTYtm2bw3Znz541mjdvbm372GOPVfi+lJSdnW20a9fO5thr9erV5e6XnJxsXHDBBdb9ateu7ZPPEAJSZUtKSrIGLjguK11KSorDJbaVOa4t+Rq5//77y2z7ySef2LyWS3sfKKlkkHr79u0uzQ0VQ1FzoJp78cUXbdJaP/jgAw0ePNilPrp06aLNmzeTOo4a6+uvv7ZeHjx4sBITE53et0WLFp6YElBpW7ZssV7u2LGjD2fiHr1799aoUaMUGBhYbtuhQ4faLG9etmyZJ6dWKfn5+dbLAQHV69DdU89ZcaFpSRo5cqQuuugih+0iIiL0f//3f9brM2bMsJYrqIz//ve/2rFjh/X6vHnz1Lt373L3i4+P1zfffKPatWtLks6cOaO77rqr0vOBe82ZM8e6LP/mm2/28Wz8V1xcnM4//3y39ZeRkaGDBw9ar996661lth8yZIjCw8Ot15OSksodY/jw4dbLc+bMqcAs4arq9akGwEZmZqZef/116/Vbb71VQ4YMqVBfISEhuvDCCys8l5Jnk2vatKlT+7h6iuATJ07o5Zdf1pVXXqnGjRsrLCxMMTExatu2re69916XzppRVFSk9957T1deeaXi4uIUFhampk2bavDgwVqyZInT/fgDR6dv/vXXX3X//ferXbt2io2NlcViKfW14c7H1d19Hjp0SM8884wuv/xyNWzYUKGhoQoJCVHdunV1ySWX6LbbbtNbb72l1NRUl+dY0pEjR6yXmzRpUqm+JOmSSy6xPifz5893er+RI0da9/vnP//psE1FH5OS/6MlD/iaNWvm8GyOq1evLnWe7nh+Hb1uf/nlF919991q1aqVIiMjFRkZqa5du+rNN990+CVy8+bNGjVqlNq0aaOIiAjVrVtXffv21QcffFDu+K46ePCg3nrrLd16661q166doqOjFRwcrLp16+qiiy7S3XffrQ0bNpTZhzufg9JMnjzZun9xbTrp3A8P5v6DgoKUk5Pj8hhVRc+ePa2Xy/uMmTlzpvVxGTt2rHX7t99+q1GjRql169aKiIhQVFSUunfvrhkzZlTqLHirV6+2jnfnnXdat7/33nt2z9OoUaMc9rFhwwbdd999uvDCC1WnTh2FhYWpUaNGuuaaazR9+nRlZmY6NZfKfoa4kzPP2dmzZ/Xtt99ar5d8/By54YYbFBkZKUk6efKk1qxZU6k5ZmVl2QTEhgwZomHDhjm9f5MmTfTMM89Yr3/33Xf6+eef7dp547iqpJ9++kljx45VYmKiIiIiFBsbqy5duui5556z1r+qyNjueN/z1rFAsZKfIc6+7r39HlIdnT171uZ6nTp1ymwfFBSkqKgo63VnHs8hQ4ZY3+s+/PBDzpTsDb5O0QLgOcVrt4v/Nm3a5JFxnEmxLnk2uSZNmrit32LTp0+3WSvu6M9isRijR482cnNzy+wrJSXF6Nq1a5l9DR061MjIyKgSS/ZKzru4v8DAQLv7NHjwYLt93fm4urvPGTNmGLVq1Sqzn+K/nj17uvy4lXTddddZ+xo+fHil+jIMw5g2bZq1P2frFJw+fdqmhsrOnTvt2lTmMXH1jI+lvd7d9fyaX7cvvPCCw9dt8d/VV19tPUtcQUGBcffdd5c5h1tuucWpZULOeOihh6zLN8r7u+WWW4zMzEyH/bjrOSjLTTfd5HT/rVq1quQj49/++c9/Wu/rgAEDymx77733WttOnTrV2Lt3r83SDkd/N910U4VrU61atcrp52nkyJE2+549e9a4+eaby90vPj7eWL58eblzMf8vuvIZ4m7OPGdfffWVtU1ERISRn59fbr9XXnmldZ8nnniiUnOcO3euzeOyZs0al/s4c+aMERkZae3DUY03Tx5XOXrOAwICSn0tnXfeecb69esrNHZl3/e8eSxgGIbx66+/Wvtr3bq10/t5+z3En1X0uDYvL88ICwuz7rto0aIy2x87dszmdetsuYWSy2099d0Jf+Ese0A1tmrVKuvlZs2aqXPnzj6cjec88MADmjp1qvV6vXr11L17d8XFxSknJ0dbt27Vjh07ZBiGZs+ereTkZC1btszh0of09HT169dPu3fvtm5r1qyZunfvrtDQUO3cuVObNm3S4sWLq+TSiSlTplh/eW3RooW6dOmi8PBwHThwQMHBwTZt3fm4urvPJUuWaPz48dbrxb8oNmrUSEFBQTp9+rSSkpK0Y8cO5eXlVeoxk2yX3X3++efatWuX2rZtW+H+RowYoUceeUTZ2dn69ttvdeDAgXJ/4Z4/f771bDXdu3e3G7+yj0nJMz6+//77OnPmjCTpjjvusC4fKem8886z2+aJ14x0bhnNo48+Kkm6+OKL1b59ewUGBmrjxo3atWuXJOmrr77SP/7xD82YMUP33HOP3nnnHQUEBKhz585q06aNioqKtHbtWu3fv1+S9NFHH+mSSy7Rv/71rzLHdsahQ4dkGIYsFotatWqlVq1aqW7dugoODtaJEye0detW7d271zpuRkaGvvjiC5uME8k9z0F5OnbsqAYNGmjPnj3WM7e1atXK4dmE2rVr53L/7lBUVKTk5GQ1atTIo+Ns377derlx48ZltjWfobZr165KS0tTTEyMLrvsMsXFxSklJUWrVq2y/p9+8sknGjJkiG677TaX53beeedZXwu//fabNeOndevWuuKKK2zaduvWzXo5KytL/fr1szlzXUJCgnr16qXIyEj98ccf+uGHH1RYWKiUlBRdf/31mj9/vm688Uan5uXKZ4gnOPOclfz8vuiiixQUVP7XnUsvvVTffPON3f4VUfLYq3HjxurVq5fLfURGRmrw4MHWTJySfXrb66+/bn3OW7Zsqa5duyokJETbt2+3ZrseOXJE11xzjb7//nu1b9/epf4r877n7WMBSdbXiSSXnltvv4dUR8HBwbr22mu1ePFiSdJ//vMfXX311TbL8kp69NFHrVlRV1xxhdPlFnr16mVdcvvNN99U2+9PfsOn4TAAHtWsWTNrhP+WW27x2Di+zJCaNWuWtU1UVJTx7rvvGnl5eXbtvvvuO+O8886ztn3hhRcc9jd69Ghrm5CQEGPWrFl2bTZu3GidW0hISKm/2rmLOzOkgoKCjOjoaGPx4sV27YqzSwzD/Y+ru/ssWaj/vvvuKzXj5MyZM8bHH39sPProo6XOyxnfffedzeNYt25d48UXX3R4RihnjRw50trfU089VW77zp07W9s7el268zGpSGFZd79mSj7eoaGhRlxcnMP/sZdeesnm9f3KK68Ykow2bdrYnVWroKDAeOCBB6ztIyMjjbNnzzp1/8ry4osvGnPmzDGOHz9eaps1a9YYLVu2tI49b968Mvv0dHHfp556ytr/pEmT3NJnQUGBMX/+fGPYsGFGQkKCERQUZNStW9fo3Lmz8cQTTxibN28ut48jR44Y/fv3N6ZNm+aWOZXm4MGDNlk+n3zySalti4qKjKioKGvbWrVqGaGhocaUKVNs3jcNwzAOHz5stGrVytp20KBBlZ5ryWxnczaUWcnMwMDAQOO1116zOxtoUlKS0bFjR5v/V2ezZZz9DPEEZ5+zko/BzTff7FTfb7zxhnWftm3bVmqeLVq0sPZ14403Vrif119/3eaxT0lJsbndWxlSISEhRlhYmPG///3Prt0PP/xg835+0UUXOXzfd3ZsV9/3vH0sYBi2WabOvk95+z1k2bJlxr333uvWvw0bNrg8j9JU5rh29+7dNtmDLVq0MObOnWv8/vvvRnZ2tvHnn38aX3zxhXHZZZfZ/E//+eefTo8xY8YM677eyPys6QhIAdVYUFCQ9Q31mWee8dg4vgpIZWRkGDExMdYDpvI+LHft2mVN9a1bt67dgcuePXtslt3MnTu31L727Nljs3yqqgSkAgICjO+//77M9u5+XN3d55kzZ6z3p3Hjxl5LZx80aJDNYymdW3rWqlUr4/bbbzemTp1qbNy40anlIYZhGOvWrbP2c/7559t9aSxp27Zt1ra1a9e2C6K4+zFx9UuBJ14zJR/nsLAwY8eOHaX2179/f5v2DRo0MI4ePeqwbUFBgc3B/oIFC8q9f+6yf/9+6/3u0qVLmW09HZAq+XpeunRppfv78ssvbb6Il/bXqlUr49///rfx888/2yyZ/O2334zHH3/c+r7q6YDUDTfcYPP/V1YwZe/evXavx7LeR5csWWJtm5iYWOm5OhuQ+uOPP2yWp0yfPr3UtidPnjSaNm1qbXvnnXeW2tbVzxBPcfY5Gz58uLXdP/7xD6f6XrhwoXWfuLi4Ss2z5LFXZYK95h9C1q1bZ3O7twJSkoyPPvqo1LY7duwwQkNDrW0d/WDi7NiuvO/56lig5OfHN99849Q+3n4PKXnc6K6/OXPmuDwPZ+ZXkePaX3/91Tj//PPLnXNMTIwxYcIEIyMjw6X+16xZY+2jadOmLs8Prql6600AOCUjI8OmyG9MTEy5+yxfvlz33XdfmX8nT5704KxdM3v2bKWnp0uS7rnnHnXt2rXM9m3atNHIkSMlnSu6/OWXX9rcPmvWLGvxwi5duljbOpKYmKgHHnig4pP3kRtvvFGXX355mW3c/bi6u8+SxVPr1q1rt+zJUz788EO7M00ahqE9e/Zo3rx5uv/++9W1a1fFxMTolltuKXeJRY8ePawnCvjzzz9tlgGYzZo1y3r5lltuUUREhM3tvnpMinniNVPS+PHjyzypgvlMO48//rgaNGjgsG1gYKDNWXRKLm3ytKZNm6pv376SzhUIdqYQsKeUPPuqq0tszN577z1dc8011mWJ4eHh6tKli6699lpdfPHFNmdQ27Nnj/7zn//o0ksvVa1atdS0aVPFxMSodevW+u9//6usrCyFh4dXakmsM/NduHCh9fpzzz2n0NDQUtuXfKwk6aWXXirzfbTka7WwsLDiE3XRu+++a12e0r59e91zzz2ltq1Tp45eeOEF6/UPP/xQp0+fLncMZz5DPMGV56xk4eNatWo51X/JdubCya4wH3uVV3S5LOZ9fXX81atXrzLPJHfhhRdal9xJ516H3uCLzz3DMGwKrzu7rLiqvIdUFRdffLGSkpI0ffp0u+Ohkq6++mrdeuutDpd+lqXkstDDhw/zHHgYASmgmipeg1+srDfsYps2bdIbb7xR5p8vv0CZLV++3HrZ2fX1/fr1s17+4YcfbG4rGUC4/fbby+2rrICVv7rlllvKbePux9XdfdarV09hYWGSpB07dmjdunVO9VdZkZGRWrRokZYtW6Yrr7yy1LpHmZmZWrBggfr166fBgwfr1KlTpfY5btw46+WSQaeS8vLy9L///c96veTZeYr56jEp5onXTEnl1bcxn9K9vPYlayMV15Rylz///FOffvqp/vvf/+qRRx7RhAkTbIL6xeMZhmFXU8RbTpw4oUOHDkmSYmNjK31a7pSUFEnS+eefr7lz5+r48ePauHGjli9frl9//VXHjh3TrFmzdNlll9nsl5+fr4MHD9oEQnr16qWff/7Z5vXhTps3b9bf//536/Vbb7213NdsyS+TLVq00N13311m+5L3p169ehWbaAV899131sujRo0q9wv60KFDFRsbK0nKzc3Vjz/+WO4YznyGuJurz1nJM0OGhIQ4NUbJ4FZ2dnYFZnlORY69SlN85r9izgQMPeGOO+4ot03J46GffvrJ6TM4VoYvPvdOnz5t8/qqW7euU/t5+z1k0qRJMs6thHLbX2ln8/SFtLQ03X333XrwwQeVmZmpuLg4DRs2THfddZeGDx9uPRvyggUL1KNHD40fP96loFLJx7ygoEBpaWluvw/4C0XNgWrK/GuANw4OvK3kwfM777yj9957r9x9Dh8+bL1c/IVMsv9y2L1793L7SkxMVGxsrF9ljZWnY8eO5bZx5+PqiT5DQkI0ZMgQffTRRyooKFC/fv108803W3+5dyYbsDIGDBigAQMG6Pjx41q9erXWr1+vLVu2aOvWrXa/rH/22Wfq1auXfvzxR4e/0N1xxx3617/+pZycHC1dulQnTpywO8BdsmSJTpw4Ielc4KVLly52/fj6MfHEa6ak8oprl8wkiI6OLrfYd/GXcEluC7L/+OOP+te//qW1a9c6fZpoXx3kujM7SpIsFovGjRunqVOnOsxIiY2N1ejRozV69Gjt2bNHCxYs0FdffaW9e/fq9OnTiouLU69evXT77bfryiuvrPR8SrN//34NGjTI+oXy4osv1ttvv13ufiU/G0aNGlVuEf6SRbGdLaJbWYZh2DyvPXr0KHef4OBgdenSxZqh+PPPP+uaa64pcx9nPkPcqSLPWXGQQpLThaxzc3Otl53NqnLEncde5s+TkvfLm5w5HrrooosUGRmps2fPqrCwUNu2bXNqv8rwxeee+fksrZi2WVV4D6kqfv/9d/Xr10+HDx9WaGiopk+frvHjx9ucvMAwDH300Uf6+9//royMDL3zzjsKDAzUm2++6dQY5ue1On6H8icEpIBqKioqSkFBQdbU8eLlNGWZNGmSJk2aZLPtwIEDatasmQdmWDlnz561+SVy5syZLvdRMnPl9OnTNgeuzmYMnH/++VUqIFW/fv0yb3f34+qpPl999VVt2bJFv//+u/Ly8jRv3jzNmzdPAQEBuvDCC9WrVy9deeWVuvbaa8tcilMZ9evX10033aSbbrpJ0rlf0TZs2KA5c+bo/ffft/7v7dy5U0888YRef/11uz7q1KmjG2+8Uf/73/+s98O8FLRk5pSj7KhivnpMPPH8mkVHR5d5e8kD0fLamtvn5+eX2748s2fP1tixY50ORBUzZ1N4y9atW62XO3ToUOn+xo4d63SmQKtWrfTUU0/pqaeeKrNdUVGRW89kmpKSoiuvvFKpqamSpObNm+vLL79UVFRUufuWDPQ4EzAr+eXTnL3nKadPn7Z5LRdnCJSn5Nk9nQmQlvcZ4k4Vfc5KZhY5m+1Usp05M8kV5mOvyhwfmN8XPf3DQmmcOR6yWCxq1KiRfvvtN0nS8ePHPT0tSb4/FnD2Pb8qvIdUBQUFBRo2bJj1B623337bYeaWxWLRrbfeqnr16umqq66SJL311lsaNWqUwx/1zFz9LEflsGQPqMZKHkQUnxq9unBH6nrJOg/mXyKd/dWrMun4vlDeL7/uflw91WdcXJw2b96sf//732rYsKF1e1FRkbZv364333xTQ4cOVXx8vJ5//nmvrP8PCgrSZZddplmzZun777+3+VLz7rvvlvrF6K677rJeNi/b+/PPP7Vy5UpJ55aUjBgxotTxffWYeOL5NXOlNoi362ft2rVL48ePtx7AXnjhhZo6dao2bdqko0ePKjs722bZQ8mlLcX1frzN3RlSJYNRv/32m15++WX97W9/09VXX62bbrpJEydO1OLFi516reTm5urJJ5+sUGCzNCdOnNCVV15prXEVHx+vlStXKj4+vtx909PT9eeff0o69z/uzOPl7oCfM8yfYc5+NpVs50yAtDLZQ66ozHNW8vV49OhRp8YrDnpJthmUFVEyGFh86viKMO97wQUXVLivyqjI8ZC3gu3e/twz/185E/CsKu8hVcHChQut/xetWrUqt3TGlVdeqf79+1uvz5kzx6lxzM9rVTvWr2rIkAKqsV69emnfvn2SvFu4113K+rJm/nA4efJkpYqHmn8RzcrKcuoDqLql8br7cfVUn9K5X6KfffZZTZo0SZs3b9batWu1bt06/fDDD9Zf+k+dOqXHHntMGzZs0OLFi70WrOjRo4cef/xxPf7445LO1TT56aefHBYx7dWrl1q3bq3ffvtNO3bs0KZNm6y/4M2ZM8f6fzBs2LByvyj54jHx1PNbVbz22mvWgNrVV1+tzz77rMy6Nb7KiirJE192Nm3apMcff1zffvutw9tfeeUVBQUFqV+/fho4cKCuvvpqXXDBBdbX38GDB/Xpp5/qlVdeUXJysqZNm+aWeWVkZOjqq6/Wzp07JZ2rDbJy5UqnM39LBu/atm3rVJZFyX289WXS/BmWmZnp8meYq4V/PaWyz1mrVq2sl0sWoC5LccBAklq3bu3CbO1ddtll1kDaxo0bK9xPyX3dUetNqlgQPCsry6nXhq9eS9783IuOjlZYWJh1CWlaWlq5WYO+eA9Zvny5TW1Hd7j99tvLPWGJp5U8AUrfvn2deh779etn/WFv8+bNTo1TMsMvKCjIq7UAayICUkA11rdvX2stl/3799t80fW24OBg6+XysiGKlfVrekxMjEJDQ611H1JTUyv1JTg6OlohISHWZXt//vmnU0sTyqt9U9W4+3H1VJ8lBQYGqmvXrurataseeughFRUVaf369ZoyZYo+++wzSdLSpUu1cOHCcotdu9M111xjDUhJfxV+dmTcuHGaOHGipHNZUl26dJFhGDa/5pW1XM/Mm4+Jp59ff1cyAPOf//yn3CLKzn5B9pTs7Gzt2bNH0rmaNJX98i1J8+bN08iRI61ZYuHh4brwwgtVr149HTlyRDt37lRhYaEKCgr09ddf6+uvv5Z0LusvPj5eGRkZNkub3DWvzMxMDRgwQFu2bJF07n3+yy+/dOkMfiWXzlx66aXltj906JC15lvjxo2dXspYWdHR0QoODrYu2/vzzz9LPdNkSQcOHLBe9ocvXe54ztq0aWO9vH37dhUUFNgs03Xk559/drh/RZQ89jp8+LDWrFnj8pkJz549q6VLl1qvDxgwwK6Nu4+rSvPnn3+WeZZT6dwSpyNHjliv++K15I3PPYvFoqZNm1qXJh4+fLjc14sv3kOKT1LkTp06dfJ5QKrka8zZx6Xka9HZ13/JcRo1amRzpli4H0v2gGrsxhtvtHnDfu2113w2l5I1H06dOlXu+uw///yz3GLDJYNrlT27isVi0SWXXGK9vmHDhnL3+f33360HDdWJOx9XT/ZZmoCAAF122WVasmSJTa2G4gNSbzEXoC3rV9GRI0dab//oo4+UlZWllStXWoMXzZs3V9++fSs8F1cfE1d/Pfbm8+tvkpOTrZfLq/Vx+vRpbdu2zal+PZXNt2PHDuuylXbt2rnlQPvIkSMyDEPnnXeeZs6cqaNHj2rTpk12Z9kzF9rOzc3VgQMHbIJR3bt315YtW2yWWVRETk6Orr/+euvrMTw8XMuWLXO5KLermQq+WmpjsVhslgKtX7++3H0KCgr0008/Wa8782XZk9z1nPXo0cP6fpqZmVluVkRubq7NZ35lz/B400032WSzvvLKKy738e6779osw/zb3/5m18YTx1WOOHM8tGPHDmv2Z2BgoM3xlCvc+b7nqWOBiy++2Hq5OLhflqryHlIVlFwy7Gx9tpLH6c7WYStZVL6ir2U4j4AUUI1FRERowoQJ1uvz58/XkiVLfDKX2rVrWw/QsrKylJSUVGb7jz/+uNw+Bw4caL381ltvVboIYckv/P/73//Kbf/+++9Xajx/5e7H1VN9lsdisWjQoEHW687WEnGXkr+KSmUXhq1bt66GDRsm6dxylU8++cSmntTo0aPdcqDu7GNSMpjmTNFvXzy//qJk4e2srKwy286cOdPpIuquPgfOKvkFqrKZICXdfvvt2rNnj8aMGWO3fKz4LHvr1q3Tb7/9pmeeeUY9evRQw4YNFRoaqiZNmuhvf/ubli9frvXr17uUDeNIfn6+brjhBn333XeSzgWDly5dqp49e7rcV8kvk84EbHz5ZbJkIOW9994r9/+w5Bk8w8LCPH5WtLK48zmLjIzUFVdcYb0+d+7cMtsvWrTIGkyJjY11OZvJLDw8XPfdd5/1+tKlS7V48WKn9z948KBN0f8OHTo4PPuhJ46rHHH1eKhz584Vrrnjifc9dx8LlPwBxvw574gv3kMmTZpkU7vQHX+Oiod7W8njqFWrVjm1T/F7iiS1bNnSqX1KPq++WllSoxgAqrXs7GyjQ4cOhiRDkhEeHm4sWbLE6f33799v3VeSsX//frs2TZo0KfP2Ytdee6213b/+9a9S2x06dMiIjY0td9z09HQjJibG2ubpp592+n4dP37cKCgosNm2Z88emzHnzZtX6v6///67ERERYdN+1apVTo/viqeffto6Ru/evV3ev+QcneHux9XdfWZkZBi5ublO7fvwww9bxxwxYoTTY5q9/PLLxjfffON0+8zMTOOiiy6yjt2wYUOjsLCwzH1WrVplbd++fXsjNDTUkGQEBgYaR44cKXNfdz8mPXv2dOl17YnXjCuv25LvU02aNCm3fcnHuiL/UyW1a9fO2tfcuXNLbZeUlGTUrl3b5n7NmTOn1PauPgfOeu2116z93nPPPW7pMyUlxS39uENBQYFx4403Wu9jUFCQsXTp0gr1lZeXZ4SEhBiSDIvFYpw5c6bcfQYPHmwd25XP2rLMmTPH2ufIkSNLbffHH38YAQEB1rZvv/12qW1PnTplNGvWzNr2zjvvLLWtq58hrnLnc1bsiy++sPYXGhpq7Nixw2G7zMxMo2XLlk4dm7giOzvb5r0hPDzc+P7778vdLyUlxUhMTLTuFxgYaGzcuLHU9u4+ripWsp0k45NPPim17a5du4ywsDBr25kzZzps58yxoivve744FjAMw/j111+tfbVu3brMtv7yHuJvKnpcu2TJEpvX5fvvv19m+2+//damfVmf0SWV/N/dtGmT0/NDxRCQAmqAffv2GQ0aNLC+uVosFmP48OHGli1bjKKiIof7FBYWGqtWrTKuvPJKtwWk5s2bZ20XEhJifPrpp3ZtfvzxR6N58+aGxWKxfoiX1W/JA3VJxh133GEcPHjQYduioiLjhx9+MO6++26jVq1aDg8MRo0aZXMQ6+jD66effjKaNm1qvR/VLSBlGO5/XN3Z56pVq4z4+Hjj6aefNnbu3Olw/4KCAuOjjz6yOUj+4IMPnL7/ZjfffLMhyejUqZPxxhtvGKmpqaW23bBhg9GpUyeb+/rKK684Nc4FF1xg90Vg4MCB5e7n7sdk/PjxLgct3P2aqSoBqccee8zaV2xsrPHll1/atVm5cqWRkJBgSLIJZJcVkKrIc+CMks9Tq1atjKysLLf17WtFRUXGyJEjrfcvICDAmD9/foX7K/nFMzEx0al9zj//fOs+pb3+XeVsQMowDOPuu++2CexMnz7dLhj++++/G507d7a2i4qKcjo44W7ufs5K6tWrl7Xfpk2bGr/++qvN7WlpaTbHOLGxscapU6fcMrZhGMbOnTuNOnXqWPsPDg42Hn/8cSMtLc2ubW5urvHee+/ZHKtJMl5++eUyx/DEcZVh2D7nISEhRq1atYwPP/zQrt369euNxo0bW9teeOGFpQaJnDlWdOV9zxfHAsVK/p8nJyeX2s5f3kP8TUWPa/Pz820CtmFhYcZbb71l96NWUVGRsWDBAiM6OtratnHjxkZOTk65Yxw9etSwWCyGJCMuLq7cHxNReRbDqEF59UANdvDgQQ0ePNguvbh+/frq2LGj6tWrp8jISGVmZurw4cPatm2bXX2kvn37aunSpXZnT2natKm11s3+/fvVtGlTh3MoKChQp06d7Ao8tm/fXoWFhdq2bZs1VXnSpEmaM2eOU/0+9dRTevbZZ63XAwMD1b59e7Vu3VqRkZE6e/asDh8+rF9++cWmoOGZM2fslpacOnVK3bt3t1nW0rx5c3Xv3l2hoaHauXOnNm3aJMMwNGzYMJ04cULff/+9pHPpw3369HE4x8qYNGmSnnnmGUlS7969tXr1apf2L7nUy5W3fHc+ru7sc/Xq1TbLK+Pi4tS+fXvFxcUpKChIR48e1ZYtW2xq+/Tq1UurV6+2WV7liltuuUULFiyw2daiRQtr4eagoCAdP35cv/zyi/bv32/TbujQofr444/LLaorSVOmTNEjjzxis23JkiUaPHhwmfu5+zH55ptvdNVVV1mvd+3aVZdeeqnN6b/vvvtutWjRwmY/d75mXHndHjhwwHoGriZNmtgUanak5ONVkf+pko4dO6Z27drZnJXn0ksvVdu2bWWxWPTzzz9bzxZ29dVXq0GDBpo3b56kc2dRLG0ZREWfg/Ls379fLVu2tJ5t67zzzlPv3r1tCtE/+eSTNqdQryrefPNN3XvvvdbrF1xwgc1jWJ7p06fbXJ83b57uuOMOSefeA+bPn1/m/idPnrTWbYyNjXVbjcG5c+fqzjvvlHSu3lxZS9CysrLUp08fm9pQjRo10mWXXabIyEjt3btXa9assdYRCwoK0vz588ss8lzRzxBnuPs5K+nw4cPq0qWL9YQSFotFvXv3VosWLXT8+HGtXLnSusw2KChIX375pc1SP3fYuXOnrrnmGh0+fNi6LSgoSN27d1eTJk0UEhKilJQUrV+/3uY9MSAgQM8995zd54GZp46rSj7nr732mh544AFJ556frl27Kjg4WDt27LB5nUVGRmr16tWl1vxy5ljRlfc9XxwLFHv88cf13HPPSTr3Gr777rsdtvOX9xBfGjBggM1zIJ07+Unx0smIiAiHS+mWL1+uhIQEu+0bN25Uv379bJbIx8fHq0ePHqpXr55Onz6tDRs22BwHhIaGauXKlbrsssvKne8777yj8ePHS5IefPDBCtWAg4t8GQ0D4F2ZmZnGc889Z9SrV88uC6O0P4vFYvTq1avMtGFnM6QM41y2VvPmzcsc74knnjCKiopc6nfBggXWDARn/rp06VLqLyVHjhyxy3Ax/11//fVGRkaG0bt3b+u26pQhVcydj6u7+tywYYMRFBTk9P433nijkZGR4fJ9L+mdd96xWd7izF+tWrWM//u//zPy8/OdHufYsWM2v2DHx8c7tb8nHpNbb721zD5Ke7276zXjyuvWlxlShnEuS6C899UhQ4YY6enpNtkgZWVIGUbFn4PyPPHEE6X2GRIS4vQyGH9T8r2yIn9m//znP623vfDCC+WOv3LlSmv7K664wm33y5UMKcMwjDNnzhjDhw8v9/7Gx8cby5cvL7c/V/4XXeXu58xs9+7dRvv27cvso379+sYXX3zh9vtW7NixY8Y999zj9Ht027Ztje+++87p/j1xXGV+jJ988klr1oijv4SEBOOHH34oc57Oju3s+54vjgWKJSUlWR+Psj5D/OU9xJdKPu+u/JX1Gtm4caNNplRZf82aNSv3tVlS//79rftu27bNDY8AykNACqiBzp49a3z66afG3XffbVx66aVGo0aNjFq1ahmhoaFGw4YNjXbt2hkjRowwpk6dauzdu7fc/lwJHBWP/9xzzxmdO3c2oqOjjbCwMKN58+bGyJEjjQ0bNlS435ycHGPu3LnGrbfearRs2dKIjo42AgMDjaioKKNNmzbGsGHDjFdffdXYs2dPuX0VFBQYs2fPNq644gqjfv36RkhIiNG4cWNj4MCBxieffGJd6ljdA1KG4d7H1V19njx50vj444+Nf/zjH0avXr2MhIQEIzQ01AgKCjJiY2ONzp07GxMmTCiz9kZFbN++3Zg+fboxYsQIo1OnTtbXRnBwsBEbG2u0bdvWuOWWW4wZM2YYJ0+erNAY/fr1sz5frtQzcfdjUlRUZHzwwQfGwIEDjUaNGtkseSjv9e6O14wrr1tfB6QM41ya/2OPPWa0a9fOCA8PN8LDw40WLVoYw4cPNz777DNrO1cCUpV5DsqzZMkS47rrrjPi4uJsvtRdeumlFe7T19wd3LjiiiustzlTQ27KlCnW9hMnTnTb/XI1IFVs/fr1xt133220adPGiI6ONkJCQoyEhATjqquuMl5//XXj7NmzTvVT2c+Qsng6IGUYfy2Hu+aaa4zGjRsbISEhRoMGDYxu3boZL774onH8+HG33y9HDhw4YLz66qvG1VdfbbRo0cKuppwkIyYmpkI12dx9XOXoMf7xxx+NO++802jZsqURHh5uREdHGx07djQmT55spKenlztHZ8d25X3PV8cChmEYAwcOtM4pKSnJYRt/eQ/xJU8EpAzj3PK9hQsXGrfffrv1Pa74OOOCCy4wbrnlFuPDDz808vLynJ7rvn37rIHG6hIQrApYsgcAgJ/IzMxUXFyczp49K4vFoqSkJKfPCgMAqHr27t2rHj166NixY5Kkjh07atWqVXblEeBf1q9fbz0L5P3336/XXnvNtxNCpT366KN68cUXJUlff/21rrzySh/PqGao3AJaAADgNgsWLNDZs2clSX369CEYBQDVXIsWLbR8+XJrHb0tW7ZoyJAhys3N9fHMUJYePXro2muvlSTNnDmzWtR7qslOnz6tt99+W9K52pIEo7yHgBQAAH7AMAxNmzbNev3vf/+7D2cDAPCWjh07auHChQoODpYkfffdd/rb3/5mPfkA/NOLL76ooKAgZWZm6qWXXvL1dFAJU6dOVUZGhgICAjRlyhRfT6dGISAFAIAfmD59un755RdJ585GNHToUN9OCADgNVdddZVmz55tPcPdwoULSz17G/xDu3btrGeJnDp1qo4cOeLjGaEijh8/bg0ojh49Wp07d/bxjGoWakgBAOADmzZt0ocffqi8vDxt27ZN69ats972/vvv6/bbb/fh7AAAAADPCvL1BAAAqIl27dqlqVOn2m2/6aabCEYBAACg2iMgBQCAj4WFhSkxMVF33nmnJkyY4OvpAAAAAB7Hkj0AAAAAAAB4FUXNAQAAAAAA4FUEpAAAAAAAAOBVBKQAAAAAAADgVQSkAAAAAAAA4FUEpAAAAAAAAOBVBKQAAAAAAADgVUG+ngBQUTk5Odq+fbskqX79+goK4uUMAAAAAIC7FRQU6Pjx45Kkiy66SGFhYZXuk2/wqLK2b9+uLl26+HoaAAAAAADUGJs2bVLnzp0r3Q9L9gAAAAAAAOBVZEihyqpfv7718qZNmxQfH+/D2QAAAAAAUD2lpKRYVyiV/C5eGQSkUGWVrBkVHx+vRo0a+XA2AAAAAABUf+6q38ySPQAAAAAAAHgVASkAAAAAAAB4FQEpAAAAAAAAeBUBKQAAAAAAAHgVASkAAAAAAAB4FQEpAAAAAAAAeBUBKQAAAAAAAHgVASkAAAAAAAB4FQEpAAAAAAAAeBUBKQAAAAAAAHgVASkAAAAAAAB4FQEpAAAAAAAAeBUBKQAAAAAAAHgVASkAAAAAAAB4FQEpAAAAAAAAeBUBKQAAAAAAAHgVASkAAAAAAAB4FQEpAAAAAAAAeBUBKQAAAAAAAHgVASkAAAAAAAB4FQEpAAAAAAAAeBUBKQAAAAAAAHgVASkAAAAAAAB4FQEpAAAAAAAAeBUBKQAAAAAAAHgVASkAAAAAAAB4FQEpAAAAAAAAeBUBKQAAAAAAAHgVASkAAAAAVV5yerZSTmf7ehoAACcF+XoCAAAAAFAZ0779XS9/k6QAi/TYtW007vLmvp4SAKAcZEgBAAAAqLLO5ORr2qo/JElFhvTayiTl5Bf6eFYAgPIQkAIAAABQZf15Mkt5BUXW65l5hTqSztI9APB3BKQAAAAAVFkp6TlObQMA+BcCUgAAAACqrJQMBwEpipsDgN8jIAUAAACgykpxsDwv5TQZUgDg7whIAQAAAKiyHAWfyJACAP9HQAoAAABAleUo+ESGFAD4PwJSAAAAAKoshxlSFDUHAL9HQAoAAABAlWQYhsOAVDJL9gDA7xGQAgAAAFAlnczMU15Bkd32MzkFOptb4IMZAQCcRUAKAAAAQJVUVq2oVLKkAMCvEZACAAAAUCUlp5cedKKwOQD4NwJSAAAAAKqk1IzSg04UNgcA/0ZACgAAAECVlFxG0InC5gDg3whIAQAAAKiSyqoTlcqSPQDwawSkAAAAAFRJyWUEncq6DQDgewSkAAAAAFRJKWVkSKWUUfAcAOB7BKQAAAAAVDlFRYaOns4t9XaW7AGAfyMgBQAAAKDKOZGZp7zColJvP5NboDM5+V6cEQDAFQSkAAAAAFQ55uV6ARZHbciSAgB/RUAKAAAAQJVjDjbFRYUpNiKkzDYAAP9BQOr/O3jwoCZOnKjWrVsrIiJCsbGx6ty5s6ZMmaKsrCy3jbNixQoNHTpUjRo1UmhoqBo1aqShQ4dqxYoVTvdRUFCgt99+W7169VL9+vVVq1YttWjRQuPHj9fOnTvL3T89PV3ffPONJk+erMGDByshIUEWi0UWi0V9+vSpxL2TioqK1L17d2t/FouDn6oAAACASjIXLY+PqaX46LAy2wAA/EeQryfgDz7//HONGDFCGRkZ1m1ZWVnavHmzNm/erJkzZ2rZsmVq2bJlhccoKirSXXfdpVmzZtlsP3LkiI4cOaIlS5Zo7NixmjFjhgICSo8TpqWlacCAAfrpp59stu/bt0/vvPOO3nvvPU2fPl1jx44ttY8OHTrowIEDFb4vZXnzzTe1YcMGj/QNAAAAFEvJsM1+io8OU05+kXYm/3VMT4YUAPivGp8htXXrVt18883KyMhQZGSkJk+erPXr1+vbb7/VuHHjJElJSUm67rrrdObMmQqP88QTT1iDUR06dND8+fO1adMmzZ8/Xx06dJAkzZw5U//+979L7aOwsFBDhw61BqOGDRumFStWaOPGjXr99dfVoEED5ebmavz48WVmXBmGYb3csGFDDRw4sML3q6QjR47o8ccfl8ViUb169dzSJwAAAOBISrp9QMouQ+o0GVIA4K9qfIbU/fffr+zsbAUFBenrr79W9+7drbf169dPF1xwgR555BElJSXp5Zdf1qRJk1weIykpSS+99JIkqVOnTlqzZo1q1aolSercubOuv/569e7dW5s3b9aUKVM0evRoh9lY7733nn744QdJ0j333KM33njDeluXLl107bXXqmPHjsrIyNA//vEP7d69W0FB9k/xfffdp2bNmqlLly5q3LixJLllad19992nM2fOaPTo0dq7d6++//77SvcJAAAAOGIONsVH11JOQaGpDRlSAOCvanSG1KZNm7R27VpJ0pgxY2yCUcUmTpyoNm3aSJKmTp2q/HzXTx372muvqaCgQJI0bdo0azCqWHh4uKZNmybpXH2oV1991WE/xUGt2NhYTZkyxe72li1b6rHHHpMk/fHHH1q8eLHDfh566CHdcMMN1mCUOyxatEhLlixRvXr19OKLL7qtXwAAAMARc7DJcYYUASkA8Fc1OiC1ZMkS6+U777zTYZuAgADdcccdks4VA1+1apVLYxiGoaVLl0qSWrdurW7dujls161bN7Vq1UqStHTpUptlddK5LKvdu3dLkoYPH67w8HCH/YwaNcp6ubSAlLtlZGRowoQJkqQpU6aobt26XhkXAAAANVNRkaGj5hpSMbUUH237w29KerbdcTUAwD/U6IBU8fK3iIgIdezYsdR2vXv3tl5et26dS2Ps379fycnJdv2UNc6RI0fsio4Xz7W8fuLi4pSYmFihuVbUv/71LyUnJ+vyyy+3CYgBAAAAnpB2Nlf5hbaBpoToMCWYAlKZeYXKyCnw5tQAAE6q0QGp4oyjli1bOqy1VKx169Z2+zhr165dDvtxdZyK9HPo0CFlZmY6PdeK+PHHH/X2228rODhYb731lkfHAgAAACT7pXhBARbVjQxVw+hQu7apLNsDAL9UY4ua5+TkKC0tTZLUqFGjMtvWqVNHERERyszM1KFDh1wa5/Dhw9bL5Y1TsqaTeZyK9GMYhg4fPmxdCuhu+fn5GjdunAzD0EMPPaS2bdu6tf+S99mRlJQUt44HAACAqsFc0LxhVJgCAywKDAhUvcgQpZ3Ns96WfDpbreJqe3uKAIBy1NiA1JkzZ6yXIyMjy21fHJA6e/asx8aJiIiwXjaP465+3OmFF17Qzp071axZMz355JNu79+dRdcBAABQfZgzpBJi/ipmHh9dyyYgRYYUAPinGrtkLyfnrw+mkJCQctuHhp5L/83Ozi6nZcXHKR7D0Tju6sddfv/9d02ePFmSNH36dLszBwIAAACeYg5IxZWoHRVnPtNeumeOhwEAlVNjM6TCwv76oMrLyyuj5Tm5ubmS5HLgxZVxisdwNI65n5LXXenHXcaPH6+cnBzdcMMNGjBggEfGKG95ZEpKirp06eKRsQEAAOC/kk1BpoQSQagEU0AqmQwpAPBLNTYgVbv2X+vInVnWVlwc3JnlfRUdp2QBcvM45n7KCkiV1Y87zJ49W6tWrVLt2rU1depUt/dfrLxaWQAAAKiZzMvwSmZFxZnOtMeSPQDwTzU2IBUWFqa6devqxIkT5RbPPnXqlDXI42pdo5JBlfLGKZkRZB7H3E+9evXK7cdisXgkqPPCCy9Iknr37q21a9c6bHPs2DHr5Y8++kjSudpWgwYNcvt8AAAAULOYl+zFlwhClawnJZ0rag4A8D81NiAlSW3bttXatWv1xx9/qKCgQEFBjh+O3377zXq5TZs2Lo/hqB9XxzH30759+3L7ady4sU2Bc3cpXhL4xRdf6Isvvii3/a233ipJatKkCQEpAAAAVEphkaHUjLKLmpeUkp4jwzBksVi8Mj8AgHNqbFFzSbrssssknVvitmXLllLbff/999bLPXv2dGmMZs2aKSEhwa4fR9asWSNJOu+889S0aVOHcy2vn9TUVCUlJVVorgAAAIC/Szubq8Iiw2ZbySV78aYaUtn5hcrILvDK3AAAzqvRAakhQ4ZYL8+ZM8dhm6KiIr3//vuSpJiYGPXt29elMSwWiwYPHizpXObShg0bHLbbsGGDNbNp8ODBdr/gJCYmWrOmPv74Y2VlZTnsZ+7cudbLQ4cOdWmuzjpw4IAMwyjzr3fv3tb2xdsOHDjgkfkAAACg5jAXNA8OtKhexF9nmW4YFSZzMhTL9gDA/9TogFSXLl3Uq1cvSdKsWbP0448/2rV5+eWXtXv3bknS/fffr+DgYJvbV69eLYvFIovFolGjRjkc54EHHlBgYKAkacKECcrOtv1AzM7O1oQJEyRJQUFBeuCBBxz289BDD0mSTp48qUceecTu9r179+q5556TJLVs2dJjASkAAADAV8z1o+KiwxQQ8FcEKiQoQPUiQ23aUNgcAPxPja4hJUlTp05Vz549lZ2drauuukqPP/64+vbtq+zsbH300Ud65513JJ3LUJo4cWKFxkhMTNTDDz+s559/Xps3b1bPnj316KOPqkWLFtq7d69eeOEFbd26VZL08MMP64ILLnDYz8iRIzV79mytW7dOb7zxhlJTUzVu3DjVqVNHmzZt0rPPPquMjAwFBATo9ddfL7Um1i+//KJffvnF4W2pqak2WVaSdOONN3rkbH0AAACAq+wKmkfVsmsTHx2m42dyrdfJkAIA/1PjA1IdOnTQggULNGLECGVkZOjxxx+3a5OYmKhly5apdu3aFR5n8uTJOnbsmGbPnq2tW7fqlltusWszZswY/ec//ym1j8DAQC1ZskQDBgzQTz/9pIULF2rhwoU2bUJDQzV9+nRde+21pfazZMkSPfPMMw5v27Nnj+68806bbX369CEgBQAAAL+QYlqyF286q550LiC17fDpEvuQIQUA/qZGL9krNmjQIG3btk0PPvigEhMTFR4erpiYGHXq1MmavdSyZctKjREQEKBZs2Zp2bJlGjx4sBISEhQSEqKEhAQNHjxYy5cv18yZMxUQUPZTUq9ePa1fv15vvvmmLrvsMtWtW1dhYWFq3ry5xo0bpy1btmjs2LGVmisAAADgr1Iy7JfsmdmdaY8lewDgdyyGYRjlNwP8z+HDh9W4cWNJ0qFDh9SoUSMfzwgAAACeNuzNdfr5z3Tr9Weuv1AjezS1aTPj+716bsVv1us9WtTVh+O6eWmGAFD9eOL7NxlSAAAAAKoMuxpSjjKkYsiQAgB/R0AKAAAAQJVQUFikYyWKlUv2y/PObbMNUqWczhYLQwDAvxCQAgAAAFAlHD+bq8Ii28BSaUXNS8rJL1J6Vr5H5wYAcA0BKQAAAABVQrLpbHkhgQGqGxFi165hVJgsFtttLNsDAP9CQAoAAABAlZB62v4MexZz5ElScGCA6keG2mxLOZ3t0bkBAFxDQAoAAABAlWAOKjkqaG69zVTYPJkMKQDwKwSkAAAAAFQJ5mV3CTH2Bc2tt5mCValkSAGAXyEgBQAAAKBKMGdIxZWRIWW+LSWdDCkA8CcEpAAAAABUCeai5uYsKNvbzEv2yJACAH9CQAoAAABAlWBf1Lz0JXvmDCnzvgAA3yIgBQAAAMDvFRQW6dgZ26BSWUXNE2JMS/ZO58gwDI/MDQDgOgJSAAAAAPze0TO5KjLFk8oqah5vyp7KLSjSycw8T0wNAFABBKQAAAAA+D3zWfJCgwJUJzy41PYNaocqwGK7zXyWPgCA7xCQAgAAAOD3zAXN46PDZLFYSmktBQUGqEFt+2V7AAD/QEAKAAAAgN8zFyU3L8lzJD7GXNicM+0BgL8gIAUAAADA7yWbgkllFTQvrU0yGVIA4DcISAEAAADweynmJXsxzgSkbLOoUtLJkAIAf0FACgAAAIDfS8mwDUjFObNkL5oaUgDgrwhIAQAAAPB75uymBKeW7JkypAhIAYDfICAFAAAAwK/lFRTp+Nlcm20VK2qeo6Iiw61zAwBUDAEpAAAAAH7t2JkcGaY4UkWKmucVFulkVp47pwYAqCACUgAAAAD8mnmpXVhwgGLCg8vdr0HtMAUGWGz7SmfZHgD4AwJSAAAAAPxasl39qFqyWCyltP5LYIBFDWuH2mxLOc2Z9gDAHxCQAgAAAODXUk+bz7BX/nK90tpS2BwA/AMBKQAAAAB+zRxEcqagubVtjG3bZDKkAMAvEJACAAAA4NfMy+ycKWhubRtlf6Y9AIDvEZACAAAA4NfsMqRiXAhImTKkKGoOAP6BgBQAAAAAv5ZsCiIluLBkL8GUTcWSPQDwDwSkAAAAAPitvIIipZ3NtdlWmaLmRzNyVFRkuGVuAICKIyAFAAAAwG8dzbBfYudShpRpyV5+oaG0zNxSWgMAvIWAFAAAAAC/lZxuu8QuPCRQUbWCnN6/XmSoggIsNtsobA4AvkdACgAAAIDfSjVlSMVFh8lisZTS2l5ggEUNTWfaM9ekAgB4HwEpAAAAAH6rMgXNi8Wb6kilUNgcAHyOgBQAAAAAv5VqCh6Zg0vOiDfVkWLJHgD4HgEpAAAAAH4r2RQ8qlBAyrSPuU8AgPcRkAIAAADgt8zL68zZTs6wW7KXzpI9APA1AlIAAAAA/JZ5eV2cGzKkUsiQAgCfIyAFAAAAwC/lFhQq7WyezbaKFTW33edoRo4Ki4xKzQ0AUDkEpAAAAAD4JUfFx+NjKlLU3HafgiJDJ87mVnheAIDKIyAFAAAAwC+Zl9ZFhASqdmiQy/3UiwhVcKDFZhuFzQHAtwhIAQAAAPBLjgqaWyyWUlqXLiDAooZRFDYHAH9CQAoAAACAXzJnSJmLk7vCXHuKwuYA4FsEpAAAAAD4pZR09wWkzGfnM2dfAQC8i4AUAAAAAL9kt2SvAmfYs+5rKmxODSkA8C0CUgAAAAD8kjuX7MWbakg5OoMfAMB7CEgBAAAA8Et2AamYymRImWpIUdQcAHyKgBQAAAAAv5OTX6iTmXk22xLcWNT86JlcFRYZFe4PAFA5BKQAAAAA+B1HS+rMhcldYd63sMjQ8TO5Fe4PAFA5BKQAAAAA+J1kU0Hz2qFBqh0WXOH+6kaEKCTQ9uuPeQwAgPcQkAIAAADgd1LSzfWjKp4dJUkBARa7LCkKmwOA7xCQAgAAAOB3UjNsg0Vx0RUvaP5XH7YBqWQKmwOAzxCQAgAAAOB3zMGiyhQ0L60P81n8AADeQ0AKAAAAgN8xL6erTEHzv/qwzbJiyR4A+A4BKQAAAAB+J9kULEpww5K9BFMdKoqaA4DvEJACAAAA4HdSTMGiyhY1l6R4U1DLXDgdAOA9BKQAAAAA+JXsvEKlZ+XbbIt3w5I9cx/HzuSooLCo0v0CAFxHQAoAAACAXzFnR0n22U0VYQ5IFRnSsTO5le4XAOA6AlIAAAAA/Ir57HdRYUGKCA2qdL+xESEKCbL9CsSZ9gDANwhIAQAAAPAr5iCRO7KjJMlisdhlSTnKxgIAeB4BKQAAAAB+JSXd/QXNrX2ZA1IUNgcAnyAgBQAAAMCvpGSYM6TcGZAynWmPJXsA4BMEpAAAAAD4FbsMKTct2TvXF0v2AMAfEJACAAAA4Ffsa0i5MUMqxja4lUyGFAD4BAEpAAAAAH7FU0XNJSk+yja4lUqGFAD4BAEpAAAAAH4jK69Ap7Pzbba5tai5qa9jZ3KVX1jktv4BAM4hIAUAAADAbyQ7OOudO5fsJZiyrQzjXFAKAOBdBKQAAAAA+I1U03K96FrBCg8Jclv/MeHBCg2y/RpkLqIOAPA8AlIAAAAA/EbyafMZ9tyXHSVJFotFCRQ2BwCfIyAFAAAAwG+YM6TMwSN3MAe5KGwOAN5HQAoAAACA30gxBYfi3Jwh5ahPR3WrAACeRUDq/zt48KAmTpyo1q1bKyIiQrGxsercubOmTJmirKwst42zYsUKDR06VI0aNVJoaKgaNWqkoUOHasWKFU73UVBQoLffflu9evVS/fr1VatWLbVo0ULjx4/Xzp07y90/PT1d33zzjSZPnqzBgwcrISFBFotFFotFffr0cWoO+fn5+vLLL/Xggw+qR48eqlevnoKDgxUTE6NLL71UDz/8sPbt2+f0fQIAAAAk++BQggcCUubC5uYgGADA89xXHbAK+/zzzzVixAhlZGRYt2VlZWnz5s3avHmzZs6cqWXLlqlly5YVHqOoqEh33XWXZs2aZbP9yJEjOnLkiJYsWaKxY8dqxowZCggoPU6YlpamAQMG6KeffrLZvm/fPr3zzjt67733NH36dI0dO7bUPjp06KADBw5U+L4cP35cbdq00YkTJ+xuO336tLZu3aqtW7fq9ddf14svvqj777+/wmMBAACgZjEv2YuLdv+SPXOGlHlMAIDn1fgMqa1bt+rmm29WRkaGIiMjNXnyZK1fv17ffvutxo0bJ0lKSkrSddddpzNnzlR4nCeeeMIajOrQoYPmz5+vTZs2af78+erQoYMkaebMmfr3v/9dah+FhYUaOnSoNRg1bNgwrVixQhs3btTrr7+uBg0aKDc3V+PHjy8z48owDOvlhg0bauDAgS7dl9zcXGswqn379nr66ae1fPlybdmyRd99950efvhhhYWFKS8vTw888IDeeecdl/oHAABAzWUuau6RDKkY05I9AlIA4HUWo2R0oga6/PLLtXbtWgUFBWnNmjXq3r27ze1TpkzRI488Ikl6+umnNWnSJJfHSEpK0oUXXqiCggJ16tRJa9asUa1af/3Sk5WVpd69e2vz5s0KCgrS7t27HWZjzZ49W2PGjJEk3XPPPXrjjTdsbv/jjz/UsWNHZWRkqGXLltq9e7eCguyT4F566SU1a9ZMXbp0UePGjSWdO9uIJPXu3VurV68u8/4cOXJEd955p/7v//5P3bp1c9hm48aN6tu3r7KzsxUdHa1Dhw6pdu3aZfbrqsOHD1vnf+jQITVq1Mit/QMAAMC7zuYWqN3TX9lsW/VQHzWrF+HWcXanZOjaqWut1y0Wac+z1yokqMb/Xg8ADnni+3eNfsfdtGmT1q4990E0ZswYu2CUJE2cOFFt2rSRJE2dOlX5+fkuj/Paa6+poKBAkjRt2jSbYJQkhYeHa9q0aZLO1Yd69dVXHfbz0ksvSZJiY2M1ZcoUu9tbtmypxx57TNK54NTixYsd9vPQQw/phhtusL6YXHXeeefp66+/LjUYJUldu3bVPffcI+ncMr5vvvmmQmMBAACg5nB0tru4KPdnSJnPsmcY0tEMsqQAwJtqdEBqyZIl1st33nmnwzYBAQG64447JJ0rBr5q1SqXxjAMQ0uXLpUktW7dutQgTrdu3dSqVStJ0tKlS2VOXEtKStLu3bslScOHD1d4eLjDfkaNGmW9XFpAylv69u1rvbx3714fzgQAAABVgbmgeZ3wYNUKCXT7ONG1glUr2LbfFJbtAYBX1eiA1A8//CBJioiIUMeOHUtt17t3b+vldevWuTTG/v37lZycbNdPWeMcOXLEruh48VzL6ycuLk6JiYkVmqu75ebmWi8HBrr/QAIAAADVi/lsd/EeKGgunStXEW+qI8WZ9gDAu2r0WfaKM45atmzpsNZSsdatW9vt46xdu3Y57MeZcZo1a1bhfpKSknTo0CFlZmYqIsK9a+6d9f3331svFy97dMXhw4fLvD0lJcXlPgEAAOC/zFlK5qV17hQfHaZ9xzNLHRsA4Fk1NiCVk5OjtLQ0SSq3GFedOnUUERGhzMxMHTp0yKVxSgZVyhunZE0n8zgV6ccwDB0+fNi6FNCbUlJSNGfOHElS/fr1bZbvOauiNa4AAABQNaWYluyZs5jcyZx9lZJOhhQAeFONXbJ35swZ6+XIyMhy2xdnGZ09e9Zj45TMZDKP465+vMEwDI0fP9465yeffFJhYZ47mAAAAED1kJJhzpDyzJK9c32bl+yRIQUA3lSjM6SKhYSElNs+NDRUkpSd7dovJ66MUzyGo3Hc1Y83/Pe//9Xnn38u6Vxh83vvvbdC/ZSXjZaSkqIuXbpUqG8AAAD4H3OWkmeX7JkypAhIAYBX1diAVMmMnby8vHLbFxforlXLtV9pXBmnZBFw8zjmfsrKOCqrH0/74IMP9OSTT0qSmjVrpg8//FABARVLxCtvaSIAAACqF/saUh7MkKKoOQD4VI1dsle7dm3rZWeWtWVmnit46MzyvoqOUzyGo3Hc1Y8nLVu2THfeeacMw1BcXJy++eYbxcXFeW18AAAAVF1ncvJ1NrfAZpuni5qXlHY2T7kFhR4bDwBgq8YGpMLCwlS3bl1J5Z/N7dSpU9Ygj6uFtktm+ZQ3TsklauZxKtKPxWLxWpbR6tWrdeONNyo/P1916tTRV199pRYtWnhlbAAAAFR9jpbMxXlxyZ4kHT2d66AlAMATamxASpLatm0rSfrjjz9UUFBQarvffvvNerlNmzYVGsPcj6vjVKSfxo0b2xQ495RNmzZp0KBBysnJUWRkpFasWKGLL77Y4+MCAACg+kg21Y+qGxGisOBAj40XFRakiBDb/lm2BwDeU6MDUpdddpmkc0vctmzZUmq777//3nq5Z8+eLo3RrFkzJSQk2PXjyJo1ayRJ5513npo2bepwruX1k5qaqqSkpArNtSK2bduma665RmfPnlVYWJg+//xzde3a1ePjAgAAoHpJNWVIeTI7Sjq3msA8BoXNAcB7anRAasiQIdbLc+bMcdimqKhI77//viQpJiZGffv2dWkMi8WiwYMHSzqXubRhwwaH7TZs2GDNbBo8eLAsFovN7YmJidasqY8//lhZWVkO+5k7d6718tChQ12aq6uSkpJ01VVX6dSpUwoODtbChQvVp08fj44JAACA6inZiwXNiyXE2I6RTIYUAHhNjQ5IdenSRb169ZIkzZo1Sz/++KNdm5dfflm7d++WJN1///0KDg62uX316tWyWCyyWCwaNWqUw3EeeOABBQaeSweeMGGCsrNtP+iys7M1YcIESVJQUJAeeOABh/089NBDkqSTJ0/qkUcesbt97969eu655yRJLVu29GhA6s8//1T//v119OhRBQYG6sMPP9SAAQM8Nh4AAACqt1RTMMiTBc2LxUXZjmHO0gIAeE6Qryfga1OnTlXPnj2VnZ2tq666So8//rj69u2r7OxsffTRR3rnnXcknctQmjhxYoXGSExM1MMPP6znn39emzdvVs+ePfXoo4+qRYsW2rt3r1544QVt3bpVkvTwww/rggsucNjPyJEjNXv2bK1bt05vvPGGUlNTNW7cONWpU0ebNm3Ss88+q4yMDAUEBOj1119XUJDjp/eXX37RL7/84vC21NRUmywrSbrxxhttztZ34sQJ9e/f31o8feLEiWrdurV27NhR6mNQp04dnXfeeaXeDgAAgJrNvFwuPsbzAal4c4ZUOgEpAPCWGh+Q6tChgxYsWKARI0YoIyNDjz/+uF2bxMRELVu2TLVr167wOJMnT9axY8c0e/Zsbd26VbfccotdmzFjxug///lPqX0EBgZqyZIlGjBggH766SctXLhQCxcutGkTGhqq6dOn69prry21nyVLluiZZ55xeNuePXt055132mzr06ePTUBq+/bt+v33363XX3zxRb344ouljiedC6aZA10AAABAMXNR8wRvLNmzqyHFkj0A8JYavWSv2KBBg7Rt2zY9+OCDSkxMVHh4uGJiYtSpUydr9lLLli0rNUZAQIBmzZqlZcuWafDgwUpISFBISIgSEhI0ePBgLV++XDNnzlRAQNlPSb169bR+/Xq9+eabuuyyy1S3bl2FhYWpefPmGjdunLZs2aKxY8dWaq4AAACANxmGYZch5emi5o7GYMkeAHiPxTAMw9eTACri8OHDaty4sSTp0KFDatSokY9nBAAAgIo4nZ2vS5752mbbmof76vy64R4dN+noGV316hqbbb89e43CggM9Oi4AVDWe+P7tN0v2Pv/8c3388cdKS0tTs2bNNHbsWF166aW+nhYAAAAAD3O0VK5hdKjHx3VUOP1oRo6a1I3w+NgAUNN5ZcneqlWr1KBBA51//vlKT0+3u/3JJ5/UkCFD9OGHH+rrr7/WjBkz1K1bN82bN88b0wMAAADgQ+blevUiQxQa5PkspdphwYoMtf2NnsLmAOAdXglILV++XGlpaercubNiYmJsbtu2bZv++9//yjAMGYahmJgYGYahgoICjR8/XgcOHPDGFAEAAAD4SIopCBTvhYLmf41FYXMA8AWvBKR++OEHWSwW9e/f3+62t956S4ZhqE6dOtqyZYtOnDihTZs2KTY2Vrm5uXr77be9MUUAAAAAPmIOAjlaSucp8TG2wS9zthYAwDO8EpBKSUmRJF144YV2t33xxReyWCy677771KFDB0lSp06ddN9998kwDK1cudIbUwQAAADgI+YgkFcDUlFkSAGAL3glIHX8+HFJsluut3fvXh05ckSSNHToUJvbevXqZW0DAAAAoPqyy5CK8eKSvRhTQIoaUgDgFV4JSBmGIUk6ffq0zfa1a9dKkqKjo9W+fXub2+rWrStJysrK8vwEAQAAAPiMTzOk7GpIEZACAG/wSkAqLi5OkrR7926b7V999ZUkqWfPnnb7ZGZmSpLq1Knj4dkBAAAA8BXDMHxc1NxcQ4olewDgDV4JSHXr1k2GYeitt96yZjzt27dPS5culcVi0ZVXXmm3T1JSkqS/glkAAAAAqp/T2fnKzi+02ebNDKkE05K9U1n5yjHNBwDgfl4JSI0dO1aStG3bNrVr10433nijunXrppycHNWqVUu33Xab3T5r1qyRJCUmJnpjigAAAAB8wLxEzmKRGkZ5LyAV5yAbi2V7AOB5XglI9evXT/fff78Mw9CBAwe0ePFipaWlSZKmTJmievXq2bTPycmxZk9dfvnl3pgiAAAAAB8wL5GrFxmqkCCvfE2RJEWGBql2WJDtnNJZtgcAnhZUfhP3ePXVV3XFFVfok08+UWpqquLj43XHHXeoX79+dm0/++wzRUVFKTo6WoMGDfLWFAEAAAB4WbKpflSCF5fr/TVmLe3JOWO9ToYUAHie1wJSkjRw4EANHDiw3HbDhw/X8OHDvTAjAAAAAL6Uagr+xPkgIBUXHaY9R0sGpMiQAgBP814uLAAAAACYJJuCP948w14xc2HzZDKkAMDjvBKQCggIUFBQkHbt2uX0Pnv37rXuBwAAAKB6MmdIefMMe8XiomyDYOY5AQDcz2sZUoZheHU/AAAAAP7PXK8pPsb7GVLx5gwpipoDgMf5/ZI9i8Xi6ykAAAAA8ADDMOyCP74qal5SagYZUgDgaX4bkEpLS5MkRURE+HgmAAAAADwhPStfuQVFNtt8VdS8pPSsfGXnFXp9HgBQk3g1IOVstlNmZqamTZsmSWrRooUnpwQAAADAR8wFzS0WqWGUDzKkYuzHNM8NAOBeHqkY3rx5c4fbr7rqKgUHB5e5b25uro4dO6aioiJZLBYNGjTIE1MEAAAA4GMp6bZL4xrUDlVwoPcXcYSHBCm6VrBOZ+dbt6WezlGL+pFenwsA1BQeCUgdOHDAbpthGDpy5IhL/XTr1k2PPPKIm2YFAAAAwJ+kmGo1xUV7v6B5sfjoMJuAFIXNAcCzPBKQGjlypM319957TxaLRddff71iYmJK3c9isSgsLEzx8fHq0aOH+vXrR1FzAAAAoJpK8YOC5sXio8P0W+oZ63Xz2f8AAO7lkYDUnDlzbK6/9957kqTJkyerbdu2nhgSAAAAQBWTetqcIeW7gJQ5O4uAFAB4lkcCUmZPP/20JKlBgwbeGA4AAABAFWAuHJ7gwyV75uysFIqaA4BHeTUgBQAAAADFzFlI8Q7Oduct8TG2wTBz9hYAwL28EpByxDAM7du3TydPnpQkxcbGqnnz5tSMAgAAAGoAwzDsA1I+riFVEkXNAcCzvH5O1a+++kqDBg1SVFSUEhMT1a1bN3Xr1k2JiYmKiorS9ddfr6+//trb0wIAAADgRScz85RXUGSzLd7HZ9krKSOnQJm5BT6aDQBUf14LSOXl5em2227TgAEDtHz5cmVmZsowDJu/zMxMLVu2TNdee61uu+025eXleWt6AAAAALzInB0VYJEa1A710WwcB8MobA4AnuO1JXu33XabFi9eLMMwFBQUpCuvvFJdu3ZVXFycJCk1NVWbNm3SN998o/z8fC1YsEAFBQX6+OOPvTVFAAAAAF5iDvY0qB2moECvL+CwqhUSqJjwYKVn5Vu3pZzOVssGkT6bEwBUZ14JSC1btkyLFi2SxWJR3759NXv2bDVp0sRh2z///FOjR4/Wd999p4ULF2r58uUaMGCAN6YJAAAAwEvMZ7HzZUFz6xyia9kGpNLJkAIAT/HKTxBz586VJF1yySX68ssvSw1GSdL555+vFStWqH379pKkOXPmeGGGAAAAALwp2RTsSfBh/ai/5mAbFGPJHgB4jlcCUhs2bJDFYtHEiRMVHBxcbvvg4GA99NBDMgxDGzZs8MIMAQAAAHhTqilDKs6HZ9grbQ7mLC4AgPt4JSB1/PhxSVLbtm2d3qd169aSpLS0NI/MCQAAAIDvJJuyj8xnufOFhBjbLC3zHAEA7uOVgFRERIQk6cSJE07vc+rUKUlSeHi4R+YEAAAAwHdS7QJSvl+yFxdlGxQzZ3EBANzHKwGpVq1aSZIWLFjg9D7FbYv3BQAAAFA9FBUZ9gEpfyhqbpoDRc0BwHO8EpC6/vrrZRiG5syZYy1wXpZ58+Zp9uzZslgsGjJkiMfnBwAAAMB7TmTmKa+wyGabfxQ1t53DmdwCncnJL6U1AKAyvBKQmjBhguLj42UYhsaMGaOBAwdq0aJFOnLkiPLz81VQUKAjR45o0aJFGjhwoEaNGqWioiIlJCTovvvu88YUAQAAAHiJOTsqMMCi+rVDfTSbvzgqrG6eKwDAPYK8MUhERIS++OIL9e/fX6dOndKKFSu0YsWKUtsbhqE6deroiy++oIYUAAAAUM0km2ozNawdqsAAi49m85ew4EDFRoToZGaedVvy6Rxd0LC2D2cFANWTVzKkJKlDhw7avn27brjhBgUEBMgwDId/AQEBuvHGG7Vt2zZdcskl3poeAAAAAC9JSbcNSMXH+H65XjHz2f4obA4AnuGVDKliCQkJ+uSTT5SSkqLVq1drx44dOnnypCQpNjZW7dq1U58+fRQfH+/NaQEAAADwopQM22VwjpbK+Up8dJh2JmdYrydT2BwAPMKrAali8fHxuvXWW30xNAAAAAAfM5+9LsGvAlK22VopZEgBgEd4bckeAAAAAEj2hcLj/OAMe8XM2VopFDUHAI8gIAUAAADAq8xFzf0pQyohhoAUAHiD15fsnThxQj/++KP27dunM2fOqLCwsNx9nnrqKS/MDAAAAICnFRUZOmqqIeVfRc1t52LO5gIAuIfXAlLHjh3Tgw8+qE8//VQFBQUu7UtACgAAAKge0jJzlV9o2Gwzn9nOl8xzOZtboIycfEWFBftoRgBQPXklIHXq1Clddtll2rt3rwzDKH8HAAAAANWSuaB5UIBF9SJDfTQbe47O+JeSnqOoOAJSAOBOXqkh9fzzz+uPP/6QYRi66qqr9OWXX+r48eMqLCxUUVFRuX8AAAAAqgfzWesaRoUpMMDio9nYCw0KVL3IEJttnGkPANzPKxlSS5culcVi0XXXXafPPvvMG0MCAAAA8EPmIuH+tFyvWFx0mNLO5lmvU9gcANzPKxlSf/75pyTp3nvv9cZwAAAAAPyUXUDKjwqaFzMXNk9JJ0MKANzNKwGpyMhISVLDhg29MRwAAAAAP1UVMqTMcyJDCgDczysBqYsuukiSdPDgQW8MBwAAAMBPmbON/DMgZcqQIiAFAG7nlYDU+PHjZRiG5s2b543hAAAAAPgp+wwp/1uylxBjzpBiyR4AuJtXAlLDhw/X3/72Ny1evFjPP/+8N4YEAAAA4GcKiwwdzfD/JXtxUfZL9gzD8NFsAKB6cutZ9tasWVPqbaNHj9b+/fv1xBNPaNGiRbrtttvUunVrhYeHl9vv5Zdf7s5pAgAAAPCBtLO5KiiyDezEx/hfQCrBVGg9K69QGdkFig4P9tGMAKD6cWtAqk+fPrJYLOW227Jli7Zs2eJUnxaLRQUFBZWdGgAAAAAfSzbVjwoOtKheRKiPZlO6hlH2QbKUjGwCUgDgRm5fsmcYhtv/AAAAAFR9qab6UQ2jwhQQUP4P2t4WEhSgepG2gbKUdAqbA4A7uTVDatWqVe7sDgAAAEA1kmwKSCX4YUHzYgkxYUo7m2u9nkxhcwBwK7cGpHr37u3O7gAAAABUIymmJXv+WD+qWHx0mLYdPm29bs7uAgBUjlfOsgcAAAAAKaYz7MX54Rn2isWbsreSWbIHAG5FQAoAAACAV5gzpPx5yV68KViWmsGSPQBwJ68FpLKyspSVlVXq7dOmTVOvXr3Upk0bDRgwQJ9//rm3pgYAAADAC8zL3vw5Q8o8N4qaA4B7eSUg9fnnn6t27dqKj4/XmTNn7G4fPXq0HnjgAa1fv1579uzRV199pSFDhui5557zxvQAAAAAeFhhkaGjZ3JttvlzhlRCjGnJ3ulszgAOAG7klYDUV199JcMwdP3116t27do2t/3www+aO3euJCk8PFwdOnRQWFiYDMPQU089pR07dnhjigAAAAA86NiZHBUW2QZ0/L2oeUk5+UU6nZ3vo9kAQPXjlYDUhg0bZLFY1LdvX7vb3nnnHUlSQkKCdu/erS1btui3335T48aNVVRUpBkzZnhjigAAAAA8KMW0XC8kMECx4SE+mk35GkaFyWKx3UZhcwBwH68EpI4dOyZJatWqld1tX375pSwWiyZMmKBGjRpJkho3bqwJEybIMAx9//333pgiAAAAAA8y12CKiw5TQICllNa+FxwYoPqRoTbbUk5T2BwA3MUrAanjx49Lkt1yvZ07dyotLU2SNHjwYJvbOnXqJEk6ePCgF2YIAAAAwJPMwRzzkjh/FG+qI2XO8gIAVJxXAlKBgYGSpJMnT9ps/+GHHyRJ9evXt8ueqlOnjiQpJ4c3fQAAAKCqMwdzqkRAKsp0pj0ypADAbbwSkDrvvPMkSb/88ovN9mXLlslisahXr152+5w+fVqSVK9ePY/PDwAAAIBn2WVIxfjvGfaKmYuum5cdAgAqzisBqV69eskwDE2fPt26RO+nn37Sl19+KUm6+uqr7fbZvXu3JCkuLs4bUwQAAADgQVUyQyranCFFQAoA3MUrAal77rlHAQEB2r9/v5o3b65OnTqpd+/eKigoUJ06dXTzzTfb7fPdd9/JYrGobdu23pgiAAAAAA8yZxfFR1eBDKlocw0pluwBgLt4JSB16aWXasqUKbJYLDp79qx+/vln5eTkKDg4WO+++65dsfPTp09r2bJlkqQ+ffp4Y4o6ePCgJk6cqNatWysiIkKxsbHq3LmzpkyZoqysLLeNs2LFCg0dOlSNGjVSaGioGjVqpKFDh2rFihVO91FQUKC3335bvXr1Uv369VWrVi21aNFC48eP186dO8vdPz09Xd98840mT56swYMHKyEhQRaLRRaLpUKP9/r16zVixAg1adJEYWFhiouL09VXX6358+e73BcAAACqn4LCIh07U/UypBLMS/ZO58gwDB/NBgCqF4vhxXfU7du369NPP1Vqaqri4+N166232hUzl6SlS5fqtddekyR99NFHatiwoUfn9fnnn2vEiBHKyMhweHtiYqKWLVumli1bVniMoqIi3XXXXZo1a1apbcaOHasZM2YoIKD0OGFaWpoGDBign376yeHtoaGhmj59usaOHVtqH82aNdOBAwcc3ta7d2+tXr261H3NJk2apGeffVZFRUUOb7/uuuv06aefKizM/Qcchw8fVuPGjSVJhw4dUqNGjdw+BgAAACovOT1bPZ7/zmbbln/3V93IUB/NyDlH0rPV0zTvn5+8UrERIT6aEQD4hie+f3slQ6rYRRddpGeeeUYzZszQpEmTHAajJGnw4MFatWqVVq1a5fFg1NatW3XzzTcrIyNDkZGRmjx5stavX69vv/1W48aNkyQlJSXpuuuu05kzZyo8zhNPPGENRnXo0EHz58/Xpk2bNH/+fHXo0EGSNHPmTP373/8utY/CwkINHTrUGowaNmyYVqxYoY0bN+r1119XgwYNlJubq/Hjx5eZcVUyBtmwYUMNHDiwQvdpxowZeuaZZ1RUVKQWLVpo1qxZ2rRpk5YsWaK+fftKOle4fvTo0RXqHwAAANWDealbaFBAlQjqNKwdqgCL7bbkdJbtAYA7eDVDyh9dfvnlWrt2rYKCgrRmzRp1797d5vYpU6bokUcekSQ9/fTTmjRpkstjJCUl6cILL1RBQYE6deqkNWvWqFatv9ajZ2VlqXfv3tq8ebOCgoK0e/duh9lYs2fP1pgxYySdq8v1xhtv2Nz+xx9/qGPHjsrIyFDLli21e/duBQUF2fXz0ksvqVmzZurSpYs1wmmxnPukdTZD6uTJk2revLlOnz6t888/X1u2bLE5I2Jx8Ozzzz+XJK1atcrtyy/JkAIAAKgaPv81WRPmb7Veb1o3XKsf7uvDGTmv23+/VWrGX8sNZ97RSf3bevZHcwDwN1U+Q8rfbNq0SWvXrpUkjRkzxi4YJUkTJ05UmzZtJElTp05Vfn6+y+O89tprKigokCRNmzbNJhglSeHh4Zo2bZqkc/WhXn31VYf9vPTSS5Kk2NhYTZkyxe72li1b6rHHHpN0Lji1ePFih/089NBDuuGGG6wvpoqYOXOmTp8+LUl64YUXbIJRkhQYGKg333xTgYGBkuRwvgAAAKgZUk1np4urAvWjipnnSmFzAHCPGh2QWrJkifXynXfe6bBNQECA7rjjDknnioGvWrXKpTEMw9DSpUslSa1bt1a3bt0ctuvWrZt1CePSpUvtiiUmJSVp9+7dkqThw4crPDzcYT+jRo2yXi4tIOUOxY9dVFSUhg0b5rBNo0aN1L9/f0nSt99+W6kljwAAAKi6kk1BnIQqcIa9YubC5smm4BoAoGJqdEDqhx9+kCRFRESoY8eOpbbr3bu39fK6detcGmP//v1KTk6266escY4cOWJXdLx4ruX1ExcXp8TExArN1Vl5eXnatGmTJKl79+4KCSl9/X/xXHNzc7V582aPzAcAAAD+rUpnSEXZBs/M9wUAUDH2BYZqkOKMo5YtWzqstVSsdevWdvs4a9euXQ77cWacZs2aVbifpKQkHTp0SJmZmYqIiHBpzuVJSkpSYWGh03Mptnv3bmuxc2ccPny4zNtTUlKc7gsAAAC+Y84qio+pwhlSFDUHALeosQGpnJwcpaWlSVK5xbjq1KmjiIgIZWZm6tChQy6NUzKoUt44JWs6mcepSD+GYejw4cOlns2wotx1n8pTmRpXAAAA8B8p6eYle1UnQyretLywZIFzAEDF1dgleyXrGUVGRpbbvjjL6OzZsx4bp2Qmk3kcd/XjDv40FwAAAPi3/MIiHT+ba7OtSi3ZsytqnmNX7xUA4LoanSFVrKwaSMVCQ0MlSdnZrqXoujJO8RiOxnFXP+7grbmUl1GVkpKiLl26uNQnAAAAvOtoRo7M8ZuqXNQ8r6BIJzLzVC8ytJQ9AADOqLEBqbCwvz5Y8vLyym2fm3vuV51atVz78HRlnOIxHI1j7qfkdVf6cQd33afylLccEAAAAP4vxVQ/Kiw4QDHhwT6ajesa1A5TYIBFhUV/RdVST+cQkAKASqqxS/Zq165tvezMUrLMzExJzi3vq+g4xWM4Gsdd/biDP80FAAAA/s0ckIqPriWLxeKj2bguMMCiBrVtg08UNgeAyquxAamwsDDVrVtXUvlnczt16pQ1sOJqoe2SWT7ljVNyiZp5nIr0Y7FYPJJl5K77BAAAgOrPXNA8vgrVjypmnrM5yAYAcF2NDUhJUtu2bSVJf/zxhwoKCkpt99tvv1kvt2nTpkJjmPtxdZyK9NO4cWObouLukpiYqMDAQJfmIrn+2AEAAKDqc5QhVdXEx9jOmYAUAFSezwJS69atU/PmzdWiRQstWbLEJ3O47LLLJJ1bVrZly5ZS233//ffWyz179nRpjGbNmikhIcGuH0fWrFkjSTrvvPPUtGlTh3Mtr5/U1FQlJSVVaK7OCgkJsRYT//HHH8usI1U819DQUHXq1Mkj8wEAAID/SjldDTKkoswZUizZA4DK8llAatasWTpw4IAOHDigd955xydzGDJkiPXynDlzHLYpKirS+++/L0mKiYlR3759XRrDYrFo8ODBks5lC23YsMFhuw0bNliziQYPHmy3rj4xMdGaYfTxxx8rKyvLYT9z5861Xh46dKhLc3VF8WOXkZGhRYsWOWxz+PBhrVy5UpJ0xRVX2NSeAgAAQM1glyEVUwUDUmRIAYDb+SQglZWVpU8//VQWi0WGYWjlypVKTU31+jy6dOmiXr16SToXIPvxxx/t2rz88svavXu3JOn+++9XcLDtGUFWr14ti8Uii8WiUaNGORzngQcesC5xmzBhgrKzbX9Ryc7O1oQJEyRJQUFBeuCBBxz289BDD0mSTp48qUceecTu9r179+q5556TJLVs2dKjAamxY8cqOjpakvSvf/1LJ06csLm9sLBQ99xzjwoLCyVJDz/8sMfmAgAAAP9lv2SvCgak7GpIkSEFAJUV5ItBFy5cqLNnzyooKEgRERHKyMjQ//73P2vAxZumTp2qnj17Kjs7W1dddZUef/xx9e3bV9nZ2froo4+s2VuJiYmaOHFihcZITEzUww8/rOeff16bN29Wz5499eijj6pFixbau3evXnjhBW3dulXSucDNBRdc4LCfkSNHavbs2Vq3bp3eeOMNpaamaty4capTp442bdqkZ599VhkZGQoICNDrr7+uoCDHT+8vv/yiX375xeFtqampNllWknTjjTfanSEvNjZWL7zwgv7+97/r4MGD6tq1q5544glddNFFSk5O1muvvaZVq1ZJkm699Vb16dPH+QcMAAAA1UJeQZHSzubabKuSNaRMAanU0zkqKjIUEFB1zhYIAP7GYhiG4e1B+/fvr1WrVumaa65R06ZN9dZbb6lt27basWOHt6ciSfr88881YsQIZWRkOLw9MTFRy5YtU8uWLe1uW716tXUZ38iRI+2COcWKioo0btw4zZ49u9R5jBkzRu+8844CAkpPXEtLS9OAAQP0008/Obw9NDRU06dP19ixY0vtY9KkSXrmmWdKvd1s//79djWtij399NN69tlnVdrLaMCAAVq4cKHCwtz/S9jhw4etZ+47dOiQR84oCAAAgIo7dDJLvV5cZbPt16euUnR4cCl7+KejGTnq+t9vbbb99ER/1a8d6qMZAYB3eeL7t9eX7P3555/WzJk77rhDt99+uyRp9+7d2rx5s7enI0kaNGiQtm3bpgcffFCJiYkKDw9XTEyMOnXqZM1echSMckVAQIBmzZqlZcuWafDgwUpISFBISIgSEhI0ePBgLV++XDNnziwzGCVJ9erV0/r16/Xmm2/qsssuU926dRUWFqbmzZtr3Lhx2rJlS5nBKHd75pln9MMPP+i2225T48aNFRISogYNGujKK6/Uhx9+qGXLlnkkGAUAAAD/Z16uVys4UFG1fLJIo1LqRYYqyJQNxbI9AKgcr2dITZ48WU8++aSio6OVmpqq0NBQJSYmau/evbr33nv1+uuve3M6qMLIkAIAAPBvS385ovs/+sV6vXn9CH03sY/P5lMZPZ//TkfS/wpCvT2io65pF+fDGQGA91SLDKn33ntPFotFN954o0JDz6W4jhgxQoZhaP78+crPz/f2lAAAAAB4QHK6bYZUQhWsH1XMvo4UGVIAUBleDUitX79ef/zxh6Rzy/WK3XHHHbJYLDp58qQ+//xzb04JAAAAgIeYgzZxVfAMe8XMczcvRwQAuMarAanigt9NmzZVr169rNubNm2qnj17SjqXQQUAAACg6ks+bc6QqroBqYQY2+wuAlIAUDleC0jl5OTo448/lsVi0YgRI+xuv+OOO2QYhr788ksdP37cW9MCAAAA4CGppqBNXBVeshcXZc6QYskeAFSG1wJSixcvVkZGhiTb5XrFbrrpJoWGhqqgoEAffPCBt6YFAAAAwEPMQZv4mKqcIWU7d3N9LACAa7wWkCpeitetWze1aNHC7vbo6GgNGjRIhmFYl/YBAAAAqJpyCwqVdjbPZlvVLmpuO/ejGTkqKvLqCcsBoFrxSkDqyJEjWrlypSwWi8PsqGLFt23fvl2//PKLN6YGAAAAwAOOns6121aVi5qbz7JXUGQo7az9fQQAOMcrAal58+apqKhIoaGhuuWWW0ptd80116hevXqSpPfff98bUwMAAADgAcmm5XoRIYGKCgvy0Wwqr15kqIIDLTbbzEXbAQDO80pA6r333pPFYtF1112n6OjoUtsFBQXplltukWEY+uCDD1RYWOiN6QEAAABwM/v6UbVksVhKae3/AgIsamgqbJ5KYXMAqDCPB6Q2btyoPXv2SHJczNysuE1aWpq++OILj84NAAAAgGekmLKHzEveqiLzfaCwOQBUnMdzZnNycvT0008rICBAAwYMKLd9p06d9Pzzzys7O1vBwcGenh4AAAAAD0hJr44BqVqSTlmvm7PAAADO83hAqnfv3urdu7dL+zzyyCMemg0AAAAAbzAHa+Kq8Bn2ipmDauYsMACA87xSQwoAAABAzWIO1iRUiwwpAlIA4C4EpAAAAAC4nV0NqZhqkCFlug+pBKQAoMIISAEAAABwq5z8Qp3MzLPZVj1qSJnOspeRo8Iiw0ezAYCqzS8CUidOnNCJEyd8PQ0AAAAAbuAoc6h6BKRsM6QKiwwdP5Pro9kAQNXms4DUF198oauvvloRERFq0KCBGjRooPDwcF111VVaunSpr6YFAAAAoJKSTQXNa4cGqXZY1T+Ddt2IEIUE2n6F4kx7AFAxbg9IjR49WmPGjFFKSorD2/Py8nT77bdr8ODBWrlypbKzs2UYhgzDUE5Ojr799lsNGzZMt912m/Lz8909PQAAAAAeZs6QiqsG2VGSFBBgUcPoUJttFDYHgIoJcneHc+fOlcVi0cSJExUfH293+/33368PPvjAer1t27Zq27atLBaLdu3apZ07d0qSFixYoLp162ratGnuniIAAAAAD6qOBc2LxUfX0qGTf2VFJaeTIQUAFeHVJXtbt27VjBkzZLFYdP7552vNmjXasWOHPv74Yy1YsEDbt2/X2rVrdf7558swDL355pvatWuXN6cIAAAAoJLMQZqEapIhJdnfF860BwAV49WA1DvvvCNJioyM1LfffqvLLrvMrk3Pnj21cuVKRUZGSpJmz57tzSkCAAAAqKTqumRPkuJMhc1ZsgcAFePVgNTatWtlsVg0ZswYtWjRotR2LVu21OjRo2UYhtauXevFGQIAAACorGRTkCYhuvos2UuIsQ2uUdQcACrGqwGpw4cPS5Kuuuqqcttec801kqR9+/Z5dE4AAAAA3CvVFKSpVhlSUeaAFBlSAFARXg1I5ebmSpLDYudmxW0yMjI8OicAAAAA7pOdV6hTWbZnyzZnFVVlCaYC7UczclRQWOSj2QBA1eXVgFSjRo0kSTk55f+KUBy8ioiI8OicAAAAALiPoyVs5rpLVVm8KduryJCOn8310WwAoOoK8lTHS5cu1ebNm222RUdHS5J+//13de3atcz9i5f31atXzzMTBAAAAOB25oLmtcOCFBnqsa8dXhcbEaKQoADlFfyVFZWcnqP4ahR0AwBv8Ngnw7///e9Sb/v+++81YsSIMvfftGmTJKlJkyZunRcAAAAAz6nOBc0lyWKxKD46TAdPZFm3ncsKq+O7SQFAFeSRJXuGYZT5t2jRonKX7S1atEgWi6XcTCoAAAAA/iMl3XbJXnw1qh9VzLxsz5wVBgAon9szpPbv3+/cwEGlD7106VL98ccfkqTu3bu7ZV4AAAAAPC8lwzY4Yw7eVAfm5XnJ6QSkAMBVbg9IuWOJ3eDBg1VUxJkqAAAAgKrGLkOqmi3ZkxxkSGXYF3IHAJTNq2fZAwAAAFC9pZiWr8VVywwp2/tEhhQAuI6AFAAAAAC3MQekqltRc8k+6+tcUXMAgCsISAEAAABwi6y8Ap3OzrfZVi2Lmpvu07EzucovpOQIALjCowGpn3/+WW+88YZeffVVLV++XAUFBTa3G4ahN954Qx07dlRERISio6PVvn17Pfnkkzp58qQnpwYAAADAzczZUVLNKGpuGOeCUgAA57m9qLkkZWRk6JZbbtFXX31ls71Fixb64IMP1LlzZ0nS8OHDtWjRIknnglOStH37dm3fvl2zZ8/Wl19+qYsuusgTUwQAAADgZimmWkrRtYIVHuKRrxw+VSc8WKFBAcot+CsrKiU9W+fFVL/liQDgKW7PkDIMQ4MGDdJXX30lwzBs/v744w8NGjRIycnJmjJlihYuXCjDMBQREaGuXbvq0ksvVXBwsAzDUEpKioYNG6bsbNZjAwAAAFVB8mnzGfaqX3aUJFksFiXEmOtIUdgcAFzh9oDUJ598orVr10qSmjZtqqlTp+qLL77Q1KlT1axZMx0/flxTp07VG2+8IUl66qmndPz4cf3444/avHmzUlJSdNttt0mS9u3bp3nz5rl7igAAAAA8INUUlKmuASlJiouyvW8UNgcA17g9f/bDDz+UJDVp0kS//vqrateubb1t1KhRat++vaZOnar8/HyNHj1akyZNstm/Tp06mjdvnvbt26eNGzdq8eLFuuuuu9w9TQAAAABuZg7KxFfjJWzmwuZkSAGAa9yeIfXzzz/LYrHo0UcftQlGSVLt2rX1yCOPKC8vT5I0YcIEh31YLBbdc889MgxD27Ztc/cUAQAAAHhAsqmGVHxU9c2QMmd/metnAQDK5vaA1PHjxyWp1GLk7dq1s15u06ZNqf20bdtWkjjbHgAAAFBF2C3Zq84ZUtHmGlIs2QMAV7g9IBUQcK7L/Px8h7cXFBRYLxcWFpbaT/FtFovFjbMDAAAA4CnmouYJ1biGVAJL9gCgUtwekIqLi5Mkbd261eHtP//8s/Xyr7/+Wmo/xbfVr1/fjbMDAAAA4Alncwt0JqfAZltcNQ5IxUXZZkgdP5urvIIiH80GAKoetwekunTpIsMw9MILLyglJcXmtpSUFL344ouKjIyUJL300ksO+8jPz9e0adNksVh06aWXunuKAAAAANws1cGSNfOyturEnCFlGNLRDLKkAMBZbg9IjRw5UpJ07NgxXXTRRXr44Yf11ltv6eGHH9bFF1+sY8eO6dFHH1WrVq20ePFijR071iZwtWfPHl1//fXavn27JOnGG2909xQBAAAAuJm5oHmd8GDVCgn00Ww8L7pWsGoF296/VAJSAOC0IHd3eM0112jYsGFatGiRTp06pVdeecV6m2EYat68ue655x6dd955Gj16tObMmaO5c+eqQYMGKigo0IkTJ6ztL7nkEt1yyy3uniIAAAAANzMXNI+rxtlR0rlat/HRYdqXlmndlpxOYXMAcJbbM6Qk6cMPP9S4ceNksVhkGIb1r0ePHlqxYoXq1KmjUaNG6cEHH5RhGCoqKlJqaqrS0tKsbdu0aaOlS5cqMLD6/qoCAAAAVBc1qaB5sXgKmwNAhbk9Q0qSQkJCNGPGDD377LPauHGj8vLy1KpVK7Vr186m3csvv6x+/fpp1qxZ2r17t4KCgtSsWTMNGjRIo0aNUnBwsCemBwAAAMDNUkxL9szBmurIXCPLnCUGACidRwJSxRo0aKBBgwaV2ea6667Tdddd58lpAAAAAPCwFFP9pOpc0LxYvCkLjCV7AOA8jyzZAwAAAFCzpJiCMeZgTXVklyFFUXMAcBoBKQAAAACVZl/UvCYEpMwZUgSkAMBZBKQAAAAAVMqZnHydyS2w2ZZQE5bsmepkpZ3NVW5BoY9mAwBVi0drSEnSL7/8or179yowMFBt2rRRq1atnNrv+PHjeuuttyRJTz31lCenCAAAAKASHJ1drmZkSNkH3Y5l5KpxbLgPZgOgKjiVmad5Gw7qwoQoXZgQrYZRobJYLL6elk94LCD11VdfacKECdq7d6/N9osvvliTJ0/WgAEDytz/2LFjmjRpkiwWCwEpAAAAwI+ZA1KxESEKCw700Wy8JyosSOEhgcrK+ysrKjk9m4AUgFJtO3Jar3yTZL3eqE4trX2kb40MSnlkyd7HH3+sQYMGae/evTIMw+Zv27ZtGjRokMaMGaPsbM5CAQAAAFR1NbGguSRZLBa7++ooWwwAiu1MPm1zvX5tMqTc5ujRo7rrrrtUUFAgi8WiG264QX379lVubq6+//57LVu2TIWFhZo7d6527dqlZcuWKTY21t3TAAAAAOAlyaYgjKOlbNVVQkwt7T2eab1OQApAWXYmZ9hcvzAhykcz8T23B6TefvttZWRkKDAwUAsXLtT1119vve3BBx/Ur7/+qrFjx2rLli3atGmTLr/8cn3zzTeKj49391QAAAAAeEHq6ZqZISVJcVHmDClWgQAo3S67gFS0j2bie25fsvfVV1/JYrFo3LhxNsGoYpdcconWrVunMWPGyDAM7d69W5dddpkOHDjg7qkAAAAA8AJzVpD57HPVWXyMbTYYGVIASnM2t0D70zJtttXkDCm3B6SSks4V5xo2bFipbUJCQvTuu+9q8uTJMgxDBw4cUK9evfTbb7+5ezoAAAAAPMwuIFWDMqTsa0iRIQXAsd0pttlRQQEWJTas7aPZ+J7bA1IZGece4Pr165fb9rHHHtNbb70li8Wi5ORkXX755frll1/cPSUAAAAAHmIYhoOi5jWnhpRdQCqdDCkAju08YlvQvGWDyBpxRtLSuD0gFRkZKUk6ceKEU+3Hjx+vefPmKTAwUGlpaerXr582bNjg7mkBAAAA8ICMnAJl5hXabEuoQQGpBNOSvROZecrJLyylNYCazL6gec2tHyV5ICDVsmVLSdLmzZud3ufWW2/Vp59+qtDQUKWnp+uqq67St99+6+6pAQAAAHCzVAc1kxpGh/pgJr4R52B54tEMsqQA2OMMe7bcHpDq1KmTDMPQF1984dJ+119/vb744gtFREQoMzNTDz74oLunBgAAAMDNkk01k+pFhig0qOYsQYkKC1ZkqO3Jy5NZtgfAJK+gSL8fO2OzjYCUm1155ZWSpHXr1mnPnj0u7XvFFVfoq6++UnR0zU5bAwAAAKoKc82kmlQ/qpi5jlRqBoXNAdhKOnpG+YWGzba2BKTc65prrlFERIQMw9CkSZNc3r9Hjx767rvvnCqKDgAAAMC3Uk0ZUo6WsFV35vtMhhQAs53JtgXNm9QNV+2wYB/Nxj8Eld/ENbVq1dL69euVkZGhgICKxbvat2+v9evXa+3atW6eHQAAAAB3SjbVkEqogQEpcxF3R3W1ANRs1I+y5/aAlCRddNFFle6jefPmat68uRtmAwAAAMBTUuwypGrekj1zhpT5MQEAzrBnz+1L9gAAAADUHCnmDKmYGpghFcOSPQClKywytDvFNiBV0+tHSR7KkHJVdna2jh8/Lkk6//zzfTwbAAAAAM4wDIOi5rK/z6kZBKQA/OXAiUxl5RXabGPJnp9kSH322Wdq1qwZS/QAAACAKiQju0DZ+bZfssxnnKsJzPf5ZGaeckyPC4Cay7xcr37tUDWoXfPeK838IiAlnft1xTCM8ht6yMGDBzVx4kS1bt1aERERio2NVefOnTVlyhRlZWW5bZwVK1Zo6NChatSokUJDQ9WoUSMNHTpUK1ascLqPgoICvf322+rVq5fq16+vWrVqqUWLFho/frx27tzpdD9paWl66qmndPHFFysqKkpRUVG6+OKL9dRTT+nEiRNO9XHmzBm9+uqr6tu3r+rXr6+QkBBFRUXpoosu0r333qsdO3Y4PR8AAABULcmmWkkWi9QwquZ9yYqPsc8KMy9lBFBzmc+w147sKEkeWLK3Zs0al/fZtWuX9fLatWvtAlOXX355pedVls8//1wjRoxQRsZfUcusrCxt3rxZmzdv1syZM7Vs2TK1bNmywmMUFRXprrvu0qxZs2y2HzlyREeOHNGSJUs0duxYzZgxo8yzE6alpWnAgAH66aefbLbv27dP77zzjt577z1Nnz5dY8eOLXM+Gzdu1JAhQ5Sammqzffv27dq+fbtmzpypJUuWqEuXLqX2sXXrVg0ePFiHDh2y2Z6fn68dO3Zox44dmjFjhiZPnqxHH320zPkAAACg6jEX764XGaqQIL/5zdtrIkODVDssSGdyCqzbUk5nq1m9CB/OCoC/2EVBc4fcHpDq06ePLBZLhfY1DEN9+vSx2WaxWFRQUOB4BzfYunWrbr75ZmVnZysyMlKPPfaY+vbtq+zsbH300Ud69913lZSUpOuuu06bN29W7dq1KzTOE088YQ1GdejQQY888ohatGihvXv36sUXX9TWrVs1c+ZM1a9fX//9738d9lFYWKihQ4dag1HDhg3TuHHjFBsbq40bN+o///mPjh07pvHjx+u8887Ttdde67CfQ4cOadCgQTp+/LiCgoL0z3/+UwMHDpQkffHFF3rllVeUkpKiQYMGacuWLWrUqJFdH+np6br22mt19OhRSeeChnfffbeaN2+utLQ0ffPNN3rjjTeUn5+vf/3rX2rSpIluueWWCj12AAAA8E/mLKCauFyvWHx0mM7knLVeN9fWAlAzGYbh4Ax7ZEhJHixqXtHld95etnf//fcrOztbQUFB+vrrr9W9e3frbf369dMFF1ygRx55RElJSXr55Zc1adIkl8dISkrSSy+9JEnq1KmT1qxZo1q1zqX1du7cWddff7169+6tzZs3a8qUKRo9erTDbKz33ntPP/zwgyTpnnvu0RtvvGG9rUuXLrr22mvVsWNHZWRk6B//+Id2796toCD7p/iJJ56wFpH/8MMPddNNN1lv69Wrlzp27Kibb75Zx44d07///W/NnTvXro+ZM2dag1E33XSTPv74Y5vbBwwYoL59+2rw4MGSpP/85z8EpAAAAKoZ+4LmNTkgVUtJR/8KSFHYHIB07r3gZGaezTYypM7xWECqYcOGGjNmjIKDg8ttu2PHDi1cuFAWi0VPPfWUp6ZkZ9OmTVq7dq0kacyYMTbBqGITJ07UnDlztHv3bk2dOlVPPPGEU/eppNdee82a5TVt2jRrMKpYeHi4pk2bpu7du6ugoECvvvqqTbCpWHFQKzY2VlOmTLG7vWXLlnrsscf02GOP6Y8//tDixYttgk2SlJqaqg8++ECSdPXVV9vdLknDhw/X7Nmz9dVXX2nevHl6/vnnFRcXZ9Nm/fr11stPPvmkw/t9/fXXq0OHDtq6dat27typM2fOVDjDDAAAAP7HXEOqJp5hr1hCjG0wLjk9u5SWAGqSnUdss6NqhwWpcWzNfa8sye0BqYcfflivvvqqjh07psWLF1uLb5dlwYIFWrhwoSTp6aefdveUSrVkyRLr5TvvvNNhm4CAAN1xxx167LHHlJ6erlWrVumqq65yegzDMLR06VJJUuvWrdWtWzeH7bp166ZWrVppz549Wrp0qaZPn26z9DEpKUm7d++WdC5gFB4e7rCfUaNG6bHHHpMkhwGpzz77TEVFRWXe5+J+vvrqKxUVFemzzz7TXXfdZXN7Xt5fEd6yzo7YokULbd261W4fAAAAVH2pLNmziouy/YJJUXMAkv0Z9trGR1W4zFF14/aKgy+88II2bdqkjh07avfu3erTp4/GjBmjkydPunuoSite/hYREaGOHTuW2q53797Wy+vWrXNpjP379ys5Odmun7LGOXLkiA4cOOBwruX1ExcXp8TExFLn6mw/5d3nVq1aWS/v27ev1H727t0rSapbt67q1q1bajsAAABUPXY1pBycba6miDdlSBGQAiDZn2GP5Xp/8cgpMNq3b6+NGzfqlVdeUUREhObOnatWrVppzpw5nhiuwoozjlq2bOmw1lKx1q1b2+3jrJJnECzZj6vjVKSfQ4cOKTMz02E/0dHRdsvwSoqPj1dUVJTDuUjS2LFjFRgYKEmaPHmywz6WLVtmzY76+9//XuacAQAAULUYhmF3lr2anCFlvu/mxwZAzURB89J57JysFotFDzzwgHbu3KkBAwboxIkTGjt2rHr37u1yUMcTcnJylJaWJkkOzyJXUp06dRQRce6UrYcOHXJpnMOHD1svlzdO48aNrZfN41SkH8MwbPYr2U95fZTsx9F9btOmjd544w0FBgZqwYIF6tevnxYsWKCffvpJK1as0MSJEzVs2DBJ52pVFS8jdMXhw4fL/EtJSXG5TwAAALhHela+cvKLbLbV7ICUbXZYela+svMKfTQbAP7gVGaejpjqyV14HgGpYh4ral6scePG+vzzz/Xxxx/r/vvv19q1a9W+fXv985//1FNPPWVX4Ntbzpw5Y70cGRlZbvuIiAhlZmbq7Nmz5bat6DjFQS9JduO4ux9n77OjPoqNHz9el156qZ5//nktWrRIq1atsrm9RYsWevzxx3XHHXeUmYFWmpIBOgAAAPgXc0Fzi0VqGFWTA1L29z3ldLaa1y//uBtA9bQrxTY7KiQoQC14T7DyWIaU2fDhw/Xbb79p7NixKigo0IsvvqgLL7xQy5Yt89YUbOTk/LWmOyQkpNz2oaGhkqTsbNdSb10Zp3gMR+O4ux933OeMjAzNnj1bK1eudHj7vn37NG/ePG3cuLHcsQAAAFC1mAua148MVXCg175e+J2I0CBFhdn+CEsdKaBmM9ePah1Xu0a/T5p59ZGIjo7WO++8o9WrVysxMVEHDhzQ9ddfr3//+9/enIYkKSzsr18wnDn7W25uriS5nNHlyjjFYzgax939VPY+p6amqkePHnr77bdVUFCg5557Tnv37lVeXp5OnDihxYsX68ILL9Tq1auty/lcdejQoTL/Nm3a5HKfAAAAcI9kCprbSTA9Bsnp1JECajLqR5XN40v2HOnVq5e2bdumyZMn6/nnn7eeic2bateubb3szDK84uLgzix1q+g4JQuQm8cx91MyQOVqP1lZWZW+zxMmTNDOnTtlsVi0bNky9enTx3pbbGyshgwZov79+6tLly7avXu3Ro8erT59+qhhw4bljlvMmTpXAAAA8I0UU7AloQbXjyoWHx2m31L/KrVhziIDULOYA1JtOcOeDZ/ligUHB2vSpEn69ddfddddd2nkyJG64447vDZ+WFiY6tatK0l2hb/NTp06ZQ3OuFrXqGRQpbxxShYPN49TkX4sFotdUKf4enl9lOzHPJdTp05p0aJFkqT+/fvbBKNKioyM1BNPPCFJysrK0kcffVTumAAAAKgazMGWOAJSijMVNjdnkQGoObLzCv8fe/cdHlWZ/QH8e2cmvTdSINQQOop0kogFdUFpKiJ2BGRXV2UXwcaia0fxZwELCiqiuKCsCKKLq4IkdBCBQOgBQgpppNeZub8/shly35khhZm5U76f58lj5p07954kmMycOee8OFWgLATpywopBVUqpJrq0aMHPvzwQ1Wu3bt3b6SmpuLEiRPQ6/VWB28fOXLE9HmvXr1afQ1L52ntdcTzXHnllc2eJz4+XjHgvPE8e/fuRWlpKfLy8hATE2PxHLm5uSgrK7MYy9GjR2E0NuyoctVVV13yaxo4cKBZXERERETk+sSh5nEhbNkTq8TyStmyR+SpMvLKYJQv3tZIQM8YJqSa8uhpWsnJyQAaWtP27t1r9bjffvvN9HlSUlKrrtGlSxfExcWZnceSLVu2AADat2+Pzp07W4y1ufPk5eXh2LFjVmNt6Xku9TU3Tdzp9Xqr5wCA+vp6i48jIiIiItfGCilz4veAQ82JPJfYrtctKhB+3lqVonFOHp2QmjBhgunzTz/91OIxRqMRn3/+OQAgNDQU1157bauuIUkSxo8fD6ChQmjHjh0Wj9uxY4epgmj8+PGQJElxf2JioqlSafXq1aiqqrJ4ns8++8z0+cSJE83uHzduHDSahh+7ta+56Xk0Gg3GjRunuK9z586m+FJTU62eA1Amtrp06XLJY4mIiIjINciybJZsiQtlQopDzYmo0WFhhz0ONDfnkIRUUVERSkpKWvWYqqoqbNmyxVQ1ZA9DhgxBSkoKAGDZsmXYvn272TFvvvkmMjIyAACPP/44vLy8FPdv3rwZkiRBkiQ88MADFq8za9YsaLUNmdBHH30U1dXKP0zV1dV49NFHATRUEc2aNcvieZ544gkAQHFxMebOnWt2/8mTJ/Hqq68CABISEiwmpGJiYnD33XcDADZu3IhvvvnG7Jivv/4aGzduBADce++9Zm19kZGRGDZsGABg165dWL58ucV4z5w5g5dffhlAQ2Lu5ptvtngcEREREbmW4so61OqNirVYtuwhVqiQKqvRo7L20h0FROSezHfY40Bzkd0SUjk5OZg+fTrCw8PRrl07REREIC4uDrNmzUJeXl6zj8/MzMQ111yD6667zl4hAgDeeecd+Pn5Qa/X48Ybb8Srr76KHTt2YNOmTZg5c6Yp8ZOYmIjZs2e36RqJiYmYM2cOAGDPnj1ISkrCqlWrsGfPHqxatQpJSUnYs2cPAGDOnDno3r27xfPcf//9pva59957D7fffjs2btyIXbt2YfHixRgxYgTKysqg0Wjw7rvvWm2Re/nllxEVFQUAmDJlCp566imkpaUhLS0NTz31FO666y4AQFRUFF566SWL53jllVdMSbapU6fivvvuw/fff48//vgDqampeOmllzBw4EDTz/rBBx9Ejx492vLtIyIiIiInI1ZHaSSgXZCPStE4D0tJObbtEXmeeoNRseMmwAopSyRZluXmD2udgwcP4oYbbkBBQQHE00uShMDAQCxevBj33nuv1XMcOnQI/fr1gyRJMBgMtg5RYf369bjnnntMQ7xFiYmJ2LBhAxISEszu27x5s6mN7/7771e0zDVlNBoxY8YMfPLJJ1bjmDZtGj766CNTS50lhYWFGDNmDHbv3m3xfh8fHyxevBjTp0+3eg4A2LlzJyZMmGA1ORgTE4O1a9di6NChVs+xcuVKPPTQQ6YdCK258847sXz5cnh7e1/yuNY6d+6caQfArKwssx0FiYiIiMg+/nv4PGZ8vsd0OybYFzueuV7FiJzHlS/8hJKqi3NUV0wbgpTuUSpGRESOdiSvDH96Wzne5o/5NyDU37aviR3JHq+/bV4hVVNTg9tvvx35+fmQZRmxsbG4/fbbMXbsWERGRkKWZZSXl+OBBx4wtampbezYsThw4AD+9re/ITExEf7+/ggNDcWgQYOwYMEC7Nu3z2IyqjU0Gg2WLVuGDRs2YPz48YiLi4O3tzfi4uIwfvx4/PDDD1i6dOklk1FAQ7vctm3b8P777yM5ORkRERHw9fVF165dMWPGDOzdu7fZZBQADB06FAcPHsS8efPQt29fBAYGIjAwEP369cO8efOQnp5+yWQUANx11104cuQI/vGPf2D48OEIDw+HTqdDQEAAevTogfvvvx+//vorvvrqK5sno4iIiIhIPbnC7nGxnB9lIlZJsUKKyPOkZyuLXdqH+rl0MspebF4h9fHHH2PmzJmQJAl/+9vf8Oqrr5rmLun1eixZsgTz5s1DaWkpJEnC5MmTsWLFClP7VyNHVkiRa2KFFBEREZE6FvznCD7YfNJ0e0y/GLx/90AVI3IeD362G78eyTfd/tuoRDw+yvJIDiJyT/9cfwifbj1tun1j72h8dN8g9QKyAZeokPr3v/8NALjxxhuxcOFCxRBwnU6HRx55BHv37kX//v0hyzJWrVqFCRMmoLa21tahEBERERGRHeQKu8dxoPlF4mDzvDLutEfkaTjQvGVsnpDav38/JEnCjBkzrB7TtWtXbN++HaNHj4Ysy/jhhx8wevToZmcRERERERGR+nKENjQxCePJxO9FTglb9og8idEoI8MsIcWB5pbYPCFVVFQEAOjWrdslj/Pz88O6detw1113QZZl/Pbbbxg1ahRKSkpsHRIREREREdlQnllCihVSjcxnSLFCisiTZF2oQnmtXrHWpz0TUpbYPCHVOLy6vLy8mSMBrVaLL774An/+858hyzJ27dqFa6+9FoWFhbYOi4iIiIiIbMBolM0TUhxqbiJ+LzjUnMiziO164QHeiAnm70hLbJ6Q6tixIwAgIyOjxY95//33MWfOHMiyjAMHDuDqq69Gdna2rUMjIiIiIqLLVFxVhzqDUbHGlr2LxAqp8ho9KoRqCSJyX4dyShW3+8QFQ5IklaJxbjZPSF155ZWQZRk//fRTqx63YMECvPDCC5BlGUePHsXkyZNtHRoREREREV2mXGEmklYjoV0QE1KNLCXnxCHwROS+ONC85WyekLruuusAAN9//71pnlRLzZs3D2+99RYAoKysrJmjiYiIiIjI0XKEmUjRQT7QavjufyNfLy3CA7wVa2zbI/Ic5gkpzo+yxuYJqbFjx0Kr1aKurg5vvvlmqx//+OOPY+nSpdBobB4aERERERFdJnF+VAzb9cyI82I42JzIM+SX16CgvFaxxoSUdTpbn7Bdu3b44IMPcP78eQQEBLTpHFOnTkV4eDjWrl1r2+CIiIiIiOiyiBVSsaHcYU8UF+qLw7kXqyRYIUXkGcTqqABvLTpHtC0v4glsnpACgOnTp1/2OcaPH4/x48fbIBoiIiIiIrIVcYZUHCukzIiDzcXvGRG5p8NCQqpXbDA0bGm2in1xRERERETUYuYte6yQEoltjGJVGRG5J0s77JF1TEgREREREVGLickVVkiZiwtVfk/EJB4Ruaf0bO6w1xpMSBERERERUYsYjTLOl3GoeXNigoWWPSakiNxeWU09zhZXKdZ6s0LqklRLSB08eBAzZ85Ez549ERQUhKCgIPTo0QMPPfQQ9u3bp1ZYRERERERkRWFlLeoNsmItjkPNzYgVUhW1epTV1KsUDRE5gjg/yksrITE6SKVoXIPNE1IvvPACXnjhBRQWFlo9Zt68eRgwYACWLl2K48ePo7KyEpWVlThx4gSWLVuGwYMH4+mnn7Z1aEREREREdBnE4dw6jYTIQB+VonFe0cHmVWNs2yNyb+IOe93bBcFbx6a0S7H5LnvPP/88JEnC7bffjsjISLP7//nPf+KVV14x3Q4ODkZiYiIkScKxY8dQWloKWZbx+uuvIyAgAPPmzbN1iERERERE1AZi61l0sC+03EHKjK+XFhEB3iiqrDOt5ZRUs1qCyI1xoHnrOTRdd/z4cbz44ouQJAkhISFYsWIFioqKsGvXLuzcuROFhYVYsWIFQkNDIcsyXnjhBZw9e9aRIRIRERERkRW5wkDzWM6PsiqWg82JPIrYsseEVPMcmpD64IMPYDQa4eXlhf/+97+4++67odVqTfdrtVrcfffd+M9//gNvb28YDAYsXbrUkSESEREREZEVYoVULOdHWRUbovze5DAhReS2auoNOJ5foVjr25477DXHoQmpzZs3Q5Ik3HfffRg0aJDV44YMGYJ77rkHsixj8+bNjguQiIiIiIisMktIsULKKvF7k1tSbeVIInJ1x86Xw2C8uOGDJAG9Ylkh1RyHJqROnz4NALjllluaPXbs2LEAgKNHj9ozJCIiIiIiaiExqcKElHVihVReGSukiNyVONC8S0QAAnxsPrLb7Tg0IVVVVQUA6NixY7PHNh5TWlrazJFEREREROQIrJBqOfF7k8MKKSK3JQ407835US3i0IRUTEwMAECv1zd7rMFgAAD4+vKPHBERERGR2gxGGefLxIQUZ0hZY9ayV1oDWZatHE1ErkyskOoTx/lRLWG3GrLdu3ejsLBQsdahQwdkZWXh1KlTl5whBQC5ubkAgMjISHuFSERERERELVRYUQu9UZlQEXeSo4vihIHvVXUGlNXoEeLnpVJERGQPBqOMjFzusNcWdktIPfjgg1bv27p1K+64445LPn7v3r0AgPbt29s0LiIiIiIiaj2xXc9LKyEywEelaJxfu2Dz701uaTUTUkRu5lRBBWrqjYo1JqRaxi4te7IsX/JjzZo1ppY8a9auXQtJkjBkyBB7hEhERERERK0gDjSPDvaFRiOpFI3z89FpERmoTErllnCwOZG7Edv1YoJ9ERHIZH1L2LxCatOmTS06rq6uDn5+lnvOf/vtNxw4cAAAMHz4cJvFRkREREREbZMjVEjFcX5Us+JCfVFYUWu6LVaZEZHrEweaszqq5WyekBo5cuRln+OKK65AZmYmACAuLu6yz0dERERERJcnr1RZIRXDHfaaFRPsiwO4+GI1t5Q77RG5G/OB5kxItZTdZkhdjtDQUISGhqodBhERERER/Y9YIcWB5s0TB5uzQorIvciybJaQ6s0d9lrMLjOkiIiIiIjIvYgzpGKDmZBqjlhFxgopIveSXVKN0up6xRorpFqOCSkiIiIiImpWnlmFFGdINSdWTEhxqDmRWxGro0L8vNAhjL8bW4oJKSIiIiIiuiSDUcb58lrFGoeaN89Sy54syypFQ0S2Zml+lCRx99GWsukMqS1bttjydM3q3LkzOnbs6NBrEhERERF5moLyWhiMykQKh5o3L0Zoa6yuN6C0uh6h/t4qRUREtnSYO+xdFpsmpK655hqHZgOfe+45zJ8/32HXIyIiIiLyRDnC7CNvrQYRAUyqNCcmxBeSBDQtisopqWFCishNmFdIcaB5a9i8ZU+WZYd9EBERERGR/Ymzj2JCfKHRsC2lOV5aDaICfRRreWUcbE7kDoor68x2zmSFVOvYtELKaDTa8nREREREROQExN3h2K7XcrEhvshvMn8rh4PNidzCIaFdz9dLg65RgSpF45o41JyIiIiIiC5JrAKIY0KqxWKF4e/iboVE5JrEdr2eMcHQsnK0VZiQIiIiIiKiSxIrpGJDucNeS8WGKpN34jwuInJN6dkcaH65mJAiIiIiIqJLEiukYlkh1WLi90qcx0VErukwB5pfNiakiIiIiIjoksQkitiGRtaZteyVMSFF5Ooqa/XILKpUrLFCqvWYkCIiIiIiIqv0BiPyy1kh1Vbi9yqnpJo7hhO5uIzcMjT931irkdAjJki9gFwUE1JERERERGRVfnktjEL+hAmplhPnbdXqjbhQVa9SNERkC+JA84SoQPh6aVWKxnUxIUVERERERFaJA829dRqEB3irFI3raRfkA3HjLfF7SkSu5VAOB5rbAhNSRERERERklaWB5pLErc1bykurQVSQj2KNg82JXJtYIdWbCak2YUKKiIiIiIisMh9ozna91hIHm+dysDmRy6rTG3HsfLlirW977rDXFkxIERERERGRVTlCe1kcd9hrtbhQZRIvt4Qte0Su6nh+OeoNysF6rJBqG50tT3bgwAEAQM+ePeHtzb5yIiIiIiJXlye07MWwQqrVYoKFCqlSVkgRuSqxXa9juD+Cfb1Uisa12TQhdeWVV0Kj0eDAgQPo3bu3af2FF14AADz88MOIjIy05SWJiIiIiMiOcsQZUqGskGotswopDjUnclmHhYQUB5q3nU0TUgAgy7LZ2vPPPw9JknD77bczIUVERERE5ELE9rLYYFZItZZYVcYKKSLXxR32bMemM6S8vBrK1KqrmfEnIiIiInJ19QYjCipqFWuxoUxItZbZUPPSGotv5BORczMaZQsVUhxo3lY2TUhFR0cDAPbu3WvL0xIRERERkQrOl9VAzJtwqHnriS17dXojiivrVIqGiNrqdFElKusMijVWSLWdTVv2rr76aqxcuRJPPvkkTp48icTERFPVFAB899132LNnT6vPe99999kyTCIiIiIiagFxoLmPToNQfw7vba2oQB9oJMDYJLmXW1qDiEAf9YIiolYTB5pHBvqgHduY28ymCamnn34a3377LUpLS7Fw4ULFfbIsY968ea0+pyRJTEgREREREalAHGgeF+oHSZJUisZ16bQaRAf7KmZH5ZbWoG97tvoQuRIxIcXqqMtj05a9Pn36YMuWLRg1ahS8vLwgy7KiN7rxdms/iIiIiIjI8cwGmoewEqCtxO8dd9ojcj0caG5bNt9lb+DAgfjpp5+g1+tRWFiImpoadO3aFZIkYePGjejevbutL0lERERERHYg7gYn7hZHLdcw2LzEdDunhDvtEbkSWeZAc1uzeULKdGKdDjExMYq1uLg4dOrUyV6XJCIiIiIiGxKreDjQvO3ECqk8VkgRuZTzZbUoEjYjYIXU5bFbQqqp5557DgDQrl07R1yOiIiIiIhsgBVStiN+78T5XETk3MR2vSAfHTqG+6sUjXtwaEKKiIiIiIhch5iQigtlQqqt4kKV1WWcIUXkWsSB5r3igqHRcJOHy+GQhJQl58+fR3p6OoqLiwEA4eHh6Nu3L6Kjo9UKiYiIiIiI/qdOb0RhRa1iLZYte20mtuydL62F0SjzBS2Ri+BAc9tzaEJKlmV89NFHWLx4MQ4fPmzxmN69e+PRRx/FjBkzuKUsEREREZFKzpfVQNzwmrvstZ2YzKszGFFUWYeoIB+VIiKi1hArpDjQ/PJpHHWhCxcu4Oqrr8bDDz+Mw4cPQ5Zlix+HDx/GX/7yF1x99dUoKSlxVHhERERERNSE2K7n56VFiJ+XStG4vqggH+iEaii27RG5htKqepy7oPz/lRVSl88hFVKyLGP8+PHYunUrACAiIgJ33HEHhg4datqJLy8vD7t27cLq1atRWFiIbdu2Yfz48fjtt98cESIRERERETUhJktiQ33ZwXAZtBoJ0cG+yC65+H3NLa1B/w4qBkVELXIoV9mu563TIKFdoErRuA+HJKRWrlyJtLQ0SJKEu+66C++//z6CgoLMjrvvvvvw2muv4ZFHHsGKFSuQlpaGr776ClOmTHFEmERERERE9D9ihRTb9S5fTIiQkCphhRSRKziUrWzX6xEdBC+twxrO3JZDvoMrV64EAIwcORIrVqywmIxqFBgYiOXLl2PkyJGQZRlffPGFI0IkIiIiIqImxGQJB5pfPjGpl1tWY+VIInImHGhuHw5JSP3++++QJAl//etfW/yYRx99FACwb98+e4VFRERERERW5AgVUnGskLpscaHKpF5uCRNSRK7AfKA5E1K24JCEVHFxMQCgS5cuLX5M47GNjyUiIiIiIsfJExJSMayQumwxwUKFFIeaEzm96joDThZUKNZ6c4c9m3BIQiokpOGHlZOT0+LH5ObmAgCCg5l5JCIiIiJyNEtDzenyxIWKCSlWSBE5uyN5ZTDKF29LEtAr1voYImo5hySk+vbtCwD49NNPW/yYxmMbH0tERERERI5RqzegsKJOscah5pdPrDI7X1YDY9NXukTkdMR2va6RAfD3dsj+cG7PIQmp22+/HbIs49tvv8Xzzz8PWb70L90XX3wRa9asgSRJmDRpkiNCJCIiIiKi/zlfWmu2xqHml0+cw1VvkFFYYf69JiLnYT4/iu16tuKQtN6MGTOwaNEiHD16FC+++CL+/e9/44EHHsDQoUPRrl07SJKE8+fPY+fOnVi+fDnS09MBAD179sSMGTMcESIREREREf1PjtCuF+CtRbAvKwIuV2SgD3QaCfomVVG5pTVoF8zqMyJndVjYYa9ve44VshWH/FXx8vLCjz/+iOuvvx6ZmZk4dOgQ5syZY/V4WZbRtWtX/Pjjj9Dp+IePiIiIiMiRzAea+0KSJJWicR8ajYToYF9kl1xM+OWWVuOK+FD1giIiq/QGI47klSvWWCFlOw5p2QOAzp0748CBA5g9ezZCQkIgy7LFj5CQEDzxxBP4448/0LFjR0eFhzNnzmD27Nno2bMnAgICEB4ejsGDB+ONN95AVVWVza7z448/YuLEiejQoQN8fHzQoUMHTJw4ET/++GOLz6HX6/Hhhx8iJSUFUVFR8PPzQ7du3TBz5kwcOnSoxecpLCzE/Pnz0b9/fwQHByM4OBj9+/fH/PnzUVRU1KqvKyMjA3PmzEH//v0RFhYGPz8/dO7cGaNGjcIrr7yC06dPt+p8RERERKQesUIqLpTterbCweZEruNkQSVq9UbFWp84VkjZiiQ3N9DJDurq6rB3716kp6ejuLgYABAeHo6+ffti4MCB8Pb2dmg869evxz333IOysjKL9ycmJmLDhg1ISEho8zWMRiMeeughLFu2zOox06dPx5IlS6DRWM8TFhYWYsyYMdi9e7fF+318fLB48WJMnz79kvHs3LkTEyZMQF5ensX7Y2NjsXbtWgwZMuSS55FlGfPmzcPrr78OvV5v9bi33noLs2bNuuS5WuvcuXOIj48HAGRlZaFDhw42PT8RERGRp/rH2nSs2HHGdPuOQR3w+u1XqBiR+3jsq31Yt//i7uMPXd0Vz4zppWJERGTNv38/h7+v3m+63T7UD1ufuk7FiNRjj9ffqvTDeXt7Y/jw4Rg+fLgal1fYt28fJk+ejOrqagQGBuLpp5/Gtddei+rqavzrX//Cxx9/jGPHjuHmm2/Gnj17EBTUtu0dn332WVMyasCAAZg7dy66deuGkydP4vXXX8e+ffuwdOlSREVF4ZVXXrF4DoPBgIkTJ5qSUbfeeitmzJiB8PBw7Ny5Ey+99BLy8/Mxc+ZMtG/fHqNHj7Z4nqysLIwdOxYFBQXQ6XT4+9//jltuuQUA8P333+P//u//kJubi7Fjx2Lv3r2X/If20EMPYenSpQCAgQMH4sEHH0S/fv0QGBiI/Px87Nq1yzSgnojIGZTX1ONCZT3iw/34u4mIyAqxakfcHY7aTtytMKek2sqRRKQ2caB5b1ZH2ZTHD2h6/PHHUV1dDZ1Oh59++kmRJLvuuuvQvXt3zJ07F8eOHcObb76J559/vtXXOHbsGBYuXAgAGDRoELZs2QI/v4Y/6oMHD8a4ceMwcuRI7NmzB2+88QYefPBBi9VYy5cvR1paGgDg4YcfxnvvvWe6b8iQIRg9ejQGDhyIsrIyPPbYY8jIyLA4g+vZZ59FQUEBAGDlypWKnQxTUlIwcOBATJ48Gfn5+Zg3bx4+++wzi1/XJ598YkpGPfPMM3jppZfMXtzddNNN+Mc//oG6ujpLpyAicqjU4wWYuWIvquoM+FOfGLx391XQapiUIiIS5YoteyEcum0rYkJKnNdFRM7jkDDQnO16tuWwGVLOaNeuXUhNTQUATJs2zWLF1uzZs9GrV0MJ7TvvvIP6+vpWX+ftt982tbMtWrTIlIxq5O/vj0WLFgFomA/11ltvWTxPY1IrPDwcb7zxhtn9CQkJePrppwEAJ06cwLfffmt2TF5eHr788ksADcmipsmoRnfccQduuukmAMCKFSsstvWVl5fjiSeeAADcfPPNePnlly9ZaeDoNkwiIkte+j4DVXUGAMB/DuVhfZOWCSIiusi8QooJKVsRq804Q4rIOcmybFYhxYHmtuXRCam1a9eaPp86darFYzQaDe677z4AQElJCTZt2tSqa8iyjO+++w4A0LNnTwwbNsziccOGDUOPHj0AAN999x3E0V7Hjh1DRkYGgIaEkb+/v8XzPPDAA6bPLSWk1q1bB6OxYSibta+56XmMRiPWrVtndv+XX36JCxcuAGiouCIicna5pdU4el65S8rStFNmv2+JiDxdTb0BxZXK6nYONbcdcah5XlkNDEb+LSJyNlnF1SivUc5JZoWUbXl0Qqqx/S0gIAADBw60etzIkSNNn2/durVV18jMzEROTo7ZeS51nezsbLNd6Rpjbe48MTExSExMtBprS8/T3Nf89ddfAwAiIyMVlWX5+fk4ceKE1QHxRERqST1eaLaWnl2GHaeKVYiGiMh5WWohE9vMqO1ihQopg1FGYUWtStEQkTViu16Yvxd/F9qYRyekGiuOEhISLM5aatSzZ0+zx7TU4cOHLZ6ntddpy3mysrJQWVlp8TwhISGIiYmxeo7Y2FgEBwdbjMVoNJoGq/fr1w+yLGPRokXo2rUroqOj0b17d4SEhODKK6/EsmXLTBVZRERq2nrCPCEFAMvSTjk4EiIi5ya2kAX66BDk66VSNO4nIsAbXlrlqAsONidyPpba9bghjm157FDzmpoaFBY2vDhpbrvCsLAwBAQEoLKyEllZWa26zrlz50yfN3edxi0UAZhdpy3nkWUZ586dM7UCNj1PS7ZojI+Px6FDh8xiycrKQnl5Q9tLeHg4brvtNovtgfv378f06dOxfv16rF69utVzpJp+zZbk5ua26nxE5LmMRtlqQurnjHycLKhAt6hAB0dFROScxIHmrAiwLY1GQkyIL7KKL36fOdicyPlwoLn9eWyFVGNCBQACA5t/ERIQEAAAqKiosNt1Gq9h6Tq2Ps/lfM3FxRfbWzZs2IBvv/0WiYmJWLduHcrKylBeXo7vv//eVKn13Xff4amnnmr2eqL4+PhLfgwZMqTV5yQiz3QkrxyFFdZ3+/wkLdOB0RAROTexQiqW86NsTmzby2FCisjpiBVSvZmQsjmPTUjV1Fz8pd+Syh0fHx8AQHV168ppW3OdxmtYuo6tz3M5X3PTNsCamhrExMQgLS0NY8eORVBQEAIDA3HzzTcjNTUVcXFxAIDFixc3W/FERGQvaScKLnn/N3vPmQ3wJSLyVGYVUsGskLI1seosly17RE6loLwW+eXK2W7cYc/2PDYh5et78Y9AXV3zL0Jqaxv+Mfr5te4dotZcp/Ealq5j6/NcztfcNBYAmDt3LqKiosweHxkZiWeeeQYAUF9fj3//+9/NXrOprKysS37s2rWrVecjIs+VdqJIcfv6nu2g01ycAVCrN+KLHWccHRYRkVPKLRErpJiQsjWxQiq3jBVSRM5EbNfz99aiS2SAlaOprTx2hlRQUJDp85a04TVWBbWk1a2t12laeSReRzyPmBRqzXmqqqou62tuGgsA3HjjjVbPcdNNN5k+bxyE3lItmXNFRNScmnoDdmUqE1K3DeyAED8v/Htftmnt8+2n8dDVXeHrpXV0iERETkVsH+MMKdtjhRSRcxPb9XrFBkOr4UBzW/PoCqmIiAgAzQ/PvnDhgik503TweEs0Tao0d52mw8PF67TlPJIkmSV1Gm+3pH2u8TyWYmm6u8ClvidN7ysouHTLDBGRPfx+5gJq6i/u9ilJwIhuEZiW0kVxXGFFHdb9kePo8IiInE6e2VBzzpCyNbOEFGdIETmVw2Y77HF+lD04tEJKr9djw4YNSE1NxalTp1BeXg6DwXDJx0iShF9++cUu8fTu3Rupqak4ceIE9Ho9dDrL344jR46YPu/Vq1err2HpPK29jnieK6+8stnzxMfHKwacN55n7969KC0tRV5eHmJiYiyeIzc3F2VlZRZjCQgIQKdOnXD69GkAuOTPsOl91r6/RET2lCbsrtevfQhC/b0R6u+NEd0isO3kxeqppWmnMGlQB27pS0Qeq7rOgAtV9Yq1OLbs2VycMCg+v7wWeoMROq3H1gsQORXusOcYDssQpKWl4d5778XZs2dNa7IsWz1ekiTIsmzXFwXJyclITU1FZWUl9u7di6FDh1o87rfffjN9npSU1KprdOnSBXFxccjJyVGcx5ItW7YAANq3b4/OnTubxdo0njvvvNPiOfLy8nDs2DGrsSYnJ2PFihWm80yePNnieZr7mq+++mpTQurUqVMYOHCgxfOcPHnS9Hn79u0tHkNEZE9iQio5IdL0+fSULoqE1LHzFdhyvBAjE83n4hEReYI8C7OMYlghZXMxQoWUwSijoKKW1WhETqC8ph6ni6oUaxxobh8OScEfOXIEf/rTn3D27FnIsgwvLy/07t0bKSkpGDlypMWPq6++2vRfe5kwYYLp808//dTiMUajEZ9//jkAIDQ0FNdee22rriFJEsaPHw+g4fuwY8cOi8ft2LHDVNk0fvx4s0RcYmKiqVJp9erVqKqqMjsHAHz22WemzydOnGh2/7hx46DRNPzYrX3NTc+j0Wgwbtw4s/tvu+020+fffvut1fM0HWSekpJi9TgiInu4UFmHg9nKd7iSu19MSF2T2A7dopSVpEtTTzkkNiIiZyTOMgry1SHQh1XuthYR4A1vnfKlGNv2iJxDRm654rZOI6F7dOtmSVPLOCQh9corr6CqqgoajQYvvfQSCgsLcfDgQfz222/YtGlTsx/2MmTIEFOSZNmyZdi+fbvZMW+++SYyMjIAAI8//ji8vLwU92/evBmSJEGSJDzwwAMWrzNr1ixotQ1Dch999FFUVyv/0FdXV+PRRx8F0NDWNmvWLIvneeKJJwAAxcXFmDt3rtn9J0+exKuvvgoASEhIsJiQiomJwd133w0A2LhxI7755huzY77++mts3LgRAHDvvfdabOu75ZZb0LdvXwDA22+/jUOHDpkdk5GRgYULFwIAoqKicOutt1r8uoiI7GXbySI0Lcb19dJgYKcw022NRsK05K6Kx6QeL8SRPOXcACIiTyEONI9jxY5dSJJkYbA5E1JEziBdeDOze3QQfHTc9MYeHJKQ+vXXXyFJEh5//HE888wzrd6pzp7eeecd+Pn5Qa/X48Ybb8Srr76KHTt2YNOmTZg5c6Yp8ZOYmIjZs2e36RqJiYmYM2cOAGDPnj1ISkrCqlWrsGfPHqxatQpJSUnYs2cPAGDOnDno3r27xfPcf//9pva59957D7fffjs2btyIXbt2YfHixRgxYgTKysqg0Wjw7rvvWp3Z9PLLLyMqqqEdZcqUKXjqqaeQlpaGtLQ0PPXUU7jrrrsANCSRXnrpJYvn0Gg0+OCDD+Dt7Y3KykokJyebvnc7duzA66+/jqSkJNNufosWLYK/v3+bvn9ERG0ltusN6RJh9oTi1qvaIzzAW7G2LDXT7rERETkjcaC52FpGthMTLA425057RM5A3GGP86PsxyH1t4WFDS8ILFXsqG3AgAFYtWoV7rnnHpSVleGZZ54xOyYxMREbNmxAUFBQm6/z8ssvIz8/H5988gn27dtncQbUtGnTrCaAAECr1WLt2rUYM2YMdu/ejTVr1mDNmjWKY3x8fLB48WKMHj3a6nni4+Oxfv16TJgwAXl5eViwYAEWLFigOCYmJgZr164126WvqeTkZKxcuRJTp05FSUmJxe+dl5cX3n33XauzqoiI7CnthHJ3z5Qm86Ma+Xppcc+wTnj3l+Omte/+yMGcP/VAuyC+ECMiz2JWIcWB5nYjDjZnyx6Rc+BAc8dxSIVUYzWOn59zlvyOHTsWBw4cwN/+9jckJibC398foaGhGDRoEBYsWIB9+/YhISHhsq6h0WiwbNkybNiwAePHj0dcXBy8vb0RFxeH8ePH44cffsDSpUtN852siYyMxLZt2/D+++8jOTkZERER8PX1RdeuXTFjxgzs3bsX06dPbzaeoUOH4uDBg5g3bx769u2LwMBABAYGol+/fpg3bx7S09OtDnlv6rbbbkN6ejqeeOIJ9OrVC4GBgfD390ePHj3wyCOP4PDhw/jzn//c4u8TEZGtnCmqRFax8t3mpvOjmrp3WCfFLI86gxErtp+xa3xERM5InCHFIdv2Y9ayxwopItXV6g04kV+hWONAc/uR5EttdWcjU6ZMwerVq/Hpp5/ivvvus/flyEOcO3cO8fHxAICsrKxLVnMRkef5cucZPPttuul2ZKA3dj0zChqN5d1bn/zmAFbtyTLdDvP3wranroefN2cGEJHn+NPbW3Ak7+JA39dv7487BsWrGJH7WrH9NP7x3cU5rFfGh2LtI63b0ZuIbOvguVKMXZymXHv+RgT5ell5hOewx+tvh1RI/f3vf4dWq8U777wDvV7viEsSEZGHSzuunB+VlBBpNRkFANNSuihuX6iqx5rfz9klNiIiZyW2jXGouf2I1Wd5bNkjUp3Yrtc5wp/JKDtySEJq8ODBePvtt7F//37ceuutpplSRERE9mAwyth2skixlmxhflRTidFBGJkYpVj7JC0TRqPdC4mJiJxCVZ0epdX1ijUONbcf8XubX14DvcGoUjREBFgaaM52PXtyyFDzF154AQAwZMgQfP/99+jUqRNuuOEG9OzZs0U7r82fP9/eIRIRkRtJzy41e1FlbX5UUzNSuuK3YxcHoZ8qrMSvR/Ixqne0zWMkInI2loZqc6i5/YhDzY0ycL68Fu1DWZVGpBazgebtOdDcnhySkHr++echSQ1tEpIkobq6GuvXr8f69etb9HgmpIiIqDXSTigrcbtFBbRoMG9SQgR6xgQp5qd8nHqKCSki8gi5JcqEVIifF/y9HfJywSOF+XvBR6dBrf5iVVReaTUTUkQqMRhlZOSWK9ZYIWVfDmnZAwBZlk0f4u3mPoiIiFoj9XiB4nZK9ygrRypJkoTpKV0Vazszi3HwXKmVRxARuQ9xlzdxFziyLUmSzL7HOSWcI0WklszCSlTXGxRrfeJYIWVPDklIGY3Gy/ogIiJqqao6PfaeuaBYa25+VFNjr4hFVJCPYm1p2imbxEZE5MzElj0mpOyPg82JnIfYrhcd7IPIQB8rR5MtOKxCioiIyBF2ZRaj3nCxularkTC0a3iLH++j0+KBEZ0VaxsO5CKnpNryA4iI3IRZhRRbx+wuVpjRlVPKvzVEajnMgeYOx4QUERG5lbTjyvlRA+JDW71d711DOsLX6+KfSL1RxvJtp20RHhGR0zKrkApmhZS9iVVo4hwvInIc8x322K5nb0xIERGRWxEHmrdkdz1RWIA3Jg2MV6yt3HUWFbX6y4qNiMiZickQVkjZn9iyl1vGhBSRGmRZRrq4wx4TUnbn8IRUcXEx3nzzTYwePRrx8fEICAhAQEAA4uPjMXr0aLz55psoLi52dFhEROQG8strFDvkAUBKGxJSAPBgchf8b4NYAEB5jR6rd2ddTnhERE5NbBfjDCn7M6+QYssekRpySmtQUlWvWGPLnv05NCG1ZMkSdOrUCXPnzsVPP/2E7OxsVFdXo7q6GtnZ2fjpp58wd+5cdOrUCR999JEjQyMiIjew7USR4nagjw79O4S26VxdIgMwqle0Yu2TrZkwGLn7KxG5n4paPcprlFWgTEjZn1ghVVBRizo9N3UicrRD2crqqGBfHTqEsUrU3nSOutBrr72GZ599FrLc8EQ+JCQEAwYMQExMDAAgLy8P+/btQ2lpKSorK/GXv/wFJSUlmDt3rqNCJCIiF5cqzI8a1jUCXtq2v/cyI6Ur/nv4vOn2uQvV2HgoD2P6xbb5nEREzijPwjBtMVlCthcnDDWX5YZq3w5h/ipFROSZxPlRveOCITUtlSe7cEiFVHp6Ov7xj39AlmXExsbiiy++QH5+Pn799VesXLkSK1euxK+//oqCggJ8+eWXiIuLgyzLmDdvHg4dOuSIEImIyMXJsoy0EwWKtba26zUa3DkM/Tsoy7WXpp66rHMSETkjcaB5qL8X/Ly1KkXjOUL8vBSbaADmPwsisj/zgeZs13MEhySkFi9eDIPBgKioKGzfvh133XUXvLzMdzzS6XSYMmUKtm/fjnbt2sFgMGDx4sWOCJGIiFzcyYIKnC+rVawlJVxeQkqSJExP6apY+/1sCfaeuXBZ5yUicjZmA81ZHeUQkiQhThxszoQUkcMd5kBzVTgkIfXrr79CkiQ8/fTT6NixY7PHx8fH48knn4Qsy/jll18cECEREbk6sV0vNsQX3aICLvu8o/vGIE6Yo7IsjVVSRORexIHm4u89sp/YUA42J1LThco65AiJYFZIOYZDElLZ2dkAgBEjRrT4MUlJSQCAnJwcu8RERETuJU1ISCUnRNqk999Lq8HUpC6Ktf+k5yGruOqyz01E5CzyhBdjMUxIOUxMMCukiNQktuv56DQ2eVOTmueQhJRW29B/rtfrmznyIoPBAADQaBy6ESAREbmgeoMRO04pd9hLvsz5UU1NHhKPQJ+L+4AY5YYd94iI3IVYHRAXypY9RxEHm+daGDBPRPZzSGjX6xkbDN1lbIpDLeeQ73Jjm15r2u8aj21Jix8REXm2P7JKUFlnUKxd7vyopoJ9vTB5cLxibfXuLJRW19vsGkREahLbxGKCWSHlKGI1GiukiBzLfKA550c5ikMSUjfccANkWcbChQtx8ODBZo9PT0/HG2+8AUmScOONNzogQiIicmXi/KhescGIDPSx6TUeGNEZmiYdgJV1Bvxr11mbXoOISC1iy54414jsRxxqnlPChBSRI4kVUkxIOY5DElKzZs2Cj48PKioqkJycjIULF6KoqMjsuKKiIixcuBApKSkoLy+Hj48PZs2a5YgQiYjIhaUdL1DcTrFhu16j+HB/jO4Xq1j7bNtp1BuMNr8WEZEjldfUo7xWOVpDTJKQ/YjJv8KKWtTp+beFyBGq6vQ4VVipWONAc8dxSEKqU6dOWLJkCQCgoqICTz75JKKjo9G9e3ckJSUhOTkZ3bt3R3R0NJ588kmUlpZCkiQsWbKELXtERHRJZTX12H9O+c6WLdv1mpqerBxunltagx8O5trlWkREjiJWRwEcau5IscHmyb/zZaySInKEjNwyyPLF21qNhJ4xQeoF5GEcNqnrvvvuw7p16xAbGwtZlmE0GnHy5Ens2LED27dvx8mTJ2E0GiHLMuLi4rB+/Xrce++9jgqPiIhc1I6TRTAYLz6T8NZqMKRzuF2uNaBjGAZ1ClOsfZx6CnLTZzJERC5GHGgeHuANXy+tStF4nmA/Hfy9ld9vzpEicgxxflS3qAD+/nMgXfOH2M7NN9+M06dP49tvv8XPP/+M9PR0FBcXAwDCw8PRt29fjBo1ChMmTICXl5cjQyMiIheVdkI5P2pQ5zD4edvvicT0lC7Yc+aC6XZ6dhl2ZhZjWNcIu12TiMiexIHmsayOcihJkhAb4ouTBRfbhrjTHpFjHMoWB5qzXc+RHJqQAgCdTodJkyZh0qRJjr40ERG5ITEhZa92vUY39I5Bx3B/nC2uMq0tTT3FhBQRuSyxGocJKceLDfFTJKQ42JzIMQ7lcqC5mhzWskdERGRrOSXVOFWgHERpj4HmTWk1Eh5M6qxY+zkjH6cKKux6XSIiexGrcWI50NzhxCRgHiukiOyu3mDEsTzl87feTEg5FBNSRETkstKOK6ujQv29HFJqPWlQPIJ9lUXGy9Iy7X5dIiJ7MKuQCmWFlKPFhiqTgOJcLyKyvePnK1An7JbcJ5Yte47EhBQREbmsVLFdr1sktBrJ7tcN8NHhrqGdFGvf7D2H4so6u1+biMjW2LKnPvF7zhlSRPZ3KEfZrtchzA8h/pxl7Ug2TUhptVpotVrodDqL6235EM9FREQEAEajjG0Onh/V1AMjOkPXJPlVqzfiyx1nHHZ9IiJbkGXZwlBztuw5mnnLHiukiOxN3GGP86Mcz6YJKVmWTR/W1tvyQUREJMrIK0ORUJFk7/lRTcWE+GLsFXGKteXbz6Cm3uCwGIiILld5rR6VdcrfW6yQcjwxCVhYUYdaPf+eENnTYSEh1Zc77DmcTcuPnnvuuVatExERtZU4P6pThD/iw/0dGsO05C74dl+26XZhRS3W7c/BHYPiHRoHEVFb5VrYzS2GCSmHszS363xpLTpGOPbvGpGnMBplHM4VKqTas0LK0ZiQIiIil5SmYrteo77tQzC8awS2nyoyrS1LzcSkgR0gSfafZUVEdLlyhFlFkYHe8NFpVYrGcwX7eiHQR4eKWr1pLae0mgkpIjs5W1yl+P8NgEM2xiElDjUnIiKXU1NvwK7MYsVaigoJKQCYcXUXxe2j58uRKlRvERE5K3FWEauj1CN+7znYnMh+xPlRkYHeaBfko1I0nsshCaktW7Zgy5YtqK5u+S/Vmpoa0+OIiIia2nvmAmr1F7fp1UjAiG7qJKSuSWyHrlEBirWPU0+pEgsRUWtxoLnzMN9pj4PNiexF3GGvd1wIq9tV4JCE1DXXXIPrrrsOmZmZLX5Mdna26XFERERNie16/TqEqrZNr0YjYXpyV8Va6vFCHM0rVyUeIqLWyBGSHnGskFJNnJAMtDTfi4hsI5077DkFh7XstXW3PO6yR0REInGgeXJChEqRNLj1qvYID/BWrC1llRQRuQDzlj1WSKmFLXtEjiHLMg4LFVJMSKnDaWdIGY0NrRhaLYcqEhHRRRcq65AuPIlITohSKZoGvl5a3DOsk2Ltuz9ykF/Od7eJyLmJQ83jLOz2Ro4hfu/ZskdkH/nltSisqFOscaC5Opw2IXXmzBkAQEgI/2EQEdFFW08WomnxrJ+XFld1ClUtnkb3DusEb93FP6t1BiNWbD+jYkRERJcmy7JZW1hMMBNSahGr05iQIrIPcX5UoI8OncK5o6UadPY46dmzZy2u5+bmIjAw8JKPra2txcmTJ/GPf/wDkiShT58+9giRiIhc1FZhftSQLuFOsUV5VJAPJl7ZHqv2ZJnWvthxBg9fkwA/b/XjIyISlVXrUV1vUKzFhbJlTy3i/K7iyjrU1Bvg68W/IUS2dChbOT+qV2wQNBoONFeDXRJSXbp0MVuTZRk33nhjq89133332SIkIiJyA7IsI1WYH5XSXZ3d9SyZltJFkZC6UFWPNb+fM2vnIyJyBmK7HgBEs0JKNbEWkoF5pTXoHBlg4WgiaqtDZgPN2ZWlFru07MmyrPiwtn6pDx8fH8yZMwcPPvigPUIkIiIXdKaoCucuKF9AJTtRQioxOggjE5XzrD5Jy4TRyA06iMj5iAPNIwN9FK3H5FiBPjoE+SjrBSwlDYno8hzKVbbs9eZAc9XYpULq008/VdyeOnUqJEnCiy++iPbt21t9nCRJ8PX1RWxsLAYMGNBsex8REXmWNKFdLzLQBz2ig1SKxrLpKV3w27EC0+1ThZX49Ug+RvWOVjEqIiJzHGjufGJDfVF+vsJ0W0waEtHlKa2uR1ax8ndfX1ZIqcYuCan7779fcXvq1KkAgAkTJqB37972uCQREXmANKFdLzkhApLkXD3/yQmR6BkThCN55aa1pWmnmJAiIqcjDjSPDWFCSm2xIX441iQhxcHmRLZ1WGjX89Zq0D2ahTBqcUhN7qZNm7Bp0yaLs6WIiIhawmCUse2kkJDqHmXlaPVIkoTpKV0VaztOFSM9u9TKI4iI1CEmO2JDONBcbWJSMKeELXtEtiTusJcYEwgvLVuV1eKQ7/zUqVPxwAMPYNmyZY64HBERuaED50pQVqNXrCUnOM/8qKbGXhGLqCAfxdrS1FMqRUNEZFmu0LLHCin1iUlBtuwR2ZZYIdUnlu16anJIQurcuXM4c+YMrrzySkdcjoiI3NBWYX5UQrtAxDjpiycfnRYPjOisWPv+QK7Ziz8iIjWJFVLO+jvVk5hVSDEhRWRTZjvstedAczU5JCEVExMDAPDzYxkwERG1TarZ/CjnrI5qdNeQjvD1uvhnVm+U8dm20+oFRETUhCzLZknyuFA+V1dbrDBYnm9kENlOTb0BJwoqFGt9uMOeqhySkBo6dCgA4NChQ464HBERuZnKWj1+P3tBsZbS3bkTUmEB3pg0MF6xtnLnWVTU6q08gojIcUqq6lFTb1SssWVPfWLLXklVParrDCpFQ+RejuSVw2CUTbclCegZw4SUmhySkPrLX/4CWZbx1ltvob6+3hGXJCIiN7LrdDHqDRefQOg0EoZ2jVAxopZ5MLkLmm4CWF6jx9d7stQLiIjof8R2PUkCooOZkFKbpaQgq6SIbEMcaN4lMgABPjqVoiHAQQmp6667Dk8//TT279+PW265BVlZfDJOREQtlya06w3oGIpAF3gC0SUyAKN6RSvWPtmaqXh3johIDWKSIyrQhztNOYEAHx2CfZV/3zjYnMg2zOZHxXGgudoc8mz+hRdegI+PD/r164f//ve/6Nq1K5KSktC/f3+EhYVBq9Ve8vHz5893RJhEROSkxIRUckKUSpG03vTkLvjv4fOm21nF1fjpUB5G94tVMSoi8nTisOxYzo9yGnGhfijLKzfd5mBzItswT0ixXU9tDklIPf/885D+17MgSRIMBgNSU1ORmpraosczIUVE5Lnyy2pw9Hy5Yi3ZyedHNTWkSzj6dwjBgXMXy8Q/Tj3FhBQRqSpPqJCKZbue04gJ8cWRJgmp3BK27BFdLr3BiCO5TEg5G4fV5cqybPoQbzf3QUREnmvrSWV1VJCPDld0cJ0Sa0mSMC25i2Lt97Ml2HvmgpVHEBHZX26JWCHFhJSzEAeb55axQorocp0qrEStXrmRA1v21OeQhJTRaLysDyIi8lypQrvesG4R0LnYnJMx/WIRJwyqXZZ2SqVoiIiAHKFCKi6ELXvOQvx7wQopossnDjSPDfFFeIC3StFQI9d6Rk9ERB5FlmWz+VEpLtSu18hLq8EDSZ0Va/9Jz0NWcZU6ARGRxxMHZcdY2N2N1CH+LMQdEYmo9Q5lc6C5M2JCioiInNaJ/Arkl9cq1pITXC8hBQB3DumIAO+Lm3gY5YYd94iIHE2WZbMkRxxb9pxGnDBgngkposvHgebOiQkpIiJyWmK7XlyIL7pEBqgUzeUJ9vXC5MEdFWurd2ehtLpepYiIyFMVV9aZzVKJYcue0xArpEqr61FVp1cpGiLXJ8uyWcseE1LOweEJqeLiYrz55psYPXo04uPjERAQgICAAMTHx2P06NF48803UVxc7OiwiIjICaWdUCakkrtHmnZtdUVTkzpD0yT8yjoD/rXrrHoBEZFHEituNBIQHeSjUjQksjTPi1VSRG137kI1ymqUSd0+7dmy5wwcmpBasmQJOnXqhLlz5+Knn35CdnY2qqurUV1djezsbPz000+YO3cuOnXqhI8++siRoRERkZOp0xux41SRYi25e5RK0dhGfLg/RveNVax9tu006g3cwIOIHEdMbrQL8nW5zSLcmZ+3FqH+Xoo1cVdEImo5sV0v1N/LbPMAUofOURd67bXX8Oyzz0KWZQBASEgIBgwYgJiYGABAXl4e9u3bh9LSUlRWVuIvf/kLSkpKMHfuXEeFSERETuSPrBJU1RkUayO6RagUje1MT+mCDQdzTbdzS2vww8FcjL+yvYpREZEnyRN22ONAc+cTE+yLkqqLLd3irohE1HKHLbTruXLFvTtxyFsh6enp+Mc//gFZlhEbG4svvvgC+fn5+PXXX7Fy5UqsXLkSv/76KwoKCvDll18iLi4Osixj3rx5OHTokCNCJCIiJ5N2vEBxu3dsMCIDXb+lZEDHMAzsFKZY+zj1lOkNGyIie8vhQHOnJw42F3dFJKKWSzcbaM52PWfhkITU4sWLYTAYEBUVhe3bt+Ouu+6Cl5eX2XE6nQ5TpkzB9u3b0a5dOxgMBixevNgRIRIRkZNJFeZHpXR3zd31LJmR0kVxOz27DDszOT+RiBwjt0RZbRPLgeZOJ1aoWstlhRRRm3GgufNySELq119/hSRJePrpp9GxY8dmj4+Pj8eTTz4JWZbxyy+/OCBCIiJyJmU19difVaJYS0pwn4TUDb1j0DHcX7G2NPWUStEQkacRZ0iJyQ9Sn/gzyeEMKaI2KayoxfmyWsUaE1LOwyEJqezsbADAiBEjWvyYpKQkAEBOTo5dYiIiIue1/WQRjE062Lx1GgzpEq5eQDam1Uh4MKmzYu3njHycKqhQJyAi8ijmCSlWSDkb8WfClj2ithEHmvt5adElMlClaEjkkISUVqsFAOj1+maOvMhgaBhkq9Fwxw8iIk+TdlzZrje4cxh8vbQqRWMfkwbFI9hXubfIsrRMlaIhIk9hNMpmyQ0ONXc+ZhVSbNkjahOxXa9nbBC0Gg40dxYOyfY0tum1pv2u8diWtPgREZF72SrMj0pOiFIpEvsJ8NHhrqGdFGtrfj+H4so6lSIiIk9QXFWHOoNRscah5s4nVhhqXl6jR0Vty9/cJ6IGYoUU2/Wci0MSUjfccANkWcbChQtx8ODBZo9PT0/HG2+8AUmScOONNzogQiIichbZJdU4VVipWEt2o/lRTd0/ohN0Td6lq6k34ssdZ1SMiIjcXa4wi0irkdAuiAkpZ2Nprlceq6SIWu0wd9hzag5JSM2aNQs+Pj6oqKhAcnIyFi5ciKKiIrPjioqKsHDhQqSkpKC8vBw+Pj6YNWuWI0IkIiInkXa8QHE7zN/Lbd/Nig3xw9gr4hRry7efQa3eoFJEROTuxN3a2gX5sH3FCfl6aRHmr9yVnIPNiVqnolaPTOFNzr5MSDkVhySkOnXqhCVLlgAAKioq8OSTTyI6Ohrdu3dHUlISkpOT0b17d0RHR+PJJ59EaWkpJEnCkiVL2LJHRORhUoX5USMSIqFx4xdL05K7KG4XVtTiuz+4oQcR2Qd32HMdHGxOdHkycpXVUTqNhMQYDjR3Jg6bGH7fffdh3bp1iI2NhSzLMBqNOHnyJHbs2IHt27fj5MmTMBqNkGUZcXFxWL9+Pe69915HhUdERE7AaJSx7aSygtZd2/Ua9W0fguFdIxRry1IzIcuylUcQEbWdOBxbnFVEzkOc7cXB5kStcyhbOdA8oV0gfHTutUmOq9M1f4jt3HzzzTh9+jS+/fZb/Pzzz0hPT0dxcTEAIDw8HH379sWoUaMwYcIEeHl5NXM2IiJyN4dzy8yGert7QgoApqd0wfZTFxNxR8+XI/V4Ia5OdL9h7kSkLrHKJjaYFVLOStz9UJz/RUSXZj7QnO16zsZhFVKNdDodJk2ahCVLlmDr1q3IyMhARkYGtm7diiVLlmDSpEmqJKPOnDmD2bNno2fPnggICEB4eDgGDx6MN954A1VVVTa7zo8//oiJEyeiQ4cO8PHxQYcOHTBx4kT8+OOPLT6HXq/Hhx9+iJSUFERFRcHPzw/dunXDzJkzcejQoRafp7CwEPPnz0f//v0RHByM4OBg9O/fH/Pnz7c446ulJk+eDEmSTB+nT59u87mIyLOkCbvrdY7wR3y4v0rROM61Pdqha1SAYm1pWqZK0RCROxOTGqyQcl5iy15uGRNSRK3BHfacn0MrpJzV+vXrcc8996Cs7OI/2KqqKuzZswd79uzB0qVLsWHDBiQkJLT5GkajEQ899BCWLVumWM/OzkZ2djbWrl2L6dOnY8mSJdBorOcJCwsLMWbMGOzevVuxfurUKXz00UdYvnw5Fi9ejOnTp18ynp07d2LChAnIy8tTrB88eBAHDx7E0qVLsXbtWgwZMqRVX+f333+P1atXt+oxRESNtgoJqeTu7l8dBQAajYTpyV3xzLcXd6LdcqwAR/PK0SMmSMXIiMjdmLXscYaU0xJ/NrklbNkjaqlavQHHzpcr1piQcj4Or5BqSq/Xo6CgAAUFBdDr9arEsG/fPkyePBllZWUIDAzEyy+/jG3btuGXX37BjBkzAADHjh3DzTffjPLy8mbOZt2zzz5rSkYNGDAAX331FXbt2oWvvvoKAwYMAAAsXboU8+bNs3oOg8GAiRMnmpJRt956K3788Ufs3LkT7777Ltq1a4fa2lrMnDnzkhVXWVlZGDt2LPLy8qDT6TB37lxs2bIFW7Zswdy5c6HT6ZCbm4uxY8fi3LlzLf4aKyoq8MgjjwAA2rVr1+LHEREBQE29AbsyixVrntCu1+jWq9ojPMBbsbYs7ZRK0RCROzIaZZwv41BzV8Gh5kRtd/x8BfRG5TzO3kxIOR2HJ6QOHz6Mxx57DL1794avry9iYmIQExMDX19f9OrVC48++ijS09MdFs/jjz+O6upq6HQ6/PTTT3jmmWcwfPhwXHfddfjoo4/w+uuvA2hISr355pttusaxY8ewcOFCAMCgQYOwdetW3HnnnRg8eDDuvPNOpKWlYdCgQQCAN954AydOnLB4nuXLlyMtLQ0A8PDDD2PNmjX405/+hCFDhuDRRx/F1q1bERwcDKPRiMcee8xqku/ZZ59FQUHDtuorV67EggULkJKSgpSUFCxYsABffvklACA/P/+SCTLRvHnzcPbsWVx//fUYPXp0ix9HRAQAe05fQK3eaLqtkYDh3TwnIeXrpcU9wzop1tbuy0F+OV+AEJFtFFbWot6gfIEWx5Y9pyUONS+v1aO8pl6laIhcy6Ec5UDzThH+CPLlnGpn47CElNFoxOzZs3HFFVfgvffew5EjR0y76jXuunf06FG8//77GDBgAP72t7/BaDQ2f+LLsGvXLqSmpgIApk2bhuHDh5sdM3v2bPTq1QsA8M4776C+vvV/BN5++21TcmjRokXw81P+4ff398eiRYsANFSNvfXWWxbP05jUCg8PxxtvvGF2f0JCAp5++mkAwIkTJ/Dtt9+aHZOXl2dKON10002YNGmS2TF33HEHbrrpJgDAihUrzNr6LNmzZw8WLVoEHx8fvP/++80eT0QkSj1RoLjdv0MoQvw864nDvcM6wVt38U9zncGIL7afUTEiInInYoWNTiMhMtBHpWioOdEWBs7nskqKqEU4P8o1OCwhddddd+Htt9+GwWCALMvo06cPpk6diqeeegpPPfUUpk6dir59+0KWZRgMBrz77ruYMmWKXWNau3at6fOpU6daPEaj0eC+++4DAJSUlGDTpk2tuoYsy/juu+8AAD179sSwYcMsHjds2DD06NEDAPDdd9+Zbfd97NgxZGRkAGhIGPn7Wx7y+8ADD5g+t5SQWrdunSnRZ+1rbnoeo9GIdevWWT0OaEiizZgxA0ajEU899RQSExMveTwRkSVm86M8qF2vUVSQDyZe2V6xtmLHGVTXGVSKiIjcSY4w0Dw62BdajaRSNNQcXy8tIoRWbiakiFqGO+y5BockpP71r3+ZBl1fccUV2LlzJw4ePIhly5bhlVdewSuvvIJly5bhwIED2LlzJwYMGABZlvHNN9/gX//6l93iamx/CwgIwMCBA60eN3LkSNPnW7dubdU1MjMzkZOTY3aeS10nOzvbbGe6xlibO09MTIwpIWQp1paepzVf8//93//hjz/+QPfu3U0VWkRErVFcWWf2xMFTBpqLpqV0Udy+UFWPf+9r+Tw/IiJrcjnQ3OXEhnKwOVFrGYwyMnKVzys5P8o5OSQh9dFHHwEAEhMTkZaWhsGDB1s9dvDgwdiyZQt69OgBWZaxZMkSu8XVWHGUkJAAnc76hoM9e/Y0e0xLHT582OJ5WnudtpwnKysLlZWVFs8TEhKCmJgYq+eIjY1FcHCwxViayszMxD//+U8AwPvvvw8fH9uVfZ87d+6SH7m5uTa7FhGpa+uJQjQtDPX31uKqjmHqBaSixOggjEyMUqwtS82EURjMSUTUWmLLXgwTUk4vJlg56iOHFVJEzTpdVIkqobqcLXvOySEJqf3790OSJDz55JMICAho9viAgAA8+eSTpsfaQ01NDQoLG9pDOnTocMljw8LCTHFnZWW16jpNd6lr7jrx8fGmz8XrtOU8siyb7ZLXeLu5czQ9z6W+5j//+c+oqqrClClTMGrUqGbP2Rrx8fGX/BgyZIhNr0dE6hHb9YZ2CVfMUvI004UqqVOFldh0NF+laIjIXYjJDA40d37iYPO8UlZIETVHrLqPCvJBuyAm4J2RQ57t19XVAQD69+/f4sc0HtuWIeItUV5ebvo8MDCw2eMbE1IVFRV2u07TZJ14HVufxxZf8xdffIGffvoJISEhVgexExE1R5ZlpB5XJqSSPHB+VFPJCZHoGROkWPs49ZRK0RCRuxDbvdiy5/xiQ5RJQ86QImqeuMNeX1ZHOS3rfWo21KlTJ2RkZKC0tLT5g/+nrKzM9Fh7qKm5+Mvc29v7Ekc2aGxFq65u3bsSrblO03Y38Tq2Ps/lfs1FRUX4+9//DgB45ZVXEB0d3ez5Wqu5arTc3FxWSRG5gdNFVcgWXiSldI+ycrRnkCQJ05K7YM43B0xrO04VIz27FH3bcygnEbWNmMxgQsr5iT+jHM6QImrWYQ40dxkOqZC67bbbIMsy1qxZ0+LHfPPNN5AkCRMnTrRLTL6+F3+5N1ZwXUptbS0AwM+vdaXNrblO4zUsXcfW57ncr3n27NkoKCjAkCFD8Oc//7nZc7VFhw4dLvkRGxtrl+sSkWOlHS9Q3I4K8kFidPNVnO5u3JVxiApSzuVbyiopImojg1HG+TIxIcWWPWcnJqRyS2vMduMmootkWbawwx4rpJyVQxJSf//739G1a1csWbLEtNvepXzzzTdYsmQJunTpgieeeMIuMQUFXWyFaEkbXuNw8Ja0urX1Ok0HkIvXsfV5Ludr/vXXX7F8+XJotVp8+OGH0Gg8d84LEV2+NGF+VHJCJCSJ25D76LS4f7iySvj7A7lmu2QREbVEYUUt9MLmCKyQcn5i0rCqzoCyGr1K0RA5v7yyGhRXKosvWCHlvBzSshcSEoKff/4ZkydPxpQpU7By5Uo88MADGDx4MNq1awdJknD+/Hns3r0by5cvx7p16zBo0CCsXr0aISH2+cfj6+uLiIgIFBUVmQ3+Fl24cMGUnGk6eLwlmg4Pb+46TVvUxOuI54mMtD5fpfE8kiSZDS/v0KEDzp8/32wsTc8jxrJgwQIAwKBBg3D06FEcPXrU7LGZmZmmz9evX4+oqIb2mzvvvLPZ6xKR59AbjNh2skixluzh86OauntoJyzedAI19UYAgN4o47Ntp/H06F4qR0ZErkZs1/PSSogMtN3uyGQf0SHmP6O80hqE+HmpEA2R8zuUrayOCvLVIT6c1aDOyiEJKa1Wa/pclmWsX78e69evt3q8LMvYs2cPunbtavUYSZKg11/euwO9e/dGamoqTpw4Ab1eD53O8rfjyJEjps979Wrdi4DevXtbPE9rryOe58orr2z2PPHx8Wa7Gvbu3Rt79+5FaWkp8vLyEBMTY/Ecubm5pjleYiyNrXw7d+7ElClTLvk1AcBjjz1m+pwJKSJq6kB2KcqFd3qTuzMh1SgswBu3D+yAL3acNa2t3HkWj13XHQE+DvkTTkRuQhxoHh3sC42G1ajOzkenRWSgDworLo7kyCmtRg9h4wsiapAuDDTvHRvMynsn5pBeK1mWTR/ibUsfLTnGFr3TycnJABpa0/bu3Wv1uN9++830eVJSUquu0aVLF8TFxZmdx5ItW7YAANq3b4/OnTtbjLW58+Tl5eHYsWNWY23peS7nayYiaqmtwu56idGBiA5mC0lTDyZ1QdPnUeU1eqzec+lNH4iIRBxo7rrM5kiVcKc9ImvM50exXc+ZOeTt1eeee84Rl2m1CRMm4NVXXwUAfPrppxg6dKjZMUajEZ9//jkAIDQ0FNdee22rriFJEsaPH48PPvgAR44cwY4dOzBs2DCz43bs2GGqbBo/frxZFjcxMRG9evVCRkYGVq9ejTfffBP+/v5m5/nss89Mn1saCD9u3Dj85S9/gdFoxKefforJkydbjLvxPBqNBuPGjVPct3nz5kt9yQCABx54AMuXLwfQ0L4nJtiIiAAgVZgflcR2PTNdowJxfc9o/Jxx3rT2ydZM3De8M7SsbiCiFhLnz3GgueuIDfHFweyLVR95nCVIZJX5DnscaO7MPDohNWTIEKSkpCA1NRXLli3D/fffj+HDhyuOefPNN5GRkQEAePzxx+HlpezX3rx5sylJdf/99ysSQo1mzZqFjz76CAaDAY8++ii2bNmi2Lmuuroajz76KABAp9Nh1qxZFuN94oknMG3aNBQXF2Pu3LlYvHix4v6TJ0+aEmwJCQkWE1IxMTG4++67sWLFCmzcuBHffPMNbr/9dsUxX3/9NTZu3AgAuPfee6229RERXY7KWj32nb2gWEthu55FM1K6KBJSWcXV+OlQHkb3426jRNQyOWKFVCgrpFxFXKgyeSj+LImowYXKOmQL7cl92jMh5cw8fnu0d955B35+ftDr9bjxxhvx6quvYseOHdi0aRNmzpyJuXPnAmioUJo9e3abrpGYmIg5c+YAAPbs2YOkpCSsWrUKe/bswapVq5CUlIQ9e/YAAObMmYPu3btbPM/9999vap977733cPvtt2Pjxo3YtWsXFi9ejBEjRqCsrAwajQbvvvuu1ZlYL7/8smnI+JQpU/DUU08hLS0NaWlpeOqpp3DXXXcBAKKiovDSSy+16WsmImrOzswi1Bsutl/rNBKGdolQMSLnNaRLOPq1V5acL03LtHI0EZG5PDEhxfZolxEjtuyxQorIosO5yuoob50G3aICrRxNzsDjJ6IOGDAAq1atwj333IOysjI888wzZsckJiZiw4YNCApq+/DAl19+Gfn5+fjkk0+wb98+i8O9p02bdskEkFarxdq1azFmzBjs3r0ba9aswZo1axTH+Pj4YPHixRg9erTV88THx2P9+vWYMGEC8vLysGDBAtPOeY1iYmKwdu1as136iIhsJe24cne9qzqGcVC3FZIkYXpKFzz+rz9Ma3vPXMDvZy/gqo5h6gVGRC5DHGoeG8qWPVdhNkOKFVJEFh0SBpr3jAmCl9bja3CcmirP/Ovr6/H7778jPT0dxcXFAIDw8HD07dsXV111lVlbnL2NHTsWBw4cwDvvvIMNGzbg3Llz8Pb2RkJCAiZNmoS//vWvFuc1tYZGo8GyZctw22234aOPPsLu3btRWFiIyMhIDB48GDNnzrxkEqlRZGQktm3bho8//hgrV65ERkYGKisrERcXh+uvvx6PP/44+vTp0+x5hg4dioMHD+Kdd97B2rVrcfr0aQANQ9jHjx+PWbNmISKClQpEZD9pJwoUt7m73qWN6ReL1348onghsiw1E1fdzYQUEV2awSjjfHmtYo1DzV2HOO8rt6QGsixz5zAigflAc7brOTtJtsV2dS1UVVWFF198ER9//DEuXLhg8ZiwsDA89NBDmDdv3mUngci9nTt3DvHx8QCArKwsVnMRuZDzZTUY+sovirV/PzyC1T7N+GjLSbzywxHTbY0E/DbnWsSH8+8lEVmXV1qDYa8qf+fufnYUooJ8VIqIWiOruAopr29SrO2ffyNC/B37Jj6Rsxv1f7/hRH6F6faLE/ri3mGdVIzIvdjj9bfD6tfOnj2LK6+8Eq+//jqKi4shy7LFj+LiYixYsAADBgzAuXPnHBUeERE50FZhd70gXx36t+e2vM2ZPLgjAry1pttGGfh062n1AiIil5AjzBzy1moQEeCtUjTUWtHBvhCLocSfKZGnq64z4FRBhWKtLyuknJ5DElL19fUYPXo0Tpw4AVmW0bNnTyxYsACbN2/GkSNHcOTIEWzevBmvv/46evfuDVmWcfz4cYwePRp6vd4RIRIRkQOlHVcmpIZ3jYCOPf7NCvHzwuTBHRVrq3afRWl1vUoREZErEAeaR4f4QKNhu5er8NZpEBmorGbjYHMipYy8Mhib9H5pJKBnDBNSzs4hz/6XLl2KjIwMSJKEZ599FgcPHsScOXNw9dVXIzExEYmJibj66qvxxBNP4MCBA5g3bx4A4PDhw1i6dKkjQiQiIgeRZRlpQoVUCudHtdjUpM5o+jqyss6AVbvPqhcQETm9HHGgeQgHmruaOA42J7okcX5Ut6hA+DWpKifn5JCE1Ndffw1JkjBhwgS8+OKL0Gqt/8PQaDR44YUXMHHiRMiyjK+//toRIRIRkYMcz69AvjBcN7l7lErRuJ74cH+M7hurWPt062nUG4wqRUREzk5MXojJDXJ+lgabE9FFh4Ud9jjQ3DU4JCGVnp4OAHjwwQdb/Jhp06YBAA4ePGiXmIiISB2pQrte+1A/dI7gUO7WmJbSRXE7t7QGPxzMVSkaInJ2YsteDCukXE6MkETkDCkiJfMd9jib1BU4JCFVWtqQrYyLi2vxY2JjG979LSsra+ZIIiJyJWnHCxS3kxMiuXV1K13VMQwDOyl3JFyamgkHbpxLRC5ETF7EhbJCytWIPzMxyUjkyeoNRhzJLVessULKNTgkIRUeHg4AyMzMbPFjGo9tfCwREbm+Or0ROzOLFWvJnB/VJtOTlVVSB7NLzb63RESAeXtXTDATUq5GrGrjDCmii07kV6BOGF3Qmwkpl+CQhNRVV10FWZbx3nvvtfgx77//PiRJwoABA+wYGREROdK+sxdQVWdQrCUlMCHVFjf2iUHHcGWr49LUlr/xQ0SeQW8wIr9cmCEVypY9V2M+1LyaVbFE/yO267UP9UOov7dK0VBrOCQhNWXKFADA5s2b8eCDD6KystLqsVVVVZg+fTp+/fVXAMBdd93liBCJiMgBxN31+sQFIzyATxjaQquR8GBSZ8XaL0fO41RBhToBEZFTyi+vVWyFDgCxHGrucmKFJGJNvRElVfUqRUPkXA5xoLnL0jniInfffTc+/PBDbNu2DcuXL8cPP/yAO+64A0OHDkW7du0gSRLOnz+PnTt3YvXq1SgoaJgvkpSUhLvvvtsRIRIRkQOIA83Zrnd5Jg2Kx//99xjKavQAAFkGPtmaiZcm9FM5MiJyFmJrl7dOwzcCXFC7IB9IUsPv+UY5pdUI48+SiAPNXZhDElKSJGH9+vW4+eabsWPHDuTn5+O9996z2MLXWHo6fPhwfPfdd44Ij4iIHKC0uh4HzpUo1lISotQJxk0E+Ohw19BO+PC3k6a1b/aew+wbevBFChEBaGjtaio2xJcbSbggL60G7YJ8cL6s1rSWV1rDF97k8YxGGRlmCSlWSLkKh7TsAUBYWBjS0tKwaNEi9OrVC7IsW/zo1asXFi9ejNTUVISFhTV/YiIicgnbTxYp2ka8dRoM6szf85fr/hGdoNNcfHFZU2/ElzvPqBgRETkTcaA52/VcV6ww2DyHg82JkHWhCuW1esVan/ZMSLkKh1RINdJoNHjkkUfwyCOPIDc3F+np6SgubtgRKDw8HH379kVsbKwjQyIiIgdJO1GguD2kczh8vbQqReM+YkP8MPaKOHy7L9u0tnz7Gcy4uit8dPz+Enk6sWVPTGqQ64gN8cUfWRdv55ZUWz+YyEOI7XrhAd7cSdSFOCQh9eCDDwIARo8ejUmTJgEAYmNjmXwiIvIgaZwfZTfTkrsoElIF5bVY90cOJg2KVzEqInIGllr2yDWJycQ8VkgRWRxozrZk1+GQlr3ly5dj+fLlCA5m6RwRkSfKKq7C6aIqxVpyAhNSttK3fQiGd41QrC1Ly+SW4ERk1tYl7tZGriMuVJlMzCllhRQRB5q7NockpKKiGobWRkdHO+JyRETkZLaeUFZHhQd4o3cs36SwpekpXRS3j+SVI034vhOR58kTK6TYyuKyYoTqNlZIEVlKSPH5pStxSEKqd+/eAIAzZzhklYjIE6UKiZER3SKg0bCc2pau7dEOXaMCFGsfp2aqFA0ROYN6gxH55bWKtdhQJqRcldiyl1taw0pY8mj5ZTUoEH7HMSHlWhySkLrnnnsgyzKWL1/uiMsREZETMRplbBMSUimcH2VzGo2EacnKKqktxwpwNK9cpYiISG3ny2og5is41Nx1ifO/avVGFFfWqRQNkfrE6qgAby06RwRYOZqckUMSUlOnTsX111+P7777Ds8//zwz+UREHuRwbhkuVNUr1pI4P8oubruqA8L8vRRry9JOqRQNEalNbOny0WnMfkeQ62gX5AOxuFjcRZHIk4gDzXvFBrMC38U4ZJe91NRUPPHEEygoKMCLL76IVatWYfLkyejfvz/CwsKg1V56W+qrr77aEWESEZEdpAq763WJDECHMH+VonFvvl5a3DusE9799YRpbe2+HMy5qSeignxUjIyI1CAONI8L9ePuUy5Mp9UgOthXkYTKLa1B3/Yc4kyeifOjXJ9DElLXXHON4o/fsWPH8OKLL7bosZIkQa/X2ys0IiKys7QTBYrb3F3Pvu4d3hkf/nYKdQYjAKDOYMSK7afx9xt7qBwZETmaONA8hgPNXV5MiJiQ4k575Lm4w57rc0jLHgDIstzmDyIick019QbsPn1BscZ2PfuKCvLBhAFxirUVO86gpt6gUkREpJacEmWFFAeau744C4PNiTxRWU09zhZXKdZ6s0LK5TikQmrTpk2OuAwRETmZ3aeLUac3mm5rJGB4twgVI/IM01O6YvWec6bbF6rqseb3c7h7aCcVoyIiRxOrZ8RkBrkecbB5bgkrpMgzHRaqo7y0EhKjg1SKhtrKIQmpkSNHOuIyRETkZNKE+VFXxIcixI8Dde0tMToIVydGYcuxi+2Sy9IyMWVwRw77JPIg4lDzmBBWSLk68Wcozgkj8hRiu173dkHw1jmsAYxshD8xIiKym7QTyoRUCtv1HGZGShfF7VMFldh0NF+laIhIDeZDzZmQcnVxocoqNzHpSOQpxB32ONDcNdm1QmrDhg34z3/+gzNnzsBgMCAuLg7XXHMN7rjjDnh58R1yIiJ3VlRRa/buFedHOU5yQiR6xgThSF65aW1paiau7xWtYlRE5Ch1eiMKK2oVazHBbNlzdWKFVF5pDYxGmdWv5HHElj3uNuma7JKQOn/+PCZMmIBdu3aZ3ffJJ59g/vz5WLt2Lfr162ePyxMRkRPYerJIcdvfW4sBHcNUisbzSJKEacldMOebA6a17aeKkJ5dyidtRB7gfFkNxL2BWCHl+sQ5YHUGI4qr6hAZ6KNSRESOV1NvwPH8CsUaK6Rck81b9gwGA8aNG4edO3da3TUvMzMTN910EwoLC5s/IRERuaS04wWK28O6RrC338HGXRmHqCDli5RlaZkqRUNEjiTuvubnpeUMPzcQFeQDrVANlVvCtj3yLMfOl8NgvJhxlySgVywTUq7I5q8MVq9ejd27d0OSJCQkJGDZsmU4ePAgjhw5gq+//hrDhg0D0FBF9eabb9r68kRE5ARkWTYbaM52Pcfz0Wlx/3Dlznrr9+eY7bxFRO5H/P88NsQXksS2Llen1UiIFt5oyOHvdPIw4kiILhEBCPBxyH5tZGN2SUgBQOfOnbFr1y5MnToVffr0QWJiIm677TakpqZi5MiRkGUZX3/9ta0vT0RETiCzsNJsmG5Kdyak1HD30E7w9br4515vlLF82xkVIyIiRxArpGLZruc2YjnYnDycONC8N9v1XJbNE1L79u2DJEmYPXs2QkNDze7XarX45z//CQDIzMxEeXm52TFEROTaxN31ooN90L1doErReLawAG/cPrCDYm3lzjOorNWrFBEROUJuiVghxYHm7iJWGGzOCinyNOnZygqpPnGcjemqbJ6QKihomBkyaNAgq8c0vY9zpIiI3I+ldj22iqjnwaQuaPrtL6vR4+s9WeoFRER2Z1YhFcIKKXch/iw5Q4o8icEo40iemJBihZSrsnlCqrq6IUMfGGj9nXB/f3/T5zU1/AVKRORO9AYjtgs77CVzfpSqukYF4vqe0Yq1T7aeVgwEJSL3Yp6QYoWUuxB/lmzZI09yqqACNfVGxRoTUq5L9e2OZHE/WiIicmn7z5WiXGgHY0JKfdNTuihuny2uwn8P56kUDRHZm6Wh5uQe2LJHnkwcaB4T7IuIQB8rR5OzUz0hRURE7mWrMD+qR3QQ2gXzhZDahnYJR7/2yhkLH6dmqhQNEdlTrd6Awoo6xRqHmrsPcaj5+bIaGFnxSh5CHGjO6ijXZre9Ed9//320a9fOJsfNnz/fVmEREZGdWZofReqTJAnTU7rg8X/9YVrbe+YCfj97AVd1DFMvMCKyufOltWZrbNlzH3FChVS9QUZhZS3aBTHpSO5PrJBiQsq12S0h9cEHH1zy/sbhts0dBzAhRUTkKipq9fj97AXFWkp3JqScxZh+sXjtxyOK2TLLUjNx1d1MSBG5E7Fdz99bi2Bfuz3tJweLCPSBTiNB36QqKrekhgkpcnuyLJslpHpzhz2XZpeWPVmWbfZBRESuY+epIsUTZC+thKFdw1WMiJry0mowNamzYu3H9FxkFVepExAR2YWlHfa406n70GokRAut8OLPnMgdZZdUo7S6XrHGCinXZvO3SjZt2mTrUxIRkYtIE+ZHXdUxDP7efFfemUwe3BHv/HwclXUGAIBRBj7dehrzx/ZWOTIishVxyHVcKNv13E1cqC+ySy7+nMWqOCJ3JFZHhfh5oUMYf7+5Mpu/Shg5cqStT0lERC5CnB/F3fWcT4ifFyYP7ohPtl4caL5q91nMuqE7gn29VIyMiGwlT6iWieHGEm4nJsQPwMUWeVZIkSewND+K1Z+ujbvsERGRTeSV1uB4foViLZnzo5zS1KTO0DR5/lZZZ8C/dp1VLyAisqmcEqFljxVSbkccbM6EFHmCw9xhz+0wIUVERDaxVWjXC/LVoX+HUHWCoUuKD/fH6L6xirVPt55GvcGoUkREZEti+5aYvCDXFysmpErYskfuz7xCigPNXR0TUkREZBPi/KgR3SKg1bCM2llNS+miuJ1bWoMfDuaqFA0R2ZJZyx4TUm6noWXvIlZIkbsrqqg1+3fOCinXx4QUERFdNlmWzRJSyd2jVIqGWuKqjmEY2ClMsbY0NZM73BK5uJp6A4oq6xRrHGrufuJClUnG82U1MBj5+5vcl1gd5eulQdeoQJWiIVthQoqIiC7b0fPlKCivVaylcKC505uerKySOphdil2ZxSpFQ0S2IFZHAayQckfiz1RvlFFYUWvlaCLXJyakesYEsxLfDTAhRUREl03cXa9DmB86RfirFA211I19YhAfrqyc+Dg108rRROQKxJaWQB8dd9B0Q5EBPvDSKl+Ms22P3NkhDjR3S0xIERHRZTNr10uI5Da8LkCrkfBgkrJK6pcj53GqoMLKI4jI2YkDzcXh1+QeNBrJrEqKg83JnR3mQHO3xIQUERFdllq9ATtPKdu8kruzXc9V3DEoHkG+OtNtWQY+2coqKSJXJVbJsF3PfcUGKytcc1ghRW6qslaPzKJKxRorpNwDE1JERHRZ9p0tQXW9wXRbkoAR3ZiQchUBPjrcNbSjYu2bvedwQRiKTESuQayQigvhQHN3FSsMNs8rZYUUuaeM3DI03XNFq5HQIyZIvYDIZpiQIiKiyyLOj+oTF4zwAG+VoqG2eGBEZ+iaDAatqTfiy51nVIyIiNoqt0RZJSMmLch9xIawQoo8gzjQPCEqEL5eWpWiIVtiQoqIiC5Lqtn8qCiVIqG2ig3xwy39YxVry7efQa3eYOURROSsxJY9zpByX+LP1tIOi0TugAPN3RcTUkRE1GalVfU4eK5EsZbC+VEuaXpKV8XtgvJarPsjR6VoiKitzIeas2XPXYkJKQ41J3clVkj1ac+B5u6CCSkiImqz7acKYWzS0++j02BgpzD1AqI269s+BMO6hivWlqVlQm46tIGInFp1nQEXquoVa6yQcl9isvF8eS0MRv7OJvdSpzfi2PlyxRorpNwHE1JERNRmqcL8qCFdwtnT78JmCFVSR/LKkSa0ZBKR88orM2/Zig1lhZS7EueDGYwyCsprVYqGyD6O55ej3qBMtPZmQsptMCFFRERtJiYrkhPYrufKru3RDl2jAhRrS1MzVYqGiFpLbNkK8tUh0EenUjRkbxEB3vDWKl/O5XCnPXIzYrtex3B/BPt6qRQN2RoTUkRE1CZZxVU4U1SlWEvm/CiXptFImJbcRbH227ECs1J5InJOHGjuWSRJQozZHCkONif3clicH8XqKLfChBQREbWJWB0VEeCNXjF8kuDqbh3QAWH+yncel7FKisglcKC55zEbbM4KKXIz6dncYc+dMSFFRERtkibMjxqREAmNRlIpGrIVP28t7h3WSbH27b5s5JfzXXciZ5cjVEjFhbJCyt3FCTPCxCo5IldmNMrIyBUrpLjDnjthQoqIiFrNYJSx9aQyIZXC+VFu457hnRRzSeoMRrz4fYaKERFRS+QJyYiYYFZIuTuzlj1WSJEbOV1Uico6g2KNFVLuhQkpIiJqtcM5ZSgRthZP4vwot9EuyBcTB7RXrK3fn4MfDuaqFBERtUSOMNRc3IWN3E+cWUKKFVLkPsSB5pGBPmgXzN9r7oQJKSIiarXUEwWK210jA9CeW4u7ldk3JSJUmCU1b206Ciu4pTiRs+JQc88TI8wJ41BzcidiQorVUe6HCSkiImo1cX4Ud9dzP+2CfPHPcX0Ua8WVdZj/XbpKERHRpVTV6VFaraxc5VBz9ycmHfPLa6A3GFWKhsi2DuVwoLm7Y0KKiIhapbrOgD2nLyjWkjk/yi2NuyION/WJVqz9cDAP3x/IUSkiIrLGUqsWK6TcnzjU3CgD+eWsZCXXJ8syDptVSHGgubthQoqIiFpl9+li1DV591WrkTCsW4SKEZG9SJKElyb0Q5jQuvePteko4AseIqcitmoF++oQ4KNTKRpylDB/L/jolC/pONic3MH5sloUVdYp1lgh5X6YkCIiolZJO6Fs17uiQwiCfb2sHE2uLirIBy9O6KtYu1BVj3lrD0KWZZWiIiKRmIQQK2fIPUmSZFYJx8Hm5A7Edr0gHx06hvurFA3ZCxNSRETUKubzo6JUioQc5Zb+cRjTL0axtvHQeazbz9Y9ImfBgeaeS5wVxsHm5A7Egea94oKh0UgqRUP2woQUERG1WGFFLQ7nKp8gpHCguUd4cXxfRAR4K9bmf3cI+WV84UPkDMSElLj7GrkvMfmYw5Y9cgMcaO4ZmJAiIqIW2yq06wV4a3FlfKg6wZBDRQT64CWhda+0uh7PfMvWPSJnYNayxwopjxEbqvxZ57Flj9yAWCHFgebuiQkpIiJqMbFdb1jXCHhp+afEU4zuF4uxV8Qp1n7OyMe3+7JVioiIGoltWrGcIeUxxJa9HCakyMWVVNXh3AVlkp0VUu6JryKIiKhFZFk2q5BKZruex3lhXB9EBvoo1p5fd4jvyBOpTKyQ4gwpzyH+rPPYskcu7rBQHeWt0yChXaBK0ZA9MSH1P2fOnMHs2bPRs2dPBAQEIDw8HIMHD8Ybb7yBqqoqm13nxx9/xMSJE9GhQwf4+PigQ4cOmDhxIn788ccWn0Ov1+PDDz9ESkoKoqKi4Ofnh27dumHmzJk4dOhQi89TWFiI+fPno3///ggODkZwcDD69++P+fPno6io6JKPNRqN2LJlC5555hlcc801iImJgbe3N4KDg9G3b188/PDDOHDgQItjISLnd6qw0uxd1+QEJqQ8TViAN16eqGzdK6vR4+l/H2DrHpFKKmv1KKvRK9aYkPIcYoVUfnkt6g1GlaIhunxiu16P6CBW5LspSeazR6xfvx733HMPysrKLN6fmJiIDRs2ICEhoc3XMBqNeOihh7Bs2TKrx0yfPh1LliyBRmP9f7bCwkKMGTMGu3fvtni/j48PFi9ejOnTp18ynp07d2LChAnIy8uzeH9sbCzWrl2LIUOGWLy/Y8eOyMrKuuQ1NBoNnnjiCbz22muQJNvviHDu3DnEx8cDALKystChQwebX4OILlq+7TSeW3cx6R0d7IMdT19vl/+/yfnN+tc+rP1DucveG7f3x6RB8SpFROS5TuSXY9T/bVGsZbzwJ/h5a1WKiBzpQmUdBrz4X8Va2pPXokOYv0oREV0e8TnGnYPj8dpt/VWMiAD7vP72+DTjvn37MHnyZJSVlSEwMBAvv/wytm3bhl9++QUzZswAABw7dgw333wzysvL23ydZ5991pSMGjBgAL766ivs2rULX331FQYMGAAAWLp0KebNm2f1HAaDARMnTjQlo2699Vb8+OOP2LlzJ9599120a9cOtbW1mDlz5iUrrrKysjB27Fjk5eVBp9Nh7ty52LJlC7Zs2YK5c+dCp9MhNzcXY8eOxblz5yyeIyen4RdEQkICnnzySaxbtw579uxBamoqXnjhBYSFhcFoNOL111/Hs88+26bvGRE5lzSxXS8hiskoD/b8uD6IClK27r2w/rBZ2xAR2Z+4w16ovxeTUR4k1N8Lvl7Kl3VsoyZXZj7QnPOj3JXHV0hdffXVSE1NhU6nw5YtWzB8+HDF/W+88Qbmzp0LAHjuuefw/PPPt/oax44dQ58+faDX6zFo0CBs2bIFfn4XS2urqqowcuRI7NmzBzqdDhkZGRarsT755BNMmzYNAPDwww/jvffeU9x/4sQJDBw4EGVlZUhISEBGRgZ0Op3Zee677z6sWLECALB69WpMmjRJcf/q1asxefJkAMD999+Pzz77zOwcI0aMwHPPPYcbb7zR4gvSkydPYvjw4SgoKIBOp8PRo0fRtWvXZr5TrcMKKSLH0RuMGPDCf1Fee7El5K3JV2DiAP5/58l+Pnwe0z/fo1i7OjEKy6cOZrKSyIFW787C3DUXRyX0ig3Gj4+nqBgROdp1CzfjVGGl6fa7UwZgnLAJBZErqK4zoM9z/4GxSZZizV9GYGCnMPWCIgCskLK5Xbt2ITU1FQAwbdo0s2QUAMyePRu9evUCALzzzjuor69v9XXefvtt6PUNL+IWLVqkSEYBgL+/PxYtWgSgYT7UW2+9ZfE8CxcuBACEh4fjjTfeMLs/ISEBTz/9NICG5NS3335rdkxeXh6+/PJLAMBNN91klowCgDvuuAM33XQTAGDFihUW2/q2bduGm266yeoLjm7dumH+/Pmmr2nt2rUWjyMi17D/XIkiQpS8gQAAYVdJREFUGQUASZwf5fFG9Y7GrVe1V6xtOVaAVbsv3dJNRLYlVkhxfpTniRF+5rklrFYl13Qkr0yRjJIkoFdskHoBkV15dEKqaZJk6tSpFo/RaDS47777AAAlJSXYtGlTq64hyzK+++47AEDPnj0xbNgwi8cNGzYMPXr0AAB89913ZoNhjx07hoyMDAANCSN/f8s94Q888IDpc0sJqXXr1sFobBhyaO1rbnoeo9GIdevWWT3uUq699lrT5ydPnmzTOYjIOaQeV7br9YwJQrsgvuAh4Llb+iA6WNm699KGDGTzxRCRw3CHPRIHm4tJSiJXIbbrdY0MgL+3edcPuQePTkilpaUBAAICAjBw4ECrx40cOdL0+datW1t1jczMTNO8pabnudR1srOzcfr0aYuxNneemJgYJCYmWo21pee5nK+5UW1trelzrZZzDIhc2Vaz+VGsjqIGIf5eeO1W5aDRilo9nvyGu+4ROYq4A2pcqJ+VI8ldxYUKFVKc50cuynx+VIhKkZAjeHRCqrHiKCEhweKspUY9e/Y0e0xLHT582OJ5WnudtpwnKysLlZWVivsazxMSEoKYmBir54iNjUVwcLDFWFrqt99+M33e2PbYGufOnbvkR25ubpviIqLWqajVY9/ZEsVaUncmpOiia3u2wx2DlHME0k4UYuWusypFRORZ8oTkQ0wwK6Q8jdiyx6Hm5KoO55Qqbvdtz4Hm7sxja99qampQWNjwjn9zw7jCwsIQEBCAyspKZGW1bi5G013qmrtO44AwAGbXact5ZFnGuXPnTK2ATc/TkgFk8fHxOHToUKu/ZqBhUPvbb78NAPDx8cH48eNbfY6m3w8iUs+Ok0XQN2nm99ZqMLRLuIoRkTOad0tvpB4vVLSJvLwhA1d3j0J8OLceJ7Kn3BJhhlQoE1KeJk5o2ROr5ohcgd5gxJE85c72rJBybx5bIVVefvEfemBgYLPHBwQEAAAqKirsdp3Ga1i6jq3PY8+vGQCefPJJnD3b8M74I488grg47vJB5KrShHa9qzqFspefzAT7euG125Ste1V1Bsz95gCMRrbuEdlLeU292aYT4jwhcn9ihVRhRS3q9EaVoiFqm5MFlagV/t32iWOFlDvz2FcUNTUX3zXw9vZu9ngfn4aBrdXVrevHbs11Gq9h6Tq2Po89v+Yvv/wSixcvBtDQqvfSSy+16vGNmqvMys3NxZAhQ9p0biJqOTEhxflRZM3IxChMGRKPr3Zd/P29/VQRvtx5BvcO76xeYERuzFJrFoeaex6xQkqWgfNlNaxQJZdySGjXax/qh1D/5l+3kuvy2ISUr+/FP9R1dXXNHt84oNvPr3XvOLXmOk2HgIvXEc/T9HZrz1NVVWW3r3nz5s2YNm0aACA8PBxr1qxp9fesUUvaConIvnJLq3EiX1klmdw9SqVoyBU8M6YXthwrVOyy98oPRzAysR06RvCFEZGtia1Z4QHe8PXiZjKeJthPB39vLarqDKa13FImpMi1pGcrB5r3ZnWU2/PYlr2goCDT5y1pSWscDt6SVre2XqfpAHLxOrY+jz2+5j179mDcuHGora1FYGAgfvjhhzYNMyci55F2XFkdFeLnhX7t2ctP1gX5emGB0LpXXW/AE9/sZ+sekR1woDkBgCRJZm173GmPXI1YIcV2PffnsQkpX19fREREAFAODLfkwoULpuRMawdtN63yae46TVvUxOu05TySJJlVGTXebu4cTc/Tkq/50KFD+NOf/oTy8nL4+Phg7dq1GDp0aLOPIyLntlVo1xvRLQJajaRSNOQqkrtH4u6hHRVruzKLsXz7aXUCInJjOcJA8zgONPdYYtteLgebkwuRZRmHc5UVUhxo7v48NiEFAL179wYAnDhxAnq93upxR44cMX3e2oqfxmuI52ntddpynvj4eMWA86bnKS0tRV5entVz5ObmoqyszGIsopMnT+KGG25AUVERdDodVq1aheuvv/6SjyEi5yfLMtJOFCnWkjg/ilro6TG90CFM+eJowX+O4HRhpZVHEFFbiFUwHGjuucTZYbklrJAi15FVXI3yGuVrclZIuT+PTkglJycDaGhN27t3r9XjfvvtN9PnSUlJrbpGly5dTDvMNT2PJVu2bAEAtG/fHp07d7YYa3PnycvLw7Fjx6zG2tLztPRrPnfuHEaNGoXc3FxoNBosX74c48ePt3o8EbmOI3nlKKyoVayldGdCilom0EeH129Xtu7V1BvxxNf7YWDrHpHNiFUwYtsWeQ6zhBQrpMiFiO16Yf5e3KDBA3h0QmrChAmmzz/99FOLxxiNRnz++ecAgNDQUFx77bWtuoYkSaYEzZEjR7Bjxw6Lx+3YscNU2TR+/HhIkrIlJjEx0VSptHr1alRVVVk8z2effWb6fOLEiWb3jxs3DhpNw4/d2tfc9DwajQbjxo2zeEx+fj5GjRqF06dPAwA+/PBD3HXXXVbPSUSuRWzXiw/3Q6eIACtHE5kb0S0S9w/vpFjbc+YCPt2aqVJERO5HTDqwZc9zxYayZY9c16Ec83Y98TUxuR+PTkgNGTIEKSkpAIBly5Zh+/btZse8+eabyMjIAAA8/vjj8PLyUty/efNmSJIESZLwwAMPWLzOrFmzoNU27Hby6KOPorpaWT5bXV2NRx99FACg0+kwa9Ysi+d54oknAADFxcWYO3eu2f0nT57Eq6++CgBISEiwmJCKiYnB3XffDQDYuHEjvvnmG7Njvv76a2zcuBEAcO+99yImJsbsmJKSEtx00004evQoAOCtt97CjBkzLMZNRK4pVRhonsx2PWqDJ0f3REdhl6c3Nh7FyYLmN9cgokuTZdmsLSsmmC17nopDzcmVcaC5Z/LohBQAvPPOO/Dz84Ner8eNN96IV199FTt27MCmTZswc+ZMU+InMTERs2fPbtM1EhMTMWfOHAANO9ElJSVh1apV2LNnD1atWoWkpCTs2bMHADBnzhx0797d4nnuv/9+U/vce++9h9tvvx0bN27Erl27sHjxYowYMQJlZWXQaDR49913odPpLJ7n5ZdfRlRUw7btU6ZMwVNPPYW0tDSkpaXhqaeeMlU5RUVF4aWXXjJ7fG1tLW6++Wb88ccfAIC7774bo0aNQnp6utWPzEy+G07kSmr1BuzMVM6PSk6IUikacmX+3jq8IbTu1eqNmMPWPaLLVl6rR2WdQbHGCinPJQ41L6yoQ63eYOVoIuciVkj1ZkLKI1jOWHiQAQMGYNWqVbjnnntQVlaGZ555xuyYxMREbNiwAUFBQW2+zssvv4z8/Hx88skn2LdvH+68806zY6ZNm2YxAdRIq9Vi7dq1GDNmDHbv3o01a9ZgzZo1imN8fHywePFijB492up54uPjsX79ekyYMAF5eXlYsGABFixYoDgmJiYGa9euNdulD2gYeL5t2zbT7S+//BJffvml1esBwMiRI7F58+ZLHkNEzmPvmQuoqTeabktSww57RG0xtGsEpiZ1xqdbT5vWfj9bgmVpp/DQ1d3UC4zIxeWWmLdkRQczIeWpYi0kI8+X1qJjhL+Fo4mcR0F5LfLLlXNLucOeZ/D4CikAGDt2LA4cOIC//e1vSExMhL+/P0JDQzFo0CAsWLAA+/btQ0JCwmVdQ6PRYNmyZdiwYQPGjx+PuLg4eHt7Iy4uDuPHj8cPP/yApUuXmuY7WRMZGYlt27bh/fffR3JyMiIiIuDr64uuXbtixowZ2Lt3L6ZPn95sPEOHDsXBgwcxb9489O3bF4GBgQgMDES/fv0wb948pKenY+jQoZf1NROR6xLnR/VrH4KwAG+VoiF3MPemnugsvCha+NMxnMgvVykiIteXI7RkRQR4w9dLq1I0pLYgHx0CvJU/f/HfCJEzEtv1/L216BLJuaWeQJJlmfXy5JLOnTuH+Ph4AEBWVpbFai4iapvxi9Ow/9zFJwd/uaYbnvxTTxUjInew53QxJi3ZjqbPPK6ID8WaPw+HTsv3yIha66tdZ/H0vw+abvdtH4zvH01RMSJS26j/+w0n8i/O6Ht78pWYMKC9ihERNe+9TSfwxsajptsDO4VhzV9GqBgRWWKP19989kdERAolVXU4kK18pyqFA83JBgZ1Dse0pC6Ktf1ZJfgo9ZRKERG5NnGgeWwIB5p7ulhhsDkrpMgVHDbbYY/zozwFE1JERKSw/WSRooLF10uDqzqFqRcQuZUnbuqBrkIZ/tv/PY5j59m6R9RauaXKGVJiMoI8j/hvwNKcMSJnwx32PBcTUkREpJAqzI8a3DmcM0nIZny9tFh4xxXQSBfX6gxGzF69H/UGo/UHEpEZ84QUK6Q8nfhvQPw3QuRsymrqcbqoSrHGgeaegwkpIiJSSDuuTEildGe7HtnWVR3DMOPqroq1g9mlWPLbSZUiInJNYjtWnIVd1siziP8GctmyR04uQ2jX02kkdI8OVCkacjQmpIiIyORsURXOFivfpUpOiFIpGnJnfxuViIR2yiec7/xyHBm5ZVYeQURNybKMPKH6JSaYCSlPFyNUSIn/RoiczSEhIdU9Ogg+OlbmewompIiIyCRNaNeLDPRGz5gglaIhd+brpcXCScrWvXqDjCe+ZuseUUuUVetRVWdQrMWFsmXP08UJM6SKKutQU2+wcjSR+sSEFOdHeRYmpIiIyCTtRIHi9ohukdA0zRgQ2dCV8aH488huirVDOWV4fxNb94iaY2n3tHbBPipEQs4kxsJge1ZJkTPjQHPPxoQUEREBAAxGGVtPFCnWkjk/iuzs8VHdkSjMilj063GzJ6hEpCQmGSIDfdjmQgjy9UKQj06xxsHm5Kxq9QacyK9QrHGguWdhQoqIiAA0vENVWl2vWEtOYEKK7MtHp8Wbk66Etkklnt4oY/bq/ajTs3WPyBoONCdrYjnYnFzEsbwK6I2yYq1XLEdFeBImpIiICACQKuyu1zUqgPNIyCH6dQjBw9coW/eO5JVj8a/HVYqIyPlxoDlZIw42Z4UUOSuxGrpzhD+CfL1UiobUwIQUEREBANKEhFQKq6PIgR69rrvZAP33Np9EejZb94gsySlRJhn4BgI1Egebs0KKnJXZQPP2bNfzNExIERERqusM2HvmgmItuXuUStGQJ/LWabBw0hXQNWndM/yvda9Wzx2iiERikiHWwjBr8kyxYoVUCSukyDlxoDkxIUVERNh1uhh1hovzerQaCcO6hqsYEXmivu1D8NfrEhRrR8+X491f2LpHJDJr2WNCiv5HTE6yZY+ckcEoIyO3XLHGgeaehwkpIiJC2vECxe0r40PZw0+qeOTaBPSOVb5D+sHmk9ifVaJOQEROSJZlC0PN2bJHDTjUnFxBZmElquuVFdCskPI8TEgREZHZQHPurkdq8dJq8OYdV8BLe7F1zygDT3y9HzX1bN0jAoCSqnrU1Ct3oeRQc2okVkhdqKpHdR1/f5JzEdv1ooN9EBnoo1I0pBYmpIiIPFxBeS2O5ClLplO6MyFF6ukVG4zHruuuWDueX4G3f2brHhFg3oIlSWzZo4vEGVIAkFfGtj1yLmYDzdmu55GYkCIi8nDbTiqrowJ9dLgiPlSdYIj+58/XdEM/Ybedj7acxO9nL1h5BJHnEFuwogJ94KXl03pqEOCjQ7CvTrGWW8K2PXIuHGhOABNSREQeT2zXG9Y1nC9sSHVe2oZd97yb/Ftk6x5RA7FCijvskUisksrhYHNyIrIsW6iQYkLKE/EVBxGRB5NlGVtPcH4UOaceMUF4fJSyde9UQSXe/OmoShEROQexQspSixZ5NnGweR4Hm5MTySmtQUlVvWKNLXueiQkpIiIPdrKg0uyd9uTuUSpFQ2Ru5tVdcUUH5ZPUpWmZ2HumWKWIiNSXWyJUSIWyQoqUWCFFzuxQtrJdL9hXhw5hTKx7Il3zhxCRLRRX1uFEfoXaYbicxOhAhPp7qx2G20o7XqC4HRPsi25RASpFQ2RO97/WvZsXpaFO37CrmCwDT3x9AD88lgI/b63KEVJrybKM00VViAv1hY+OP7+2YMseNUf8N5HHhFSb1dQbkFdag86RfH5kK2K7Xu+4YEiSZOVocmdMSBE5yO7TxZi5Yq/aYbgcnUbC3UM74ukxveDrxRcutpYmtut1j+QTAnI63aODMPuGRLz64xHTWmZhJd7YeBTzx/ZWMTJqrWPnyzHrX3/gcG4Zgnx0eHpML0wZEs/fO63Elj1qjpiQyuFQ81aTZRmfbz+D1/9zBJV1BvTvEIK3Jl+JblGBaofm8rjDHjViyx4ROTW9Ucby7Wdw2wfbkFlYqXY4bqXeYMSOU8q2p5TunB9Fzml6SlcM6BiqWPt0WyZ2ZbJ1zxXIsoxVu89i3OI0HM5teCFSXqvHM98exGP/+gPlNfXNnIEaybLMCilqlpikFP/N0KWVVtfjL1/8jufWHUJlXcNGGgfOlWLsojR8u++cytG5vsPcYY/+hwkpInIJh3LKMHZRGtbtz1E7FLexP6sEFbV6xdqIbkxIkXPSaiQsnHQFfHQXn7rIMjDnm/2oqtNf4pGktopaPf626g88ueYgauqNZvev35+DsYvSkC7MFCHLLlTVo1av/D7GhrJCipTEuWKl1fX8XdlCf2SV4OZ3U/GfQ3lm91XVGfC3Vfsx95v9qK7jjq9tcaGyzmymWd/2rJDyVGzZI3IQL62EED8vtcNwKRW1ehiMsuL2Y1/tw/aTRXhubG+28F2m1OPKdr2eMUGICvJRKRqi5nWLCsScm3rgpQ0ZprUzRVV4/T9H8fy4PipGRtYczinDX1f+jlPNVLieLqrCre9vw7xbeuHeYZ3YwncJYuuVRgLa8Xc3CSxVzeWW1rDd7BJkWcaytEy89uMR6Js8/7Rk9Z5z2He2BO/ffRW6Rwc5KEL3ILbr+eg06Mr5XB6LCSkiB7muZzT2P3ej2mG4lKN55Xhk5e9mw+C/2nUW+85ewOK7rkJCOz6xaqutwvwotuuRK5ia1AX/Sc/DnjMXTGufbTuNm/rEYHi3CBUjo6ZkWcbKXWfxz/WHTcPomxp7RRx+O5qPspqLFRt1BiPmf3cIO04V4dVb+/NNHCvE1quoIB94adn0QEr+3jqE+HmhtPpiO2xuCRNS1pRU1eGJr/fj54x8s/vC/L0wolskNhzMVawfz6/A2MVpeGF8X0wa2IGJ9BY6JLTr9YwNho6/wzwWf/JE5LR6xARh3V+TcPvADmb3Hckrx7jFafj37+zjb4vymnrsyypRrCUlMCFFzk+rkfDGpCvg66V8CjPnm/2orGU7ijMor6nHX7/ah2e/TTdLRgX56vDB3Vdh0ZQB2PBYCq6MDzV7/A8H83DLolTsF35HUYM8DjSnFhKrpMRh+NRg75lijHkn1WIyakjncPzweAreu/sqvHPnlQgQdnatqTdi7jcHMHs1/wa1lPlAc86P8mRMSBGRU/P31mHhpCvw5qQr4Ce06FXVGfD31fsx52vOkGmtHaeKFe2Q3loNhnZhdQm5hi6RAZh7U0/F2rkL1XityS58pI707FLcsigNGw7kmt13RYcQ/PBYCkb3iwUAxIf7Y/XM4ZiR0sXs2Kziatz+4TYsS8uELF+6dcbTiLNX4kI50JwsiwvlYPNLMRplfLD5JO5YssPs/ytJAv56bQJWzhhqSvqOv7I91j+ajF6x5gmUf+/LxtjFacjILTO7j5TSOdCcmmBCiohcwm0DO2D9o0noYaFP/+u95zB+8VYcO1+uQmSuKe14geL2wE5h8PPmTC5yHQ+M6IwhncMVayt2nDFrRSXHkGUZn23NxK3vb8OZoiqz+6cld8HXfx6B+HB/xbq3ToNnb+6NZfcPQqi/skWv3iDjxe8PY8bne1FSVWfX+F1JnvDCOSaYFVJkWYxZhRQTUo2KKmrx4PLdWPCfI4o36AAgMtAbnz84BE/c1MOslaxrVCC+fXgE7h3WyeycpwoqMeG9rVi58ywT6VZU1urNds3uE8eB5p6MCSkichkJ7YLw3V+TMGVIvNl9x/MrMG5xGlbvzuKTgBZIE160J3N+FLkYjUbCG5P6m1VOzv3mAMpr6q08iuyhcXv059cfRp1B2aIX4ueFj+8bhH/c0hveOutPO6/vFY0fHkvBoE5hZvf9nHEeN7+bhr1N5oZ5MnGoOSukyJo4tuxZtPNUEca8m4rNRwvM7hveNQI/PJaClO5RVh/v66XFixP64r27rkKQj3Ikc63eiGe+PYjH/vUH/xZZcCSvDE2fpms1EnrGcCi8J2NCiohciq+XFq/e2t96H/+aA/g7+/gvKbe0GicLlO9OJXN+FLmgThEBeHqMsnUvu6Qar/zA1j1HudT26Fd1DMUPj6fght7RLTpXXKgf/vXQMDx8TTez+7JLqjF5yXYs+e0kjM3sfuXuxCoXzpAia8R/G7klnl0hZTDKWPTLcUz5eAfOl9Uq7pMkYNao7vhi+lC0C25Zkvfm/rH4/rFk9GtvXuGzfn8Oxi5KQ3p2qYVHei5xflS3qADumu3hmJAiIpfU2Mff20If/7f7sjF2Efv4rUk9rqyOCvHzQl8LT6aIXME9QztheFfl/LOvdp3FlmPm73yT7ciyjKWpp3D7B9tw7oJ51cXMkV2xauZwtA9tXbJEp9Vg7p96YvmDQxAR4K24T2+U8eqPRzBt+W4UV3pmC58sy+YteyGskCLLONT8ooLyWtz/yS68+d9jEHPaUUE++HL6UMwalQitpnU75XWKCMA3fxmOqUmdze47XVSFW9/fhs+3n2b1/v8cyhYHmvP5p6djQoqIXFbXqED821off2Elxr+3FV/uPMMnAQJxxk5SQkSrn4AROQuNRsLrt/eHv1Ax+dSaAyhju4RdlFTVYcbne/DShgzohVd2Yf5e+PSBwXh6dC94XcY23iMTo/DD4ykY2iXc7L5NRwsw5p1U7MosbvP5XVVRZZ1ZWyRb9siaWCEhXFaj98gK8m0nCjHm3VSzcQUAkNI9Ej8+noIR3dpeKe6j0+K5sX2w5N6BCPZVtvDVGYyY/90hPLLyd5RW82/SoVwONCclJqSIyKVdqo+/Tm/Es9+m49Gv9rGP/3+MRtlCQorteuTa4sP98cyYXoq1nNIavPx9hkoRua+WbI9+bc92NrlWdLAvvpw+FI9d3x2SkDPPK6vBlI934L1NJzyqhU9sudJIQFSgj0rRkLOLsdB65klVUgajjP/77zHcvWwnCsqVLXoaCZhzUw8snzoEkTb6f+imPjHY8FgKrowPNbvvh4N5uGVRKvZnldjkWq6o3mDEsbwKxVpvJqQ8HhNSROQWLtXH//2BXPbx/8+RvHIUVihbXVISrA/uJHIVdw/taDYLbdWeLGw6ap44odYzGmV8+FvLt0e3FZ1Wg7/fkIgvpg01e9FoMMp4Y+NR3P/pLhRW1Fo5g3sRkwnRwb5mu4ARNfLz1iJM2L3SU3baO19Wg7uX7sC7vxyHWCgfE+yLfz00HI9cmwCNjSvE48P9sXrmcMxI6WJ2X1ZxNW7/cBuWpWV6ZPX+8fMVZhWefWLZsufp+BeMiNxGS/r4l2/z7D5+sTqqY7g/Okb4WzmayHVIkoTXbuuHQKFS8qk1B9gmcZkat0d/7cfWbY9uS0kJkfjh8WQkJUSY3Zd6vBBj3knF9pNFdru+szAfaM52Pbo0TxxsvuVYQ1vvjlPmbb3X9GhoBx5ioR3YVrx1Gjx7c28su38QQoWEYL1BxovfH8aMz/eipMqzZuEdylG+MdwhzA8hwveHPA8TUkTkVprr439u3SH85QvP7eNPFRJSyd3Zrkfuo0OYP569Wdm6d76sFi9+f1iliFzf5W6Pbkvtgnzx+YND8fcbEiEWNeSX1+LupTvw9s/HzJJm7oQ77FFriUnLHDdu2dMbjHj9P0dw3ye7UCRsfKDVSHh6dE98cv9ghAsbJtjL9b2i8cNjKRjUKczsvp8zzuPmd9Ow98wFh8TiDMQd9vpyoDmBCSkiclOX6uP/z6E83PxuKv7wsD7+mnoDdmUqKwjEFiciV3fn4HikCInWb/aewy8Z51WKyDXZent0W9FqJDx2fXesnDEM0cHKFj6jDLz983Hcu2wn8svcswpEbNljhRQ1J1YYei/u0uguckurMeXjHXh/80mz+9qH+mH1zOGYObKbzVv0mhMX6oevHhqGh6/pZnZfdkk1Ji/ZjiW/nfSIWXiHc8Qd9jg/ipiQIiI3dqk+/nMXqjHpw21YmnrKY1r4fj9zATX1F3v3JQkY0c28/YXIlUmShAW39Tfb5ODpfx/0uPaItrLX9ui2NOx/1VlXJ5pXZ2072VDVlXrcvKrL1YntVuIuakQisYpOnAHnDjYdyceYd1Kx+7R5tdGoXtHY8FgyBlqoUnIUL60Gc//UE8sfHGJWnaU3ynj1xyOYtnw3iivd92+U0SjjcK6QkGrPhBQxIUVEbq65Pv6XNmR4TB+/uN1x//YhCPV3TNk6kSPFhfrhH2N7K9byy2vxz/Vs3WtOc9uj//DY5W2PbksRgT747IHBmPunHmbJscKKOtz3yS4s3HgUemGIrivLLWOFFLWO+G8kz41a9uoNRrz6QwamfrYbF6qUoxi8tBL+cUtvfHzfQKd5rjMyMQo/Pp6CoRbmV2062jD3alem+dwrd3C2uAoVtXrFWh+27BGYkCIiD9FcH/+Yd1Ldvo9ffIGZxHY9cmOTBnbAtT2U1TPf7svGT4fyVIrIubV0e/SoINtsj24rGo2Eh69JwKqHhpm98JZlYPGmE7jr451u0aZkNMpmXwcTUtQcdx1qfu5CFe5Ysh1Ltpwyu69DmB+++fMITEvuAklSr5LTkuhgX3w5fSgeuy4BYmh5ZTWY8vEOvLfphNu18KULA80jA73Rzsn+npA6mJAiIo8RF+qHf1np488prcEdS7bjQzft479QWYeD2conAxxoTu5MkiS8emt/BAmbGzzzbTouuHFbRFuotT26LQ3qHI4fHkvB9T3bmd2363Qxxrybik1H81WIzHYKK2tRb1D+gDjUnJojJi3La/Uor3HtjV1+OpSHMe+kYt/ZErP7/vS/GaJXWJgh6ix0Wg3+fmMPrHhwKCIDlUkZg1HGGxuP4v5Pd6GwotbKGVyPONC8d1yI0yULSR1MSBGRR9E16eOPEPr4DUYZr/14BA8u340iN3oSAADbTxUpXmj6eWlVnadA5AgxIb54fmwfxVphRS2eW3dIpYicj9rbo9tSWIA3lt4/CPNu7gWdkDwrrqzD1E9349UfM1Dvoi18YnWUTiM5XcUaOZ8YC1V0rloxWKc34p/rD+GhFXtRVqNs//LWavDC+D744J6rEOLnZeUMziW5eyR+eDwZSQnm8zxTjxdi9Dup2HbSvH3aFYkJKQ40p0ZMSBGRRxqZ2PBCy1If/+ajBRjzrnv18aceVz6hGdIlHD46rUrREDnOrVe1x6heyqqZdftz8OPBXJUicg7Otj26rUiShOkpXfH1n4ejvYWB30t+O4U7P9qB7BLXm6OTI7RaRQf7qjpYnlyDr5fW7A04VxxsfraoCrd/uA2fbj1tdl+nCH/8++ERuG94Z5erumkX5IvPHxyKv9+QCPF/54LyWtyzdCfe/vkYDC5cvS/LMg4LLXtMSFEjJqSIyGOZ+viv727Wx3++rBZ3frQdi3897hYtfGknlLtNJXN+FHkISZLwysR+Zu+Yz1ub7naVkC3lrNuj29KAjmH44bEU3Ng72uy+vWcuYMw7qfj58HkVIms7cRi1pcoXIkvEfyu5LpaQ/eFgLm5+NxUHzpWa3XdL/1h8/2gy+rZ33QHZWo2Ex67vjpUzhiE6WFn1aJSBt38+jnuX7UR+meslEoGGTUUKK5RvfHCgOTViQoqIPJpOq8Hfb0jEF9PM+/iNMrDwp2O4/9NdZkN+XcmZokpkFSuffHJ+FHmSdsG++Oc4ZeteUWUd5ntg656zb49uSyH+Xlhy70A8N/b/27vvuCrL/4/j7wMIiKgoioK4kXBnKi5IK8vSHFhaVq5caWrDUtu2h5U503J9S7PUHLmy5QBRcZe5Z27F3ICs8/uDHyfOYB8O6/V8PHo8bs51n+u+Dl0c7/M51+dz1VMJZ/Pg2rXYBA38ZrveW7lP8YmFI4XvHAXNkUNWhc0LyQqpuIQkvbFsr4bN36kbFju0ubo46YOwhprcq4lKuxeOFL3MtKzlrdUjQ3V3YEWrtsijl9VxUrjCD1+y8cyC7W+L1VGebi6qXt4jn0aDgoaAFAAoZce5jPL4O04KV6SNbdALA8vd9Sp4uiqocul8Gg2QP7re6We1WmbVn+e08s+z+TQixyps26Pbi8FgUP82NfXj0NaqZuMD0MyI4+oxY7NO/RuTD6PLHss0Kz8bKYmALX5eFiukrhX8FVLHo2/pkS8j9e2Wk1ZttSqW0vJn2+iJFtUKXYpeZrw93TS3X3ONfvAOq5Tc6Jvx6jM7Sp+uPajEQlQL7+8z5vWj6vqWLtQrcGFfBKQA4P9llsf/5KytmvBr4cvjj7CoH9UmoEKRu4EDMmMwGPR+WEOV8zD/Jv2NZXsL9QrIrCis26PbUyN/L60cGaJODX2t2vacuqqOk8L1896CXVfMKmWvDCukkDVWKXsFfIXU8t1n9PCkcKtC2JIU1qSKVgwPUV3foluDyMnJoGHtAvTD4JZWKyGNRmnKuiN64uuthSKwKNkqaE66Hv5DQAoA0sgoj99olCb+flhPzSw8efxJyUZFHr1s9hj1o1BcVSztpne6NjB77EpMgt5YtldGY+EKNGfVL3+fV6dJEYV2e3R7KuNeQlOeaKJ3uzWQq4v5LfCNuEQ9M2+n3lq+V7cTk/JphBmzLGpuueoFSI9fIUnZi0tI0itL/tRz3+/WrXjzv0P3Ek765NFG+rxnY5Vyc8mnETpWsxrltXpkqO4L8rFqizrxrzpODNe6gxfzYWTZ8/c585S9ehQ0RxoEpADAhtQ8/rY28vg3H7ushyaGa+Ohgp/Hv/fMNV2LNU/PCa1j/ZqA4uLhRr7q2LCy2WM//31eK/4s2Ktjsivt9uiW7wGFcXt0ezEYDOrdsrqWDmutmhVKWbX/b/NJPfJlpE5E38qH0aUvKdmoCxZfhFQuS8oessZWUfOCFoQ/cvGmuk3dpAVRp6za6vh46qfhIerZrGqRXslpS7lSrprZt5le61hXLhbL96/EJKj/nG36cM1+JRTQFL5rsQlWdUwbsEIKaRCQAoB0eHu6aU6/5hrzYJBVHv/lW/HqOydK49ceKNB5/Jb1owJ8PNmZCcWawWDQO10bqLzFNuhvLt+rizcK5qqB7Cqq26PbU32/sloxIkRd7/Szatt75roenhxRoOqLXb55W4kW6eJ+vJcjiyxXSN2KT7IqEp6fftxxWp0nR+jA+RtWbT2a+mv58DYKrFR8a18aDAYNuruWFj7TSlVs1I6bseGYHpuxWWcK4O6J+yzS9VydnVSnkmc+jQYFEQEpAMiAk5NBQ9vVTjePf+q6owU6j99yNxbS9QCpgqeb3rVI3bsak6DXlhb+1L2ivj26PXm6ueiLx+7UR90bys0ihe/m7UQN/26XXl36l+IS8j+Fz7KguYuTwWpnWCA9lcpaz5VzV/M/AB8Tn6iXFu3RqEV7FGvxd+bh6qzPezbW+B6N5eFaPFL0MnNXtXJaPTLUaoMOSdr5z1V1nBiuX/ddyIeRpc9yh73Ayp4q4UwIAv9hNgBAFmQpj/9Awcrjj4lP1I6T5lu7E5ACUnRq5KuHG5kXuP513wUt230mn0aUO8Vte3R7MRgMejy4mpYPb6PaFa1T+L7b+o+6Td2ko5du5sPo/nPOYuVDpTLu7FKFLHNzcVYFT/NVoWfz+Yu0QxduqOuUTVq847RVW1Dl0vppeIi63+WfDyMr2Mp6lNCM3k31Vud6KuFs/h5wLTZBg77ZrndX7lN8YsFYvW+5Qqq+L1+IwBwBKQDIotQ8/tc7pZPHP3ebPlxdcPL4o47/q4Sk/1Z7ODsZ1LK2dz6OCChY3unawOpD2lvL/7aq1VPQZbg9eoWiuz26PQVVLqMVI0L0iI0PwAfO31DnyRFativ/gpWWRagpaI7s8rVI2zufT4XNjUajftj2j7pMidDhi9aB3l7B1bTs2TYK8CGtKz0Gg0H929TUj0Nbq1p5D6v2WRHH1WPGZp36NyYfRmdur8UKqfpVKGgOcwSkACAbDAaDBobW0qL08vg3Fpw8/ojD5vWjmlT1kmcx2ZkGyIrypVz1XreGZo9dj0vUq0v+KjSpez/tOZvx9ugjivb26Pbk4eqiz3o21qc9GqtkCWeztpj4JD3/w26NWfynYuMdn8JnmRZuGVwAMmNZdsBy1Z0j3LydqBd+2K0xP/6luATzL+9KuTprUq8m+rB7Q7lb/P3Btkb+Xlo5MsRqow5J2nPqqjpOCtfPe/Nvw464hCQdvWS+QUR9dtiDBQJSAJADTQpBHr9lQfOQOqTrAZYebFDZqrD17wcu6sedBTt1L2V79L80csEu29ujP1K8tke3p0eb+uun4W0UaKPw7g/bT6nr1AgdvmBdfDkvWa6QsgwuAJmxCkg5eIXUvrPX1WVyhJbttt4soL5fGa0cGaouja03GUDGyriX0NQn7tK73RrI1aIW3o24RD0zb6feWr5XtxMdH0g/cP6GktJsxmAwpKxGBdIiIAUAOZSaxz+ucz25WhRoTM3jf2dF/uTxX7wRZ7VbTSgBKcCmcZ3rq2Jp86K/b6/4u8BuVvDf9uj/WLWZtkdvXvy2R7enOpVKa/mzIXq8eVWrtkMXbqrzlAgt2m69PX1eISCF3PK1WNXtqICU0WjU/K0n1W3aJh2LvmXV3qdVdf04tLVqVrCu4YasMRgM6t2yupYOs/17/N/mk3rky0idsPH7z0uWBc1rVijFlySwQkAKAHLBYDCoXwZ5/LM3HVeP6ZEOz+OPPHLZ7GdPNxc19vdy6BiAwqJcKVd9EGaeuncjLlFjfyx4qXtLdp5Wlylsj+4IJV2d9dEjjTTx8TtVytU8hSguIVkvL/5TLy7crVsWReTzgmV6lWVwAciMZRDTEUXNb8QlaPiCXXpt6V6rL+dKu7voyyfv0jtdG5CiZyf1/cpqxYgQq1W/krT3zHU9PDlCK/ZYr1DLK5ap5PX9KGgOawSkAMAOGvqX1cqRIerU0Neqbc/pa+o4KVxr/nJcHn+4Rf2olrW85cI2u0C67q9XSd3vqmL22IZDl7Rou/UOUPkhdXv0FxfuUUw826M7Utc706/FtWTnmf8PEFrX8LKXpGSjLty4bfYYK6SQXbaKmudlwH3vmWt6eHKEVv1pfe/T2L+sVo0I1UM27pmQO55uLvrisTv1UfeGcrNI4bt5O1EjFuzSq0v/UlxC3qfwWQekSNeDNT6dAICdlHEvoSlPNNF76eTxD52/U28u35vnNwFGo1ERRy6ZPUa6HpC5tx6ur0plzFP33l25L983KWB79PxXq6Knlg5rradaVrNqO3rplrpOSUmhzIsP+Jdu3DarwyJR1BzZZxnEjIlP0vVY+6/uMxqNmrvpuLpPi9TJy9arw59uU1OLnmmtat7Wq8phHwaDQY8HV9Py4W1Uu6J1Ct93W/9Rt6mbdPSS9S6H9pKYlKwD5whIIXMEpADAjgwGg57KII//Gwfk8R+9dFMXrpt/m05BcyBzZT1K6MPuFql7txM19sc/8yV1z2g0auG2U2yPXkC4l3DWe90aasoTTax2LL2dmJxSZP773boRl2DX61qmVpVwNsi7lKtdr4Gir1IZd1mWlbN32t612AQNnbdT41bsU3ySeYpeGXcXfdW7qd7sXM/qSzvkjaDKZbRiRIgesfGFxYHzN9R5coSW7sqbVcDHom/ptkWaJil7sIV3AwDIAxnl8f99NiWP/6c8yuO3TNfzLeuuWhQLBbLk3qBK6tHU/OY9/HC0FkQ5roC1JN36/+3RR//4J9ujFzAPN/LTqpEhaljF+sPVij1n1XlyhPaeuWbjmTlz3qL4dOWy7nJyomA9ssfVxUkVPM1XgFrOrdzYfeqqOk0K189/n7dqa1LNS6ufC9UD9Svb7XrIGg9XF33Ws7E+7dFYJS3+vYiJT9ILP+zR6MV7FBtv39X7lgXNfcu6qzyBdNhAQAoA8khqHv/Hj9jO4x+5YJdeWWL/PP4Ii4BUSEAFdtsCsuH1h+tZpbe8v2qfwzYn2Hf2ujqzPXqBVt27lBYPbaV+rWtYtZ24HKPu0yL17eYTdllZd9ayoDnpesghvzwobG40GjUz/Jge/TJSp69Y9zfk7lpaOKSV/MuRopefHm3qr5+Gt1FgJesVtQu3p2yWcfiC9WYZOfX3GQqaI2sISAFAHjIYDHqseTX9NDzEZh7/gqiUPP4jNtJxciIhKVlbjpnvsEe6HpA9ZUuW0EePNDJ77FZ8ksb8+KeSk/MudY/t0QsXNxdnjetSX9Ofaqoy7uYpfPFJyXpj+d969rudup7LFD7LVSwUNEdOVbaYO7ldIXU1Jl6Dvtmu91btV6LFe2M5jxKa3a+ZXulYVyXYVKVAqFOptJY/G6LHm1e1ajt88aY6T4nQwu2n7BJIp6A5sop3BwBwgDsql84wj7/LlAgt2Zn7PP7dp67qlsWy6zYBBKSA7GobWNHqpj3y6GXNj/onT653Iy5BI9LbHt3NRdPYHr3AerBBZa0aGarGVb2s2lb/dV6dJoVrz6mrOe7/nFVAihVSyBnLuXP2as4DUjtO/quOE8P12/6LVm3Na5TT6udCdW9QpRz3j7xR0tVZHz3SSBMfv1OlXM3/PYlLSNboxX9q1MI9unU75wXvjUajVcoeASmkh4AUADhIZnn8Ly7co5cX7VFMfM5vAizrR9X1LWNVMwJA1rzWqa5VisuHq/frHxs7R+VG6vboK21sj97Iv6xWjQxVR7ZHL9CqlvfQoiGtNCi0plXbqX9j9ej0SM2OOJ6jlQeWaVV+XqyQQs5Yzp1zOUjZS042avqGo+o5Y4vOWgRLDQbp2Xtqa8GglgROC7iud1bRihEhqutrHShasuuMukyJ0H6LXfKy6vSVWF2PM7+XrW+j5h4gEZACAId7tKm/VoxoozsqlbZqW7TjtLpO2aRDOczj33TEPCAVSroekGOl3Uvok0cbmz0WE5+klxfvsUvqntFo1P8iT2S4PfpitkcvNFxdnPRap3qa2aeZvDxKmLUlJBn1zsp9GvztDl2Nic9Wv1ZFzcsQkELOVLYIEmU3Ze/yzdt6+n/b9NGaA0qyeA/0LuWq//UP1ssdguRCil6hUKuip5YOa60nW1Szajt66Za6Td2k77b+k+1AuuXqKC+PElZf7gCpeLcAgHwQ4FNay55tk24ef5cc5PFfj0vQbou0kBDS9YBcCalTwepmfevxf/XtlpO56jd1e/S3fvqb7dGLmPb1KmnVyFA1rV7Oqu3XfRfUaVKEdv5zJUt9JSYl68J186CBnxcrT5AztoqaZ/U+Y+uxy+o4KVzrD16yamtZq7xWPxequwMr2mWccBz3Es56P6yhpjzRRJ5u5rXwbicm69Wlf2nk97t1Ixu18GzVj2JzHaSHuxwAyCdZyeN/MRt5/FuOXjb7xtLV2UnNa5S365iB4uiVjnVVxSII8NGaAzpho/B4VrA9etFXxaukvh/cUs+0rW3VduZqrHpO36yvNh7NdKXdxRu3ZXmKZWFqIKss505cQrKuxmQcaEhKNmry74fV6+stunD9tlmbwSA9d18dzR/YUpVYuVeoPdzIT6tGhqhBFesUvhV7zqrz5AjtPXPNxjOtWQekSNdD+ghISTp58qRGjRqloKAglSpVSuXLl1fz5s01fvx4xcTYr07EmjVrFBYWJn9/f7m5ucnf319hYWFas2ZNlvtITEzU9OnTFRoaqooVK6pkyZKqXbu2hgwZor///jvL/URHR+vNN99Uo0aNVKZMGZUpU0aNGjXSm2++qcuXL2fewf/bu3evhgwZotq1a6tkyZKqWLGiQkNDNX36dCUm5rwODlCcZJTHv3TXGXXOYh5/hEW6XrMa5VTSlQLIQG55urlo/KPmu+7FJmQ/dS91e/Qe09kevTgo4eyksQ8FaW7/5ipfytWsLTHZqA9WH9DAb7br31vpp/BZFjR3dXGSt0VfQFZVKuMuy4UqlnMsrUs3bqvv7Ch99ushq8BoxdJumj+ghV64P1DOTqx+KQqqe5fSj0Nbq1/rGlZtJy7HqPu0SH2z+USmq+ooaI7sMBjtsa9jIbZixQo99dRTun7d9oe9wMBArVq1SgEBATm+RnJysgYPHqxZs2ale87AgQM1Y8YMOTmlHyOMjo5Wx44dtW3bNpvtbm5umjJligYOHJjheLZu3apu3brp/Hnrb2YlydfXV8uWLVNwcHCG/Xz99dcaPny44uNt30gFBwdr1apVqlAhb1KGTp8+rapVU9KdTp06JX9/693LgMIkLiFJ763ap3lbrHfxcnVx0rjO9dUruGq6y57v/Wy9jl36b8XG6Afv0LB2OX/vAmDuzeV79c1m81S9Nx6upwEh1oWsLV2NiddLi/bY3JGqnEcJfdazMTtSFWHnr8Vp5Pe7FHX8X6s237LumtSric0VrSv/PKvh3+0y/Vzd20MbXr4nT8eKoq3FB7+ZrXSa1beZ7qtr/d4TeSRaz/2wW5du3LZqCwmooAmP3amKpdk0paj6ee95jV68x6o4uSR1bFhZH3ZvpLIlS1i1Rd+8rWbv/Wb22G8v3q0AH+u6qSh88uLzd7FeIbVr1y499thjun79ujw9PfX+++8rMjJSv//+uwYNGiRJOnTokDp16qQbN3JWYFiSXnvtNVMwqkmTJlqwYIGioqK0YMECNWnSRJI0c+ZMvf766+n2kZSUpLCwMFMwqnv37lqzZo22bt2qSZMmycfHR7dv39aQIUMyXHF16tQpde7cWefPn5eLi4tGjx6tjRs3auPGjRo9erRcXFx07tw5de7cWadPp78F/erVq/XMM88oPj5elSpV0qRJk7R161atWbNG3bt3lyRFRUUpLCxMSUlJ6fYD4D/uJZz1XreUPP7SFnn88Znk8Z+9GmsWjJKk0ABqOQD2NObBIFUrb756afzaAzp26WaGz2N7dFQu667vBrbQiHsDbK5QefyrLZq67ojVijsKmsPeLAubW+6Ul5Rs1Oe/HtKTs7ZaBaOcDNJLDwTqm6eDCUYVcQ82qKxVI0PVuKqXVdvqv87r4cnh2mNRt1SyTtcrWcJZNSt45tEoURQU6xVSd999t8LDw+Xi4qKNGzeqVatWZu3jx4/X6NGjJUlvvfWWxo0bl+1rHDp0SPXr11diYqKaNWumjRs3qmTJ//4hiImJUdu2bbV9+3a5uLho//79NldjzZ49WwMGDJAkDRs2TFOnTjVrP3LkiJo2barr168rICBA+/fvl4uLi1U/ffr00bfffitJWrhwoXr06GHWvnDhQj322GOSpL59+2ru3LlWfSQkJCgoKEjHjh1TmTJltHPnTtWubV4j4dlnn9W0adMkSXPmzFG/fv0y+U1lHyukUJSdvHxLw7/bpb9s5OvX8PbQlCfuUoM0W+gu3HZKo3/80/Szl0cJ7Xj9fpbRA3a25dhlPf7VFrPHmlYvp4VDWln9vSUnG/VV+DGNX3vQakcqg0Ea1q62XmgfyI5UxUzE4Wg9/8NuRd+0XnkSWidl5UkFz5QP+++s2KfZm46b2sOaVNGEx+501FBRBA2dt0Nr9v6XJfHsPbX1cocgSdKF63F67vtd2nLMeiVfpTJumvR4E7Wo5e2wsSL/xScma/zaA/o6/LhVWwlng8Y+VFdPt6lhWr0/bf0RffLzQdM5Tap5aemwNg4bL/IWK6TsKCoqSuHh4ZKkAQMGWAWjJGnUqFGqW7euJGnixIlKSMj67gKpvvjiC1MtpcmTJ5sFoyTJw8NDkydPlpRSH2rChAk2+/n0008lSeXLl9f48eOt2gMCAvTKK69ISglOLV261Oqc8+fPa/78+ZKkDh06WAWjJKlnz57q0KGDJOnbb7+1mda3dOlSHTt2TJL0yiuvWAWjpJRgXrly5UzHALKnuncpLR7aKsM8/v9F/pfHb1k/qk3tCgSjgDzQspa31d/ljpNXNDvC/Gad7dGRnpA6FbT6uRC1rm39wT78cLQ6TgzX5qMp9TzPXTOvNeZLQXPkkq/FCqlzV1NWSG08dEkdJ4bbDEa1Dayo1SNDCUYVQ64uTnqtUz3N7NNMXh7mKXoJSUa9u3KfBn2zQ1djUkq42NphD8hIsb0LWrZsmem4f//+Ns9xcnJSnz59JElXr17VunXrsnUNo9Go5cuXS5KCgoLUsmVLm+e1bNlSd9xxhyRp+fLlVoXiDh06pP3790tKCRh5eNgudpp2FZKtgNRPP/2k5OSUraXTe81p+0lOTtZPP/1k1Z72d5feyicPDw/17NlTkrRv3z4dOnQo3esBsM3NxVnjutTXjN5NVcbdIoUvKVlv/fS3hs3fqWsxCdpkEZAKqZM3tdsApNRnq+Ftkbr3y0EduZiSusf26MiMT2l3fTughV5oHyjL7w4u3ritJ2du0cTfDuvMVQJSsC/LOXT6Sqw++fmA+syO0mWLAvvOTgaNfShIc/o1l7cnKXrFWft6lbRqZKiaVi9n1fbb/gvqNClCO05e0T522EM2FduAVEREhCSpVKlSatq0abrntW3b1nS8adOmbF3j+PHjOnv2rFU/GV3nzJkzOnHihM2xZtZP5cqVFRgYmO5Ys9pPZq85tZ877rhDlSunvy11bn53AP7ToX5KHv+dNvL41+w9r/s+X291ExkSQEAKyCseri4a36OxWS2g+MRkvbRoj6b8wfboyBpnJ4Oea58yJ3ws6vEkG6UJvx3Sn6fN07YtV7cA2eXrZf7+E3XiX01bf9TqPL+y7lo4pKWeaVtbTqy4hqQqXiX1/eCUOWHpzNVYPTZjs45Hm9czbUBACpkotgGp1BVHAQEBNmstpQoKCrJ6Tlbt27fPZj/ZvU5O+jl16pRu3TJ/Q0jtp2zZshkGknx9fVWmTBmbY7l586ZOnTqVrbHY6gdA9lQt76GFQ1ppUKj1bl7RN82DUdW9PVS1PNvGA3mpeY3yerqN+d/j7lNX9ekvbI+O7GlV21urnwtVaBZWtlZmhRRyKSur7NrX9fn/1TDWOz+ieCvh7KSxDwVpbv/mKl/K1awt0eIfPxcngwIrU9AcGSuWAam4uDhFR6ekt2RWiKtcuXIqVaqUJJkCMVmVdpe6zK6TWhzM1nVy0o/RaLTaJS/156wUH0tbrCy3Y7HVT1acPn06w//OnTuX7T6Bwiw1j39WX+s8/rRYHQU4xksP3KFaFUpleE5IQAWtHhmq1vxdIgMVPN3+v67YHRkGLf28WCGF3MlolZ2Lk0Gvd6qrr/s0UzmLYAOQVrs7fLR6ZKiCa6YftAzw8ZSbi7MDR4XCKP2lQUXYjRs3TMeenplHbUuVKqVbt27p5s2Mt3XOzXVSg16SrK5j736y+przcixZkTagBeA/99WtpNUjQzVywS5tP3nFqp2AFOAYJV2dNb5HY/WYHmm1KsrJIL14f6CGtgtgVRSyxMnJoGfvCVBwzfIa8d0unb8eZ9bu5uKkchl8GQFkhU9pNzkZZPWe5V+upKY8cZfN8gCALZXLuuu7gS008ffDmrLuiCzKIFM/CllSbFdIpXJ1zTz67+aWktcfGxubyZk5v07qNWxdx9795OY122ssAHLHz6ukFgxuqaHtzPP4y3mUUBsKmgMO07R6OQ0KrWX2WKUyblowqKWG31uHYBSyrXmNlML39wb5mD3etHo509bqQE65ODupSTXzwtQd6ldKt1YlkBEXZyeNeuAOfft0C1XwNP9seH89n3SeBfynWK6Qcnf/L3c6Pj4+gzNT3L6dUpi0ZMnsLZPOznVSr2HrOpb9pP05u/3ExMTk6jXb6zVlRWZpfufOnVNwcHC2+wWKihLOThrzYJBa1fLWjI1HdfN2kl68P1Bl3PkGHXCklzrcoduJyVp38KJa1CyvMQ8GsSMVcqV8KVfN7NNM3245qXlbTqqCp5ve69Ygv4eFIuKj7g312rK9uhoTr76ta+iJ4GoEO5ErIXUqaPVzofr8l0PaduJfPdTAVx3qp1+zGEhVLANSpUuXNh1nJZUstTh4VlLdcnqdtAXILa9j2U9GAanM+omJicnVa7bXa8qKrNS6AiDdHViRLeSBfFTC2UnjutTXONXP76GgCHFyMqhv6xrq27pGfg8FRUydSqW1cEir/B4Gihif0u766JFG+T0MFDLFMmXP3d1d3t7ekmRV+NvSlStXTIGV7NY0ShtQyew6aVcDWV4nJ/0YDAargE7qz5n1kbYfy7FUqVIl22Ox1Q8AAAAAACi+imVASpLq1asnSTpy5IgSExPTPe/AgQOm47p16+boGpb9ZPc6OemnatWqZkXF0/Zz7do1nT9/Pt0+zp07p+vXr9scS+nSpU3Bpdy8JgAAAAAAUHwV24BUSEiIpJS0sh07dqR73oYNG0zHbdq0ydY1atasKT8/P6t+bNm4caOklBVINWrUsDnWzPo5f/68Dh06lO5Ys9pPZq85tZ+DBw9mGNjKze8OAAAAAAAUXcU2INWtWzfT8Zw5c2yek5ycrG+++UaS5OXlpXvuuSdb1zAYDOratauklNVCW7ZssXneli1bTKuJunbtalVUMDAw0LTCaOHChYqJibHZz9y5c03HYWFhVu1dunSRk1PK//L0XnPafpycnNSlSxer9rS/u7TXTCsmJkYLFy6UlLIyKzAwMN3rAQAAAACA4qXYBqSCg4MVGhoqSZo1a5Y2b95sdc5nn32m/fv3S5Kee+45lShhvnPV+vXrZTAYZDAY1K9fP5vXef755+Xs7CxJGjFihGJjY83aY2NjNWLECEmSi4uLnn/+eZv9vPTSS5Kkf//9V6NHj7ZqP3r0qD788ENJUkBAgM2AVOXKlfXkk09KktauXavFixdbnbNo0SKtXbtWktS7d29Vrmy9O0JYWJhq1UrZ4vrDDz/U0aNHrc55+eWXdeXKFdMxAAAAAABAqmIbkJKkiRMnqmTJkkpMTNQDDzygDz/8UFu2bNG6des0ZMgQU+AnMDBQo0aNytE1AgMDTQGZ7du3q02bNvrhhx+0fft2/fDDD2rTpo22b98uKSVwU6dOHZv99O3b15T2NnXqVD366KNau3atoqKiNGXKFLVu3VrXr1+Xk5OTJk2aJBcX2xsovv/++6pYMWU3rl69emns2LGKiIhQRESExo4dqyeeeEKSVLFiRb333ns2+yhRooQmT54sJycnXb9+XW3atNGUKVMUFRWltWvX6tFHH9W0adMkpaT39e7dO0e/OwAAAAAAUDQZjEajMb8HkZ9WrFihp556ylTE21JgYKBWrVqlgIAAq7b169eb0vj69u2bbvpacnKyBg0apNmzZ6c7jgEDBuirr74ypdTZEh0drY4dO2rbtm02293c3DRlyhQNHDgw3T4kaevWrerWrVu69Z8qV66sZcuWqUWLFhn28/XXX2v48OGKj4+32R4cHKxVq1apQoUKGfaTU6dPnzYVWD916pTVroIAAAAAACD38uLzd7FeISVJnTt31p9//qkXXnhBgYGB8vDwkJeXl5o1a6aPP/5Yu3btshmMyg4nJyfNmjVLq1atUteuXeXn5ydXV1f5+fmpa9euWr16tWbOnJlhMEqSKlSooMjISE2bNk0hISHy9vaWu7u7atWqpUGDBmnHjh2ZBqMkqUWLFvrrr7/0+uuvq0GDBvL09JSnp6caNmyo119/XXv37s00GCXJdM1BgwapVq1acnd3l7e3t0JCQvTll19q06ZNeRaMAgAAAAAAhVexXyGFwosVUgAAAAAA5D1WSAEAAAAAAKDQIyAFAAAAAAAAhyIgBQAAAAAAAIciIAUAAAAAAACHIiAFAAAAAAAAhyIgBQAAAAAAAIciIAUAAAAAAACHIiAFAAAAAAAAhyIgBQAAAAAAAIciIAUAAAAAAACHIiAFAAAAAAAAhyIgBQAAAAAAAIciIAUAAAAAAACHIiAFAAAAAAAAhyIgBQAAAAAAAIciIAUAAAAAAACHIiAFAAAAAAAAhyIgBQAAAAAAAIciIAUAAAAAAACHcsnvAQA5lZiYaDo+d+5cPo4EAAAAAICiK+1n7rSfxXODgBQKrUuXLpmOg4OD83EkAAAAAAAUD5cuXVKNGjVy3Q8pewAAAAAAAHAog9FoNOb3IICciIuL019//SVJqlixolxcWPCXE+fOnTOtMIuKipKvr28+jwjIO8x3FCfMdxQnzHcUJ8x35IfExERTllLDhg3l7u6e6z75BI9Cy93dXc2bN8/vYRQpvr6+8vf3z+9hAA7BfEdxwnxHccJ8R3HCfIcj2SNNLy1S9gAAAAAAAOBQBKQAAAAAAADgUASkAAAAAAAA4FAEpAAAAAAAAOBQBKQAAAAAAADgUASkAAAAAAAA4FAEpAAAAAAAAOBQBqPRaMzvQQAAAAAAAKD4YIUUAAAAAAAAHIqAFAAAAAAAAByKgBQAAAAAAAAcioAUAAAAAAAAHIqAFAAAAAAAAByKgBQAAAAAAAAcioAUAAAAAAAAHIqAFAAAAAAAAByKgBQAAAAAAAAcioAUAAAAAAAAHIqAFFDEbN++Xe+8844eeOAB+fv7y83NTZ6engoMDFT//v0VERGRaR9z586VwWDI0n9z587N+xcF2HD9+nV9//33GjVqlNq2bauAgACVLVtWrq6u8vHxUbt27fTJJ5/o8uXLWeovMjJSTz31lKpXry53d3dVrlxZHTp00IIFC/L4lQCZs8d8X79+fZbf28eNG+e4Fwdkw5gxY8zm6vr16zN9zpo1axQWFma6L/L391dYWJjWrFmT9wMGciGr8517dxRWLvk9AAD2c/fddys8PNzq8fj4eB0+fFiHDx/W3Llz1adPH3399ddydXXNh1EC9hEVFaVevXrZbLt06ZI2bNigDRs2aPz48Zo3b546dOiQbl/jxo3Tu+++q+TkZNNjFy5c0C+//KJffvlF8+fP1+LFi+Xu7m731wFkhT3nO1BY7d69W59//nmWz09OTtbgwYM1a9Yss8fPnDmjM2fOaNmyZRo4cKBmzJghJye+p0fBkt35DhRGBKSAIuTs2bOSJD8/P/Xo0UOhoaGqVq2akpKStHnzZn322Wc6c+aMvvnmGyUkJOi7777LtM+1a9fKz88v3XZ/f3+7jR/IrqpVq+qee+5R06ZNVbVqVfn6+io5OVmnT5/W4sWLtWTJEkVHR6tLly6KiopS48aNrfqYMWOG3n77bUlS7dq19eqrr6phw4Y6e/asJk6cqHXr1mnVqlV6+umns/Q3A+QVe8z3VLNnz1bz5s3Tbffx8cmLlwDkWGpwKTExUT4+Prp48WKmz3nttddMwagmTZpo9OjRql27to4ePapPPvlEu3bt0syZM1WxYkV98MEHef0SgCzLyXxPxb07ChUjgCKjU6dOxh9++MGYmJhos/3SpUvGwMBAoySjJOOGDRtsnjdnzhzTOcePH8/DEQM5l948T2vp0qWmuRwWFmbVfvnyZWPZsmWNkozVqlUzXrp0yeoanTt3NvWxbt06ew0fyBZ7zPd169Yxl1FoTZgwwSjJGBQUZHzllVcyncsHDx40uri4GCUZmzVrZoyJiTFrv3XrlrFZs2ZGSUYXFxfj4cOHHfAqgKzJ7nzn3h2FFWtTgSJk5cqV6tmzp5ydnW22V6hQQZ999pnp58WLFztqaIDdpTfP0+rWrZvuuOMOSbKZzjpz5kxdu3ZNkvTxxx+rQoUKVteYNm2a6Vrjx4/P7bCBHLHHfAcKq3/++UdvvPGGJGn69OlZKjnwxRdfKDExUZI0efJklSxZ0qzdw8NDkydPliQlJiZqwoQJdh41kDM5me9AYUVACihm7rnnHtPx0aNH83EkgGOULl1akhQXF2fVtmzZMklSmTJl1L17d5vP9/f3V/v27SVJv//+u27cuJE3AwXsIKP5DhRWzz77rG7evKm+ffuqbdu2mZ5vNBq1fPlySVJQUJBatmxp87yWLVuagrjLly+X0Wi036CBHMrufAcKMwJSQDFz+/Zt03FWvnEHCrODBw9q9+7dklI+lKQVHx+vqKgoSVKrVq0y/AYy9Ybw9u3b2r59e94MFsiljOY7UFgtXLhQK1euVPny5fXpp59m6TnHjx831dXM7AN9avuZM2d04sSJXI0VyK2czHegMCMgBRQzGzZsMB3XrVs30/P79+8vPz8/ubq6qkKFCmrZsqVef/11nTlzJi+HCeRYTEyMDh8+rM8//1xt27Y1pWw8//zzZucdOnRISUlJkjL/8J62ff/+/fYdMJALWZ3vll577TVVr15dbm5uKleunJo0aaIXXnhBhw4dcsCogay5evWqnnvuOUm206rTs2/fPtMx7+8oLHI63y1x747ChIAUUIwkJyfro48+Mv3cs2fPTJ+zfv16nTt3TgkJCbp8+bK2bt2q999/XwEBAZoxY0ZeDhfIsrlz58pgMMhgMKhUqVIKDAzUqFGjdOHCBUnS2LFj9cQTT5g95/Tp06bjzHacqVq1qun41KlTdhw5kH05me+WIiMj9c8//yg+Pl5Xr17V7t279cUXX6hu3boaN24cqUsoEEaPHq3z58+rTZs2GjBgQJafx/s7CqOczndL3LujMHHJ7wEAcJwJEyaYUpS6d++upk2bpnturVq11L17d7Vq1cp0s3bs2DH9+OOPWrx4seLi4vTMM8/IYDBo8ODBDhk/kF133nmnvvrqK5vb26etBeXp6ZlhP6VKlTId37x5034DBOwoo/meytfXV927d1dISIhq1aolFxcX/fPPP1q5cqW++eYbJSQk6O2331Z8fLw++OADB44eMBceHq6ZM2fKxcVF06dPl8FgyPJzeX9HYZOb+Z6Ke3cURgSkgGJiw4YNGjt2rCTJx8dHX375ZbrnhoWFqW/fvlb/GDZv3lyPPfaYVq5cqe7duyshIUEvvPCCunTposqVK+fp+IGMdOvWTc2aNZMkxcbG6ujRo1q4cKGWLl2qXr166YsvvtDDDz9s9py0RZ8z28HGzc3NdBwbG2vHkQPZl5P5LqW8h588eVIlSpQwe/yuu+5St27dNHjwYD3wwAO6du2aPvroIz322GNq3LixQ14TkFZ8fLwGDx4so9GoF154QQ0aNMjW83l/R2GS2/kuce+OwouUPaAY+PvvvxUWFqbExES5u7tr0aJF8vHxSff8smXLZvjNzMMPP6w333xTUkr9klmzZtl9zEB2eHl5qUGDBmrQoIGaN2+uxx9/XEuWLNE333yjY8eOqWvXrpo7d67Zc9zd3U3H8fHxGfafdjMAy63DAUfLyXyXUlaCWAaj0goODtaUKVMkpexSlnoMONoHH3ygAwcOqFq1anrrrbey/Xze31GY5Ha+S9y7o/AiIAUUccePH9cDDzygK1euyNnZWd9//73uvvvuXPc7ePBg0z98aQulAwVJ79691aNHDyUnJ2v48OH6999/TW2lS5c2HWeWpnHr1i3TcWbpH0B+yWi+Z9Xjjz+uMmXKSOK9HfnjwIED+vDDDyVJkydPNkupyyre31FY2GO+ZxX37iiISNkDirCzZ8+qffv2Onv2rAwGg2bPnq2uXbvapW8fHx95e3srOjqaXTtQoHXt2lULFy7UrVu39PPPP5uKPactdJu2AK4taQvdpi2ACxQ06c33rHJxcVFgYKC2b9/OezvyxYQJExQfH69atWopJiZG33//vdU5e/fuNR3/8ccfOn/+vCSpc+fOKlWqFO/vKDTsMd+zint3FEQEpIAiKjo6Wvfff7+OHTsmKeVblz59+tj1GjkpuAg4WsWKFU3HJ0+eNB0HBgbK2dlZSUlJOnDgQIZ9pG2vW7eu/QcJ2El68z07eG9HfkpNoTt27Jh69eqV6fnvvvuu6fj48eMqVaqU6tWrZ3qM93cUZPaY79nB+zsKGlL2gCLo2rVr6tChg/bt2ydJ+uijj/Tss8/a9RqXLl1SdHS0JMnPz8+ufQP2lPZbwLTpGK6urgoODpYkbd68OcM6I6lL293c3EzFpIGCKL35nlWJiYk6dOiQJN7bUXjVrFnTNH8zS03auHGjJKlKlSqqUaNGXg8NyDfcu6MgIiAFFDExMTHq1KmTdu7cKUl67bXXNGbMGLtf56uvvpLRaJQktW3b1u79A/ayaNEi03HDhg3N2rp16yZJun79upYsWWLz+adPn9Zvv/0mSbrvvvvMapMABU1G8z0rfvjhB127dk0S7+3IH3PnzpXRaMzwv7SFn9etW2d6PDWgZDAYTCUKDhw4oC1btti81pYtW0wrpLp27crqETicPeZ7VnHvjoKIgBRQhMTHxyssLEybNm2SJD333HN67733stXHiRMntGvXrgzPWblypd555x1JKTvS9O/fP2cDBnJh7ty5Zlt72zJhwgStXr1aUso35qGhoWbtAwcOVNmyZSVJY8eO1eXLl83ak5KSNGzYMCUlJUmSXn75ZXsNH8iW3M73K1euaP369Rk+PyoqSsOHD5eU8oF+6NChuRs0kI+ef/55OTs7S5JGjBih2NhYs/bY2FiNGDFCUkrttOeff97RQwTsgnt3FGbUkAKKkF69eumXX36RJN17770aMGCAWSFES66urgoMDDR77MSJE7rnnnvUqlUrde7cWY0bN5aPj4+klPz2xYsXa/HixaZvWD799FNVqVIlj14RkL5x48Zp1KhReuSRRxQSEqLatWvL09NTN27c0F9//aX58+ebgrOurq766quvTB9OUpUvX14ff/yxnnnmGZ08eVItWrTQa6+9poYNG+rs2bP64osvtG7dOkkpf1/t2rVz9MsEJOV+vl+7dk333HOPGjVqpG7duqlp06by9fWVs7Oz/vnnH61cuVLffvutKXX1pZdeUtOmTfPltQL2EBgYqJdfflkfffSRtm/frjZt2mjMmDGqXbu2jh49qo8//tj0If7ll19WnTp18nnEQM5w745CzQigyJCUrf+qV69u1ce6deuy9FwPDw/jjBkzHP8igf9XvXr1LM1Vf39/4y+//JJhX2+++abRYDCk20fHjh2NsbGxDnplgLXczvfjx49n6fnOzs7GcePGGZOTk/PhVQJZ89Zbb5nm7Lp169I9Lykpyfj0009nOOcHDBhgTEpKctzggWzKbL5z747CjBVSAMw0bdpU8+bN0+bNm7V9+3adO3dO0dHRSkxMVLly5VS/fn3dd999GjhwoOnbFyA/rF27VqtWrdKmTZt05MgRXbhwQZcvX1bJkiXl4+OjO++8Uw8//LB69uwpDw+PDPt6++231aFDB02dOlXh4eG6cOGCvLy81LhxY/Xv3z9LO98AeSm3893Pz0+LFi3S5s2bFRUVpTNnzig6OlpxcXEqW7as7rjjDrVr104DBw6ksDOKDCcnJ82aNUuPPPKIvvrqK23btk3R0dGqUKGCmjdvriFDhuihhx7K72ECucK9Owozg9H4/2v3AAAAAAAAAAegqDkAAAAAAAAcioAUAAAAAAAAHIqAFAAAAAAAAByKgBQAAAAAAAAcioAUAAAAAAAAHIqAFAAAAAAAAByKgBQAAAAAAAAcioAUAAAAAAAAHIqAFAAAAAAAAByKgBQAAAAAAAAcioAUAAAAAAAAHIqAFAAAAAAAAByKgBQAAAAAAAAcioAUAAAAAAAAHIqAFAAAAAAAAByKgBQAAAAAAAAcioAUAAAAAAAAHIqAFAAAQBE1d+5cGQwGGQwGnThxIr+H43AHDx6Uq6ur3N3ddebMGbv1++yzz8pgMKhv37526xMAgOKGgBQAAEABc+LECVMgKTf/FXcvvviiEhISNGDAAFWpUsVu/Y4ZM0aurq769ttvtWPHDrv1CwBAcUJACgAAAEVOZGSkVq9eLVdXV40dO9aufVerVk19+/aV0WjUG2+8Yde+AQAoLgxGo9GY34MAAADAfxISEnTw4MF02xs2bChJatasmebMmZPueQ0aNLD72AqLjh07as2aNXryySc1b948u/d/8OBBBQUFSZK2b9+upk2b2v0aAAAUZQSkAAAACpnUdLy2bdtq/fr1+TuYAujgwYOqW7eujEaj1qxZowcffDBPrtO0aVPt3LlTffv21dy5c/PkGgAAFFWk7AEAAKBImTNnjoxGo3x8fNS+ffs8u86TTz4pSVq0aJFu3LiRZ9cBAKAoIiAFAABQRGW2y167du1kMBjUrl07SdKRI0f0zDPPqFatWipZsqRq1KihAQMG6OTJk2bP27t3r/r3769atWrJ3d1dVatW1dChQ3Xx4sUsjWvZsmXq0aOHqlWrJnd3d3l5ealZs2Z6++23deXKldy+bC1cuFCS1LVrV7m4uGR47tKlS9WtWzf5+/vLzc1NpUuXVq1atRQaGqo33nhDUVFR6T73kUcekSTFxMRo+fLluR43AADFScb/QgMAAKBY+O2339S9e3ezlT4nT57U7NmztXLlSm3YsEFBQUFasGCB+vXrp/j4eNN5p0+f1vTp07VmzRpFRkbKz8/P5jWuXLmiRx99VH/88YfZ47dv39aOHTu0Y8cOTZs2TcuXL1fLli1z9DpOnjyp48ePS1KGfSQlJalXr15atGiR2ePx8fG6efOmjh8/roiICK1Zs0bbt2+32Uf16tVVuXJlnT9/XmvWrNFTTz2VozEDAFAcsUIKAACgmDt79qx69uwpLy8vTZ48WVu3blV4eLief/55GQwGXbx4UQMHDtS2bdvUp08f1a5dWzNnzlRUVJTWrVun3r17S0oJBr344os2r3H79m21b99ef/zxh5ydndW7d28tWLBAW7ZsUXh4uN5//315e3vr4sWL6tixo9WqrKwKDw83HTdv3jzd87788ktTMCokJERz585VeHi4du7cqV9//VWfffaZ7r//fjk7O2d4veDgYEnShg0bcjReAACKK1ZIAQAAFHOHDx9WnTp1tGnTJlWsWNH0eEhIiFxcXPTpp59q06ZN6tSpk4KDg/Xrr7/Kw8PDdF67du0UFxenRYsW6ccff9SlS5fM+pGkd955Rzt37pSXl5d+++03q13pQkJC9OSTT6pVq1Y6d+6cXn31Vc2fPz/bryUyMlKS5Orqqnr16qV7XmpaX4sWLbRu3Tqr1L727dvrxRdf1L///pvh9Zo2baqffvpJZ86c0YULF1SpUqVsjxkAgOKIFVIAAADQpEmTrIJIkjRs2DDTcXR0tGbOnGkWjEo1dOhQSVJiYqI2b95s1nbz5k1NnTpVkvTuu+9aBaNSVa9eXW+88YaklELht27dyvbrOH36tCTJ29s7w9VN58+flyS1bt06wzpT5cuXz/B6Pj4+puNjx45lZ6gAABRrBKQAAACKOS8vL3Xo0MFmW82aNVW6dGlJUqNGjVS3bl2b5zVu3Nh0bBmY2bBhg65duyZJevTRRzMcy9133y1JSkhI0I4dO7L2AtK4dOmSJKlcuXIZnufr6ytJWrFihaKjo7N9nVRpA1apQS4AAJA5AlIAAADFXJ06dWQwGNJt9/LykiQFBgZmeo4ks8LoksyKgvv6+pp2/rP1X4MGDUzn5iTAk5pil1lAqm/fvpJSdhYMCAjQ008/rQULFphWWGVV2uvkZEUXAADFFQEpAACAYs5WCl5aTk5OmZ6Xeo6UsoNdWhcvXszRuGJiYrL9HHd3d0lSbGxshuc9/fTTevXVV+Xi4qJr165pzpw5euKJJ1S1alUFBARo1KhRWUrBS3udEiVKZHu8AAAUVxQ1BwAAQJ5KG6DauXNnlgM3/v7+2b5Wah2szIqRS9L777+vwYMHa/78+fr999+1ZcsWxcTE6OjRo/r88881efJkTZo0Sc8880y6faS9TtpVYgAAIGMEpAAAAJCnvL29TccVK1bMUaApq1IDUleuXMnS+dWrV9err76qV199VQkJCdq2bZsWLlyoGTNmKC4uTsOGDVOLFi3UpEkTm89Pe51q1arl/gUAAFBMkLIHAACAPJU2mLNp06Y8vVbDhg0lSdeuXct2qmCJEiXUunVrffHFF/ruu+8kSUajUYsXL073OYcOHZIkubm5KSAgIIejBgCg+CEgBQAAgDzVvn17U/2pSZMmyWg05tm1QkNDTcfbtm3LcT/33Xef6TijXfhSr9GkSRNqSAEAkA0EpAAAAJCnvLy8NHz4cElSZGSkXnjhBSUnJ6d7/oULFzRz5swcXSs4OFhubm6SpKioqHTPmzdvnhITE9Nt/+WXX0zHNWvWtHnO7du39eeff0qSHnjggZwMFwCAYouAFAAAAPLcO++8oxYtWkiSJk6cqLvuuktTp07Vpk2btHv3bq1bt05TpkxRt27dVK1aNU2fPj1H13Fzc1OHDh0kSb///nu65/Xu3Vv+/v4aNmyY5s2bp82bN2vXrl36+eefNWrUKPXp00eS5OnpqSeffNJmHxs3blRCQoIkKSwsLEfjBQCguKKoOQAAAPKcm5ubfv31V/Xr109LlizRnj17TKumbClTpkyOrzVo0CD99NNPioyM1MmTJ1W9enWb5124cEFffvmlvvzyS5vtZcuW1ffff6+qVavabE+tM1W/fn3deeedOR4vAADFEQEpAAAAOETp0qX1448/KiIiQv/73/8UHh6us2fPKjY2VmXKlFHt2rUVHBysTp065SoF7qGHHpK/v79Onz6tBQsWaOzYsVbn7N27V6tWrVJERISOHj2qCxcu6OrVqypdurSCgoLUoUMHDR06VJUqVbJ5jbi4OC1ZskSSNGzYsByPFQCA4spgzMuqkgAAAEA++OSTTzRmzBgFBgZq//79cnKyb6WKefPmqXfv3vL29taJEyfk6elp1/4BACjqqCEFAACAImfEiBGqUqWKDh06pIULF9q17+TkZH3wwQeSpJdffplgFAAAOUBACgAAAEVOyZIl9fbbb0uS3nvvPdkzKWDRokXav3+/qlWrppEjR9qtXwAAihNqSAEAAKBI6tevny5cuKD4+HidO3dOfn5+duk3KSlJb731lu69916VLFnSLn0CAFDcUEMKAAAAAAAADkXKHgAAAAAAAByKgBQAAAAAAAAcioAUAAAAAAAAHIqAFAAAAAAAAByKgBQAAAAAAAAcioAUAAAAAAAAHIqAFAAAAAAAAByKgBQAAAAAAAAcioAUAAAAAAAAHIqAFAAAAAAAAByKgBQAAAAAAAAcioAUAAAAAAAAHIqAFAAAAAAAAByKgBQAAAAAAAAcioAUAAAAAAAAHIqAFAAAAAAAAByKgBQAAAAAAAAcioAUAAAAAAAAHIqAFAAAAAAAAByKgBQAAAAAAAAc6v8A5mCDMMijh/IAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlIAAAHJCAYAAABOltduAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAACMdklEQVR4nO3deXhTVfoH8G+WpntTui9ACy1Q9lVrQcGBKgiDoriAIIgoiiAoOjA4DrijqOOIG8pvRkRBEMWNERQBUWllKWvLXspOd9p0b5Oc3x/tDYQuNGnSm+X7eZ4+wL0nyZuQNm/Pee97FEIIASIiIiKymFLuAIiIiIicFRMpIiIiIisxkSIiIiKyEhMpIiIiIisxkSIiIiKyEhMpIiIiIisxkSIiIiKyEhMpIiIiIisxkSIiIiKyEhMpIiIiIisxkSIiIiKyEhMpatLy5cuhUChw6tQpWR7/+eefh0KhkOWxiZzRrl27MHDgQPj6+kKhUGDfvn1yh+TwpJ8z+fn5TY5rzZ+HixcvRkJCAoxGo90fSy5Lly5F+/btUVVVJXcoLcJEyk1lZWVh5syZ6Ny5M3x8fODj44Nu3bphxowZOHDggNzhWUShUDTr69dff5U71GY7ePAg7r77bsTExMDLywvR0dG45ZZb8O6779rl8VJSUvD888+jqKjILvdvb9bEL4TAiy++iN9//91+gaE2sZk5cya6d+8OX19ftG/fHvfeey+OHTtm88eqqanBPffcg8LCQrz99tv47LPPEBMTY/PHkVjy3KqqqjBv3jxERUXB29sbiYmJ2LRpk0WPl5GRgYkTJyI6Ohqenp6IiorCxIkTcejQIVs9JYvZ43tHp9Ph9ddfx7x586BUOsbHdGlpKRYuXIgRI0YgKCgICoUCy5cvb3Ds8ePHMW7cOLRt2xY+Pj5ISEjAiy++iPLycrNxDz74IKqrq/HRRx+1wjOwI0Fu54cffhA+Pj4iICBATJ8+XSxdulR8/PHHYs6cOSI2NlYoFApx6tQpIYQQn3zyiQAgsrKyZIl14cKF4lpv088++8zs65ZbbhEA6h3Pzs5upahbZvv27UKj0Yj4+Hjx0ksviWXLlokFCxaIW2+9VcTFxdnlMd944w1Z/59bypr4jxw5IgCINWvW2C8wIcTYsWNFRESEeOKJJ8SyZcvESy+9JMLDw4Wvr684ePCgTR/r8OHDAoBYtmyZTe+3MZY8t3Hjxgm1Wi2eeeYZ8dFHH4mkpCShVqvF77//3qzH+vrrr4VGoxERERHiH//4h/i///s/8dxzz4nIyEjh6ekpvv32W6ufh/RzJi8vr8lxer1eVFRUCKPRaDpmj++dt99+WwQEBIiKigqb3WdLZWVlCQCiffv24uabbxYAxCeffFJv3JkzZ0RgYKCIiYkRixYtEh999JF48MEHBQBx++231xs/d+5cERMTY/aaOhsmUm7mxIkTwtfXV3Tt2lVcuHCh3vmamhrxzjvviDNnzgghnCORutqMGTMsuk1paamlYdnVyJEjRWhoqLh06VK9czk5OXZ5THdMpFauXCkAiOPHj9svMFGbGFdVVZkdO3bsmPD09BQTJkyw6WNt27ZNABBr16612X029f3R3Oe2Y8cOAUC88cYbpmMVFRUiLi5OJCUlXTOGEydOCB8fH5GQkCByc3PNzuXl5YmEhATh5+cnTp482dynZaa5iVRD7PG906tXLzFx4kSb3Z8tVFZWiosXLwohhNi1a1ejidQrr7wiAIj09HSz45MmTRIARGFhodnx3bt3CwBi8+bNdovd3phIuZlp06YJAOLPP/9s1viGEqnJkyeLmJiYemMbS3rOnTsnpkyZIsLCwoRGoxHdunUT//nPf+qN+/3338WAAQOEp6en6Nixo1i6dKnNEynp/jIyMsT48eNFYGCg6NOnj8WxNmecTqcTs2fPFjExMUKj0YjQ0FCRnJws0tLSmoy/S5cu4uabb77m89yyZYsAINatW1fvnJQkpKSkXDMO6TW5+uvK//PmPF/pfo4ePSomTJggAgICREhIiHjuueeE0WgUZ86cEbfffrvw9/cX4eHh4s0337zmczx16pSYPn266Ny5s/Dy8hJBQUHi7rvvNoutOfFf7brrrqs3XqvVXjMeW+rXr5/o169fveM333yzuOmmm0RaWpoYMWKE8PPzE1FRUeLf//53k/c3efLkes9pyJAhQggh9uzZI0aMGCH8/f2Fr6+vGDp0qEhNTa13H9f6/rD2uf3tb38TKpVKFBcXm4179dVXBQDTL26NefTRRwUA8dtvvzV4Xkogp0+fbjpmyc8p6djhw4fFPffcI/z9/UVQUJCYNWuW2azQ1T8Pm3rvWfv9f/LkSQFALF++vMHz1r4/bKmpRGrevHkNJqXz5s0TSqWywcRceq2dlbplC4PkbNavX4/4+HgkJia2yuPl5OTghhtugEKhwMyZMxEaGooNGzZg6tSp0Ol0ePLJJwHU1gTdeuutCA0NxfPPPw+9Xo+FCxciPDzcLnHdc8896NSpE1599VUIISyKtbnjHnvsMXz11VeYOXMmunXrhoKCAvzxxx84fPgw+vXr12hsMTExSE1NRXp6Onr06NHouJtvvhnt2rXDypUrceedd5qdW7lyJeLi4pCUlIQJEyY0Gcddd92FY8eO4YsvvsDbb7+NkJAQAEBoaKhFz1dy3333oWvXrnjttdfwv//9Dy+//DKCgoLw0UcfYejQoXj99dexcuVKPPPMM7juuuswePDgRp/jrl27kJKSYqq3OHXqFD788EPcfPPNOHToEHx8fK4Zf0PmzZuH559/HlVVVViwYAEAIDAwsNHxer0eJ0+ehJ+fH6KiouqdLy0thdFoREBAQKP3cSUhBHJyctC9e/d65w4ePIioqCiMHj0aU6ZMwZgxY7Bs2TI89dRTGDp0KHr27NngfT766KOIjo7Gq6++ilmzZuG6665DeHg4MjIycNNNNyEgIABz586Fh4cHPvroI9x8883Ytm1bgz8LGvr+aK6GntvevXvRuXPneq/P9ddfDwDYt28f2rVr1+h9/vDDD4iNjcVNN93U4PnBgwcjNjYWP/zwAz744AOL4r3Svffei9jYWCxatAh//vknlixZgkuXLmHFihUNjm/qvTdt2jSrvv9TUlIAoNEx1rw/ampqUFxc3KzXICgoqEV1WTfffDNef/11TJ06FS+88AKCg4ORkpKCDz/8ELNmzYKvr2+92/Tr1w/bt2+3+jFlJ28eR62puLhYABBjxoypd+7SpUsiLy/P9FVeXi6EaPmM1NSpU0VkZKTIz883Oz5u3Dih1WpNjzNmzBjh5eUlTp8+bRpz6NAhoVKp7DIjNX78+Hrnmhtrc8dptVoxY8YMi2IXQoiff/5ZqFQqoVKpRFJSkpg7d6746aefRHV1db2x8+fPF56enqKoqMh0LDc3V6jVarFw4cJmx9HU8kRzn6/02k6bNs00Rq/Xi7Zt2wqFQiFee+010/FLly4Jb29vMXny5Cbjku77SqmpqQKAWLFiRbPib0z79u3Fgw8+2OQYvV4vFi9eLIKCgkyzDV26dBEvvPCCSEtLE2fPnhVffPGF6NSpk0X1Tp999pkAUG9W78KFCwKACA0NFWfPnjUdP3TokAAgPv300ybvd+vWrfWW9saMGSM0Go3IzMw0exx/f38xePBgs9s39f3RkufWvXt3MXTo0HpjMzIyBACxdOnSRu+vqKhIABB33HFHk497++23CwBCp9MJIaybkbq6hufxxx8XAMT+/fuFEA3/PGzsvWft9/9zzz0nAIiSkpJ656x9f0jvi+Z8Ned7qKkZKSGEeOmll4S3t7fZ/f7jH/9o9P6mTZsmvL29r/m4jsoxLgegVqHT6QAAfn5+9c7dfPPNCA0NNX29//77LX48IQS+/vprjB49GkII5Ofnm76GDx+O4uJi7NmzBwaDAT/99BPGjBmD9u3bm27ftWtXDB8+vMVxNOSxxx6zKtbmjgNqZzh27NiBCxcuWBTbLbfcgtTUVNx+++3Yv38/Fi9ejOHDhyM6Ohrff/+92dhJkyahqqoKX331lenYmjVroNfrMXHixBbFYcnrcqWHH37Y9HeVSoUBAwZACIGpU6eajgcGBqJLly44efJkk4/v7e1t+ntNTQ0KCgoQHx+PwMDAeo9rieLiYpw5cwa9evVqcpw0K/HCCy8gNTUVX3/9NW644Qa8+eab6N+/P9q1a4cpU6Zg7Nix6Ny5c7Me+8iRI5gxYwaSkpIwefJks3MHDx4EACxcuBBt27Y1Hffw8AAAaDQaS54mDAYDfv75Z4wZMwYdO3Y0HY+MjMT999+PP/74w/Rz4UpXf380V2PPraKiAp6envXGe3l5mc43pqSkBADg7+/f5GNL56Xx1pgxY4bZv5944gkAwI8//mjxfVn7fVdQUAC1Wt3gz2lr3x+9e/fGpk2bmvUVERFhUbwNiY2NxeDBg/Hxxx/j66+/xkMPPYRXX30V7733XoPj27Rpg4qKinpX9TkLLu25EekHTWlpab1zH330EUpKSpCTk2P6AG6pvLw8FBUV4eOPP8bHH3/c4Jjc3Fzk5eWhoqICnTp1qne+S5cuVv0Qu5YOHTpYHWtzxgG1fWAmT56Mdu3aoX///hg5ciQmTZpk9oHWmOuuuw7r1q1DdXU19u/fj2+++QZvv/027r77buzbtw/dunUDACQkJOC6667DypUrTYnKypUrccMNNyA+Pr7FcVjyfCVXJsMAoNVq4eXlZVr2uPJ4QUFBk49fUVGBRYsW4ZNPPsH58+fNlpmau1TREKnFx7USqbi4OBw8eNBs2e+uu+7C0qVLsXv3blRUVGDAgAEIDAxETU3NNR83Ozsbo0aNglarxVdffQWVSmV2XvqgHDNmjNnxI0eOAKj9frBEXl4eysvLG7xd165dYTQacfbs2XpLjFd/fzRHU8/N29u7wV5BlZWVpvONaW6CVFJSAoVCUe99ZomrfwbFxcVBqVRa1TeqJd93jbH2/dGmTRskJydb/biWWL16NaZNm4Zjx46Zkr277roLRqMR8+bNw/jx4xEcHGx2G+n72ll7BjKRciNarRaRkZFIT0+vd06qk2jOD4zG3uwGg8Hs31IjuYkTJ9b7zVvSq1cvWRrOXf2D29JYrzUOqK23uOmmm/DNN9/g559/xhtvvIHXX38d69atw2233dasODUaDa677jpcd9116Ny5M6ZMmYK1a9di4cKFpjGTJk3C7Nmzce7cOVRVVeHPP/80+82vJXFY8nwlVycHjR0DcM36myeeeAKffPIJnnzySSQlJUGr1UKhUGDcuHEtet9IiVTv3r2bHBcREYE1a9bg7bffxp49e+Dr64ubbroJd911F2655RYEBwdjx44deP755/Huu+82WdNWXFyM2267DUVFRfj9998brLU6cOAAIiIiEB0dbXZ8//79UKvVpgTa3ppKbBpyrecWGRmJ8+fP17vdxYsXAaDB10Ki1WoRFRV1zf52Bw4cQNu2bU2zMs39OdWUlnywW/t9FxwcDL1ej5KSknqzcNa+P6qrq1FYWNisuENDQxv9fm2ODz74AH379jWbMQOA22+/HcuXL8fevXvrJXWXLl2Cj4+Pxe87R8FEys2MGjUK//d//4edO3eaCj0t1aZNmwabz50+fdrs36GhofD394fBYGjytyGDwQBvb28cP3683rmjR49aFaOlLIm1OeMkkZGRePzxx/H4448jNzcX/fr1wyuvvNLsROpKAwYMAHD5w0cybtw4zJkzB1988QUqKirg4eGB++67z6I4GvvAaO7rYi9fffUVJk+ejLfeest0rLKyst77z9IPvAMHDiAyMvKasxcpKSmYPn06Zs+ejeeffx7nzp3Dt99+i0ceeQR6vR5AbZL40EMPIS4urtH7qaysxOjRo3Hs2DH88ssvjX7gHTx4sMHk7sCBA+jcuXODy2NNCQ0NhY+PT4PfR0eOHIFSqWyyyLs5mvPc+vTpg61bt0Kn05kVnO/YscN0vimjR4/GRx99hD/++AM33nhjvfO///47Tp06hTlz5piONffn1JWOHz9uNht34sQJGI1GxMbGNnqbpt571nz/JyQkAKhtmnz1LynWvj9SUlLwl7/8pdHHvFJWVlaTz/dacnJy0KZNm3rHpRlb6fvm6sfs2rWr1Y8pN9ZIuZm5c+fCx8cHDz30EHJycuqdv9YMAVA73V1cXGz2G+LFixfxzTffmI1TqVQYO3Ysvv766wZnwfLy8kzjhg8fjm+//RZnzpwxnT98+DB++umnZj+3lrAk1uaMMxgM9ZaewsLCEBUVdc3tELZu3drg/4O0xHn19H1ISAhuu+02fP7551i5ciVGjBhhShCaG4d0Jc3VHzzNfb72olKp6r0W7777br1Zhcbib8yZM2fq/cbckHbt2iE9Pd3U0fnhhx/G+vXrkZOTg++//x5ffvklTp06hY8//rjR36YNBgPuu+8+pKamYu3atUhKSmp03OHDhxv8oNy/f/81lyEbolKpcOutt+K7774zm23OycnBqlWrcOONNzb7SsPGYm7Oc7v77rthMBjMloerqqrwySefIDEx8ZrJ3DPPPAMfHx88+uij9ZaDCwsL8dhjjyEgIAAzZ840HW/uz6krXV0bKu0k0FTi09B7ryXf/9JruHv3brPjLXl/tGaNVOfOnbF379563e2/+OILKJXKBuPcs2cPBg4c2KLHlRNnpNxMp06dsGrVKowfPx5dunTBhAkT0Lt3bwghkJWVhVWrVkGpVDb5ITNu3DjMmzcPd955J2bNmoXy8nJ8+OGH6Ny5c70C4Ndeew1bt25FYmIiHnnkEXTr1g2FhYXYs2cPfvnlF9N08wsvvICNGzfipptuwuOPPw69Xo93330X3bt3b7Uta5oba3PGlZSUoG3btrj77rvRu3dv+Pn54ZdffsGuXbvMZlca8sQTT6C8vBx33nknEhISUF1djZSUFKxZswaxsbGYMmVKvdtMmjQJd999NwDgpZdeMh1vbhz9+/cHAPzjH//AuHHj4OHhgdGjR8PX17fZr4s9/PWvf8Vnn30GrVaLbt26ITU1Fb/88ku9Goum4m9Ihw4dsGXLFixevBhRUVHo2rWr6T6u1NgHfFBQEEaPHt2s5/D000/j+++/x+jRo1FYWIjPP//c7LxUk3j8+HFUVlbW+6CsqKjAiRMnGl1avZaXX34ZmzZtwo033ojHH38carUaH330EaqqqrB48WKr7lPS3OeWmJiIe+65B/Pnz0dubi7i4+Px6aef4tSpU/jPf/5zzceJj4/HihUrMH78ePTs2RNTp05Fhw4dTLe/dOkSVq9ebTabZMnPKUlWVhZuv/12jBgxAqmpqfj8889x//33N7kE3NB776abbkKXLl2s+v7v2LEjevTogV9++QUPPfSQ6XhL3h+2qpF67733UFRUZCqg/+GHH3Du3DkAtT+3tFot/va3v2HDhg246aabMHPmTAQHB2P9+vXYsGEDHn744XrLuGlpaSgsLMQdd9zR4vhk0/oXCpIjOHHihJg+fbqIj48XXl5ewtvbWyQkJIjHHntM7Nu3zzSusc7mP//8s+jRo4fQaDSiS5cu4vPPP2+0eWZOTo6YMWOGaNeunfDw8BARERFi2LBh4uOPPzYbt23bNtG/f3+h0Wjs3pCzsQ7GzY31WuOqqqrE3/72N9G7d29TE8TevXuLDz744Jrxb9iwQTz00EOmbs3SdjFPPPFEo53Nq6qqRJs2bYRWqzVrIGhJHC+99JKIjo4WSqWy3v95c16Xxl7byZMnC19f33qPN2TIENG9e/cmX4tLly6JKVOmiJCQEOHn5yeGDx8ujhw5ImJiYuq1Tmgq/qudP39eDB8+XPj5+QkAYsmSJU3G0RJDhgxp8nJzyZdffinQQEfonTt3CgBi/fr113yshtofCFHbkFN6vj4+PuIvf/mLSElJqXd7Szt8N/e5CVHbyfyZZ54RERERwtPTU1x33XVi48aNzXocycGDB8X9998vIiIiTP/PXl5eIiMjo8Hxzf05JR07dOiQuPvuu4W/v79o06aNmDlzZpMNOSVXv/eOHj1q9fe/EEL861//En5+fmbtP2zx/mipmJiYZrVN2LFjh7jttttERESE8PDwEJ07dxavvPKKqKmpqXef8+bNE+3bt3fqLWIUQljYbY2IHI5erzc16WvOb/hErmDFihV48MEHMXHixEabZjqj4uJidOzYEYsXLzZrG+JqqqqqEBsbi7///e+YPXu23OFYjTVSRC7g22+/RV5eHiZNmiR3KEStZtKkSVi0aBE+++wzPPvss3KHYzNarRZz587FG2+8IctVza3lk08+gYeHh9V9yxwFZ6SInNiOHTtw4MABvPTSSwgJCWlRk0oiIrIcZ6SInNiHH36I6dOnIywszKWWNoiInAVnpIiIiIisxBkpIiIiIisxkSIiIiKyEhty2pHRaMSFCxfg7+/vtJsxEhERuRshBEpKShAVFQWlsuk5JyZSdnThwoUW72NFRERE8jh79uw1t5NiImVH0s7dZ8+ebdF+VkRERNR6dDod2rVrZ/ocbwoTKTuSlvMCAgKYSBERETmZ5pTlsNiciIiIyEpMpIiIiIisxESKiIiIyEpMpIiIiIisxESKiIiIyEpMpIiIiIisxESKiIiIyEpMpIiIiIisxESKiIiIyEpMpIiIiIisxESKiIiIyEpMpIiIiIisxESKSAZGo4DBKOQOg4iIWoiJFJEMXt94BF0XbMSxnBK5QyEiohZgIkXUyoxGgS93n0W13ohNh3LkDoeIiFqAiRRRKzt0UYdL5TUAgPTzxTJHQ0RELcFEiqiVpWTmm/6efoGJFBGRM2MiRdTKUjILTH8/W1iB4rrZKSIicj5MpIhaUbXeiJ1ZhQAAT3Xtt18GZ6WIiJwWEymiVrT/XBHKqw0I8tXg5i6hALi8R0TkzJhIEbWi7Sdq66OS4oLRq20gACD9vE7GiIiIqCXUcgdA5E5STtTWRw2MC0Z0oDcAzkgRETkzJlJEraS8Wo+9Zy8BAAbFhcDPq/bbLyu/DKVVevh58tuRiMjZcGmPqJXsOnUJNQaB6EBvxAT7IMTPE5FaLwgBHL7I5T0iImfERIqolaTU1UcNjAuGQqEAAHSP0gJgY04iImfFRIqolWyva8Q5KD7EdKxHdAAA4CATKSIip8REiqgVFJVXI+NC7fJdUlyw6XiPuhmpDF65R0TklJhIEbWCP08WQAggPswP4QFepuM9omsTqeO5JaioNsgVHhERWYmJFFEr2F7X9mDQFbNRABAe4IkQPw2MAjiSzVkpIiJnw0SKqBVI9VEDr6iPAgCFQnG54PwCEykiImfDRIrIzrKLK3EyrwxKBXBDx+B656WC8wwWnBMROR2HSKTef/99xMbGwsvLC4mJidi5c2eT49euXYuEhAR4eXmhZ8+e+PHHH83OCyGwYMECREZGwtvbG8nJyTh+/LjZmMLCQkyYMAEBAQEIDAzE1KlTUVpaajbmp59+wg033AB/f3+EhoZi7NixOHXqlE2eM7kPaVuYHtFaaL096p3vYZqRYiJFRORsZE+k1qxZgzlz5mDhwoXYs2cPevfujeHDhyM3N7fB8SkpKRg/fjymTp2KvXv3YsyYMRgzZgzS09NNYxYvXowlS5Zg6dKl2LFjB3x9fTF8+HBUVlaaxkyYMAEZGRnYtGkT1q9fj99++w3Tpk0znc/KysIdd9yBoUOHYt++ffjpp5+Qn5+Pu+66y34vBrmklExpW5iQBs9LBedHs0tQrTe2WlxERGQDQmbXX3+9mDFjhunfBoNBREVFiUWLFjU4/t577xWjRo0yO5aYmCgeffRRIYQQRqNRREREiDfeeMN0vqioSHh6eoovvvhCCCHEoUOHBACxa9cu05gNGzYIhUIhzp8/L4QQYu3atUKtVguDwWAa8/333wuFQiGqq6ub9dyKi4sFAFFcXNys8eR6jEajuOHVX0TMvPXit2O5jY7p9fxPImbeenHwXFErR0hERFez5PNb1hmp6upqpKWlITk52XRMqVQiOTkZqampDd4mNTXVbDwADB8+3DQ+KysL2dnZZmO0Wi0SExNNY1JTUxEYGIgBAwaYxiQnJ0OpVGLHjh0AgP79+0OpVOKTTz6BwWBAcXExPvvsMyQnJ8PDo/7yDABUVVVBp9OZfZF7y8ovw8XiSmhUSgyICWpwjEKhuFwnxeU9IiKnImsilZ+fD4PBgPDwcLPj4eHhyM7ObvA22dnZTY6X/rzWmLCwMLPzarUaQUFBpjEdOnTAzz//jGeffRaenp4IDAzEuXPn8OWXXzb6fBYtWgStVmv6ateu3bVeAnJx2+uW9frFBMJbo2p0nFQnxQ7nRETORfYaKUeVnZ2NRx55BJMnT8auXbuwbds2aDQa3H333RBCNHib+fPno7i42PR19uzZVo6aHM3l/fUaro+SdI+W9tzjLCYRkTNRy/ngISEhUKlUyMnJMTuek5ODiIiIBm8TERHR5Hjpz5ycHERGRpqN6dOnj2nM1cXser0ehYWFptu///770Gq1WLx4sWnM559/jnbt2mHHjh244YYb6sXm6ekJT0/P5jx1cgNGo0DqybpGnPH12x5cqUdU7dLe4Ys66A1GqFX8HYeIyBnI+tNao9Ggf//+2Lx5s+mY0WjE5s2bkZSU1OBtkpKSzMYDwKZNm0zjO3TogIiICLMxOp0OO3bsMI1JSkpCUVER0tLSTGO2bNkCo9GIxMREAEB5eTmUSvOXR6VSmWIkupZDF3UoKq+Br0aFXm0DmxwbG+wLX40KVXojMvPKWidAIiJqMdl/7Z0zZw6WLVuGTz/9FIcPH8b06dNRVlaGKVOmAAAmTZqE+fPnm8bPnj0bGzduxFtvvYUjR47g+eefx+7duzFz5kwAtYW7Tz75JF5++WV8//33OHjwICZNmoSoqCiMGTMGANC1a1eMGDECjzzyCHbu3Int27dj5syZGDduHKKiogAAo0aNwq5du/Diiy/i+PHj2LNnD6ZMmYKYmBj07du3dV8kckopdd3MEzsGw+MaM0xK5RUdzlknRUTkNGRPpO677z68+eabWLBgAfr06YN9+/Zh48aNpmLxM2fO4OLFi6bxAwcOxKpVq/Dxxx+jd+/e+Oqrr/Dtt9+iR48epjFz587FE088gWnTpuG6665DaWkpNm7cCC+vy5vFrly5EgkJCRg2bBhGjhyJG2+8ER9//LHp/NChQ7Fq1Sp8++236Nu3L0aMGAFPT09s3LgR3t7erfDKkLOT9tcbGNf0sp6ke92Ve2zMSUTkPBSiscppajGdTgetVovi4mIEBATIHQ61omq9Eb1f+BkVNQb8OOsmdIu69v//12nn8PTa/bg+NghfPtbw0jYREdmfJZ/fss9IEbmifWeLUFFjQJCvBgkR/s26Tc+2tUt7GReKYTTy9xsiImfARIrIDqT6qKS4YCiVimbdpmOIL7w8lCirNuBUAQvOiYicARMpIjtIqauPGnSN/lFXUquU6Bop1UmxnxQRkTNgIkVkY+XVeuw9ewnAtftHXU3qcJ7BK/eIiJwCEykiG9uZVYgag0B0oDfaB/lYdFtpzz1uFUNE5ByYSBHZWErm5bYHCkXz6qMkV/aS4gW1RESOj4kUkY1JheaD4ptfHyXpHO4PD5UCuko9zl2qsHVoRERkY0ykiGyoqLwaGXWF4s1txHkljVqJLnXtEtjhnIjI8TGRIrKh1MwCCAF0CvNDWIDXtW/QAKngnB3OiYgcHxMpIhva3oJlPUn3aKlOii0QiIgcHRMpIhuS+kclWbGsJ+kZzYJzIiJnwUSKyEYuFlfgZH4ZlArgho7WJ1IJEf5QKRUoKKtGjq7KhhESEZGtMZEishFpNqpntBZabw+r78fLQ4VOYX4AWHBOROTomEgR2YhUHzWwBfVRku4sOCcicgpMpIhsQAhh1f56jZE6nHNGiojIsTGRIrKBk/llyNZVQqNSon9MmxbfXw9euUdE5BSYSBHZgLQtTL+YQHhrVC2+v66RAVAogGxdJfJKWHBOROSomEgR2UDKibr+UTZY1gMAP081OoT4AgAyWCdFROSwmEgRtZDRKJB6sm6jYhsUmkukDufSljNEROR4mEgRtdChizoUldfAz1ON3m21NrtfFpwTETk+JlJELbS9blnv+g5BUKts9y1lKjjn0h4RkcNiIkXUQlKh+cAWbAvTEKmX1NnCChSX19j0vomIyDaYSBG1QLXeiJ1ZhQBatlFxQ7TeHmgf5AOABedERI6KiRRRC+w7W4SKGgOCfTXoEu5v8/s31UkxkSIickhMpIhaQKqPSooLhlKpsPn9S8t7B9mYk4jIITGRImqBFGl/PRv1j7qaVHCewSv3iIgcEhMpIiuVV+ux90wRAGBQvG0LzSXdo2qX9k7ml6GkkgXnRESOhokUkZV2ZhVCbxSIDvQ2FYXbWoifJyK1XgCAwxdL7PIYRERkPSZSRFaS2h4Mig+GQmH7+iiJVCfFxpxERI6HiRSRlaRCc1u3Pbgar9wjInJcTKSIrHCprBqHLtZeSZfU0T71UZKepoJzXrlHRORomEgRWSH1ZAGEADqF+SEswMuujyVduXc8twQV1Qa7PhYREVmGiRSRFaS2B/Ze1gOAMH9PhPh5wiiAI9mclSIiciRMpIiskHLCPvvrNUShUFxRJ8VEiojIkTCRIrLQxeIKnMwvg1IBJNq5PkrSI4qNOYmIHBETKSILba+bjeoZrYXW26NVHlOakTrIRIqIyKEwkSKyUEpd24OBrVAfJZF6SR3LKUGVngXnRESOgokUkQWEEJcbcdppf72GtG3jDa23B2oMAsdzSlvtcYmIqGlMpIgscDK/DNm6SmjUSgyIbdNqj2tWcM7lPSIih2FVIrVnzx4cPHjQ9O/vvvsOY8aMwbPPPovq6mqbBUfkaKRlvf7t28DLQ9Wqjy0VnLPDORGR47AqkXr00Udx7NgxAMDJkycxbtw4+Pj4YO3atZg7d65NAyRyJNtbse3B1aTGnOnscE5E5DCsSqSOHTuGPn36AADWrl2LwYMHY9WqVVi+fDm+/vprW8ZH5DAMRoHUk3WJVCsWmkukROrwRR30BmOrPz4REdVnVSIlhIDRWPuD/JdffsHIkSMBAO3atUN+fr7toiNyIIcv6lBcUQM/TzV6t9W2+uPHBPnAz1ONKr0RmXllrf74RERUn1WJ1IABA/Dyyy/js88+w7Zt2zBq1CgAQFZWFsLDw20aIJGj2F5XH5XYIQhqVetfp6FUKtAtigXnRESOxKpPg7fffht79uzBzJkz8Y9//APx8fEAgK+++goDBw60aYBEjmJ7pnzLehIWnBMRORa1NTfq3bu32VV7kjfeeANqtVV3SeTQqvVG7MoqBCBPobmELRCIiByLVTNSHTt2REFBQb3jlZWV6Ny5c4uDInI0e89cQkWNAcG+GnQJ95ctDqngPOOCDkajkC0OIiKqZVUiderUKRgM9bepqKqqwrlz51ocFJGjkbqZJ8UFQ6lUyBZHxxBfeHkoUV5tQFYBC86JiORm0Trc999/b/r7Tz/9BK328pVLBoMBmzdvRocOHWwXHZGDSMmsLTQfJGN9FACoVUp0jQzA3jNFSD9fjLhQP1njISJydxYlUmPGjAFQu13F5MmTzc55eHggNjYWb731ls2CI3IEZVV67D1TBKB199drTI8oLfaeKULGBR3u6BMtdzhERG7NokRK6h3VoUMH7Nq1CyEh8n+oENnbzlOF0BsFogO90S7IW+5w0NPU4ZwF50REcrPqErusrCxbx0HksKT99QbFB0OhkK8+StL9iiv3hBAOERMRkbuyuqvgtm3bMHr0aMTHxyM+Ph633347fv/9d1vGRuQQpEJzueujJJ3C/KFRKaGr1OPcpQq5wyEicmtWJVKff/45kpOT4ePjg1mzZmHWrFnw9vbGsGHDsGrVKlvHSCSbS2XVOHSxdpPgJBn7R11Jo1aiS0RtCwYu7xERycuqpb1XXnkFixcvxlNPPWU6NmvWLPzrX//CSy+9hPvvv99mARLJKfVkAYQAOof7IczfS+5wTHpEB+Dg+WKkXyjGbT0j5Q6HiMhtWTUjdfLkSYwePbre8dtvv531U+RSpP31BjrA1XpX6l63VczB8zqZIyEicm9WJVLt2rXD5s2b6x3/5Zdf0K5duxYHReQopPooObeFaYipw3ldwTkREcnDqqW9p59+GrNmzcK+fftMmxRv374dy5cvxzvvvGPTAInkcqGoAln5ZVAqgMSOjpVIJUT4Q6VUoKCsGtm6SkRq5W/LQETkjqxKpKZPn46IiAi89dZb+PLLLwEAXbt2xZo1a3DHHXfYNEAiuUizUT3bBkLr7SFzNOa8PFToFOaHI9klSD+vYyJFRCQTqxIpALjzzjtx55132jIWIodi6h/lYMt6ku5R2rpEqhi3dAuXOxwiIrdkdSIFANXV1cjNzTV1PJe0b9++RUERyU0Ige2ZjlloLukZHYCv9wAZF9gCgYhILlYlUsePH8dDDz2ElJQUs+NSl2WDwWCT4IjkkplXhhxdFTRqJQbEtpE7nAb1MG0Vwyv3iIjkYlUi9eCDD0KtVmP9+vWIjIzkFhXkclLrZqP6t28DLw+VzNE0rGtkABQKIFtXibySKoT6e8odEhGR27Eqkdq3bx/S0tKQkJBg63iIHML2E9K2MI5ZHwUAvp5qdAzxRWZeGTIuFOPmLmFyh0RE5Has6iPVrVs35Ofn2zoWIodgMAqknqzrH+Ug++s1xtRP6gKX94iI5NDsREqn05m+Xn/9dcydOxe//vorCgoKzM7pdPyBTs7t0AUdiitq4OepRq+6RMVR9YiS6qRYcE5EJIdmL+0FBgaa1UIJITBs2DCzMSw2J1cgXa2X2CEIapVVk7atpnt0AADgIBMpcmBGo0CV3ghvjWPWGxK1RLMTqa1bt9ozDiKHYdoWxsGX9YDLe+6du1SBovJqBPpoZI6IqL7HV+7B9hP52PzMEIfa/JvIFpr96/aQIUOa/WWp999/H7GxsfDy8kJiYiJ27tzZ5Pi1a9ciISEBXl5e6NmzJ3788Uez80IILFiwAJGRkfD29kZycjKOHz9uNqawsBATJkxAQEAAAgMDMXXqVJSWlta7nzfffBOdO3eGp6cnoqOj8corr1j8/Mh5VOuN2JVVCMCxC80lWm8PtA/yAcA6KXJMRqPA1qO5KKnSY8/pS3KHQ2RzVq1bbNy4EX/88Yfp3++//z769OmD+++/H5cuWfaNsmbNGsyZMwcLFy7Enj170Lt3bwwfPhy5ubkNjk9JScH48eMxdepU7N27F2PGjMGYMWOQnp5uGrN48WIsWbIES5cuxY4dO+Dr64vhw4ejsrLSNGbChAnIyMjApk2bsH79evz222+YNm2a2WPNnj0b//d//4c333wTR44cwffff4/rr7/eoudHzmXvmUuoqDEg2FeDLuH+cofTLD3qlvdYJ0WO6HxRBar0tU2bM/PKZI6GyA6EFXr06CH+97//CSGEOHDggNBoNGL+/PnihhtuEA8++KBF93X99deLGTNmmP5tMBhEVFSUWLRoUYPj7733XjFq1CizY4mJieLRRx8VQghhNBpFRESEeOONN0zni4qKhKenp/jiiy+EEEIcOnRIABC7du0yjdmwYYNQKBTi/PnzpjFqtVocOXLEoudzpeLiYgFAFBcXW30f1Lre+vmoiJm3XsxYmSZ3KM32/tbjImbeejFz1R65QyGqZ+uRHBEzb72ImbdePLV6r9zhEDWLJZ/fVs1IZWVloVu3bgCAr7/+GqNHj8arr76K999/Hxs2bGj2/VRXVyMtLQ3JycmmY0qlEsnJyUhNTW3wNqmpqWbjAWD48OGm8VlZWcjOzjYbo9VqkZiYaBqTmpqKwMBADBgwwDQmOTkZSqUSO3bsAAD88MMP6NixI9avX48OHTogNjYWDz/8MAoLCxt9PlVVVbyC0cmZ9tdzgvooiXTlXgZnpMgBXTkLlZlX2sRIIudkVSKl0WhQXl4OAPjll19w6623AgCCgoIsSh7y8/NhMBgQHm6+4Wp4eDiys7MbvE12dnaT46U/rzUmLMy8eaFarUZQUJBpzMmTJ3H69GmsXbsWK1aswPLly5GWloa777670eezaNEiaLVa01e7du2u9RKQAymr0mPf2SIAwCAH3V+vId2japf2TuaXoaSyRuZoiMxdmTxl5pVBCCFjNES2Z1UideONN2LOnDl46aWXsHPnTowaNQoAcOzYMbRt29amAcrFaDSiqqoKK1aswE033YSbb74Z//nPf7B161YcPXq0wdvMnz8fxcXFpq+zZ8+2ctTUEjtPFUJvFGjbxhvtg33kDqfZgv08EaWtvRLq8MUSmaMhMnci93IiVVqlR46uSsZoiGzPqkTqvffeg1qtxldffYUPP/wQ0dHRAIANGzZgxIgRzb6fkJAQqFQq5OTkmB3PyclBREREg7eJiIhocrz057XGXF3MrtfrUVhYaBoTGRkJtVqNzp07m8Z07doVAHDmzJkGY/P09ERAQIDZFzkP07KeE81GSbpHszEnOaaTdTNSKmVtH0Iu75GrsSqRat++PdavX4/9+/dj6tSppuNvv/02lixZ0uz70Wg06N+/PzZv3mw6ZjQasXnzZiQlJTV4m6SkJLPxALBp0ybT+A4dOiAiIsJsjE6nw44dO0xjkpKSUFRUhLS0NNOYLVu2wGg0IjExEQAwaNAg6PV6ZGZmmsYcO3YMABATE9Ps50jOQ9pfb6ATtD24mqnD+QUmUuQ4isqrkV9aDQC4PjYIABMpcj2yt22eM2cOli1bhk8//RSHDx/G9OnTUVZWhilTpgAAJk2ahPnz55vGz549Gxs3bsRbb72FI0eO4Pnnn8fu3bsxc+ZMAIBCocCTTz6Jl19+Gd9//z0OHjyISZMmISoqCmPGjAFQO7M0YsQIPPLII9i5cye2b9+OmTNnYty4cYiKigJQW3zer18/PPTQQ9i7dy/S0tLw6KOP4pZbbjGbpSLXUFhWjUMXa+v7kuKcMJFiCwRyQFKheUSAF3q1q032M3OZSJFraXZnc3u57777kJeXhwULFiA7Oxt9+vTBxo0bTcXiZ86cgVJ5Od8bOHAgVq1aheeeew7PPvssOnXqhG+//RY9evQwjZk7dy7Kysowbdo0FBUV4cYbb8TGjRvh5XW5o+7KlSsxc+ZMDBs2DEqlEmPHjjWbTVMqlfjhhx/wxBNPYPDgwfD19cVtt92Gt956qxVeFWptqXXdzDuH+zll52Vp8+ITuaWoqDZwKw5yCNLsU1yYL+JC/eqOsZcUuRaF4CUUdqPT6aDValFcXMx6KQf3j28OYuWOM3hwYCyev7273OFYTAiB617ZjPzSKqx7fCD6tW8jd0hEWLThMD7adhKTk2JwR99o3PVBCiK1XkidP+zaNyaSkSWf37Iv7RE5Aml/PWfqH3UlhUJhWt5jPylyFJm5tbNPcWF+iAupnZG6WFyJ0iq9nGER2RQTKXJ7F4oqkJVfBqUCuL5DkNzhWK2n6co9NoIlxyBdsRcX6getjwdC/DwBAFlc3iMX0qJEKjc3F3PmzMG5c+dsFQ9Rq9te1/agZ9tAaL09ZI7Get155R45kGq9EacLaxs3S/VRcaG+AHjlHrmWFiVSn332Gd555x3897//tVU8RK3OtKznhFfrXUla2juWU4IqvUHmaMjdnSksg8Eo4KtRITygdiYqLkwqOGciRa6jRYnUp59+imHDhuHTTz+1VTxErUoIgZRM59tfryHRgd4I9PFAjUHgeA4/qEheJ66oj1IoaptxXr5yj+9Pch1WJ1J79uzBiRMnsGLFChQWFuL333+3ZVxErSIzrww5uipo1Er0j3HuK90UCsXlxpwsOCeZZV5RHyUxLe3lskaKXIfVidSnn36K0aNHIyIiAvfccw+WL19uw7CIWoc0G9W/fRt4eTh/76XuUmNO1kmRzKTGm1LyVPv32qQqK78MeoNRlriIbM2qREqv12PVqlWYNGkSAGDixIn46quvUFFRYdPgiOxNKjQf5ITbwjREmpE6yCv3SGYNzUhFB3rDU61EtcGIc5f4eUGuwapEav369VCpVLjtttsAAIMHD0ZwcDDWrVtn0+CI7MlgFKaO5gOdvD5KInU4P3xRhxr+xk8yEUKYOphLBeYAoFQq0JF1UuRirEqkVqxYgfHjx5tt3TJx4kQu75FTOXRBB12lHv6eavSqS0CcXUyQD/w81ajWG/lBRbLJLalCaZUeSgUQE+xjdo4tEMjVWJxI5efn43//+59pWU8yceJEbN26lT2lyGlsr6uPSuwYBLXKNXrTKpUKdIuSNjDm8h7JQ6qPah/kA0+1ee2h6co9FpyTi7D408Pf3x/Hjx9H3759zY537twZWVlZCA52jVoTcn1SfVRSnGss60kudzhnwTnJo6H6KAl7SZGrUVt6A09PT7Rv377Bc+3atWtxQEStoUpvwK5ThQBcp9BcYtpzj1fukUyk+qj4sPqJVDxrpMjFtHg9o6amBsePH0dxMX9ok/PYe6YIlTVGhPhp0CXcX+5wbEq6ci/jgg5Go5A5GnJHTc1IdQjxhUIBXCqvQWFZdWuHRmRzFiVSixcvNrU4MBgMeOaZZ+Dn54eEhASEhITgoYceQk1NjV0CJbIlaVuYpLgQU9dlV9Ex1A9eHkqUVxuQVcA6FGp9ph5SYb71znlrVIgO9K4dx1kpcgEWJVLz589HSUkJAODtt9/Gf//7XyxduhQHDx7E8uXL8b///Q9vv/22XQIlsqUUqX+Uk++v1xCVUoFukVLBOWeKqXWVVelxobgSANAxpP6MFHBlwTkTKXJ+FiVSQlxeJli1ahVee+01TJkyBd26dcOECRPwr3/9CytWrLB5kES2VFalx76zRQCAgS5WaC6R+kllXOCVe9S6svJrZ0GDfTVo46tpcAz33CNXYnGNlLQMcubMGQwcONDs3MCBA5GVlWWbyIjsZGdWIfRGgbZtvNH+qh43roJ77pFcmqqPkkhLflJROpEzs/iqvWXLlsHPzw8ajQaFhYVm50pKSuDp6Wmz4IjswbQtjIvORgFX7Ll3vhhCCJerAyPH1VR9lERKsk5waY9cgEWJVPv27bFs2TIAtW0Q9uzZg8GDB5vOb926FV26dLFthEQ2lmLaFsb16qMkncL8oVEpoavU42xhhcvOvJHjOdGcGam6c2cvlaOyxuASG4aT+7IokTp16lST5xMTE80SKyJHU1hWjUMXa+uGXLU+CgA0aiW6RPjj4PlipF8oZiJFrUbqWN5UIhXip0GAlxq6Sj1OFZQhISKgtcIjsjmb7otxww031Ot4TuRIpE2KO4f7IdTftZehe7DDObUyg1GYis2bSqQUCsXlDufcKoacnMWJ1P79+/Hf//4XJ0+eBABkZGTg8ccfx2OPPYaffvrJ5gES2ZK0v54rz0ZJpA7n6bxyj1rJuUvlqDYYoVErEd3Gu8mxvHKPXIVFidS6devQv39/zJ07F71798Yvv/yCG2+8EcePH8epU6cwatQorFq1yl6xErWYqX9UvBskUlKH87qCcyJ7k5KijiG+UCmbvsCBiRS5CosSqVdeeQUvvPAC8vPzsWzZMtxzzz2YM2cONm3ahI0bN+L111/HG2+8Ya9YiVrkfFEFThWUQ6kAEjsGyR2O3XWJ8IdKqUBBWTWydZVyh0NuwFQf1cAee1eL5+bF5CIsSqSOHj2KCRMmAADuu+8+lJWVYcyYMabzd955J06cOGHTAIlsRZqN6tU2EAFeHjJHY39eHip0qvuwSj/P5T2yv+b0kJLEhdb1ksot456Q5NQsSqT8/f1RUFBbrFtUVAS9Xm/6NwAUFBTAz+/a30BEcpDaHgxy4bYHV2PBObWmy4lU4z2kJO2CfOChUqCixsAZU3JqFiVSycnJmDFjBlauXInJkyfj1ltvxfz583HkyBEcPXoUf/vb33DjjTfaK1YiqwkhTI043aHQXNIjqrbgPOMCEymyP6lTeXNmpDxUSsQESx3OubxHzsuiROrNN99EQEAAHnvsMVRXV2PNmjUYMGAAunXrhm7duuHChQt47bXX7BUrkdUy80qRW1IFjVqJ/jFt5A6n1UgzUgc5I0V2VlhWjcKyagBAx2bMSAFXLu8xkSLnZVFDzvDwcPz8889mx95991089dRTKC8vR0JCAtRqi3edIbI7aVlvQEwbt+qi3DUyAAoFkKOrQm5JJcL8veQOiVzUybpZpehAb/homvc5UDtzlcM998ip2STr6dixoy3uhshutrtR24Mr+Xqq0THEF5l5Zci4oENYFyZSZB+m1gfNnI0CuOceuQaLG3JWVFTgjz/+wKFDh+qdq6ysxIoVK2wSGJGtGIzC1NF8YJz7FJpLpOW9DC7vkR1JyVBz6qMkcWyBQC7AokTq2LFj6Nq1KwYPHoyePXtiyJAhuHjxoul8cXExpkyZYvMgiVoi40IxdJV6+Huq0bMuqXAnPU1X7rEFAtmPqdC8GT2kJNLsVW5JFXSVNXaJi8jeLEqk5s2bhx49eiA3NxdHjx6Fv78/Bg0ahDNnztgrPqIW236idjYqsWMQ1Cqbbi/pFLrXdThP55V7ZEeWtD6QBHh5IKxuz8uTrJMiJ2XRp0pKSgoWLVqEkJAQxMfH44cffsDw4cNx0003mfbeI3I0KW60v15DutW1QDh3qQJF5dUyR0OuqLLGgLOF5QCAeAuW9oArtophnRQ5KYsSqYqKCrOr8hQKBT788EOMHj0aQ4YMwbFjx2weIFFLVOkN2HWqEID7FZpLtN4eiAn2AQBkcANjsoPTBeUwCsDfU43Quhmm5ooLYy8pcm4WJVIJCQnYvXt3vePvvfce7rjjDtx+++02C4zIFvadKUJljREhfhp0DnffrvvSBsbscE72YFrWC/ODQtH0ZsVXi+fmxeTkLEqk7rzzTnzxxRcNnnvvvfcwfvx47jJPDmX/uSIAwICYIIt/wLuS7tG1y3vpnJEiO8i04oo9yeUr91gjRc7JokRq/vz5+PHHHxs9/8EHH8BoNLY4KCJbka5U69nW/a7WuxJnpMieLs9INb/QXCIlX6cLylBj4OcHOR+bXML066+/oqKiwhZ3RWRT0pVq3esKrt2V9Pyz8stQwsvMycYs2WPvahEBXvDRqFBjEKaCdSJnYpNE6tZbb8WpU6dscVdENlNapUdWfu0PeKkFgLsK9vNElLa2q/khLu+RDQkhrmh9YHkipVQqTP2kuLxHzsiiLWL69evX4HG9Xo+xY8fCy6v2B/WePXtaHhlRCx2+qIMQtb/xWnolkSvqHq3FheJKpF/QIbGj+3V4J/vI1lWivNoAtVJhujrUUnGhfkg/r0NmXiluQbiNIySyL4sSqYMHDyI5ORk33HCD6ZgQAvv378df/vIXhIWF2TxAImsdPFe7rNcj2r2X9SQ9o7XYdCiHW8WQTWXm1s4itQ/2gYeVDW+55x45M4sSqV9//RWTJ0/G9ddfj4ULF0KprP2meeWVVzBjxgx069bNLkESWeNyfZR7L+tJepiu3GMiRbbTkmU9SRxbIJATs+jXh0GDBiEtLQ3Hjh3DwIEDkZmZaa+4iFosQ7pizw3312uIdOXeidxSVFQbZI6GXIU1mxVfzdSUM7eULXTI6Vg8D6vVavHFF1/g0UcfxY033oiPP/7YrfvzkGOqqDbgeG4JAKAHEykAQFhdrZhRAIezWXBOtmHNHntXiw32hUIB6Cr1yC/lNkbkXKy+am/KlCn47bff8H//93/Q6/W2jImoxY5k62AUQIifBuEBLDSX9Khrg8A6KbKVK7uaW8vLQ4V2bXzM7o/IWbSo/UGnTp3w559/4tKlS+jatautYiJqMamDd/coLWdMryDNzkmNSolaoqSyBjm6KgAtW9qrvT333CPn1OI+UkqlElotP6zIsUgzLrxiz5xUeM+Cc7KFk3V9n0L9PaH19mjRfcVLW8XkspcUOReLE6kPPvgAycnJuPfee7F582azc/n5+ejYsaPNgiOylpQo9OAVe2akxPJYTgmq9Cw4p5axRX2UhFfukbOyKJFasmQJ/va3vyEhIQGenp4YOXIkFi1aZDpvMBhw+vRpmwdJZIlqvRFHs1lo3pDoQG8E+nigxiBwLJsfWNQytmh9ILm8eTHfl+RcLOoj9dFHH2HZsmW4//77AQDTp0/HmDFjUFFRgRdffNEuARJZ6lhOCWoMAgFearRt4y13OA5FoVCgR5QWf5zIR/qFYrffzJlaRlqGs0kiVXcf54sqUFFtgLdG1eL7JGoNFs1IZWVlYeDAgaZ/Dxw4EFu2bMHHH3+M+fPn2zw4Imukm+qjWLvXkMsF56yTopaxxRV7kiBfDdr4eEAImPbIJHIGFs1IhYSE4OzZs4iNjTUd69GjB7Zs2YKhQ4fiwoULto6PyGKm+igu6zXocodzXrlH1tMbjDhVIM1ItbxGqvZ+/LD79CVk5pWiWxQvFCHnYNGM1I033oh169bVO96tWzds3rwZGzZssFlgRNaSLu1nItUwqQD/8EUdagxGmaMhZ3X2UgVqDAJeHkpEaW2zhM4998gZWTQj9fe//x1paWkNnuvevTu2bNmCr7/+2iaBEVlDbzDi8MW6RIq/0TaofZAP/D3VKKnSIzOvFAkRfJ3Icpl1yU7HED8olbZZQjdtFcOCc3IiFiVSvXr1Qq9evRo936NHD/To0aPFQRFZKzOvDFV6I3w1KsQG22a5wdUolQp0iwrAjqxCpJ/XMZEiq5ywYX2U5HILBNZIkfNocUPOrKwsbNq0Cenp6baIh6hFpALq7lFam/2W7IpYcE4tlZlrux5SEimROplXCqORmxeTc7AokXr88cdRWlr7zVNRUYG7774b8fHxGD58OHr37o2hQ4eazhPJQSo0786O5k2SCs4z2OGcrGTLHlKStm28oVEpUaU34nxRhc3ul8ieLEqkPvroI5SXlwMAXnrpJezYsQO//PILSktL8dtvv+HMmTN45ZVX7BIoUXNkSIXm7GjeJOn1ybigg4G/+ZOFhBCm5TdbJlJqlRKxIdy8mJyLRYmUEJd/4P7www9YvHgx/vKXv8DHxweDBg3Cv/71rwav6iNqDUajMM2w8Iq9pnUM9YOXhxLl1Qb27CGLFZRVo7iiBgoF0NGGS3sA66TI+VhcIyU1OMzOzq5XeN67d2+cPXvWNpERWehUQRnKqg3wVCttWrfhilRKBbpFcnmPrCPVR7Vt4w0vD9t2II/nVjHkZCxOpP75z39izpw5UCqV9RpwFhQUwNeXH2AkD6nBZNfIAKhVLb6OwuX1ZME5Wckey3oS04wUe0mRk7Co/cHgwYNx9OhRALVNOK/eoPjHH39E9+7dbRcdkQWkhKAnl/WapbspkWKHc7KMPQrNJVzaI2djUSL166+/Nnn+/vvvx4MPPtiCcIisd3mPPV6x1xxSwXn6hWIIIbgvITWbPRMpqeYqv7QKxeU10Pp42PwxiGzJpusfHTt2RNu2bW15l0TNIoQw6yFF19Yp3A8alRIllXqcLeSl5tR8lxMp25dy+HqqEan1qn2cfC7vkeNjIQm5hHOXKqCr1MNDpUDncH+5w3EKHiolEiJrX6t0FpxTM1XWGHDuUm3ibcuu5lfinnvkTJqdSCmVSqhUKou/XnzxxWve9/vvv4/Y2Fh4eXkhMTERO3fubHL82rVrkZCQAC8vL/Ts2RM//vij2XkhBBYsWIDIyEh4e3sjOTkZx48fNxtTWFiICRMmICAgAIGBgZg6dWqjzURPnDgBf39/BAYGXvO5kDyk2aguEf7QqPn7QXNJs3csOKfmysovgxCA1tsDwb4auzyGNNPFK/fIGTS7RiorK8uqB7hW8rFmzRrMmTMHS5cuRWJiIv79739j+PDhOHr0KMLCwuqNT0lJwfjx47Fo0SL89a9/xapVqzBmzBjs2bPHtM/f4sWLsWTJEnz66afo0KED/vnPf2L48OE4dOgQvLxqp4wnTJiAixcvYtOmTaipqcGUKVMwbdo0rFq1yuzxampqMH78eNx0001ISUmx6jUg+5NmVNiI0zJSPZl0xSPRtZy4YmsYe9XVSTNdmbksOCcnIGR2/fXXixkzZpj+bTAYRFRUlFi0aFGD4++9914xatQos2OJiYni0UcfFUIIYTQaRUREhHjjjTdM54uKioSnp6f44osvhBBCHDp0SAAQu3btMo3ZsGGDUCgU4vz582b3PXfuXDFx4kTxySefCK1Wa9FzKy4uFgBEcXGxRbcjy036zw4RM2+9WJF6Su5QnMq+M5dEzLz1ou+LPwuj0Sh3OOQE3t50VMTMWy+e+XKf3R7jj+N5ImbeevGXN7ba7TGImmLJ57esayDV1dVIS0tDcnKy6ZhSqURycjJSU1MbvE1qaqrZeAAYPny4aXxWVhays7PNxmi1WiQmJprGpKamIjAwEAMGDDCNSU5OhlKpxI4dO0zHtmzZgrVr1+L9999v+ZMluxFXFJr3iOIVe5boEuEPlVKBwrJqXCyulDsccgKmHlJ2qo8CLtdInS4sR7XeaLfHIbIFWROp/Px8GAwGhIeHmx0PDw9HdnZ2g7fJzs5ucrz057XGXL1sqFarERQUZBpTUFCABx98EMuXL0dAQPM+nKuqqqDT6cy+yP5ydFUoKKuGSqlA10gmUpbw8lChU90HIuukqDkyc+3X+kASHuAJX40KBqPAmUIu75FjY1VuIx555BHcf//9GDx4cLNvs2jRImi1WtNXu3bt7BghSaQEID7Uz+bbVbgDU4dz1knRNRiNAifz7df6QKJQKEwzXidYJ0UOTtZEKiQkBCqVCjk5OWbHc3JyEBER0eBtIiIimhwv/XmtMbm5uWbn9Xo9CgsLTWO2bNmCN998E2q1Gmq1GlOnTkVxcTHUajX++9//Nhjb/PnzUVxcbPrivoOt4+B5blTcEtLrlsEZKbqGC8UVqKwxwkOlQPsgH7s+Vnwo99wj59DsRCooKAj5+fkAgIceegglJSUtfnCNRoP+/ftj8+bNpmNGoxGbN29GUlJSg7dJSkoyGw8AmzZtMo3v0KEDIiIizMbodDrs2LHDNCYpKQlFRUVIS0szjdmyZQuMRiMSExMB1NZR7du3z/T14osvwt/fH/v27cOdd97ZYGyenp4ICAgw+yL7kzbdZUdz61y+co+JFDVNqo+KDfa1+36Wcdy8mJxEs9sfVFdXQ6fTISQkBJ9++ilef/11+Pu3vPHhnDlzMHnyZAwYMADXX389/v3vf6OsrAxTpkwBAEyaNAnR0dFYtGgRAGD27NkYMmQI3nrrLYwaNQqrV6/G7t278fHHHwOonRJ+8skn8fLLL6NTp06m9gdRUVEYM2YMAKBr164YMWIEHnnkESxduhQ1NTWYOXMmxo0bh6ioKNOYK+3evRtKpdLUYoEch7RXHGekrNM1MgAKRW2tWW5JJcL8veQOiRxUa9RHSS73kuLSHjm2ZidSSUlJGDNmDPr37w8hBGbNmgVvb+8Gxza29NWQ++67D3l5eViwYAGys7PRp08fbNy40VQsfubMGSiVl3/zGThwIFatWoXnnnsOzz77LDp16oRvv/3WLMGZO3cuysrKMG3aNBQVFeHGG2/Exo0bTT2kAGDlypWYOXMmhg0bBqVSibFjx2LJkiXNjpscQ15JFbJ1lVAowEJzK/lo1IgL9cOJ3FJkXNAhrAsTKWqYaWuYMPvVR0mkZO1kbin3giSHphBCiOYMzMnJwdtvv43MzEysW7cOw4cPh6enZ4Njv/nmG5sG6ax0Oh20Wi2Ki4u5zGcnvx7NxYOf7ELHUF9sefpmucNxWk+u3otv913AM7d2xsyhneQOhxzUuI9T8efJQvzr3t64q59991Wt0hvQbcFPMBgFdj47DGEBTPCp9Vjy+d3sGanw8HC89tprAGrrkD777DMEBwe3LFKiFsqou9KMHc1bpke0Ft/uu2BaJiVqiKmHVCss7XmqVWgf5IOs/DKcyC1lIkUOy6pqwaysLCZR5BBMjThZaN4ipj33WHBOjSiuqEFeSRUAoKMdWx9ciXvukTOw+rKLbdu2YfTo0YiPj0d8fDxuv/12/P7777aMjeiauMeebXSr6wh/7lIFLpVVyxwNOaKTdclMeIAn/L08WuUx40wtEFhwTo7LqkTq888/R3JyMnx8fDBr1ixT4fmwYcPqbfpLZC/F5TU4W1gB4PKMCllH6+2BmODavkAZbMxJDTjRilfsSeLYS4qcQLNrpK70yiuvYPHixXjqqadMx2bNmoV//etfeOmll3D//ffbLECixkj9o9oFeUPr0zq/IbuyHtFanC4oR/qFYtzYKUTucMjBtGZ9lES6OlBqu0DkiKyakTp58iRGjx5d7/jtt9+OrKysFgdF1BxSR/Oe7B9lE9LyKPfco4aYWh+0Un0UAHQMqU3aLhRXoqxK32qPS87BYBTYciTn2gPtzKpEql27dvW6iwPAL7/8wv3lqNVIe8NxWc82TB3OmUhRAy73kGq9Gak2vhoE+2oAAFn5rJMic//+5RgeWr4bz3+fIWscVi3tPf3005g1axb27duHgQMHAgC2b9+O5cuX45133rFpgESNyeAeezbVq20glArgVEE5sosrEaHl5eZUq8ZgxJmCcgBAfCsmUkBt4laQVYjMvFJ+r5PJL4dy8O6WEwCAvu0DZY3FqkRq+vTpiIiIwFtvvYUvv/wSQO2WKmvWrMEdd9xh0wCJGlJSWYOTdb+hdo9i6wNb0Hp7oEe0FgfOFSMlM9/uDRfJeZwuKIfeKOCjUSGilfs5xYX6YWdWIeukyORUfhme+nIfAODBgbG4o0+0rPFYlUgBwJ133tno5r1E9nb4Yu2m2ZFaL4T4Ndxhnyw3MC4EB84VY/uJAiZSZHK5Psqv1bdq4Z57dKXyaj0e+zwNJZV6DIhpg2dHdr32jezMvtt3E9mJVMfD+ijbGhRf22g3NTMfzdw9ityAHIXmEqkmiy0QSAiB+esO4kh2CUL9PfH+hH7QqOVPY+SPgMgKpkac7GhuUwNigqBRKXGhuBKn6mpiiDJzW7/1gSRe2rw4vwwGI5N7d/Zpyil8t+8CVEoF3r+/H8IdZNsgJlLklDLOc489e/DWqEyFm9tP5MsbDDkMOa7Yk0QFesNTrUS13ohzl5jcu6vdpwrx8v8OAwCeHdkV13cIkjmiy5hIkdOpqDbgeG5tjRSv4rG9QfG1zThTMplIUe1yypU1Uq1NpVSgQwj33HNnuSWVeHzlHuiNAqN7R+GhQbFyh2SGiRQ5nSPZOhgFEOKnQXgAC81t7XKdVAGMXEpxe3mlVSip1EOpgGkbodZmqpPKZcG5u6kxGDFz5V7kllShc7gfXrurZ6tf8HAtVl21ZzAYsHz5cmzevBm5ubkwGo1m57ds2WKT4Igakn5F/yhH+4ZyBb3aBsJXo8Kl8hocztaxoN/NSXvstQvygZeHSpYYuOee+1r04xHsPFUIf081lk7sD19Pq5sN2I1VEc2ePRvLly/HqFGj0KNHD36YUatKZ32UXXmolEjsGIwtR3KRcqKAiZSbk2OPvatdboHARMqdfL//Av67vXbbubfu7Y2OMr4Hm2JVIrV69Wp8+eWXGDlypK3jIbomXrFnfwPjahOp7Zn5eGRwR7nDIRlJjTDlaH0guTwjxaU9d3EspwTzvjoAAHj85jjc2j1C5ogaZ1WNlEajQXx8vK1jIbqmKr0Bx3JqC805U2I/A+NqC853ZhWiWm+8xmhyZXIWmks61iVxhWXVKCyrli0Oah26yho8+lkaKmoMuDE+BE/f2kXukJpkVSL19NNP45133mHDPmp1x3NKUWMQ0Hp7oG0bb7nDcVkJEf4I8tWgvNqA/eeK5A6HZHRSWtqTofWBxEejRnSgd108XN5zZUajwNNf7kdWfhmiA72xZHxfqJSOXT5k1dLeH3/8ga1bt2LDhg3o3r07PDw8zM6vW7fOJsERXe1yoXkAa/PsSKlUICkuGP87cBEpJwpwXazj9Gyh1lNercf5ogoAlxtjyiUuzA/niyqQmVeKAXw/uqwPt2Vi06EcaFRKfDChH4J8NXKHdE1WzUgFBgbizjvvxJAhQxASEgKtVmv2RWQvpvooLuvZ3aC65b3t7CfltqTZqCBfDdrI/IHGPfdc3+/H8/DWz0cBAC/e0R292wXKG1AzWTUj9cknn9g6DqJmka7Y685GnHY3MK62n9TeM5dQXq2Hj8bxLjsm+5Jzj72rmQrOc7m054rOF1Vg1hd7YRTAfQPaYdz17eUOqdla1JAzLy8Pf/zxB/744w/k5eXZKiaiBukNRhy+KLU+4BV79hYT7IPoQG/UGAR2nbokdzgkA0dofSBhLynXVVljwPTP03CpvAY9o7V44Y7ucodkEasSqbKyMjz00EOIjIzE4MGDMXjwYERFRWHq1KkoL+deSGQfmXllqNIb4eepRmyw/L8huzqFQmGalUrhvntuyRGu2JPEhdV+z58pLEdljUHmaMiWXvghAwfOFSPQxwMfTuwnW+NXa1mVSM2ZMwfbtm3DDz/8gKKiIhQVFeG7777Dtm3b8PTTT9s6RiIAlwvNu0UFQOngV3G4isv77hXIHAnJwdRDKkz+X1xC/Tzh76WGUQCnC/gLu6tYs+sMvth5FgoFsGRcX7RtI882RC1hVSL19ddf4z//+Q9uu+02BAQEICAgACNHjsSyZcvw1Vdf2TpGIgDAwfMsNG9t0oxU+oViFJWzf487MRgFsvIdZ2lPoVBwec/FHDhXhH9+lwEAeObWLhjcOVTmiKxjVSJVXl6O8PDwesfDwsK4tEd2k8GO5q0uLMAL8WF+EAL48yRnpdzJ+UsVqNIboVEpHWaWgAXnrqOwrBrTP9+Dar0RyV3DMX1InNwhWc2qRCopKQkLFy5EZWWl6VhFRQVeeOEFJCUl2Sw4IonRKJBxoa7QnFfstapBdbNS208wkXIn0qxPhxBfh2mIKC0xckbKuRmMArNX78X5ogrEBvvgrXt7O3W5hlXXM7/zzjsYPnw42rZti969ewMA9u/fDy8vL/z00082DZAIALIKylBebYCXhxIdQ+Sv13AnA+ND8GnqafaTcjOmQnMHqI+ScM891/D2pmP4/Xg+vD1UWPpAf2i9Pa59IwdmVSLVo0cPHD9+HCtXrsSRI0cAAOPHj8eECRPg7c1tO8j2pELzrpEBUKta1LWDLHRDx2AoFbXNGbOLKxGh9ZI7JGoFjnTFnuTKGikhBHc3cEI/Z2Tjva0nAACvje2JhAjnL9WwusOej48PHnnkEVvGQtQo07IeC81bndbbAz2jtdh/rhgpmfm4q19buUOiVpCZ6ziF5pKYYB+olQqUVxuQratEpJa/uDuTrPwyPP3lfgDAlEGxuKNPtMwR2UazE6nvv/8et912Gzw8PPD99983Ofb2229vcWBEV7pyjz1qfUlxIdh/rhjbTxQwkXIT0oxUvIybFV/NQ6VETLAPMvPKkJlbxkTKiZRX6/HYZ2koqdJjQEwbPDuyq9wh2UyzE6kxY8YgOzsbYWFhGDNmTKPjFAoFDAY2SyPbEUKYEqnunJGSxaD4YCzdlomUzHwuqbiBS2XVKCirbXfRwcFqEuNC/WoTqbxS3NgpRO5wqBmEEPj71wdxNKcEof6e+GBCP3i4UIlGs5+J0WhEWFiY6e+NfTGJIls7d6kCuko9NColOof7yx2OWxoQEwSNSomLxZWm3kLkuk7m185GRWm94OvpWHssxoWxl5SzWZ5yCt/vvwC1UoEPJvRDWIBr1VlalRKuWLECVVVV9Y5XV1djxYoVLQ6K6ErSbFSXCH9o1K7zW4wz8dao0C8mEACwnV3OXZ6pPsqBlvUkbMrpXHadKsQr/zsMAHh2ZFdcFxskc0S2Z9Wn0pQpU1BcXFzveElJCaZMmdLioIiudJD1UQ5hUFztMkoq2yC4PEe8Yk8SF1q71HiCTTkdXq6uEo+v3AO9UeD23lGYMihW7pDswqpEqrEaiXPnzkGrZQ0L2VZ63RV7rI+S18D42sacqZkFMBqFzNGQPV1OpByrPgoAOtYldzm6KpRU1sgcDTWmxmDEjFV7kFdShS7h/nhtbE+Xra20aPG7b9++UCgUUCgUGDZsGNTqyzc3GAzIysrCiBEjbB4kuS8hBDJMM1JMpOTUq20gfDUqXCqvwaGLOv5/uDCp4aUjzkhpvT0Q6u+JvJIqnMwrQ+92gXKHRA149cfD2HXqEvw91Vj6QH/4aByr1s6WLHpm0tV6+/btw/Dhw+Hnd/mbTKPRIDY2FmPHjrVpgOTesnWVKCirhkqpQEIEC83l5KFSIrFjMLYcyUVKZj4TKRdVpTfgTGHtnqmOWCMF1M6U5ZVUITOvlImUA/pu33l8sv0UAOCte3s73JWftmZRIrVw4UIYDAbExsbi1ltvRWRkpL3iIgIApJ+vXdbrFOYHLw+VzNHQwLjaRGr7iQJMG+y8m4xS404XlMNgFPDzVCPM31PucBoUF+qHP08WsuDcAR3J1uHvXx8EAMz4Sxxu7R4hc0T2Z3GNlEqlwqOPPmq2YTGRvbB/lGMZFF9bcL7rVCGq9UaZoyF7yMy9XB/lqDUtpiv3ctmKw5HoKmvw2GdpqKgx4KZOIZhzSxe5Q2oVVhWb9+jRAydPnrR1LET1ZFzgFXuOpEu4P4J8NSivNmD/uSK5wyE7cOQr9iTsJeV4jEaBp7/cj1MF5YgO9MY74/pCpXTMRNzWrEqkXn75ZTzzzDNYv349Ll68CJ1OZ/ZFZCvS0h7rcRyDUqlAUlzt1XvbT7ANgisyFZo7aH0UcPlqwlMFZdAbODPqCD7clolNh3KgUSvx4cR+CPLVyB1Sq7GqjH7kyJEAavfUu3LqV2qLwO7mZAt5JVXI1lVCoQC6RXJGylEMigvB/w5cRMqJAjyZLHc0ZGvOMCMVpfWGt4cKFTUGnL1U4fLFzI7ut2N5ePPnowCAl+7ojl5tA+UNqJVZlUht3brV1nEQ1SMt63UM8XW4bSrc2aC6flJ7z15CebXepS9rdjdCCFONVHyY4yYnSqUCHUN9kXFBh8zcUiZSMjp3qRyzV++FEMC469rhvuvayx1Sq7PqJ+CQIUNsHQdRPensH+WQ2gf5IDrQG+eLKrDr1CUM6Rwqd0hkIzm6KpRVG6BSKtA+yLGTk7hQv9pEKq8UyQiXOxy3VFljwPTP9+BSeQ16tdXi+du7yx2SLKz+VbKoqAj/+c9/cPhw7R463bt3x0MPPcTO5mQzpvooXrHnUBQKBQbFB+PL3eeQciKfiZQLkZb1YoJ8HH5fS+65J7/nv8/AwfPFaOPjgQ8m9HPbFjVWfafs3r0bcXFxePvtt1FYWIjCwkL861//QlxcHPbs2WPrGMlNpdct7XXnFXsOZ2Ddvnvbue+eS5GSko4OXB8liQvjnntyWr3zDFbvOgulAlgyvi/atvGROyTZWDUj9dRTT+H222/HsmXLTNvE6PV6PPzww3jyySfx22+/2TRIcj9F5dU4d6kCAHtIOaKBdVfuZVzQoai8GoE+7nOFjisz9ZBy4PooyeUZqbJG938l+9h/tggLvssAADx9axfc1Mm9Z6WtnpGaN2+e2V57arUac+fOxe7du20WHLmvjLqNitsH+UDr7SFzNHS1sAAvdArzgxC1mxiTa3DkPfau1iHEFwoFUFxRg4KyarnDcRuFZdV4fOUeVBuMuKVbOKYP4Q4HViVSAQEBOHPmTL3jZ8+ehb8/90OjlrtcaM5lPUcldTlPYSLlMpyh9YHEy0OFtm28AVyeSSP7MhgFZn2xF+eLaltOvHVvbyjdpOlmU6xKpO677z5MnToVa9aswdmzZ3H27FmsXr0aDz/8MMaPH2/rGMkNpdfNSHFZz3FJy3usk3INpVV6XCyu3fpLanjp6K5c3iP7e+vno/jjRD68PVRYOrE/Ary4WgBYWSP15ptvQqFQYNKkSdDr9QAADw8PTJ8+Ha+99ppNAyT3lMHWBw4vsWMwlArgZF4ZsosrEaH1kjskaoGTdbNRIX4ap6l5iwv1w69H83jlXiv4KSMbH/yaCQB4/e5e6BLB1SeJVTNSGo0G77zzDi5duoR9+/Zh3759KCwsxNtvvw1PT8fcLZycR0llDU7m1/6G2SOKS3uOSuvtgZ51iS63i3F+znTFnoQtEFrHybxSPPPlfgDAQ4M64PbeUTJH5Fha1CjEx8cHgYGBCAwMhI+P+176SLZ1+GIJACBK64VgPybmjmxgPNsguIrMXOcpNJdIS5BMpOynrEqPxz5PQ0mVHtfHBmH+yAS5Q3I4ViVSer0e//znP6HVahEbG4vY2FhotVo899xzqKmpsXWM5GYOnpf6R3FZz9ENqusnlZpZACGEzNFQS1wuNHeO+ijg8sbK5y5VoLKGe7zamhAC874+gGM5pQjz98R7E/rCQ+XYjVrlYFWN1BNPPIF169Zh8eLFSEpKAgCkpqbi+eefR0FBAT788EObBknuxVQfxUJzhzcgtg00KiUuFlciK7/MqZaFyJyUSMWHOc//YbCvBoE+Higqr0FWfhm6cnNzm/rv9lNYf+Ai1EoF3p/QD2H+rINsiFWJ1KpVq7B69WrcdtttpmO9evVCu3btMH78eCZS1CJSR3O2PnB8Xh4q9IsJxJ8nC7E9s4CJlJPSG4w4lV8OwLmW9hQKBeJC/ZB2+hIy80qZSNnQzqxCvPpj7RZw/xjVFdfFBskckeOyao7O09MTsbGx9Y536NABGo1zXO1Bjqmi2mDa8oFX7DkHaXkvhQXnTuvcpQpUG4zwVCsRHegtdzgWMdVJ5bIFgq3k6ioxY9UeGIwCd/SJwoMDY+UOyaFZlUjNnDkTL730EqqqqkzHqqqq8Morr2DmzJk2C47cz+FsHYwCCPHzRJg/C82dgVRwnnqyAEYj66Sc0ZVX7Dlbg0VpBu0EC85tolpvxOMr9yCvpAoJEf5YdFdPbr9zDVYt7e3duxebN29G27Zt0bt3bwDA/v37UV1djWHDhuGuu+4yjV23bp1tIiW3kHFFR3N+8zqH3m218PNUo6i8Bocu6jiT6IScsdBcYmqBwO7mNvHqj4ex+/Ql+HupsXRif/horEoT3IpVr1BgYCDGjh1rdqxdu3Y2CYjcW/r52o7mLDR3HmqVEokdgrD5SC5SMvOZSDkhZ2x9IJGu3DuZXwqjUTjdjJoj+W7feSxPOQUA+Ne9fRAb4nyJtRysSqQ++eQTW8dBBICF5s4qKS4Ym4/kYvuJAkwbzE1MnY1pRsqJrtiTtGvjDQ+VApU1RlworkDbNuxpaI3DF3WY9/UBAMDMv8Tjlm7hMkfkPFrUECIvLw9//PEH/vjjD+Tl5dkqJnJTVXoDjuXUNuPkrIZzkTYw3plViGq9UeZoyFLOvLSnVikRGyw15mTBuTWKK2ow/fM0VNYYcVOnEDx1S2e5Q3IqViVSZWVleOihhxAZGYnBgwdj8ODBiIqKwtSpU1FeXm7rGMlNHM8pRY1BINDHw+muHHJ3XcL9EeyrQUWNAfvOFskdDlmgoLQKl8prGyl3DHG+GSmAdVItYTQKPP3lPpwqKEd0oDeWjOsLFZdHLWJVIjVnzhxs27YNP/zwA4qKilBUVITvvvsO27Ztw9NPP23rGMlNpF/RiJOF5s5FqVQgKS4YAPfdczbSLE50oDe8NSqZo7FOXBi3irHWB7+ewC+Hc6FRK7F0Yn+08WULI0tZlUh9/fXX+M9//oPbbrsNAQEBCAgIwMiRI7Fs2TJ89dVXto6R3MTlrWFYH+WMpOW91MwCmSMhSzhzfZSEmxdbZ9uxPLy16RgA4OU7eqBnW5ZUWMOqRKq8vBzh4fUL0cLCwqxa2nv//fcRGxsLLy8vJCYmYufOnU2OX7t2LRISEuDl5YWePXvixx9/NDsvhMCCBQsQGRkJb29vJCcn4/jx42ZjCgsLMWHCBAQEBCAwMBBTp05Faenlb8Jff/0Vd9xxByIjI+Hr64s+ffpg5cqVFj83ar70C7xiz5kNrJuR2nv2Esqr9TJHQ80lLYc5Y32U5HIixRqp5jpbWI7Zq/dCCGD89e1x73W88t5aViVSSUlJWLhwISorK03HKioq8MILL5j23muuNWvWYM6cOVi4cCH27NmD3r17Y/jw4cjNzW1wfEpKCsaPH4+pU6di7969GDNmDMaMGYP09HTTmMWLF2PJkiVYunQpduzYAV9fXwwfPtws3gkTJiAjIwObNm3C+vXr8dtvv2HatGlmj9OrVy98/fXXOHDgAKZMmYJJkyZh/fr1Fj0/ap4agxGHL9YlUiw0d0rtg3wQHeiNGoPAzqxCucOhZnLGPfauJs2m5ZVUobiiRuZoHF9ljQHTV6ahqLwGvdtq8fzt3eQOybkJKxw4cEBERUWJ4OBgMXToUDF06FARHBwsoqOjRXp6ukX3df3114sZM2aY/m0wGERUVJRYtGhRg+PvvfdeMWrUKLNjiYmJ4tFHHxVCCGE0GkVERIR44403TOeLioqEp6en+OKLL4QQQhw6dEgAELt27TKN2bBhg1AoFOL8+fONxjpy5EgxZcqUZj+34uJiAUAUFxc3+zbu6vDFYhEzb73ovmCjMBiMcodDVvrb2n0iZt568cr/DskdCjXTTa9vETHz1ovUzHy5Q2mRxFd+ETHz1os9pwvlDsWhGY1G0/dp3xd/FuculcsdkkOy5PPbqhmpnj174vjx41i0aBH69OmDPn364LXXXsPx48fRvXv3Zt9PdXU10tLSkJycbDqmVCqRnJyM1NTUBm+TmppqNh4Ahg8fbhqflZWF7OxsszFarRaJiYmmMampqQgMDMSAAQNMY5KTk6FUKrFjx45G4y0uLkZQUOMbN1ZVVUGn05l9UfNIjTi7RQWwoZ4Tk+qkWHDuHCprDDh7yfk2K27I5YJzLu81ZfWus/hy9zkoFcC74/vyCmkbsLghZ01NDRISErB+/Xo88sgjLXrw/Px8GAyGevVW4eHhOHLkSIO3yc7ObnB8dna26bx0rKkxYWFhZufVajWCgoJMY6725ZdfYteuXfjoo48afT6LFi3CCy+80Oh5atyVV+yR85Ku3Dt0UYdLZdW8AsjBnSoogxBAgJcaIX7O/X8VF+qH7ScKTJueU337zhZh4XcZAIBnhncx/eJDLWPxjJSHh4dZrZE72Lp1K6ZMmYJly5Y1OeM2f/58FBcXm77Onj3bilE6twx2NHcJYf5e6BTmByGAP0/y6j1HZ9oaJszP6VuO8Mq9phWUVuHxz9NQbTBiePdwTB/CHQhsxaqlvRkzZuD111+HXt+yK3NCQkKgUqmQk5NjdjwnJwcREREN3iYiIqLJ8dKf1xpzdTG7Xq9HYWFhvcfdtm0bRo8ejbfffhuTJk1q8vl4enqa2kFIX3RtRqNARt0Vez1ZaO70TMt7mVzec3SXO5o797IewESqKQajwKzVe3GhuBIdQ3zxxj29nT5xdiRWJVK7du3CunXr0L59ewwfPhx33XWX2VdzaTQa9O/fH5s3bzYdMxqN2Lx5c6NX/yUlJZmNB4BNmzaZxnfo0AERERFmY3Q6HXbs2GEak5SUhKKiIqSlpZnGbNmyBUajEYmJiaZjv/76K0aNGoXXX3/d7Io+sq2sgjKUVxvg5aFERxf4ge7upDYIKSc4I+XoXCqRqquROlNQjhoDtym60ps/H8X2EwXw0aiw9IH+CPDykDskl2LVpsWBgYEYO3asTQKYM2cOJk+ejAEDBuD666/Hv//9b5SVlWHKlCkAgEmTJiE6OhqLFi0CAMyePRtDhgzBW2+9hVGjRmH16tXYvXs3Pv74YwCAQqHAk08+iZdffhmdOnVChw4d8M9//hNRUVEYM2YMAKBr164YMWIEHnnkESxduhQ1NTWYOXMmxo0bh6ioKAC1y3l//etfMXv2bIwdO9ZUO6XRaJosOCfLSfVR3SIDuDWBC0jsGAylAjiZX4aLxRWI1LKY1VE58x57V4sI8IKPRoXyagNOF5Q7dTsHW9qYno0Pf80EALw+thc6h/vLHJHrsSqR+uSTT2wWwH333Ye8vDwsWLAA2dnZ6NOnDzZu3GgqFj9z5gyUyssTZwMHDsSqVavw3HPP4dlnn0WnTp3w7bffokePHqYxc+fORVlZGaZNm4aioiLceOON2LhxI7y8vExjVq5ciZkzZ2LYsGFQKpUYO3YslixZYjr/6aefory8HIsWLTIlcQAwZMgQ/PrrrzZ7/nRFoTmX9VyC1tsDPdsGYv/ZIqScKMDY/m3lDokaYDQKsxopZ6dQKBAX6oeD54uRmVfKRAq1ifIza/cDAKbe2AGje0fJHJFrUgghRHMHG41GvPHGG/j+++9RXV2NYcOGYeHChfD25m+cDdHpdNBqtSguLma9VBPGf/wnUk8WYPHYXuyu6yJe33gEH/6aibv6ReNf9/aROxxqwPmiCgx6bQvUSgUOvzQCHiqrKj0cypOr9+LbfRcwd0QXPH5zvNzhyKqsSo8x72/H8dxSXN8hCCsfTnSJ/+PWYsnnt0Wv6iuvvIJnn30Wfn5+iI6OxjvvvIMZM2a0KFhyb0IIpF/gHnuuZlBcbcF5yokCWPC7GrUiaWuYmGAfl/mANRWc57p3LykhBOZ9fQDHc0sR5u+J9+7v6zL/x47Iold2xYoV+OCDD/DTTz/h22+/xQ8//ICVK1fCaGRhH1nnbGEFSir10KiU6BTGtXtXMSC2DTRqJbJ1lTiZ794fao7KlQrNJdISpbtfufefP7Kw/sBFqJUKfDixH8L8va59I7KaRYnUmTNnMHLkSNO/k5OToVAocOHCBZsHRu5Bmo3qEuEPjZq/MbkKLw8V+rdvAwBIYZdzh+QKe+xdLf6KRMpdZ0J3nCzAog21Da3/+ddu6B/Di6PszaJPLr1eb1awDdQ26Kyp4SaRZJ3LheZc1nM1g+Lr2iBksg2CIzIVmrvQjFRMsA+UCqCkUo+80iq5w2l1ObpKzFi1FwajwJg+UZiUFCN3SG7Boqv2hBB48MEH4enpaTpWWVmJxx57DL6+ly+fXbdune0iJJeWXteIk1fsuZ6kuBAAx5B6sgBGo+Aeig7GtLTnQjNSnmoV2gf54FRBOTJzy9xqSatab8TjK/cgv7QKCRH+WHRXLzbdbCUWJVKTJ0+ud2zixIk2C4bcixACGdxjz2X1bquFn6caReU1OHRRx2TZgegqa5BbUjtj09EFekhdKS7UD6cKynEir9S096M7ePXHw0g7fQn+Xmosndgf3hqV3CG5DYsSKVv2jyLK1lWioKwaKqUCXSJYaO5q1ColEjsEYfORXGw/kc9EyoGczKtd1gvz93S5LtdxYX7YfCTXdFWiO/hm7zksTzkFAPj3fX0QG+JaybGjY3UvySb9fO2yXqcwP3h58LcnVzTQtO8e66QciZRkuFJ9lETq0u4uV+4dvqjD/HUHAQCzhsZjWNdwmSNyP0ykSDYH2dHc5UkF57uyClGtZ5sUR3G5Psr1Zi6k5FCadXNlxRU1eOzzNFTWGDG4cyhmJ3eWOyS3xESKZHO5PopX7LmqLuH+CPbVoKLGgH1ni+QOh+q4Yg8pifSczhdVoLxaL3M09mM0CsxZsw+nC8rRto03lozrw71KZcJEimQj9ZDijJTrUigUpoLf7ewn5TBOuPDSXhtfDYJ8NQBce1bq/a0nsPlILjRqJZZO7I9AH43cIbktJlIki9ySSuToqqBQAF0jOSPlygbV1UmlZDKRcgQ1BiNOF5QDcK3WB1dy9TqpX4/m4l+/HAMAvDymB38ZlRkTKZJFRl3/qI4hvvD1tOjiUXIy0r57e88UoazKdZdanMWZwnLojQLeHipEBrhmnyXTnnsuOCN1trAcs1fvgxDA/Yntce8AbvQuNyZSJIsMFpq7jfbBPmjbxht6o8DOU4Vyh+P2pCv2Oob6umyT1MuJlGvNSFXWGPDY52korqhB73aBWDi6m9whEZhIkUyk1gc9mUi5BWlWKpVtEGQnzdK4Yn2URLoa0ZV6SQkh8Ny36ci4oEOQrwYfTugHTzXbxjgCJlIkC6nQvDs7mruFgfEsOHcUrrhZ8dXiQ2sb/Gbll8FgdI3Ni7/YeRZfpZ2DUgG8N74vogK95Q6J6jCRolZXVF6Nc5cqAADd2PrALUhX7h26qMOlsmqZo3Fvrtz6QBLdxhsatRJVeiPO1/2scWb7zhbh+e8zAABzRySYGt2SY2AiRa1OKjSPCfaB1tu1tqeghoX5e6FzuB+EAFJPcnlPLkKIy13NXbAZp0SlVKBjiGtcuVdQWoXpn6eh2mDE8O7heHRwR7lDoqswkaJWd5AbFbulgXV1Ulzek09+aTV0lXooFEBssOsmUoBrFJzrDUY88cVeXCyuRMdQX7x5T28oFK55gYAzYyJFrS69LpHqHs1lPXci9ZNiwbl8pKSiXRsfl9/f0hV6Sb358zGkZBbAR6PCRxP7w9/FNph2FUykqNVJS3uckXIv13cIglIBnMwvw8Vi569bcUaX66NcezYKuNxsNDPXOXtJbUy/iKXbMgEAb9zdG53C/WWOiBrDRIpaVUllDbLya3+wdWehuVvRenugZ9tAAMD2E5yVkoOUVLhyobnEmZf2TuSW4pm1BwAAj9zUAaN6RcocETWFiRS1qkN1s1FRWi8E+3nKHA21tkF1V++lsE5KFqYZKRdufSDpUFdsXlBW7VRXipZV6fHY52kordIjsUMQ5o1IkDskugYmUtSq0usSqe5sxOmWpDqp7Zn5EMI1+vs4E1ferPhqvp5qRGlrt8A5me8cs1JCCMz9+gBO5JYiPMAT793fD2oVP6YdHf+HqFVJW8Owo7l76h/TBhq1Ejm6KpzMd87aFWdVUW3A+aLa2jR3qJECnK9O6j9/ZOF/By7CQ6XABxP6IdSfs/bOgIkUtSqpo3kPXrHnlrw8VOjfvg0ALu+1NmlWJtDHA0G+GpmjaR3OVCf158kCLNpwBADwz792Q/+YIJkjouZiIkWtpqLaYFpa4BV77muQabsYFpy3piv32HOXXkTO0gIhu7gSM1ftgcEocFffaDxwQ4zcIZEFmEhRqzmcrYNRAKH+nggL8JI7HJKJtL1F6skCl9kHzRlIHc3j3aA+SmJa2stz3KW9ar0Rj69MQ35pNRIi/PHKnT3dJtF1FUykqNVkmDqac1nPnfWK1sLfU43iihrTVZxkf5ev2HOP+ijgctJ4uqAMVXqDzNE07OX/HcKeM0UI8FLjowf6w1vj2o1SXRETKWo1pq1hWGju1tQqJRI71tZ/pGSyTqq1XLm05y5C/T3h76mGUQCnC8rlDqeedXvOYUXqaQDAv8f1QYyLb9vjqphIUatJP1/X+oD1UW4vSdp3j9vFtAqjUeBknvu0PpAoFAp0NF2551h1Uocu6PDsNwcBALOGdcLQhHCZIyJrMZGiVlGlN+BYTgkAXrFHlwvOd2UVolpvlDka13e+qAJVeiM0KiXatvGWO5xW5YgF58XlNXjs8zRU1hhxc5dQPDmsk9whUQswkaJWcSy7FHqjQKCPB6ID3esHOdXXJdwfIX4aVNQYsPfMJbnDcXlSEhEb4uN2DR4vt0BwjIJzo1HgqS/34UxhOdoFeePf9/WBUsnicmfmXt9RJBtT/6goLa9IISgUCi7vtSJ3rI+SOFovqXe3nMCWI7nwVCvx4YT+CPRxj55eroyJFLWKdBaa01W4717ryXTD+ihJfN1Vipm5pbJvS7T1aC7+vfkYAOCVO3vy56GLYCJFrULaY4/1USQZWDcjte9sEcqq9DJH49pMe+y5UesDSfsgX6iUCpRVG5Cjq5ItjjMF5Xhy9T4IAUxIbI+7+7eVLRayLSZSZHc1BiMOX6xLpHjFHtVpH+yDtm28oTcK7DxVKHc4Ls0dr9iTaNRKxAT5AJBvea+yxoDHPk9DcUUN+rQLxILR3WSJg+yDiRTZXWZeKar1Rvh7qtG+7gcaEQAMqpuV4vKe/RSVVyO/tBoA0NENEyng8vOWI5ESQuAf36Tj0EUdgn01+HBiP3iq2XTTlTCRIruT+kd1iwrg1SlkZiD33bM7qdA8IsALfp5qmaORR9wVdVKtbeWOM/h6zzkoFcC79/dFpJZXLbsaJlJkdyw0p8ZIdVKHLupQWFYtczSuSZqFiQ9zz9ko4PJWMa3dAmHvmUt44YcMAMC8EQmm9zu5FiZSZHeXEykWmpO5UH9PdA6v/ZD78yRnpezh8hV77ldoLpE2Lz7RijNS+aVVmP75HtQYBG7rEYFpgzu22mNT62IiRXZlMAocYqE5NUH6LX0766TsIjO3roeUG89IxYXUPvdsXSVKW+EKUb3BiCdW7UW2rhJxob54457e7J/nwphIkV1l5ZehvNoALw+l2xa6UtMGxdcVnLMxp1248xV7Eq2PB0L8PAFcfj3s6Y2fjyL1ZAF8NSp89EB/t61NcxdMpMiuMuo6mneLDICKhebUgMSOQVAqapPuC0UVcofjUqr1RpwuLAfg3okU0Hp77m04eBEfbTsJAHjjnt6ID/O36+OR/JhIkV1J9VE9WWhOjQjw8kCvtoEAuLxna2cKy2AwCvhqVAgP8JQ7HFlJS5vSUqc9nMgtxTNr9wMApg3uiJE9I+32WOQ4mEiRXUmtD7ozkaImDKprg5DK5T2bOnFFfZS71+jYe8+90io9Hv1sN8qqDbihYxDmDu9il8chx8NEiuxGCGG2WTFRY0wF55n5su+H5krceY+9q9lzaU8Igblf7UdmXhkiArzw7vh+UKv48eou+D9NdnO2sAIllXpoVEp0CucPcmpc/5g20KiVyNFVtXqvH1fG1geXScnkqfxy6A1Gm973st9P4seD2fBQKfDBxH4I9XfvZVR3w0SK7EaajUqI9IcHfzujJnh5qDAgpg0AICWTdVK2InXy5owUEB3oDU+1EtUGI85dst1FDSmZ+XhtwxEAwILR3dGvfRub3Tc5B366kd0crCs0785lPWoGqQ0CC85tQwhhmt1z5x5SEqVSYfM99y4WV+CJVXthFMBd/aIxMbG9Te6XnAsTKbIbdjQnSwyMqy04//NkIQxG1km1VG5JFUqr9FAqgJhgbhYO2LZOqkpvwOMr96CgrBrdIgPw6p093b6g310xkSK7EEIg4wI7mlPz9YzWwt9TjeKKGhyqe++Q9aRlvZhgX3iqVTJH4xjibdgC4eX1h7H3TBECvNRYOrE/vDz4GrsrJlJkFxeLK1FYVg2VUoEuEWxIR9emVimR2DEIQO3Ve9QyLDSvT6oVO9HCGamv087hsz9PQ6EA3hnXF+054+fWmEiRXUjLep3C/PibGjUb992zHVN9FAvNTUyJVG6p1W02Mi4U49lvDgIAZg/rhL8khNksPnJOTKTILtLrlmbY0ZwsIRWc7zpViCq9QeZonBt7SNXXIcQXCgVQXFGDwrJqi29fXF6Dxz5PQ5XeiL90CcWsoZ3sECU5GyZSZBcZpkJzJlLUfJ3D/RDip0FljRH7zhTJHY5TM7U+COPSnsRbo0J0oDcAWNyvzGgUeHLNXpwtrED7IB/8+76+UHL/UAITKbITU0dzXrFHFlAoFEgydTnndjHWKqvS40JxJQCgYwhnpK5k7VYxS7Ycx9ajefBUK/HhxH7Q+njYIzxyQkykyOZySyqRo6uCQgF0jWQiRZYZVNcGIYV1UlbLyq+dbQn21aCNr0bmaByLKZHKbX4itfVILt7ZfBwA8OqdPdkbj8wwkSKbk9oexIX6wUejljkacjZSndS+s0Uoq9LLHI1zYn1U46SlzubOSJ0pKMfs1XshBPDADTEY27+tPcMjJ8REimzOVB8Vxdkosly7IB+0C/KG3iiwM6tQ7nCcEuujGnd5ae/aNVIV1QY8+nkadJV69G0fiH/+tZu9wyMnxESKbO4gC82phQaxDUKLnOCMVKOk1+TspXJU1jR+ZagQAv/49iAOX9QhxE+DDyb0g0bNj0yqj+8Ksrn087VLe6wjIGslSXVSLDi3itS5m4lUfSF+GgR4qSEEcKqg8Vmpz3ecwbo956FSKvDu+H6I1Hq3YpTkTJhIkU1dKqvG+aLandW784o9spLUmPPQRZ1V/X7cmcEoTMXmTKTqUygUpk2cG9sqJu30Jbz4QwYA4O8jEkyJPVFDmEiRTUmF5rHBPgjw4uXBZJ1Qf090Ca/dWiiVs1IWOXepHNUGIzRqJaLbcBalIU21QMgrqcLjK9NQYxAY2TMCD9/UobXDIyfDRIpsSuof1Z31UdRCA+NrZwG4755lpOSgY4gvVGwY2SBp8+ITV7VA0BuMeOKLPcjRVSE+zA+L7+4NhYKvITWNiRTZVLrpij0mUtQyUsE5+0lZxlQfFcZlvcY0NiO1+Kej+PNkIXw1Kiyd2B9+nmzfQtfGRIpsSlraY0dzaqnrOwZBqQBOFZSb6u7o2thD6triQmvbQpzMK4PRWLt58Y8HL+Lj304CAN68p7dp1oroWphIkc2UVNaYilx5xR61VICXB3q1DQTAWSlLXE6k2EOqMe2CfOChUqCixoCLukqcyC3B39buBwA8OqQjbusZKXOE5EwcIpF6//33ERsbCy8vLyQmJmLnzp1Njl+7di0SEhLg5eWFnj174scffzQ7L4TAggULEBkZCW9vbyQnJ+P48eNmYwoLCzFhwgQEBAQgMDAQU6dORWmp+TTvgQMHcNNNN8HLywvt2rXD4sWLbfOEXdShutmo6EBvBHFbCrKBQfFsg2ApqdEkZ6Qa56FSIia4NtHcf7YI0z5LQ1m1AUkdg/G3W7vIHB05G9kTqTVr1mDOnDlYuHAh9uzZg969e2P48OHIzc1tcHxKSgrGjx+PqVOnYu/evRgzZgzGjBmD9PR005jFixdjyZIlWLp0KXbs2AFfX18MHz4clZWVpjETJkxARkYGNm3ahPXr1+O3337DtGnTTOd1Oh1uvfVWxMTEIC0tDW+88Qaef/55fPzxx/Z7MZxc+gWpfxSX9cg2rmzMKYSQORrHV1hWbWoX0ZEzUk2SZuzmrzuIk3lliNR64d37+0Ktkv1jkZyMQsj80ykxMRHXXXcd3nvvPQCA0WhEu3bt8MQTT+Dvf/97vfH33XcfysrKsH79etOxG264AX369MHSpUshhEBUVBSefvppPPPMMwCA4uJihIeHY/ny5Rg3bhwOHz6Mbt26YdeuXRgwYAAAYOPGjRg5ciTOnTuHqKgofPjhh/jHP/6B7OxsaDS1syt///vf8e233+LIkSPNem46nQ5arRbFxcUICLBdcqGrrIGuosZm92crr/54GD8ezMacWzpj1rBOcodDLqCyxoBeL/yMar0RXzxyA9oF8XL+pqSf1+Gxz9MQHeiN7X8fKnc4Dm3xxiP44NdMAICHSoEvH01C3/ZtZI6KHIUln9+yXpJQXV2NtLQ0zJ8/33RMqVQiOTkZqampDd4mNTUVc+bMMTs2fPhwfPvttwCArKwsZGdnIzk52XReq9UiMTERqampGDduHFJTUxEYGGhKogAgOTkZSqUSO3bswJ133onU1FQMHjzYlERJj/P666/j0qVLaNOm/jdcVVUVqqqqTP/W6XSWvSDN9Pmfp7F441G73LctsNCcbMXLQ4UBMW2QklmA8cv+lDscp8HZqGu7culz4ejuTKLIarImUvn5+TAYDAgPDzc7Hh4e3uisT3Z2doPjs7OzTeelY02NCQsLMzuvVqsRFBRkNqZDhw717kM611AitWjRIrzwwguNP2EbUSsV8HTQPZ86hvrh+g7sAky2MykpBhkXdE3ui0aXadRK3NUvWu4wHN6QLqGID/PD0IQwTEhsL3c45MTYJMOG5s+fbzZbptPp0K5dO5s/zrTBcZg2OM7m90vkiEb0iMSIHryKimwrxM8Tv8wZIncY5AJkndYICQmBSqVCTk6O2fGcnBxEREQ0eJuIiIgmx0t/XmvM1cXser0ehYWFZmMauo8rH+Nqnp6eCAgIMPsiIiIi1yVrIqXRaNC/f39s3rzZdMxoNGLz5s1ISkpq8DZJSUlm4wFg06ZNpvEdOnRARESE2RidTocdO3aYxiQlJaGoqAhpaWmmMVu2bIHRaERiYqJpzG+//Yaamhqzx+nSpUuDy3pERETkhoTMVq9eLTw9PcXy5cvFoUOHxLRp00RgYKDIzs4WQgjxwAMPiL///e+m8du3bxdqtVq8+eab4vDhw2LhwoXCw8NDHDx40DTmtddeE4GBgeK7774TBw4cEHfccYfo0KGDqKioMI0ZMWKE6Nu3r9ixY4f4448/RKdOncT48eNN54uKikR4eLh44IEHRHp6uli9erXw8fERH330UbOfW3FxsQAgiouLW/ISERERUSuy5PNb9kRKCCHeffdd0b59e6HRaMT1118v/vzzT9O5IUOGiMmTJ5uN//LLL0Xnzp2FRqMR3bt3F//73//MzhuNRvHPf/5ThIeHC09PTzFs2DBx9OhRszEFBQVi/Pjxws/PTwQEBIgpU6aIkpISszH79+8XN954o/D09BTR0dHitddes+h5MZEiIiJyPpZ8fsveR8qV2auPFBEREdmPJZ/fjnkNPREREZETYCJFREREZCUmUkRERERWYiJFREREZCUmUkRERERWYiJFREREZCUmUkRERERWYiJFREREZCUmUkRERERWUssdgCuTmsbrdDqZIyEiIqLmkj63m7P5CxMpOyopKQEAtGvXTuZIiIiIyFIlJSXQarVNjuFee3ZkNBpx4cIF+Pv7Q6FQyB1Og3Q6Hdq1a4ezZ89yP8BWxNddHnzd5cHXXR583a0nhEBJSQmioqKgVDZdBcUZKTtSKpVo27at3GE0S0BAAL/RZMDXXR583eXB110efN2tc62ZKAmLzYmIiIisxESKiIiIyEpMpNycp6cnFi5cCE9PT7lDcSt83eXB110efN3lwde9dbDYnIiIiMhKnJEiIiIishITKSIiIiIrMZEiIiIishITKSIiIiIrMZFyE4sWLcJ1110Hf39/hIWFYcyYMTh69KjZmJtvvhkKhcLs67HHHpMpYtfw4YcfolevXqaGeElJSdiwYYPpfGVlJWbMmIHg4GD4+flh7NixyMnJkTFi13Ct153vdft77bXXoFAo8OSTT5qO8f1ufw297ny/2xcTKTexbds2zJgxA3/++Sc2bdqEmpoa3HrrrSgrKzMb98gjj+DixYumr8WLF8sUsWto27YtXnvtNaSlpWH37t0YOnQo7rjjDmRkZAAAnnrqKfzwww9Yu3Yttm3bhgsXLuCuu+6SOWrnd63XHeB73Z527dqFjz76CL169TI7zve7fTX2ugN8v9uVILeUm5srAIht27aZjg0ZMkTMnj1bvqDcRJs2bcT//d//iaKiIuHh4SHWrl1rOnf48GEBQKSmpsoYoWuSXnch+F63p5KSEtGpUyexadMms9eZ73f7aux1F4Lvd3vjjJSbKi4uBgAEBQWZHV+5ciVCQkLQo0cPzJ8/H+Xl5XKE55IMBgNWr16NsrIyJCUlIS0tDTU1NUhOTjaNSUhIQPv27ZGamipjpK7l6tddwve6fcyYMQOjRo0ye18D4Pvdzhp73SV8v9sPNy12Q0ajEU8++SQGDRqEHj16mI7ff//9iImJQVRUFA4cOIB58+bh6NGjWLdunYzROr+DBw8iKSkJlZWV8PPzwzfffINu3bph37590Gg0CAwMNBsfHh6O7OxseYJ1IY297gDf6/ayevVq7NmzB7t27ap3Ljs7m+93O2nqdQf4frc3JlJuaMaMGUhPT8cff/xhdnzatGmmv/fs2RORkZEYNmwYMjMzERcX19phuowuXbpg3759KC4uxldffYXJkydj27Ztcofl8hp73bt168b3uh2cPXsWs2fPxqZNm+Dl5SV3OG6jOa873+/2xaU9NzNz5kysX78eW7duRdu2bZscm5iYCAA4ceJEa4TmsjQaDeLj49G/f38sWrQIvXv3xjvvvIOIiAhUV1ejqKjIbHxOTg4iIiLkCdaFNPa6N4Tv9ZZLS0tDbm4u+vXrB7VaDbVajW3btmHJkiVQq9UIDw/n+90OrvW6GwyGerfh+922OCPlJoQQeOKJJ/DNN9/g119/RYcOHa55m3379gEAIiMj7RydezEajaiqqkL//v3h4eGBzZs3Y+zYsQCAo0eP4syZM2a1PGQb0uveEL7XW27YsGE4ePCg2bEpU6YgISEB8+bNQ7t27fh+t4Nrve4qlarebfh+ty0mUm5ixowZWLVqFb777jv4+/ubahK0Wi28vb2RmZmJVatWYeTIkQgODsaBAwfw1FNPYfDgwQ1eSkvNM3/+fNx2221o3749SkpKsGrVKvz666/46aefoNVqMXXqVMyZMwdBQUEICAjAE088gaSkJNxwww1yh+7Umnrd+V63D39/f7OaSwDw9fVFcHCw6Tjf77Z3rded7/dWIPdlg9Q6ADT49cknnwghhDhz5owYPHiwCAoKEp6eniI+Pl787W9/E8XFxfIG7uQeeughERMTIzQajQgNDRXDhg0TP//8s+l8RUWFePzxx0WbNm2Ej4+PuPPOO8XFixdljNg1NPW6873eeq6+7J7v99Zx5evO97v9KYQQQs5EjoiIiMhZsdiciIiIyEpMpIiIiIisxESKiIiIyEpMpIiIiIisxESKiIiIyEpMpIiIiIisxESKiIiIyEpMpIiIiIisxESKiNzKgw8+iDFjxsj2+A888ABeffXVZo0dN24c3nrrLTtHREQtwc7mROQyFApFk+cXLlyIp556CkIIBAYGtk5QV9i/fz+GDh2K06dPw8/P75rj09PTMXjwYGRlZUGr1bZChERkKSZSROQypM24AWDNmjVYsGABjh49ajrm5+fXrATGXh5++GGo1WosXbq02be57rrr8OCDD2LGjBl2jIyIrMWlPSJyGREREaYvrVYLhUJhdszPz6/e0t7NN9+MJ554Ak8++STatGmD8PBwLFu2DGVlZZgyZQr8/f0RHx+PDRs2mD1Weno6brvtNvj5+SE8PBwPPPAA8vPzG43NYDDgq6++wujRo82Of/DBB+jUqRO8vLwQHh6Ou+++2+z86NGjsXr16pa/OERkF0ykiMjtffrppwgJCcHOnTvxxBNPYPr06bjnnnswcOBA7NmzB7feeiseeOABlJeXAwCKioowdOhQ9O3bF7t378bGjRuRk5ODe++9t9HHOHDgAIqLizFgwADTsd27d2PWrFl48cUXcfToUWzcuBGDBw82u93111+PnTt3oqqqyj5PnohahIkUEbm93r1747nnnkOnTp0wf/58eHl5ISQkBI888gg6deqEBQsWoKCgAAcOHAAAvPfee+jbty9effVVJCQkoG/fvvjvf/+LrVu34tixYw0+xunTp6FSqRAWFmY6dubMGfj6+uKvf/0rYmJi0LdvX8yaNcvsdlFRUaiurjZbtiQix8FEiojcXq9evUx/V6lUCA4ORs+ePU3HwsPDAQC5ubkAaovGt27daqq58vPzQ0JCAgAgMzOzwceoqKiAp6enWUH8LbfcgpiYGHTs2BEPPPAAVq5caZr1knh7ewNAveNE5BiYSBGR2/Pw8DD7t0KhMDsmJT9GoxEAUFpaitGjR2Pfvn1mX8ePH6+3NCcJCQlBeXk5qqurTcf8/f2xZ88efPHFF4iMjMSCBQvQu3dvFBUVmcYUFhYCAEJDQ23yXInItphIERFZqF+/fsjIyEBsbCzi4+PNvnx9fRu8TZ8+fQAAhw4dMjuuVquRnJyMxYsX48CBAzh16hS2bNliOp+eno62bdsiJCTEbs+HiKzHRIqIyEIzZsxAYWEhxo8fj127diEzMxM//fQTpkyZAoPB0OBtQkND0a9fP/zxxx+mY+vXr8eSJUuwb98+nD59GitWrIDRaESXLl1MY37//Xfceuutdn9ORGQdJlJERBaKiorC9u3bYTAYcOutt6Jnz5548sknERgYCKWy8R+rDz/8MFauXGn6d2BgINatW4ehQ4eia9euWLp0Kb744gt0794dAFBZWYlvv/0WjzzyiN2fExFZhw05iYhaSUVFBbp06YI1a9YgKSnpmuM//PBDfPPNN/j5559bIToisgZnpIiIWom3tzdWrFjRZOPOK3l4eODdd9+1c1RE1BKckSIiIiKyEmekiIiIiKzERIqIiIjISkykiIiIiKzERIqIiIjISkykiIiIiKzERIqIiIjISkykiIiIiKzERIqIiIjISkykiIiIiKz0/+2sYVOJw/MGAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, - "metadata": { - "image/png": { - "height": 455, - "width": 594 - } - }, + "metadata": {}, "output_type": "display_data" } ], @@ -382,7 +450,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -396,9 +464,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.6" + "version": "3.11.4" } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 4 } diff --git a/algorithms/glued_trees/glued_trees_cache.json b/algorithms/glued_trees/glued_trees_cache.json index 83de0d4e..9fa86097 100644 --- a/algorithms/glued_trees/glued_trees_cache.json +++ b/algorithms/glued_trees/glued_trees_cache.json @@ -1 +1,406 @@ -{"10": [["XIIIIIIIXI", -0.7526137035201601], ["XIIIIIIXXI", -0.37336084437331796], ["XIIIIIIYYI", -0.38415596887523673], ["XZIXIZZZZI", -0.006612905308067554], ["YIIIIIIIYI", -0.7526137035201601], ["XIIIXXYYXI", 0.051516042757856595], ["YIIYXYYYYI", -0.02787456236145021], ["XIZIIIIIXI", -0.013449113937452212], ["YIIIIIIXYI", 0.38415596887523673], ["XIIIIIYXYI", -0.19424150139041263], ["XIIIIIIYIY", 0.029720649244903058], ["XIIZZZXZZI", -0.007109908237121916], ["XZIIIIIIXI", -0.04933462211354994], ["YIIIIIXXYI", 0.19424150139041263], ["YIIIIYYXYI", 0.09797196440842665], ["XIIIZIIIXI", -0.007825806002393486], ["YIIIIIIYXI", -0.37336084437331796], ["XIXYYXYXYI", -0.014830501861161874], ["XYXXYYYXXI", 0.011070832097706011], ["ZXXXXXXXXI", -0.006572351502781893], ["XIIIIIXYYI", 0.19386532534886877], ["XIIIIIYYXI", -0.18678800030285186], ["YIIIIIYYYI", 0.19386532534886877], ["YZIYIZZZZI", -0.006612905308067554], ["YIIIIIXYXI", 0.18678800030285186], ["YIIIXXYXXI", 0.05105565386817196], ["XIIYYXYYXI", 0.027526204018504478], ["YIZIIIIIYI", -0.013449113937452212], ["XIIIIIXXXI", -0.18323015243607135], ["XIIIIXYXYI", 0.09797196440842665], ["YIIIIIIXIY", -0.029720649244903058], ["YIIZZZYZZI", -0.007109908237121916], ["YZIIIIIIYI", -0.04933462211354994], ["XIIIIYXYXI", -0.09790485429098861], ["XIIIIYXXYI", -0.09738539217062862], ["YIIIZIIIYI", -0.007825806002393486], ["YIIIIIYXXI", -0.18323015243607135], ["YIXXYXYXYI", -0.014830501861161874], ["YYYXYYYXXI", -0.011070832097706011], ["ZXXXXXXYYI", 0.006572351502781893], ["YIIIIXXYXI", 0.09790485429098861], ["XIIIIXYYXI", 0.09723073331248952], ["YIIIIYYYXI", 0.09723073331248952], ["XZIXIIZIII", -0.006442771857138567], ["XIIIIIIXIX", 0.03782159881982394], ["YIIIXYXYYI", -0.05081457021131695], ["XIIYYYYXXI", 0.02691422493459414], ["XZZIIIIIXI", 0.012785230601782186], ["YIIIIXXXYI", 0.09738539217062862], ["XIIIIXXYYI", 0.0936375449565515], ["XZIIIIIYIY", 0.02736493560510323], ["XIIXZXXZZI", 0.0070057024561532314], ["YZZIIIIIYI", 0.012785230601782186], ["YIIIIYXYYI", 0.0936375449565515], ["XIIIIYYYYI", 0.09298355472236805], ["XZIIZIIIXI", 0.007170911589543703], ["YIIIIXYYYI", -0.09298355472236805], ["XIXXYXXYXI", 0.014790913647481705], ["XYXXXXYXXI", -0.01068597467739666], ["ZXXXXXYXYI", 0.006572351502781893], ["XIIIIYYXXI", -0.09210460232707157], ["YIIIIXYXXI", 0.09210460232707157], ["YIIIYXYYXI", 0.051516042757856595], ["YZIYIIZIII", -0.006442771857138567], ["YIIIIIIYIX", 0.03782159881982394], ["XIIIXYXXYI", 0.050446601073475254], ["XIIYXXXXYI", -0.02666217783475839], ["XZZIIIIXXI", 0.00837965253402453], ["XIIIIXXXXI", -0.08891475352327935], ["XIIIYXYXXI", -0.05105565386817196], ["YZIIIIIXIY", -0.02736493560510323], ["YIIYZXXZZI", 0.0070057024561532314], ["XIIIIIXIII", 0.011189896923879047], ["YIIIIYXXXI", -0.08891475352327935], ["XIIIYYXYYI", 0.05081457021131695], ["YZIIZIIIYI", 0.007170911589543703], ["YIIIYYXXYI", 0.050446601073475254], ["YIXYYXXYXI", -0.014790913647481705], ["YYYXXXYXXI", 0.01068597467739666], ["ZXXXXXYYXI", 0.006572351502781893], ["XIIIYYYYXI", 0.05044317333961998], ["YIIIXYYYXI", -0.05044317333961998], ["XIIIXXXYYI", 0.04959844986045102], ["XIIIIIZIXI", -0.006432707991474218], ["XZIIIIIXIX", 0.027345400379519765], ["XIIIXYYXXI", 0.050092874043860355], ["XIIYYYYYYI", -0.026648596578796042], ["YZZIIIIYXI", 0.00837965253402453], ["YIIIYYYXXI", 0.050092874043860355], ["XIIIYXXXYI", -0.04930312270999021], ["XZIIIIXYIY", -0.015146886131722144], ["XZIIIIXIZI", -0.006899554288018264], ["YIIIIIYIII", 0.011189896923879047], ["YIIIYXXYYI", 0.04959844986045102], ["XIIIYYYXYI", 0.04521119690374699], ["XZIZZZXZII", 0.007169269812186064], ["YIIIXXXXYI", 0.04930312270999021], ["XIXXYYYXYI", -0.014729888610199814], ["XYXXYYXXYI", 0.010665312687926313], ["ZXXXXYXXYI", 0.006572351502781893], ["XIIIXXYXYI", 0.04587700432126865], ["XIIIXYXYXI", 0.04459788393254507], ["XIIIYXYYYI", 0.04560714016273523], ["YIIIIIZIYI", -0.006432707991474218], ["YZIIIIIYIX", 0.027345400379519765], ["YIIIXXYYYI", -0.04560714016273523], ["YIIYYYXXXI", 0.026636426365035736], ["XIZZZIIIXI", -0.006823631624625939], ["YIIIYXYXYI", 0.04587700432126865], ["XIIIXYYYYI", -0.04486088857347642], ["YZIIIIYYIY", -0.015146886131722144], ["YZIIIIYIZI", -0.006899554288018264], ["XIIZIIIIXI", -0.010013037009411004], ["YIIIYYXYXI", 0.04459788393254507], ["YIIIXYYXYI", -0.04521119690374699], ["YZIZZZYZII", 0.007169269812186064], ["YIIIYYYYYI", -0.04486088857347642], ["YIXYYYYXYI", 0.014729888610199814], ["YYYXYYXXYI", -0.010665312687926313], ["ZXXXXYXYXI", 0.006572351502781893], ["XIIIYYXXXI", -0.0437341322771147], ["YIIIXYXXXI", 0.0437341322771147], ["XIIIYXXYXI", -0.043159569527918745], ["YIIIXXXYXI", 0.043159569527918745], ["XIIIXXXXXI", -0.04150724130826612], ["YIIIYXXXXI", -0.04150724130826612], ["XIIXXYYYYI", -0.02787456236145021], ["YIIXYXYYXI", -0.027526204018504478], ["YIIXYYYXXI", -0.02691422493459414], ["YIIXXXXXYI", 0.02666217783475839], ["YIIXYYYYYI", 0.026648596578796042], ["XIIXYYXXXI", 0.026636426365035736], ["XIIXXXYYXI", 0.026403630605820266], ["YIIYXXYYXI", 0.026403630605820266], ["XIIXXXYXYI", 0.026362576038375586], ["YIIYXXYXYI", 0.026362576038375586], ["XIIXXYYXXI", 0.0261156926061024], ["YIIYXYYXXI", 0.0261156926061024], ["XIIYXYXYYI", 0.02596861341042802], ["YIIXXYXYYI", -0.02596861341042802], ["XIIXYXXXYI", 0.0258197989775319], ["YIIYYXXXYI", 0.0258197989775319], ["XIIXYXXYXI", 0.0257366367628273], ["YIIYYXXYXI", 0.0257366367628273], ["XIIYXYXXXI", -0.025684851821564002], ["YIIXXYXXXI", 0.025684851821564002], ["XIIYYXYXYI", 0.025466821824393464], ["YIIXYXYXYI", -0.025466821824393464], ["XIIXYYXYYI", -0.024756913701190417], ["YIIYYYXYYI", -0.024756913701190417], ["XIIYXXXYXI", -0.024433472934039593], ["YIIXXXXYXI", 0.024433472934039593], ["XIIYXYYXYI", 0.023332759688308016], ["YIIXXYYXYI", -0.023332759688308016], ["XZIIIIIYYI", -0.023142209116660137], ["YZIIIIIXYI", 0.023142209116660137], ["XIIIIIXXIX", 0.022895402429390692], ["YIIIIIYXIX", 0.022895402429390692], ["XIIXYXYXXI", 0.022719156992529476], ["YIIYYXYXXI", 0.022719156992529476], ["XIIXYYYXYI", -0.02211534108628905], ["YIIYYYYXYI", -0.02211534108628905], ["XIIXYYYYXI", -0.022114594999291054], ["YIIYYYYYXI", -0.022114594999291054], ["XIIYYYXYXI", 0.021932152598550934], ["YIIXYYXYXI", -0.021932152598550934], ["XIIYXXYYYI", 0.021902860602432215], ["YIIXXXYYYI", -0.021902860602432215], ["XZIIIIIXXI", -0.021780522375656204], ["YZIIIIIYXI", -0.021780522375656204], ["XIIXXXXYYI", 0.021612581396226377], ["YIIYXXXYYI", 0.021612581396226377], ["XIIYXXYXXI", -0.02158810464013425], ["YIIXXXYXXI", 0.02158810464013425], ["XIIYXYYYXI", 0.02131831369425804], ["YIIXXYYYXI", -0.02131831369425804], ["XIIXXYXXYI", 0.02114245861852753], ["YIIYXYXXYI", 0.02114245861852753], ["XIIXYXYYYI", -0.021003533985481704], ["YIIYYXYYYI", -0.021003533985481704], ["XIIXXYXYXI", 0.02099192408564843], ["YIIYXYXYXI", 0.02099192408564843], ["XIIYYXXYYI", 0.020761016521141717], ["YIIXYXXYYI", -0.020761016521141717], ["XIIYYYXXYI", 0.01993246796406775], ["YIIXYYXXYI", -0.01993246796406775], ["XIIYYXXXXI", -0.019920718063269928], ["YIIXYXXXXI", 0.019920718063269928], ["XIIIIIYYIX", 0.019417290274795877], ["YIIIIIXYIX", -0.019417290274795877], ["XIIXXXXXXI", -0.01857204712429268], ["YIIYXXXXXI", -0.01857204712429268], ["XZIIIIXXXI", -0.016348051075808806], ["YZIIIIYXXI", -0.016348051075808806], ["XZIIIIYXIY", 0.015110850469518992], ["YZIIIIXXIY", -0.015110850469518992], ["XIYXYXYXYI", 0.014830501861161874], ["YIYYYXYXYI", -0.014830501861161874], ["XIYYYXXYXI", 0.014790913647481705], ["YIYXYXXYXI", 0.014790913647481705]], "20": [["XIIIIIIIIIIIIIIIIIXI", -0.7597555791257463], ["XIIIIIIIIIIIIIIIIXXI", -0.3788134383984239], ["XIIIIIIIIIIIIIIIIYYI", -0.3816091687294096], ["XIIIIIIIIIZIZZZIZIXI", -0.000965140468847494], ["YIIIIIIIIIIIIIIIIIYI", -0.7597555791257463], ["YIIIIIIIIIIIIIXXXXYI", 0.048034693195222355], ["YIIIIIIIIIIIIYXYYYYI", -0.024288501533429433], ["XIIIIIIIIIIIZIIIIIXI", -0.0014745501558381339], ["YIIIIIIIIIIIIIIIIXYI", 0.3816091687294096], ["XIIIIIIIIIXXYYXXXXXI", 0.0034489756067628305], ["XIIIIIIIIYXYYYYXXXYI", -0.0018385588074672434], ["XZZZZZZZZIIIIIIIIIXI", -0.04247685949008335], ["IXXXXXXXXXXXXXXXXXXI", -0.0008215439378477366], ["XIIIIIIIIIIIIIIIIXIX", 0.032519358059862634], ["XIIIIIIIIIIIIIIIXYYI", 0.1911132990260518], ["XXXXXXXXXYZYYZZYXZIZ", -0.0009859910537224725], ["YIIIIIIIIIIIIIIIIYXI", -0.3788134383984239], ["YIIIIIIIIIIIIIIXXXYI", 0.09569082741024892], ["XIIIIIIIIIIIIIYXXXYI", -0.048034693195222355], ["XIIIIIIIIIIIIZIIIIXI", -0.0012072669323203635], ["YIIIIIIIIIIIIIIIYYYI", 0.1911132990260518], ["XIIIIIIIIIIXYXYXYXYI", -0.0063025199264490185], ["YIIIIIIIIIYXYYXXXXXI", 0.0034489756067628305], ["XIIIIIIIIZIIIIIIIIXI", -0.006678279604201871], ["XIIIIIIIIIIIIIIIYXYI", -0.1909251749011368], ["XIIIIIIIIIIIIIIIYYXI", -0.18982912184635464], ["XIIIIIIIIIIIIIIIIYIY", 0.029899797457073666], ["XZZZZZZZZIIIIIIIIXZZ", -0.004392057316095634], ["YZZZZZZZZIIIIIIIIIYI", -0.04247685949008335], ["YIIIIIIIIIIIIIIIXXYI", 0.1909251749011368], ["XIIIIIIIIIIIIIIYXXYI", -0.09569082741024892], ["XXXXXXXXXYYIZXZXYYXI", -0.0010722513190686877], ["YIIIIIIIIIIIIIIIXYXI", 0.18982912184635464], ["YIIIIIIIIIIIXYXYXXYI", -0.012374279005608061], ["YIIIIIIIIIIYYXYXYXYI", -0.0063025199264490185], ["XIIIIIIIIIZIIIIIIIXI", -0.0031537081858958207], ["XIIIIIIIIIIIIIIIXXXI", -0.1886473171987223], ["XXXXXXXXXXXIIXIXXXXI", 0.0010776146506793866], ["YIIIIIIIIIIIIIIIYXXI", -0.1886473171987223], ["YZZZZZZZZIIIIIIIIYZZ", -0.004392057316095634], ["YIIIIIIIIIIIIIIIIYIX", 0.032519358059862634], ["XIIIIIIIIIIIIIIXYXYI", 0.09564395067494046], ["YIIIIIIIIIIIIIIYYXYI", 0.09564395067494046], ["XIIIIIIIIIIIIIIZIIXI", -0.000986728020319752], ["XIIIIIIIIIIIIIIYXYXI", -0.09544725083131203], ["XIIIIIIIIIIIIXXYYYYI", -0.024288501533429433], ["XIIIIIIIIIIIYYXYXXYI", 0.012374279005608061], ["XIIIIIIIIIIZIIIIIIXI", -0.0020245744624640756], ["YIIIIIIIIIIIIIIXXYXI", 0.09544725083131203], ["XIIIIIIIIXYYYYYXXXYI", 0.0018385588074672434], ["XYYYYYYYYYXIIXIXXXXI", 0.0010776146506793866], ["ZXXXXXXXXXXXXXXXXXXI", -0.0008215439378477366], ["XIIIIIIIIIIIIIIXYYXI", 0.09542273913256943], ["YIIIIIIIIIIIIIIYYYXI", 0.09542273913256943], ["XIIIIIIIIIIIIIIXXYYI", 0.09501085307200312], ["YIIIIIIIIIZIZZZIZIYI", -0.000965140468847494], ["XZZZZZZZZIIIIIIIIXIX", 0.03036004987263414], ["XIIIIIIIIIIIIIXXXYYI", 0.04797669720376477], ["YIIIIIIIIIIIIYYYXYYI", -0.024283149819588574], ["YIIIIIIIIIIIZIIIIIYI", -0.0014745501558381339], ["YIIIIIIIIIIIIIIYXYYI", 0.09501085307200312], ["XIIIIIIIIIXYXYXXXYYI", -0.0034460998319557614], ["YIIIIIIIIYYYYYYXXXYI", 0.0018385588074672434], ["YZZZZZZZZIIIIIIIIYIX", 0.03036004987263414], ["IXXXXXXXXXXXXXXXXYYI", 0.0008215439378477366], ["XIIIIIIIIIIIIIIIXXIX", 0.016934143310274964], ["XIIIIIIIIIIIIIIYYYYI", 0.09500871845303184], ["XYYYYYYYYXZYYZZYXZIZ", 0.0009859910537224725], ["YIIIIIIIIIIIIIIIIXIY", -0.029899797457073666], ["YIIIIIIIIIIIIIIXYYYI", -0.09500871845303184], ["YIIIIIIIIIIIIIYXXYYI", 0.04797669720376477], ["YIIIIIIIIIIIIZIIIIYI", -0.0012072669323203635], ["XIIIIIIIIIIIIIIYYXXI", -0.09459704485910016], ["YIIIIIIIIIIXYXXYYXXI", -0.006296412913254014], ["YIIIIIIIIIYYXYXXXYYI", -0.0034460998319557614], ["YIIIIIIIIZIIIIIIIIYI", -0.006678279604201871], ["YIIIIIIIIIIIIIIXYXXI", 0.09459704485910016], ["XIIIIIIIIIIIIIIXXXXI", -0.09392136813839039], ["XZZZZZZZZIIIIIIIIYIY", 0.029648188325124326], ["XIIIIIIIIIIIIIIIIXZZ", -0.004347501257809116], ["XZZZZZZZZZIIIIIIIIXI", 0.006594960463259015], ["YIIIIIIIIIIIIIIYXXXI", -0.09392136813839039], ["XIIIIIIIIIIIIIXYXXYI", 0.047971572042292715], ["XYYYYYYYYXYIZXZXYYXI", 0.0010722513190686877], ["YIIIIIIIIIIIIIYYXXYI", 0.047971572042292715], ["YIIIIIIIIIIIXXXXXXYI", 0.01236283983073573], ["XIIIIIIIIIIYYXXYYXXI", 0.006296412913254014], ["YIIIIIIIIIZIIIIIIIYI", -0.0031537081858958207], ["XIIIIIIIIIIIIIYYXYYI", 0.04796639844692382], ["YXXXXXXXXYXIIXIXXXXI", -0.0010776146506793866], ["YIIIIIIIIIIIIIXYXYYI", -0.04796639844692382], ["YIIIIIIIIIIIIIIIIYZZ", -0.004347501257809116], ["YZZZZZZZZIIIIIIIIXIY", -0.029648188325124326], ["XIIIIIIIIIIIIIXYYXXI", 0.047836394705299566], ["XIIIIIIIIIIIIIXXYYXI", 0.04795217784026999], ["YIIIIIIIIIIIIIIZIIYI", -0.000986728020319752], ["XZZZZZZZZIIIIIIIIYYI", -0.021465538187191525], ["XIIIIIIIIIIIIXYYXYYI", -0.024283149819588574], ["XIIIIIIIIIIIYXXXXXYI", -0.01236283983073573], ["YIIIIIIIIIIZIIIIIIYI", -0.0020245744624640756], ["YIIIIIIIIIIIIIYXYYXI", 0.04795217784026999], ["YIIIIIIIIXXYYYYXXXYI", 0.0018385588074672434], ["YYYYYYYYYXXIIXIXXXXI", 0.0010776146506793866], ["ZXXXXXXXXXXXXXXXXYYI", 0.0008215439378477366], ["XIIIIIIIIIIIIIYYYYXI", 0.04785498815847788], ["YIIIIIIIIIIIIIXYYYXI", -0.04785498815847788], ["XIIIIIIIIIIIIIYXYYYI", 0.04736747465909179], ["XXXXXXXXXYYZZZYYZZYY", 0.0009404226016837798], ["YZZZZZZZZIIIIIIIIXYI", 0.021465538187191525], ["YIIIIIIIIIIIIIXXYXXI", 0.047831133668291004], ["YIIIIIIIIIIIIYXXYYXI", 0.024266198663343924], ["XZZZZZZZZIIIZIIIIIXI", 0.0013915658848147139], ["YIIIIIIIIIIIIIYYYXXI", 0.047836394705299566], ["YIIIIIIIIIXXXYXXXYYI", -0.0034428185573980993], ["XIIIIIIIIYYYYXXXXXXI", 0.001835428143108581], ["XZZZZZZZZIIIIIIIIXXI", -0.020457124625547614], ["IXXXXXXXXXXXXXXXYXYI", 0.0008215439378477366], ["YIIIIIIIIIIIIIIIYXIX", 0.016934143310274964], ["YIIIIIIIIIIIIIXXYYYI", -0.04736747465909179], ["YXXXXXXXXXZYYZZYXZIZ", -0.0009859910537224725], ["YZZZZZZZZIIIIIIIIYXI", -0.020457124625547614], ["XIIIIIIIIIIIIIYXYXXI", -0.047831133668291004], ["YIIIIIIIIIIIIIYXYXYI", 0.04736214327368851], ["XZZZZZZZZIIIIZIIIIXI", 0.0011246581686555233], ["XIIIIIIIIIIIIIXXYXYI", 0.04736214327368851], ["XIIIIIIIIIIXXYYXXXXI", 0.006293165273497527], ["XIIIIIIIIIYXXYXXXYYI", 0.0034428185573980993], ["YZZZZZZZZZIIIIIIIIYI", 0.006594960463259015], ["XIIIIIIIIIIIIIYYYXYI", 0.047320759424729644], ["XIIIIIIIIIIIIIXYYYYI", -0.04731583349766409], ["YIIIIIIIIIIIIIXYYXYI", -0.047320759424729644], ["YIIIIIIIIIIIIIYYYYYI", -0.04731583349766409], ["XIIIIIIIIIIIIIXYXYXI", 0.04715986341941597], ["YIIIIIIIIIIIIIYYXYXI", 0.04715986341941597], ["XIIIIIIIIIIIIIYXXYXI", -0.04708759877215153], ["YIIIIIIIIIIIIIXXXYXI", 0.04708759877215153], ["XIIIIIIIIIIIIIYYXXXI", -0.047077329797287154], ["YIIIIIIIIIIIIIXYXXXI", 0.047077329797287154], ["XIIIIIIIIIIIIIXXXXXI", -0.046483027941077046], ["YIIIIIIIIIIIIIYXXXXI", -0.046483027941077046], ["XIIIIIIIIIIIIXXXYYXI", 0.024266198663343924], ["XIIIIIIIIIIIIXYXXYXI", 0.024221035620844704], ["YIIIIIIIIIIIIYYXXYXI", 0.024221035620844704], ["XIIIIIIIIIIIIYYXYXYI", 0.02417081593949432], ["YIIIIIIIIIIIIXYXYXYI", -0.02417081593949432], ["XIIIIIIIIIIIIYYYYYYI", -0.024133364967802363], ["YIIIIIIIIIIIIXYYYYYI", 0.024133364967802363], ["XIIIIIIIIIIIIYXXXYXI", -0.024124159069099572], ["YIIIIIIIIIIIIXXXXYXI", 0.024124159069099572], ["XIIIIIIIIIIIIYXYXYYI", 0.024120661853799782], ["YIIIIIIIIIIIIXXYXYYI", -0.024120661853799782], ["XIIIIIIIIIIIIYXXXXYI", -0.024104542695134838], ["YIIIIIIIIIIIIXXXXXYI", 0.024104542695134838], ["XIIIIIIIIIIIIXYXXXYI", 0.02407886470764104], ["YIIIIIIIIIIIIYYXXXYI", 0.02407886470764104], ["XIIIIIIIIIIIIYYYYXXI", 0.02407821129564789], ["YIIIIIIIIIIIIXYYYXXI", -0.02407821129564789], ["XIIIIIIIIIIIIYYXYYXI", 0.024017344822110463], ["YIIIIIIIIIIIIXYXYYXI", -0.024017344822110463], ["XIIIIIIIIIIIIYXYXXXI", -0.024002206896584898], ["YIIIIIIIIIIIIXXYXXXI", 0.024002206896584898], ["XIIIIIIIIIIIIXXXYXYI", 0.023990998156616865], ["YIIIIIIIIIIIIYXXYXYI", 0.023990998156616865], ["XIIIIIIIIIIIIXXYYXXI", 0.023982327872627413], ["YIIIIIIIIIIIIYXYYXXI", 0.023982327872627413], ["XIIIIIIIIIIIIXYYXXXI", 0.02394658272119049], ["YIIIIIIIIIIIIYYYXXXI", 0.02394658272119049], ["XIIIIIIIIIIIIXXXXYYI", 0.023660364191832095], ["YIIIIIIIIIIIIYXXXYYI", 0.023660364191832095], ["XIIIIIIIIIIIIXYXYYYI", -0.023612924174725745], ["YIIIIIIIIIIIIYYXYYYI", -0.023612924174725745], ["XIIIIIIIIIIIIXYYYYXI", -0.02358264805064134], ["YIIIIIIIIIIIIYYYYYXI", -0.02358264805064134], ["XIIIIIIIIIIIIYXYYXYI", 0.023566828574144272], ["YIIIIIIIIIIIIXXYYXYI", -0.023566828574144272], ["XIIIIIIIIIIIIYXXYYYI", 0.023564398804039755], ["YIIIIIIIIIIIIXXXYYYI", -0.023564398804039755], ["XIIIIIIIIIIIIXXYXYXI", 0.02355396731440562], ["YIIIIIIIIIIIIYXYXYXI", 0.02355396731440562], ["XIIIIIIIIIIIIYXYYYXI", 0.02353003846923867], ["YIIIIIIIIIIIIXXYYYXI", -0.02353003846923867], ["XIIIIIIIIIIIIYYYXXYI", 0.023526624256680426], ["YIIIIIIIIIIIIXYYXXYI", -0.023526624256680426], ["XIIIIIIIIIIIIYYXXYYI", 0.02350411715197553], ["YIIIIIIIIIIIIXYXXYYI", -0.02350411715197553], ["XIIIIIIIIIIIIYYYXYXI", 0.02345419115622137], ["YIIIIIIIIIIIIXYYXYXI", -0.02345419115622137], ["XIIIIIIIIIIIIYXXYXXI", -0.02343504507272356], ["YIIIIIIIIIIIIXXXYXXI", 0.02343504507272356], ["XIIIIIIIIIIIIXYYYXYI", -0.023419194967496094], ["YIIIIIIIIIIIIYYYYXYI", -0.023419194967496094], ["XIIIIIIIIIIIIXXYXXYI", 0.023389512378306096], ["YIIIIIIIIIIIIYXYXXYI", 0.023389512378306096], ["XIIIIIIIIIIIIXYXYXXI", 0.023344194580454638], ["YIIIIIIIIIIIIYYXYXXI", 0.023344194580454638], ["XIIIIIIIIIIIIYYXXXXI", -0.023339545846585603], ["YIIIIIIIIIIIIXYXXXXI", 0.023339545846585603], ["XIIIIIIIIIIIIXXXXXXI", -0.02280862713889307], ["YIIIIIIIIIIIIYXXXXXI", -0.02280862713889307], ["XIIIIIIIIIIIIIIIYYIX", 0.01580047352304733]]} \ No newline at end of file +{ + "10": [ + ["XIIIIIIIXI", -0.7526137035201601], + ["XIIIIIIXXI", -0.37336084437331796], + ["XIIIIIIYYI", -0.38415596887523673], + ["XZIXIZZZZI", -0.006612905308067554], + ["YIIIIIIIYI", -0.7526137035201601], + ["XIIIXXYYXI", 0.051516042757856595], + ["YIIYXYYYYI", -0.02787456236145021], + ["XIZIIIIIXI", -0.013449113937452212], + ["YIIIIIIXYI", 0.38415596887523673], + ["XIIIIIYXYI", -0.19424150139041263], + ["XIIIIIIYIY", 0.029720649244903058], + ["XIIZZZXZZI", -0.007109908237121916], + ["XZIIIIIIXI", -0.04933462211354994], + ["YIIIIIXXYI", 0.19424150139041263], + ["YIIIIYYXYI", 0.09797196440842665], + ["XIIIZIIIXI", -0.007825806002393486], + ["YIIIIIIYXI", -0.37336084437331796], + ["XIXYYXYXYI", -0.014830501861161874], + ["XYXXYYYXXI", 0.011070832097706011], + ["ZXXXXXXXXI", -0.006572351502781893], + ["XIIIIIXYYI", 0.19386532534886877], + ["XIIIIIYYXI", -0.18678800030285186], + ["YIIIIIYYYI", 0.19386532534886877], + ["YZIYIZZZZI", -0.006612905308067554], + ["YIIIIIXYXI", 0.18678800030285186], + ["YIIIXXYXXI", 0.05105565386817196], + ["XIIYYXYYXI", 0.027526204018504478], + ["YIZIIIIIYI", -0.013449113937452212], + ["XIIIIIXXXI", -0.18323015243607135], + ["XIIIIXYXYI", 0.09797196440842665], + ["YIIIIIIXIY", -0.029720649244903058], + ["YIIZZZYZZI", -0.007109908237121916], + ["YZIIIIIIYI", -0.04933462211354994], + ["XIIIIYXYXI", -0.09790485429098861], + ["XIIIIYXXYI", -0.09738539217062862], + ["YIIIZIIIYI", -0.007825806002393486], + ["YIIIIIYXXI", -0.18323015243607135], + ["YIXXYXYXYI", -0.014830501861161874], + ["YYYXYYYXXI", -0.011070832097706011], + ["ZXXXXXXYYI", 0.006572351502781893], + ["YIIIIXXYXI", 0.09790485429098861], + ["XIIIIXYYXI", 0.09723073331248952], + ["YIIIIYYYXI", 0.09723073331248952], + ["XZIXIIZIII", -0.006442771857138567], + ["XIIIIIIXIX", 0.03782159881982394], + ["YIIIXYXYYI", -0.05081457021131695], + ["XIIYYYYXXI", 0.02691422493459414], + ["XZZIIIIIXI", 0.012785230601782186], + ["YIIIIXXXYI", 0.09738539217062862], + ["XIIIIXXYYI", 0.0936375449565515], + ["XZIIIIIYIY", 0.02736493560510323], + ["XIIXZXXZZI", 0.0070057024561532314], + ["YZZIIIIIYI", 0.012785230601782186], + ["YIIIIYXYYI", 0.0936375449565515], + ["XIIIIYYYYI", 0.09298355472236805], + ["XZIIZIIIXI", 0.007170911589543703], + ["YIIIIXYYYI", -0.09298355472236805], + ["XIXXYXXYXI", 0.014790913647481705], + ["XYXXXXYXXI", -0.01068597467739666], + ["ZXXXXXYXYI", 0.006572351502781893], + ["XIIIIYYXXI", -0.09210460232707157], + ["YIIIIXYXXI", 0.09210460232707157], + ["YIIIYXYYXI", 0.051516042757856595], + ["YZIYIIZIII", -0.006442771857138567], + ["YIIIIIIYIX", 0.03782159881982394], + ["XIIIXYXXYI", 0.050446601073475254], + ["XIIYXXXXYI", -0.02666217783475839], + ["XZZIIIIXXI", 0.00837965253402453], + ["XIIIIXXXXI", -0.08891475352327935], + ["XIIIYXYXXI", -0.05105565386817196], + ["YZIIIIIXIY", -0.02736493560510323], + ["YIIYZXXZZI", 0.0070057024561532314], + ["XIIIIIXIII", 0.011189896923879047], + ["YIIIIYXXXI", -0.08891475352327935], + ["XIIIYYXYYI", 0.05081457021131695], + ["YZIIZIIIYI", 0.007170911589543703], + ["YIIIYYXXYI", 0.050446601073475254], + ["YIXYYXXYXI", -0.014790913647481705], + ["YYYXXXYXXI", 0.01068597467739666], + ["ZXXXXXYYXI", 0.006572351502781893], + ["XIIIYYYYXI", 0.05044317333961998], + ["YIIIXYYYXI", -0.05044317333961998], + ["XIIIXXXYYI", 0.04959844986045102], + ["XIIIIIZIXI", -0.006432707991474218], + ["XZIIIIIXIX", 0.027345400379519765], + ["XIIIXYYXXI", 0.050092874043860355], + ["XIIYYYYYYI", -0.026648596578796042], + ["YZZIIIIYXI", 0.00837965253402453], + ["YIIIYYYXXI", 0.050092874043860355], + ["XIIIYXXXYI", -0.04930312270999021], + ["XZIIIIXYIY", -0.015146886131722144], + ["XZIIIIXIZI", -0.006899554288018264], + ["YIIIIIYIII", 0.011189896923879047], + ["YIIIYXXYYI", 0.04959844986045102], + ["XIIIYYYXYI", 0.04521119690374699], + ["XZIZZZXZII", 0.007169269812186064], + ["YIIIXXXXYI", 0.04930312270999021], + ["XIXXYYYXYI", -0.014729888610199814], + ["XYXXYYXXYI", 0.010665312687926313], + ["ZXXXXYXXYI", 0.006572351502781893], + ["XIIIXXYXYI", 0.04587700432126865], + ["XIIIXYXYXI", 0.04459788393254507], + ["XIIIYXYYYI", 0.04560714016273523], + ["YIIIIIZIYI", -0.006432707991474218], + ["YZIIIIIYIX", 0.027345400379519765], + ["YIIIXXYYYI", -0.04560714016273523], + ["YIIYYYXXXI", 0.026636426365035736], + ["XIZZZIIIXI", -0.006823631624625939], + ["YIIIYXYXYI", 0.04587700432126865], + ["XIIIXYYYYI", -0.04486088857347642], + ["YZIIIIYYIY", -0.015146886131722144], + ["YZIIIIYIZI", -0.006899554288018264], + ["XIIZIIIIXI", -0.010013037009411004], + ["YIIIYYXYXI", 0.04459788393254507], + ["YIIIXYYXYI", -0.04521119690374699], + ["YZIZZZYZII", 0.007169269812186064], + ["YIIIYYYYYI", -0.04486088857347642], + ["YIXYYYYXYI", 0.014729888610199814], + ["YYYXYYXXYI", -0.010665312687926313], + ["ZXXXXYXYXI", 0.006572351502781893], + ["XIIIYYXXXI", -0.0437341322771147], + ["YIIIXYXXXI", 0.0437341322771147], + ["XIIIYXXYXI", -0.043159569527918745], + ["YIIIXXXYXI", 0.043159569527918745], + ["XIIIXXXXXI", -0.04150724130826612], + ["YIIIYXXXXI", -0.04150724130826612], + ["XIIXXYYYYI", -0.02787456236145021], + ["YIIXYXYYXI", -0.027526204018504478], + ["YIIXYYYXXI", -0.02691422493459414], + ["YIIXXXXXYI", 0.02666217783475839], + ["YIIXYYYYYI", 0.026648596578796042], + ["XIIXYYXXXI", 0.026636426365035736], + ["XIIXXXYYXI", 0.026403630605820266], + ["YIIYXXYYXI", 0.026403630605820266], + ["XIIXXXYXYI", 0.026362576038375586], + ["YIIYXXYXYI", 0.026362576038375586], + ["XIIXXYYXXI", 0.0261156926061024], + ["YIIYXYYXXI", 0.0261156926061024], + ["XIIYXYXYYI", 0.02596861341042802], + ["YIIXXYXYYI", -0.02596861341042802], + ["XIIXYXXXYI", 0.0258197989775319], + ["YIIYYXXXYI", 0.0258197989775319], + ["XIIXYXXYXI", 0.0257366367628273], + ["YIIYYXXYXI", 0.0257366367628273], + ["XIIYXYXXXI", -0.025684851821564002], + ["YIIXXYXXXI", 0.025684851821564002], + ["XIIYYXYXYI", 0.025466821824393464], + ["YIIXYXYXYI", -0.025466821824393464], + ["XIIXYYXYYI", -0.024756913701190417], + ["YIIYYYXYYI", -0.024756913701190417], + ["XIIYXXXYXI", -0.024433472934039593], + ["YIIXXXXYXI", 0.024433472934039593], + ["XIIYXYYXYI", 0.023332759688308016], + ["YIIXXYYXYI", -0.023332759688308016], + ["XZIIIIIYYI", -0.023142209116660137], + ["YZIIIIIXYI", 0.023142209116660137], + ["XIIIIIXXIX", 0.022895402429390692], + ["YIIIIIYXIX", 0.022895402429390692], + ["XIIXYXYXXI", 0.022719156992529476], + ["YIIYYXYXXI", 0.022719156992529476], + ["XIIXYYYXYI", -0.02211534108628905], + ["YIIYYYYXYI", -0.02211534108628905], + ["XIIXYYYYXI", -0.022114594999291054], + ["YIIYYYYYXI", -0.022114594999291054], + ["XIIYYYXYXI", 0.021932152598550934], + ["YIIXYYXYXI", -0.021932152598550934], + ["XIIYXXYYYI", 0.021902860602432215], + ["YIIXXXYYYI", -0.021902860602432215], + ["XZIIIIIXXI", -0.021780522375656204], + ["YZIIIIIYXI", -0.021780522375656204], + ["XIIXXXXYYI", 0.021612581396226377], + ["YIIYXXXYYI", 0.021612581396226377], + ["XIIYXXYXXI", -0.02158810464013425], + ["YIIXXXYXXI", 0.02158810464013425], + ["XIIYXYYYXI", 0.02131831369425804], + ["YIIXXYYYXI", -0.02131831369425804], + ["XIIXXYXXYI", 0.02114245861852753], + ["YIIYXYXXYI", 0.02114245861852753], + ["XIIXYXYYYI", -0.021003533985481704], + ["YIIYYXYYYI", -0.021003533985481704], + ["XIIXXYXYXI", 0.02099192408564843], + ["YIIYXYXYXI", 0.02099192408564843], + ["XIIYYXXYYI", 0.020761016521141717], + ["YIIXYXXYYI", -0.020761016521141717], + ["XIIYYYXXYI", 0.01993246796406775], + ["YIIXYYXXYI", -0.01993246796406775], + ["XIIYYXXXXI", -0.019920718063269928], + ["YIIXYXXXXI", 0.019920718063269928], + ["XIIIIIYYIX", 0.019417290274795877], + ["YIIIIIXYIX", -0.019417290274795877], + ["XIIXXXXXXI", -0.01857204712429268], + ["YIIYXXXXXI", -0.01857204712429268], + ["XZIIIIXXXI", -0.016348051075808806], + ["YZIIIIYXXI", -0.016348051075808806], + ["XZIIIIYXIY", 0.015110850469518992], + ["YZIIIIXXIY", -0.015110850469518992], + ["XIYXYXYXYI", 0.014830501861161874], + ["YIYYYXYXYI", -0.014830501861161874], + ["XIYYYXXYXI", 0.014790913647481705], + ["YIYXYXXYXI", 0.014790913647481705] + ], + "20": [ + ["XIIIIIIIIIIIIIIIIIXI", -0.7597555791257463], + ["XIIIIIIIIIIIIIIIIXXI", -0.3788134383984239], + ["XIIIIIIIIIIIIIIIIYYI", -0.3816091687294096], + ["XIIIIIIIIIZIZZZIZIXI", -0.000965140468847494], + ["YIIIIIIIIIIIIIIIIIYI", -0.7597555791257463], + ["YIIIIIIIIIIIIIXXXXYI", 0.048034693195222355], + ["YIIIIIIIIIIIIYXYYYYI", -0.024288501533429433], + ["XIIIIIIIIIIIZIIIIIXI", -0.0014745501558381339], + ["YIIIIIIIIIIIIIIIIXYI", 0.3816091687294096], + ["XIIIIIIIIIXXYYXXXXXI", 0.0034489756067628305], + ["XIIIIIIIIYXYYYYXXXYI", -0.0018385588074672434], + ["XZZZZZZZZIIIIIIIIIXI", -0.04247685949008335], + ["IXXXXXXXXXXXXXXXXXXI", -0.0008215439378477366], + ["XIIIIIIIIIIIIIIIIXIX", 0.032519358059862634], + ["XIIIIIIIIIIIIIIIXYYI", 0.1911132990260518], + ["XXXXXXXXXYZYYZZYXZIZ", -0.0009859910537224725], + ["YIIIIIIIIIIIIIIIIYXI", -0.3788134383984239], + ["YIIIIIIIIIIIIIIXXXYI", 0.09569082741024892], + ["XIIIIIIIIIIIIIYXXXYI", -0.048034693195222355], + ["XIIIIIIIIIIIIZIIIIXI", -0.0012072669323203635], + ["YIIIIIIIIIIIIIIIYYYI", 0.1911132990260518], + ["XIIIIIIIIIIXYXYXYXYI", -0.0063025199264490185], + ["YIIIIIIIIIYXYYXXXXXI", 0.0034489756067628305], + ["XIIIIIIIIZIIIIIIIIXI", -0.006678279604201871], + ["XIIIIIIIIIIIIIIIYXYI", -0.1909251749011368], + ["XIIIIIIIIIIIIIIIYYXI", -0.18982912184635464], + ["XIIIIIIIIIIIIIIIIYIY", 0.029899797457073666], + ["XZZZZZZZZIIIIIIIIXZZ", -0.004392057316095634], + ["YZZZZZZZZIIIIIIIIIYI", -0.04247685949008335], + ["YIIIIIIIIIIIIIIIXXYI", 0.1909251749011368], + ["XIIIIIIIIIIIIIIYXXYI", -0.09569082741024892], + ["XXXXXXXXXYYIZXZXYYXI", -0.0010722513190686877], + ["YIIIIIIIIIIIIIIIXYXI", 0.18982912184635464], + ["YIIIIIIIIIIIXYXYXXYI", -0.012374279005608061], + ["YIIIIIIIIIIYYXYXYXYI", -0.0063025199264490185], + ["XIIIIIIIIIZIIIIIIIXI", -0.0031537081858958207], + ["XIIIIIIIIIIIIIIIXXXI", -0.1886473171987223], + ["XXXXXXXXXXXIIXIXXXXI", 0.0010776146506793866], + ["YIIIIIIIIIIIIIIIYXXI", -0.1886473171987223], + ["YZZZZZZZZIIIIIIIIYZZ", -0.004392057316095634], + ["YIIIIIIIIIIIIIIIIYIX", 0.032519358059862634], + ["XIIIIIIIIIIIIIIXYXYI", 0.09564395067494046], + ["YIIIIIIIIIIIIIIYYXYI", 0.09564395067494046], + ["XIIIIIIIIIIIIIIZIIXI", -0.000986728020319752], + ["XIIIIIIIIIIIIIIYXYXI", -0.09544725083131203], + ["XIIIIIIIIIIIIXXYYYYI", -0.024288501533429433], + ["XIIIIIIIIIIIYYXYXXYI", 0.012374279005608061], + ["XIIIIIIIIIIZIIIIIIXI", -0.0020245744624640756], + ["YIIIIIIIIIIIIIIXXYXI", 0.09544725083131203], + ["XIIIIIIIIXYYYYYXXXYI", 0.0018385588074672434], + ["XYYYYYYYYYXIIXIXXXXI", 0.0010776146506793866], + ["ZXXXXXXXXXXXXXXXXXXI", -0.0008215439378477366], + ["XIIIIIIIIIIIIIIXYYXI", 0.09542273913256943], + ["YIIIIIIIIIIIIIIYYYXI", 0.09542273913256943], + ["XIIIIIIIIIIIIIIXXYYI", 0.09501085307200312], + ["YIIIIIIIIIZIZZZIZIYI", -0.000965140468847494], + ["XZZZZZZZZIIIIIIIIXIX", 0.03036004987263414], + ["XIIIIIIIIIIIIIXXXYYI", 0.04797669720376477], + ["YIIIIIIIIIIIIYYYXYYI", -0.024283149819588574], + ["YIIIIIIIIIIIZIIIIIYI", -0.0014745501558381339], + ["YIIIIIIIIIIIIIIYXYYI", 0.09501085307200312], + ["XIIIIIIIIIXYXYXXXYYI", -0.0034460998319557614], + ["YIIIIIIIIYYYYYYXXXYI", 0.0018385588074672434], + ["YZZZZZZZZIIIIIIIIYIX", 0.03036004987263414], + ["IXXXXXXXXXXXXXXXXYYI", 0.0008215439378477366], + ["XIIIIIIIIIIIIIIIXXIX", 0.016934143310274964], + ["XIIIIIIIIIIIIIIYYYYI", 0.09500871845303184], + ["XYYYYYYYYXZYYZZYXZIZ", 0.0009859910537224725], + ["YIIIIIIIIIIIIIIIIXIY", -0.029899797457073666], + ["YIIIIIIIIIIIIIIXYYYI", -0.09500871845303184], + ["YIIIIIIIIIIIIIYXXYYI", 0.04797669720376477], + ["YIIIIIIIIIIIIZIIIIYI", -0.0012072669323203635], + ["XIIIIIIIIIIIIIIYYXXI", -0.09459704485910016], + ["YIIIIIIIIIIXYXXYYXXI", -0.006296412913254014], + ["YIIIIIIIIIYYXYXXXYYI", -0.0034460998319557614], + ["YIIIIIIIIZIIIIIIIIYI", -0.006678279604201871], + ["YIIIIIIIIIIIIIIXYXXI", 0.09459704485910016], + ["XIIIIIIIIIIIIIIXXXXI", -0.09392136813839039], + ["XZZZZZZZZIIIIIIIIYIY", 0.029648188325124326], + ["XIIIIIIIIIIIIIIIIXZZ", -0.004347501257809116], + ["XZZZZZZZZZIIIIIIIIXI", 0.006594960463259015], + ["YIIIIIIIIIIIIIIYXXXI", -0.09392136813839039], + ["XIIIIIIIIIIIIIXYXXYI", 0.047971572042292715], + ["XYYYYYYYYXYIZXZXYYXI", 0.0010722513190686877], + ["YIIIIIIIIIIIIIYYXXYI", 0.047971572042292715], + ["YIIIIIIIIIIIXXXXXXYI", 0.01236283983073573], + ["XIIIIIIIIIIYYXXYYXXI", 0.006296412913254014], + ["YIIIIIIIIIZIIIIIIIYI", -0.0031537081858958207], + ["XIIIIIIIIIIIIIYYXYYI", 0.04796639844692382], + ["YXXXXXXXXYXIIXIXXXXI", -0.0010776146506793866], + ["YIIIIIIIIIIIIIXYXYYI", -0.04796639844692382], + ["YIIIIIIIIIIIIIIIIYZZ", -0.004347501257809116], + ["YZZZZZZZZIIIIIIIIXIY", -0.029648188325124326], + ["XIIIIIIIIIIIIIXYYXXI", 0.047836394705299566], + ["XIIIIIIIIIIIIIXXYYXI", 0.04795217784026999], + ["YIIIIIIIIIIIIIIZIIYI", -0.000986728020319752], + ["XZZZZZZZZIIIIIIIIYYI", -0.021465538187191525], + ["XIIIIIIIIIIIIXYYXYYI", -0.024283149819588574], + ["XIIIIIIIIIIIYXXXXXYI", -0.01236283983073573], + ["YIIIIIIIIIIZIIIIIIYI", -0.0020245744624640756], + ["YIIIIIIIIIIIIIYXYYXI", 0.04795217784026999], + ["YIIIIIIIIXXYYYYXXXYI", 0.0018385588074672434], + ["YYYYYYYYYXXIIXIXXXXI", 0.0010776146506793866], + ["ZXXXXXXXXXXXXXXXXYYI", 0.0008215439378477366], + ["XIIIIIIIIIIIIIYYYYXI", 0.04785498815847788], + ["YIIIIIIIIIIIIIXYYYXI", -0.04785498815847788], + ["XIIIIIIIIIIIIIYXYYYI", 0.04736747465909179], + ["XXXXXXXXXYYZZZYYZZYY", 0.0009404226016837798], + ["YZZZZZZZZIIIIIIIIXYI", 0.021465538187191525], + ["YIIIIIIIIIIIIIXXYXXI", 0.047831133668291004], + ["YIIIIIIIIIIIIYXXYYXI", 0.024266198663343924], + ["XZZZZZZZZIIIZIIIIIXI", 0.0013915658848147139], + ["YIIIIIIIIIIIIIYYYXXI", 0.047836394705299566], + ["YIIIIIIIIIXXXYXXXYYI", -0.0034428185573980993], + ["XIIIIIIIIYYYYXXXXXXI", 0.001835428143108581], + ["XZZZZZZZZIIIIIIIIXXI", -0.020457124625547614], + ["IXXXXXXXXXXXXXXXYXYI", 0.0008215439378477366], + ["YIIIIIIIIIIIIIIIYXIX", 0.016934143310274964], + ["YIIIIIIIIIIIIIXXYYYI", -0.04736747465909179], + ["YXXXXXXXXXZYYZZYXZIZ", -0.0009859910537224725], + ["YZZZZZZZZIIIIIIIIYXI", -0.020457124625547614], + ["XIIIIIIIIIIIIIYXYXXI", -0.047831133668291004], + ["YIIIIIIIIIIIIIYXYXYI", 0.04736214327368851], + ["XZZZZZZZZIIIIZIIIIXI", 0.0011246581686555233], + ["XIIIIIIIIIIIIIXXYXYI", 0.04736214327368851], + ["XIIIIIIIIIIXXYYXXXXI", 0.006293165273497527], + ["XIIIIIIIIIYXXYXXXYYI", 0.0034428185573980993], + ["YZZZZZZZZZIIIIIIIIYI", 0.006594960463259015], + ["XIIIIIIIIIIIIIYYYXYI", 0.047320759424729644], + ["XIIIIIIIIIIIIIXYYYYI", -0.04731583349766409], + ["YIIIIIIIIIIIIIXYYXYI", -0.047320759424729644], + ["YIIIIIIIIIIIIIYYYYYI", -0.04731583349766409], + ["XIIIIIIIIIIIIIXYXYXI", 0.04715986341941597], + ["YIIIIIIIIIIIIIYYXYXI", 0.04715986341941597], + ["XIIIIIIIIIIIIIYXXYXI", -0.04708759877215153], + ["YIIIIIIIIIIIIIXXXYXI", 0.04708759877215153], + ["XIIIIIIIIIIIIIYYXXXI", -0.047077329797287154], + ["YIIIIIIIIIIIIIXYXXXI", 0.047077329797287154], + ["XIIIIIIIIIIIIIXXXXXI", -0.046483027941077046], + ["YIIIIIIIIIIIIIYXXXXI", -0.046483027941077046], + ["XIIIIIIIIIIIIXXXYYXI", 0.024266198663343924], + ["XIIIIIIIIIIIIXYXXYXI", 0.024221035620844704], + ["YIIIIIIIIIIIIYYXXYXI", 0.024221035620844704], + ["XIIIIIIIIIIIIYYXYXYI", 0.02417081593949432], + ["YIIIIIIIIIIIIXYXYXYI", -0.02417081593949432], + ["XIIIIIIIIIIIIYYYYYYI", -0.024133364967802363], + ["YIIIIIIIIIIIIXYYYYYI", 0.024133364967802363], + ["XIIIIIIIIIIIIYXXXYXI", -0.024124159069099572], + ["YIIIIIIIIIIIIXXXXYXI", 0.024124159069099572], + ["XIIIIIIIIIIIIYXYXYYI", 0.024120661853799782], + ["YIIIIIIIIIIIIXXYXYYI", -0.024120661853799782], + ["XIIIIIIIIIIIIYXXXXYI", -0.024104542695134838], + ["YIIIIIIIIIIIIXXXXXYI", 0.024104542695134838], + ["XIIIIIIIIIIIIXYXXXYI", 0.02407886470764104], + ["YIIIIIIIIIIIIYYXXXYI", 0.02407886470764104], + ["XIIIIIIIIIIIIYYYYXXI", 0.02407821129564789], + ["YIIIIIIIIIIIIXYYYXXI", -0.02407821129564789], + ["XIIIIIIIIIIIIYYXYYXI", 0.024017344822110463], + ["YIIIIIIIIIIIIXYXYYXI", -0.024017344822110463], + ["XIIIIIIIIIIIIYXYXXXI", -0.024002206896584898], + ["YIIIIIIIIIIIIXXYXXXI", 0.024002206896584898], + ["XIIIIIIIIIIIIXXXYXYI", 0.023990998156616865], + ["YIIIIIIIIIIIIYXXYXYI", 0.023990998156616865], + ["XIIIIIIIIIIIIXXYYXXI", 0.023982327872627413], + ["YIIIIIIIIIIIIYXYYXXI", 0.023982327872627413], + ["XIIIIIIIIIIIIXYYXXXI", 0.02394658272119049], + ["YIIIIIIIIIIIIYYYXXXI", 0.02394658272119049], + ["XIIIIIIIIIIIIXXXXYYI", 0.023660364191832095], + ["YIIIIIIIIIIIIYXXXYYI", 0.023660364191832095], + ["XIIIIIIIIIIIIXYXYYYI", -0.023612924174725745], + ["YIIIIIIIIIIIIYYXYYYI", -0.023612924174725745], + ["XIIIIIIIIIIIIXYYYYXI", -0.02358264805064134], + ["YIIIIIIIIIIIIYYYYYXI", -0.02358264805064134], + ["XIIIIIIIIIIIIYXYYXYI", 0.023566828574144272], + ["YIIIIIIIIIIIIXXYYXYI", -0.023566828574144272], + ["XIIIIIIIIIIIIYXXYYYI", 0.023564398804039755], + ["YIIIIIIIIIIIIXXXYYYI", -0.023564398804039755], + ["XIIIIIIIIIIIIXXYXYXI", 0.02355396731440562], + ["YIIIIIIIIIIIIYXYXYXI", 0.02355396731440562], + ["XIIIIIIIIIIIIYXYYYXI", 0.02353003846923867], + ["YIIIIIIIIIIIIXXYYYXI", -0.02353003846923867], + ["XIIIIIIIIIIIIYYYXXYI", 0.023526624256680426], + ["YIIIIIIIIIIIIXYYXXYI", -0.023526624256680426], + ["XIIIIIIIIIIIIYYXXYYI", 0.02350411715197553], + ["YIIIIIIIIIIIIXYXXYYI", -0.02350411715197553], + ["XIIIIIIIIIIIIYYYXYXI", 0.02345419115622137], + ["YIIIIIIIIIIIIXYYXYXI", -0.02345419115622137], + ["XIIIIIIIIIIIIYXXYXXI", -0.02343504507272356], + ["YIIIIIIIIIIIIXXXYXXI", 0.02343504507272356], + ["XIIIIIIIIIIIIXYYYXYI", -0.023419194967496094], + ["YIIIIIIIIIIIIYYYYXYI", -0.023419194967496094], + ["XIIIIIIIIIIIIXXYXXYI", 0.023389512378306096], + ["YIIIIIIIIIIIIYXYXXYI", 0.023389512378306096], + ["XIIIIIIIIIIIIXYXYXXI", 0.023344194580454638], + ["YIIIIIIIIIIIIYYXYXXI", 0.023344194580454638], + ["XIIIIIIIIIIIIYYXXXXI", -0.023339545846585603], + ["YIIIIIIIIIIIIXYXXXXI", 0.023339545846585603], + ["XIIIIIIIIIIIIXXXXXXI", -0.02280862713889307], + ["YIIIIIIIIIIIIYXXXXXI", -0.02280862713889307], + ["XIIIIIIIIIIIIIIIYYIX", 0.01580047352304733] + ] +} diff --git a/algorithms/glued_trees/glued_trees_example.json b/algorithms/glued_trees/glued_trees_example.json deleted file mode 100644 index 1fa3000a..00000000 --- a/algorithms/glued_trees/glued_trees_example.json +++ /dev/null @@ -1,7 +0,0 @@ -{ - "friendly_name": "Glued Trees Algorithm", - "description": "Glued Trees Algorithm for 20 Qubits at t=2n", - "qmod_type": ["algorithms"], - "problem_domain_tags": [], - "level": ["advanced"] -} \ No newline at end of file diff --git a/algorithms/glued_trees/glued_trees_example.metadata.json b/algorithms/glued_trees/glued_trees_example.metadata.json new file mode 100644 index 00000000..cf4c784f --- /dev/null +++ b/algorithms/glued_trees/glued_trees_example.metadata.json @@ -0,0 +1,7 @@ +{ + "friendly_name": "Glued Trees Algorithm", + "description": "Glued Trees Algorithm for 20 Qubits at t=2n", + "qmod_type": ["algorithms"], + "problem_domain_tags": [], + "level": ["advanced"] +} diff --git a/algorithms/glued_trees/glued_trees_example.qmod b/algorithms/glued_trees/glued_trees_example.qmod index 2a384ab4..f9e4013c 100644 --- a/algorithms/glued_trees/glued_trees_example.qmod +++ b/algorithms/glued_trees/glued_trees_example.qmod @@ -5003,4 +5003,3 @@ qfunc main(output state: qbit[]) { } ], 1048576, 1400>(state); } - diff --git a/algorithms/glued_trees/glued_trees_example.synthesis_options.json b/algorithms/glued_trees/glued_trees_example.synthesis_options.json index 9e26dfee..0967ef42 100644 --- a/algorithms/glued_trees/glued_trees_example.synthesis_options.json +++ b/algorithms/glued_trees/glued_trees_example.synthesis_options.json @@ -1 +1 @@ -{} \ No newline at end of file +{} diff --git a/algorithms/glued_trees/results/10-qubits/2n+0.json b/algorithms/glued_trees/results/10-qubits/2n+0.json index f9b5ad26..4fc73672 100644 --- a/algorithms/glued_trees/results/10-qubits/2n+0.json +++ b/algorithms/glued_trees/results/10-qubits/2n+0.json @@ -1 +1,446 @@ -{"vendor_format_result": {}, "counts": {"1111101100": 1, "1001010111": 1, "1100001101": 1, "0110111111": 1, "0000001100": 1, "0110101001": 2, "0000010101": 1, "1000011111": 1, "0111101011": 2, "0100000001": 2, "1100010000": 1, "0100011010": 1, "0001001110": 1, "0010110001": 1, "1000001010": 1, "1011101001": 4, "0011111010": 1, "1111100111": 1, "0110110011": 3, "0010111001": 1, "0100011100": 1, "0110101011": 1, "1110100010": 2, "0111100011": 7, "0000010001": 1, "1111101111": 1, "1110111000": 5, "0100010011": 2, "0110110100": 1, "0011110000": 5, "0110100001": 1, "1110110011": 7, "0111100000": 1, "1000001100": 2, "1111100011": 4, "1000010110": 8, "1110100110": 9, "0100000010": 12, "1100011010": 4, "1000000100": 5, "1011110011": 6, "0110110010": 3, "0000011000": 3, "1101000111": 1, "1000001111": 4, "1100001100": 2, "0100001100": 5, "0111101110": 2, "1100011001": 2, "1111101011": 11, "0101001110": 3, "0000000110": 1, "0111111001": 15, "0111111111": 22, "1000001101": 1, "0111110010": 80, "0100001011": 57, "0111101100": 2, "1011110101": 4, "1000000110": 24, "1111001111": 1, "0000001111": 47, "1000000101": 80, "0110110110": 15, "1011101110": 11, "1110101001": 1, "1000011110": 6, "0000000100": 55, "1011111011": 3, "0100010111": 5, "0011110101": 2, "0110100000": 10, "0111110000": 136, "0110110101": 6, "0010111101": 1, "1110111110": 32, "0110101000": 3, "1111110011": 209, "1111111110": 1193, "0111110001": 19, "1011111111": 1, "1100000000": 12, "0000001000": 44, "1111110101": 334, "0100000000": 225, "0000011111": 4, "1111101001": 42, "0111110110": 48, "0000000011": 78, "1000001000": 1, "1100001010": 65, "1110110110": 12, "0000000111": 330, "1000001110": 87, "0100001110": 5, "0100010000": 42, "0111111101": 1322, "1100010110": 14, "1111101010": 2, "0000001010": 3, "1111100001": 7, "1111110000": 2, "1110101011": 2, "1011110001": 5, "1111101110": 140, "0000011101": 1, "1011111110": 99, "1111100101": 10, "1111110110": 276, "0110100011": 22, "1100001011": 2, "0111101101": 5, "1000000001": 16, "1101001111": 1, "1000000000": 3, "0100011000": 9, "1110110101": 12, "1000010001": 3, "1111111001": 312, "1111110111": 9, "1111111111": 86, "1110110001": 18, "1100001110": 83, "1110110100": 3, "1000001001": 59, "1000000111": 2, "1111111101": 30, "1111111011": 96, "0110101010": 1, "0100000101": 1, "0110101110": 2, "0000000000": 88, "1111110001": 195, "1010110000": 2, "0110100100": 40, "0000010011": 4, "0110110001": 8, "1111111000": 371, "0111111100": 30, "1010110111": 2, "0001011101": 1, "0000010111": 47, "1100001001": 30, "0111110100": 75, "0100001101": 4, "0100001010": 5, "0111100101": 9, "0111110011": 119, "0000010100": 4, "1111100110": 29, "1011100100": 1, "0110111100": 4, "1110101110": 49, "0110101101": 4, "0111111010": 29, "0111100110": 1, "0000001101": 20, "0000000101": 1, "1110111001": 1, "0110111110": 3, "0100000111": 48, "0100001000": 105, "0110110000": 14, "1000000011": 9, "0011110010": 1, "0011111100": 10, "1000010101": 10, "0011101011": 1, "1011111001": 39, "0111111110": 19, "1111111100": 104, "0000011010": 1, "0011101100": 2, "0110111001": 1, "1111101000": 4, "1111110010": 28, "1111101101": 19, "1011111010": 37, "0100011011": 2, "0011110100": 4, "0000010000": 8, "0100000011": 31, "1100000110": 46, "1111000111": 1, "0110111010": 2, "0111101000": 4, "0110101100": 5, "0110101111": 3, "1110110000": 11, "0111100100": 6, "1101000010": 1, "0111111000": 4, "0011111000": 30, "1000010000": 1, "0011111011": 6, "0000001011": 10, "0110111101": 4, "1111111010": 25, "1110101101": 7, "0001000110": 1, "0000010010": 1, "0111110101": 11, "1110101010": 4, "0111111011": 19, "1110100001": 3, "0111110111": 119, "0000001110": 4, "0110111011": 13}, "counts_lsb_right": true, "parsed_states": {"1111101100": {"state": 1004.0}, "1001010111": {"state": 599.0}, "1100001101": {"state": 781.0}, "0110111111": {"state": 447.0}, "0000001100": {"state": 12.0}, "0110101001": {"state": 425.0}, "0000010101": {"state": 21.0}, "1000011111": {"state": 543.0}, "0111101011": {"state": 491.0}, "0100000001": {"state": 257.0}, "1100010000": {"state": 784.0}, "0100011010": {"state": 282.0}, "0001001110": {"state": 78.0}, "0010110001": {"state": 177.0}, "1000001010": {"state": 522.0}, "1011101001": {"state": 745.0}, "0011111010": {"state": 250.0}, "1111100111": {"state": 999.0}, "0110110011": {"state": 435.0}, "0010111001": {"state": 185.0}, "0100011100": {"state": 284.0}, "0110101011": {"state": 427.0}, "1110100010": {"state": 930.0}, "0111100011": {"state": 483.0}, "0000010001": {"state": 17.0}, "1111101111": {"state": 1007.0}, "1110111000": {"state": 952.0}, "0100010011": {"state": 275.0}, "0110110100": {"state": 436.0}, "0011110000": {"state": 240.0}, "0110100001": {"state": 417.0}, "1110110011": {"state": 947.0}, "0111100000": {"state": 480.0}, "1000001100": {"state": 524.0}, "1111100011": {"state": 995.0}, "1000010110": {"state": 534.0}, "1110100110": {"state": 934.0}, "0100000010": {"state": 258.0}, "1100011010": {"state": 794.0}, "1000000100": {"state": 516.0}, "1011110011": {"state": 755.0}, "0110110010": {"state": 434.0}, "0000011000": {"state": 24.0}, "1101000111": {"state": 839.0}, "1000001111": {"state": 527.0}, "1100001100": {"state": 780.0}, "0100001100": {"state": 268.0}, "0111101110": {"state": 494.0}, "1100011001": {"state": 793.0}, "1111101011": {"state": 1003.0}, "0101001110": {"state": 334.0}, "0000000110": {"state": 6.0}, "0111111001": {"state": 505.0}, "0111111111": {"state": 511.0}, "1000001101": {"state": 525.0}, "0111110010": {"state": 498.0}, "0100001011": {"state": 267.0}, "0111101100": {"state": 492.0}, "1011110101": {"state": 757.0}, "1000000110": {"state": 518.0}, "1111001111": {"state": 975.0}, "0000001111": {"state": 15.0}, "1000000101": {"state": 517.0}, "0110110110": {"state": 438.0}, "1011101110": {"state": 750.0}, "1110101001": {"state": 937.0}, "1000011110": {"state": 542.0}, "0000000100": {"state": 4.0}, "1011111011": {"state": 763.0}, "0100010111": {"state": 279.0}, "0011110101": {"state": 245.0}, "0110100000": {"state": 416.0}, "0111110000": {"state": 496.0}, "0110110101": {"state": 437.0}, "0010111101": {"state": 189.0}, "1110111110": {"state": 958.0}, "0110101000": {"state": 424.0}, "1111110011": {"state": 1011.0}, "1111111110": {"state": 1022.0}, "0111110001": {"state": 497.0}, "1011111111": {"state": 767.0}, "1100000000": {"state": 768.0}, "0000001000": {"state": 8.0}, "1111110101": {"state": 1013.0}, "0100000000": {"state": 256.0}, "0000011111": {"state": 31.0}, "1111101001": {"state": 1001.0}, "0111110110": {"state": 502.0}, "0000000011": {"state": 3.0}, "1000001000": {"state": 520.0}, "1100001010": {"state": 778.0}, "1110110110": {"state": 950.0}, "0000000111": {"state": 7.0}, "1000001110": {"state": 526.0}, "0100001110": {"state": 270.0}, "0100010000": {"state": 272.0}, "0111111101": {"state": 509.0}, "1100010110": {"state": 790.0}, "1111101010": {"state": 1002.0}, "0000001010": {"state": 10.0}, "1111100001": {"state": 993.0}, "1111110000": {"state": 1008.0}, "1110101011": {"state": 939.0}, "1011110001": {"state": 753.0}, "1111101110": {"state": 1006.0}, "0000011101": {"state": 29.0}, "1011111110": {"state": 766.0}, "1111100101": {"state": 997.0}, "1111110110": {"state": 1014.0}, "0110100011": {"state": 419.0}, "1100001011": {"state": 779.0}, "0111101101": {"state": 493.0}, "1000000001": {"state": 513.0}, "1101001111": {"state": 847.0}, "1000000000": {"state": 512.0}, "0100011000": {"state": 280.0}, "1110110101": {"state": 949.0}, "1000010001": {"state": 529.0}, "1111111001": {"state": 1017.0}, "1111110111": {"state": 1015.0}, "1111111111": {"state": 1023.0}, "1110110001": {"state": 945.0}, "1100001110": {"state": 782.0}, "1110110100": {"state": 948.0}, "1000001001": {"state": 521.0}, "1000000111": {"state": 519.0}, "1111111101": {"state": 1021.0}, "1111111011": {"state": 1019.0}, "0110101010": {"state": 426.0}, "0100000101": {"state": 261.0}, "0110101110": {"state": 430.0}, "0000000000": {"state": 0.0}, "1111110001": {"state": 1009.0}, "1010110000": {"state": 688.0}, "0110100100": {"state": 420.0}, "0000010011": {"state": 19.0}, "0110110001": {"state": 433.0}, "1111111000": {"state": 1016.0}, "0111111100": {"state": 508.0}, "1010110111": {"state": 695.0}, "0001011101": {"state": 93.0}, "0000010111": {"state": 23.0}, "1100001001": {"state": 777.0}, "0111110100": {"state": 500.0}, "0100001101": {"state": 269.0}, "0100001010": {"state": 266.0}, "0111100101": {"state": 485.0}, "0111110011": {"state": 499.0}, "0000010100": {"state": 20.0}, "1111100110": {"state": 998.0}, "1011100100": {"state": 740.0}, "0110111100": {"state": 444.0}, "1110101110": {"state": 942.0}, "0110101101": {"state": 429.0}, "0111111010": {"state": 506.0}, "0111100110": {"state": 486.0}, "0000001101": {"state": 13.0}, "0000000101": {"state": 5.0}, "1110111001": {"state": 953.0}, "0110111110": {"state": 446.0}, "0100000111": {"state": 263.0}, "0100001000": {"state": 264.0}, "0110110000": {"state": 432.0}, "1000000011": {"state": 515.0}, "0011110010": {"state": 242.0}, "0011111100": {"state": 252.0}, "1000010101": {"state": 533.0}, "0011101011": {"state": 235.0}, "1011111001": {"state": 761.0}, "0111111110": {"state": 510.0}, "1111111100": {"state": 1020.0}, "0000011010": {"state": 26.0}, "0011101100": {"state": 236.0}, "0110111001": {"state": 441.0}, "1111101000": {"state": 1000.0}, "1111110010": {"state": 1010.0}, "1111101101": {"state": 1005.0}, "1011111010": {"state": 762.0}, "0100011011": {"state": 283.0}, "0011110100": {"state": 244.0}, "0000010000": {"state": 16.0}, "0100000011": {"state": 259.0}, "1100000110": {"state": 774.0}, "1111000111": {"state": 967.0}, "0110111010": {"state": 442.0}, "0111101000": {"state": 488.0}, "0110101100": {"state": 428.0}, "0110101111": {"state": 431.0}, "1110110000": {"state": 944.0}, "0111100100": {"state": 484.0}, "1101000010": {"state": 834.0}, "0111111000": {"state": 504.0}, "0011111000": {"state": 248.0}, "1000010000": {"state": 528.0}, "0011111011": {"state": 251.0}, "0000001011": {"state": 11.0}, "0110111101": {"state": 445.0}, "1111111010": {"state": 1018.0}, "1110101101": {"state": 941.0}, "0001000110": {"state": 70.0}, "0000010010": {"state": 18.0}, "0111110101": {"state": 501.0}, "1110101010": {"state": 938.0}, "0111111011": {"state": 507.0}, "1110100001": {"state": 929.0}, "0111110111": {"state": 503.0}, "0000001110": {"state": 14.0}, "0110111011": {"state": 443.0}}, "histogram": null, "output_qubits_map": {"state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]}, "state_vector": null, "parsed_state_vector_states": null, "physical_qubits_map": {"state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]}, "num_shots": 8192} \ No newline at end of file +{ + "vendor_format_result": {}, + "counts": { + "0101001110": 1, + "0000010010": 1, + "1000000100": 1, + "1000000010": 1, + "1011110100": 1, + "0110101001": 2, + "0000001100": 2, + "1000011111": 2, + "1010110000": 1, + "0011101000": 2, + "1000010111": 1, + "1101000100": 1, + "1001001100": 1, + "0100000110": 1, + "0010111101": 1, + "0100000010": 8, + "0011100111": 1, + "0110101000": 1, + "1100000001": 1, + "0011110001": 3, + "0110101111": 1, + "1110110000": 3, + "0110110011": 1, + "0110101011": 3, + "0110100010": 2, + "0100010111": 5, + "0110110111": 1, + "0110100111": 2, + "0100001001": 3, + "1110101010": 2, + "1100001100": 3, + "1100010000": 1, + "0111101111": 1, + "1011101001": 1, + "0010111001": 1, + "1111100000": 3, + "1000001000": 4, + "1100001111": 3, + "0110110101": 3, + "1100001101": 5, + "0111101011": 2, + "0111100111": 1, + "1110100010": 1, + "0011100011": 1, + "1001000110": 1, + "1110110010": 1, + "1100000111": 1, + "0110111111": 1, + "1100011100": 2, + "0011111010": 1, + "1110100110": 7, + "1110111101": 1, + "1110111000": 4, + "1111101000": 3, + "1001001000": 1, + "0011101011": 1, + "1100010001": 2, + "1100000011": 1, + "0111101110": 2, + "0100001100": 1, + "1100011001": 2, + "1110101101": 8, + "1100000000": 16, + "0000010111": 43, + "1100001001": 24, + "0100001011": 54, + "0111110100": 70, + "0000000000": 98, + "0000011111": 5, + "1111101001": 29, + "0100000000": 239, + "1000001010": 1, + "1111111100": 109, + "1000001100": 9, + "1111110001": 201, + "1111100101": 21, + "1111100111": 2, + "1111101101": 12, + "0000001111": 42, + "1000000101": 70, + "0111111011": 21, + "0111110110": 63, + "1000001001": 58, + "1110110100": 2, + "1100001011": 1, + "0111101101": 6, + "1000000001": 22, + "1000001101": 1, + "0111110010": 98, + "1010111011": 1, + "0111111010": 32, + "0100010000": 45, + "0100001010": 3, + "0100001101": 2, + "0000010100": 4, + "0111110011": 121, + "0111100101": 8, + "1011110101": 3, + "0111101100": 3, + "0111111101": 1343, + "1101001000": 2, + "1110100101": 2, + "1100010110": 13, + "0100011010": 1, + "1110101110": 42, + "1101000110": 2, + "0000010011": 8, + "0110100100": 46, + "0110111100": 1, + "1111111110": 1098, + "1111110011": 223, + "0111110001": 21, + "1000010001": 2, + "1111110111": 5, + "1111111001": 296, + "1111111010": 28, + "0111110000": 137, + "1110100100": 1, + "1111110101": 363, + "0000001000": 30, + "1000000110": 19, + "0000011100": 1, + "1111110000": 1, + "0110100110": 1, + "1111101110": 148, + "0110110001": 4, + "1001000011": 1, + "0111111100": 65, + "1111111000": 376, + "0110110110": 12, + "1000001111": 9, + "0011110100": 2, + "0000010000": 8, + "0000000111": 313, + "1000001110": 133, + "0100001110": 3, + "1001000111": 1, + "1011101010": 1, + "0011110101": 1, + "1110110011": 4, + "1011111010": 38, + "1111100011": 8, + "0000001001": 1, + "1110111110": 39, + "1111000000": 2, + "1111110110": 263, + "0110100011": 11, + "1111111111": 92, + "1110110001": 6, + "1100001110": 81, + "0110110010": 1, + "0000011000": 4, + "0110111101": 3, + "0000001011": 6, + "0000000011": 63, + "0100010011": 1, + "1100011110": 1, + "0011111000": 24, + "1100000110": 46, + "1000010110": 7, + "1000000000": 5, + "0100011000": 8, + "1110110101": 11, + "0100000001": 5, + "0100000011": 23, + "0110111010": 4, + "0111101000": 3, + "1111110010": 34, + "1000000011": 19, + "0011111011": 8, + "1111111011": 119, + "1111111101": 33, + "0100001000": 78, + "0100000111": 55, + "0110110000": 8, + "1111101111": 1, + "0111100011": 12, + "1111100001": 7, + "1111101010": 7, + "0000001010": 4, + "0111111001": 13, + "1011111110": 133, + "0000011101": 2, + "1111101011": 13, + "1000011110": 8, + "0000000100": 58, + "1110111001": 4, + "0111111000": 3, + "0111100100": 2, + "0111100110": 3, + "0000001101": 13, + "0110110100": 2, + "0011110000": 2, + "0100011110": 2, + "0110101100": 3, + "1011111001": 28, + "0111111110": 26, + "1100001010": 52, + "1110110110": 15, + "1011101110": 12, + "1111100110": 25, + "0011111100": 15, + "0011110010": 3, + "1000010101": 8, + "0111110101": 5, + "1011110011": 5, + "0111110111": 101, + "1110100001": 3, + "0110111011": 16, + "0000001110": 3, + "0111111111": 26, + "0011101100": 2, + "0110111001": 1, + "0001001110": 1, + "0011110111": 3, + "0110100000": 8 + }, + "counts_lsb_right": true, + "parsed_states": { + "0101001110": { "state": 334.0 }, + "0000010010": { "state": 18.0 }, + "1000000100": { "state": 516.0 }, + "1000000010": { "state": 514.0 }, + "1011110100": { "state": 756.0 }, + "0110101001": { "state": 425.0 }, + "0000001100": { "state": 12.0 }, + "1000011111": { "state": 543.0 }, + "1010110000": { "state": 688.0 }, + "0011101000": { "state": 232.0 }, + "1000010111": { "state": 535.0 }, + "1101000100": { "state": 836.0 }, + "1001001100": { "state": 588.0 }, + "0100000110": { "state": 262.0 }, + "0010111101": { "state": 189.0 }, + "0100000010": { "state": 258.0 }, + "0011100111": { "state": 231.0 }, + "0110101000": { "state": 424.0 }, + "1100000001": { "state": 769.0 }, + "0011110001": { "state": 241.0 }, + "0110101111": { "state": 431.0 }, + "1110110000": { "state": 944.0 }, + "0110110011": { "state": 435.0 }, + "0110101011": { "state": 427.0 }, + "0110100010": { "state": 418.0 }, + "0100010111": { "state": 279.0 }, + "0110110111": { "state": 439.0 }, + "0110100111": { "state": 423.0 }, + "0100001001": { "state": 265.0 }, + "1110101010": { "state": 938.0 }, + "1100001100": { "state": 780.0 }, + "1100010000": { "state": 784.0 }, + "0111101111": { "state": 495.0 }, + "1011101001": { "state": 745.0 }, + "0010111001": { "state": 185.0 }, + "1111100000": { "state": 992.0 }, + "1000001000": { "state": 520.0 }, + "1100001111": { "state": 783.0 }, + "0110110101": { "state": 437.0 }, + "1100001101": { "state": 781.0 }, + "0111101011": { "state": 491.0 }, + "0111100111": { "state": 487.0 }, + "1110100010": { "state": 930.0 }, + "0011100011": { "state": 227.0 }, + "1001000110": { "state": 582.0 }, + "1110110010": { "state": 946.0 }, + "1100000111": { "state": 775.0 }, + "0110111111": { "state": 447.0 }, + "1100011100": { "state": 796.0 }, + "0011111010": { "state": 250.0 }, + "1110100110": { "state": 934.0 }, + "1110111101": { "state": 957.0 }, + "1110111000": { "state": 952.0 }, + "1111101000": { "state": 1000.0 }, + "1001001000": { "state": 584.0 }, + "0011101011": { "state": 235.0 }, + "1100010001": { "state": 785.0 }, + "1100000011": { "state": 771.0 }, + "0111101110": { "state": 494.0 }, + "0100001100": { "state": 268.0 }, + "1100011001": { "state": 793.0 }, + "1110101101": { "state": 941.0 }, + "1100000000": { "state": 768.0 }, + "0000010111": { "state": 23.0 }, + "1100001001": { "state": 777.0 }, + "0100001011": { "state": 267.0 }, + "0111110100": { "state": 500.0 }, + "0000000000": { "state": 0.0 }, + "0000011111": { "state": 31.0 }, + "1111101001": { "state": 1001.0 }, + "0100000000": { "state": 256.0 }, + "1000001010": { "state": 522.0 }, + "1111111100": { "state": 1020.0 }, + "1000001100": { "state": 524.0 }, + "1111110001": { "state": 1009.0 }, + "1111100101": { "state": 997.0 }, + "1111100111": { "state": 999.0 }, + "1111101101": { "state": 1005.0 }, + "0000001111": { "state": 15.0 }, + "1000000101": { "state": 517.0 }, + "0111111011": { "state": 507.0 }, + "0111110110": { "state": 502.0 }, + "1000001001": { "state": 521.0 }, + "1110110100": { "state": 948.0 }, + "1100001011": { "state": 779.0 }, + "0111101101": { "state": 493.0 }, + "1000000001": { "state": 513.0 }, + "1000001101": { "state": 525.0 }, + "0111110010": { "state": 498.0 }, + "1010111011": { "state": 699.0 }, + "0111111010": { "state": 506.0 }, + "0100010000": { "state": 272.0 }, + "0100001010": { "state": 266.0 }, + "0100001101": { "state": 269.0 }, + "0000010100": { "state": 20.0 }, + "0111110011": { "state": 499.0 }, + "0111100101": { "state": 485.0 }, + "1011110101": { "state": 757.0 }, + "0111101100": { "state": 492.0 }, + "0111111101": { "state": 509.0 }, + "1101001000": { "state": 840.0 }, + "1110100101": { "state": 933.0 }, + "1100010110": { "state": 790.0 }, + "0100011010": { "state": 282.0 }, + "1110101110": { "state": 942.0 }, + "1101000110": { "state": 838.0 }, + "0000010011": { "state": 19.0 }, + "0110100100": { "state": 420.0 }, + "0110111100": { "state": 444.0 }, + "1111111110": { "state": 1022.0 }, + "1111110011": { "state": 1011.0 }, + "0111110001": { "state": 497.0 }, + "1000010001": { "state": 529.0 }, + "1111110111": { "state": 1015.0 }, + "1111111001": { "state": 1017.0 }, + "1111111010": { "state": 1018.0 }, + "0111110000": { "state": 496.0 }, + "1110100100": { "state": 932.0 }, + "1111110101": { "state": 1013.0 }, + "0000001000": { "state": 8.0 }, + "1000000110": { "state": 518.0 }, + "0000011100": { "state": 28.0 }, + "1111110000": { "state": 1008.0 }, + "0110100110": { "state": 422.0 }, + "1111101110": { "state": 1006.0 }, + "0110110001": { "state": 433.0 }, + "1001000011": { "state": 579.0 }, + "0111111100": { "state": 508.0 }, + "1111111000": { "state": 1016.0 }, + "0110110110": { "state": 438.0 }, + "1000001111": { "state": 527.0 }, + "0011110100": { "state": 244.0 }, + "0000010000": { "state": 16.0 }, + "0000000111": { "state": 7.0 }, + "1000001110": { "state": 526.0 }, + "0100001110": { "state": 270.0 }, + "1001000111": { "state": 583.0 }, + "1011101010": { "state": 746.0 }, + "0011110101": { "state": 245.0 }, + "1110110011": { "state": 947.0 }, + "1011111010": { "state": 762.0 }, + "1111100011": { "state": 995.0 }, + "0000001001": { "state": 9.0 }, + "1110111110": { "state": 958.0 }, + "1111000000": { "state": 960.0 }, + "1111110110": { "state": 1014.0 }, + "0110100011": { "state": 419.0 }, + "1111111111": { "state": 1023.0 }, + "1110110001": { "state": 945.0 }, + "1100001110": { "state": 782.0 }, + "0110110010": { "state": 434.0 }, + "0000011000": { "state": 24.0 }, + "0110111101": { "state": 445.0 }, + "0000001011": { "state": 11.0 }, + "0000000011": { "state": 3.0 }, + "0100010011": { "state": 275.0 }, + "1100011110": { "state": 798.0 }, + "0011111000": { "state": 248.0 }, + "1100000110": { "state": 774.0 }, + "1000010110": { "state": 534.0 }, + "1000000000": { "state": 512.0 }, + "0100011000": { "state": 280.0 }, + "1110110101": { "state": 949.0 }, + "0100000001": { "state": 257.0 }, + "0100000011": { "state": 259.0 }, + "0110111010": { "state": 442.0 }, + "0111101000": { "state": 488.0 }, + "1111110010": { "state": 1010.0 }, + "1000000011": { "state": 515.0 }, + "0011111011": { "state": 251.0 }, + "1111111011": { "state": 1019.0 }, + "1111111101": { "state": 1021.0 }, + "0100001000": { "state": 264.0 }, + "0100000111": { "state": 263.0 }, + "0110110000": { "state": 432.0 }, + "1111101111": { "state": 1007.0 }, + "0111100011": { "state": 483.0 }, + "1111100001": { "state": 993.0 }, + "1111101010": { "state": 1002.0 }, + "0000001010": { "state": 10.0 }, + "0111111001": { "state": 505.0 }, + "1011111110": { "state": 766.0 }, + "0000011101": { "state": 29.0 }, + "1111101011": { "state": 1003.0 }, + "1000011110": { "state": 542.0 }, + "0000000100": { "state": 4.0 }, + "1110111001": { "state": 953.0 }, + "0111111000": { "state": 504.0 }, + "0111100100": { "state": 484.0 }, + "0111100110": { "state": 486.0 }, + "0000001101": { "state": 13.0 }, + "0110110100": { "state": 436.0 }, + "0011110000": { "state": 240.0 }, + "0100011110": { "state": 286.0 }, + "0110101100": { "state": 428.0 }, + "1011111001": { "state": 761.0 }, + "0111111110": { "state": 510.0 }, + "1100001010": { "state": 778.0 }, + "1110110110": { "state": 950.0 }, + "1011101110": { "state": 750.0 }, + "1111100110": { "state": 998.0 }, + "0011111100": { "state": 252.0 }, + "0011110010": { "state": 242.0 }, + "1000010101": { "state": 533.0 }, + "0111110101": { "state": 501.0 }, + "1011110011": { "state": 755.0 }, + "0111110111": { "state": 503.0 }, + "1110100001": { "state": 929.0 }, + "0110111011": { "state": 443.0 }, + "0000001110": { "state": 14.0 }, + "0111111111": { "state": 511.0 }, + "0011101100": { "state": 236.0 }, + "0110111001": { "state": 441.0 }, + "0001001110": { "state": 78.0 }, + "0011110111": { "state": 247.0 }, + "0110100000": { "state": 416.0 } + }, + "histogram": null, + "output_qubits_map": { "state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] }, + "state_vector": null, + "parsed_state_vector_states": null, + "physical_qubits_map": { "state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] }, + "num_shots": 8192 +} diff --git a/algorithms/glued_trees/results/10-qubits/2n+10.json b/algorithms/glued_trees/results/10-qubits/2n+10.json index a9f93103..e37ebddf 100644 --- a/algorithms/glued_trees/results/10-qubits/2n+10.json +++ b/algorithms/glued_trees/results/10-qubits/2n+10.json @@ -1 +1,444 @@ -{"vendor_format_result": {}, "counts": {"1111000000": 1, "1111000110": 1, "0100000110": 2, "0101000011": 1, "0101010000": 1, "1101011111": 1, "1101000101": 2, "0101011010": 1, "1101000001": 1, "0010111111": 1, "0100011010": 1, "1111010000": 1, "1011111110": 2, "0100011001": 3, "1110100001": 3, "0111110111": 2, "1110100101": 7, "0110110011": 3, "1111111010": 3, "1000001100": 1, "1110111101": 1, "0110101101": 1, "0100001001": 6, "1100000101": 18, "0110100011": 13, "1100010010": 14, "0100001111": 10, "0111111000": 1, "1111101001": 7, "1100000111": 11, "0111101011": 1, "0110101001": 6, "0111101111": 13, "1100001000": 6, "0110101110": 10, "1110110111": 4, "1101000000": 1, "0110100010": 15, "1101011010": 1, "0011111011": 2, "1100001100": 45, "1111100100": 20, "1111110011": 12, "0100010000": 6, "1100010001": 31, "1110111111": 33, "0101010001": 1, "1111101101": 18, "1110101011": 1, "0110100110": 5, "1111110000": 120, "0110101010": 10, "0100000101": 30, "1111101011": 41, "1101001111": 2, "0100011000": 11, "1110110101": 13, "1100011100": 15, "0110111111": 37, "1000011110": 1, "1110101001": 73, "1111101010": 45, "0111110000": 136, "0111100011": 3, "1111101111": 4, "0100010111": 1, "1110111100": 20, "1111100111": 20, "0100001100": 24, "1100011001": 27, "0111101110": 137, "1011100001": 2, "0111111010": 40, "0110101011": 35, "0100000011": 4, "0011100011": 1, "1110100010": 102, "1111101000": 249, "0100011011": 21, "0111111101": 528, "0100000100": 88, "1100010110": 28, "0111001011": 1, "0111110001": 166, "1100011110": 6, "1111111110": 41, "0110100101": 19, "1110101101": 50, "1100000010": 6, "1110110011": 14, "0110100001": 7, "0110100000": 32, "1111100000": 248, "0111100111": 6, "0111100000": 18, "0111100100": 63, "1111111011": 161, "1111111101": 37, "1111101100": 6, "1111101110": 51, "1011111001": 2, "0111111110": 350, "1100001101": 159, "1111110101": 122, "0111100110": 9, "1111100001": 52, "0111111100": 7, "1111111000": 564, "0110110110": 59, "1010110101": 1, "1100000001": 73, "0100000000": 7, "1110100011": 5, "0111111011": 5, "1110100111": 40, "0111000100": 1, "0111110110": 16, "1110110100": 34, "1100011111": 1, "0110111101": 26, "1111100010": 30, "0110111100": 97, "1111000011": 3, "0111111001": 576, "0100001011": 93, "1111110001": 286, "0111111111": 126, "1000000001": 1, "0111101101": 97, "1100001011": 10, "1110101110": 15, "1111110100": 17, "0100000010": 2, "0111101000": 31, "0110111010": 24, "1110100000": 18, "1100001010": 10, "1110110110": 81, "0110110101": 28, "1011100101": 2, "0100011110": 11, "0110101100": 17, "0110110111": 177, "0111101001": 216, "0110100111": 5, "1110101010": 28, "0100010001": 1, "1100000000": 4, "1000001011": 1, "1111111111": 17, "0000000011": 5, "1101011000": 4, "1111110110": 70, "0100011111": 14, "1100001001": 57, "0110110100": 19, "1110111011": 25, "0110101000": 2, "1110111110": 27, "1111110010": 76, "0110111000": 12, "1000001101": 1, "0111110010": 26, "1111110111": 257, "1111111001": 17, "0101000001": 1, "0111110100": 97, "1111100110": 23, "0110110010": 9, "1110111000": 1, "0111100010": 12, "0100010101": 5, "1100001110": 16, "1110110001": 46, "1111111100": 15, "0110101111": 86, "0100000111": 2, "0111100001": 7, "0110110000": 51, "0100001000": 41, "0111101010": 32, "1100000100": 25, "0110111110": 18, "1110111001": 15, "0100010011": 15, "1100010101": 4, "0111101100": 10, "0100001101": 1, "0100001010": 17, "0111110011": 133, "0111100101": 23, "0000001001": 1, "1111100011": 12, "0111001101": 1, "1100000110": 10, "0100001110": 20, "1111100101": 44, "1110101100": 4, "0111110101": 44, "0110111001": 8, "1000000110": 1, "1110111010": 2, "1110110010": 15, "1100011000": 3, "1110101000": 2}, "counts_lsb_right": true, "parsed_states": {"1111000000": {"state": 960.0}, "1111000110": {"state": 966.0}, "0100000110": {"state": 262.0}, "0101000011": {"state": 323.0}, "0101010000": {"state": 336.0}, "1101011111": {"state": 863.0}, "1101000101": {"state": 837.0}, "0101011010": {"state": 346.0}, "1101000001": {"state": 833.0}, "0010111111": {"state": 191.0}, "0100011010": {"state": 282.0}, "1111010000": {"state": 976.0}, "1011111110": {"state": 766.0}, "0100011001": {"state": 281.0}, "1110100001": {"state": 929.0}, "0111110111": {"state": 503.0}, "1110100101": {"state": 933.0}, "0110110011": {"state": 435.0}, "1111111010": {"state": 1018.0}, "1000001100": {"state": 524.0}, "1110111101": {"state": 957.0}, "0110101101": {"state": 429.0}, "0100001001": {"state": 265.0}, "1100000101": {"state": 773.0}, "0110100011": {"state": 419.0}, "1100010010": {"state": 786.0}, "0100001111": {"state": 271.0}, "0111111000": {"state": 504.0}, "1111101001": {"state": 1001.0}, "1100000111": {"state": 775.0}, "0111101011": {"state": 491.0}, "0110101001": {"state": 425.0}, "0111101111": {"state": 495.0}, "1100001000": {"state": 776.0}, "0110101110": {"state": 430.0}, "1110110111": {"state": 951.0}, "1101000000": {"state": 832.0}, "0110100010": {"state": 418.0}, "1101011010": {"state": 858.0}, "0011111011": {"state": 251.0}, "1100001100": {"state": 780.0}, "1111100100": {"state": 996.0}, "1111110011": {"state": 1011.0}, "0100010000": {"state": 272.0}, "1100010001": {"state": 785.0}, "1110111111": {"state": 959.0}, "0101010001": {"state": 337.0}, "1111101101": {"state": 1005.0}, "1110101011": {"state": 939.0}, "0110100110": {"state": 422.0}, "1111110000": {"state": 1008.0}, "0110101010": {"state": 426.0}, "0100000101": {"state": 261.0}, "1111101011": {"state": 1003.0}, "1101001111": {"state": 847.0}, "0100011000": {"state": 280.0}, "1110110101": {"state": 949.0}, "1100011100": {"state": 796.0}, "0110111111": {"state": 447.0}, "1000011110": {"state": 542.0}, "1110101001": {"state": 937.0}, "1111101010": {"state": 1002.0}, "0111110000": {"state": 496.0}, "0111100011": {"state": 483.0}, "1111101111": {"state": 1007.0}, "0100010111": {"state": 279.0}, "1110111100": {"state": 956.0}, "1111100111": {"state": 999.0}, "0100001100": {"state": 268.0}, "1100011001": {"state": 793.0}, "0111101110": {"state": 494.0}, "1011100001": {"state": 737.0}, "0111111010": {"state": 506.0}, "0110101011": {"state": 427.0}, "0100000011": {"state": 259.0}, "0011100011": {"state": 227.0}, "1110100010": {"state": 930.0}, "1111101000": {"state": 1000.0}, "0100011011": {"state": 283.0}, "0111111101": {"state": 509.0}, "0100000100": {"state": 260.0}, "1100010110": {"state": 790.0}, "0111001011": {"state": 459.0}, "0111110001": {"state": 497.0}, "1100011110": {"state": 798.0}, "1111111110": {"state": 1022.0}, "0110100101": {"state": 421.0}, "1110101101": {"state": 941.0}, "1100000010": {"state": 770.0}, "1110110011": {"state": 947.0}, "0110100001": {"state": 417.0}, "0110100000": {"state": 416.0}, "1111100000": {"state": 992.0}, "0111100111": {"state": 487.0}, "0111100000": {"state": 480.0}, "0111100100": {"state": 484.0}, "1111111011": {"state": 1019.0}, "1111111101": {"state": 1021.0}, "1111101100": {"state": 1004.0}, "1111101110": {"state": 1006.0}, "1011111001": {"state": 761.0}, "0111111110": {"state": 510.0}, "1100001101": {"state": 781.0}, "1111110101": {"state": 1013.0}, "0111100110": {"state": 486.0}, "1111100001": {"state": 993.0}, "0111111100": {"state": 508.0}, "1111111000": {"state": 1016.0}, "0110110110": {"state": 438.0}, "1010110101": {"state": 693.0}, "1100000001": {"state": 769.0}, "0100000000": {"state": 256.0}, "1110100011": {"state": 931.0}, "0111111011": {"state": 507.0}, "1110100111": {"state": 935.0}, "0111000100": {"state": 452.0}, "0111110110": {"state": 502.0}, "1110110100": {"state": 948.0}, "1100011111": {"state": 799.0}, "0110111101": {"state": 445.0}, "1111100010": {"state": 994.0}, "0110111100": {"state": 444.0}, "1111000011": {"state": 963.0}, "0111111001": {"state": 505.0}, "0100001011": {"state": 267.0}, "1111110001": {"state": 1009.0}, "0111111111": {"state": 511.0}, "1000000001": {"state": 513.0}, "0111101101": {"state": 493.0}, "1100001011": {"state": 779.0}, "1110101110": {"state": 942.0}, "1111110100": {"state": 1012.0}, "0100000010": {"state": 258.0}, "0111101000": {"state": 488.0}, "0110111010": {"state": 442.0}, "1110100000": {"state": 928.0}, "1100001010": {"state": 778.0}, "1110110110": {"state": 950.0}, "0110110101": {"state": 437.0}, "1011100101": {"state": 741.0}, "0100011110": {"state": 286.0}, "0110101100": {"state": 428.0}, "0110110111": {"state": 439.0}, "0111101001": {"state": 489.0}, "0110100111": {"state": 423.0}, "1110101010": {"state": 938.0}, "0100010001": {"state": 273.0}, "1100000000": {"state": 768.0}, "1000001011": {"state": 523.0}, "1111111111": {"state": 1023.0}, "0000000011": {"state": 3.0}, "1101011000": {"state": 856.0}, "1111110110": {"state": 1014.0}, "0100011111": {"state": 287.0}, "1100001001": {"state": 777.0}, "0110110100": {"state": 436.0}, "1110111011": {"state": 955.0}, "0110101000": {"state": 424.0}, "1110111110": {"state": 958.0}, "1111110010": {"state": 1010.0}, "0110111000": {"state": 440.0}, "1000001101": {"state": 525.0}, "0111110010": {"state": 498.0}, "1111110111": {"state": 1015.0}, "1111111001": {"state": 1017.0}, "0101000001": {"state": 321.0}, "0111110100": {"state": 500.0}, "1111100110": {"state": 998.0}, "0110110010": {"state": 434.0}, "1110111000": {"state": 952.0}, "0111100010": {"state": 482.0}, "0100010101": {"state": 277.0}, "1100001110": {"state": 782.0}, "1110110001": {"state": 945.0}, "1111111100": {"state": 1020.0}, "0110101111": {"state": 431.0}, "0100000111": {"state": 263.0}, "0111100001": {"state": 481.0}, "0110110000": {"state": 432.0}, "0100001000": {"state": 264.0}, "0111101010": {"state": 490.0}, "1100000100": {"state": 772.0}, "0110111110": {"state": 446.0}, "1110111001": {"state": 953.0}, "0100010011": {"state": 275.0}, "1100010101": {"state": 789.0}, "0111101100": {"state": 492.0}, "0100001101": {"state": 269.0}, "0100001010": {"state": 266.0}, "0111110011": {"state": 499.0}, "0111100101": {"state": 485.0}, "0000001001": {"state": 9.0}, "1111100011": {"state": 995.0}, "0111001101": {"state": 461.0}, "1100000110": {"state": 774.0}, "0100001110": {"state": 270.0}, "1111100101": {"state": 997.0}, "1110101100": {"state": 940.0}, "0111110101": {"state": 501.0}, "0110111001": {"state": 441.0}, "1000000110": {"state": 518.0}, "1110111010": {"state": 954.0}, "1110110010": {"state": 946.0}, "1100011000": {"state": 792.0}, "1110101000": {"state": 936.0}}, "histogram": null, "output_qubits_map": {"state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]}, "state_vector": null, "parsed_state_vector_states": null, "physical_qubits_map": {"state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]}, "num_shots": 8192} \ No newline at end of file +{ + "vendor_format_result": {}, + "counts": { + "1000010000": 1, + "0011110111": 1, + "1100000110": 1, + "0111101011": 2, + "0111111000": 1, + "1111010011": 1, + "1111000100": 1, + "1000001110": 1, + "0110101101": 1, + "0101001111": 2, + "0111011101": 1, + "0110101000": 2, + "0110101001": 2, + "0100000110": 2, + "1000000010": 1, + "1101000100": 1, + "1101000101": 2, + "0110110011": 3, + "1101010011": 1, + "1101010010": 1, + "1100010111": 1, + "1100001000": 4, + "1101011100": 1, + "1111101001": 8, + "0100001111": 3, + "1111101100": 4, + "1111111100": 15, + "1110110111": 10, + "0111100110": 5, + "1110100101": 6, + "0000010011": 1, + "0101011001": 1, + "0000001001": 1, + "1000011010": 1, + "1111100011": 13, + "0011111100": 1, + "1100010000": 1, + "1110100000": 8, + "1111110011": 15, + "1110101000": 6, + "0110110010": 9, + "1100010010": 25, + "1100011000": 4, + "1110110010": 7, + "1111111010": 3, + "1111000000": 1, + "0100001001": 6, + "0100010110": 1, + "0111000110": 1, + "0100001110": 17, + "0110101111": 89, + "1100001100": 57, + "0110111100": 105, + "1111101111": 7, + "0111100011": 6, + "1101000000": 5, + "0110100010": 7, + "0111100010": 26, + "1010110101": 1, + "1100000001": 69, + "1000001101": 1, + "0111110010": 21, + "0111111010": 52, + "1100000101": 26, + "1100001101": 178, + "0111111110": 307, + "1100011100": 16, + "0110111111": 24, + "1111100100": 24, + "0111111111": 126, + "0111100111": 6, + "1111100000": 252, + "0111100000": 19, + "0110100001": 6, + "1110110011": 21, + "1110111111": 41, + "1100010001": 30, + "0110110101": 41, + "0100001011": 79, + "1111111110": 37, + "0111110001": 162, + "0110100101": 22, + "1100011110": 8, + "0111111101": 573, + "0100011011": 17, + "1111000011": 4, + "0111111001": 593, + "1111110001": 312, + "1011111110": 4, + "1111101010": 34, + "1100010110": 45, + "0100000100": 96, + "0111111100": 8, + "1111111000": 540, + "1011100111": 1, + "0110110110": 49, + "0100010001": 1, + "1011111111": 1, + "1100000000": 5, + "0110110100": 14, + "1111100010": 22, + "0110111101": 11, + "0100010111": 1, + "1110111100": 17, + "1111100111": 15, + "0100000010": 4, + "1111110100": 15, + "1110100010": 87, + "1111101110": 55, + "0100011000": 12, + "1110110101": 9, + "1101001111": 6, + "0111100100": 77, + "0111110111": 1, + "1110100001": 5, + "1100000010": 8, + "1110101101": 37, + "1100001001": 54, + "0100011111": 18, + "1000001011": 2, + "1111111111": 23, + "1111101000": 244, + "1101011000": 5, + "1111110110": 82, + "0110100011": 14, + "0110100000": 39, + "1100010101": 5, + "0111001010": 1, + "0111110100": 84, + "1111001001": 1, + "1111100110": 27, + "0111110000": 121, + "0100010011": 8, + "1110101010": 16, + "1110101110": 11, + "0011111011": 1, + "0111000010": 1, + "0110100110": 3, + "1111110000": 132, + "1110101011": 1, + "1111100001": 54, + "0100000011": 8, + "0111101110": 133, + "1100011001": 29, + "0100001100": 21, + "0100000101": 16, + "0110101010": 4, + "1111101011": 50, + "0111100101": 15, + "0111110011": 130, + "0100001010": 11, + "1110111110": 26, + "1110100111": 64, + "1110110100": 33, + "0111110110": 24, + "0101001100": 1, + "0110101011": 22, + "1110100011": 3, + "0111111011": 7, + "0111110101": 41, + "1100001010": 21, + "1110110110": 66, + "1100001011": 15, + "0111101101": 91, + "1000000001": 1, + "0111101111": 14, + "0011111111": 1, + "1110111011": 12, + "1111111011": 188, + "1111111101": 38, + "1101001101": 3, + "0101010001": 5, + "1111101101": 9, + "1011110101": 1, + "0101001101": 2, + "0111101100": 5, + "1100000111": 20, + "0100000111": 3, + "0111100001": 5, + "0100001000": 41, + "0110110000": 58, + "0111101010": 29, + "1100000100": 26, + "1111110010": 78, + "0110111000": 18, + "1111110101": 136, + "1110100100": 1, + "0000000000": 1, + "0101010101": 1, + "0110101110": 17, + "0111101001": 174, + "0110110111": 154, + "0110100111": 3, + "1110110001": 40, + "1100001110": 8, + "0100010101": 4, + "0100010000": 8, + "1110101111": 2, + "0000000011": 4, + "0100011001": 4, + "1011100101": 1, + "0110101100": 18, + "0100011110": 14, + "1110101001": 74, + "1000011110": 1, + "0111101000": 31, + "0110111010": 16, + "0110111001": 8, + "0110111110": 23, + "1110111001": 13, + "0100000000": 9, + "1111110111": 252, + "1111111001": 25, + "1111100101": 52, + "1110101100": 6 + }, + "counts_lsb_right": true, + "parsed_states": { + "1000010000": { "state": 528.0 }, + "0011110111": { "state": 247.0 }, + "1100000110": { "state": 774.0 }, + "0111101011": { "state": 491.0 }, + "0111111000": { "state": 504.0 }, + "1111010011": { "state": 979.0 }, + "1111000100": { "state": 964.0 }, + "1000001110": { "state": 526.0 }, + "0110101101": { "state": 429.0 }, + "0101001111": { "state": 335.0 }, + "0111011101": { "state": 477.0 }, + "0110101000": { "state": 424.0 }, + "0110101001": { "state": 425.0 }, + "0100000110": { "state": 262.0 }, + "1000000010": { "state": 514.0 }, + "1101000100": { "state": 836.0 }, + "1101000101": { "state": 837.0 }, + "0110110011": { "state": 435.0 }, + "1101010011": { "state": 851.0 }, + "1101010010": { "state": 850.0 }, + "1100010111": { "state": 791.0 }, + "1100001000": { "state": 776.0 }, + "1101011100": { "state": 860.0 }, + "1111101001": { "state": 1001.0 }, + "0100001111": { "state": 271.0 }, + "1111101100": { "state": 1004.0 }, + "1111111100": { "state": 1020.0 }, + "1110110111": { "state": 951.0 }, + "0111100110": { "state": 486.0 }, + "1110100101": { "state": 933.0 }, + "0000010011": { "state": 19.0 }, + "0101011001": { "state": 345.0 }, + "0000001001": { "state": 9.0 }, + "1000011010": { "state": 538.0 }, + "1111100011": { "state": 995.0 }, + "0011111100": { "state": 252.0 }, + "1100010000": { "state": 784.0 }, + "1110100000": { "state": 928.0 }, + "1111110011": { "state": 1011.0 }, + "1110101000": { "state": 936.0 }, + "0110110010": { "state": 434.0 }, + "1100010010": { "state": 786.0 }, + "1100011000": { "state": 792.0 }, + "1110110010": { "state": 946.0 }, + "1111111010": { "state": 1018.0 }, + "1111000000": { "state": 960.0 }, + "0100001001": { "state": 265.0 }, + "0100010110": { "state": 278.0 }, + "0111000110": { "state": 454.0 }, + "0100001110": { "state": 270.0 }, + "0110101111": { "state": 431.0 }, + "1100001100": { "state": 780.0 }, + "0110111100": { "state": 444.0 }, + "1111101111": { "state": 1007.0 }, + "0111100011": { "state": 483.0 }, + "1101000000": { "state": 832.0 }, + "0110100010": { "state": 418.0 }, + "0111100010": { "state": 482.0 }, + "1010110101": { "state": 693.0 }, + "1100000001": { "state": 769.0 }, + "1000001101": { "state": 525.0 }, + "0111110010": { "state": 498.0 }, + "0111111010": { "state": 506.0 }, + "1100000101": { "state": 773.0 }, + "1100001101": { "state": 781.0 }, + "0111111110": { "state": 510.0 }, + "1100011100": { "state": 796.0 }, + "0110111111": { "state": 447.0 }, + "1111100100": { "state": 996.0 }, + "0111111111": { "state": 511.0 }, + "0111100111": { "state": 487.0 }, + "1111100000": { "state": 992.0 }, + "0111100000": { "state": 480.0 }, + "0110100001": { "state": 417.0 }, + "1110110011": { "state": 947.0 }, + "1110111111": { "state": 959.0 }, + "1100010001": { "state": 785.0 }, + "0110110101": { "state": 437.0 }, + "0100001011": { "state": 267.0 }, + "1111111110": { "state": 1022.0 }, + "0111110001": { "state": 497.0 }, + "0110100101": { "state": 421.0 }, + "1100011110": { "state": 798.0 }, + "0111111101": { "state": 509.0 }, + "0100011011": { "state": 283.0 }, + "1111000011": { "state": 963.0 }, + "0111111001": { "state": 505.0 }, + "1111110001": { "state": 1009.0 }, + "1011111110": { "state": 766.0 }, + "1111101010": { "state": 1002.0 }, + "1100010110": { "state": 790.0 }, + "0100000100": { "state": 260.0 }, + "0111111100": { "state": 508.0 }, + "1111111000": { "state": 1016.0 }, + "1011100111": { "state": 743.0 }, + "0110110110": { "state": 438.0 }, + "0100010001": { "state": 273.0 }, + "1011111111": { "state": 767.0 }, + "1100000000": { "state": 768.0 }, + "0110110100": { "state": 436.0 }, + "1111100010": { "state": 994.0 }, + "0110111101": { "state": 445.0 }, + "0100010111": { "state": 279.0 }, + "1110111100": { "state": 956.0 }, + "1111100111": { "state": 999.0 }, + "0100000010": { "state": 258.0 }, + "1111110100": { "state": 1012.0 }, + "1110100010": { "state": 930.0 }, + "1111101110": { "state": 1006.0 }, + "0100011000": { "state": 280.0 }, + "1110110101": { "state": 949.0 }, + "1101001111": { "state": 847.0 }, + "0111100100": { "state": 484.0 }, + "0111110111": { "state": 503.0 }, + "1110100001": { "state": 929.0 }, + "1100000010": { "state": 770.0 }, + "1110101101": { "state": 941.0 }, + "1100001001": { "state": 777.0 }, + "0100011111": { "state": 287.0 }, + "1000001011": { "state": 523.0 }, + "1111111111": { "state": 1023.0 }, + "1111101000": { "state": 1000.0 }, + "1101011000": { "state": 856.0 }, + "1111110110": { "state": 1014.0 }, + "0110100011": { "state": 419.0 }, + "0110100000": { "state": 416.0 }, + "1100010101": { "state": 789.0 }, + "0111001010": { "state": 458.0 }, + "0111110100": { "state": 500.0 }, + "1111001001": { "state": 969.0 }, + "1111100110": { "state": 998.0 }, + "0111110000": { "state": 496.0 }, + "0100010011": { "state": 275.0 }, + "1110101010": { "state": 938.0 }, + "1110101110": { "state": 942.0 }, + "0011111011": { "state": 251.0 }, + "0111000010": { "state": 450.0 }, + "0110100110": { "state": 422.0 }, + "1111110000": { "state": 1008.0 }, + "1110101011": { "state": 939.0 }, + "1111100001": { "state": 993.0 }, + "0100000011": { "state": 259.0 }, + "0111101110": { "state": 494.0 }, + "1100011001": { "state": 793.0 }, + "0100001100": { "state": 268.0 }, + "0100000101": { "state": 261.0 }, + "0110101010": { "state": 426.0 }, + "1111101011": { "state": 1003.0 }, + "0111100101": { "state": 485.0 }, + "0111110011": { "state": 499.0 }, + "0100001010": { "state": 266.0 }, + "1110111110": { "state": 958.0 }, + "1110100111": { "state": 935.0 }, + "1110110100": { "state": 948.0 }, + "0111110110": { "state": 502.0 }, + "0101001100": { "state": 332.0 }, + "0110101011": { "state": 427.0 }, + "1110100011": { "state": 931.0 }, + "0111111011": { "state": 507.0 }, + "0111110101": { "state": 501.0 }, + "1100001010": { "state": 778.0 }, + "1110110110": { "state": 950.0 }, + "1100001011": { "state": 779.0 }, + "0111101101": { "state": 493.0 }, + "1000000001": { "state": 513.0 }, + "0111101111": { "state": 495.0 }, + "0011111111": { "state": 255.0 }, + "1110111011": { "state": 955.0 }, + "1111111011": { "state": 1019.0 }, + "1111111101": { "state": 1021.0 }, + "1101001101": { "state": 845.0 }, + "0101010001": { "state": 337.0 }, + "1111101101": { "state": 1005.0 }, + "1011110101": { "state": 757.0 }, + "0101001101": { "state": 333.0 }, + "0111101100": { "state": 492.0 }, + "1100000111": { "state": 775.0 }, + "0100000111": { "state": 263.0 }, + "0111100001": { "state": 481.0 }, + "0100001000": { "state": 264.0 }, + "0110110000": { "state": 432.0 }, + "0111101010": { "state": 490.0 }, + "1100000100": { "state": 772.0 }, + "1111110010": { "state": 1010.0 }, + "0110111000": { "state": 440.0 }, + "1111110101": { "state": 1013.0 }, + "1110100100": { "state": 932.0 }, + "0000000000": { "state": 0.0 }, + "0101010101": { "state": 341.0 }, + "0110101110": { "state": 430.0 }, + "0111101001": { "state": 489.0 }, + "0110110111": { "state": 439.0 }, + "0110100111": { "state": 423.0 }, + "1110110001": { "state": 945.0 }, + "1100001110": { "state": 782.0 }, + "0100010101": { "state": 277.0 }, + "0100010000": { "state": 272.0 }, + "1110101111": { "state": 943.0 }, + "0000000011": { "state": 3.0 }, + "0100011001": { "state": 281.0 }, + "1011100101": { "state": 741.0 }, + "0110101100": { "state": 428.0 }, + "0100011110": { "state": 286.0 }, + "1110101001": { "state": 937.0 }, + "1000011110": { "state": 542.0 }, + "0111101000": { "state": 488.0 }, + "0110111010": { "state": 442.0 }, + "0110111001": { "state": 441.0 }, + "0110111110": { "state": 446.0 }, + "1110111001": { "state": 953.0 }, + "0100000000": { "state": 256.0 }, + "1111110111": { "state": 1015.0 }, + "1111111001": { "state": 1017.0 }, + "1111100101": { "state": 997.0 }, + "1110101100": { "state": 940.0 } + }, + "histogram": null, + "output_qubits_map": { "state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] }, + "state_vector": null, + "parsed_state_vector_states": null, + "physical_qubits_map": { "state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] }, + "num_shots": 8192 +} diff --git a/algorithms/glued_trees/results/10-qubits/2n+12.json b/algorithms/glued_trees/results/10-qubits/2n+12.json index 96cb39a2..1d1fab43 100644 --- a/algorithms/glued_trees/results/10-qubits/2n+12.json +++ b/algorithms/glued_trees/results/10-qubits/2n+12.json @@ -1 +1,474 @@ -{"vendor_format_result": {}, "counts": {"0000000010": 1, "0011100000": 1, "0101011011": 1, "0100000001": 1, "1011111100": 1, "1100011010": 1, "0110101101": 1, "1110101000": 2, "0101000011": 1, "1101010100": 1, "1100000111": 2, "1000000101": 1, "0101011100": 1, "1101001010": 1, "1101001011": 4, "0011101100": 2, "0011110101": 1, "1011101010": 1, "1111011100": 1, "1011110110": 1, "1101011101": 1, "1101011111": 1, "1101000101": 1, "1101011011": 2, "0100001001": 2, "1100001000": 8, "0100010011": 1, "1001000000": 1, "0100011010": 1, "0000000001": 2, "1001001111": 1, "0101000111": 5, "0100001011": 2, "1110100000": 3, "1011110001": 1, "0111111000": 4, "0111010001": 1, "0011110100": 4, "1110100111": 5, "1111100001": 9, "0111011010": 2, "1111111110": 6, "1100000000": 1, "0100010001": 6, "1111000100": 1, "1000001110": 7, "1110111100": 10, "0101011001": 1, "0101010111": 1, "1101000000": 1, "0010110010": 1, "0110100010": 3, "1111101110": 6, "1110110100": 16, "0111110110": 4, "1011110111": 3, "0100010110": 1, "0100011011": 2, "0100011001": 6, "1111100100": 20, "0101000110": 2, "1100011110": 7, "0110101100": 15, "1110101100": 4, "1111100101": 19, "1110100101": 34, "1111001100": 3, "0110100101": 30, "0101001001": 5, "0111110001": 180, "1111110011": 441, "0110110101": 66, "1110111110": 60, "0110101000": 35, "0110100000": 9, "0111100111": 164, "0111100000": 74, "1000000001": 1, "0111101101": 133, "1100001111": 38, "0110100111": 1, "0111101001": 18, "0110110111": 67, "1110100110": 4, "0110101011": 50, "0110100100": 7, "1111101010": 53, "0000000100": 3, "1000011110": 1, "1110101001": 43, "1110111101": 168, "1111110010": 2, "0110111000": 130, "1011100111": 1, "0110110110": 8, "1110110111": 15, "0100000000": 55, "1111101001": 185, "1110101111": 16, "1011110101": 6, "0111101100": 17, "1000001010": 3, "0100010100": 8, "0111111101": 93, "0110101010": 18, "0100000101": 6, "0011100011": 2, "1110100010": 59, "1111110100": 15, "1111101000": 109, "0110111110": 9, "1110111001": 26, "0111010101": 3, "1111111011": 413, "1111111101": 77, "1111101100": 36, "1101001101": 4, "1111110000": 3, "1110101011": 45, "0110100110": 18, "0111100100": 99, "1111100000": 23, "1100010011": 9, "0100011100": 20, "1010110101": 1, "1000010010": 2, "0011110001": 3, "1100000001": 61, "1110100011": 9, "0111111011": 70, "0100001100": 46, "0111101110": 117, "1100011011": 2, "1100000101": 161, "0111000101": 5, "1011100001": 1, "0111111010": 104, "0111110101": 38, "1100010101": 79, "1100010100": 2, "0111001101": 1, "1100000110": 12, "1111111100": 26, "0100001111": 32, "0000001110": 1, "0110111011": 25, "0111110111": 147, "1110100001": 98, "0110100001": 1, "1110110011": 20, "1000011010": 1, "1111100011": 485, "0110110001": 3, "1111111000": 156, "0111111100": 125, "1100011100": 1, "0110111111": 10, "1100001101": 75, "0111111110": 12, "0110110010": 60, "0111101011": 152, "1111100110": 18, "0111111001": 185, "0111100110": 30, "1111110101": 79, "1111110111": 191, "1111111001": 101, "1100010010": 5, "0101000001": 1, "0111110100": 41, "0110101001": 8, "1110101010": 23, "1111110001": 42, "1110111000": 3, "0111100010": 104, "0111110010": 69, "1111101101": 24, "0111101000": 35, "0110111010": 15, "1110101101": 166, "1100000010": 11, "0110101111": 126, "1110110000": 34, "1100000011": 9, "1100010001": 47, "0000000111": 12, "0111110000": 78, "0000010100": 1, "0111100101": 10, "0111110011": 64, "0100001010": 14, "1100011000": 1, "1110111010": 23, "1111100111": 12, "1100011111": 5, "0110111101": 8, "0111101111": 56, "1100001110": 3, "1110110001": 39, "0100010101": 9, "1111111010": 43, "0000011110": 2, "1111111111": 4, "0100011111": 3, "0000010111": 1, "1100001001": 9, "0100000011": 1, "1100011101": 7, "0100001110": 1, "0100010000": 16, "0100011000": 1, "1110110101": 50, "1101001111": 11, "0111100011": 128, "1111101111": 7, "1110000110": 1, "0100000100": 11, "0110101110": 15, "0111011001": 1, "0111111111": 41, "1111101011": 20, "0111101010": 106, "0111100001": 102, "0110110000": 118, "1100000100": 2, "1011100110": 2, "1111110110": 10, "0011110000": 4, "1110101110": 12, "1110111111": 4, "0011101111": 5, "0011111111": 6, "1110111011": 13, "0110111100": 141, "1011100100": 1}, "counts_lsb_right": true, "parsed_states": {"0000000010": {"state": 2.0}, "0011100000": {"state": 224.0}, "0101011011": {"state": 347.0}, "0100000001": {"state": 257.0}, "1011111100": {"state": 764.0}, "1100011010": {"state": 794.0}, "0110101101": {"state": 429.0}, "1110101000": {"state": 936.0}, "0101000011": {"state": 323.0}, "1101010100": {"state": 852.0}, "1100000111": {"state": 775.0}, "1000000101": {"state": 517.0}, "0101011100": {"state": 348.0}, "1101001010": {"state": 842.0}, "1101001011": {"state": 843.0}, "0011101100": {"state": 236.0}, "0011110101": {"state": 245.0}, "1011101010": {"state": 746.0}, "1111011100": {"state": 988.0}, "1011110110": {"state": 758.0}, "1101011101": {"state": 861.0}, "1101011111": {"state": 863.0}, "1101000101": {"state": 837.0}, "1101011011": {"state": 859.0}, "0100001001": {"state": 265.0}, "1100001000": {"state": 776.0}, "0100010011": {"state": 275.0}, "1001000000": {"state": 576.0}, "0100011010": {"state": 282.0}, "0000000001": {"state": 1.0}, "1001001111": {"state": 591.0}, "0101000111": {"state": 327.0}, "0100001011": {"state": 267.0}, "1110100000": {"state": 928.0}, "1011110001": {"state": 753.0}, "0111111000": {"state": 504.0}, "0111010001": {"state": 465.0}, "0011110100": {"state": 244.0}, "1110100111": {"state": 935.0}, "1111100001": {"state": 993.0}, "0111011010": {"state": 474.0}, "1111111110": {"state": 1022.0}, "1100000000": {"state": 768.0}, "0100010001": {"state": 273.0}, "1111000100": {"state": 964.0}, "1000001110": {"state": 526.0}, "1110111100": {"state": 956.0}, "0101011001": {"state": 345.0}, "0101010111": {"state": 343.0}, "1101000000": {"state": 832.0}, "0010110010": {"state": 178.0}, "0110100010": {"state": 418.0}, "1111101110": {"state": 1006.0}, "1110110100": {"state": 948.0}, "0111110110": {"state": 502.0}, "1011110111": {"state": 759.0}, "0100010110": {"state": 278.0}, "0100011011": {"state": 283.0}, "0100011001": {"state": 281.0}, "1111100100": {"state": 996.0}, "0101000110": {"state": 326.0}, "1100011110": {"state": 798.0}, "0110101100": {"state": 428.0}, "1110101100": {"state": 940.0}, "1111100101": {"state": 997.0}, "1110100101": {"state": 933.0}, "1111001100": {"state": 972.0}, "0110100101": {"state": 421.0}, "0101001001": {"state": 329.0}, "0111110001": {"state": 497.0}, "1111110011": {"state": 1011.0}, "0110110101": {"state": 437.0}, "1110111110": {"state": 958.0}, "0110101000": {"state": 424.0}, "0110100000": {"state": 416.0}, "0111100111": {"state": 487.0}, "0111100000": {"state": 480.0}, "1000000001": {"state": 513.0}, "0111101101": {"state": 493.0}, "1100001111": {"state": 783.0}, "0110100111": {"state": 423.0}, "0111101001": {"state": 489.0}, "0110110111": {"state": 439.0}, "1110100110": {"state": 934.0}, "0110101011": {"state": 427.0}, "0110100100": {"state": 420.0}, "1111101010": {"state": 1002.0}, "0000000100": {"state": 4.0}, "1000011110": {"state": 542.0}, "1110101001": {"state": 937.0}, "1110111101": {"state": 957.0}, "1111110010": {"state": 1010.0}, "0110111000": {"state": 440.0}, "1011100111": {"state": 743.0}, "0110110110": {"state": 438.0}, "1110110111": {"state": 951.0}, "0100000000": {"state": 256.0}, "1111101001": {"state": 1001.0}, "1110101111": {"state": 943.0}, "1011110101": {"state": 757.0}, "0111101100": {"state": 492.0}, "1000001010": {"state": 522.0}, "0100010100": {"state": 276.0}, "0111111101": {"state": 509.0}, "0110101010": {"state": 426.0}, "0100000101": {"state": 261.0}, "0011100011": {"state": 227.0}, "1110100010": {"state": 930.0}, "1111110100": {"state": 1012.0}, "1111101000": {"state": 1000.0}, "0110111110": {"state": 446.0}, "1110111001": {"state": 953.0}, "0111010101": {"state": 469.0}, "1111111011": {"state": 1019.0}, "1111111101": {"state": 1021.0}, "1111101100": {"state": 1004.0}, "1101001101": {"state": 845.0}, "1111110000": {"state": 1008.0}, "1110101011": {"state": 939.0}, "0110100110": {"state": 422.0}, "0111100100": {"state": 484.0}, "1111100000": {"state": 992.0}, "1100010011": {"state": 787.0}, "0100011100": {"state": 284.0}, "1010110101": {"state": 693.0}, "1000010010": {"state": 530.0}, "0011110001": {"state": 241.0}, "1100000001": {"state": 769.0}, "1110100011": {"state": 931.0}, "0111111011": {"state": 507.0}, "0100001100": {"state": 268.0}, "0111101110": {"state": 494.0}, "1100011011": {"state": 795.0}, "1100000101": {"state": 773.0}, "0111000101": {"state": 453.0}, "1011100001": {"state": 737.0}, "0111111010": {"state": 506.0}, "0111110101": {"state": 501.0}, "1100010101": {"state": 789.0}, "1100010100": {"state": 788.0}, "0111001101": {"state": 461.0}, "1100000110": {"state": 774.0}, "1111111100": {"state": 1020.0}, "0100001111": {"state": 271.0}, "0000001110": {"state": 14.0}, "0110111011": {"state": 443.0}, "0111110111": {"state": 503.0}, "1110100001": {"state": 929.0}, "0110100001": {"state": 417.0}, "1110110011": {"state": 947.0}, "1000011010": {"state": 538.0}, "1111100011": {"state": 995.0}, "0110110001": {"state": 433.0}, "1111111000": {"state": 1016.0}, "0111111100": {"state": 508.0}, "1100011100": {"state": 796.0}, "0110111111": {"state": 447.0}, "1100001101": {"state": 781.0}, "0111111110": {"state": 510.0}, "0110110010": {"state": 434.0}, "0111101011": {"state": 491.0}, "1111100110": {"state": 998.0}, "0111111001": {"state": 505.0}, "0111100110": {"state": 486.0}, "1111110101": {"state": 1013.0}, "1111110111": {"state": 1015.0}, "1111111001": {"state": 1017.0}, "1100010010": {"state": 786.0}, "0101000001": {"state": 321.0}, "0111110100": {"state": 500.0}, "0110101001": {"state": 425.0}, "1110101010": {"state": 938.0}, "1111110001": {"state": 1009.0}, "1110111000": {"state": 952.0}, "0111100010": {"state": 482.0}, "0111110010": {"state": 498.0}, "1111101101": {"state": 1005.0}, "0111101000": {"state": 488.0}, "0110111010": {"state": 442.0}, "1110101101": {"state": 941.0}, "1100000010": {"state": 770.0}, "0110101111": {"state": 431.0}, "1110110000": {"state": 944.0}, "1100000011": {"state": 771.0}, "1100010001": {"state": 785.0}, "0000000111": {"state": 7.0}, "0111110000": {"state": 496.0}, "0000010100": {"state": 20.0}, "0111100101": {"state": 485.0}, "0111110011": {"state": 499.0}, "0100001010": {"state": 266.0}, "1100011000": {"state": 792.0}, "1110111010": {"state": 954.0}, "1111100111": {"state": 999.0}, "1100011111": {"state": 799.0}, "0110111101": {"state": 445.0}, "0111101111": {"state": 495.0}, "1100001110": {"state": 782.0}, "1110110001": {"state": 945.0}, "0100010101": {"state": 277.0}, "1111111010": {"state": 1018.0}, "0000011110": {"state": 30.0}, "1111111111": {"state": 1023.0}, "0100011111": {"state": 287.0}, "0000010111": {"state": 23.0}, "1100001001": {"state": 777.0}, "0100000011": {"state": 259.0}, "1100011101": {"state": 797.0}, "0100001110": {"state": 270.0}, "0100010000": {"state": 272.0}, "0100011000": {"state": 280.0}, "1110110101": {"state": 949.0}, "1101001111": {"state": 847.0}, "0111100011": {"state": 483.0}, "1111101111": {"state": 1007.0}, "1110000110": {"state": 902.0}, "0100000100": {"state": 260.0}, "0110101110": {"state": 430.0}, "0111011001": {"state": 473.0}, "0111111111": {"state": 511.0}, "1111101011": {"state": 1003.0}, "0111101010": {"state": 490.0}, "0111100001": {"state": 481.0}, "0110110000": {"state": 432.0}, "1100000100": {"state": 772.0}, "1011100110": {"state": 742.0}, "1111110110": {"state": 1014.0}, "0011110000": {"state": 240.0}, "1110101110": {"state": 942.0}, "1110111111": {"state": 959.0}, "0011101111": {"state": 239.0}, "0011111111": {"state": 255.0}, "1110111011": {"state": 955.0}, "0110111100": {"state": 444.0}, "1011100100": {"state": 740.0}}, "histogram": null, "output_qubits_map": {"state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]}, "state_vector": null, "parsed_state_vector_states": null, "physical_qubits_map": {"state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]}, "num_shots": 8192} \ No newline at end of file +{ + "vendor_format_result": {}, + "counts": { + "0110111001": 1, + "1111000100": 1, + "1000001110": 2, + "1111111111": 1, + "1101001110": 1, + "0000000001": 1, + "1111001100": 1, + "0000010011": 1, + "1011110001": 1, + "1000010011": 1, + "1110100000": 4, + "1000001111": 1, + "1110100110": 2, + "0011110101": 3, + "0100000011": 3, + "1100000111": 3, + "0111110110": 4, + "1101010100": 2, + "1100011101": 2, + "1101010011": 1, + "0101011101": 1, + "1100010111": 1, + "1011100110": 1, + "0100001011": 1, + "0101000011": 1, + "1111101110": 3, + "1100011110": 3, + "1101011101": 1, + "1101011111": 1, + "0000000111": 5, + "1010100011": 1, + "1101000101": 1, + "0011110000": 5, + "0110100010": 10, + "0000000011": 1, + "1110101111": 13, + "1100000110": 11, + "1000010100": 1, + "1110101000": 5, + "0111001001": 1, + "0100010111": 2, + "1110111100": 7, + "1111100111": 8, + "1011111100": 1, + "1110101110": 11, + "1000000010": 6, + "1110111111": 4, + "1110110100": 10, + "1100011100": 2, + "0110111111": 8, + "0111111000": 6, + "1101001011": 2, + "1101010010": 2, + "1100010100": 4, + "1100000000": 2, + "0100010001": 4, + "1100001000": 3, + "0110100100": 10, + "0111111110": 14, + "1101011011": 3, + "0100001001": 2, + "0011111011": 4, + "0111100110": 22, + "0100011011": 2, + "0110101010": 13, + "0100000101": 6, + "0011100000": 5, + "0100010000": 15, + "1100000010": 8, + "0011110111": 2, + "0111100111": 194, + "0111100000": 79, + "1111111110": 7, + "0101001001": 8, + "0111110001": 172, + "1111110011": 414, + "0110100101": 36, + "1100000011": 4, + "1100010001": 47, + "1101001010": 1, + "1100011011": 5, + "1100000101": 146, + "0111111010": 106, + "0111101110": 128, + "0100001100": 41, + "1111110101": 74, + "1111101100": 39, + "0101000110": 4, + "1111101111": 7, + "0111100011": 142, + "1110111101": 182, + "1111101001": 186, + "0100000000": 55, + "1100001101": 97, + "1110111000": 1, + "0111100010": 120, + "0111110000": 88, + "1100000100": 1, + "0110110000": 109, + "0111100001": 113, + "0111101010": 89, + "1110100101": 24, + "0111111101": 68, + "0110110101": 63, + "0000001001": 2, + "1111100011": 481, + "1011110111": 6, + "1110110111": 18, + "1011100111": 1, + "0110110110": 13, + "0110111000": 125, + "1111110100": 16, + "0010110101": 1, + "1110100010": 67, + "1111111101": 66, + "1111111011": 411, + "1111101000": 107, + "1110110110": 1, + "0110101001": 13, + "1100001111": 31, + "0111101101": 142, + "1100010010": 9, + "0110100001": 1, + "1110110011": 24, + "1110101101": 155, + "0111101011": 141, + "1111100110": 17, + "0000011000": 1, + "0110110010": 57, + "0111111100": 131, + "1111111000": 156, + "0110110001": 6, + "1111111100": 25, + "1111110111": 213, + "1111111001": 104, + "0100001111": 30, + "1110100111": 5, + "1111110001": 34, + "0000000101": 1, + "0110111110": 8, + "1110111001": 17, + "1110100011": 14, + "0111111011": 89, + "0011100111": 1, + "1011110110": 4, + "0101001011": 1, + "1000010010": 3, + "1100000001": 60, + "0111110101": 53, + "1111000011": 1, + "0111111001": 175, + "1111011011": 2, + "1111101010": 70, + "0010100010": 1, + "0111110100": 53, + "0110111101": 9, + "1100011111": 9, + "0100011001": 9, + "1110101100": 1, + "1111100101": 24, + "0111010110": 1, + "0000000100": 1, + "1110101001": 40, + "1000011110": 1, + "0110101000": 32, + "1110111110": 63, + "1110100001": 90, + "0110111011": 35, + "0111110111": 111, + "0100010100": 5, + "1011110101": 4, + "0111101100": 13, + "0100011111": 1, + "1100001001": 10, + "0110101011": 42, + "0100010011": 3, + "1100010101": 71, + "1100001110": 6, + "1110110001": 47, + "0100010101": 11, + "0111011001": 2, + "0111111111": 40, + "1111100100": 17, + "0110101111": 118, + "1110110000": 34, + "1111101101": 22, + "0110100000": 16, + "0101010101": 1, + "0110101110": 28, + "0111101111": 48, + "1111111010": 41, + "1100010011": 5, + "1111100000": 17, + "0100011100": 24, + "0111100100": 134, + "0111110010": 46, + "0100011000": 1, + "1101001111": 6, + "1110110101": 48, + "0100011010": 3, + "0111101000": 48, + "0110111010": 12, + "1110110010": 1, + "1100011000": 2, + "1110111010": 21, + "0110111100": 140, + "1100001100": 3, + "0111011010": 1, + "1111100001": 15, + "1111110000": 1, + "0110100110": 13, + "1110101011": 30, + "0101000111": 1, + "0110101100": 13, + "0110110111": 93, + "0111101001": 14, + "0000010100": 1, + "0111110011": 73, + "0111100101": 15, + "0100001010": 9, + "1101011000": 1, + "1111110110": 12, + "1001001100": 2, + "1101000100": 1, + "0011111111": 9, + "1110111011": 8, + "0100000100": 10, + "1110101010": 16, + "1111101011": 30, + "0110101101": 3 + }, + "counts_lsb_right": true, + "parsed_states": { + "0110111001": { "state": 441.0 }, + "1111000100": { "state": 964.0 }, + "1000001110": { "state": 526.0 }, + "1111111111": { "state": 1023.0 }, + "1101001110": { "state": 846.0 }, + "0000000001": { "state": 1.0 }, + "1111001100": { "state": 972.0 }, + "0000010011": { "state": 19.0 }, + "1011110001": { "state": 753.0 }, + "1000010011": { "state": 531.0 }, + "1110100000": { "state": 928.0 }, + "1000001111": { "state": 527.0 }, + "1110100110": { "state": 934.0 }, + "0011110101": { "state": 245.0 }, + "0100000011": { "state": 259.0 }, + "1100000111": { "state": 775.0 }, + "0111110110": { "state": 502.0 }, + "1101010100": { "state": 852.0 }, + "1100011101": { "state": 797.0 }, + "1101010011": { "state": 851.0 }, + "0101011101": { "state": 349.0 }, + "1100010111": { "state": 791.0 }, + "1011100110": { "state": 742.0 }, + "0100001011": { "state": 267.0 }, + "0101000011": { "state": 323.0 }, + "1111101110": { "state": 1006.0 }, + "1100011110": { "state": 798.0 }, + "1101011101": { "state": 861.0 }, + "1101011111": { "state": 863.0 }, + "0000000111": { "state": 7.0 }, + "1010100011": { "state": 675.0 }, + "1101000101": { "state": 837.0 }, + "0011110000": { "state": 240.0 }, + "0110100010": { "state": 418.0 }, + "0000000011": { "state": 3.0 }, + "1110101111": { "state": 943.0 }, + "1100000110": { "state": 774.0 }, + "1000010100": { "state": 532.0 }, + "1110101000": { "state": 936.0 }, + "0111001001": { "state": 457.0 }, + "0100010111": { "state": 279.0 }, + "1110111100": { "state": 956.0 }, + "1111100111": { "state": 999.0 }, + "1011111100": { "state": 764.0 }, + "1110101110": { "state": 942.0 }, + "1000000010": { "state": 514.0 }, + "1110111111": { "state": 959.0 }, + "1110110100": { "state": 948.0 }, + "1100011100": { "state": 796.0 }, + "0110111111": { "state": 447.0 }, + "0111111000": { "state": 504.0 }, + "1101001011": { "state": 843.0 }, + "1101010010": { "state": 850.0 }, + "1100010100": { "state": 788.0 }, + "1100000000": { "state": 768.0 }, + "0100010001": { "state": 273.0 }, + "1100001000": { "state": 776.0 }, + "0110100100": { "state": 420.0 }, + "0111111110": { "state": 510.0 }, + "1101011011": { "state": 859.0 }, + "0100001001": { "state": 265.0 }, + "0011111011": { "state": 251.0 }, + "0111100110": { "state": 486.0 }, + "0100011011": { "state": 283.0 }, + "0110101010": { "state": 426.0 }, + "0100000101": { "state": 261.0 }, + "0011100000": { "state": 224.0 }, + "0100010000": { "state": 272.0 }, + "1100000010": { "state": 770.0 }, + "0011110111": { "state": 247.0 }, + "0111100111": { "state": 487.0 }, + "0111100000": { "state": 480.0 }, + "1111111110": { "state": 1022.0 }, + "0101001001": { "state": 329.0 }, + "0111110001": { "state": 497.0 }, + "1111110011": { "state": 1011.0 }, + "0110100101": { "state": 421.0 }, + "1100000011": { "state": 771.0 }, + "1100010001": { "state": 785.0 }, + "1101001010": { "state": 842.0 }, + "1100011011": { "state": 795.0 }, + "1100000101": { "state": 773.0 }, + "0111111010": { "state": 506.0 }, + "0111101110": { "state": 494.0 }, + "0100001100": { "state": 268.0 }, + "1111110101": { "state": 1013.0 }, + "1111101100": { "state": 1004.0 }, + "0101000110": { "state": 326.0 }, + "1111101111": { "state": 1007.0 }, + "0111100011": { "state": 483.0 }, + "1110111101": { "state": 957.0 }, + "1111101001": { "state": 1001.0 }, + "0100000000": { "state": 256.0 }, + "1100001101": { "state": 781.0 }, + "1110111000": { "state": 952.0 }, + "0111100010": { "state": 482.0 }, + "0111110000": { "state": 496.0 }, + "1100000100": { "state": 772.0 }, + "0110110000": { "state": 432.0 }, + "0111100001": { "state": 481.0 }, + "0111101010": { "state": 490.0 }, + "1110100101": { "state": 933.0 }, + "0111111101": { "state": 509.0 }, + "0110110101": { "state": 437.0 }, + "0000001001": { "state": 9.0 }, + "1111100011": { "state": 995.0 }, + "1011110111": { "state": 759.0 }, + "1110110111": { "state": 951.0 }, + "1011100111": { "state": 743.0 }, + "0110110110": { "state": 438.0 }, + "0110111000": { "state": 440.0 }, + "1111110100": { "state": 1012.0 }, + "0010110101": { "state": 181.0 }, + "1110100010": { "state": 930.0 }, + "1111111101": { "state": 1021.0 }, + "1111111011": { "state": 1019.0 }, + "1111101000": { "state": 1000.0 }, + "1110110110": { "state": 950.0 }, + "0110101001": { "state": 425.0 }, + "1100001111": { "state": 783.0 }, + "0111101101": { "state": 493.0 }, + "1100010010": { "state": 786.0 }, + "0110100001": { "state": 417.0 }, + "1110110011": { "state": 947.0 }, + "1110101101": { "state": 941.0 }, + "0111101011": { "state": 491.0 }, + "1111100110": { "state": 998.0 }, + "0000011000": { "state": 24.0 }, + "0110110010": { "state": 434.0 }, + "0111111100": { "state": 508.0 }, + "1111111000": { "state": 1016.0 }, + "0110110001": { "state": 433.0 }, + "1111111100": { "state": 1020.0 }, + "1111110111": { "state": 1015.0 }, + "1111111001": { "state": 1017.0 }, + "0100001111": { "state": 271.0 }, + "1110100111": { "state": 935.0 }, + "1111110001": { "state": 1009.0 }, + "0000000101": { "state": 5.0 }, + "0110111110": { "state": 446.0 }, + "1110111001": { "state": 953.0 }, + "1110100011": { "state": 931.0 }, + "0111111011": { "state": 507.0 }, + "0011100111": { "state": 231.0 }, + "1011110110": { "state": 758.0 }, + "0101001011": { "state": 331.0 }, + "1000010010": { "state": 530.0 }, + "1100000001": { "state": 769.0 }, + "0111110101": { "state": 501.0 }, + "1111000011": { "state": 963.0 }, + "0111111001": { "state": 505.0 }, + "1111011011": { "state": 987.0 }, + "1111101010": { "state": 1002.0 }, + "0010100010": { "state": 162.0 }, + "0111110100": { "state": 500.0 }, + "0110111101": { "state": 445.0 }, + "1100011111": { "state": 799.0 }, + "0100011001": { "state": 281.0 }, + "1110101100": { "state": 940.0 }, + "1111100101": { "state": 997.0 }, + "0111010110": { "state": 470.0 }, + "0000000100": { "state": 4.0 }, + "1110101001": { "state": 937.0 }, + "1000011110": { "state": 542.0 }, + "0110101000": { "state": 424.0 }, + "1110111110": { "state": 958.0 }, + "1110100001": { "state": 929.0 }, + "0110111011": { "state": 443.0 }, + "0111110111": { "state": 503.0 }, + "0100010100": { "state": 276.0 }, + "1011110101": { "state": 757.0 }, + "0111101100": { "state": 492.0 }, + "0100011111": { "state": 287.0 }, + "1100001001": { "state": 777.0 }, + "0110101011": { "state": 427.0 }, + "0100010011": { "state": 275.0 }, + "1100010101": { "state": 789.0 }, + "1100001110": { "state": 782.0 }, + "1110110001": { "state": 945.0 }, + "0100010101": { "state": 277.0 }, + "0111011001": { "state": 473.0 }, + "0111111111": { "state": 511.0 }, + "1111100100": { "state": 996.0 }, + "0110101111": { "state": 431.0 }, + "1110110000": { "state": 944.0 }, + "1111101101": { "state": 1005.0 }, + "0110100000": { "state": 416.0 }, + "0101010101": { "state": 341.0 }, + "0110101110": { "state": 430.0 }, + "0111101111": { "state": 495.0 }, + "1111111010": { "state": 1018.0 }, + "1100010011": { "state": 787.0 }, + "1111100000": { "state": 992.0 }, + "0100011100": { "state": 284.0 }, + "0111100100": { "state": 484.0 }, + "0111110010": { "state": 498.0 }, + "0100011000": { "state": 280.0 }, + "1101001111": { "state": 847.0 }, + "1110110101": { "state": 949.0 }, + "0100011010": { "state": 282.0 }, + "0111101000": { "state": 488.0 }, + "0110111010": { "state": 442.0 }, + "1110110010": { "state": 946.0 }, + "1100011000": { "state": 792.0 }, + "1110111010": { "state": 954.0 }, + "0110111100": { "state": 444.0 }, + "1100001100": { "state": 780.0 }, + "0111011010": { "state": 474.0 }, + "1111100001": { "state": 993.0 }, + "1111110000": { "state": 1008.0 }, + "0110100110": { "state": 422.0 }, + "1110101011": { "state": 939.0 }, + "0101000111": { "state": 327.0 }, + "0110101100": { "state": 428.0 }, + "0110110111": { "state": 439.0 }, + "0111101001": { "state": 489.0 }, + "0000010100": { "state": 20.0 }, + "0111110011": { "state": 499.0 }, + "0111100101": { "state": 485.0 }, + "0100001010": { "state": 266.0 }, + "1101011000": { "state": 856.0 }, + "1111110110": { "state": 1014.0 }, + "1001001100": { "state": 588.0 }, + "1101000100": { "state": 836.0 }, + "0011111111": { "state": 255.0 }, + "1110111011": { "state": 955.0 }, + "0100000100": { "state": 260.0 }, + "1110101010": { "state": 938.0 }, + "1111101011": { "state": 1003.0 }, + "0110101101": { "state": 429.0 } + }, + "histogram": null, + "output_qubits_map": { "state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] }, + "state_vector": null, + "parsed_state_vector_states": null, + "physical_qubits_map": { "state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] }, + "num_shots": 8192 +} diff --git a/algorithms/glued_trees/results/10-qubits/2n+2.json b/algorithms/glued_trees/results/10-qubits/2n+2.json index 3eb33f7a..e67a985b 100644 --- a/algorithms/glued_trees/results/10-qubits/2n+2.json +++ b/algorithms/glued_trees/results/10-qubits/2n+2.json @@ -1 +1,526 @@ -{"vendor_format_result": {}, "counts": {"0110100011": 1, "0111100100": 1, "1111101000": 1, "0010111001": 1, "1000000111": 1, "1111101100": 1, "1110100110": 3, "1111100111": 1, "1001001100": 1, "0001001110": 2, "0011110110": 5, "1010101011": 1, "0100011010": 2, "0110111100": 3, "1011100100": 2, "1110101101": 7, "0110100100": 2, "0110101101": 3, "1111101011": 6, "1101001100": 2, "0101001101": 3, "0100011101": 1, "1000010000": 1, "1000000011": 2, "1011101010": 2, "0011110101": 1, "0110110010": 5, "0000011000": 6, "0100010001": 2, "1111100011": 9, "0000001001": 3, "1110111111": 2, "0011101111": 4, "0110101111": 1, "1110110000": 5, "1000000101": 2, "1100011101": 4, "0111101011": 4, "1000010101": 1, "0011111100": 1, "0011110010": 5, "1011111011": 1, "0011111011": 1, "1110111100": 7, "0101000000": 1, "1110111101": 4, "1000000000": 2, "0100011000": 5, "0101000110": 3, "0101011010": 1, "1000001111": 9, "0110101001": 1, "1110110001": 4, "0110100010": 4, "0110101011": 16, "1011110010": 2, "1110111011": 13, "0011111111": 19, "1110101011": 2, "0110100110": 10, "1111110000": 43, "0100011100": 1, "1111100000": 20, "0111100111": 3, "0111110000": 133, "0000001010": 2, "1111101010": 66, "1000011110": 1, "1110101001": 36, "0000000100": 13, "0110100001": 5, "1110110011": 6, "1000001100": 4, "1111111100": 382, "1000010110": 73, "0110110000": 2, "0100001000": 1, "0100000111": 17, "0111100001": 15, "0111101111": 10, "1100001000": 14, "1100001100": 30, "0101010110": 1, "0111110100": 71, "0000010000": 1, "0011110100": 3, "0111000001": 1, "0000000111": 50, "1111110011": 76, "1011111101": 1, "0111110001": 111, "1111111110": 514, "1100011110": 5, "0110100101": 2, "1100001010": 43, "0000011111": 1, "1111101001": 119, "1100000001": 246, "1000001000": 9, "0111110110": 170, "0100001111": 20, "0000001000": 9, "1111110101": 10, "1111100100": 17, "1000000001": 1, "0111101101": 5, "1100001011": 15, "0111111111": 13, "0110110110": 4, "0100000010": 2, "1111110100": 79, "0010110101": 1, "1110100010": 4, "1111111010": 122, "0110100111": 2, "0110110111": 30, "1100000010": 42, "1110101111": 1, "0000000011": 17, "1111110111": 7, "1111111001": 284, "0110101000": 41, "1110111110": 22, "1000001001": 13, "1100001001": 11, "0000010111": 17, "0110111101": 2, "1100011111": 4, "1111100010": 1, "1000000110": 161, "1101010100": 2, "0000001100": 10, "0001000010": 1, "0111111110": 309, "1100001101": 38, "0000011110": 4, "1000001011": 5, "1111111111": 553, "0111111000": 699, "0111110010": 195, "1100011011": 5, "1000011111": 3, "1100000101": 10, "1010111011": 1, "0111111010": 14, "1100000110": 49, "1000000010": 5, "0111110101": 72, "0111100101": 1, "0000010100": 7, "0100001101": 3, "0100001010": 2, "0111110011": 64, "1000001010": 4, "0100010100": 10, "1111101110": 144, "1111111011": 237, "1111111101": 96, "0110100000": 15, "1111110001": 50, "1011101101": 8, "0111111101": 108, "0100010000": 40, "0110111010": 5, "0111101000": 287, "0100000011": 33, "0101000101": 5, "0110110011": 13, "0110111000": 67, "1111110010": 38, "1011110110": 5, "1000010111": 1, "0101010101": 2, "0110101110": 4, "0000000000": 21, "0010101110": 1, "1100010001": 121, "0011101011": 2, "0111100110": 25, "0000001101": 5, "0101010001": 1, "1111101101": 32, "0110110001": 1, "1001000011": 1, "1111111000": 502, "0111111100": 23, "1011101110": 22, "0000001110": 1, "0110111011": 3, "0111110111": 66, "1110100001": 51, "0110111110": 23, "1011111110": 69, "0100001001": 19, "0011101000": 5, "0100000000": 75, "1000011100": 9, "0110101010": 2, "0100011110": 1, "1011100101": 1, "0110101100": 5, "1110110010": 1, "1100011000": 11, "1110111010": 30, "0100001110": 6, "1000001110": 5, "1101011000": 2, "1111110110": 24, "0100010011": 13, "1001000000": 2, "1000000100": 1, "1100011010": 16, "0111100010": 32, "1000011001": 2, "1111101111": 1, "0111100011": 2, "0011101100": 2, "0110111001": 3, "1010110100": 1, "1101001000": 8, "0000001111": 14, "1100010010": 15, "1100011100": 9, "0110111111": 32, "0111101110": 1, "1100011001": 5, "0001000101": 4, "1110101110": 12, "1011110111": 1, "1111100001": 13, "1111100110": 5, "0111111001": 10, "1111000011": 1, "1011111010": 18, "1100010110": 18, "0100000100": 29, "1111100101": 2, "1110101100": 8, "0100001011": 24, "1110100011": 1, "0111111011": 16, "0010110001": 2, "0100011001": 5, "0100011011": 1}, "counts_lsb_right": true, "parsed_states": {"0110100011": {"state": 419.0}, "0111100100": {"state": 484.0}, "1111101000": {"state": 1000.0}, "0010111001": {"state": 185.0}, "1000000111": {"state": 519.0}, "1111101100": {"state": 1004.0}, "1110100110": {"state": 934.0}, "1111100111": {"state": 999.0}, "1001001100": {"state": 588.0}, "0001001110": {"state": 78.0}, "0011110110": {"state": 246.0}, "1010101011": {"state": 683.0}, "0100011010": {"state": 282.0}, "0110111100": {"state": 444.0}, "1011100100": {"state": 740.0}, "1110101101": {"state": 941.0}, "0110100100": {"state": 420.0}, "0110101101": {"state": 429.0}, "1111101011": {"state": 1003.0}, "1101001100": {"state": 844.0}, "0101001101": {"state": 333.0}, "0100011101": {"state": 285.0}, "1000010000": {"state": 528.0}, "1000000011": {"state": 515.0}, "1011101010": {"state": 746.0}, "0011110101": {"state": 245.0}, "0110110010": {"state": 434.0}, "0000011000": {"state": 24.0}, "0100010001": {"state": 273.0}, "1111100011": {"state": 995.0}, "0000001001": {"state": 9.0}, "1110111111": {"state": 959.0}, "0011101111": {"state": 239.0}, "0110101111": {"state": 431.0}, "1110110000": {"state": 944.0}, "1000000101": {"state": 517.0}, "1100011101": {"state": 797.0}, "0111101011": {"state": 491.0}, "1000010101": {"state": 533.0}, "0011111100": {"state": 252.0}, "0011110010": {"state": 242.0}, "1011111011": {"state": 763.0}, "0011111011": {"state": 251.0}, "1110111100": {"state": 956.0}, "0101000000": {"state": 320.0}, "1110111101": {"state": 957.0}, "1000000000": {"state": 512.0}, "0100011000": {"state": 280.0}, "0101000110": {"state": 326.0}, "0101011010": {"state": 346.0}, "1000001111": {"state": 527.0}, "0110101001": {"state": 425.0}, "1110110001": {"state": 945.0}, "0110100010": {"state": 418.0}, "0110101011": {"state": 427.0}, "1011110010": {"state": 754.0}, "1110111011": {"state": 955.0}, "0011111111": {"state": 255.0}, "1110101011": {"state": 939.0}, "0110100110": {"state": 422.0}, "1111110000": {"state": 1008.0}, "0100011100": {"state": 284.0}, "1111100000": {"state": 992.0}, "0111100111": {"state": 487.0}, "0111110000": {"state": 496.0}, "0000001010": {"state": 10.0}, "1111101010": {"state": 1002.0}, "1000011110": {"state": 542.0}, "1110101001": {"state": 937.0}, "0000000100": {"state": 4.0}, "0110100001": {"state": 417.0}, "1110110011": {"state": 947.0}, "1000001100": {"state": 524.0}, "1111111100": {"state": 1020.0}, "1000010110": {"state": 534.0}, "0110110000": {"state": 432.0}, "0100001000": {"state": 264.0}, "0100000111": {"state": 263.0}, "0111100001": {"state": 481.0}, "0111101111": {"state": 495.0}, "1100001000": {"state": 776.0}, "1100001100": {"state": 780.0}, "0101010110": {"state": 342.0}, "0111110100": {"state": 500.0}, "0000010000": {"state": 16.0}, "0011110100": {"state": 244.0}, "0111000001": {"state": 449.0}, "0000000111": {"state": 7.0}, "1111110011": {"state": 1011.0}, "1011111101": {"state": 765.0}, "0111110001": {"state": 497.0}, "1111111110": {"state": 1022.0}, "1100011110": {"state": 798.0}, "0110100101": {"state": 421.0}, "1100001010": {"state": 778.0}, "0000011111": {"state": 31.0}, "1111101001": {"state": 1001.0}, "1100000001": {"state": 769.0}, "1000001000": {"state": 520.0}, "0111110110": {"state": 502.0}, "0100001111": {"state": 271.0}, "0000001000": {"state": 8.0}, "1111110101": {"state": 1013.0}, "1111100100": {"state": 996.0}, "1000000001": {"state": 513.0}, "0111101101": {"state": 493.0}, "1100001011": {"state": 779.0}, "0111111111": {"state": 511.0}, "0110110110": {"state": 438.0}, "0100000010": {"state": 258.0}, "1111110100": {"state": 1012.0}, "0010110101": {"state": 181.0}, "1110100010": {"state": 930.0}, "1111111010": {"state": 1018.0}, "0110100111": {"state": 423.0}, "0110110111": {"state": 439.0}, "1100000010": {"state": 770.0}, "1110101111": {"state": 943.0}, "0000000011": {"state": 3.0}, "1111110111": {"state": 1015.0}, "1111111001": {"state": 1017.0}, "0110101000": {"state": 424.0}, "1110111110": {"state": 958.0}, "1000001001": {"state": 521.0}, "1100001001": {"state": 777.0}, "0000010111": {"state": 23.0}, "0110111101": {"state": 445.0}, "1100011111": {"state": 799.0}, "1111100010": {"state": 994.0}, "1000000110": {"state": 518.0}, "1101010100": {"state": 852.0}, "0000001100": {"state": 12.0}, "0001000010": {"state": 66.0}, "0111111110": {"state": 510.0}, "1100001101": {"state": 781.0}, "0000011110": {"state": 30.0}, "1000001011": {"state": 523.0}, "1111111111": {"state": 1023.0}, "0111111000": {"state": 504.0}, "0111110010": {"state": 498.0}, "1100011011": {"state": 795.0}, "1000011111": {"state": 543.0}, "1100000101": {"state": 773.0}, "1010111011": {"state": 699.0}, "0111111010": {"state": 506.0}, "1100000110": {"state": 774.0}, "1000000010": {"state": 514.0}, "0111110101": {"state": 501.0}, "0111100101": {"state": 485.0}, "0000010100": {"state": 20.0}, "0100001101": {"state": 269.0}, "0100001010": {"state": 266.0}, "0111110011": {"state": 499.0}, "1000001010": {"state": 522.0}, "0100010100": {"state": 276.0}, "1111101110": {"state": 1006.0}, "1111111011": {"state": 1019.0}, "1111111101": {"state": 1021.0}, "0110100000": {"state": 416.0}, "1111110001": {"state": 1009.0}, "1011101101": {"state": 749.0}, "0111111101": {"state": 509.0}, "0100010000": {"state": 272.0}, "0110111010": {"state": 442.0}, "0111101000": {"state": 488.0}, "0100000011": {"state": 259.0}, "0101000101": {"state": 325.0}, "0110110011": {"state": 435.0}, "0110111000": {"state": 440.0}, "1111110010": {"state": 1010.0}, "1011110110": {"state": 758.0}, "1000010111": {"state": 535.0}, "0101010101": {"state": 341.0}, "0110101110": {"state": 430.0}, "0000000000": {"state": 0.0}, "0010101110": {"state": 174.0}, "1100010001": {"state": 785.0}, "0011101011": {"state": 235.0}, "0111100110": {"state": 486.0}, "0000001101": {"state": 13.0}, "0101010001": {"state": 337.0}, "1111101101": {"state": 1005.0}, "0110110001": {"state": 433.0}, "1001000011": {"state": 579.0}, "1111111000": {"state": 1016.0}, "0111111100": {"state": 508.0}, "1011101110": {"state": 750.0}, "0000001110": {"state": 14.0}, "0110111011": {"state": 443.0}, "0111110111": {"state": 503.0}, "1110100001": {"state": 929.0}, "0110111110": {"state": 446.0}, "1011111110": {"state": 766.0}, "0100001001": {"state": 265.0}, "0011101000": {"state": 232.0}, "0100000000": {"state": 256.0}, "1000011100": {"state": 540.0}, "0110101010": {"state": 426.0}, "0100011110": {"state": 286.0}, "1011100101": {"state": 741.0}, "0110101100": {"state": 428.0}, "1110110010": {"state": 946.0}, "1100011000": {"state": 792.0}, "1110111010": {"state": 954.0}, "0100001110": {"state": 270.0}, "1000001110": {"state": 526.0}, "1101011000": {"state": 856.0}, "1111110110": {"state": 1014.0}, "0100010011": {"state": 275.0}, "1001000000": {"state": 576.0}, "1000000100": {"state": 516.0}, "1100011010": {"state": 794.0}, "0111100010": {"state": 482.0}, "1000011001": {"state": 537.0}, "1111101111": {"state": 1007.0}, "0111100011": {"state": 483.0}, "0011101100": {"state": 236.0}, "0110111001": {"state": 441.0}, "1010110100": {"state": 692.0}, "1101001000": {"state": 840.0}, "0000001111": {"state": 15.0}, "1100010010": {"state": 786.0}, "1100011100": {"state": 796.0}, "0110111111": {"state": 447.0}, "0111101110": {"state": 494.0}, "1100011001": {"state": 793.0}, "0001000101": {"state": 69.0}, "1110101110": {"state": 942.0}, "1011110111": {"state": 759.0}, "1111100001": {"state": 993.0}, "1111100110": {"state": 998.0}, "0111111001": {"state": 505.0}, "1111000011": {"state": 963.0}, "1011111010": {"state": 762.0}, "1100010110": {"state": 790.0}, "0100000100": {"state": 260.0}, "1111100101": {"state": 997.0}, "1110101100": {"state": 940.0}, "0100001011": {"state": 267.0}, "1110100011": {"state": 931.0}, "0111111011": {"state": 507.0}, "0010110001": {"state": 177.0}, "0100011001": {"state": 281.0}, "0100011011": {"state": 283.0}}, "histogram": null, "output_qubits_map": {"state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]}, "state_vector": null, "parsed_state_vector_states": null, "physical_qubits_map": {"state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]}, "num_shots": 8192} \ No newline at end of file +{ + "vendor_format_result": {}, + "counts": { + "1000011101": 1, + "1001011100": 1, + "1011110011": 1, + "0011101000": 3, + "0111100100": 2, + "1001010011": 1, + "1110100110": 2, + "0011111010": 1, + "1011110110": 3, + "1001001100": 2, + "1101000100": 2, + "1000000011": 1, + "1111101100": 1, + "0101000110": 2, + "0110100011": 2, + "0110100100": 1, + "0100000110": 2, + "1000000101": 6, + "1111100111": 2, + "0110100010": 2, + "1111100010": 1, + "0110111101": 3, + "0110101001": 2, + "1101010010": 1, + "0011100101": 4, + "0101001101": 2, + "1000010000": 1, + "0110100101": 2, + "1011101001": 2, + "1111101000": 1, + "0110111100": 1, + "1011110010": 3, + "0000000010": 1, + "1111001100": 1, + "0101011101": 1, + "1000000111": 3, + "0111111010": 8, + "1100011101": 3, + "0100010010": 1, + "1111100101": 3, + "1110101100": 7, + "1000000010": 5, + "0100010001": 3, + "0100001110": 10, + "0011100110": 1, + "0100000101": 3, + "0110101010": 4, + "0101000101": 5, + "0110110011": 10, + "0110111001": 7, + "0100011001": 6, + "0000001000": 13, + "1100001000": 10, + "1100011001": 2, + "1100011110": 2, + "1000000001": 1, + "1100001011": 7, + "0111101101": 7, + "0100001111": 20, + "0001011110": 1, + "1110111100": 8, + "0000000110": 1, + "0100001001": 18, + "0110100001": 4, + "1110110011": 5, + "1000001110": 9, + "1100001110": 2, + "1110110001": 5, + "1011111000": 2, + "0110101101": 2, + "1110101110": 8, + "1000001100": 7, + "1100001100": 27, + "0000000111": 48, + "0111111001": 17, + "0000001100": 6, + "1000000110": 145, + "1011111101": 4, + "0111110001": 103, + "0010101001": 1, + "1111111110": 484, + "1111110011": 87, + "1111110001": 59, + "1011101101": 2, + "0111111101": 97, + "0100010110": 1, + "1000001010": 3, + "0100010100": 13, + "1100001001": 14, + "0000010111": 20, + "1000001001": 11, + "1000010110": 81, + "1110111101": 3, + "0000001010": 1, + "1111101010": 55, + "1000011110": 2, + "0000000100": 8, + "1110101001": 40, + "1100000101": 5, + "1100011011": 7, + "1000011111": 2, + "0110101011": 20, + "0100000011": 22, + "0110111010": 5, + "0111101000": 268, + "1110110110": 1, + "1100001010": 56, + "0000011111": 1, + "1111101001": 96, + "0000011101": 2, + "1011111110": 59, + "1111111011": 215, + "1111111101": 96, + "1111101110": 144, + "0000011110": 4, + "1000001011": 5, + "1111111111": 521, + "1111101111": 1, + "1000011001": 4, + "0111100011": 3, + "1100000001": 256, + "1000001000": 8, + "1001001111": 1, + "1111100100": 19, + "0111111111": 8, + "0110101000": 42, + "1110111110": 19, + "1011111001": 1, + "0001000010": 2, + "0111111110": 316, + "1100001101": 47, + "0111110101": 67, + "0000000000": 20, + "0110101110": 4, + "1111110101": 12, + "1110100100": 2, + "1000001101": 1, + "0111110010": 202, + "0111111000": 768, + "0111101011": 7, + "1111100110": 9, + "1111110111": 7, + "1111111001": 286, + "0110100111": 1, + "0110110111": 17, + "1100000010": 32, + "1110101101": 11, + "0000000011": 23, + "1100011100": 6, + "0110111111": 58, + "0000001110": 1, + "0110111011": 4, + "0111110111": 80, + "1110100001": 61, + "0110111110": 15, + "1111101011": 8, + "1111111100": 373, + "0000011010": 1, + "0100000010": 14, + "1111110100": 87, + "1110100010": 6, + "1111111010": 143, + "0111100010": 39, + "1000000100": 2, + "1100011010": 15, + "0111110000": 123, + "1011100111": 1, + "1101010111": 1, + "0110110110": 10, + "1110100111": 1, + "0111110110": 177, + "1100011000": 6, + "1110111010": 20, + "1011101110": 18, + "0100001000": 1, + "1100000100": 1, + "0111101010": 1, + "0111100001": 17, + "0100000111": 17, + "1110101011": 7, + "0110100110": 7, + "1111110000": 42, + "0101010110": 1, + "0111110100": 62, + "0011110100": 3, + "1011110100": 1, + "0111101111": 12, + "0001001001": 1, + "1111101101": 22, + "0000001001": 1, + "1000011010": 2, + "1111100011": 11, + "0110110001": 3, + "1111111000": 510, + "0111111100": 27, + "0100001011": 22, + "0000001101": 4, + "0111100110": 27, + "1110110000": 6, + "0011100010": 5, + "1011101010": 3, + "1110101000": 1, + "1111000111": 2, + "0111001101": 1, + "1100000110": 40, + "1110101010": 12, + "1011111010": 16, + "0000001111": 17, + "1001000000": 4, + "0100010011": 13, + "0110111000": 61, + "1111110010": 38, + "0100000000": 48, + "1000011100": 4, + "1110111111": 4, + "0011101111": 6, + "0100011100": 2, + "1111100000": 25, + "0111100000": 4, + "0011110000": 3, + "0110110010": 4, + "0000011000": 9, + "1100010010": 13, + "1111100001": 17, + "0100011000": 5, + "1000000000": 3, + "0100011110": 4, + "0110101100": 16, + "0001001010": 3, + "0011111111": 18, + "1110111011": 14, + "0011101011": 1, + "1100010001": 110, + "1100000011": 1, + "0011111100": 3, + "0011110010": 1, + "0111111011": 19, + "1110100011": 3, + "1101011000": 2, + "1111110110": 25, + "0101011010": 1, + "1000001111": 6, + "0100010000": 35, + "0110100000": 11, + "0100001101": 8, + "0000010100": 4, + "0111100101": 4, + "0111110011": 58, + "0100001010": 4, + "1100010110": 18, + "0100000100": 27, + "1110100000": 7, + "1101000011": 1, + "1010110100": 2, + "1101001000": 10, + "0011111011": 4 + }, + "counts_lsb_right": true, + "parsed_states": { + "1000011101": { "state": 541.0 }, + "1001011100": { "state": 604.0 }, + "1011110011": { "state": 755.0 }, + "0011101000": { "state": 232.0 }, + "0111100100": { "state": 484.0 }, + "1001010011": { "state": 595.0 }, + "1110100110": { "state": 934.0 }, + "0011111010": { "state": 250.0 }, + "1011110110": { "state": 758.0 }, + "1001001100": { "state": 588.0 }, + "1101000100": { "state": 836.0 }, + "1000000011": { "state": 515.0 }, + "1111101100": { "state": 1004.0 }, + "0101000110": { "state": 326.0 }, + "0110100011": { "state": 419.0 }, + "0110100100": { "state": 420.0 }, + "0100000110": { "state": 262.0 }, + "1000000101": { "state": 517.0 }, + "1111100111": { "state": 999.0 }, + "0110100010": { "state": 418.0 }, + "1111100010": { "state": 994.0 }, + "0110111101": { "state": 445.0 }, + "0110101001": { "state": 425.0 }, + "1101010010": { "state": 850.0 }, + "0011100101": { "state": 229.0 }, + "0101001101": { "state": 333.0 }, + "1000010000": { "state": 528.0 }, + "0110100101": { "state": 421.0 }, + "1011101001": { "state": 745.0 }, + "1111101000": { "state": 1000.0 }, + "0110111100": { "state": 444.0 }, + "1011110010": { "state": 754.0 }, + "0000000010": { "state": 2.0 }, + "1111001100": { "state": 972.0 }, + "0101011101": { "state": 349.0 }, + "1000000111": { "state": 519.0 }, + "0111111010": { "state": 506.0 }, + "1100011101": { "state": 797.0 }, + "0100010010": { "state": 274.0 }, + "1111100101": { "state": 997.0 }, + "1110101100": { "state": 940.0 }, + "1000000010": { "state": 514.0 }, + "0100010001": { "state": 273.0 }, + "0100001110": { "state": 270.0 }, + "0011100110": { "state": 230.0 }, + "0100000101": { "state": 261.0 }, + "0110101010": { "state": 426.0 }, + "0101000101": { "state": 325.0 }, + "0110110011": { "state": 435.0 }, + "0110111001": { "state": 441.0 }, + "0100011001": { "state": 281.0 }, + "0000001000": { "state": 8.0 }, + "1100001000": { "state": 776.0 }, + "1100011001": { "state": 793.0 }, + "1100011110": { "state": 798.0 }, + "1000000001": { "state": 513.0 }, + "1100001011": { "state": 779.0 }, + "0111101101": { "state": 493.0 }, + "0100001111": { "state": 271.0 }, + "0001011110": { "state": 94.0 }, + "1110111100": { "state": 956.0 }, + "0000000110": { "state": 6.0 }, + "0100001001": { "state": 265.0 }, + "0110100001": { "state": 417.0 }, + "1110110011": { "state": 947.0 }, + "1000001110": { "state": 526.0 }, + "1100001110": { "state": 782.0 }, + "1110110001": { "state": 945.0 }, + "1011111000": { "state": 760.0 }, + "0110101101": { "state": 429.0 }, + "1110101110": { "state": 942.0 }, + "1000001100": { "state": 524.0 }, + "1100001100": { "state": 780.0 }, + "0000000111": { "state": 7.0 }, + "0111111001": { "state": 505.0 }, + "0000001100": { "state": 12.0 }, + "1000000110": { "state": 518.0 }, + "1011111101": { "state": 765.0 }, + "0111110001": { "state": 497.0 }, + "0010101001": { "state": 169.0 }, + "1111111110": { "state": 1022.0 }, + "1111110011": { "state": 1011.0 }, + "1111110001": { "state": 1009.0 }, + "1011101101": { "state": 749.0 }, + "0111111101": { "state": 509.0 }, + "0100010110": { "state": 278.0 }, + "1000001010": { "state": 522.0 }, + "0100010100": { "state": 276.0 }, + "1100001001": { "state": 777.0 }, + "0000010111": { "state": 23.0 }, + "1000001001": { "state": 521.0 }, + "1000010110": { "state": 534.0 }, + "1110111101": { "state": 957.0 }, + "0000001010": { "state": 10.0 }, + "1111101010": { "state": 1002.0 }, + "1000011110": { "state": 542.0 }, + "0000000100": { "state": 4.0 }, + "1110101001": { "state": 937.0 }, + "1100000101": { "state": 773.0 }, + "1100011011": { "state": 795.0 }, + "1000011111": { "state": 543.0 }, + "0110101011": { "state": 427.0 }, + "0100000011": { "state": 259.0 }, + "0110111010": { "state": 442.0 }, + "0111101000": { "state": 488.0 }, + "1110110110": { "state": 950.0 }, + "1100001010": { "state": 778.0 }, + "0000011111": { "state": 31.0 }, + "1111101001": { "state": 1001.0 }, + "0000011101": { "state": 29.0 }, + "1011111110": { "state": 766.0 }, + "1111111011": { "state": 1019.0 }, + "1111111101": { "state": 1021.0 }, + "1111101110": { "state": 1006.0 }, + "0000011110": { "state": 30.0 }, + "1000001011": { "state": 523.0 }, + "1111111111": { "state": 1023.0 }, + "1111101111": { "state": 1007.0 }, + "1000011001": { "state": 537.0 }, + "0111100011": { "state": 483.0 }, + "1100000001": { "state": 769.0 }, + "1000001000": { "state": 520.0 }, + "1001001111": { "state": 591.0 }, + "1111100100": { "state": 996.0 }, + "0111111111": { "state": 511.0 }, + "0110101000": { "state": 424.0 }, + "1110111110": { "state": 958.0 }, + "1011111001": { "state": 761.0 }, + "0001000010": { "state": 66.0 }, + "0111111110": { "state": 510.0 }, + "1100001101": { "state": 781.0 }, + "0111110101": { "state": 501.0 }, + "0000000000": { "state": 0.0 }, + "0110101110": { "state": 430.0 }, + "1111110101": { "state": 1013.0 }, + "1110100100": { "state": 932.0 }, + "1000001101": { "state": 525.0 }, + "0111110010": { "state": 498.0 }, + "0111111000": { "state": 504.0 }, + "0111101011": { "state": 491.0 }, + "1111100110": { "state": 998.0 }, + "1111110111": { "state": 1015.0 }, + "1111111001": { "state": 1017.0 }, + "0110100111": { "state": 423.0 }, + "0110110111": { "state": 439.0 }, + "1100000010": { "state": 770.0 }, + "1110101101": { "state": 941.0 }, + "0000000011": { "state": 3.0 }, + "1100011100": { "state": 796.0 }, + "0110111111": { "state": 447.0 }, + "0000001110": { "state": 14.0 }, + "0110111011": { "state": 443.0 }, + "0111110111": { "state": 503.0 }, + "1110100001": { "state": 929.0 }, + "0110111110": { "state": 446.0 }, + "1111101011": { "state": 1003.0 }, + "1111111100": { "state": 1020.0 }, + "0000011010": { "state": 26.0 }, + "0100000010": { "state": 258.0 }, + "1111110100": { "state": 1012.0 }, + "1110100010": { "state": 930.0 }, + "1111111010": { "state": 1018.0 }, + "0111100010": { "state": 482.0 }, + "1000000100": { "state": 516.0 }, + "1100011010": { "state": 794.0 }, + "0111110000": { "state": 496.0 }, + "1011100111": { "state": 743.0 }, + "1101010111": { "state": 855.0 }, + "0110110110": { "state": 438.0 }, + "1110100111": { "state": 935.0 }, + "0111110110": { "state": 502.0 }, + "1100011000": { "state": 792.0 }, + "1110111010": { "state": 954.0 }, + "1011101110": { "state": 750.0 }, + "0100001000": { "state": 264.0 }, + "1100000100": { "state": 772.0 }, + "0111101010": { "state": 490.0 }, + "0111100001": { "state": 481.0 }, + "0100000111": { "state": 263.0 }, + "1110101011": { "state": 939.0 }, + "0110100110": { "state": 422.0 }, + "1111110000": { "state": 1008.0 }, + "0101010110": { "state": 342.0 }, + "0111110100": { "state": 500.0 }, + "0011110100": { "state": 244.0 }, + "1011110100": { "state": 756.0 }, + "0111101111": { "state": 495.0 }, + "0001001001": { "state": 73.0 }, + "1111101101": { "state": 1005.0 }, + "0000001001": { "state": 9.0 }, + "1000011010": { "state": 538.0 }, + "1111100011": { "state": 995.0 }, + "0110110001": { "state": 433.0 }, + "1111111000": { "state": 1016.0 }, + "0111111100": { "state": 508.0 }, + "0100001011": { "state": 267.0 }, + "0000001101": { "state": 13.0 }, + "0111100110": { "state": 486.0 }, + "1110110000": { "state": 944.0 }, + "0011100010": { "state": 226.0 }, + "1011101010": { "state": 746.0 }, + "1110101000": { "state": 936.0 }, + "1111000111": { "state": 967.0 }, + "0111001101": { "state": 461.0 }, + "1100000110": { "state": 774.0 }, + "1110101010": { "state": 938.0 }, + "1011111010": { "state": 762.0 }, + "0000001111": { "state": 15.0 }, + "1001000000": { "state": 576.0 }, + "0100010011": { "state": 275.0 }, + "0110111000": { "state": 440.0 }, + "1111110010": { "state": 1010.0 }, + "0100000000": { "state": 256.0 }, + "1000011100": { "state": 540.0 }, + "1110111111": { "state": 959.0 }, + "0011101111": { "state": 239.0 }, + "0100011100": { "state": 284.0 }, + "1111100000": { "state": 992.0 }, + "0111100000": { "state": 480.0 }, + "0011110000": { "state": 240.0 }, + "0110110010": { "state": 434.0 }, + "0000011000": { "state": 24.0 }, + "1100010010": { "state": 786.0 }, + "1111100001": { "state": 993.0 }, + "0100011000": { "state": 280.0 }, + "1000000000": { "state": 512.0 }, + "0100011110": { "state": 286.0 }, + "0110101100": { "state": 428.0 }, + "0001001010": { "state": 74.0 }, + "0011111111": { "state": 255.0 }, + "1110111011": { "state": 955.0 }, + "0011101011": { "state": 235.0 }, + "1100010001": { "state": 785.0 }, + "1100000011": { "state": 771.0 }, + "0011111100": { "state": 252.0 }, + "0011110010": { "state": 242.0 }, + "0111111011": { "state": 507.0 }, + "1110100011": { "state": 931.0 }, + "1101011000": { "state": 856.0 }, + "1111110110": { "state": 1014.0 }, + "0101011010": { "state": 346.0 }, + "1000001111": { "state": 527.0 }, + "0100010000": { "state": 272.0 }, + "0110100000": { "state": 416.0 }, + "0100001101": { "state": 269.0 }, + "0000010100": { "state": 20.0 }, + "0111100101": { "state": 485.0 }, + "0111110011": { "state": 499.0 }, + "0100001010": { "state": 266.0 }, + "1100010110": { "state": 790.0 }, + "0100000100": { "state": 260.0 }, + "1110100000": { "state": 928.0 }, + "1101000011": { "state": 835.0 }, + "1010110100": { "state": 692.0 }, + "1101001000": { "state": 840.0 }, + "0011111011": { "state": 251.0 } + }, + "histogram": null, + "output_qubits_map": { "state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] }, + "state_vector": null, + "parsed_state_vector_states": null, + "physical_qubits_map": { "state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] }, + "num_shots": 8192 +} diff --git a/algorithms/glued_trees/results/10-qubits/2n+4.json b/algorithms/glued_trees/results/10-qubits/2n+4.json index 0c5ecf26..8a4a82ea 100644 --- a/algorithms/glued_trees/results/10-qubits/2n+4.json +++ b/algorithms/glued_trees/results/10-qubits/2n+4.json @@ -1 +1,512 @@ -{"vendor_format_result": {}, "counts": {"0000010100": 1, "1001011011": 1, "0101000100": 1, "0011111000": 6, "0111110111": 174, "1011101010": 3, "0011110101": 1, "0010110110": 1, "0100010000": 8, "0000000100": 7, "1110101001": 1, "0110110011": 1, "0101000101": 2, "1111111011": 28, "0100001110": 24, "0110100100": 9, "0100000100": 32, "1100010110": 119, "0011110111": 1, "0001001110": 1, "0110110101": 1, "1110110010": 12, "1110110111": 1, "1100011000": 1, "1111100001": 33, "1110101011": 18, "0110100110": 1, "0000011100": 1, "1110110000": 9, "1100011100": 11, "0110111111": 4, "0011111011": 12, "0111000010": 1, "0000001111": 11, "1100010001": 8, "0011101011": 3, "1100000011": 1, "1111110111": 38, "1111111001": 155, "0100001101": 9, "0111110011": 16, "0000001110": 4, "0111100101": 14, "0111101111": 66, "1000001001": 17, "0110111011": 13, "0111101101": 11, "1000010001": 24, "1000000001": 35, "1100001011": 2, "1101000100": 10, "0110101101": 8, "0100000010": 7, "1110101110": 24, "1100001001": 1, "1110111000": 2, "0111100010": 59, "1101011000": 1, "1110111101": 23, "0011101111": 7, "1000010110": 1, "0110111110": 10, "1100000000": 5, "0110101111": 51, "1110110101": 8, "0100011000": 4, "0111101000": 262, "0110111010": 5, "0100010011": 2, "1111110010": 38, "0111110101": 34, "0110100011": 21, "1100000101": 16, "1100001111": 1, "1100011011": 1, "0111110000": 68, "0111111010": 269, "1011100001": 1, "0101010001": 8, "1111101101": 4, "1111110101": 153, "1110100100": 3, "1000000110": 21, "0100010101": 1, "1111111111": 189, "1000001011": 4, "1111110001": 489, "1100011010": 43, "0111001001": 1, "1000000100": 4, "1111111010": 83, "1111111000": 755, "0111111100": 91, "1001000011": 1, "0111101001": 19, "1110100001": 82, "0110110111": 1, "0100000111": 88, "0100001000": 13, "0111100001": 4, "1111100111": 24, "0110110000": 1, "0111101010": 4, "0111111011": 73, "1110111111": 2, "1110100111": 7, "0111110110": 199, "1111101001": 37, "0000011111": 1, "1101011100": 1, "1100001010": 26, "1110110110": 24, "0000001001": 2, "0110110010": 25, "0000011000": 4, "0100010010": 5, "1111100101": 2, "0111101011": 26, "0111100100": 23, "0101000001": 3, "0101010110": 3, "1101001011": 3, "0111110100": 1, "0111110010": 158, "1111110000": 283, "0110111100": 26, "1111101010": 38, "0101000010": 2, "0111101100": 8, "0101001101": 2, "0100001100": 96, "1111111110": 5, "0111110001": 240, "0101001001": 2, "1111110011": 125, "1101010100": 3, "1110110001": 70, "1000001101": 8, "0111111111": 330, "1111100100": 10, "1111111100": 13, "1111110100": 122, "1100000001": 49, "0111111110": 21, "1011111001": 1, "1100011101": 14, "0100000110": 7, "0110100010": 18, "1111101111": 4, "1110111001": 1, "1000011001": 3, "0111101110": 5, "0111111101": 574, "1000000000": 1, "1110101010": 3, "0111111001": 103, "1100001110": 39, "0110101100": 42, "0100011110": 12, "1100000100": 43, "1110110011": 13, "1110111100": 3, "0110111101": 6, "1110111011": 5, "0100001111": 7, "0011111111": 34, "1000011110": 4, "1101001000": 2, "1110100101": 2, "1100001101": 74, "0000011001": 6, "0100010111": 20, "0000000001": 2, "1110111110": 3, "0100000000": 1, "0110100101": 3, "1111111101": 102, "0110110100": 18, "1101000110": 2, "0000010011": 2, "1000001110": 7, "0110110110": 10, "1011100111": 3, "1100010111": 2, "1110101101": 7, "0111100000": 47, "0110001011": 1, "0110111001": 2, "0000010000": 4, "0011110100": 3, "1111100000": 7, "1111101100": 4, "0110101001": 6, "1011110110": 1, "1111110110": 91, "0100000101": 5, "1111100010": 6, "0110101010": 1, "1100010100": 6, "1111100011": 20, "1111100110": 9, "0110100000": 7, "1010110000": 1, "0110101011": 6, "0101001100": 2, "1111101011": 8, "0000000000": 5, "0110101110": 1, "0110111000": 16, "1100010011": 4, "0000001000": 2, "1000001100": 3, "1111101000": 1, "0100000011": 2, "1000010100": 1, "1110101000": 1, "1011111000": 1, "1100001000": 3, "0010111111": 1, "0011101000": 2, "1001001011": 2, "1000010101": 3, "1101001001": 1, "0111111000": 256, "0000000011": 2, "1110101111": 1, "1101011011": 2, "0100001001": 1, "1011110111": 5, "0100001011": 1, "0100011001": 3, "1101000101": 1, "0100010110": 1, "1000000010": 2, "1111101110": 14, "1101001110": 1, "0101001110": 1, "0000000111": 1, "1010100000": 1, "0001011110": 1, "1110100000": 2, "0101011110": 1, "0111100011": 7, "1000000101": 1, "0111100111": 19, "1100010000": 2, "0000001101": 4, "1000010000": 1, "0111100110": 19, "0000001010": 1, "1011101110": 1, "1100011110": 4, "1100001100": 45, "1101001100": 6, "0100011010": 1, "1110100010": 26, "0011100000": 1, "0000000010": 1, "1100000110": 203, "0011110011": 1, "1011110010": 1, "1000011011": 1}, "counts_lsb_right": true, "parsed_states": {"0000010100": {"state": 20.0}, "1001011011": {"state": 603.0}, "0101000100": {"state": 324.0}, "0011111000": {"state": 248.0}, "0111110111": {"state": 503.0}, "1011101010": {"state": 746.0}, "0011110101": {"state": 245.0}, "0010110110": {"state": 182.0}, "0100010000": {"state": 272.0}, "0000000100": {"state": 4.0}, "1110101001": {"state": 937.0}, "0110110011": {"state": 435.0}, "0101000101": {"state": 325.0}, "1111111011": {"state": 1019.0}, "0100001110": {"state": 270.0}, "0110100100": {"state": 420.0}, "0100000100": {"state": 260.0}, "1100010110": {"state": 790.0}, "0011110111": {"state": 247.0}, "0001001110": {"state": 78.0}, "0110110101": {"state": 437.0}, "1110110010": {"state": 946.0}, "1110110111": {"state": 951.0}, "1100011000": {"state": 792.0}, "1111100001": {"state": 993.0}, "1110101011": {"state": 939.0}, "0110100110": {"state": 422.0}, "0000011100": {"state": 28.0}, "1110110000": {"state": 944.0}, "1100011100": {"state": 796.0}, "0110111111": {"state": 447.0}, "0011111011": {"state": 251.0}, "0111000010": {"state": 450.0}, "0000001111": {"state": 15.0}, "1100010001": {"state": 785.0}, "0011101011": {"state": 235.0}, "1100000011": {"state": 771.0}, "1111110111": {"state": 1015.0}, "1111111001": {"state": 1017.0}, "0100001101": {"state": 269.0}, "0111110011": {"state": 499.0}, "0000001110": {"state": 14.0}, "0111100101": {"state": 485.0}, "0111101111": {"state": 495.0}, "1000001001": {"state": 521.0}, "0110111011": {"state": 443.0}, "0111101101": {"state": 493.0}, "1000010001": {"state": 529.0}, "1000000001": {"state": 513.0}, "1100001011": {"state": 779.0}, "1101000100": {"state": 836.0}, "0110101101": {"state": 429.0}, "0100000010": {"state": 258.0}, "1110101110": {"state": 942.0}, "1100001001": {"state": 777.0}, "1110111000": {"state": 952.0}, "0111100010": {"state": 482.0}, "1101011000": {"state": 856.0}, "1110111101": {"state": 957.0}, "0011101111": {"state": 239.0}, "1000010110": {"state": 534.0}, "0110111110": {"state": 446.0}, "1100000000": {"state": 768.0}, "0110101111": {"state": 431.0}, "1110110101": {"state": 949.0}, "0100011000": {"state": 280.0}, "0111101000": {"state": 488.0}, "0110111010": {"state": 442.0}, "0100010011": {"state": 275.0}, "1111110010": {"state": 1010.0}, "0111110101": {"state": 501.0}, "0110100011": {"state": 419.0}, "1100000101": {"state": 773.0}, "1100001111": {"state": 783.0}, "1100011011": {"state": 795.0}, "0111110000": {"state": 496.0}, "0111111010": {"state": 506.0}, "1011100001": {"state": 737.0}, "0101010001": {"state": 337.0}, "1111101101": {"state": 1005.0}, "1111110101": {"state": 1013.0}, "1110100100": {"state": 932.0}, "1000000110": {"state": 518.0}, "0100010101": {"state": 277.0}, "1111111111": {"state": 1023.0}, "1000001011": {"state": 523.0}, "1111110001": {"state": 1009.0}, "1100011010": {"state": 794.0}, "0111001001": {"state": 457.0}, "1000000100": {"state": 516.0}, "1111111010": {"state": 1018.0}, "1111111000": {"state": 1016.0}, "0111111100": {"state": 508.0}, "1001000011": {"state": 579.0}, "0111101001": {"state": 489.0}, "1110100001": {"state": 929.0}, "0110110111": {"state": 439.0}, "0100000111": {"state": 263.0}, "0100001000": {"state": 264.0}, "0111100001": {"state": 481.0}, "1111100111": {"state": 999.0}, "0110110000": {"state": 432.0}, "0111101010": {"state": 490.0}, "0111111011": {"state": 507.0}, "1110111111": {"state": 959.0}, "1110100111": {"state": 935.0}, "0111110110": {"state": 502.0}, "1111101001": {"state": 1001.0}, "0000011111": {"state": 31.0}, "1101011100": {"state": 860.0}, "1100001010": {"state": 778.0}, "1110110110": {"state": 950.0}, "0000001001": {"state": 9.0}, "0110110010": {"state": 434.0}, "0000011000": {"state": 24.0}, "0100010010": {"state": 274.0}, "1111100101": {"state": 997.0}, "0111101011": {"state": 491.0}, "0111100100": {"state": 484.0}, "0101000001": {"state": 321.0}, "0101010110": {"state": 342.0}, "1101001011": {"state": 843.0}, "0111110100": {"state": 500.0}, "0111110010": {"state": 498.0}, "1111110000": {"state": 1008.0}, "0110111100": {"state": 444.0}, "1111101010": {"state": 1002.0}, "0101000010": {"state": 322.0}, "0111101100": {"state": 492.0}, "0101001101": {"state": 333.0}, "0100001100": {"state": 268.0}, "1111111110": {"state": 1022.0}, "0111110001": {"state": 497.0}, "0101001001": {"state": 329.0}, "1111110011": {"state": 1011.0}, "1101010100": {"state": 852.0}, "1110110001": {"state": 945.0}, "1000001101": {"state": 525.0}, "0111111111": {"state": 511.0}, "1111100100": {"state": 996.0}, "1111111100": {"state": 1020.0}, "1111110100": {"state": 1012.0}, "1100000001": {"state": 769.0}, "0111111110": {"state": 510.0}, "1011111001": {"state": 761.0}, "1100011101": {"state": 797.0}, "0100000110": {"state": 262.0}, "0110100010": {"state": 418.0}, "1111101111": {"state": 1007.0}, "1110111001": {"state": 953.0}, "1000011001": {"state": 537.0}, "0111101110": {"state": 494.0}, "0111111101": {"state": 509.0}, "1000000000": {"state": 512.0}, "1110101010": {"state": 938.0}, "0111111001": {"state": 505.0}, "1100001110": {"state": 782.0}, "0110101100": {"state": 428.0}, "0100011110": {"state": 286.0}, "1100000100": {"state": 772.0}, "1110110011": {"state": 947.0}, "1110111100": {"state": 956.0}, "0110111101": {"state": 445.0}, "1110111011": {"state": 955.0}, "0100001111": {"state": 271.0}, "0011111111": {"state": 255.0}, "1000011110": {"state": 542.0}, "1101001000": {"state": 840.0}, "1110100101": {"state": 933.0}, "1100001101": {"state": 781.0}, "0000011001": {"state": 25.0}, "0100010111": {"state": 279.0}, "0000000001": {"state": 1.0}, "1110111110": {"state": 958.0}, "0100000000": {"state": 256.0}, "0110100101": {"state": 421.0}, "1111111101": {"state": 1021.0}, "0110110100": {"state": 436.0}, "1101000110": {"state": 838.0}, "0000010011": {"state": 19.0}, "1000001110": {"state": 526.0}, "0110110110": {"state": 438.0}, "1011100111": {"state": 743.0}, "1100010111": {"state": 791.0}, "1110101101": {"state": 941.0}, "0111100000": {"state": 480.0}, "0110001011": {"state": 395.0}, "0110111001": {"state": 441.0}, "0000010000": {"state": 16.0}, "0011110100": {"state": 244.0}, "1111100000": {"state": 992.0}, "1111101100": {"state": 1004.0}, "0110101001": {"state": 425.0}, "1011110110": {"state": 758.0}, "1111110110": {"state": 1014.0}, "0100000101": {"state": 261.0}, "1111100010": {"state": 994.0}, "0110101010": {"state": 426.0}, "1100010100": {"state": 788.0}, "1111100011": {"state": 995.0}, "1111100110": {"state": 998.0}, "0110100000": {"state": 416.0}, "1010110000": {"state": 688.0}, "0110101011": {"state": 427.0}, "0101001100": {"state": 332.0}, "1111101011": {"state": 1003.0}, "0000000000": {"state": 0.0}, "0110101110": {"state": 430.0}, "0110111000": {"state": 440.0}, "1100010011": {"state": 787.0}, "0000001000": {"state": 8.0}, "1000001100": {"state": 524.0}, "1111101000": {"state": 1000.0}, "0100000011": {"state": 259.0}, "1000010100": {"state": 532.0}, "1110101000": {"state": 936.0}, "1011111000": {"state": 760.0}, "1100001000": {"state": 776.0}, "0010111111": {"state": 191.0}, "0011101000": {"state": 232.0}, "1001001011": {"state": 587.0}, "1000010101": {"state": 533.0}, "1101001001": {"state": 841.0}, "0111111000": {"state": 504.0}, "0000000011": {"state": 3.0}, "1110101111": {"state": 943.0}, "1101011011": {"state": 859.0}, "0100001001": {"state": 265.0}, "1011110111": {"state": 759.0}, "0100001011": {"state": 267.0}, "0100011001": {"state": 281.0}, "1101000101": {"state": 837.0}, "0100010110": {"state": 278.0}, "1000000010": {"state": 514.0}, "1111101110": {"state": 1006.0}, "1101001110": {"state": 846.0}, "0101001110": {"state": 334.0}, "0000000111": {"state": 7.0}, "1010100000": {"state": 672.0}, "0001011110": {"state": 94.0}, "1110100000": {"state": 928.0}, "0101011110": {"state": 350.0}, "0111100011": {"state": 483.0}, "1000000101": {"state": 517.0}, "0111100111": {"state": 487.0}, "1100010000": {"state": 784.0}, "0000001101": {"state": 13.0}, "1000010000": {"state": 528.0}, "0111100110": {"state": 486.0}, "0000001010": {"state": 10.0}, "1011101110": {"state": 750.0}, "1100011110": {"state": 798.0}, "1100001100": {"state": 780.0}, "1101001100": {"state": 844.0}, "0100011010": {"state": 282.0}, "1110100010": {"state": 930.0}, "0011100000": {"state": 224.0}, "0000000010": {"state": 2.0}, "1100000110": {"state": 774.0}, "0011110011": {"state": 243.0}, "1011110010": {"state": 754.0}, "1000011011": {"state": 539.0}}, "histogram": null, "output_qubits_map": {"state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]}, "state_vector": null, "parsed_state_vector_states": null, "physical_qubits_map": {"state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]}, "num_shots": 8192} \ No newline at end of file +{ + "vendor_format_result": {}, + "counts": { + "0000001000": 1, + "1110110111": 1, + "1001001111": 1, + "0000010010": 1, + "0101011110": 1, + "0100000011": 1, + "1000001111": 1, + "1010100000": 1, + "1101001110": 2, + "0101001110": 1, + "0000000111": 1, + "1011110111": 1, + "1010101110": 1, + "0011110111": 1, + "0100000000": 2, + "0100000110": 5, + "0111010011": 1, + "1101011011": 2, + "1000001100": 1, + "0000000001": 1, + "1011101110": 2, + "1111101100": 6, + "1101001010": 1, + "0011110100": 3, + "0000010000": 6, + "1011100010": 3, + "0110110101": 3, + "1000010110": 2, + "1111101000": 3, + "1010111000": 1, + "0000001111": 6, + "1101010100": 1, + "1000010100": 1, + "1101000100": 3, + "1111100000": 5, + "1100010011": 4, + "0011110010": 1, + "0011111100": 1, + "0110101001": 2, + "1100000010": 1, + "1100011101": 8, + "1100000000": 3, + "0100010001": 1, + "0000000010": 1, + "1110111110": 3, + "1111101011": 6, + "1100001111": 2, + "0100010010": 2, + "1011100111": 1, + "0110110110": 6, + "0100010000": 6, + "0000010011": 1, + "1111100110": 12, + "0000000100": 7, + "1000011110": 2, + "1110101001": 2, + "0110101101": 13, + "1101001100": 4, + "0111110100": 2, + "0101000001": 8, + "0101010110": 1, + "0110111110": 2, + "1110111001": 3, + "0000000101": 1, + "0101010001": 4, + "1000000010": 1, + "1110100000": 7, + "0100001111": 7, + "1100010001": 4, + "0011101011": 1, + "1100001001": 2, + "0000010111": 1, + "0101001101": 1, + "0111101100": 4, + "0000000011": 8, + "1011100100": 1, + "0110111100": 18, + "1100011000": 1, + "1110111010": 3, + "1110110010": 27, + "0100000101": 3, + "0110101010": 1, + "0110101110": 1, + "0000000000": 15, + "0100001011": 10, + "1101001011": 2, + "1000001101": 2, + "0111110010": 149, + "0101000110": 4, + "0110111010": 13, + "0111101000": 280, + "1110100111": 7, + "0111110110": 219, + "1100001101": 53, + "1011111001": 1, + "0111111110": 14, + "0111101110": 6, + "0100001100": 89, + "1011101010": 3, + "0111111001": 91, + "1111100111": 30, + "0111110101": 58, + "1111000111": 1, + "1100000110": 241, + "1100011100": 3, + "0110111111": 7, + "1111110011": 124, + "0011111000": 6, + "1100011110": 3, + "0110100101": 2, + "1111111110": 6, + "0111101111": 73, + "1000000000": 1, + "1110110101": 10, + "0100011000": 7, + "1111111100": 13, + "0111101011": 25, + "0110100001": 1, + "1110110011": 23, + "1110111100": 3, + "0100010111": 12, + "1110100011": 3, + "0111111011": 75, + "0000001010": 1, + "1111101010": 42, + "1110101110": 31, + "1100001100": 36, + "0111111000": 280, + "0111100100": 31, + "0000011001": 4, + "0111100111": 11, + "0111100000": 46, + "1111111001": 173, + "1111110111": 50, + "1000010001": 17, + "1100000001": 56, + "0000001101": 4, + "0111100110": 11, + "0101000010": 1, + "1111100001": 57, + "0011111110": 1, + "1000001011": 1, + "1111111111": 224, + "1111101001": 32, + "1110110110": 26, + "1100001010": 22, + "0110100000": 18, + "0111111101": 566, + "1111111010": 82, + "0100000010": 9, + "1111110100": 130, + "1110100010": 27, + "1000000100": 4, + "1100011010": 40, + "0111100010": 38, + "0111000101": 1, + "0111111010": 302, + "1100000101": 18, + "0110110001": 1, + "0111111100": 77, + "1111111000": 706, + "0110110111": 5, + "0111101001": 12, + "1111110001": 464, + "1100010110": 139, + "0100000100": 31, + "1000011001": 2, + "0111100011": 6, + "1111101111": 4, + "0111110000": 93, + "1111111101": 93, + "1111111011": 46, + "0111111111": 301, + "1111100100": 8, + "0100001110": 15, + "1000001110": 8, + "1101011000": 2, + "1111110110": 104, + "0110100011": 17, + "0110111101": 10, + "1111100010": 3, + "1111110010": 35, + "0110111000": 15, + "1110110100": 1, + "1000001001": 22, + "0101010010": 1, + "1111100011": 20, + "0000001001": 5, + "1110101101": 8, + "0111101101": 9, + "1100001011": 1, + "1000000001": 34, + "0100001010": 1, + "0100001101": 4, + "0111100101": 10, + "1101011110": 1, + "0111110011": 12, + "1100010100": 13, + "0110110100": 9, + "0101000101": 3, + "0110110011": 2, + "1001001011": 1, + "1011111100": 1, + "0110110010": 28, + "0000011000": 6, + "0110100010": 19, + "1111101110": 15, + "0110101111": 65, + "1110110000": 5, + "1011100101": 1, + "0110101100": 43, + "0100011110": 13, + "1110111011": 7, + "0011111111": 27, + "1110100101": 6, + "1101001000": 7, + "0011101111": 7, + "1110111111": 2, + "1000000110": 11, + "1111110000": 244, + "1110101011": 7, + "0110100110": 3, + "1110110001": 43, + "1100001110": 48, + "0110101011": 3, + "0110111011": 5, + "0111110111": 165, + "1110100001": 68, + "0000001110": 3, + "0100011011": 1, + "1000000101": 2, + "0111000010": 1, + "0011111011": 10, + "1111110101": 144, + "1110100100": 5, + "1100010000": 3, + "0111110001": 259, + "0101001001": 5, + "0011101100": 2, + "0110111001": 7, + "1100001000": 3, + "0110100100": 12, + "1100010111": 1, + "0111101010": 14, + "0111100001": 3, + "0100000111": 93, + "1100000100": 40, + "0100001000": 9, + "1110111101": 21 + }, + "counts_lsb_right": true, + "parsed_states": { + "0000001000": { "state": 8.0 }, + "1110110111": { "state": 951.0 }, + "1001001111": { "state": 591.0 }, + "0000010010": { "state": 18.0 }, + "0101011110": { "state": 350.0 }, + "0100000011": { "state": 259.0 }, + "1000001111": { "state": 527.0 }, + "1010100000": { "state": 672.0 }, + "1101001110": { "state": 846.0 }, + "0101001110": { "state": 334.0 }, + "0000000111": { "state": 7.0 }, + "1011110111": { "state": 759.0 }, + "1010101110": { "state": 686.0 }, + "0011110111": { "state": 247.0 }, + "0100000000": { "state": 256.0 }, + "0100000110": { "state": 262.0 }, + "0111010011": { "state": 467.0 }, + "1101011011": { "state": 859.0 }, + "1000001100": { "state": 524.0 }, + "0000000001": { "state": 1.0 }, + "1011101110": { "state": 750.0 }, + "1111101100": { "state": 1004.0 }, + "1101001010": { "state": 842.0 }, + "0011110100": { "state": 244.0 }, + "0000010000": { "state": 16.0 }, + "1011100010": { "state": 738.0 }, + "0110110101": { "state": 437.0 }, + "1000010110": { "state": 534.0 }, + "1111101000": { "state": 1000.0 }, + "1010111000": { "state": 696.0 }, + "0000001111": { "state": 15.0 }, + "1101010100": { "state": 852.0 }, + "1000010100": { "state": 532.0 }, + "1101000100": { "state": 836.0 }, + "1111100000": { "state": 992.0 }, + "1100010011": { "state": 787.0 }, + "0011110010": { "state": 242.0 }, + "0011111100": { "state": 252.0 }, + "0110101001": { "state": 425.0 }, + "1100000010": { "state": 770.0 }, + "1100011101": { "state": 797.0 }, + "1100000000": { "state": 768.0 }, + "0100010001": { "state": 273.0 }, + "0000000010": { "state": 2.0 }, + "1110111110": { "state": 958.0 }, + "1111101011": { "state": 1003.0 }, + "1100001111": { "state": 783.0 }, + "0100010010": { "state": 274.0 }, + "1011100111": { "state": 743.0 }, + "0110110110": { "state": 438.0 }, + "0100010000": { "state": 272.0 }, + "0000010011": { "state": 19.0 }, + "1111100110": { "state": 998.0 }, + "0000000100": { "state": 4.0 }, + "1000011110": { "state": 542.0 }, + "1110101001": { "state": 937.0 }, + "0110101101": { "state": 429.0 }, + "1101001100": { "state": 844.0 }, + "0111110100": { "state": 500.0 }, + "0101000001": { "state": 321.0 }, + "0101010110": { "state": 342.0 }, + "0110111110": { "state": 446.0 }, + "1110111001": { "state": 953.0 }, + "0000000101": { "state": 5.0 }, + "0101010001": { "state": 337.0 }, + "1000000010": { "state": 514.0 }, + "1110100000": { "state": 928.0 }, + "0100001111": { "state": 271.0 }, + "1100010001": { "state": 785.0 }, + "0011101011": { "state": 235.0 }, + "1100001001": { "state": 777.0 }, + "0000010111": { "state": 23.0 }, + "0101001101": { "state": 333.0 }, + "0111101100": { "state": 492.0 }, + "0000000011": { "state": 3.0 }, + "1011100100": { "state": 740.0 }, + "0110111100": { "state": 444.0 }, + "1100011000": { "state": 792.0 }, + "1110111010": { "state": 954.0 }, + "1110110010": { "state": 946.0 }, + "0100000101": { "state": 261.0 }, + "0110101010": { "state": 426.0 }, + "0110101110": { "state": 430.0 }, + "0000000000": { "state": 0.0 }, + "0100001011": { "state": 267.0 }, + "1101001011": { "state": 843.0 }, + "1000001101": { "state": 525.0 }, + "0111110010": { "state": 498.0 }, + "0101000110": { "state": 326.0 }, + "0110111010": { "state": 442.0 }, + "0111101000": { "state": 488.0 }, + "1110100111": { "state": 935.0 }, + "0111110110": { "state": 502.0 }, + "1100001101": { "state": 781.0 }, + "1011111001": { "state": 761.0 }, + "0111111110": { "state": 510.0 }, + "0111101110": { "state": 494.0 }, + "0100001100": { "state": 268.0 }, + "1011101010": { "state": 746.0 }, + "0111111001": { "state": 505.0 }, + "1111100111": { "state": 999.0 }, + "0111110101": { "state": 501.0 }, + "1111000111": { "state": 967.0 }, + "1100000110": { "state": 774.0 }, + "1100011100": { "state": 796.0 }, + "0110111111": { "state": 447.0 }, + "1111110011": { "state": 1011.0 }, + "0011111000": { "state": 248.0 }, + "1100011110": { "state": 798.0 }, + "0110100101": { "state": 421.0 }, + "1111111110": { "state": 1022.0 }, + "0111101111": { "state": 495.0 }, + "1000000000": { "state": 512.0 }, + "1110110101": { "state": 949.0 }, + "0100011000": { "state": 280.0 }, + "1111111100": { "state": 1020.0 }, + "0111101011": { "state": 491.0 }, + "0110100001": { "state": 417.0 }, + "1110110011": { "state": 947.0 }, + "1110111100": { "state": 956.0 }, + "0100010111": { "state": 279.0 }, + "1110100011": { "state": 931.0 }, + "0111111011": { "state": 507.0 }, + "0000001010": { "state": 10.0 }, + "1111101010": { "state": 1002.0 }, + "1110101110": { "state": 942.0 }, + "1100001100": { "state": 780.0 }, + "0111111000": { "state": 504.0 }, + "0111100100": { "state": 484.0 }, + "0000011001": { "state": 25.0 }, + "0111100111": { "state": 487.0 }, + "0111100000": { "state": 480.0 }, + "1111111001": { "state": 1017.0 }, + "1111110111": { "state": 1015.0 }, + "1000010001": { "state": 529.0 }, + "1100000001": { "state": 769.0 }, + "0000001101": { "state": 13.0 }, + "0111100110": { "state": 486.0 }, + "0101000010": { "state": 322.0 }, + "1111100001": { "state": 993.0 }, + "0011111110": { "state": 254.0 }, + "1000001011": { "state": 523.0 }, + "1111111111": { "state": 1023.0 }, + "1111101001": { "state": 1001.0 }, + "1110110110": { "state": 950.0 }, + "1100001010": { "state": 778.0 }, + "0110100000": { "state": 416.0 }, + "0111111101": { "state": 509.0 }, + "1111111010": { "state": 1018.0 }, + "0100000010": { "state": 258.0 }, + "1111110100": { "state": 1012.0 }, + "1110100010": { "state": 930.0 }, + "1000000100": { "state": 516.0 }, + "1100011010": { "state": 794.0 }, + "0111100010": { "state": 482.0 }, + "0111000101": { "state": 453.0 }, + "0111111010": { "state": 506.0 }, + "1100000101": { "state": 773.0 }, + "0110110001": { "state": 433.0 }, + "0111111100": { "state": 508.0 }, + "1111111000": { "state": 1016.0 }, + "0110110111": { "state": 439.0 }, + "0111101001": { "state": 489.0 }, + "1111110001": { "state": 1009.0 }, + "1100010110": { "state": 790.0 }, + "0100000100": { "state": 260.0 }, + "1000011001": { "state": 537.0 }, + "0111100011": { "state": 483.0 }, + "1111101111": { "state": 1007.0 }, + "0111110000": { "state": 496.0 }, + "1111111101": { "state": 1021.0 }, + "1111111011": { "state": 1019.0 }, + "0111111111": { "state": 511.0 }, + "1111100100": { "state": 996.0 }, + "0100001110": { "state": 270.0 }, + "1000001110": { "state": 526.0 }, + "1101011000": { "state": 856.0 }, + "1111110110": { "state": 1014.0 }, + "0110100011": { "state": 419.0 }, + "0110111101": { "state": 445.0 }, + "1111100010": { "state": 994.0 }, + "1111110010": { "state": 1010.0 }, + "0110111000": { "state": 440.0 }, + "1110110100": { "state": 948.0 }, + "1000001001": { "state": 521.0 }, + "0101010010": { "state": 338.0 }, + "1111100011": { "state": 995.0 }, + "0000001001": { "state": 9.0 }, + "1110101101": { "state": 941.0 }, + "0111101101": { "state": 493.0 }, + "1100001011": { "state": 779.0 }, + "1000000001": { "state": 513.0 }, + "0100001010": { "state": 266.0 }, + "0100001101": { "state": 269.0 }, + "0111100101": { "state": 485.0 }, + "1101011110": { "state": 862.0 }, + "0111110011": { "state": 499.0 }, + "1100010100": { "state": 788.0 }, + "0110110100": { "state": 436.0 }, + "0101000101": { "state": 325.0 }, + "0110110011": { "state": 435.0 }, + "1001001011": { "state": 587.0 }, + "1011111100": { "state": 764.0 }, + "0110110010": { "state": 434.0 }, + "0000011000": { "state": 24.0 }, + "0110100010": { "state": 418.0 }, + "1111101110": { "state": 1006.0 }, + "0110101111": { "state": 431.0 }, + "1110110000": { "state": 944.0 }, + "1011100101": { "state": 741.0 }, + "0110101100": { "state": 428.0 }, + "0100011110": { "state": 286.0 }, + "1110111011": { "state": 955.0 }, + "0011111111": { "state": 255.0 }, + "1110100101": { "state": 933.0 }, + "1101001000": { "state": 840.0 }, + "0011101111": { "state": 239.0 }, + "1110111111": { "state": 959.0 }, + "1000000110": { "state": 518.0 }, + "1111110000": { "state": 1008.0 }, + "1110101011": { "state": 939.0 }, + "0110100110": { "state": 422.0 }, + "1110110001": { "state": 945.0 }, + "1100001110": { "state": 782.0 }, + "0110101011": { "state": 427.0 }, + "0110111011": { "state": 443.0 }, + "0111110111": { "state": 503.0 }, + "1110100001": { "state": 929.0 }, + "0000001110": { "state": 14.0 }, + "0100011011": { "state": 283.0 }, + "1000000101": { "state": 517.0 }, + "0111000010": { "state": 450.0 }, + "0011111011": { "state": 251.0 }, + "1111110101": { "state": 1013.0 }, + "1110100100": { "state": 932.0 }, + "1100010000": { "state": 784.0 }, + "0111110001": { "state": 497.0 }, + "0101001001": { "state": 329.0 }, + "0011101100": { "state": 236.0 }, + "0110111001": { "state": 441.0 }, + "1100001000": { "state": 776.0 }, + "0110100100": { "state": 420.0 }, + "1100010111": { "state": 791.0 }, + "0111101010": { "state": 490.0 }, + "0111100001": { "state": 481.0 }, + "0100000111": { "state": 263.0 }, + "1100000100": { "state": 772.0 }, + "0100001000": { "state": 264.0 }, + "1110111101": { "state": 957.0 } + }, + "histogram": null, + "output_qubits_map": { "state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] }, + "state_vector": null, + "parsed_state_vector_states": null, + "physical_qubits_map": { "state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] }, + "num_shots": 8192 +} diff --git a/algorithms/glued_trees/results/10-qubits/2n+6.json b/algorithms/glued_trees/results/10-qubits/2n+6.json index 21c11e25..ec1b32ad 100644 --- a/algorithms/glued_trees/results/10-qubits/2n+6.json +++ b/algorithms/glued_trees/results/10-qubits/2n+6.json @@ -1 +1,450 @@ -{"vendor_format_result": {}, "counts": {"1000000011": 1, "1111000000": 1, "0101011101": 1, "0100010011": 1, "1100000011": 1, "0101011001": 1, "1011110100": 1, "1100010010": 2, "1101001011": 3, "0110110110": 1, "1110100000": 1, "1111100101": 2, "1110101100": 1, "0100011101": 2, "1011101110": 3, "1101001101": 1, "0110100101": 1, "0101000110": 1, "0110101001": 1, "1101000100": 2, "1011110111": 1, "0000000111": 3, "1110100111": 2, "0000001100": 1, "0110110111": 1, "0111101001": 4, "0100010110": 2, "1000000111": 1, "0101001010": 2, "0000000010": 1, "0100000001": 3, "1110111110": 3, "0110101010": 8, "0100000101": 6, "0111100100": 1, "1100011010": 1, "1000000100": 1, "0101000011": 2, "1110101110": 2, "1100001100": 10, "0100011110": 1, "0110101100": 1, "0100001110": 24, "1111101111": 4, "0011110010": 1, "1000010101": 1, "1101001110": 2, "0101001110": 2, "1110101111": 1, "0100010100": 9, "1101000000": 8, "0110100010": 2, "0110110010": 2, "1011111110": 2, "0110111001": 10, "0111100111": 9, "0111101111": 7, "0100000011": 2, "1100010101": 15, "0011111000": 3, "0000000110": 1, "0101000000": 2, "1110111101": 7, "1100011011": 1, "1100000101": 17, "0101000010": 1, "1111100001": 13, "1111100100": 9, "1100000000": 19, "0011110100": 1, "1111111110": 62, "1111110011": 339, "0101001001": 3, "0111001011": 2, "0111110001": 100, "0100000110": 16, "1110101101": 11, "0110101000": 66, "0101010010": 1, "1111100011": 79, "1011110101": 3, "0111101100": 36, "1110101011": 5, "1111110000": 128, "0111111111": 18, "1110101010": 25, "1111100111": 2, "1110111100": 11, "1111110101": 44, "0111100110": 4, "0000001000": 9, "0001000010": 1, "1011111001": 1, "0111111110": 302, "1100001101": 10, "0110101101": 14, "1110110000": 2, "0110101111": 51, "1111111100": 48, "1111110001": 161, "1111101100": 11, "1111000011": 3, "0111111001": 248, "0111110101": 114, "1111000111": 1, "1100000110": 389, "0010111110": 1, "0100011010": 3, "0100000010": 14, "1111110100": 42, "1110100010": 40, "1111111010": 144, "1000001101": 1, "0111110010": 263, "0111110100": 89, "0101000001": 2, "0111111000": 623, "0111101011": 14, "1111100110": 8, "0111110000": 70, "1001000011": 1, "0111111100": 460, "0110110001": 3, "1111111000": 233, "1110110111": 6, "1000011000": 1, "0100001001": 29, "1111111001": 331, "1111110111": 60, "1111111101": 87, "1111111011": 271, "0100000100": 168, "1100010110": 49, "0111111101": 198, "1101000011": 1, "1110100101": 19, "1110111000": 11, "0111100010": 15, "0110111000": 155, "1111110010": 54, "0111111010": 99, "0111110110": 384, "1000001001": 3, "1110110100": 22, "0100001111": 23, "1101011100": 1, "1111101001": 26, "0100000000": 42, "1100001000": 12, "0110111110": 5, "1110111001": 110, "0000000101": 1, "1110100110": 45, "0011111110": 1, "1000001011": 1, "1111111111": 163, "1000011101": 1, "1000000101": 6, "0000001111": 3, "1100000111": 1, "1000000001": 3, "1100001011": 25, "0111101101": 2, "0110101110": 1, "0000000000": 5, "1101010000": 2, "0011100111": 1, "1011110110": 18, "1100001010": 53, "1110110110": 3, "0100001100": 32, "0111101110": 11, "1100011001": 5, "1000000000": 1, "1101001111": 1, "0100011000": 9, "1110110101": 21, "1100011100": 1, "0110111111": 20, "1111101011": 3, "0110100011": 3, "1101011000": 1, "1111110110": 27, "0110101011": 41, "1000001110": 5, "0011111111": 1, "1110111011": 4, "0100011111": 5, "1100001001": 20, "0110110100": 5, "0110111011": 6, "0111110111": 184, "1110100001": 9, "1111101101": 16, "1111100000": 1, "1100010011": 1, "0100011100": 5, "1110111111": 3, "1111001000": 1, "0100010000": 8, "1000011110": 2, "1110101001": 3, "1111101110": 14, "1100011000": 2, "1110111010": 4, "1110110010": 47, "1111101000": 6, "0111100101": 51, "0100001010": 77, "0111110011": 148, "0100001101": 13, "0011110111": 1, "0111100001": 1, "0111101010": 21, "0100001000": 54, "0110110000": 3, "1100000100": 8, "0110111010": 14, "0111101000": 19, "0111111011": 4, "1100000001": 13, "0100011001": 3, "0110111101": 10, "1100011111": 3, "0110110011": 9, "0101000101": 3, "1110110011": 4, "0110100001": 10, "0110100100": 13, "0111100000": 17, "1101001100": 12, "1110110001": 33, "1100001110": 11, "0100010101": 1}, "counts_lsb_right": true, "parsed_states": {"1000000011": {"state": 515.0}, "1111000000": {"state": 960.0}, "0101011101": {"state": 349.0}, "0100010011": {"state": 275.0}, "1100000011": {"state": 771.0}, "0101011001": {"state": 345.0}, "1011110100": {"state": 756.0}, "1100010010": {"state": 786.0}, "1101001011": {"state": 843.0}, "0110110110": {"state": 438.0}, "1110100000": {"state": 928.0}, "1111100101": {"state": 997.0}, "1110101100": {"state": 940.0}, "0100011101": {"state": 285.0}, "1011101110": {"state": 750.0}, "1101001101": {"state": 845.0}, "0110100101": {"state": 421.0}, "0101000110": {"state": 326.0}, "0110101001": {"state": 425.0}, "1101000100": {"state": 836.0}, "1011110111": {"state": 759.0}, "0000000111": {"state": 7.0}, "1110100111": {"state": 935.0}, "0000001100": {"state": 12.0}, "0110110111": {"state": 439.0}, "0111101001": {"state": 489.0}, "0100010110": {"state": 278.0}, "1000000111": {"state": 519.0}, "0101001010": {"state": 330.0}, "0000000010": {"state": 2.0}, "0100000001": {"state": 257.0}, "1110111110": {"state": 958.0}, "0110101010": {"state": 426.0}, "0100000101": {"state": 261.0}, "0111100100": {"state": 484.0}, "1100011010": {"state": 794.0}, "1000000100": {"state": 516.0}, "0101000011": {"state": 323.0}, "1110101110": {"state": 942.0}, "1100001100": {"state": 780.0}, "0100011110": {"state": 286.0}, "0110101100": {"state": 428.0}, "0100001110": {"state": 270.0}, "1111101111": {"state": 1007.0}, "0011110010": {"state": 242.0}, "1000010101": {"state": 533.0}, "1101001110": {"state": 846.0}, "0101001110": {"state": 334.0}, "1110101111": {"state": 943.0}, "0100010100": {"state": 276.0}, "1101000000": {"state": 832.0}, "0110100010": {"state": 418.0}, "0110110010": {"state": 434.0}, "1011111110": {"state": 766.0}, "0110111001": {"state": 441.0}, "0111100111": {"state": 487.0}, "0111101111": {"state": 495.0}, "0100000011": {"state": 259.0}, "1100010101": {"state": 789.0}, "0011111000": {"state": 248.0}, "0000000110": {"state": 6.0}, "0101000000": {"state": 320.0}, "1110111101": {"state": 957.0}, "1100011011": {"state": 795.0}, "1100000101": {"state": 773.0}, "0101000010": {"state": 322.0}, "1111100001": {"state": 993.0}, "1111100100": {"state": 996.0}, "1100000000": {"state": 768.0}, "0011110100": {"state": 244.0}, "1111111110": {"state": 1022.0}, "1111110011": {"state": 1011.0}, "0101001001": {"state": 329.0}, "0111001011": {"state": 459.0}, "0111110001": {"state": 497.0}, "0100000110": {"state": 262.0}, "1110101101": {"state": 941.0}, "0110101000": {"state": 424.0}, "0101010010": {"state": 338.0}, "1111100011": {"state": 995.0}, "1011110101": {"state": 757.0}, "0111101100": {"state": 492.0}, "1110101011": {"state": 939.0}, "1111110000": {"state": 1008.0}, "0111111111": {"state": 511.0}, "1110101010": {"state": 938.0}, "1111100111": {"state": 999.0}, "1110111100": {"state": 956.0}, "1111110101": {"state": 1013.0}, "0111100110": {"state": 486.0}, "0000001000": {"state": 8.0}, "0001000010": {"state": 66.0}, "1011111001": {"state": 761.0}, "0111111110": {"state": 510.0}, "1100001101": {"state": 781.0}, "0110101101": {"state": 429.0}, "1110110000": {"state": 944.0}, "0110101111": {"state": 431.0}, "1111111100": {"state": 1020.0}, "1111110001": {"state": 1009.0}, "1111101100": {"state": 1004.0}, "1111000011": {"state": 963.0}, "0111111001": {"state": 505.0}, "0111110101": {"state": 501.0}, "1111000111": {"state": 967.0}, "1100000110": {"state": 774.0}, "0010111110": {"state": 190.0}, "0100011010": {"state": 282.0}, "0100000010": {"state": 258.0}, "1111110100": {"state": 1012.0}, "1110100010": {"state": 930.0}, "1111111010": {"state": 1018.0}, "1000001101": {"state": 525.0}, "0111110010": {"state": 498.0}, "0111110100": {"state": 500.0}, "0101000001": {"state": 321.0}, "0111111000": {"state": 504.0}, "0111101011": {"state": 491.0}, "1111100110": {"state": 998.0}, "0111110000": {"state": 496.0}, "1001000011": {"state": 579.0}, "0111111100": {"state": 508.0}, "0110110001": {"state": 433.0}, "1111111000": {"state": 1016.0}, "1110110111": {"state": 951.0}, "1000011000": {"state": 536.0}, "0100001001": {"state": 265.0}, "1111111001": {"state": 1017.0}, "1111110111": {"state": 1015.0}, "1111111101": {"state": 1021.0}, "1111111011": {"state": 1019.0}, "0100000100": {"state": 260.0}, "1100010110": {"state": 790.0}, "0111111101": {"state": 509.0}, "1101000011": {"state": 835.0}, "1110100101": {"state": 933.0}, "1110111000": {"state": 952.0}, "0111100010": {"state": 482.0}, "0110111000": {"state": 440.0}, "1111110010": {"state": 1010.0}, "0111111010": {"state": 506.0}, "0111110110": {"state": 502.0}, "1000001001": {"state": 521.0}, "1110110100": {"state": 948.0}, "0100001111": {"state": 271.0}, "1101011100": {"state": 860.0}, "1111101001": {"state": 1001.0}, "0100000000": {"state": 256.0}, "1100001000": {"state": 776.0}, "0110111110": {"state": 446.0}, "1110111001": {"state": 953.0}, "0000000101": {"state": 5.0}, "1110100110": {"state": 934.0}, "0011111110": {"state": 254.0}, "1000001011": {"state": 523.0}, "1111111111": {"state": 1023.0}, "1000011101": {"state": 541.0}, "1000000101": {"state": 517.0}, "0000001111": {"state": 15.0}, "1100000111": {"state": 775.0}, "1000000001": {"state": 513.0}, "1100001011": {"state": 779.0}, "0111101101": {"state": 493.0}, "0110101110": {"state": 430.0}, "0000000000": {"state": 0.0}, "1101010000": {"state": 848.0}, "0011100111": {"state": 231.0}, "1011110110": {"state": 758.0}, "1100001010": {"state": 778.0}, "1110110110": {"state": 950.0}, "0100001100": {"state": 268.0}, "0111101110": {"state": 494.0}, "1100011001": {"state": 793.0}, "1000000000": {"state": 512.0}, "1101001111": {"state": 847.0}, "0100011000": {"state": 280.0}, "1110110101": {"state": 949.0}, "1100011100": {"state": 796.0}, "0110111111": {"state": 447.0}, "1111101011": {"state": 1003.0}, "0110100011": {"state": 419.0}, "1101011000": {"state": 856.0}, "1111110110": {"state": 1014.0}, "0110101011": {"state": 427.0}, "1000001110": {"state": 526.0}, "0011111111": {"state": 255.0}, "1110111011": {"state": 955.0}, "0100011111": {"state": 287.0}, "1100001001": {"state": 777.0}, "0110110100": {"state": 436.0}, "0110111011": {"state": 443.0}, "0111110111": {"state": 503.0}, "1110100001": {"state": 929.0}, "1111101101": {"state": 1005.0}, "1111100000": {"state": 992.0}, "1100010011": {"state": 787.0}, "0100011100": {"state": 284.0}, "1110111111": {"state": 959.0}, "1111001000": {"state": 968.0}, "0100010000": {"state": 272.0}, "1000011110": {"state": 542.0}, "1110101001": {"state": 937.0}, "1111101110": {"state": 1006.0}, "1100011000": {"state": 792.0}, "1110111010": {"state": 954.0}, "1110110010": {"state": 946.0}, "1111101000": {"state": 1000.0}, "0111100101": {"state": 485.0}, "0100001010": {"state": 266.0}, "0111110011": {"state": 499.0}, "0100001101": {"state": 269.0}, "0011110111": {"state": 247.0}, "0111100001": {"state": 481.0}, "0111101010": {"state": 490.0}, "0100001000": {"state": 264.0}, "0110110000": {"state": 432.0}, "1100000100": {"state": 772.0}, "0110111010": {"state": 442.0}, "0111101000": {"state": 488.0}, "0111111011": {"state": 507.0}, "1100000001": {"state": 769.0}, "0100011001": {"state": 281.0}, "0110111101": {"state": 445.0}, "1100011111": {"state": 799.0}, "0110110011": {"state": 435.0}, "0101000101": {"state": 325.0}, "1110110011": {"state": 947.0}, "0110100001": {"state": 417.0}, "0110100100": {"state": 420.0}, "0111100000": {"state": 480.0}, "1101001100": {"state": 844.0}, "1110110001": {"state": 945.0}, "1100001110": {"state": 782.0}, "0100010101": {"state": 277.0}}, "histogram": null, "output_qubits_map": {"state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]}, "state_vector": null, "parsed_state_vector_states": null, "physical_qubits_map": {"state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]}, "num_shots": 8192} \ No newline at end of file +{ + "vendor_format_result": {}, + "counts": { + "1100000010": 1, + "0011111010": 1, + "0000000010": 1, + "0101001000": 1, + "1111101011": 1, + "0110101001": 1, + "0110110101": 1, + "1000010111": 1, + "1011110100": 1, + "1100000111": 3, + "0000000111": 1, + "1110100111": 1, + "1011101000": 1, + "1101010111": 1, + "0011101000": 1, + "0011110100": 3, + "0110100011": 1, + "0101000110": 3, + "1101001100": 5, + "0100010110": 2, + "1101001110": 1, + "0101001110": 2, + "0100001011": 1, + "1110111111": 1, + "1111001100": 1, + "1111100111": 4, + "0110111111": 4, + "1110110111": 4, + "0011110010": 1, + "1000010101": 1, + "1011111000": 1, + "1000000101": 3, + "1100001000": 8, + "1000000011": 1, + "1111010111": 1, + "0000000000": 4, + "0010111110": 1, + "0100011010": 6, + "1100011101": 1, + "0000000110": 1, + "0110100010": 2, + "1101000000": 9, + "1111101000": 6, + "1101001000": 2, + "1101000011": 1, + "1110100101": 14, + "1100011111": 1, + "0110111101": 7, + "0000001111": 1, + "0110111001": 11, + "0110000100": 1, + "1000011101": 1, + "1101001011": 3, + "0111100111": 9, + "1100010101": 15, + "0000001010": 1, + "1000001110": 9, + "1111100101": 3, + "1110101100": 3, + "0100011100": 5, + "1111100000": 3, + "1110111101": 5, + "0110100001": 6, + "1110110011": 2, + "0100010111": 1, + "1110111100": 8, + "1110101101": 10, + "1110100110": 45, + "0100000001": 8, + "1110111010": 5, + "1100011000": 2, + "1110110010": 40, + "0100001110": 17, + "0111100011": 3, + "1111101111": 7, + "0100000011": 2, + "0110111010": 18, + "0111101000": 22, + "1000001001": 3, + "1110110100": 13, + "0111110110": 409, + "0100001111": 33, + "1100011010": 1, + "1000000100": 5, + "1111100110": 8, + "0111101011": 14, + "1111111100": 50, + "1101001111": 5, + "1110110101": 18, + "0100011000": 3, + "1111101100": 15, + "1111111110": 46, + "1111110011": 319, + "0101001001": 3, + "0111110001": 100, + "0110101000": 33, + "1110111110": 1, + "1100001100": 7, + "0110100100": 22, + "0111111110": 330, + "1100001101": 10, + "0111110101": 123, + "1100000110": 373, + "0111110100": 84, + "0101000001": 5, + "1110100010": 28, + "1011110000": 1, + "0111111000": 662, + "0011111110": 1, + "1111111111": 192, + "1111111001": 355, + "1111110111": 78, + "1111110001": 177, + "1100000001": 22, + "0110101010": 5, + "0100000101": 6, + "1111111101": 80, + "1111111011": 268, + "1110100011": 1, + "0111111011": 3, + "1110110110": 3, + "1100001010": 50, + "1111101001": 26, + "0100000000": 60, + "1111101110": 15, + "0110111011": 5, + "1110100001": 19, + "0111110111": 215, + "0101001101": 2, + "1011110101": 2, + "0111101100": 47, + "0100010100": 7, + "0000000101": 2, + "0110111110": 11, + "1110111001": 102, + "0111100110": 9, + "1111110101": 39, + "0000001000": 6, + "0111000101": 1, + "0111111010": 114, + "1100011001": 4, + "0100001100": 20, + "0111101110": 11, + "1100000101": 19, + "0111111101": 211, + "0100000100": 140, + "1100010110": 42, + "1111000000": 1, + "0110110001": 6, + "0111111100": 514, + "1111111000": 211, + "0110110111": 2, + "0111101001": 9, + "1011110110": 5, + "1101010000": 1, + "1111110110": 25, + "0111111111": 15, + "1000000001": 1, + "0111101101": 1, + "1100001011": 19, + "1111100100": 3, + "0111110000": 57, + "0100000111": 1, + "1100000100": 6, + "0110110000": 6, + "0111100001": 3, + "0100001000": 43, + "0111101010": 20, + "1110101010": 28, + "1110110001": 41, + "1100001110": 13, + "0110110011": 12, + "0100001001": 34, + "0110111000": 153, + "1111110010": 45, + "1111111010": 99, + "1000000111": 5, + "1111110000": 114, + "1110101011": 1, + "1111100001": 10, + "0110101101": 9, + "1111110100": 46, + "0100000010": 14, + "0110101011": 30, + "1100000000": 20, + "0100010001": 1, + "0100011111": 8, + "1100001001": 19, + "0110110100": 8, + "0111110010": 288, + "1000001101": 1, + "0111100000": 10, + "1110101001": 3, + "0111110011": 146, + "0111100101": 40, + "0100001101": 20, + "0100001010": 54, + "0100011110": 1, + "0110101100": 1, + "1011111110": 5, + "1111100011": 89, + "1000011010": 1, + "0100000110": 11, + "0101001010": 3, + "0001001101": 1, + "1111101101": 11, + "0111101111": 8, + "1110111011": 6, + "0111111001": 248, + "1111000011": 1, + "0111100010": 16, + "1110111000": 15, + "1101000100": 10, + "0000001100": 1, + "0100010000": 7, + "1111001000": 1, + "0110101111": 53, + "1110110000": 2 + }, + "counts_lsb_right": true, + "parsed_states": { + "1100000010": { "state": 770.0 }, + "0011111010": { "state": 250.0 }, + "0000000010": { "state": 2.0 }, + "0101001000": { "state": 328.0 }, + "1111101011": { "state": 1003.0 }, + "0110101001": { "state": 425.0 }, + "0110110101": { "state": 437.0 }, + "1000010111": { "state": 535.0 }, + "1011110100": { "state": 756.0 }, + "1100000111": { "state": 775.0 }, + "0000000111": { "state": 7.0 }, + "1110100111": { "state": 935.0 }, + "1011101000": { "state": 744.0 }, + "1101010111": { "state": 855.0 }, + "0011101000": { "state": 232.0 }, + "0011110100": { "state": 244.0 }, + "0110100011": { "state": 419.0 }, + "0101000110": { "state": 326.0 }, + "1101001100": { "state": 844.0 }, + "0100010110": { "state": 278.0 }, + "1101001110": { "state": 846.0 }, + "0101001110": { "state": 334.0 }, + "0100001011": { "state": 267.0 }, + "1110111111": { "state": 959.0 }, + "1111001100": { "state": 972.0 }, + "1111100111": { "state": 999.0 }, + "0110111111": { "state": 447.0 }, + "1110110111": { "state": 951.0 }, + "0011110010": { "state": 242.0 }, + "1000010101": { "state": 533.0 }, + "1011111000": { "state": 760.0 }, + "1000000101": { "state": 517.0 }, + "1100001000": { "state": 776.0 }, + "1000000011": { "state": 515.0 }, + "1111010111": { "state": 983.0 }, + "0000000000": { "state": 0.0 }, + "0010111110": { "state": 190.0 }, + "0100011010": { "state": 282.0 }, + "1100011101": { "state": 797.0 }, + "0000000110": { "state": 6.0 }, + "0110100010": { "state": 418.0 }, + "1101000000": { "state": 832.0 }, + "1111101000": { "state": 1000.0 }, + "1101001000": { "state": 840.0 }, + "1101000011": { "state": 835.0 }, + "1110100101": { "state": 933.0 }, + "1100011111": { "state": 799.0 }, + "0110111101": { "state": 445.0 }, + "0000001111": { "state": 15.0 }, + "0110111001": { "state": 441.0 }, + "0110000100": { "state": 388.0 }, + "1000011101": { "state": 541.0 }, + "1101001011": { "state": 843.0 }, + "0111100111": { "state": 487.0 }, + "1100010101": { "state": 789.0 }, + "0000001010": { "state": 10.0 }, + "1000001110": { "state": 526.0 }, + "1111100101": { "state": 997.0 }, + "1110101100": { "state": 940.0 }, + "0100011100": { "state": 284.0 }, + "1111100000": { "state": 992.0 }, + "1110111101": { "state": 957.0 }, + "0110100001": { "state": 417.0 }, + "1110110011": { "state": 947.0 }, + "0100010111": { "state": 279.0 }, + "1110111100": { "state": 956.0 }, + "1110101101": { "state": 941.0 }, + "1110100110": { "state": 934.0 }, + "0100000001": { "state": 257.0 }, + "1110111010": { "state": 954.0 }, + "1100011000": { "state": 792.0 }, + "1110110010": { "state": 946.0 }, + "0100001110": { "state": 270.0 }, + "0111100011": { "state": 483.0 }, + "1111101111": { "state": 1007.0 }, + "0100000011": { "state": 259.0 }, + "0110111010": { "state": 442.0 }, + "0111101000": { "state": 488.0 }, + "1000001001": { "state": 521.0 }, + "1110110100": { "state": 948.0 }, + "0111110110": { "state": 502.0 }, + "0100001111": { "state": 271.0 }, + "1100011010": { "state": 794.0 }, + "1000000100": { "state": 516.0 }, + "1111100110": { "state": 998.0 }, + "0111101011": { "state": 491.0 }, + "1111111100": { "state": 1020.0 }, + "1101001111": { "state": 847.0 }, + "1110110101": { "state": 949.0 }, + "0100011000": { "state": 280.0 }, + "1111101100": { "state": 1004.0 }, + "1111111110": { "state": 1022.0 }, + "1111110011": { "state": 1011.0 }, + "0101001001": { "state": 329.0 }, + "0111110001": { "state": 497.0 }, + "0110101000": { "state": 424.0 }, + "1110111110": { "state": 958.0 }, + "1100001100": { "state": 780.0 }, + "0110100100": { "state": 420.0 }, + "0111111110": { "state": 510.0 }, + "1100001101": { "state": 781.0 }, + "0111110101": { "state": 501.0 }, + "1100000110": { "state": 774.0 }, + "0111110100": { "state": 500.0 }, + "0101000001": { "state": 321.0 }, + "1110100010": { "state": 930.0 }, + "1011110000": { "state": 752.0 }, + "0111111000": { "state": 504.0 }, + "0011111110": { "state": 254.0 }, + "1111111111": { "state": 1023.0 }, + "1111111001": { "state": 1017.0 }, + "1111110111": { "state": 1015.0 }, + "1111110001": { "state": 1009.0 }, + "1100000001": { "state": 769.0 }, + "0110101010": { "state": 426.0 }, + "0100000101": { "state": 261.0 }, + "1111111101": { "state": 1021.0 }, + "1111111011": { "state": 1019.0 }, + "1110100011": { "state": 931.0 }, + "0111111011": { "state": 507.0 }, + "1110110110": { "state": 950.0 }, + "1100001010": { "state": 778.0 }, + "1111101001": { "state": 1001.0 }, + "0100000000": { "state": 256.0 }, + "1111101110": { "state": 1006.0 }, + "0110111011": { "state": 443.0 }, + "1110100001": { "state": 929.0 }, + "0111110111": { "state": 503.0 }, + "0101001101": { "state": 333.0 }, + "1011110101": { "state": 757.0 }, + "0111101100": { "state": 492.0 }, + "0100010100": { "state": 276.0 }, + "0000000101": { "state": 5.0 }, + "0110111110": { "state": 446.0 }, + "1110111001": { "state": 953.0 }, + "0111100110": { "state": 486.0 }, + "1111110101": { "state": 1013.0 }, + "0000001000": { "state": 8.0 }, + "0111000101": { "state": 453.0 }, + "0111111010": { "state": 506.0 }, + "1100011001": { "state": 793.0 }, + "0100001100": { "state": 268.0 }, + "0111101110": { "state": 494.0 }, + "1100000101": { "state": 773.0 }, + "0111111101": { "state": 509.0 }, + "0100000100": { "state": 260.0 }, + "1100010110": { "state": 790.0 }, + "1111000000": { "state": 960.0 }, + "0110110001": { "state": 433.0 }, + "0111111100": { "state": 508.0 }, + "1111111000": { "state": 1016.0 }, + "0110110111": { "state": 439.0 }, + "0111101001": { "state": 489.0 }, + "1011110110": { "state": 758.0 }, + "1101010000": { "state": 848.0 }, + "1111110110": { "state": 1014.0 }, + "0111111111": { "state": 511.0 }, + "1000000001": { "state": 513.0 }, + "0111101101": { "state": 493.0 }, + "1100001011": { "state": 779.0 }, + "1111100100": { "state": 996.0 }, + "0111110000": { "state": 496.0 }, + "0100000111": { "state": 263.0 }, + "1100000100": { "state": 772.0 }, + "0110110000": { "state": 432.0 }, + "0111100001": { "state": 481.0 }, + "0100001000": { "state": 264.0 }, + "0111101010": { "state": 490.0 }, + "1110101010": { "state": 938.0 }, + "1110110001": { "state": 945.0 }, + "1100001110": { "state": 782.0 }, + "0110110011": { "state": 435.0 }, + "0100001001": { "state": 265.0 }, + "0110111000": { "state": 440.0 }, + "1111110010": { "state": 1010.0 }, + "1111111010": { "state": 1018.0 }, + "1000000111": { "state": 519.0 }, + "1111110000": { "state": 1008.0 }, + "1110101011": { "state": 939.0 }, + "1111100001": { "state": 993.0 }, + "0110101101": { "state": 429.0 }, + "1111110100": { "state": 1012.0 }, + "0100000010": { "state": 258.0 }, + "0110101011": { "state": 427.0 }, + "1100000000": { "state": 768.0 }, + "0100010001": { "state": 273.0 }, + "0100011111": { "state": 287.0 }, + "1100001001": { "state": 777.0 }, + "0110110100": { "state": 436.0 }, + "0111110010": { "state": 498.0 }, + "1000001101": { "state": 525.0 }, + "0111100000": { "state": 480.0 }, + "1110101001": { "state": 937.0 }, + "0111110011": { "state": 499.0 }, + "0111100101": { "state": 485.0 }, + "0100001101": { "state": 269.0 }, + "0100001010": { "state": 266.0 }, + "0100011110": { "state": 286.0 }, + "0110101100": { "state": 428.0 }, + "1011111110": { "state": 766.0 }, + "1111100011": { "state": 995.0 }, + "1000011010": { "state": 538.0 }, + "0100000110": { "state": 262.0 }, + "0101001010": { "state": 330.0 }, + "0001001101": { "state": 77.0 }, + "1111101101": { "state": 1005.0 }, + "0111101111": { "state": 495.0 }, + "1110111011": { "state": 955.0 }, + "0111111001": { "state": 505.0 }, + "1111000011": { "state": 963.0 }, + "0111100010": { "state": 482.0 }, + "1110111000": { "state": 952.0 }, + "1101000100": { "state": 836.0 }, + "0000001100": { "state": 12.0 }, + "0100010000": { "state": 272.0 }, + "1111001000": { "state": 968.0 }, + "0110101111": { "state": 431.0 }, + "1110110000": { "state": 944.0 } + }, + "histogram": null, + "output_qubits_map": { "state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] }, + "state_vector": null, + "parsed_state_vector_states": null, + "physical_qubits_map": { "state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] }, + "num_shots": 8192 +} diff --git a/algorithms/glued_trees/results/10-qubits/2n+8.json b/algorithms/glued_trees/results/10-qubits/2n+8.json index 89a318de..0e5d4300 100644 --- a/algorithms/glued_trees/results/10-qubits/2n+8.json +++ b/algorithms/glued_trees/results/10-qubits/2n+8.json @@ -1 +1,390 @@ -{"vendor_format_result": {}, "counts": {"1100001101": 1, "1110100000": 2, "1101000000": 1, "1111010000": 1, "1111101001": 3, "0100001001": 1, "1101010000": 1, "0110101101": 8, "0111100111": 3, "0101000111": 1, "0011111000": 1, "0110100101": 2, "0110101000": 4, "0100010000": 2, "0101001110": 1, "1100000011": 1, "1100010001": 2, "1100010011": 6, "0100011100": 1, "1111100000": 14, "1101001011": 3, "1100011101": 3, "1100011010": 4, "1101000101": 1, "0101001010": 3, "1110100111": 5, "0110111100": 2, "1111101100": 2, "0111100100": 1, "0111101011": 4, "1101011001": 1, "0100011011": 3, "0110100100": 7, "0111100000": 1, "0111100011": 10, "1111101111": 3, "1111100111": 16, "0110101100": 13, "0111110010": 580, "0111101111": 3, "0100010001": 1, "1100000000": 41, "1110100110": 59, "1111111100": 32, "1110110000": 9, "0110101111": 51, "1111100100": 151, "0111111111": 124, "1111111110": 76, "1111110011": 3, "0111110001": 23, "1110100011": 2, "0111111011": 25, "0101001011": 4, "1101010001": 1, "0100000000": 9, "1110101111": 7, "1100000001": 182, "0110100111": 7, "0110110111": 130, "0111101001": 97, "0100001011": 103, "1110111011": 2, "1111111111": 353, "1101001010": 2, "0110111101": 17, "1110111100": 15, "0101000000": 1, "1110111101": 42, "0100001111": 28, "0111110110": 28, "1110110100": 5, "1110101110": 3, "0110100011": 102, "1111110110": 143, "0110110011": 31, "1100000010": 38, "1110101101": 5, "0101000010": 10, "1111100001": 14, "1111110000": 49, "1110101011": 6, "0111111110": 671, "1101000100": 3, "1100011001": 1, "0100001100": 3, "0111101110": 34, "1100000101": 45, "1110000010": 1, "0111111010": 77, "0111111001": 595, "1100010100": 2, "0111110101": 183, "1111111000": 4, "0110110001": 26, "0111111100": 68, "1111100011": 9, "0111111101": 38, "0100000100": 36, "1100010110": 7, "0110111111": 166, "0100000001": 5, "0111111000": 211, "1110101000": 4, "1100001000": 15, "0101000001": 13, "0111110100": 148, "0110111011": 2, "1110100001": 16, "0111110111": 103, "0100010100": 6, "0110111110": 16, "1110111001": 307, "1100001110": 3, "1110110001": 13, "1101001001": 7, "1100001100": 9, "1111110001": 108, "0110110100": 8, "1111110100": 710, "1110100010": 12, "1111111010": 129, "1111100101": 4, "0110100000": 8, "1110100100": 11, "1111110101": 29, "0110100001": 9, "1110110011": 10, "1100001011": 1, "0111101101": 11, "1100001111": 28, "1100001001": 11, "0100011111": 12, "0101000110": 2, "0110111010": 30, "0111101000": 24, "1110111111": 4, "0100001110": 39, "1111100110": 19, "1111110010": 62, "0110111000": 20, "1111111101": 157, "1111111011": 2, "0100000101": 15, "1100011000": 1, "1110111010": 42, "1110110010": 5, "1100000110": 52, "0111000010": 4, "1111101011": 15, "1100001010": 24, "1110110110": 22, "0111110000": 1, "1110111000": 6, "1110100101": 15, "1101000011": 7, "1101001000": 15, "0110000000": 1, "0110110000": 7, "1100000100": 11, "0100001000": 268, "0111100001": 13, "0100000111": 43, "0111101010": 8, "1111101110": 15, "0100011000": 8, "1110110101": 3, "1101001111": 2, "0110111001": 20, "1111101000": 17, "1111111001": 342, "1111110111": 13, "0111101100": 10, "0101001101": 5, "0110110101": 11, "0111100101": 1, "0111110011": 49, "0100001101": 6, "1110101001": 21, "1110111110": 2, "1100010010": 5, "1110110111": 16, "1111101101": 12}, "counts_lsb_right": true, "parsed_states": {"1100001101": {"state": 781.0}, "1110100000": {"state": 928.0}, "1101000000": {"state": 832.0}, "1111010000": {"state": 976.0}, "1111101001": {"state": 1001.0}, "0100001001": {"state": 265.0}, "1101010000": {"state": 848.0}, "0110101101": {"state": 429.0}, "0111100111": {"state": 487.0}, "0101000111": {"state": 327.0}, "0011111000": {"state": 248.0}, "0110100101": {"state": 421.0}, "0110101000": {"state": 424.0}, "0100010000": {"state": 272.0}, "0101001110": {"state": 334.0}, "1100000011": {"state": 771.0}, "1100010001": {"state": 785.0}, "1100010011": {"state": 787.0}, "0100011100": {"state": 284.0}, "1111100000": {"state": 992.0}, "1101001011": {"state": 843.0}, "1100011101": {"state": 797.0}, "1100011010": {"state": 794.0}, "1101000101": {"state": 837.0}, "0101001010": {"state": 330.0}, "1110100111": {"state": 935.0}, "0110111100": {"state": 444.0}, "1111101100": {"state": 1004.0}, "0111100100": {"state": 484.0}, "0111101011": {"state": 491.0}, "1101011001": {"state": 857.0}, "0100011011": {"state": 283.0}, "0110100100": {"state": 420.0}, "0111100000": {"state": 480.0}, "0111100011": {"state": 483.0}, "1111101111": {"state": 1007.0}, "1111100111": {"state": 999.0}, "0110101100": {"state": 428.0}, "0111110010": {"state": 498.0}, "0111101111": {"state": 495.0}, "0100010001": {"state": 273.0}, "1100000000": {"state": 768.0}, "1110100110": {"state": 934.0}, "1111111100": {"state": 1020.0}, "1110110000": {"state": 944.0}, "0110101111": {"state": 431.0}, "1111100100": {"state": 996.0}, "0111111111": {"state": 511.0}, "1111111110": {"state": 1022.0}, "1111110011": {"state": 1011.0}, "0111110001": {"state": 497.0}, "1110100011": {"state": 931.0}, "0111111011": {"state": 507.0}, "0101001011": {"state": 331.0}, "1101010001": {"state": 849.0}, "0100000000": {"state": 256.0}, "1110101111": {"state": 943.0}, "1100000001": {"state": 769.0}, "0110100111": {"state": 423.0}, "0110110111": {"state": 439.0}, "0111101001": {"state": 489.0}, "0100001011": {"state": 267.0}, "1110111011": {"state": 955.0}, "1111111111": {"state": 1023.0}, "1101001010": {"state": 842.0}, "0110111101": {"state": 445.0}, "1110111100": {"state": 956.0}, "0101000000": {"state": 320.0}, "1110111101": {"state": 957.0}, "0100001111": {"state": 271.0}, "0111110110": {"state": 502.0}, "1110110100": {"state": 948.0}, "1110101110": {"state": 942.0}, "0110100011": {"state": 419.0}, "1111110110": {"state": 1014.0}, "0110110011": {"state": 435.0}, "1100000010": {"state": 770.0}, "1110101101": {"state": 941.0}, "0101000010": {"state": 322.0}, "1111100001": {"state": 993.0}, "1111110000": {"state": 1008.0}, "1110101011": {"state": 939.0}, "0111111110": {"state": 510.0}, "1101000100": {"state": 836.0}, "1100011001": {"state": 793.0}, "0100001100": {"state": 268.0}, "0111101110": {"state": 494.0}, "1100000101": {"state": 773.0}, "1110000010": {"state": 898.0}, "0111111010": {"state": 506.0}, "0111111001": {"state": 505.0}, "1100010100": {"state": 788.0}, "0111110101": {"state": 501.0}, "1111111000": {"state": 1016.0}, "0110110001": {"state": 433.0}, "0111111100": {"state": 508.0}, "1111100011": {"state": 995.0}, "0111111101": {"state": 509.0}, "0100000100": {"state": 260.0}, "1100010110": {"state": 790.0}, "0110111111": {"state": 447.0}, "0100000001": {"state": 257.0}, "0111111000": {"state": 504.0}, "1110101000": {"state": 936.0}, "1100001000": {"state": 776.0}, "0101000001": {"state": 321.0}, "0111110100": {"state": 500.0}, "0110111011": {"state": 443.0}, "1110100001": {"state": 929.0}, "0111110111": {"state": 503.0}, "0100010100": {"state": 276.0}, "0110111110": {"state": 446.0}, "1110111001": {"state": 953.0}, "1100001110": {"state": 782.0}, "1110110001": {"state": 945.0}, "1101001001": {"state": 841.0}, "1100001100": {"state": 780.0}, "1111110001": {"state": 1009.0}, "0110110100": {"state": 436.0}, "1111110100": {"state": 1012.0}, "1110100010": {"state": 930.0}, "1111111010": {"state": 1018.0}, "1111100101": {"state": 997.0}, "0110100000": {"state": 416.0}, "1110100100": {"state": 932.0}, "1111110101": {"state": 1013.0}, "0110100001": {"state": 417.0}, "1110110011": {"state": 947.0}, "1100001011": {"state": 779.0}, "0111101101": {"state": 493.0}, "1100001111": {"state": 783.0}, "1100001001": {"state": 777.0}, "0100011111": {"state": 287.0}, "0101000110": {"state": 326.0}, "0110111010": {"state": 442.0}, "0111101000": {"state": 488.0}, "1110111111": {"state": 959.0}, "0100001110": {"state": 270.0}, "1111100110": {"state": 998.0}, "1111110010": {"state": 1010.0}, "0110111000": {"state": 440.0}, "1111111101": {"state": 1021.0}, "1111111011": {"state": 1019.0}, "0100000101": {"state": 261.0}, "1100011000": {"state": 792.0}, "1110111010": {"state": 954.0}, "1110110010": {"state": 946.0}, "1100000110": {"state": 774.0}, "0111000010": {"state": 450.0}, "1111101011": {"state": 1003.0}, "1100001010": {"state": 778.0}, "1110110110": {"state": 950.0}, "0111110000": {"state": 496.0}, "1110111000": {"state": 952.0}, "1110100101": {"state": 933.0}, "1101000011": {"state": 835.0}, "1101001000": {"state": 840.0}, "0110000000": {"state": 384.0}, "0110110000": {"state": 432.0}, "1100000100": {"state": 772.0}, "0100001000": {"state": 264.0}, "0111100001": {"state": 481.0}, "0100000111": {"state": 263.0}, "0111101010": {"state": 490.0}, "1111101110": {"state": 1006.0}, "0100011000": {"state": 280.0}, "1110110101": {"state": 949.0}, "1101001111": {"state": 847.0}, "0110111001": {"state": 441.0}, "1111101000": {"state": 1000.0}, "1111111001": {"state": 1017.0}, "1111110111": {"state": 1015.0}, "0111101100": {"state": 492.0}, "0101001101": {"state": 333.0}, "0110110101": {"state": 437.0}, "0111100101": {"state": 485.0}, "0111110011": {"state": 499.0}, "0100001101": {"state": 269.0}, "1110101001": {"state": 937.0}, "1110111110": {"state": 958.0}, "1100010010": {"state": 786.0}, "1110110111": {"state": 951.0}, "1111101101": {"state": 1005.0}}, "histogram": null, "output_qubits_map": {"state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]}, "state_vector": null, "parsed_state_vector_states": null, "physical_qubits_map": {"state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]}, "num_shots": 8192} \ No newline at end of file +{ + "vendor_format_result": {}, + "counts": { + "1111011001": 1, + "0110101000": 1, + "1000000011": 1, + "0100010000": 1, + "1101011001": 1, + "1100010010": 1, + "0101000110": 1, + "1101000110": 1, + "1100000111": 1, + "0101001100": 1, + "1111010111": 1, + "1111001111": 1, + "1101001010": 4, + "1101000000": 2, + "0101001000": 2, + "1101001011": 1, + "1101001001": 3, + "1100011010": 3, + "0000001000": 1, + "1100011101": 4, + "1100001110": 4, + "1110110001": 7, + "0100000001": 7, + "0111100110": 2, + "0101001011": 4, + "0110110100": 7, + "0111100000": 3, + "0100010110": 1, + "1111110011": 7, + "1110100010": 16, + "1100010101": 1, + "1111100111": 12, + "0111110000": 1, + "0100011011": 3, + "0111101011": 2, + "0100010100": 6, + "0111000111": 1, + "1100001111": 31, + "0111101101": 8, + "0100011110": 1, + "0110101100": 10, + "0101000000": 1, + "1110111101": 33, + "1110101001": 12, + "1111101010": 1, + "1100010110": 11, + "0100000100": 31, + "0100001011": 92, + "1111110110": 129, + "0110100011": 102, + "0111100100": 3, + "1100010011": 3, + "1111100000": 18, + "0111100111": 5, + "0111111111": 139, + "1111100100": 124, + "1111110001": 108, + "1110100111": 10, + "0111110110": 33, + "0100001111": 31, + "1110110100": 4, + "1111111110": 84, + "0111110001": 20, + "1111111111": 337, + "1111111010": 126, + "1111110100": 688, + "0111110010": 510, + "0111111001": 642, + "0111111110": 686, + "1100001101": 5, + "0100010001": 1, + "1100000000": 44, + "0100000000": 16, + "1110101111": 5, + "1111101001": 10, + "0101001101": 6, + "0111101100": 14, + "1110110111": 13, + "1110100011": 3, + "0111111011": 32, + "1100000001": 200, + "0110111111": 228, + "0100001110": 41, + "0101010001": 1, + "1111101101": 20, + "0101001010": 3, + "0110100111": 6, + "0111101001": 95, + "0110110111": 131, + "1110100110": 53, + "1100000010": 41, + "1110101101": 9, + "1111100110": 19, + "0101000001": 14, + "0111110100": 155, + "0111111000": 178, + "1101000010": 2, + "1110111001": 290, + "0110111110": 25, + "0111111010": 65, + "1100000101": 48, + "0111111101": 46, + "1101000011": 4, + "1101001000": 9, + "1110100101": 18, + "1100000110": 53, + "0100010011": 2, + "0110110011": 15, + "0111110101": 209, + "0100001101": 10, + "0111110011": 60, + "1101001111": 3, + "1110110101": 1, + "0100011000": 10, + "1111111100": 31, + "1111110111": 8, + "1111111001": 316, + "1100001100": 12, + "1111101000": 15, + "0101000010": 14, + "1111100001": 21, + "0110100000": 10, + "1110101011": 5, + "1111110000": 47, + "1111110010": 47, + "0110111000": 10, + "0110101010": 1, + "0100000101": 14, + "1111111101": 171, + "1111111011": 3, + "1101000100": 8, + "1110111110": 10, + "1111101110": 15, + "0110101101": 3, + "1110101110": 4, + "0110100100": 14, + "1111101011": 10, + "0110101111": 53, + "1110110000": 5, + "1111100011": 9, + "1111111000": 6, + "0110110001": 33, + "0111111100": 71, + "0111110111": 118, + "1110100001": 8, + "0110111011": 2, + "0111101110": 25, + "0100001100": 2, + "0110111001": 20, + "1110101000": 10, + "1100001000": 15, + "0110100001": 4, + "1110110011": 6, + "0111101000": 27, + "0110111010": 19, + "1110100000": 3, + "1100001010": 14, + "1110110110": 18, + "1110100100": 7, + "1111110101": 26, + "1110111010": 50, + "1110110010": 7, + "0110000000": 1, + "1100000100": 4, + "0111100001": 17, + "0100001000": 286, + "0110110000": 5, + "0100000111": 38, + "0111101010": 10, + "0110110101": 15, + "1111101111": 8, + "0111100011": 6, + "1110111111": 9, + "1100000011": 1, + "1100010001": 5, + "1110111000": 6, + "0111100010": 3, + "0111101111": 4, + "0100011111": 10, + "1100001001": 6, + "1110111100": 20, + "1111100010": 1, + "0110111101": 16, + "0100010010": 2, + "1111100101": 3, + "1110101100": 2, + "0111000010": 4, + "1101011010": 1 + }, + "counts_lsb_right": true, + "parsed_states": { + "1111011001": { "state": 985.0 }, + "0110101000": { "state": 424.0 }, + "1000000011": { "state": 515.0 }, + "0100010000": { "state": 272.0 }, + "1101011001": { "state": 857.0 }, + "1100010010": { "state": 786.0 }, + "0101000110": { "state": 326.0 }, + "1101000110": { "state": 838.0 }, + "1100000111": { "state": 775.0 }, + "0101001100": { "state": 332.0 }, + "1111010111": { "state": 983.0 }, + "1111001111": { "state": 975.0 }, + "1101001010": { "state": 842.0 }, + "1101000000": { "state": 832.0 }, + "0101001000": { "state": 328.0 }, + "1101001011": { "state": 843.0 }, + "1101001001": { "state": 841.0 }, + "1100011010": { "state": 794.0 }, + "0000001000": { "state": 8.0 }, + "1100011101": { "state": 797.0 }, + "1100001110": { "state": 782.0 }, + "1110110001": { "state": 945.0 }, + "0100000001": { "state": 257.0 }, + "0111100110": { "state": 486.0 }, + "0101001011": { "state": 331.0 }, + "0110110100": { "state": 436.0 }, + "0111100000": { "state": 480.0 }, + "0100010110": { "state": 278.0 }, + "1111110011": { "state": 1011.0 }, + "1110100010": { "state": 930.0 }, + "1100010101": { "state": 789.0 }, + "1111100111": { "state": 999.0 }, + "0111110000": { "state": 496.0 }, + "0100011011": { "state": 283.0 }, + "0111101011": { "state": 491.0 }, + "0100010100": { "state": 276.0 }, + "0111000111": { "state": 455.0 }, + "1100001111": { "state": 783.0 }, + "0111101101": { "state": 493.0 }, + "0100011110": { "state": 286.0 }, + "0110101100": { "state": 428.0 }, + "0101000000": { "state": 320.0 }, + "1110111101": { "state": 957.0 }, + "1110101001": { "state": 937.0 }, + "1111101010": { "state": 1002.0 }, + "1100010110": { "state": 790.0 }, + "0100000100": { "state": 260.0 }, + "0100001011": { "state": 267.0 }, + "1111110110": { "state": 1014.0 }, + "0110100011": { "state": 419.0 }, + "0111100100": { "state": 484.0 }, + "1100010011": { "state": 787.0 }, + "1111100000": { "state": 992.0 }, + "0111100111": { "state": 487.0 }, + "0111111111": { "state": 511.0 }, + "1111100100": { "state": 996.0 }, + "1111110001": { "state": 1009.0 }, + "1110100111": { "state": 935.0 }, + "0111110110": { "state": 502.0 }, + "0100001111": { "state": 271.0 }, + "1110110100": { "state": 948.0 }, + "1111111110": { "state": 1022.0 }, + "0111110001": { "state": 497.0 }, + "1111111111": { "state": 1023.0 }, + "1111111010": { "state": 1018.0 }, + "1111110100": { "state": 1012.0 }, + "0111110010": { "state": 498.0 }, + "0111111001": { "state": 505.0 }, + "0111111110": { "state": 510.0 }, + "1100001101": { "state": 781.0 }, + "0100010001": { "state": 273.0 }, + "1100000000": { "state": 768.0 }, + "0100000000": { "state": 256.0 }, + "1110101111": { "state": 943.0 }, + "1111101001": { "state": 1001.0 }, + "0101001101": { "state": 333.0 }, + "0111101100": { "state": 492.0 }, + "1110110111": { "state": 951.0 }, + "1110100011": { "state": 931.0 }, + "0111111011": { "state": 507.0 }, + "1100000001": { "state": 769.0 }, + "0110111111": { "state": 447.0 }, + "0100001110": { "state": 270.0 }, + "0101010001": { "state": 337.0 }, + "1111101101": { "state": 1005.0 }, + "0101001010": { "state": 330.0 }, + "0110100111": { "state": 423.0 }, + "0111101001": { "state": 489.0 }, + "0110110111": { "state": 439.0 }, + "1110100110": { "state": 934.0 }, + "1100000010": { "state": 770.0 }, + "1110101101": { "state": 941.0 }, + "1111100110": { "state": 998.0 }, + "0101000001": { "state": 321.0 }, + "0111110100": { "state": 500.0 }, + "0111111000": { "state": 504.0 }, + "1101000010": { "state": 834.0 }, + "1110111001": { "state": 953.0 }, + "0110111110": { "state": 446.0 }, + "0111111010": { "state": 506.0 }, + "1100000101": { "state": 773.0 }, + "0111111101": { "state": 509.0 }, + "1101000011": { "state": 835.0 }, + "1101001000": { "state": 840.0 }, + "1110100101": { "state": 933.0 }, + "1100000110": { "state": 774.0 }, + "0100010011": { "state": 275.0 }, + "0110110011": { "state": 435.0 }, + "0111110101": { "state": 501.0 }, + "0100001101": { "state": 269.0 }, + "0111110011": { "state": 499.0 }, + "1101001111": { "state": 847.0 }, + "1110110101": { "state": 949.0 }, + "0100011000": { "state": 280.0 }, + "1111111100": { "state": 1020.0 }, + "1111110111": { "state": 1015.0 }, + "1111111001": { "state": 1017.0 }, + "1100001100": { "state": 780.0 }, + "1111101000": { "state": 1000.0 }, + "0101000010": { "state": 322.0 }, + "1111100001": { "state": 993.0 }, + "0110100000": { "state": 416.0 }, + "1110101011": { "state": 939.0 }, + "1111110000": { "state": 1008.0 }, + "1111110010": { "state": 1010.0 }, + "0110111000": { "state": 440.0 }, + "0110101010": { "state": 426.0 }, + "0100000101": { "state": 261.0 }, + "1111111101": { "state": 1021.0 }, + "1111111011": { "state": 1019.0 }, + "1101000100": { "state": 836.0 }, + "1110111110": { "state": 958.0 }, + "1111101110": { "state": 1006.0 }, + "0110101101": { "state": 429.0 }, + "1110101110": { "state": 942.0 }, + "0110100100": { "state": 420.0 }, + "1111101011": { "state": 1003.0 }, + "0110101111": { "state": 431.0 }, + "1110110000": { "state": 944.0 }, + "1111100011": { "state": 995.0 }, + "1111111000": { "state": 1016.0 }, + "0110110001": { "state": 433.0 }, + "0111111100": { "state": 508.0 }, + "0111110111": { "state": 503.0 }, + "1110100001": { "state": 929.0 }, + "0110111011": { "state": 443.0 }, + "0111101110": { "state": 494.0 }, + "0100001100": { "state": 268.0 }, + "0110111001": { "state": 441.0 }, + "1110101000": { "state": 936.0 }, + "1100001000": { "state": 776.0 }, + "0110100001": { "state": 417.0 }, + "1110110011": { "state": 947.0 }, + "0111101000": { "state": 488.0 }, + "0110111010": { "state": 442.0 }, + "1110100000": { "state": 928.0 }, + "1100001010": { "state": 778.0 }, + "1110110110": { "state": 950.0 }, + "1110100100": { "state": 932.0 }, + "1111110101": { "state": 1013.0 }, + "1110111010": { "state": 954.0 }, + "1110110010": { "state": 946.0 }, + "0110000000": { "state": 384.0 }, + "1100000100": { "state": 772.0 }, + "0111100001": { "state": 481.0 }, + "0100001000": { "state": 264.0 }, + "0110110000": { "state": 432.0 }, + "0100000111": { "state": 263.0 }, + "0111101010": { "state": 490.0 }, + "0110110101": { "state": 437.0 }, + "1111101111": { "state": 1007.0 }, + "0111100011": { "state": 483.0 }, + "1110111111": { "state": 959.0 }, + "1100000011": { "state": 771.0 }, + "1100010001": { "state": 785.0 }, + "1110111000": { "state": 952.0 }, + "0111100010": { "state": 482.0 }, + "0111101111": { "state": 495.0 }, + "0100011111": { "state": 287.0 }, + "1100001001": { "state": 777.0 }, + "1110111100": { "state": 956.0 }, + "1111100010": { "state": 994.0 }, + "0110111101": { "state": 445.0 }, + "0100010010": { "state": 274.0 }, + "1111100101": { "state": 997.0 }, + "1110101100": { "state": 940.0 }, + "0111000010": { "state": 450.0 }, + "1101011010": { "state": 858.0 } + }, + "histogram": null, + "output_qubits_map": { "state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] }, + "state_vector": null, + "parsed_state_vector_states": null, + "physical_qubits_map": { "state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] }, + "num_shots": 8192 +} diff --git a/algorithms/glued_trees/results/10-qubits/2n-10.json b/algorithms/glued_trees/results/10-qubits/2n-10.json index d2741bdf..e071a3e6 100644 --- a/algorithms/glued_trees/results/10-qubits/2n-10.json +++ b/algorithms/glued_trees/results/10-qubits/2n-10.json @@ -1 +1,206 @@ -{"vendor_format_result": {}, "counts": {"1111101110": 1, "1110111110": 1, "1110101110": 1, "0011111100": 1, "1111111000": 2, "1000011010": 3, "1000000100": 2, "1111111111": 2, "0100001000": 4, "0111111001": 6, "1111101011": 1, "1111100000": 1, "1100001000": 1, "0000011100": 5, "0001000101": 6, "1111110010": 1, "0100001010": 1, "1001000011": 3, "1001001000": 1, "0111111101": 2, "0111111010": 1, "1111111101": 3, "1111101100": 5, "1111111110": 756, "1111110011": 3, "1011110110": 44, "1000000001": 28, "0111110101": 34, "1000000010": 47, "1000001000": 18, "0111110011": 5, "1000001010": 7, "0011111111": 1, "1111111100": 340, "1011111110": 132, "0001000010": 1, "1111101001": 1, "0100000000": 19, "0000000011": 138, "0000000111": 166, "1001000111": 1, "1000001110": 73, "1000001011": 1, "1111111001": 30, "0000001010": 14, "1111100001": 1, "1110111100": 3, "1011101110": 1, "0111110111": 26, "0000000100": 128, "0000001110": 3, "0000000000": 4198, "0111111111": 38, "1000010101": 2, "1110100110": 3, "0011111011": 16, "1011100010": 1, "0000001011": 115, "0000011000": 13, "1000001001": 27, "1000000110": 38, "0000001100": 39, "1011110101": 6, "0000010000": 4, "1000001111": 7, "1111110100": 4, "1111110110": 211, "1001000000": 12, "0111111000": 8, "1111111011": 27, "0000000110": 13, "0111110110": 10, "0000001000": 1174, "1111110101": 6, "0011110110": 5, "0111111100": 1, "1111100011": 1, "0011110000": 5, "1000000101": 29, "0000001111": 28, "0001001110": 5, "1000001101": 32, "0111110100": 13, "0110110000": 1, "0111111011": 24, "1011111101": 1}, "counts_lsb_right": true, "parsed_states": {"1111101110": {"state": 1006.0}, "1110111110": {"state": 958.0}, "1110101110": {"state": 942.0}, "0011111100": {"state": 252.0}, "1111111000": {"state": 1016.0}, "1000011010": {"state": 538.0}, "1000000100": {"state": 516.0}, "1111111111": {"state": 1023.0}, "0100001000": {"state": 264.0}, "0111111001": {"state": 505.0}, "1111101011": {"state": 1003.0}, "1111100000": {"state": 992.0}, "1100001000": {"state": 776.0}, "0000011100": {"state": 28.0}, "0001000101": {"state": 69.0}, "1111110010": {"state": 1010.0}, "0100001010": {"state": 266.0}, "1001000011": {"state": 579.0}, "1001001000": {"state": 584.0}, "0111111101": {"state": 509.0}, "0111111010": {"state": 506.0}, "1111111101": {"state": 1021.0}, "1111101100": {"state": 1004.0}, "1111111110": {"state": 1022.0}, "1111110011": {"state": 1011.0}, "1011110110": {"state": 758.0}, "1000000001": {"state": 513.0}, "0111110101": {"state": 501.0}, "1000000010": {"state": 514.0}, "1000001000": {"state": 520.0}, "0111110011": {"state": 499.0}, "1000001010": {"state": 522.0}, "0011111111": {"state": 255.0}, "1111111100": {"state": 1020.0}, "1011111110": {"state": 766.0}, "0001000010": {"state": 66.0}, "1111101001": {"state": 1001.0}, "0100000000": {"state": 256.0}, "0000000011": {"state": 3.0}, "0000000111": {"state": 7.0}, "1001000111": {"state": 583.0}, "1000001110": {"state": 526.0}, "1000001011": {"state": 523.0}, "1111111001": {"state": 1017.0}, "0000001010": {"state": 10.0}, "1111100001": {"state": 993.0}, "1110111100": {"state": 956.0}, "1011101110": {"state": 750.0}, "0111110111": {"state": 503.0}, "0000000100": {"state": 4.0}, "0000001110": {"state": 14.0}, "0000000000": {"state": 0.0}, "0111111111": {"state": 511.0}, "1000010101": {"state": 533.0}, "1110100110": {"state": 934.0}, "0011111011": {"state": 251.0}, "1011100010": {"state": 738.0}, "0000001011": {"state": 11.0}, "0000011000": {"state": 24.0}, "1000001001": {"state": 521.0}, "1000000110": {"state": 518.0}, "0000001100": {"state": 12.0}, "1011110101": {"state": 757.0}, "0000010000": {"state": 16.0}, "1000001111": {"state": 527.0}, "1111110100": {"state": 1012.0}, "1111110110": {"state": 1014.0}, "1001000000": {"state": 576.0}, "0111111000": {"state": 504.0}, "1111111011": {"state": 1019.0}, "0000000110": {"state": 6.0}, "0111110110": {"state": 502.0}, "0000001000": {"state": 8.0}, "1111110101": {"state": 1013.0}, "0011110110": {"state": 246.0}, "0111111100": {"state": 508.0}, "1111100011": {"state": 995.0}, "0011110000": {"state": 240.0}, "1000000101": {"state": 517.0}, "0000001111": {"state": 15.0}, "0001001110": {"state": 78.0}, "1000001101": {"state": 525.0}, "0111110100": {"state": 500.0}, "0110110000": {"state": 432.0}, "0111111011": {"state": 507.0}, "1011111101": {"state": 765.0}}, "histogram": null, "output_qubits_map": {"state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]}, "state_vector": null, "parsed_state_vector_states": null, "physical_qubits_map": {"state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]}, "num_shots": 8192} \ No newline at end of file +{ + "vendor_format_result": {}, + "counts": { + "1111110000": 1, + "1110111100": 2, + "1110101110": 1, + "0111111101": 2, + "1000000000": 2, + "1110111110": 1, + "1111100010": 1, + "0111110000": 3, + "0011110000": 2, + "1111101110": 1, + "1000010110": 1, + "0100001011": 1, + "0000001110": 1, + "0011100100": 1, + "0000000001": 1, + "1111101011": 2, + "0111111010": 4, + "1100000101": 3, + "1000010101": 1, + "1110100110": 2, + "1100001000": 1, + "1000001010": 9, + "0010111110": 1, + "0001000101": 4, + "0000001101": 3, + "0111111000": 3, + "1011111101": 2, + "0111111011": 22, + "0011111110": 1, + "0111110110": 8, + "1010110011": 1, + "0000011100": 6, + "1100000010": 1, + "1000011010": 4, + "0110110010": 1, + "1111100110": 3, + "1000001110": 90, + "0000000111": 180, + "1111111011": 23, + "0000000100": 117, + "1001000000": 14, + "1111110110": 183, + "0111110111": 35, + "1111101100": 18, + "1111111101": 2, + "0111111111": 30, + "0000000000": 4237, + "1111111110": 742, + "1111110011": 7, + "1000001101": 36, + "0100001000": 6, + "1100000110": 2, + "1000000010": 72, + "0111110101": 54, + "1000001000": 17, + "0000001010": 9, + "0111110011": 3, + "1111111100": 334, + "0111110100": 9, + "0011110100": 1, + "0000000011": 138, + "1011110110": 34, + "1000000001": 24, + "0111111100": 5, + "0011110110": 3, + "1111110101": 7, + "0000001000": 1104, + "1011110101": 15, + "1000000110": 38, + "0000001100": 26, + "0000000110": 9, + "0001001110": 3, + "1000000101": 37, + "0000001111": 24, + "1011111110": 142, + "0001000010": 3, + "0100000000": 28, + "1000001001": 27, + "1000001011": 1, + "1111111001": 26, + "0111111001": 2, + "0011111011": 16, + "1111111010": 2, + "0001000110": 1, + "1111110100": 3, + "1000000011": 3, + "0000001011": 108, + "0000011000": 19, + "0111101000": 2, + "1001000011": 3, + "1110100001": 1, + "0110110000": 1, + "1011101110": 1, + "1000011101": 1, + "1000001111": 9, + "0000010000": 2 + }, + "counts_lsb_right": true, + "parsed_states": { + "1111110000": { "state": 1008.0 }, + "1110111100": { "state": 956.0 }, + "1110101110": { "state": 942.0 }, + "0111111101": { "state": 509.0 }, + "1000000000": { "state": 512.0 }, + "1110111110": { "state": 958.0 }, + "1111100010": { "state": 994.0 }, + "0111110000": { "state": 496.0 }, + "0011110000": { "state": 240.0 }, + "1111101110": { "state": 1006.0 }, + "1000010110": { "state": 534.0 }, + "0100001011": { "state": 267.0 }, + "0000001110": { "state": 14.0 }, + "0011100100": { "state": 228.0 }, + "0000000001": { "state": 1.0 }, + "1111101011": { "state": 1003.0 }, + "0111111010": { "state": 506.0 }, + "1100000101": { "state": 773.0 }, + "1000010101": { "state": 533.0 }, + "1110100110": { "state": 934.0 }, + "1100001000": { "state": 776.0 }, + "1000001010": { "state": 522.0 }, + "0010111110": { "state": 190.0 }, + "0001000101": { "state": 69.0 }, + "0000001101": { "state": 13.0 }, + "0111111000": { "state": 504.0 }, + "1011111101": { "state": 765.0 }, + "0111111011": { "state": 507.0 }, + "0011111110": { "state": 254.0 }, + "0111110110": { "state": 502.0 }, + "1010110011": { "state": 691.0 }, + "0000011100": { "state": 28.0 }, + "1100000010": { "state": 770.0 }, + "1000011010": { "state": 538.0 }, + "0110110010": { "state": 434.0 }, + "1111100110": { "state": 998.0 }, + "1000001110": { "state": 526.0 }, + "0000000111": { "state": 7.0 }, + "1111111011": { "state": 1019.0 }, + "0000000100": { "state": 4.0 }, + "1001000000": { "state": 576.0 }, + "1111110110": { "state": 1014.0 }, + "0111110111": { "state": 503.0 }, + "1111101100": { "state": 1004.0 }, + "1111111101": { "state": 1021.0 }, + "0111111111": { "state": 511.0 }, + "0000000000": { "state": 0.0 }, + "1111111110": { "state": 1022.0 }, + "1111110011": { "state": 1011.0 }, + "1000001101": { "state": 525.0 }, + "0100001000": { "state": 264.0 }, + "1100000110": { "state": 774.0 }, + "1000000010": { "state": 514.0 }, + "0111110101": { "state": 501.0 }, + "1000001000": { "state": 520.0 }, + "0000001010": { "state": 10.0 }, + "0111110011": { "state": 499.0 }, + "1111111100": { "state": 1020.0 }, + "0111110100": { "state": 500.0 }, + "0011110100": { "state": 244.0 }, + "0000000011": { "state": 3.0 }, + "1011110110": { "state": 758.0 }, + "1000000001": { "state": 513.0 }, + "0111111100": { "state": 508.0 }, + "0011110110": { "state": 246.0 }, + "1111110101": { "state": 1013.0 }, + "0000001000": { "state": 8.0 }, + "1011110101": { "state": 757.0 }, + "1000000110": { "state": 518.0 }, + "0000001100": { "state": 12.0 }, + "0000000110": { "state": 6.0 }, + "0001001110": { "state": 78.0 }, + "1000000101": { "state": 517.0 }, + "0000001111": { "state": 15.0 }, + "1011111110": { "state": 766.0 }, + "0001000010": { "state": 66.0 }, + "0100000000": { "state": 256.0 }, + "1000001001": { "state": 521.0 }, + "1000001011": { "state": 523.0 }, + "1111111001": { "state": 1017.0 }, + "0111111001": { "state": 505.0 }, + "0011111011": { "state": 251.0 }, + "1111111010": { "state": 1018.0 }, + "0001000110": { "state": 70.0 }, + "1111110100": { "state": 1012.0 }, + "1000000011": { "state": 515.0 }, + "0000001011": { "state": 11.0 }, + "0000011000": { "state": 24.0 }, + "0111101000": { "state": 488.0 }, + "1001000011": { "state": 579.0 }, + "1110100001": { "state": 929.0 }, + "0110110000": { "state": 432.0 }, + "1011101110": { "state": 750.0 }, + "1000011101": { "state": 541.0 }, + "1000001111": { "state": 527.0 }, + "0000010000": { "state": 16.0 } + }, + "histogram": null, + "output_qubits_map": { "state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] }, + "state_vector": null, + "parsed_state_vector_states": null, + "physical_qubits_map": { "state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] }, + "num_shots": 8192 +} diff --git a/algorithms/glued_trees/results/10-qubits/2n-12.json b/algorithms/glued_trees/results/10-qubits/2n-12.json index ef49d009..5e0c2f11 100644 --- a/algorithms/glued_trees/results/10-qubits/2n-12.json +++ b/algorithms/glued_trees/results/10-qubits/2n-12.json @@ -1 +1,116 @@ -{"vendor_format_result": {}, "counts": {"0011111100": 1, "1110100110": 1, "0011111000": 1, "1000000000": 1, "1111111010": 1, "1011110101": 1, "1000000011": 2, "0000000110": 2, "0000011000": 3, "0000001101": 2, "0001000101": 1, "0001001110": 3, "0111101110": 1, "1111111011": 4, "0000010000": 1, "1111110000": 2, "1000010001": 1, "0000000100": 5, "0111111100": 1, "1000000001": 15, "0111110111": 6, "1111111101": 11, "0000001010": 2, "1000001000": 4, "0111110101": 11, "1000000010": 42, "1111111100": 130, "0000001100": 2, "1001000000": 1, "0111111000": 12, "1000001001": 2, "1000001110": 4, "0000000111": 40, "0000000011": 194, "1111110101": 4, "0000001011": 44, "0111111110": 41, "0000000000": 6622, "0111111111": 13, "1011111110": 114, "0100000000": 9, "0111111011": 7, "0000011100": 3, "1111111110": 461, "1000000110": 322, "1000000101": 28, "1000001011": 1, "1011111101": 4, "0001000010": 1, "0111111010": 2, "0111111101": 1, "1111110110": 1, "0000001110": 1, "0011111011": 3}, "counts_lsb_right": true, "parsed_states": {"0011111100": {"state": 252.0}, "1110100110": {"state": 934.0}, "0011111000": {"state": 248.0}, "1000000000": {"state": 512.0}, "1111111010": {"state": 1018.0}, "1011110101": {"state": 757.0}, "1000000011": {"state": 515.0}, "0000000110": {"state": 6.0}, "0000011000": {"state": 24.0}, "0000001101": {"state": 13.0}, "0001000101": {"state": 69.0}, "0001001110": {"state": 78.0}, "0111101110": {"state": 494.0}, "1111111011": {"state": 1019.0}, "0000010000": {"state": 16.0}, "1111110000": {"state": 1008.0}, "1000010001": {"state": 529.0}, "0000000100": {"state": 4.0}, "0111111100": {"state": 508.0}, "1000000001": {"state": 513.0}, "0111110111": {"state": 503.0}, "1111111101": {"state": 1021.0}, "0000001010": {"state": 10.0}, "1000001000": {"state": 520.0}, "0111110101": {"state": 501.0}, "1000000010": {"state": 514.0}, "1111111100": {"state": 1020.0}, "0000001100": {"state": 12.0}, "1001000000": {"state": 576.0}, "0111111000": {"state": 504.0}, "1000001001": {"state": 521.0}, "1000001110": {"state": 526.0}, "0000000111": {"state": 7.0}, "0000000011": {"state": 3.0}, "1111110101": {"state": 1013.0}, "0000001011": {"state": 11.0}, "0111111110": {"state": 510.0}, "0000000000": {"state": 0.0}, "0111111111": {"state": 511.0}, "1011111110": {"state": 766.0}, "0100000000": {"state": 256.0}, "0111111011": {"state": 507.0}, "0000011100": {"state": 28.0}, "1111111110": {"state": 1022.0}, "1000000110": {"state": 518.0}, "1000000101": {"state": 517.0}, "1000001011": {"state": 523.0}, "1011111101": {"state": 765.0}, "0001000010": {"state": 66.0}, "0111111010": {"state": 506.0}, "0111111101": {"state": 509.0}, "1111110110": {"state": 1014.0}, "0000001110": {"state": 14.0}, "0011111011": {"state": 251.0}}, "histogram": null, "output_qubits_map": {"state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]}, "state_vector": null, "parsed_state_vector_states": null, "physical_qubits_map": {"state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]}, "num_shots": 8192} \ No newline at end of file +{ + "vendor_format_result": {}, + "counts": { + "1011110101": 1, + "1111110010": 1, + "0111110000": 1, + "0000001100": 1, + "0111110100": 2, + "0000001110": 1, + "1111111011": 2, + "0111110111": 4, + "1111111101": 5, + "1001000000": 4, + "0111111000": 13, + "0111111011": 3, + "1100001001": 1, + "1111111010": 2, + "0000000011": 170, + "1000001110": 9, + "0000000111": 36, + "1111111000": 2, + "0111111111": 14, + "1001001011": 1, + "0000000000": 6645, + "1011111110": 93, + "0100000000": 10, + "1111111100": 127, + "1111100010": 1, + "0000011100": 3, + "1000000101": 25, + "1111111110": 469, + "1000000110": 303, + "0111110011": 1, + "1000001000": 3, + "1000000010": 58, + "0111110101": 17, + "1111110111": 1, + "1000000001": 10, + "0000000110": 2, + "0011111000": 2, + "0000011000": 2, + "0111101110": 2, + "0001001110": 7, + "0001000101": 1, + "0000001101": 5, + "1000001001": 6, + "0011111011": 1, + "0111111001": 1, + "1011111101": 7, + "1000001010": 1, + "0000000100": 11, + "0111111110": 40, + "0000001011": 58, + "1111110101": 7 + }, + "counts_lsb_right": true, + "parsed_states": { + "1011110101": { "state": 757.0 }, + "1111110010": { "state": 1010.0 }, + "0111110000": { "state": 496.0 }, + "0000001100": { "state": 12.0 }, + "0111110100": { "state": 500.0 }, + "0000001110": { "state": 14.0 }, + "1111111011": { "state": 1019.0 }, + "0111110111": { "state": 503.0 }, + "1111111101": { "state": 1021.0 }, + "1001000000": { "state": 576.0 }, + "0111111000": { "state": 504.0 }, + "0111111011": { "state": 507.0 }, + "1100001001": { "state": 777.0 }, + "1111111010": { "state": 1018.0 }, + "0000000011": { "state": 3.0 }, + "1000001110": { "state": 526.0 }, + "0000000111": { "state": 7.0 }, + "1111111000": { "state": 1016.0 }, + "0111111111": { "state": 511.0 }, + "1001001011": { "state": 587.0 }, + "0000000000": { "state": 0.0 }, + "1011111110": { "state": 766.0 }, + "0100000000": { "state": 256.0 }, + "1111111100": { "state": 1020.0 }, + "1111100010": { "state": 994.0 }, + "0000011100": { "state": 28.0 }, + "1000000101": { "state": 517.0 }, + "1111111110": { "state": 1022.0 }, + "1000000110": { "state": 518.0 }, + "0111110011": { "state": 499.0 }, + "1000001000": { "state": 520.0 }, + "1000000010": { "state": 514.0 }, + "0111110101": { "state": 501.0 }, + "1111110111": { "state": 1015.0 }, + "1000000001": { "state": 513.0 }, + "0000000110": { "state": 6.0 }, + "0011111000": { "state": 248.0 }, + "0000011000": { "state": 24.0 }, + "0111101110": { "state": 494.0 }, + "0001001110": { "state": 78.0 }, + "0001000101": { "state": 69.0 }, + "0000001101": { "state": 13.0 }, + "1000001001": { "state": 521.0 }, + "0011111011": { "state": 251.0 }, + "0111111001": { "state": 505.0 }, + "1011111101": { "state": 765.0 }, + "1000001010": { "state": 522.0 }, + "0000000100": { "state": 4.0 }, + "0111111110": { "state": 510.0 }, + "0000001011": { "state": 11.0 }, + "1111110101": { "state": 1013.0 } + }, + "histogram": null, + "output_qubits_map": { "state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] }, + "state_vector": null, + "parsed_state_vector_states": null, + "physical_qubits_map": { "state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] }, + "num_shots": 8192 +} diff --git a/algorithms/glued_trees/results/10-qubits/2n-2.json b/algorithms/glued_trees/results/10-qubits/2n-2.json index 69951117..d576d991 100644 --- a/algorithms/glued_trees/results/10-qubits/2n-2.json +++ b/algorithms/glued_trees/results/10-qubits/2n-2.json @@ -1 +1,376 @@ -{"vendor_format_result": {}, "counts": {"0001000111": 1, "0011111010": 1, "0011111000": 1, "1110101101": 1, "0100000011": 1, "1110111000": 1, "0100001011": 1, "0000001100": 1, "1111101010": 1, "0101000110": 1, "1001001111": 1, "0000001001": 1, "1111100011": 1, "0011101011": 1, "0010111110": 1, "1110111100": 1, "0100010111": 2, "0011111100": 3, "1111100001": 7, "1101000100": 1, "0000000001": 3, "1111101110": 1, "1100010110": 1, "0110111100": 3, "1110101010": 5, "1011110001": 1, "1111100010": 3, "1110111010": 1, "1110110010": 1, "1111101011": 1, "1011111100": 1, "1001001011": 1, "1110110111": 4, "0110100011": 10, "1111110110": 418, "1100001000": 19, "0000000101": 1, "1000001100": 10, "1111111100": 414, "1100001110": 49, "0111101000": 6, "0111111111": 115, "1111100100": 2, "1111111111": 27, "1000001011": 9, "0100001100": 5, "1110111110": 24, "0110101000": 28, "0100001111": 19, "0111110110": 240, "0110110110": 11, "0111101001": 17, "0110101110": 2, "0000000000": 272, "1011110010": 28, "0110111000": 2, "1111110010": 76, "1110110100": 4, "1000001001": 191, "0101001110": 3, "1111110011": 214, "1111111110": 1514, "0110100101": 2, "1011110101": 1, "0101001101": 1, "0111101100": 2, "1111101100": 4, "0111111010": 212, "1100000101": 33, "0111110101": 299, "1000001101": 1, "0111110010": 15, "1110100010": 4, "1011110000": 2, "1100001101": 7, "0111111110": 189, "0100000110": 11, "0000000111": 343, "0111110000": 124, "1110100011": 1, "0111111011": 87, "0101001001": 2, "0111110001": 27, "1011111101": 22, "0100000000": 334, "1111111010": 115, "0100000010": 4, "1111110100": 167, "0110110001": 1, "1111111000": 37, "0111111100": 63, "1000000001": 407, "1111111001": 67, "1111110111": 78, "0011110000": 78, "0011111011": 13, "1111110101": 119, "0011110110": 5, "0000001000": 1, "0111111001": 161, "0111110111": 23, "0000001110": 4, "1000000110": 45, "1000000101": 79, "0000001111": 5, "1010111000": 1, "1000001010": 118, "1011111010": 8, "1111110001": 78, "1100001010": 2, "1110110110": 8, "0011100111": 1, "1011110110": 18, "1100000110": 2, "1000000010": 5, "1110100110": 1, "1000001000": 12, "1000010010": 9, "1100000001": 28, "0110110010": 5, "0111101011": 2, "1111110000": 7, "0000000010": 51, "1000000011": 4, "0111111101": 23, "1011111000": 5, "0111110100": 24, "0011110100": 14, "0110101011": 3, "1000011110": 4, "0000000100": 261, "1110101001": 16, "1111101111": 2, "0111100011": 7, "0000010011": 1, "1011111110": 124, "0001000000": 1, "0110101111": 11, "1110110000": 10, "1111111101": 71, "1111111011": 30, "0000010111": 1, "1100001001": 10, "0111111000": 11, "0111100100": 4, "1110110101": 12, "1000000000": 1, "0110111001": 1, "0111100101": 6, "0111110011": 23, "0100001010": 8, "1110111111": 1, "1000001111": 17, "1101000111": 1, "1011101010": 2, "0011110101": 4, "0111100110": 16, "0000001101": 1, "1110101111": 1, "0000000011": 5, "0111001010": 2, "1100000111": 2, "1011100101": 1, "0110101100": 12, "0000000110": 3, "1110100101": 4, "1101000011": 1, "0011110011": 24, "1111101000": 1, "0100000111": 3, "0100001000": 44, "1100000100": 10, "0111101010": 3, "0111100001": 4, "0110110000": 2, "0001001101": 1, "1111101101": 2, "0110110101": 1}, "counts_lsb_right": true, "parsed_states": {"0001000111": {"state": 71.0}, "0011111010": {"state": 250.0}, "0011111000": {"state": 248.0}, "1110101101": {"state": 941.0}, "0100000011": {"state": 259.0}, "1110111000": {"state": 952.0}, "0100001011": {"state": 267.0}, "0000001100": {"state": 12.0}, "1111101010": {"state": 1002.0}, "0101000110": {"state": 326.0}, "1001001111": {"state": 591.0}, "0000001001": {"state": 9.0}, "1111100011": {"state": 995.0}, "0011101011": {"state": 235.0}, "0010111110": {"state": 190.0}, "1110111100": {"state": 956.0}, "0100010111": {"state": 279.0}, "0011111100": {"state": 252.0}, "1111100001": {"state": 993.0}, "1101000100": {"state": 836.0}, "0000000001": {"state": 1.0}, "1111101110": {"state": 1006.0}, "1100010110": {"state": 790.0}, "0110111100": {"state": 444.0}, "1110101010": {"state": 938.0}, "1011110001": {"state": 753.0}, "1111100010": {"state": 994.0}, "1110111010": {"state": 954.0}, "1110110010": {"state": 946.0}, "1111101011": {"state": 1003.0}, "1011111100": {"state": 764.0}, "1001001011": {"state": 587.0}, "1110110111": {"state": 951.0}, "0110100011": {"state": 419.0}, "1111110110": {"state": 1014.0}, "1100001000": {"state": 776.0}, "0000000101": {"state": 5.0}, "1000001100": {"state": 524.0}, "1111111100": {"state": 1020.0}, "1100001110": {"state": 782.0}, "0111101000": {"state": 488.0}, "0111111111": {"state": 511.0}, "1111100100": {"state": 996.0}, "1111111111": {"state": 1023.0}, "1000001011": {"state": 523.0}, "0100001100": {"state": 268.0}, "1110111110": {"state": 958.0}, "0110101000": {"state": 424.0}, "0100001111": {"state": 271.0}, "0111110110": {"state": 502.0}, "0110110110": {"state": 438.0}, "0111101001": {"state": 489.0}, "0110101110": {"state": 430.0}, "0000000000": {"state": 0.0}, "1011110010": {"state": 754.0}, "0110111000": {"state": 440.0}, "1111110010": {"state": 1010.0}, "1110110100": {"state": 948.0}, "1000001001": {"state": 521.0}, "0101001110": {"state": 334.0}, "1111110011": {"state": 1011.0}, "1111111110": {"state": 1022.0}, "0110100101": {"state": 421.0}, "1011110101": {"state": 757.0}, "0101001101": {"state": 333.0}, "0111101100": {"state": 492.0}, "1111101100": {"state": 1004.0}, "0111111010": {"state": 506.0}, "1100000101": {"state": 773.0}, "0111110101": {"state": 501.0}, "1000001101": {"state": 525.0}, "0111110010": {"state": 498.0}, "1110100010": {"state": 930.0}, "1011110000": {"state": 752.0}, "1100001101": {"state": 781.0}, "0111111110": {"state": 510.0}, "0100000110": {"state": 262.0}, "0000000111": {"state": 7.0}, "0111110000": {"state": 496.0}, "1110100011": {"state": 931.0}, "0111111011": {"state": 507.0}, "0101001001": {"state": 329.0}, "0111110001": {"state": 497.0}, "1011111101": {"state": 765.0}, "0100000000": {"state": 256.0}, "1111111010": {"state": 1018.0}, "0100000010": {"state": 258.0}, "1111110100": {"state": 1012.0}, "0110110001": {"state": 433.0}, "1111111000": {"state": 1016.0}, "0111111100": {"state": 508.0}, "1000000001": {"state": 513.0}, "1111111001": {"state": 1017.0}, "1111110111": {"state": 1015.0}, "0011110000": {"state": 240.0}, "0011111011": {"state": 251.0}, "1111110101": {"state": 1013.0}, "0011110110": {"state": 246.0}, "0000001000": {"state": 8.0}, "0111111001": {"state": 505.0}, "0111110111": {"state": 503.0}, "0000001110": {"state": 14.0}, "1000000110": {"state": 518.0}, "1000000101": {"state": 517.0}, "0000001111": {"state": 15.0}, "1010111000": {"state": 696.0}, "1000001010": {"state": 522.0}, "1011111010": {"state": 762.0}, "1111110001": {"state": 1009.0}, "1100001010": {"state": 778.0}, "1110110110": {"state": 950.0}, "0011100111": {"state": 231.0}, "1011110110": {"state": 758.0}, "1100000110": {"state": 774.0}, "1000000010": {"state": 514.0}, "1110100110": {"state": 934.0}, "1000001000": {"state": 520.0}, "1000010010": {"state": 530.0}, "1100000001": {"state": 769.0}, "0110110010": {"state": 434.0}, "0111101011": {"state": 491.0}, "1111110000": {"state": 1008.0}, "0000000010": {"state": 2.0}, "1000000011": {"state": 515.0}, "0111111101": {"state": 509.0}, "1011111000": {"state": 760.0}, "0111110100": {"state": 500.0}, "0011110100": {"state": 244.0}, "0110101011": {"state": 427.0}, "1000011110": {"state": 542.0}, "0000000100": {"state": 4.0}, "1110101001": {"state": 937.0}, "1111101111": {"state": 1007.0}, "0111100011": {"state": 483.0}, "0000010011": {"state": 19.0}, "1011111110": {"state": 766.0}, "0001000000": {"state": 64.0}, "0110101111": {"state": 431.0}, "1110110000": {"state": 944.0}, "1111111101": {"state": 1021.0}, "1111111011": {"state": 1019.0}, "0000010111": {"state": 23.0}, "1100001001": {"state": 777.0}, "0111111000": {"state": 504.0}, "0111100100": {"state": 484.0}, "1110110101": {"state": 949.0}, "1000000000": {"state": 512.0}, "0110111001": {"state": 441.0}, "0111100101": {"state": 485.0}, "0111110011": {"state": 499.0}, "0100001010": {"state": 266.0}, "1110111111": {"state": 959.0}, "1000001111": {"state": 527.0}, "1101000111": {"state": 839.0}, "1011101010": {"state": 746.0}, "0011110101": {"state": 245.0}, "0111100110": {"state": 486.0}, "0000001101": {"state": 13.0}, "1110101111": {"state": 943.0}, "0000000011": {"state": 3.0}, "0111001010": {"state": 458.0}, "1100000111": {"state": 775.0}, "1011100101": {"state": 741.0}, "0110101100": {"state": 428.0}, "0000000110": {"state": 6.0}, "1110100101": {"state": 933.0}, "1101000011": {"state": 835.0}, "0011110011": {"state": 243.0}, "1111101000": {"state": 1000.0}, "0100000111": {"state": 263.0}, "0100001000": {"state": 264.0}, "1100000100": {"state": 772.0}, "0111101010": {"state": 490.0}, "0111100001": {"state": 481.0}, "0110110000": {"state": 432.0}, "0001001101": {"state": 77.0}, "1111101101": {"state": 1005.0}, "0110110101": {"state": 437.0}}, "histogram": null, "output_qubits_map": {"state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]}, "state_vector": null, "parsed_state_vector_states": null, "physical_qubits_map": {"state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]}, "num_shots": 8192} \ No newline at end of file +{ + "vendor_format_result": {}, + "counts": { + "0011111001": 1, + "1111100000": 1, + "0101001110": 1, + "0110100010": 1, + "0100000011": 1, + "0100010111": 1, + "1111101011": 1, + "1110110111": 2, + "0000010011": 1, + "1100010110": 1, + "1111100111": 2, + "0000000110": 3, + "1001001000": 1, + "0111101100": 1, + "0101001101": 1, + "1011110101": 3, + "1000000010": 4, + "1110111111": 2, + "0011111000": 2, + "1100011110": 1, + "1110101101": 1, + "1110100101": 6, + "1110101010": 3, + "1110100111": 1, + "1110110010": 1, + "1110111010": 2, + "0110111110": 1, + "0000000101": 2, + "0110110011": 1, + "1111101010": 2, + "0011111010": 2, + "1111100001": 6, + "1101000100": 1, + "1111101110": 1, + "0101000100": 1, + "1011111010": 6, + "0100000110": 10, + "1010111100": 1, + "1100001101": 4, + "0111111110": 205, + "0100000000": 354, + "1110111110": 16, + "0110101000": 23, + "1111101100": 7, + "1110100011": 2, + "0111111011": 100, + "0110101011": 2, + "0011110000": 84, + "1111110001": 89, + "0111110000": 141, + "0100001111": 12, + "0111110110": 238, + "1111101001": 2, + "0000011111": 1, + "1011110000": 2, + "1110100010": 4, + "0000001101": 2, + "0111100110": 12, + "1111110101": 129, + "0000001000": 3, + "0011110110": 6, + "0000011000": 3, + "0110110010": 8, + "0111111001": 158, + "0100001100": 3, + "1101001011": 1, + "1011111110": 125, + "1100010100": 1, + "0111110101": 301, + "1000011000": 1, + "0100001001": 2, + "0000000010": 35, + "1000000011": 6, + "1011110110": 25, + "1100001010": 1, + "1110110110": 7, + "1111111001": 86, + "1111110111": 73, + "1000000001": 397, + "0111111101": 10, + "1011111000": 2, + "0111111010": 183, + "1100000101": 28, + "1000000101": 78, + "0000001111": 9, + "0110111100": 2, + "1111111110": 1546, + "1111110011": 205, + "1011111101": 16, + "0111110001": 31, + "0011110100": 11, + "0101000001": 1, + "0111110100": 32, + "1111111100": 401, + "1000001100": 19, + "1110110000": 19, + "0110101111": 13, + "0000000111": 340, + "1111111101": 78, + "1111111011": 33, + "1000010010": 9, + "1100000001": 27, + "1000001000": 15, + "0000000000": 267, + "0111101001": 19, + "1011110010": 23, + "0111111111": 111, + "1111100100": 4, + "1110110100": 1, + "1000001001": 185, + "1111110110": 417, + "0110100011": 5, + "0011111110": 1, + "1000001011": 9, + "1111111111": 19, + "1110110001": 1, + "1100001110": 48, + "0110111000": 1, + "1111110010": 75, + "0110101100": 13, + "0111111000": 24, + "0111100100": 2, + "0110110001": 2, + "0111111100": 59, + "1111111000": 26, + "0110110110": 6, + "1100001000": 13, + "1000001111": 14, + "0100011011": 2, + "0111100011": 6, + "1111111010": 117, + "1111101000": 3, + "0011110011": 19, + "0111101000": 3, + "0110100110": 2, + "0000011100": 2, + "1110101011": 1, + "1111110000": 10, + "0111100111": 1, + "0111100000": 1, + "0100001010": 9, + "0111110011": 17, + "0111100101": 6, + "1000001010": 121, + "0100010100": 3, + "0011111011": 11, + "1011101110": 1, + "0000000001": 7, + "1000000110": 38, + "1011101001": 1, + "0000000011": 5, + "1011101010": 3, + "0011110101": 3, + "1011110100": 2, + "0111101111": 3, + "0111110010": 25, + "1000001101": 3, + "1111110100": 183, + "0100000010": 5, + "0000010111": 1, + "1100001001": 14, + "0000000100": 245, + "1110101001": 9, + "0100001011": 1, + "0011111100": 1, + "1110110101": 18, + "0100000111": 1, + "0100001000": 40, + "1100000100": 13, + "0110110000": 2, + "0111101010": 1, + "0111100001": 3, + "1000010110": 1, + "1110100110": 4, + "1111101101": 5, + "1110111000": 1, + "0110100001": 2, + "0110111011": 1, + "1110100001": 1, + "0111110111": 11, + "0000001110": 1 + }, + "counts_lsb_right": true, + "parsed_states": { + "0011111001": { "state": 249.0 }, + "1111100000": { "state": 992.0 }, + "0101001110": { "state": 334.0 }, + "0110100010": { "state": 418.0 }, + "0100000011": { "state": 259.0 }, + "0100010111": { "state": 279.0 }, + "1111101011": { "state": 1003.0 }, + "1110110111": { "state": 951.0 }, + "0000010011": { "state": 19.0 }, + "1100010110": { "state": 790.0 }, + "1111100111": { "state": 999.0 }, + "0000000110": { "state": 6.0 }, + "1001001000": { "state": 584.0 }, + "0111101100": { "state": 492.0 }, + "0101001101": { "state": 333.0 }, + "1011110101": { "state": 757.0 }, + "1000000010": { "state": 514.0 }, + "1110111111": { "state": 959.0 }, + "0011111000": { "state": 248.0 }, + "1100011110": { "state": 798.0 }, + "1110101101": { "state": 941.0 }, + "1110100101": { "state": 933.0 }, + "1110101010": { "state": 938.0 }, + "1110100111": { "state": 935.0 }, + "1110110010": { "state": 946.0 }, + "1110111010": { "state": 954.0 }, + "0110111110": { "state": 446.0 }, + "0000000101": { "state": 5.0 }, + "0110110011": { "state": 435.0 }, + "1111101010": { "state": 1002.0 }, + "0011111010": { "state": 250.0 }, + "1111100001": { "state": 993.0 }, + "1101000100": { "state": 836.0 }, + "1111101110": { "state": 1006.0 }, + "0101000100": { "state": 324.0 }, + "1011111010": { "state": 762.0 }, + "0100000110": { "state": 262.0 }, + "1010111100": { "state": 700.0 }, + "1100001101": { "state": 781.0 }, + "0111111110": { "state": 510.0 }, + "0100000000": { "state": 256.0 }, + "1110111110": { "state": 958.0 }, + "0110101000": { "state": 424.0 }, + "1111101100": { "state": 1004.0 }, + "1110100011": { "state": 931.0 }, + "0111111011": { "state": 507.0 }, + "0110101011": { "state": 427.0 }, + "0011110000": { "state": 240.0 }, + "1111110001": { "state": 1009.0 }, + "0111110000": { "state": 496.0 }, + "0100001111": { "state": 271.0 }, + "0111110110": { "state": 502.0 }, + "1111101001": { "state": 1001.0 }, + "0000011111": { "state": 31.0 }, + "1011110000": { "state": 752.0 }, + "1110100010": { "state": 930.0 }, + "0000001101": { "state": 13.0 }, + "0111100110": { "state": 486.0 }, + "1111110101": { "state": 1013.0 }, + "0000001000": { "state": 8.0 }, + "0011110110": { "state": 246.0 }, + "0000011000": { "state": 24.0 }, + "0110110010": { "state": 434.0 }, + "0111111001": { "state": 505.0 }, + "0100001100": { "state": 268.0 }, + "1101001011": { "state": 843.0 }, + "1011111110": { "state": 766.0 }, + "1100010100": { "state": 788.0 }, + "0111110101": { "state": 501.0 }, + "1000011000": { "state": 536.0 }, + "0100001001": { "state": 265.0 }, + "0000000010": { "state": 2.0 }, + "1000000011": { "state": 515.0 }, + "1011110110": { "state": 758.0 }, + "1100001010": { "state": 778.0 }, + "1110110110": { "state": 950.0 }, + "1111111001": { "state": 1017.0 }, + "1111110111": { "state": 1015.0 }, + "1000000001": { "state": 513.0 }, + "0111111101": { "state": 509.0 }, + "1011111000": { "state": 760.0 }, + "0111111010": { "state": 506.0 }, + "1100000101": { "state": 773.0 }, + "1000000101": { "state": 517.0 }, + "0000001111": { "state": 15.0 }, + "0110111100": { "state": 444.0 }, + "1111111110": { "state": 1022.0 }, + "1111110011": { "state": 1011.0 }, + "1011111101": { "state": 765.0 }, + "0111110001": { "state": 497.0 }, + "0011110100": { "state": 244.0 }, + "0101000001": { "state": 321.0 }, + "0111110100": { "state": 500.0 }, + "1111111100": { "state": 1020.0 }, + "1000001100": { "state": 524.0 }, + "1110110000": { "state": 944.0 }, + "0110101111": { "state": 431.0 }, + "0000000111": { "state": 7.0 }, + "1111111101": { "state": 1021.0 }, + "1111111011": { "state": 1019.0 }, + "1000010010": { "state": 530.0 }, + "1100000001": { "state": 769.0 }, + "1000001000": { "state": 520.0 }, + "0000000000": { "state": 0.0 }, + "0111101001": { "state": 489.0 }, + "1011110010": { "state": 754.0 }, + "0111111111": { "state": 511.0 }, + "1111100100": { "state": 996.0 }, + "1110110100": { "state": 948.0 }, + "1000001001": { "state": 521.0 }, + "1111110110": { "state": 1014.0 }, + "0110100011": { "state": 419.0 }, + "0011111110": { "state": 254.0 }, + "1000001011": { "state": 523.0 }, + "1111111111": { "state": 1023.0 }, + "1110110001": { "state": 945.0 }, + "1100001110": { "state": 782.0 }, + "0110111000": { "state": 440.0 }, + "1111110010": { "state": 1010.0 }, + "0110101100": { "state": 428.0 }, + "0111111000": { "state": 504.0 }, + "0111100100": { "state": 484.0 }, + "0110110001": { "state": 433.0 }, + "0111111100": { "state": 508.0 }, + "1111111000": { "state": 1016.0 }, + "0110110110": { "state": 438.0 }, + "1100001000": { "state": 776.0 }, + "1000001111": { "state": 527.0 }, + "0100011011": { "state": 283.0 }, + "0111100011": { "state": 483.0 }, + "1111111010": { "state": 1018.0 }, + "1111101000": { "state": 1000.0 }, + "0011110011": { "state": 243.0 }, + "0111101000": { "state": 488.0 }, + "0110100110": { "state": 422.0 }, + "0000011100": { "state": 28.0 }, + "1110101011": { "state": 939.0 }, + "1111110000": { "state": 1008.0 }, + "0111100111": { "state": 487.0 }, + "0111100000": { "state": 480.0 }, + "0100001010": { "state": 266.0 }, + "0111110011": { "state": 499.0 }, + "0111100101": { "state": 485.0 }, + "1000001010": { "state": 522.0 }, + "0100010100": { "state": 276.0 }, + "0011111011": { "state": 251.0 }, + "1011101110": { "state": 750.0 }, + "0000000001": { "state": 1.0 }, + "1000000110": { "state": 518.0 }, + "1011101001": { "state": 745.0 }, + "0000000011": { "state": 3.0 }, + "1011101010": { "state": 746.0 }, + "0011110101": { "state": 245.0 }, + "1011110100": { "state": 756.0 }, + "0111101111": { "state": 495.0 }, + "0111110010": { "state": 498.0 }, + "1000001101": { "state": 525.0 }, + "1111110100": { "state": 1012.0 }, + "0100000010": { "state": 258.0 }, + "0000010111": { "state": 23.0 }, + "1100001001": { "state": 777.0 }, + "0000000100": { "state": 4.0 }, + "1110101001": { "state": 937.0 }, + "0100001011": { "state": 267.0 }, + "0011111100": { "state": 252.0 }, + "1110110101": { "state": 949.0 }, + "0100000111": { "state": 263.0 }, + "0100001000": { "state": 264.0 }, + "1100000100": { "state": 772.0 }, + "0110110000": { "state": 432.0 }, + "0111101010": { "state": 490.0 }, + "0111100001": { "state": 481.0 }, + "1000010110": { "state": 534.0 }, + "1110100110": { "state": 934.0 }, + "1111101101": { "state": 1005.0 }, + "1110111000": { "state": 952.0 }, + "0110100001": { "state": 417.0 }, + "0110111011": { "state": 443.0 }, + "1110100001": { "state": 929.0 }, + "0111110111": { "state": 503.0 }, + "0000001110": { "state": 14.0 } + }, + "histogram": null, + "output_qubits_map": { "state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] }, + "state_vector": null, + "parsed_state_vector_states": null, + "physical_qubits_map": { "state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] }, + "num_shots": 8192 +} diff --git a/algorithms/glued_trees/results/10-qubits/2n-4.json b/algorithms/glued_trees/results/10-qubits/2n-4.json index bda72173..a6537404 100644 --- a/algorithms/glued_trees/results/10-qubits/2n-4.json +++ b/algorithms/glued_trees/results/10-qubits/2n-4.json @@ -1 +1,400 @@ -{"vendor_format_result": {}, "counts": {"0110110111": 1, "0111101001": 1, "1111100100": 1, "0110110101": 1, "0100001001": 1, "0000001111": 1, "0100011101": 1, "1110111110": 1, "1100001010": 1, "1001000000": 1, "1100000110": 1, "0000000010": 1, "1110100101": 1, "0000010010": 1, "1001001100": 1, "1000011101": 1, "0100000110": 1, "1000001000": 3, "0111100100": 4, "0111101111": 2, "0110110100": 3, "1010110000": 1, "0000000110": 1, "0110111001": 1, "1001000100": 3, "1000000100": 3, "1100000101": 5, "1000001100": 2, "1111101010": 5, "0000001010": 1, "0110101001": 1, "1111110101": 5, "0011111100": 4, "1111101100": 3, "0100000100": 6, "1011110010": 7, "1000000011": 1, "0110111100": 4, "0011100100": 2, "1111110011": 10, "0110101010": 1, "0010110010": 1, "0110100010": 1, "0100011100": 3, "1110100000": 2, "0110101100": 3, "0111110110": 3, "0100001111": 2, "1011110111": 2, "0010110110": 1, "0011111111": 22, "1111100011": 1, "0000001001": 6, "1000011010": 7, "1111110110": 121, "1111111100": 33, "1111101111": 2, "1000011001": 24, "1000010010": 42, "1100000001": 27, "1111111001": 84, "1111110111": 189, "1000010001": 4, "1110110111": 1, "0111111001": 15, "0111000010": 1, "0011111011": 34, "0111110100": 62, "0010100010": 1, "0110111000": 1, "1111110010": 15, "0000000100": 50, "0111111011": 147, "1110100011": 1, "0111111010": 9, "0111111101": 103, "1001001000": 3, "0111101100": 6, "0111110000": 443, "1011111110": 121, "1110101100": 1, "1111100101": 2, "1011100000": 1, "0100000000": 148, "0000011111": 8, "1111101001": 18, "1111101110": 41, "0111110101": 13, "1000000010": 885, "1011110001": 12, "1000000110": 51, "0111111111": 15, "0011101000": 4, "1001001011": 4, "0110101110": 1, "0000000000": 653, "1011110110": 22, "1100001011": 2, "0111101101": 1, "1000000001": 38, "0011111110": 5, "1000001011": 7, "1111111111": 37, "1111101000": 1, "0011110011": 23, "0001001001": 1, "0001001101": 1, "1111101101": 3, "1011110100": 7, "0000000111": 547, "1000001110": 98, "1111111101": 221, "1111111011": 250, "1111110001": 20, "1000000101": 115, "1111111110": 691, "1011111101": 2, "0111110001": 32, "0000001100": 87, "1101010100": 1, "1100011110": 1, "0011111000": 90, "1111111010": 537, "0000010111": 10, "1100001001": 66, "0111101000": 30, "0001000100": 2, "1101001011": 1, "0111111000": 146, "1110110100": 5, "1000001001": 64, "0000001000": 19, "0011110110": 1, "0110101000": 28, "0111101011": 5, "1100001110": 30, "0110101011": 3, "0111111110": 200, "0001000010": 7, "1011111001": 3, "0100001011": 7, "1110111100": 1, "0100010111": 4, "0111100000": 9, "0111100111": 8, "1011101110": 16, "1111100111": 3, "0010110001": 1, "1111110000": 232, "0000011100": 7, "1001000011": 1, "1111111000": 53, "0111111100": 19, "0000011011": 18, "0111100110": 4, "0000001101": 22, "1001010100": 1, "1100010001": 5, "1100000011": 5, "0110111110": 1, "0000000101": 2, "0000001011": 50, "0110111101": 4, "1111100010": 13, "1110100110": 12, "0100010000": 9, "0000010000": 21, "0110100000": 3, "0111110010": 354, "1000001101": 15, "0001001110": 12, "0011110111": 5, "1110111010": 8, "1110110010": 2, "0000010011": 9, "0100001100": 2, "0111100101": 9, "0111110011": 71, "0100001101": 2, "0100001010": 7, "1011110011": 2, "0011111101": 3, "1011110000": 1, "0010110101": 1, "1111110100": 17, "1110111000": 2, "0111100010": 3, "1100010101": 9, "0111100001": 1, "0100000111": 6, "0100001000": 2, "1100000100": 3, "1110100001": 6, "0110111011": 2, "0111110111": 93, "0000001110": 2, "0110101111": 4, "1110110000": 3}, "counts_lsb_right": true, "parsed_states": {"0110110111": {"state": 439.0}, "0111101001": {"state": 489.0}, "1111100100": {"state": 996.0}, "0110110101": {"state": 437.0}, "0100001001": {"state": 265.0}, "0000001111": {"state": 15.0}, "0100011101": {"state": 285.0}, "1110111110": {"state": 958.0}, "1100001010": {"state": 778.0}, "1001000000": {"state": 576.0}, "1100000110": {"state": 774.0}, "0000000010": {"state": 2.0}, "1110100101": {"state": 933.0}, "0000010010": {"state": 18.0}, "1001001100": {"state": 588.0}, "1000011101": {"state": 541.0}, "0100000110": {"state": 262.0}, "1000001000": {"state": 520.0}, "0111100100": {"state": 484.0}, "0111101111": {"state": 495.0}, "0110110100": {"state": 436.0}, "1010110000": {"state": 688.0}, "0000000110": {"state": 6.0}, "0110111001": {"state": 441.0}, "1001000100": {"state": 580.0}, "1000000100": {"state": 516.0}, "1100000101": {"state": 773.0}, "1000001100": {"state": 524.0}, "1111101010": {"state": 1002.0}, "0000001010": {"state": 10.0}, "0110101001": {"state": 425.0}, "1111110101": {"state": 1013.0}, "0011111100": {"state": 252.0}, "1111101100": {"state": 1004.0}, "0100000100": {"state": 260.0}, "1011110010": {"state": 754.0}, "1000000011": {"state": 515.0}, "0110111100": {"state": 444.0}, "0011100100": {"state": 228.0}, "1111110011": {"state": 1011.0}, "0110101010": {"state": 426.0}, "0010110010": {"state": 178.0}, "0110100010": {"state": 418.0}, "0100011100": {"state": 284.0}, "1110100000": {"state": 928.0}, "0110101100": {"state": 428.0}, "0111110110": {"state": 502.0}, "0100001111": {"state": 271.0}, "1011110111": {"state": 759.0}, "0010110110": {"state": 182.0}, "0011111111": {"state": 255.0}, "1111100011": {"state": 995.0}, "0000001001": {"state": 9.0}, "1000011010": {"state": 538.0}, "1111110110": {"state": 1014.0}, "1111111100": {"state": 1020.0}, "1111101111": {"state": 1007.0}, "1000011001": {"state": 537.0}, "1000010010": {"state": 530.0}, "1100000001": {"state": 769.0}, "1111111001": {"state": 1017.0}, "1111110111": {"state": 1015.0}, "1000010001": {"state": 529.0}, "1110110111": {"state": 951.0}, "0111111001": {"state": 505.0}, "0111000010": {"state": 450.0}, "0011111011": {"state": 251.0}, "0111110100": {"state": 500.0}, "0010100010": {"state": 162.0}, "0110111000": {"state": 440.0}, "1111110010": {"state": 1010.0}, "0000000100": {"state": 4.0}, "0111111011": {"state": 507.0}, "1110100011": {"state": 931.0}, "0111111010": {"state": 506.0}, "0111111101": {"state": 509.0}, "1001001000": {"state": 584.0}, "0111101100": {"state": 492.0}, "0111110000": {"state": 496.0}, "1011111110": {"state": 766.0}, "1110101100": {"state": 940.0}, "1111100101": {"state": 997.0}, "1011100000": {"state": 736.0}, "0100000000": {"state": 256.0}, "0000011111": {"state": 31.0}, "1111101001": {"state": 1001.0}, "1111101110": {"state": 1006.0}, "0111110101": {"state": 501.0}, "1000000010": {"state": 514.0}, "1011110001": {"state": 753.0}, "1000000110": {"state": 518.0}, "0111111111": {"state": 511.0}, "0011101000": {"state": 232.0}, "1001001011": {"state": 587.0}, "0110101110": {"state": 430.0}, "0000000000": {"state": 0.0}, "1011110110": {"state": 758.0}, "1100001011": {"state": 779.0}, "0111101101": {"state": 493.0}, "1000000001": {"state": 513.0}, "0011111110": {"state": 254.0}, "1000001011": {"state": 523.0}, "1111111111": {"state": 1023.0}, "1111101000": {"state": 1000.0}, "0011110011": {"state": 243.0}, "0001001001": {"state": 73.0}, "0001001101": {"state": 77.0}, "1111101101": {"state": 1005.0}, "1011110100": {"state": 756.0}, "0000000111": {"state": 7.0}, "1000001110": {"state": 526.0}, "1111111101": {"state": 1021.0}, "1111111011": {"state": 1019.0}, "1111110001": {"state": 1009.0}, "1000000101": {"state": 517.0}, "1111111110": {"state": 1022.0}, "1011111101": {"state": 765.0}, "0111110001": {"state": 497.0}, "0000001100": {"state": 12.0}, "1101010100": {"state": 852.0}, "1100011110": {"state": 798.0}, "0011111000": {"state": 248.0}, "1111111010": {"state": 1018.0}, "0000010111": {"state": 23.0}, "1100001001": {"state": 777.0}, "0111101000": {"state": 488.0}, "0001000100": {"state": 68.0}, "1101001011": {"state": 843.0}, "0111111000": {"state": 504.0}, "1110110100": {"state": 948.0}, "1000001001": {"state": 521.0}, "0000001000": {"state": 8.0}, "0011110110": {"state": 246.0}, "0110101000": {"state": 424.0}, "0111101011": {"state": 491.0}, "1100001110": {"state": 782.0}, "0110101011": {"state": 427.0}, "0111111110": {"state": 510.0}, "0001000010": {"state": 66.0}, "1011111001": {"state": 761.0}, "0100001011": {"state": 267.0}, "1110111100": {"state": 956.0}, "0100010111": {"state": 279.0}, "0111100000": {"state": 480.0}, "0111100111": {"state": 487.0}, "1011101110": {"state": 750.0}, "1111100111": {"state": 999.0}, "0010110001": {"state": 177.0}, "1111110000": {"state": 1008.0}, "0000011100": {"state": 28.0}, "1001000011": {"state": 579.0}, "1111111000": {"state": 1016.0}, "0111111100": {"state": 508.0}, "0000011011": {"state": 27.0}, "0111100110": {"state": 486.0}, "0000001101": {"state": 13.0}, "1001010100": {"state": 596.0}, "1100010001": {"state": 785.0}, "1100000011": {"state": 771.0}, "0110111110": {"state": 446.0}, "0000000101": {"state": 5.0}, "0000001011": {"state": 11.0}, "0110111101": {"state": 445.0}, "1111100010": {"state": 994.0}, "1110100110": {"state": 934.0}, "0100010000": {"state": 272.0}, "0000010000": {"state": 16.0}, "0110100000": {"state": 416.0}, "0111110010": {"state": 498.0}, "1000001101": {"state": 525.0}, "0001001110": {"state": 78.0}, "0011110111": {"state": 247.0}, "1110111010": {"state": 954.0}, "1110110010": {"state": 946.0}, "0000010011": {"state": 19.0}, "0100001100": {"state": 268.0}, "0111100101": {"state": 485.0}, "0111110011": {"state": 499.0}, "0100001101": {"state": 269.0}, "0100001010": {"state": 266.0}, "1011110011": {"state": 755.0}, "0011111101": {"state": 253.0}, "1011110000": {"state": 752.0}, "0010110101": {"state": 181.0}, "1111110100": {"state": 1012.0}, "1110111000": {"state": 952.0}, "0111100010": {"state": 482.0}, "1100010101": {"state": 789.0}, "0111100001": {"state": 481.0}, "0100000111": {"state": 263.0}, "0100001000": {"state": 264.0}, "1100000100": {"state": 772.0}, "1110100001": {"state": 929.0}, "0110111011": {"state": 443.0}, "0111110111": {"state": 503.0}, "0000001110": {"state": 14.0}, "0110101111": {"state": 431.0}, "1110110000": {"state": 944.0}}, "histogram": null, "output_qubits_map": {"state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]}, "state_vector": null, "parsed_state_vector_states": null, "physical_qubits_map": {"state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]}, "num_shots": 8192} \ No newline at end of file +{ + "vendor_format_result": {}, + "counts": { + "0110101010": 1, + "0001000101": 1, + "1011111000": 1, + "0110110100": 1, + "0110111111": 1, + "1110111111": 1, + "1001000111": 1, + "0011110110": 1, + "1100010010": 1, + "0100000110": 2, + "1000011101": 1, + "0100000011": 1, + "0111101111": 2, + "0111101011": 3, + "0111101001": 4, + "0100011100": 1, + "1111100000": 2, + "0110110010": 4, + "1110101110": 1, + "1111100110": 1, + "1010111000": 1, + "1111100100": 2, + "1011110011": 2, + "0111110110": 5, + "1011110010": 2, + "1011111010": 1, + "0110100010": 1, + "1000000011": 1, + "1000001000": 1, + "1110101000": 1, + "1111100101": 5, + "0110111100": 3, + "0011111101": 5, + "1111100001": 1, + "0101000010": 1, + "0100010111": 3, + "0110101100": 3, + "1100000010": 4, + "1100011001": 1, + "0100001100": 4, + "1011110100": 3, + "1000001100": 2, + "0000000110": 2, + "1111111110": 643, + "1111110011": 6, + "1011110111": 4, + "0011111111": 22, + "0110110110": 3, + "0110111000": 1, + "1111110010": 27, + "1111110001": 15, + "0100011101": 1, + "1111101010": 8, + "1010111011": 1, + "1011100001": 1, + "0111111010": 9, + "1100000101": 6, + "1011100011": 1, + "0100010000": 8, + "0111111101": 109, + "1001001000": 3, + "1110101001": 3, + "0000000100": 58, + "0100000000": 170, + "1000010001": 1, + "1111110111": 158, + "1111111001": 67, + "1011110110": 30, + "0111101101": 1, + "1100001011": 1, + "1000000001": 40, + "1000000101": 92, + "0000001111": 3, + "1111110110": 114, + "0000010000": 22, + "0111000010": 1, + "0011111011": 46, + "0111111001": 18, + "1111101001": 10, + "0000011111": 5, + "1111110100": 13, + "0110110001": 1, + "1001000011": 2, + "1111111000": 66, + "0111111100": 25, + "0000011011": 16, + "0000001100": 87, + "1000000110": 43, + "1111111100": 36, + "0110101111": 3, + "1100010101": 7, + "1000000010": 1019, + "1100000110": 4, + "0111110000": 433, + "0000010111": 16, + "1100001001": 94, + "1111111010": 523, + "1000001110": 87, + "0000000111": 530, + "0111111000": 166, + "0111100100": 7, + "1110100010": 1, + "1011110000": 5, + "0111101100": 3, + "1111101110": 44, + "1111101100": 2, + "0000000000": 636, + "0111111111": 19, + "1011110001": 2, + "1011100010": 1, + "0011110011": 26, + "0111101000": 35, + "1000001011": 6, + "1111111111": 40, + "1011111110": 116, + "1000010010": 47, + "1100000001": 18, + "0111111011": 122, + "0111110001": 35, + "1011111101": 3, + "1111111101": 243, + "1111111011": 236, + "1001001100": 4, + "0011111000": 99, + "0110101000": 16, + "1110111110": 6, + "0100001011": 8, + "1001001011": 4, + "0011101000": 3, + "1011101110": 11, + "0111110011": 52, + "0111100101": 4, + "0100001010": 5, + "0100001101": 1, + "1110111101": 3, + "0000001011": 43, + "1111100010": 9, + "1110100000": 3, + "1100001110": 36, + "1000000100": 5, + "1001000100": 1, + "0111110100": 48, + "0111100111": 6, + "0111100000": 6, + "0100000100": 6, + "1100001000": 2, + "0000001101": 27, + "0111100110": 9, + "0000001000": 21, + "0111100011": 1, + "1000011001": 16, + "1111101111": 2, + "0000010001": 2, + "0110101011": 3, + "0011110101": 1, + "1111110101": 10, + "1110100100": 1, + "0011111100": 3, + "0110111011": 1, + "0111110111": 90, + "1110100001": 5, + "0111110010": 372, + "1000001101": 14, + "0001000010": 3, + "0111111110": 211, + "1011111001": 6, + "1110110101": 1, + "0001001001": 1, + "1111101101": 5, + "0111100001": 1, + "0100000111": 7, + "0100001000": 9, + "1101000110": 1, + "0000010011": 8, + "0000001001": 4, + "1000011010": 7, + "1000001001": 68, + "1110110100": 4, + "1100000011": 1, + "1100010001": 4, + "0011100100": 2, + "0110100001": 1, + "1110100110": 19, + "1111110000": 221, + "0000011100": 3, + "1110101011": 1, + "0111100010": 3, + "1111100111": 1, + "0001001110": 10, + "0011110111": 6, + "0111110101": 6, + "1110111010": 6, + "1110110010": 2 + }, + "counts_lsb_right": true, + "parsed_states": { + "0110101010": { "state": 426.0 }, + "0001000101": { "state": 69.0 }, + "1011111000": { "state": 760.0 }, + "0110110100": { "state": 436.0 }, + "0110111111": { "state": 447.0 }, + "1110111111": { "state": 959.0 }, + "1001000111": { "state": 583.0 }, + "0011110110": { "state": 246.0 }, + "1100010010": { "state": 786.0 }, + "0100000110": { "state": 262.0 }, + "1000011101": { "state": 541.0 }, + "0100000011": { "state": 259.0 }, + "0111101111": { "state": 495.0 }, + "0111101011": { "state": 491.0 }, + "0111101001": { "state": 489.0 }, + "0100011100": { "state": 284.0 }, + "1111100000": { "state": 992.0 }, + "0110110010": { "state": 434.0 }, + "1110101110": { "state": 942.0 }, + "1111100110": { "state": 998.0 }, + "1010111000": { "state": 696.0 }, + "1111100100": { "state": 996.0 }, + "1011110011": { "state": 755.0 }, + "0111110110": { "state": 502.0 }, + "1011110010": { "state": 754.0 }, + "1011111010": { "state": 762.0 }, + "0110100010": { "state": 418.0 }, + "1000000011": { "state": 515.0 }, + "1000001000": { "state": 520.0 }, + "1110101000": { "state": 936.0 }, + "1111100101": { "state": 997.0 }, + "0110111100": { "state": 444.0 }, + "0011111101": { "state": 253.0 }, + "1111100001": { "state": 993.0 }, + "0101000010": { "state": 322.0 }, + "0100010111": { "state": 279.0 }, + "0110101100": { "state": 428.0 }, + "1100000010": { "state": 770.0 }, + "1100011001": { "state": 793.0 }, + "0100001100": { "state": 268.0 }, + "1011110100": { "state": 756.0 }, + "1000001100": { "state": 524.0 }, + "0000000110": { "state": 6.0 }, + "1111111110": { "state": 1022.0 }, + "1111110011": { "state": 1011.0 }, + "1011110111": { "state": 759.0 }, + "0011111111": { "state": 255.0 }, + "0110110110": { "state": 438.0 }, + "0110111000": { "state": 440.0 }, + "1111110010": { "state": 1010.0 }, + "1111110001": { "state": 1009.0 }, + "0100011101": { "state": 285.0 }, + "1111101010": { "state": 1002.0 }, + "1010111011": { "state": 699.0 }, + "1011100001": { "state": 737.0 }, + "0111111010": { "state": 506.0 }, + "1100000101": { "state": 773.0 }, + "1011100011": { "state": 739.0 }, + "0100010000": { "state": 272.0 }, + "0111111101": { "state": 509.0 }, + "1001001000": { "state": 584.0 }, + "1110101001": { "state": 937.0 }, + "0000000100": { "state": 4.0 }, + "0100000000": { "state": 256.0 }, + "1000010001": { "state": 529.0 }, + "1111110111": { "state": 1015.0 }, + "1111111001": { "state": 1017.0 }, + "1011110110": { "state": 758.0 }, + "0111101101": { "state": 493.0 }, + "1100001011": { "state": 779.0 }, + "1000000001": { "state": 513.0 }, + "1000000101": { "state": 517.0 }, + "0000001111": { "state": 15.0 }, + "1111110110": { "state": 1014.0 }, + "0000010000": { "state": 16.0 }, + "0111000010": { "state": 450.0 }, + "0011111011": { "state": 251.0 }, + "0111111001": { "state": 505.0 }, + "1111101001": { "state": 1001.0 }, + "0000011111": { "state": 31.0 }, + "1111110100": { "state": 1012.0 }, + "0110110001": { "state": 433.0 }, + "1001000011": { "state": 579.0 }, + "1111111000": { "state": 1016.0 }, + "0111111100": { "state": 508.0 }, + "0000011011": { "state": 27.0 }, + "0000001100": { "state": 12.0 }, + "1000000110": { "state": 518.0 }, + "1111111100": { "state": 1020.0 }, + "0110101111": { "state": 431.0 }, + "1100010101": { "state": 789.0 }, + "1000000010": { "state": 514.0 }, + "1100000110": { "state": 774.0 }, + "0111110000": { "state": 496.0 }, + "0000010111": { "state": 23.0 }, + "1100001001": { "state": 777.0 }, + "1111111010": { "state": 1018.0 }, + "1000001110": { "state": 526.0 }, + "0000000111": { "state": 7.0 }, + "0111111000": { "state": 504.0 }, + "0111100100": { "state": 484.0 }, + "1110100010": { "state": 930.0 }, + "1011110000": { "state": 752.0 }, + "0111101100": { "state": 492.0 }, + "1111101110": { "state": 1006.0 }, + "1111101100": { "state": 1004.0 }, + "0000000000": { "state": 0.0 }, + "0111111111": { "state": 511.0 }, + "1011110001": { "state": 753.0 }, + "1011100010": { "state": 738.0 }, + "0011110011": { "state": 243.0 }, + "0111101000": { "state": 488.0 }, + "1000001011": { "state": 523.0 }, + "1111111111": { "state": 1023.0 }, + "1011111110": { "state": 766.0 }, + "1000010010": { "state": 530.0 }, + "1100000001": { "state": 769.0 }, + "0111111011": { "state": 507.0 }, + "0111110001": { "state": 497.0 }, + "1011111101": { "state": 765.0 }, + "1111111101": { "state": 1021.0 }, + "1111111011": { "state": 1019.0 }, + "1001001100": { "state": 588.0 }, + "0011111000": { "state": 248.0 }, + "0110101000": { "state": 424.0 }, + "1110111110": { "state": 958.0 }, + "0100001011": { "state": 267.0 }, + "1001001011": { "state": 587.0 }, + "0011101000": { "state": 232.0 }, + "1011101110": { "state": 750.0 }, + "0111110011": { "state": 499.0 }, + "0111100101": { "state": 485.0 }, + "0100001010": { "state": 266.0 }, + "0100001101": { "state": 269.0 }, + "1110111101": { "state": 957.0 }, + "0000001011": { "state": 11.0 }, + "1111100010": { "state": 994.0 }, + "1110100000": { "state": 928.0 }, + "1100001110": { "state": 782.0 }, + "1000000100": { "state": 516.0 }, + "1001000100": { "state": 580.0 }, + "0111110100": { "state": 500.0 }, + "0111100111": { "state": 487.0 }, + "0111100000": { "state": 480.0 }, + "0100000100": { "state": 260.0 }, + "1100001000": { "state": 776.0 }, + "0000001101": { "state": 13.0 }, + "0111100110": { "state": 486.0 }, + "0000001000": { "state": 8.0 }, + "0111100011": { "state": 483.0 }, + "1000011001": { "state": 537.0 }, + "1111101111": { "state": 1007.0 }, + "0000010001": { "state": 17.0 }, + "0110101011": { "state": 427.0 }, + "0011110101": { "state": 245.0 }, + "1111110101": { "state": 1013.0 }, + "1110100100": { "state": 932.0 }, + "0011111100": { "state": 252.0 }, + "0110111011": { "state": 443.0 }, + "0111110111": { "state": 503.0 }, + "1110100001": { "state": 929.0 }, + "0111110010": { "state": 498.0 }, + "1000001101": { "state": 525.0 }, + "0001000010": { "state": 66.0 }, + "0111111110": { "state": 510.0 }, + "1011111001": { "state": 761.0 }, + "1110110101": { "state": 949.0 }, + "0001001001": { "state": 73.0 }, + "1111101101": { "state": 1005.0 }, + "0111100001": { "state": 481.0 }, + "0100000111": { "state": 263.0 }, + "0100001000": { "state": 264.0 }, + "1101000110": { "state": 838.0 }, + "0000010011": { "state": 19.0 }, + "0000001001": { "state": 9.0 }, + "1000011010": { "state": 538.0 }, + "1000001001": { "state": 521.0 }, + "1110110100": { "state": 948.0 }, + "1100000011": { "state": 771.0 }, + "1100010001": { "state": 785.0 }, + "0011100100": { "state": 228.0 }, + "0110100001": { "state": 417.0 }, + "1110100110": { "state": 934.0 }, + "1111110000": { "state": 1008.0 }, + "0000011100": { "state": 28.0 }, + "1110101011": { "state": 939.0 }, + "0111100010": { "state": 482.0 }, + "1111100111": { "state": 999.0 }, + "0001001110": { "state": 78.0 }, + "0011110111": { "state": 247.0 }, + "0111110101": { "state": 501.0 }, + "1110111010": { "state": 954.0 }, + "1110110010": { "state": 946.0 } + }, + "histogram": null, + "output_qubits_map": { "state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] }, + "state_vector": null, + "parsed_state_vector_states": null, + "physical_qubits_map": { "state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] }, + "num_shots": 8192 +} diff --git a/algorithms/glued_trees/results/10-qubits/2n-6.json b/algorithms/glued_trees/results/10-qubits/2n-6.json index 49a293b8..1a895441 100644 --- a/algorithms/glued_trees/results/10-qubits/2n-6.json +++ b/algorithms/glued_trees/results/10-qubits/2n-6.json @@ -1 +1,378 @@ -{"vendor_format_result": {}, "counts": {"1011111010": 1, "0110111100": 1, "0100000011": 1, "0110100100": 1, "1100010110": 1, "0110110110": 1, "1111100000": 1, "1011110100": 1, "0000001100": 2, "1011101110": 2, "1100011101": 1, "1110100010": 1, "1011110000": 1, "1111111010": 3, "1011110001": 1, "1000001100": 3, "1100001101": 2, "0110101000": 3, "0110101100": 1, "1000000111": 1, "0001000101": 2, "0001000110": 2, "1101001100": 1, "0011101100": 1, "0110111001": 1, "1110110010": 2, "0100011011": 2, "1011110101": 3, "1100011001": 1, "0111101110": 1, "1101001000": 1, "1101000011": 1, "1111100101": 1, "0011101011": 3, "0101000101": 1, "0100000101": 1, "0100011000": 2, "1000000000": 4, "1100001010": 2, "1111100110": 6, "1011100110": 6, "0011110000": 4, "0110110100": 3, "0000000110": 18, "0000001111": 175, "1000000101": 64, "1111101110": 92, "1000001111": 70, "1000011101": 4, "0111111111": 137, "1111100100": 3, "1100001000": 7, "0111111011": 6, "1111100001": 6, "0101000010": 2, "0100000000": 60, "0011111000": 24, "1100000001": 2, "1011110011": 2, "0111110110": 147, "0100001111": 7, "1110101010": 4, "1000001011": 2, "1111111111": 30, "1001001101": 1, "0010111101": 1, "0011110110": 17, "0000001000": 455, "1111110101": 17, "1000001010": 246, "0111110101": 62, "1000000010": 8, "1100000110": 12, "1000000110": 309, "0110110010": 1, "0000011000": 13, "1111100010": 1, "0000001011": 68, "1111110111": 1, "1111111001": 315, "1000001001": 186, "1100001001": 14, "0000010111": 97, "0111111000": 194, "1000001110": 68, "0011100110": 1, "1001000111": 1, "0000000111": 800, "0000011010": 1, "1111111100": 123, "0110101111": 1, "0000010001": 1, "1000011001": 9, "0000000000": 640, "1000000001": 110, "1011110110": 65, "0111111101": 9, "1011100001": 1, "0111111010": 7, "0011111011": 23, "0111111001": 20, "1111111110": 1004, "1111110011": 16, "1011111101": 61, "0111110001": 17, "1100011010": 1, "1000000100": 3, "1001000100": 4, "0110100111": 4, "1111110110": 289, "1001000000": 12, "0110100011": 1, "1110101110": 9, "0000011101": 1, "1011111110": 120, "1110100110": 11, "0000011011": 6, "1111111000": 99, "0111111100": 56, "0111101000": 11, "0111110100": 11, "0000010000": 95, "0011110100": 6, "0110100110": 1, "0000011100": 7, "1111110000": 14, "0111110000": 49, "1111101010": 2, "0000001010": 15, "0001000010": 2, "0111111110": 382, "1011111001": 4, "0011110101": 3, "0111100001": 1, "1100000100": 1, "0110110000": 1, "0100000111": 21, "0100001000": 35, "0000000011": 17, "1000010101": 3, "0011111100": 6, "0100001101": 1, "0111110011": 51, "0000010100": 20, "0100001010": 3, "0001001010": 1, "0011111111": 19, "1111111011": 210, "1111111101": 19, "1111101100": 2, "1000010110": 15, "1110111001": 1, "0000000101": 1, "0110111110": 3, "1001010000": 1, "0100010111": 1, "1110111100": 8, "1111110001": 3, "1011101101": 1, "0111100110": 11, "0000001101": 14, "1001010100": 1, "0110110101": 2, "1111101001": 17, "0000011111": 7, "1100001110": 2, "0111100000": 10, "0111101111": 5, "0000010010": 4, "1100000101": 18, "1000011111": 5, "0000000100": 315, "1110101001": 1, "0000000010": 42, "1110111110": 4, "1111110010": 20, "0100010000": 2, "1000001101": 70, "0111110010": 5, "0011101000": 4, "0001001110": 6, "0011110111": 2, "0000001001": 1, "1111100011": 6, "1000011010": 5, "0100001011": 4, "0000000001": 6, "1110100001": 1, "0111110111": 1}, "counts_lsb_right": true, "parsed_states": {"1011111010": {"state": 762.0}, "0110111100": {"state": 444.0}, "0100000011": {"state": 259.0}, "0110100100": {"state": 420.0}, "1100010110": {"state": 790.0}, "0110110110": {"state": 438.0}, "1111100000": {"state": 992.0}, "1011110100": {"state": 756.0}, "0000001100": {"state": 12.0}, "1011101110": {"state": 750.0}, "1100011101": {"state": 797.0}, "1110100010": {"state": 930.0}, "1011110000": {"state": 752.0}, "1111111010": {"state": 1018.0}, "1011110001": {"state": 753.0}, "1000001100": {"state": 524.0}, "1100001101": {"state": 781.0}, "0110101000": {"state": 424.0}, "0110101100": {"state": 428.0}, "1000000111": {"state": 519.0}, "0001000101": {"state": 69.0}, "0001000110": {"state": 70.0}, "1101001100": {"state": 844.0}, "0011101100": {"state": 236.0}, "0110111001": {"state": 441.0}, "1110110010": {"state": 946.0}, "0100011011": {"state": 283.0}, "1011110101": {"state": 757.0}, "1100011001": {"state": 793.0}, "0111101110": {"state": 494.0}, "1101001000": {"state": 840.0}, "1101000011": {"state": 835.0}, "1111100101": {"state": 997.0}, "0011101011": {"state": 235.0}, "0101000101": {"state": 325.0}, "0100000101": {"state": 261.0}, "0100011000": {"state": 280.0}, "1000000000": {"state": 512.0}, "1100001010": {"state": 778.0}, "1111100110": {"state": 998.0}, "1011100110": {"state": 742.0}, "0011110000": {"state": 240.0}, "0110110100": {"state": 436.0}, "0000000110": {"state": 6.0}, "0000001111": {"state": 15.0}, "1000000101": {"state": 517.0}, "1111101110": {"state": 1006.0}, "1000001111": {"state": 527.0}, "1000011101": {"state": 541.0}, "0111111111": {"state": 511.0}, "1111100100": {"state": 996.0}, "1100001000": {"state": 776.0}, "0111111011": {"state": 507.0}, "1111100001": {"state": 993.0}, "0101000010": {"state": 322.0}, "0100000000": {"state": 256.0}, "0011111000": {"state": 248.0}, "1100000001": {"state": 769.0}, "1011110011": {"state": 755.0}, "0111110110": {"state": 502.0}, "0100001111": {"state": 271.0}, "1110101010": {"state": 938.0}, "1000001011": {"state": 523.0}, "1111111111": {"state": 1023.0}, "1001001101": {"state": 589.0}, "0010111101": {"state": 189.0}, "0011110110": {"state": 246.0}, "0000001000": {"state": 8.0}, "1111110101": {"state": 1013.0}, "1000001010": {"state": 522.0}, "0111110101": {"state": 501.0}, "1000000010": {"state": 514.0}, "1100000110": {"state": 774.0}, "1000000110": {"state": 518.0}, "0110110010": {"state": 434.0}, "0000011000": {"state": 24.0}, "1111100010": {"state": 994.0}, "0000001011": {"state": 11.0}, "1111110111": {"state": 1015.0}, "1111111001": {"state": 1017.0}, "1000001001": {"state": 521.0}, "1100001001": {"state": 777.0}, "0000010111": {"state": 23.0}, "0111111000": {"state": 504.0}, "1000001110": {"state": 526.0}, "0011100110": {"state": 230.0}, "1001000111": {"state": 583.0}, "0000000111": {"state": 7.0}, "0000011010": {"state": 26.0}, "1111111100": {"state": 1020.0}, "0110101111": {"state": 431.0}, "0000010001": {"state": 17.0}, "1000011001": {"state": 537.0}, "0000000000": {"state": 0.0}, "1000000001": {"state": 513.0}, "1011110110": {"state": 758.0}, "0111111101": {"state": 509.0}, "1011100001": {"state": 737.0}, "0111111010": {"state": 506.0}, "0011111011": {"state": 251.0}, "0111111001": {"state": 505.0}, "1111111110": {"state": 1022.0}, "1111110011": {"state": 1011.0}, "1011111101": {"state": 765.0}, "0111110001": {"state": 497.0}, "1100011010": {"state": 794.0}, "1000000100": {"state": 516.0}, "1001000100": {"state": 580.0}, "0110100111": {"state": 423.0}, "1111110110": {"state": 1014.0}, "1001000000": {"state": 576.0}, "0110100011": {"state": 419.0}, "1110101110": {"state": 942.0}, "0000011101": {"state": 29.0}, "1011111110": {"state": 766.0}, "1110100110": {"state": 934.0}, "0000011011": {"state": 27.0}, "1111111000": {"state": 1016.0}, "0111111100": {"state": 508.0}, "0111101000": {"state": 488.0}, "0111110100": {"state": 500.0}, "0000010000": {"state": 16.0}, "0011110100": {"state": 244.0}, "0110100110": {"state": 422.0}, "0000011100": {"state": 28.0}, "1111110000": {"state": 1008.0}, "0111110000": {"state": 496.0}, "1111101010": {"state": 1002.0}, "0000001010": {"state": 10.0}, "0001000010": {"state": 66.0}, "0111111110": {"state": 510.0}, "1011111001": {"state": 761.0}, "0011110101": {"state": 245.0}, "0111100001": {"state": 481.0}, "1100000100": {"state": 772.0}, "0110110000": {"state": 432.0}, "0100000111": {"state": 263.0}, "0100001000": {"state": 264.0}, "0000000011": {"state": 3.0}, "1000010101": {"state": 533.0}, "0011111100": {"state": 252.0}, "0100001101": {"state": 269.0}, "0111110011": {"state": 499.0}, "0000010100": {"state": 20.0}, "0100001010": {"state": 266.0}, "0001001010": {"state": 74.0}, "0011111111": {"state": 255.0}, "1111111011": {"state": 1019.0}, "1111111101": {"state": 1021.0}, "1111101100": {"state": 1004.0}, "1000010110": {"state": 534.0}, "1110111001": {"state": 953.0}, "0000000101": {"state": 5.0}, "0110111110": {"state": 446.0}, "1001010000": {"state": 592.0}, "0100010111": {"state": 279.0}, "1110111100": {"state": 956.0}, "1111110001": {"state": 1009.0}, "1011101101": {"state": 749.0}, "0111100110": {"state": 486.0}, "0000001101": {"state": 13.0}, "1001010100": {"state": 596.0}, "0110110101": {"state": 437.0}, "1111101001": {"state": 1001.0}, "0000011111": {"state": 31.0}, "1100001110": {"state": 782.0}, "0111100000": {"state": 480.0}, "0111101111": {"state": 495.0}, "0000010010": {"state": 18.0}, "1100000101": {"state": 773.0}, "1000011111": {"state": 543.0}, "0000000100": {"state": 4.0}, "1110101001": {"state": 937.0}, "0000000010": {"state": 2.0}, "1110111110": {"state": 958.0}, "1111110010": {"state": 1010.0}, "0100010000": {"state": 272.0}, "1000001101": {"state": 525.0}, "0111110010": {"state": 498.0}, "0011101000": {"state": 232.0}, "0001001110": {"state": 78.0}, "0011110111": {"state": 247.0}, "0000001001": {"state": 9.0}, "1111100011": {"state": 995.0}, "1000011010": {"state": 538.0}, "0100001011": {"state": 267.0}, "0000000001": {"state": 1.0}, "1110100001": {"state": 929.0}, "0111110111": {"state": 503.0}}, "histogram": null, "output_qubits_map": {"state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]}, "state_vector": null, "parsed_state_vector_states": null, "physical_qubits_map": {"state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]}, "num_shots": 8192} \ No newline at end of file +{ + "vendor_format_result": {}, + "counts": { + "0001000110": 1, + "0110101001": 1, + "0110101011": 1, + "1011101001": 1, + "1001010001": 1, + "0110110110": 1, + "1011101110": 1, + "0110101000": 1, + "1001001100": 1, + "0110100011": 1, + "0110101100": 2, + "1111100000": 1, + "0110110101": 2, + "0000001010": 1, + "1111101010": 1, + "1110100110": 3, + "0100010000": 2, + "1111110001": 1, + "1100001110": 6, + "0100011011": 1, + "1100011101": 2, + "1111100101": 2, + "0100000010": 1, + "1111110100": 3, + "0000010010": 3, + "0110111110": 1, + "0000000101": 3, + "0111111011": 2, + "1110111110": 6, + "0001001001": 1, + "1111101101": 2, + "1010110100": 1, + "0111101011": 1, + "0111111101": 10, + "1000000010": 1, + "0010110101": 1, + "0001000101": 3, + "0000000001": 2, + "0000001011": 58, + "0100000000": 54, + "0100001011": 6, + "1010111011": 1, + "0111111010": 8, + "0100001100": 1, + "1100011001": 2, + "0111101110": 3, + "0111111001": 13, + "0000001000": 497, + "1111110101": 9, + "0011110110": 16, + "1111110011": 11, + "1111111110": 1006, + "0000011010": 2, + "1111111100": 126, + "1000001100": 4, + "0111110001": 27, + "1011111101": 47, + "1111111111": 16, + "1000001011": 4, + "1111111001": 248, + "1100000101": 15, + "1000011111": 2, + "0111110000": 44, + "1000011101": 9, + "1000001111": 62, + "1000010101": 5, + "0011111100": 4, + "1000010110": 17, + "1111110010": 18, + "0000000010": 59, + "1000000011": 1, + "0000001111": 158, + "1000000101": 61, + "0001001110": 7, + "1111100111": 2, + "0111111111": 112, + "1111100100": 3, + "0000000000": 693, + "1111101110": 103, + "0111110110": 147, + "0100001111": 8, + "0011111000": 27, + "0111110101": 76, + "0111101101": 1, + "1000000001": 112, + "1100001101": 3, + "0011101011": 5, + "1000001110": 71, + "0000000111": 831, + "1000001001": 187, + "0000010110": 1, + "1100001001": 9, + "0000010111": 87, + "0100011111": 2, + "1000001101": 69, + "0111110010": 13, + "0111111000": 220, + "1111110110": 283, + "1001000000": 13, + "0111101010": 1, + "0111100001": 2, + "0100001000": 51, + "0100000111": 8, + "0011110101": 6, + "0001011110": 1, + "1001010000": 1, + "1110111100": 11, + "0100010111": 1, + "1110101001": 2, + "0000000100": 353, + "1000000110": 311, + "1011110101": 2, + "0000001100": 2, + "0100000101": 2, + "1011111110": 114, + "0000010000": 101, + "0011110100": 6, + "0111110100": 8, + "1110101110": 7, + "1011110110": 62, + "1110110110": 2, + "1000010010": 1, + "1111100110": 6, + "0000011000": 12, + "0110110010": 3, + "0001001010": 2, + "0011111111": 14, + "1100000110": 10, + "0011111011": 24, + "1100001000": 5, + "0000000011": 14, + "0111101111": 10, + "0011100000": 3, + "1000011001": 6, + "0111100110": 5, + "0000001101": 7, + "0011110000": 6, + "1111111010": 4, + "0000011100": 4, + "0110100110": 2, + "1111110000": 14, + "1111111011": 198, + "1111111101": 25, + "1111101100": 1, + "1110110010": 2, + "1110111010": 1, + "0011101000": 2, + "1001001011": 2, + "0111101000": 7, + "0101000110": 1, + "1110100001": 1, + "0000001110": 3, + "0111110111": 5, + "1000001010": 220, + "0100010100": 1, + "0111111110": 409, + "1011111001": 3, + "1011100110": 10, + "1110101010": 4, + "1111111000": 120, + "0111111100": 41, + "0000011011": 1, + "0111100000": 8, + "1011100100": 1, + "0110111100": 2, + "0110100111": 2, + "1000000100": 2, + "1001000100": 6, + "1111101001": 13, + "0000011111": 11, + "1111100011": 7, + "1000011010": 4, + "0100011000": 7, + "1000000000": 4, + "1011101101": 5, + "0111110011": 43, + "0000010100": 18, + "0100001010": 3, + "0011101100": 4, + "0110111001": 2, + "0000000110": 9, + "1111100001": 4 + }, + "counts_lsb_right": true, + "parsed_states": { + "0001000110": { "state": 70.0 }, + "0110101001": { "state": 425.0 }, + "0110101011": { "state": 427.0 }, + "1011101001": { "state": 745.0 }, + "1001010001": { "state": 593.0 }, + "0110110110": { "state": 438.0 }, + "1011101110": { "state": 750.0 }, + "0110101000": { "state": 424.0 }, + "1001001100": { "state": 588.0 }, + "0110100011": { "state": 419.0 }, + "0110101100": { "state": 428.0 }, + "1111100000": { "state": 992.0 }, + "0110110101": { "state": 437.0 }, + "0000001010": { "state": 10.0 }, + "1111101010": { "state": 1002.0 }, + "1110100110": { "state": 934.0 }, + "0100010000": { "state": 272.0 }, + "1111110001": { "state": 1009.0 }, + "1100001110": { "state": 782.0 }, + "0100011011": { "state": 283.0 }, + "1100011101": { "state": 797.0 }, + "1111100101": { "state": 997.0 }, + "0100000010": { "state": 258.0 }, + "1111110100": { "state": 1012.0 }, + "0000010010": { "state": 18.0 }, + "0110111110": { "state": 446.0 }, + "0000000101": { "state": 5.0 }, + "0111111011": { "state": 507.0 }, + "1110111110": { "state": 958.0 }, + "0001001001": { "state": 73.0 }, + "1111101101": { "state": 1005.0 }, + "1010110100": { "state": 692.0 }, + "0111101011": { "state": 491.0 }, + "0111111101": { "state": 509.0 }, + "1000000010": { "state": 514.0 }, + "0010110101": { "state": 181.0 }, + "0001000101": { "state": 69.0 }, + "0000000001": { "state": 1.0 }, + "0000001011": { "state": 11.0 }, + "0100000000": { "state": 256.0 }, + "0100001011": { "state": 267.0 }, + "1010111011": { "state": 699.0 }, + "0111111010": { "state": 506.0 }, + "0100001100": { "state": 268.0 }, + "1100011001": { "state": 793.0 }, + "0111101110": { "state": 494.0 }, + "0111111001": { "state": 505.0 }, + "0000001000": { "state": 8.0 }, + "1111110101": { "state": 1013.0 }, + "0011110110": { "state": 246.0 }, + "1111110011": { "state": 1011.0 }, + "1111111110": { "state": 1022.0 }, + "0000011010": { "state": 26.0 }, + "1111111100": { "state": 1020.0 }, + "1000001100": { "state": 524.0 }, + "0111110001": { "state": 497.0 }, + "1011111101": { "state": 765.0 }, + "1111111111": { "state": 1023.0 }, + "1000001011": { "state": 523.0 }, + "1111111001": { "state": 1017.0 }, + "1100000101": { "state": 773.0 }, + "1000011111": { "state": 543.0 }, + "0111110000": { "state": 496.0 }, + "1000011101": { "state": 541.0 }, + "1000001111": { "state": 527.0 }, + "1000010101": { "state": 533.0 }, + "0011111100": { "state": 252.0 }, + "1000010110": { "state": 534.0 }, + "1111110010": { "state": 1010.0 }, + "0000000010": { "state": 2.0 }, + "1000000011": { "state": 515.0 }, + "0000001111": { "state": 15.0 }, + "1000000101": { "state": 517.0 }, + "0001001110": { "state": 78.0 }, + "1111100111": { "state": 999.0 }, + "0111111111": { "state": 511.0 }, + "1111100100": { "state": 996.0 }, + "0000000000": { "state": 0.0 }, + "1111101110": { "state": 1006.0 }, + "0111110110": { "state": 502.0 }, + "0100001111": { "state": 271.0 }, + "0011111000": { "state": 248.0 }, + "0111110101": { "state": 501.0 }, + "0111101101": { "state": 493.0 }, + "1000000001": { "state": 513.0 }, + "1100001101": { "state": 781.0 }, + "0011101011": { "state": 235.0 }, + "1000001110": { "state": 526.0 }, + "0000000111": { "state": 7.0 }, + "1000001001": { "state": 521.0 }, + "0000010110": { "state": 22.0 }, + "1100001001": { "state": 777.0 }, + "0000010111": { "state": 23.0 }, + "0100011111": { "state": 287.0 }, + "1000001101": { "state": 525.0 }, + "0111110010": { "state": 498.0 }, + "0111111000": { "state": 504.0 }, + "1111110110": { "state": 1014.0 }, + "1001000000": { "state": 576.0 }, + "0111101010": { "state": 490.0 }, + "0111100001": { "state": 481.0 }, + "0100001000": { "state": 264.0 }, + "0100000111": { "state": 263.0 }, + "0011110101": { "state": 245.0 }, + "0001011110": { "state": 94.0 }, + "1001010000": { "state": 592.0 }, + "1110111100": { "state": 956.0 }, + "0100010111": { "state": 279.0 }, + "1110101001": { "state": 937.0 }, + "0000000100": { "state": 4.0 }, + "1000000110": { "state": 518.0 }, + "1011110101": { "state": 757.0 }, + "0000001100": { "state": 12.0 }, + "0100000101": { "state": 261.0 }, + "1011111110": { "state": 766.0 }, + "0000010000": { "state": 16.0 }, + "0011110100": { "state": 244.0 }, + "0111110100": { "state": 500.0 }, + "1110101110": { "state": 942.0 }, + "1011110110": { "state": 758.0 }, + "1110110110": { "state": 950.0 }, + "1000010010": { "state": 530.0 }, + "1111100110": { "state": 998.0 }, + "0000011000": { "state": 24.0 }, + "0110110010": { "state": 434.0 }, + "0001001010": { "state": 74.0 }, + "0011111111": { "state": 255.0 }, + "1100000110": { "state": 774.0 }, + "0011111011": { "state": 251.0 }, + "1100001000": { "state": 776.0 }, + "0000000011": { "state": 3.0 }, + "0111101111": { "state": 495.0 }, + "0011100000": { "state": 224.0 }, + "1000011001": { "state": 537.0 }, + "0111100110": { "state": 486.0 }, + "0000001101": { "state": 13.0 }, + "0011110000": { "state": 240.0 }, + "1111111010": { "state": 1018.0 }, + "0000011100": { "state": 28.0 }, + "0110100110": { "state": 422.0 }, + "1111110000": { "state": 1008.0 }, + "1111111011": { "state": 1019.0 }, + "1111111101": { "state": 1021.0 }, + "1111101100": { "state": 1004.0 }, + "1110110010": { "state": 946.0 }, + "1110111010": { "state": 954.0 }, + "0011101000": { "state": 232.0 }, + "1001001011": { "state": 587.0 }, + "0111101000": { "state": 488.0 }, + "0101000110": { "state": 326.0 }, + "1110100001": { "state": 929.0 }, + "0000001110": { "state": 14.0 }, + "0111110111": { "state": 503.0 }, + "1000001010": { "state": 522.0 }, + "0100010100": { "state": 276.0 }, + "0111111110": { "state": 510.0 }, + "1011111001": { "state": 761.0 }, + "1011100110": { "state": 742.0 }, + "1110101010": { "state": 938.0 }, + "1111111000": { "state": 1016.0 }, + "0111111100": { "state": 508.0 }, + "0000011011": { "state": 27.0 }, + "0111100000": { "state": 480.0 }, + "1011100100": { "state": 740.0 }, + "0110111100": { "state": 444.0 }, + "0110100111": { "state": 423.0 }, + "1000000100": { "state": 516.0 }, + "1001000100": { "state": 580.0 }, + "1111101001": { "state": 1001.0 }, + "0000011111": { "state": 31.0 }, + "1111100011": { "state": 995.0 }, + "1000011010": { "state": 538.0 }, + "0100011000": { "state": 280.0 }, + "1000000000": { "state": 512.0 }, + "1011101101": { "state": 749.0 }, + "0111110011": { "state": 499.0 }, + "0000010100": { "state": 20.0 }, + "0100001010": { "state": 266.0 }, + "0011101100": { "state": 236.0 }, + "0110111001": { "state": 441.0 }, + "0000000110": { "state": 6.0 }, + "1111100001": { "state": 993.0 } + }, + "histogram": null, + "output_qubits_map": { "state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] }, + "state_vector": null, + "parsed_state_vector_states": null, + "physical_qubits_map": { "state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] }, + "num_shots": 8192 +} diff --git a/algorithms/glued_trees/results/10-qubits/2n-8.json b/algorithms/glued_trees/results/10-qubits/2n-8.json index 223d0024..e043e42e 100644 --- a/algorithms/glued_trees/results/10-qubits/2n-8.json +++ b/algorithms/glued_trees/results/10-qubits/2n-8.json @@ -1 +1,302 @@ -{"vendor_format_result": {}, "counts": {"1111100100": 1, "1000001100": 1, "0111100111": 1, "0010111001": 1, "0111110100": 1, "0001000110": 1, "0100001110": 1, "1011110001": 1, "0111100010": 1, "1000001010": 4, "0010111110": 1, "0000001111": 35, "0001001110": 1, "1000000101": 101, "1000010110": 23, "0100001000": 3, "1111111110": 846, "1111110011": 12, "0111111111": 12, "0111101000": 10, "0100000011": 4, "0000011000": 23, "1111101100": 10, "1111101110": 22, "1111111101": 15, "1111111011": 61, "1000010010": 5, "1111110110": 38, "1001000000": 32, "0111110111": 52, "0000001110": 88, "1000000111": 2, "0000010111": 25, "0000000011": 27, "1011110110": 13, "1000000001": 250, "0110111101": 1, "0000001100": 6, "1000000110": 1475, "0000000100": 401, "1000011110": 4, "0111101100": 1, "1011110101": 2, "0000001000": 347, "0011111000": 60, "1111111100": 182, "0000000010": 4, "1000000011": 6, "0110111000": 3, "1111110010": 7, "1011111110": 144, "0100000000": 38, "0111110110": 8, "1000001001": 4, "1110110100": 1, "0111111011": 65, "0111110001": 1, "1011111101": 6, "1111110100": 41, "0000011111": 5, "1110100110": 4, "1110111100": 3, "1001010000": 1, "1111100110": 11, "0111101011": 3, "0000000111": 611, "0111111000": 487, "0000010000": 31, "1000011101": 3, "1000001111": 3, "1000001000": 25, "1111111001": 79, "1000010001": 2, "1100000110": 31, "1000000010": 42, "0000001010": 23, "1111100001": 3, "0111111001": 49, "1000010000": 2, "1111110001": 6, "1001000111": 1, "1000001110": 12, "1110111110": 4, "1111101101": 1, "0001001101": 5, "0111111101": 26, "0111100110": 2, "0000001101": 14, "1110111011": 3, "1000010101": 10, "0011111100": 4, "0000000000": 1554, "0110101110": 1, "1000011000": 3, "1111111010": 10, "1000000000": 10, "0111110000": 1, "0111110101": 1, "0111101110": 3, "1100000101": 2, "1010111011": 1, "0111111010": 1, "1000000100": 4, "1001000100": 2, "0111101001": 2, "0110100111": 1, "1111110000": 14, "0000011100": 1, "0110101100": 2, "1111100011": 1, "0000001001": 6, "1011111010": 1, "0001000101": 7, "0110100000": 3, "0011111110": 1, "1111111111": 1, "0111100000": 5, "1111100000": 1, "1011101110": 3, "0011111011": 42, "0111000010": 1, "0111101111": 1, "0001001000": 1, "0001000010": 3, "0111111110": 368, "1011111001": 1, "1000001101": 3, "0111110010": 3, "1110111001": 1, "0000000101": 13, "0110111110": 1, "0000011011": 1, "0111111100": 52, "1001000011": 2, "0000010100": 12, "0111110011": 2, "0100001010": 1, "0011110000": 1, "0011101000": 3, "1011111100": 1}, "counts_lsb_right": true, "parsed_states": {"1111100100": {"state": 996.0}, "1000001100": {"state": 524.0}, "0111100111": {"state": 487.0}, "0010111001": {"state": 185.0}, "0111110100": {"state": 500.0}, "0001000110": {"state": 70.0}, "0100001110": {"state": 270.0}, "1011110001": {"state": 753.0}, "0111100010": {"state": 482.0}, "1000001010": {"state": 522.0}, "0010111110": {"state": 190.0}, "0000001111": {"state": 15.0}, "0001001110": {"state": 78.0}, "1000000101": {"state": 517.0}, "1000010110": {"state": 534.0}, "0100001000": {"state": 264.0}, "1111111110": {"state": 1022.0}, "1111110011": {"state": 1011.0}, "0111111111": {"state": 511.0}, "0111101000": {"state": 488.0}, "0100000011": {"state": 259.0}, "0000011000": {"state": 24.0}, "1111101100": {"state": 1004.0}, "1111101110": {"state": 1006.0}, "1111111101": {"state": 1021.0}, "1111111011": {"state": 1019.0}, "1000010010": {"state": 530.0}, "1111110110": {"state": 1014.0}, "1001000000": {"state": 576.0}, "0111110111": {"state": 503.0}, "0000001110": {"state": 14.0}, "1000000111": {"state": 519.0}, "0000010111": {"state": 23.0}, "0000000011": {"state": 3.0}, "1011110110": {"state": 758.0}, "1000000001": {"state": 513.0}, "0110111101": {"state": 445.0}, "0000001100": {"state": 12.0}, "1000000110": {"state": 518.0}, "0000000100": {"state": 4.0}, "1000011110": {"state": 542.0}, "0111101100": {"state": 492.0}, "1011110101": {"state": 757.0}, "0000001000": {"state": 8.0}, "0011111000": {"state": 248.0}, "1111111100": {"state": 1020.0}, "0000000010": {"state": 2.0}, "1000000011": {"state": 515.0}, "0110111000": {"state": 440.0}, "1111110010": {"state": 1010.0}, "1011111110": {"state": 766.0}, "0100000000": {"state": 256.0}, "0111110110": {"state": 502.0}, "1000001001": {"state": 521.0}, "1110110100": {"state": 948.0}, "0111111011": {"state": 507.0}, "0111110001": {"state": 497.0}, "1011111101": {"state": 765.0}, "1111110100": {"state": 1012.0}, "0000011111": {"state": 31.0}, "1110100110": {"state": 934.0}, "1110111100": {"state": 956.0}, "1001010000": {"state": 592.0}, "1111100110": {"state": 998.0}, "0111101011": {"state": 491.0}, "0000000111": {"state": 7.0}, "0111111000": {"state": 504.0}, "0000010000": {"state": 16.0}, "1000011101": {"state": 541.0}, "1000001111": {"state": 527.0}, "1000001000": {"state": 520.0}, "1111111001": {"state": 1017.0}, "1000010001": {"state": 529.0}, "1100000110": {"state": 774.0}, "1000000010": {"state": 514.0}, "0000001010": {"state": 10.0}, "1111100001": {"state": 993.0}, "0111111001": {"state": 505.0}, "1000010000": {"state": 528.0}, "1111110001": {"state": 1009.0}, "1001000111": {"state": 583.0}, "1000001110": {"state": 526.0}, "1110111110": {"state": 958.0}, "1111101101": {"state": 1005.0}, "0001001101": {"state": 77.0}, "0111111101": {"state": 509.0}, "0111100110": {"state": 486.0}, "0000001101": {"state": 13.0}, "1110111011": {"state": 955.0}, "1000010101": {"state": 533.0}, "0011111100": {"state": 252.0}, "0000000000": {"state": 0.0}, "0110101110": {"state": 430.0}, "1000011000": {"state": 536.0}, "1111111010": {"state": 1018.0}, "1000000000": {"state": 512.0}, "0111110000": {"state": 496.0}, "0111110101": {"state": 501.0}, "0111101110": {"state": 494.0}, "1100000101": {"state": 773.0}, "1010111011": {"state": 699.0}, "0111111010": {"state": 506.0}, "1000000100": {"state": 516.0}, "1001000100": {"state": 580.0}, "0111101001": {"state": 489.0}, "0110100111": {"state": 423.0}, "1111110000": {"state": 1008.0}, "0000011100": {"state": 28.0}, "0110101100": {"state": 428.0}, "1111100011": {"state": 995.0}, "0000001001": {"state": 9.0}, "1011111010": {"state": 762.0}, "0001000101": {"state": 69.0}, "0110100000": {"state": 416.0}, "0011111110": {"state": 254.0}, "1111111111": {"state": 1023.0}, "0111100000": {"state": 480.0}, "1111100000": {"state": 992.0}, "1011101110": {"state": 750.0}, "0011111011": {"state": 251.0}, "0111000010": {"state": 450.0}, "0111101111": {"state": 495.0}, "0001001000": {"state": 72.0}, "0001000010": {"state": 66.0}, "0111111110": {"state": 510.0}, "1011111001": {"state": 761.0}, "1000001101": {"state": 525.0}, "0111110010": {"state": 498.0}, "1110111001": {"state": 953.0}, "0000000101": {"state": 5.0}, "0110111110": {"state": 446.0}, "0000011011": {"state": 27.0}, "0111111100": {"state": 508.0}, "1001000011": {"state": 579.0}, "0000010100": {"state": 20.0}, "0111110011": {"state": 499.0}, "0100001010": {"state": 266.0}, "0011110000": {"state": 240.0}, "0011101000": {"state": 232.0}, "1011111100": {"state": 764.0}}, "histogram": null, "output_qubits_map": {"state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]}, "state_vector": null, "parsed_state_vector_states": null, "physical_qubits_map": {"state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]}, "num_shots": 8192} \ No newline at end of file +{ + "vendor_format_result": {}, + "counts": { + "0110111101": 1, + "0001000110": 1, + "0110101011": 1, + "1000011000": 1, + "1011110000": 1, + "0110100100": 1, + "1110100110": 3, + "1100010101": 1, + "0000001100": 4, + "1000010110": 25, + "0000000011": 29, + "0111111011": 47, + "1011110011": 1, + "0000010000": 37, + "1000001111": 2, + "0111111111": 8, + "1111100100": 3, + "1111111011": 50, + "1111111101": 22, + "1111101100": 6, + "1111101110": 21, + "0000000010": 3, + "1000000011": 1, + "1100010110": 2, + "0111111101": 32, + "1001001000": 1, + "0000001111": 45, + "1000000101": 107, + "1000010010": 5, + "0111101110": 7, + "1100000101": 8, + "1111111100": 158, + "1000001100": 3, + "1111111010": 12, + "1011101101": 2, + "1111110001": 5, + "1000000000": 10, + "1111110100": 37, + "0000011111": 3, + "0000001000": 366, + "0011110110": 4, + "0011111000": 64, + "0000000111": 574, + "0000010101": 1, + "0111111010": 1, + "1010111011": 2, + "0000000000": 1654, + "0001000101": 7, + "0111100110": 4, + "0000001101": 15, + "1110111011": 3, + "1000010101": 9, + "0111101001": 1, + "0110110111": 2, + "1001000011": 1, + "0111111100": 43, + "0111101101": 1, + "1000000001": 233, + "1011110110": 19, + "0000011000": 37, + "1000000110": 1512, + "1111111110": 884, + "1111110011": 9, + "1011111101": 19, + "0111110001": 2, + "0011111011": 43, + "1111100101": 1, + "0100000000": 37, + "0111111000": 425, + "1001000000": 23, + "1111110110": 50, + "1011111110": 137, + "0000011101": 1, + "0001011101": 1, + "0000010111": 25, + "1000001001": 2, + "1000001000": 25, + "1111111001": 93, + "1111110111": 1, + "1000010001": 5, + "0000001010": 19, + "1111100001": 2, + "1100000110": 18, + "1000000010": 21, + "0001001101": 3, + "1000000111": 2, + "0111101000": 8, + "0100000011": 6, + "0110100000": 2, + "0000010100": 9, + "0111110011": 2, + "0111100101": 1, + "0111101100": 1, + "0100000111": 2, + "0100001000": 6, + "0111111001": 51, + "1000001101": 4, + "0111110010": 4, + "1000001110": 11, + "0100001110": 1, + "0110110100": 1, + "0011110000": 6, + "0000010010": 1, + "0110111000": 3, + "1111110010": 4, + "1110111100": 2, + "1000000100": 3, + "0111101011": 2, + "1111100110": 5, + "0111110110": 8, + "0011100000": 1, + "1110111001": 1, + "0000000101": 8, + "0110111110": 2, + "0000001110": 74, + "0111110111": 38, + "0110111011": 1, + "1110100001": 2, + "0011101000": 6, + "1001001011": 1, + "0111100000": 1, + "0111100111": 2, + "1011101110": 4, + "0111110000": 2, + "1111110000": 16, + "0000011100": 2, + "1111100011": 2, + "0000001001": 7, + "0000011110": 2, + "0011111110": 3, + "1111111111": 3, + "0111111110": 330, + "0001000010": 9, + "1011111001": 4, + "0000010011": 1, + "0110111001": 2, + "0001001110": 1, + "0011110111": 1, + "0111100010": 1, + "1110111110": 2, + "1110101110": 1, + "1000011110": 7, + "0000000100": 404, + "1110101001": 1 + }, + "counts_lsb_right": true, + "parsed_states": { + "0110111101": { "state": 445.0 }, + "0001000110": { "state": 70.0 }, + "0110101011": { "state": 427.0 }, + "1000011000": { "state": 536.0 }, + "1011110000": { "state": 752.0 }, + "0110100100": { "state": 420.0 }, + "1110100110": { "state": 934.0 }, + "1100010101": { "state": 789.0 }, + "0000001100": { "state": 12.0 }, + "1000010110": { "state": 534.0 }, + "0000000011": { "state": 3.0 }, + "0111111011": { "state": 507.0 }, + "1011110011": { "state": 755.0 }, + "0000010000": { "state": 16.0 }, + "1000001111": { "state": 527.0 }, + "0111111111": { "state": 511.0 }, + "1111100100": { "state": 996.0 }, + "1111111011": { "state": 1019.0 }, + "1111111101": { "state": 1021.0 }, + "1111101100": { "state": 1004.0 }, + "1111101110": { "state": 1006.0 }, + "0000000010": { "state": 2.0 }, + "1000000011": { "state": 515.0 }, + "1100010110": { "state": 790.0 }, + "0111111101": { "state": 509.0 }, + "1001001000": { "state": 584.0 }, + "0000001111": { "state": 15.0 }, + "1000000101": { "state": 517.0 }, + "1000010010": { "state": 530.0 }, + "0111101110": { "state": 494.0 }, + "1100000101": { "state": 773.0 }, + "1111111100": { "state": 1020.0 }, + "1000001100": { "state": 524.0 }, + "1111111010": { "state": 1018.0 }, + "1011101101": { "state": 749.0 }, + "1111110001": { "state": 1009.0 }, + "1000000000": { "state": 512.0 }, + "1111110100": { "state": 1012.0 }, + "0000011111": { "state": 31.0 }, + "0000001000": { "state": 8.0 }, + "0011110110": { "state": 246.0 }, + "0011111000": { "state": 248.0 }, + "0000000111": { "state": 7.0 }, + "0000010101": { "state": 21.0 }, + "0111111010": { "state": 506.0 }, + "1010111011": { "state": 699.0 }, + "0000000000": { "state": 0.0 }, + "0001000101": { "state": 69.0 }, + "0111100110": { "state": 486.0 }, + "0000001101": { "state": 13.0 }, + "1110111011": { "state": 955.0 }, + "1000010101": { "state": 533.0 }, + "0111101001": { "state": 489.0 }, + "0110110111": { "state": 439.0 }, + "1001000011": { "state": 579.0 }, + "0111111100": { "state": 508.0 }, + "0111101101": { "state": 493.0 }, + "1000000001": { "state": 513.0 }, + "1011110110": { "state": 758.0 }, + "0000011000": { "state": 24.0 }, + "1000000110": { "state": 518.0 }, + "1111111110": { "state": 1022.0 }, + "1111110011": { "state": 1011.0 }, + "1011111101": { "state": 765.0 }, + "0111110001": { "state": 497.0 }, + "0011111011": { "state": 251.0 }, + "1111100101": { "state": 997.0 }, + "0100000000": { "state": 256.0 }, + "0111111000": { "state": 504.0 }, + "1001000000": { "state": 576.0 }, + "1111110110": { "state": 1014.0 }, + "1011111110": { "state": 766.0 }, + "0000011101": { "state": 29.0 }, + "0001011101": { "state": 93.0 }, + "0000010111": { "state": 23.0 }, + "1000001001": { "state": 521.0 }, + "1000001000": { "state": 520.0 }, + "1111111001": { "state": 1017.0 }, + "1111110111": { "state": 1015.0 }, + "1000010001": { "state": 529.0 }, + "0000001010": { "state": 10.0 }, + "1111100001": { "state": 993.0 }, + "1100000110": { "state": 774.0 }, + "1000000010": { "state": 514.0 }, + "0001001101": { "state": 77.0 }, + "1000000111": { "state": 519.0 }, + "0111101000": { "state": 488.0 }, + "0100000011": { "state": 259.0 }, + "0110100000": { "state": 416.0 }, + "0000010100": { "state": 20.0 }, + "0111110011": { "state": 499.0 }, + "0111100101": { "state": 485.0 }, + "0111101100": { "state": 492.0 }, + "0100000111": { "state": 263.0 }, + "0100001000": { "state": 264.0 }, + "0111111001": { "state": 505.0 }, + "1000001101": { "state": 525.0 }, + "0111110010": { "state": 498.0 }, + "1000001110": { "state": 526.0 }, + "0100001110": { "state": 270.0 }, + "0110110100": { "state": 436.0 }, + "0011110000": { "state": 240.0 }, + "0000010010": { "state": 18.0 }, + "0110111000": { "state": 440.0 }, + "1111110010": { "state": 1010.0 }, + "1110111100": { "state": 956.0 }, + "1000000100": { "state": 516.0 }, + "0111101011": { "state": 491.0 }, + "1111100110": { "state": 998.0 }, + "0111110110": { "state": 502.0 }, + "0011100000": { "state": 224.0 }, + "1110111001": { "state": 953.0 }, + "0000000101": { "state": 5.0 }, + "0110111110": { "state": 446.0 }, + "0000001110": { "state": 14.0 }, + "0111110111": { "state": 503.0 }, + "0110111011": { "state": 443.0 }, + "1110100001": { "state": 929.0 }, + "0011101000": { "state": 232.0 }, + "1001001011": { "state": 587.0 }, + "0111100000": { "state": 480.0 }, + "0111100111": { "state": 487.0 }, + "1011101110": { "state": 750.0 }, + "0111110000": { "state": 496.0 }, + "1111110000": { "state": 1008.0 }, + "0000011100": { "state": 28.0 }, + "1111100011": { "state": 995.0 }, + "0000001001": { "state": 9.0 }, + "0000011110": { "state": 30.0 }, + "0011111110": { "state": 254.0 }, + "1111111111": { "state": 1023.0 }, + "0111111110": { "state": 510.0 }, + "0001000010": { "state": 66.0 }, + "1011111001": { "state": 761.0 }, + "0000010011": { "state": 19.0 }, + "0110111001": { "state": 441.0 }, + "0001001110": { "state": 78.0 }, + "0011110111": { "state": 247.0 }, + "0111100010": { "state": 482.0 }, + "1110111110": { "state": 958.0 }, + "1110101110": { "state": 942.0 }, + "1000011110": { "state": 542.0 }, + "0000000100": { "state": 4.0 }, + "1110101001": { "state": 937.0 } + }, + "histogram": null, + "output_qubits_map": { "state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] }, + "state_vector": null, + "parsed_state_vector_states": null, + "physical_qubits_map": { "state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] }, + "num_shots": 8192 +} diff --git a/algorithms/glued_trees/results/20-qubits/2n+0.json b/algorithms/glued_trees/results/20-qubits/2n+0.json index ed5a8710..f197514c 100644 --- a/algorithms/glued_trees/results/20-qubits/2n+0.json +++ b/algorithms/glued_trees/results/20-qubits/2n+0.json @@ -1 +1,286 @@ -{"vendor_format_result": {}, "counts": {"00000000011111110100": 1, "10000000000011110010": 1, "01111111111100111010": 1, "00000000000100001111": 1, "10000000001100000101": 1, "11111111111011111010": 1, "01111111111111111101": 1, "11111111111100001000": 1, "01111111110110010101": 1, "10000000001100001010": 1, "00000000000011111001": 1, "00000000000011111011": 1, "10000000000111110010": 1, "01111111111000110101": 1, "10000000011111110001": 2, "00000000000011111010": 1, "11111111110110011111": 1, "11111111111000110011": 1, "01111111111100000100": 1, "11111111101001101011": 1, "01111111110000000010": 1, "10000000000111111001": 1, "11111111110011111111": 1, "00000000000111110100": 2, "00000000000011110100": 2, "01111111111011111001": 1, "11111111111100001111": 1, "01111111110110011101": 7, "10000000000011111101": 3, "01111111111111001101": 2, "11111111110110010100": 3, "11111111110011111101": 1, "01111111111001100010": 2, "11111111111010101010": 1, "01111111110110011010": 3, "11111111111001100011": 2, "11111111110110011000": 2, "01111111111111110010": 2, "01111111111011111110": 2, "01111111110110010001": 1, "01111111111100001110": 2, "01111111111011110101": 1, "10000000000011111001": 2, "11111111111100001101": 7, "11111111111111111111": 5, "00000000000000001011": 222, "11111111111011111100": 1, "00000000000000001000": 18, "00000000011000000000": 1, "11111111110100000010": 1, "10000000000000000010": 35, "00000000000000001100": 4, "11111111111100000010": 2, "01111111111100001101": 10, "00000000000111111100": 5, "10000000011111111110": 17, "11111111111010011110": 9, "10000000000000001100": 1, "00000000000011111100": 8, "11111111111011111000": 2, "00000000000000000011": 14, "10000000000000001001": 183, "00000000000000000100": 13, "01111111111100000110": 2, "01111111111011111010": 4, "10000000000000001010": 673, "11111111111111111010": 1, "00000000000000001111": 919, "11111111110011111011": 1, "10000000000011111010": 2, "11111111110011110010": 2, "11111111111100000100": 15, "11111111111100000000": 16, "00000000011111111011": 2, "00000000001011111100": 1, "01111111111101110010": 1, "11111111111100001011": 4, "01111111110011111010": 1, "10000000000011110110": 1, "00000000000000000000": 3745, "01111111111100000111": 2, "01111111111011110010": 2, "10000000000000000001": 95, "10000000000011110100": 1, "10000000000000000101": 1293, "01111111111100000101": 16, "11111111111100001100": 7, "00000000011111110011": 2, "11111111111100001010": 3, "10000000000111110001": 106, "01111111111000111110": 1, "10000000000100000001": 1, "11111111111010010001": 2, "11111111111100000011": 13, "01111111111111110101": 1, "11111111110110010010": 2, "00000000000011111111": 5, "10000000000000001101": 10, "01111111111000110011": 1, "10000000001100000010": 1, "11111111110011110011": 1, "10000000011111110110": 1, "11111111111100000101": 6, "11111111110110010000": 1, "11111111111100000110": 2, "00000000000100000100": 1, "10000000000000000110": 207, "10000000011111110010": 2, "10000000000011110101": 2, "11111111111100000111": 12, "01111111111010010011": 1, "00000000011111111100": 6, "01111111111100000001": 1, "11111111110110011010": 1, "10000000000111111110": 285, "01111111111010011100": 3, "01111111110110011110": 2, "10000000000000001110": 66, "01111111111100001010": 8, "11111111110110010101": 3, "00000000000011110011": 3}, "counts_lsb_right": true, "parsed_states": {"00000000011111110100": {"state": 2036.0}, "10000000000011110010": {"state": 524530.0}, "01111111111100111010": {"state": 524090.0}, "00000000000100001111": {"state": 271.0}, "10000000001100000101": {"state": 525061.0}, "11111111111011111010": {"state": 1048314.0}, "01111111111111111101": {"state": 524285.0}, "11111111111100001000": {"state": 1048328.0}, "01111111110110010101": {"state": 523669.0}, "10000000001100001010": {"state": 525066.0}, "00000000000011111001": {"state": 249.0}, "00000000000011111011": {"state": 251.0}, "10000000000111110010": {"state": 524786.0}, "01111111111000110101": {"state": 523829.0}, "10000000011111110001": {"state": 526321.0}, "00000000000011111010": {"state": 250.0}, "11111111110110011111": {"state": 1047967.0}, "11111111111000110011": {"state": 1048115.0}, "01111111111100000100": {"state": 524036.0}, "11111111101001101011": {"state": 1047147.0}, "01111111110000000010": {"state": 523266.0}, "10000000000111111001": {"state": 524793.0}, "11111111110011111111": {"state": 1047807.0}, "00000000000111110100": {"state": 500.0}, "00000000000011110100": {"state": 244.0}, "01111111111011111001": {"state": 524025.0}, "11111111111100001111": {"state": 1048335.0}, "01111111110110011101": {"state": 523677.0}, "10000000000011111101": {"state": 524541.0}, "01111111111111001101": {"state": 524237.0}, "11111111110110010100": {"state": 1047956.0}, "11111111110011111101": {"state": 1047805.0}, "01111111111001100010": {"state": 523874.0}, "11111111111010101010": {"state": 1048234.0}, "01111111110110011010": {"state": 523674.0}, "11111111111001100011": {"state": 1048163.0}, "11111111110110011000": {"state": 1047960.0}, "01111111111111110010": {"state": 524274.0}, "01111111111011111110": {"state": 524030.0}, "01111111110110010001": {"state": 523665.0}, "01111111111100001110": {"state": 524046.0}, "01111111111011110101": {"state": 524021.0}, "10000000000011111001": {"state": 524537.0}, "11111111111100001101": {"state": 1048333.0}, "11111111111111111111": {"state": 1048575.0}, "00000000000000001011": {"state": 11.0}, "11111111111011111100": {"state": 1048316.0}, "00000000000000001000": {"state": 8.0}, "00000000011000000000": {"state": 1536.0}, "11111111110100000010": {"state": 1047810.0}, "10000000000000000010": {"state": 524290.0}, "00000000000000001100": {"state": 12.0}, "11111111111100000010": {"state": 1048322.0}, "01111111111100001101": {"state": 524045.0}, "00000000000111111100": {"state": 508.0}, "10000000011111111110": {"state": 526334.0}, "11111111111010011110": {"state": 1048222.0}, "10000000000000001100": {"state": 524300.0}, "00000000000011111100": {"state": 252.0}, "11111111111011111000": {"state": 1048312.0}, "00000000000000000011": {"state": 3.0}, "10000000000000001001": {"state": 524297.0}, "00000000000000000100": {"state": 4.0}, "01111111111100000110": {"state": 524038.0}, "01111111111011111010": {"state": 524026.0}, "10000000000000001010": {"state": 524298.0}, "11111111111111111010": {"state": 1048570.0}, "00000000000000001111": {"state": 15.0}, "11111111110011111011": {"state": 1047803.0}, "10000000000011111010": {"state": 524538.0}, "11111111110011110010": {"state": 1047794.0}, "11111111111100000100": {"state": 1048324.0}, "11111111111100000000": {"state": 1048320.0}, "00000000011111111011": {"state": 2043.0}, "00000000001011111100": {"state": 764.0}, "01111111111101110010": {"state": 524146.0}, "11111111111100001011": {"state": 1048331.0}, "01111111110011111010": {"state": 523514.0}, "10000000000011110110": {"state": 524534.0}, "00000000000000000000": {"state": 0.0}, "01111111111100000111": {"state": 524039.0}, "01111111111011110010": {"state": 524018.0}, "10000000000000000001": {"state": 524289.0}, "10000000000011110100": {"state": 524532.0}, "10000000000000000101": {"state": 524293.0}, "01111111111100000101": {"state": 524037.0}, "11111111111100001100": {"state": 1048332.0}, "00000000011111110011": {"state": 2035.0}, "11111111111100001010": {"state": 1048330.0}, "10000000000111110001": {"state": 524785.0}, "01111111111000111110": {"state": 523838.0}, "10000000000100000001": {"state": 524545.0}, "11111111111010010001": {"state": 1048209.0}, "11111111111100000011": {"state": 1048323.0}, "01111111111111110101": {"state": 524277.0}, "11111111110110010010": {"state": 1047954.0}, "00000000000011111111": {"state": 255.0}, "10000000000000001101": {"state": 524301.0}, "01111111111000110011": {"state": 523827.0}, "10000000001100000010": {"state": 525058.0}, "11111111110011110011": {"state": 1047795.0}, "10000000011111110110": {"state": 526326.0}, "11111111111100000101": {"state": 1048325.0}, "11111111110110010000": {"state": 1047952.0}, "11111111111100000110": {"state": 1048326.0}, "00000000000100000100": {"state": 260.0}, "10000000000000000110": {"state": 524294.0}, "10000000011111110010": {"state": 526322.0}, "10000000000011110101": {"state": 524533.0}, "11111111111100000111": {"state": 1048327.0}, "01111111111010010011": {"state": 523923.0}, "00000000011111111100": {"state": 2044.0}, "01111111111100000001": {"state": 524033.0}, "11111111110110011010": {"state": 1047962.0}, "10000000000111111110": {"state": 524798.0}, "01111111111010011100": {"state": 523932.0}, "01111111110110011110": {"state": 523678.0}, "10000000000000001110": {"state": 524302.0}, "01111111111100001010": {"state": 524042.0}, "11111111110110010101": {"state": 1047957.0}, "00000000000011110011": {"state": 243.0}}, "histogram": null, "output_qubits_map": {"state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]}, "state_vector": null, "parsed_state_vector_states": null, "physical_qubits_map": {"state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]}, "num_shots": 8192} \ No newline at end of file +{ + "vendor_format_result": {}, + "counts": { + "11111111111001101010": 1, + "10000000001100001011": 1, + "00000000011111111100": 5, + "00000000000000000011": 8, + "10000000000000001001": 185, + "11111111111100001011": 1, + "00000000001100000011": 1, + "01111111111100001101": 12, + "01111111111101100000": 3, + "10000000000000001110": 77, + "01111111110110011110": 9, + "01111111110110011010": 2, + "00000000000011111000": 1, + "00000000011111111111": 1, + "10000000000000001101": 12, + "11111111111000110011": 2, + "11111111111010101010": 1, + "01111111111101111000": 1, + "11111111111100000101": 7, + "10000000000011111110": 1, + "10000000000011111010": 4, + "11111111111100000100": 8, + "11111111110011111011": 1, + "11111111110110011101": 4, + "00000000011111111011": 1, + "01111111110110010001": 5, + "01111111110011111101": 1, + "01111111111100001110": 4, + "01111111111011110101": 4, + "10000000000100000001": 1, + "11111111111100000011": 22, + "11111111111100000110": 3, + "11111111110110010000": 2, + "10000000000111111110": 314, + "01111111111100000001": 1, + "11111111110110011010": 1, + "10000000000111110001": 89, + "01111111111100001010": 5, + "00000000000000001111": 958, + "11111111111111111010": 1, + "00000000000000000000": 3628, + "01111111110011111010": 2, + "10000000000111110101": 1, + "11111111111100001100": 10, + "10000000000000000101": 1282, + "00000000011111110011": 5, + "11111111110110011000": 3, + "00000000000011111011": 5, + "00000000000100000011": 1, + "01111111110110011101": 5, + "11111111111100001111": 2, + "11111111111100001001": 1, + "00000000000111111000": 1, + "11111111111100000000": 11, + "01111111111111110011": 1, + "00000000000000001011": 241, + "11111111111100000111": 16, + "00000000000111111100": 5, + "11111111111010011110": 10, + "01111111111100000101": 9, + "10000000011111111110": 17, + "00000000000011111100": 5, + "10000000000000001100": 1, + "10000000000000000000": 1, + "01111111111011111110": 6, + "10000000000000000110": 171, + "11111111110110010011": 2, + "00000000000111111010": 1, + "01111111101001100101": 2, + "10000000011111110010": 1, + "11111111111011110010": 1, + "00000000000011110100": 1, + "00000000000111110100": 2, + "01111111110110010101": 2, + "10000000011111110001": 5, + "00000000000011110011": 4, + "01111111111001100010": 1, + "11111111111100000010": 3, + "00000000000000001100": 6, + "01111111111111111111": 1, + "10000000000000000010": 24, + "10000000000110100011": 1, + "10000000000011111101": 4, + "11111111110110010100": 2, + "01111111110011111110": 1, + "10000000000011110010": 5, + "11111111111100001000": 3, + "00000000000000001000": 22, + "11111111111100000001": 1, + "10000000000011111000": 1, + "01111111111111111001": 1, + "10000000000000000001": 108, + "01111111111010010011": 2, + "11111111110011111010": 2, + "00000000011111110100": 3, + "10000000000111110010": 1, + "11111111111010010001": 5, + "11111111111100001101": 4, + "01111111101001100010": 2, + "01111111111011111001": 3, + "00000000000011111111": 2, + "01111111111100000000": 1, + "11111111110110010010": 1, + "01111111111111110010": 1, + "00000000011111111000": 2, + "01111111111000110011": 1, + "01111111110110011001": 1, + "00000000000000001001": 1, + "01111111110011111001": 1, + "11111111111010010010": 3, + "11111111101100001100": 1, + "11111111111111111001": 1, + "00000000011000001011": 1, + "01111111111011110111": 1, + "01111111111111000001": 1, + "11111111110110011111": 1, + "11111111111011110000": 1, + "10000000000100001010": 1, + "11111111111101011110": 1, + "01111111111001100011": 1, + "01111111100011110101": 1, + "01111111111101101111": 1, + "01111111110110011111": 1, + "10000000000000001010": 715, + "00000000000011111010": 1, + "00000000000000000100": 15, + "01111111111011111000": 1, + "01111111111010010100": 1, + "11111111111100001010": 2, + "00000000011000000000": 1, + "10000000001100000101": 1, + "01111111111111110101": 1 + }, + "counts_lsb_right": true, + "parsed_states": { + "11111111111001101010": { "state": 1048170.0 }, + "10000000001100001011": { "state": 525067.0 }, + "00000000011111111100": { "state": 2044.0 }, + "00000000000000000011": { "state": 3.0 }, + "10000000000000001001": { "state": 524297.0 }, + "11111111111100001011": { "state": 1048331.0 }, + "00000000001100000011": { "state": 771.0 }, + "01111111111100001101": { "state": 524045.0 }, + "01111111111101100000": { "state": 524128.0 }, + "10000000000000001110": { "state": 524302.0 }, + "01111111110110011110": { "state": 523678.0 }, + "01111111110110011010": { "state": 523674.0 }, + "00000000000011111000": { "state": 248.0 }, + "00000000011111111111": { "state": 2047.0 }, + "10000000000000001101": { "state": 524301.0 }, + "11111111111000110011": { "state": 1048115.0 }, + "11111111111010101010": { "state": 1048234.0 }, + "01111111111101111000": { "state": 524152.0 }, + "11111111111100000101": { "state": 1048325.0 }, + "10000000000011111110": { "state": 524542.0 }, + "10000000000011111010": { "state": 524538.0 }, + "11111111111100000100": { "state": 1048324.0 }, + "11111111110011111011": { "state": 1047803.0 }, + "11111111110110011101": { "state": 1047965.0 }, + "00000000011111111011": { "state": 2043.0 }, + "01111111110110010001": { "state": 523665.0 }, + "01111111110011111101": { "state": 523517.0 }, + "01111111111100001110": { "state": 524046.0 }, + "01111111111011110101": { "state": 524021.0 }, + "10000000000100000001": { "state": 524545.0 }, + "11111111111100000011": { "state": 1048323.0 }, + "11111111111100000110": { "state": 1048326.0 }, + "11111111110110010000": { "state": 1047952.0 }, + "10000000000111111110": { "state": 524798.0 }, + "01111111111100000001": { "state": 524033.0 }, + "11111111110110011010": { "state": 1047962.0 }, + "10000000000111110001": { "state": 524785.0 }, + "01111111111100001010": { "state": 524042.0 }, + "00000000000000001111": { "state": 15.0 }, + "11111111111111111010": { "state": 1048570.0 }, + "00000000000000000000": { "state": 0.0 }, + "01111111110011111010": { "state": 523514.0 }, + "10000000000111110101": { "state": 524789.0 }, + "11111111111100001100": { "state": 1048332.0 }, + "10000000000000000101": { "state": 524293.0 }, + "00000000011111110011": { "state": 2035.0 }, + "11111111110110011000": { "state": 1047960.0 }, + "00000000000011111011": { "state": 251.0 }, + "00000000000100000011": { "state": 259.0 }, + "01111111110110011101": { "state": 523677.0 }, + "11111111111100001111": { "state": 1048335.0 }, + "11111111111100001001": { "state": 1048329.0 }, + "00000000000111111000": { "state": 504.0 }, + "11111111111100000000": { "state": 1048320.0 }, + "01111111111111110011": { "state": 524275.0 }, + "00000000000000001011": { "state": 11.0 }, + "11111111111100000111": { "state": 1048327.0 }, + "00000000000111111100": { "state": 508.0 }, + "11111111111010011110": { "state": 1048222.0 }, + "01111111111100000101": { "state": 524037.0 }, + "10000000011111111110": { "state": 526334.0 }, + "00000000000011111100": { "state": 252.0 }, + "10000000000000001100": { "state": 524300.0 }, + "10000000000000000000": { "state": 524288.0 }, + "01111111111011111110": { "state": 524030.0 }, + "10000000000000000110": { "state": 524294.0 }, + "11111111110110010011": { "state": 1047955.0 }, + "00000000000111111010": { "state": 506.0 }, + "01111111101001100101": { "state": 522853.0 }, + "10000000011111110010": { "state": 526322.0 }, + "11111111111011110010": { "state": 1048306.0 }, + "00000000000011110100": { "state": 244.0 }, + "00000000000111110100": { "state": 500.0 }, + "01111111110110010101": { "state": 523669.0 }, + "10000000011111110001": { "state": 526321.0 }, + "00000000000011110011": { "state": 243.0 }, + "01111111111001100010": { "state": 523874.0 }, + "11111111111100000010": { "state": 1048322.0 }, + "00000000000000001100": { "state": 12.0 }, + "01111111111111111111": { "state": 524287.0 }, + "10000000000000000010": { "state": 524290.0 }, + "10000000000110100011": { "state": 524707.0 }, + "10000000000011111101": { "state": 524541.0 }, + "11111111110110010100": { "state": 1047956.0 }, + "01111111110011111110": { "state": 523518.0 }, + "10000000000011110010": { "state": 524530.0 }, + "11111111111100001000": { "state": 1048328.0 }, + "00000000000000001000": { "state": 8.0 }, + "11111111111100000001": { "state": 1048321.0 }, + "10000000000011111000": { "state": 524536.0 }, + "01111111111111111001": { "state": 524281.0 }, + "10000000000000000001": { "state": 524289.0 }, + "01111111111010010011": { "state": 523923.0 }, + "11111111110011111010": { "state": 1047802.0 }, + "00000000011111110100": { "state": 2036.0 }, + "10000000000111110010": { "state": 524786.0 }, + "11111111111010010001": { "state": 1048209.0 }, + "11111111111100001101": { "state": 1048333.0 }, + "01111111101001100010": { "state": 522850.0 }, + "01111111111011111001": { "state": 524025.0 }, + "00000000000011111111": { "state": 255.0 }, + "01111111111100000000": { "state": 524032.0 }, + "11111111110110010010": { "state": 1047954.0 }, + "01111111111111110010": { "state": 524274.0 }, + "00000000011111111000": { "state": 2040.0 }, + "01111111111000110011": { "state": 523827.0 }, + "01111111110110011001": { "state": 523673.0 }, + "00000000000000001001": { "state": 9.0 }, + "01111111110011111001": { "state": 523513.0 }, + "11111111111010010010": { "state": 1048210.0 }, + "11111111101100001100": { "state": 1047308.0 }, + "11111111111111111001": { "state": 1048569.0 }, + "00000000011000001011": { "state": 1547.0 }, + "01111111111011110111": { "state": 524023.0 }, + "01111111111111000001": { "state": 524225.0 }, + "11111111110110011111": { "state": 1047967.0 }, + "11111111111011110000": { "state": 1048304.0 }, + "10000000000100001010": { "state": 524554.0 }, + "11111111111101011110": { "state": 1048414.0 }, + "01111111111001100011": { "state": 523875.0 }, + "01111111100011110101": { "state": 522485.0 }, + "01111111111101101111": { "state": 524143.0 }, + "01111111110110011111": { "state": 523679.0 }, + "10000000000000001010": { "state": 524298.0 }, + "00000000000011111010": { "state": 250.0 }, + "00000000000000000100": { "state": 4.0 }, + "01111111111011111000": { "state": 524024.0 }, + "01111111111010010100": { "state": 523924.0 }, + "11111111111100001010": { "state": 1048330.0 }, + "00000000011000000000": { "state": 1536.0 }, + "10000000001100000101": { "state": 525061.0 }, + "01111111111111110101": { "state": 524277.0 } + }, + "histogram": null, + "output_qubits_map": { + "state": [ + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 + ] + }, + "state_vector": null, + "parsed_state_vector_states": null, + "physical_qubits_map": { + "state": [ + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 + ] + }, + "num_shots": 8192 +} diff --git a/algorithms/glued_trees/results/20-qubits/2n+10.json b/algorithms/glued_trees/results/20-qubits/2n+10.json index 9c3683aa..bc4dca52 100644 --- a/algorithms/glued_trees/results/20-qubits/2n+10.json +++ b/algorithms/glued_trees/results/20-qubits/2n+10.json @@ -1 +1,354 @@ -{"vendor_format_result": {}, "counts": {"01111111111000000111": 1, "01111111111100001011": 1, "00000000001111000100": 1, "11111111111000111101": 1, "01111111111000000101": 1, "10000000000011110010": 1, "10000000000011111101": 1, "11111111111111100100": 1, "01111111110110010101": 1, "00000000001100001000": 1, "11111111111111111001": 1, "11111111111010010101": 1, "11111111110000001011": 1, "00000000001111000110": 1, "01111111110011111110": 1, "10000000000011110100": 1, "11111111111000111010": 1, "01111111111011111010": 2, "01111111110000000010": 1, "01111111111001100100": 2, "11111111110110010011": 1, "01111111111010101111": 1, "01111111111000110101": 1, "10000000011000001101": 1, "01111111111100000010": 1, "01111111110000000110": 1, "01111111110110011111": 1, "11111111110110010001": 1, "00000000011111110100": 2, "01111111110111111111": 1, "00000000001100001100": 1, "11111111111011110000": 1, "01111111111111110100": 1, "11111111110100001101": 1, "00000000000111110111": 5, "11111111111001101011": 1, "01111111110001101001": 4, "10000000011111111110": 23, "11111111111110000100": 1, "00000000000000000010": 4, "01111111110001100110": 1, "11111111111100000111": 9, "11111111110011111000": 1, "00000000000111110011": 45, "11111111110000000111": 1, "00000000000000001011": 214, "11111111111000000101": 2, "01111111111111110110": 7, "00000000011000000000": 3, "11111111111000000000": 1, "11111111111000111000": 1, "10000000000011110110": 2, "00000000000000000000": 3668, "01111111110011111010": 1, "00000000000000000011": 31, "10000000000000001001": 279, "01111111111111001101": 1, "11111111110110011010": 4, "01111111110001100010": 2, "11111111111010101101": 3, "10000000000000001011": 3, "00000000011111110011": 11, "11111111110110010000": 6, "01111111111100001100": 3, "11111111111100000110": 3, "11111111110001101000": 1, "01111111110110011110": 4, "10000000001000001101": 2, "10000000000100000010": 1, "01111111111000001101": 2, "11111111111100001011": 9, "01111111111100000000": 1, "11111111110001101001": 1, "11111111111100001001": 1, "10000000000000001101": 711, "10000000000000000101": 59, "11111111111111110101": 5, "00000000000000001111": 1627, "11111111111111111010": 5, "10000000000111110101": 7, "11111111111100000000": 5, "11111111101001100101": 1, "10000000000000001010": 230, "01111111111111110000": 4, "01111111111001100111": 1, "11111111111110011000": 1, "01111111111011111110": 1, "01111111111010100000": 6, "01111111110110010100": 1, "11111111111111110010": 1, "10000000000000000000": 3, "10000000000000000110": 49, "00000000000000000100": 90, "00000000000111110100": 12, "00000000000011110100": 2, "10000000011111110101": 4, "01111111111101111010": 1, "10000000000111110001": 204, "01111111110001100101": 5, "00000000000000000111": 15, "01111111111100001001": 10, "11111111111001101101": 2, "11111111111000110110": 1, "01111111111100111001": 1, "10000000000011111001": 1, "11111111111100000101": 1, "11111111110111110001": 1, "11111111111000000111": 5, "11111111110110011011": 5, "01111111110110010001": 2, "11111111111111111100": 36, "11111111110011110111": 1, "10000000000100001101": 3, "01111111111111110001": 48, "10000000000000000010": 44, "01111111111000001111": 1, "00000000000000001100": 30, "11111111110001100100": 1, "11111111111100000010": 5, "01111111110000001001": 1, "10000000000111111110": 345, "01111111110110010110": 2, "01111111111000001110": 2, "11111111111100000100": 11, "01111111111001010011": 1, "01111111110110011001": 3, "01111111111111110111": 7, "01111111110000001101": 1, "11111111111111110001": 1, "11111111110001100111": 4, "11111111110110011100": 2, "00000000000000001101": 2, "00000000001001010111": 1, "01111111111100001101": 6, "11111111111000000010": 1, "01111111110110011010": 3, "11111111111001011110": 2, "01111111110001101111": 2, "11111111110111111011": 1, "11111111111000001001": 1, "11111111110011110100": 1, "00000000000111111100": 6, "11111111111111110111": 4, "01111111111111110101": 3, "01111111111111111010": 40, "01111111110001101011": 1, "01111111111111111001": 6, "01111111110000000111": 1, "01111111111001100000": 2, "00000000000011111000": 2, "01111111111000000010": 4, "00000000010000110101": 1, "01111111111111111000": 1, "11111111111100000011": 1, "11111111111010011110": 4, "11111111111110011110": 2, "10000000001111001011": 1, "11111111111000001110": 1, "01111111110110010111": 5, "10000000000111111010": 3, "00000000000000001000": 14, "11111111111011110001": 2, "10000000011111110001": 3, "11111111111000001111": 3, "01111111100000001001": 1, "10000000000111110010": 1, "01111111110011110111": 1, "11111111111111110011": 7, "11111111111111111011": 1, "10000000000000000001": 4, "01111111111010010011": 6, "11111111110001101011": 2, "10000000000100001100": 1, "10000000000000001110": 9, "01111111111111111011": 2}, "counts_lsb_right": true, "parsed_states": {"01111111111000000111": {"state": 523783.0}, "01111111111100001011": {"state": 524043.0}, "00000000001111000100": {"state": 964.0}, "11111111111000111101": {"state": 1048125.0}, "01111111111000000101": {"state": 523781.0}, "10000000000011110010": {"state": 524530.0}, "10000000000011111101": {"state": 524541.0}, "11111111111111100100": {"state": 1048548.0}, "01111111110110010101": {"state": 523669.0}, "00000000001100001000": {"state": 776.0}, "11111111111111111001": {"state": 1048569.0}, "11111111111010010101": {"state": 1048213.0}, "11111111110000001011": {"state": 1047563.0}, "00000000001111000110": {"state": 966.0}, "01111111110011111110": {"state": 523518.0}, "10000000000011110100": {"state": 524532.0}, "11111111111000111010": {"state": 1048122.0}, "01111111111011111010": {"state": 524026.0}, "01111111110000000010": {"state": 523266.0}, "01111111111001100100": {"state": 523876.0}, "11111111110110010011": {"state": 1047955.0}, "01111111111010101111": {"state": 523951.0}, "01111111111000110101": {"state": 523829.0}, "10000000011000001101": {"state": 525837.0}, "01111111111100000010": {"state": 524034.0}, "01111111110000000110": {"state": 523270.0}, "01111111110110011111": {"state": 523679.0}, "11111111110110010001": {"state": 1047953.0}, "00000000011111110100": {"state": 2036.0}, "01111111110111111111": {"state": 523775.0}, "00000000001100001100": {"state": 780.0}, "11111111111011110000": {"state": 1048304.0}, "01111111111111110100": {"state": 524276.0}, "11111111110100001101": {"state": 1047821.0}, "00000000000111110111": {"state": 503.0}, "11111111111001101011": {"state": 1048171.0}, "01111111110001101001": {"state": 523369.0}, "10000000011111111110": {"state": 526334.0}, "11111111111110000100": {"state": 1048452.0}, "00000000000000000010": {"state": 2.0}, "01111111110001100110": {"state": 523366.0}, "11111111111100000111": {"state": 1048327.0}, "11111111110011111000": {"state": 1047800.0}, "00000000000111110011": {"state": 499.0}, "11111111110000000111": {"state": 1047559.0}, "00000000000000001011": {"state": 11.0}, "11111111111000000101": {"state": 1048069.0}, "01111111111111110110": {"state": 524278.0}, "00000000011000000000": {"state": 1536.0}, "11111111111000000000": {"state": 1048064.0}, "11111111111000111000": {"state": 1048120.0}, "10000000000011110110": {"state": 524534.0}, "00000000000000000000": {"state": 0.0}, "01111111110011111010": {"state": 523514.0}, "00000000000000000011": {"state": 3.0}, "10000000000000001001": {"state": 524297.0}, "01111111111111001101": {"state": 524237.0}, "11111111110110011010": {"state": 1047962.0}, "01111111110001100010": {"state": 523362.0}, "11111111111010101101": {"state": 1048237.0}, "10000000000000001011": {"state": 524299.0}, "00000000011111110011": {"state": 2035.0}, "11111111110110010000": {"state": 1047952.0}, "01111111111100001100": {"state": 524044.0}, "11111111111100000110": {"state": 1048326.0}, "11111111110001101000": {"state": 1047656.0}, "01111111110110011110": {"state": 523678.0}, "10000000001000001101": {"state": 524813.0}, "10000000000100000010": {"state": 524546.0}, "01111111111000001101": {"state": 523789.0}, "11111111111100001011": {"state": 1048331.0}, "01111111111100000000": {"state": 524032.0}, "11111111110001101001": {"state": 1047657.0}, "11111111111100001001": {"state": 1048329.0}, "10000000000000001101": {"state": 524301.0}, "10000000000000000101": {"state": 524293.0}, "11111111111111110101": {"state": 1048565.0}, "00000000000000001111": {"state": 15.0}, "11111111111111111010": {"state": 1048570.0}, "10000000000111110101": {"state": 524789.0}, "11111111111100000000": {"state": 1048320.0}, "11111111101001100101": {"state": 1047141.0}, "10000000000000001010": {"state": 524298.0}, "01111111111111110000": {"state": 524272.0}, "01111111111001100111": {"state": 523879.0}, "11111111111110011000": {"state": 1048472.0}, "01111111111011111110": {"state": 524030.0}, "01111111111010100000": {"state": 523936.0}, "01111111110110010100": {"state": 523668.0}, "11111111111111110010": {"state": 1048562.0}, "10000000000000000000": {"state": 524288.0}, "10000000000000000110": {"state": 524294.0}, "00000000000000000100": {"state": 4.0}, "00000000000111110100": {"state": 500.0}, "00000000000011110100": {"state": 244.0}, "10000000011111110101": {"state": 526325.0}, "01111111111101111010": {"state": 524154.0}, "10000000000111110001": {"state": 524785.0}, "01111111110001100101": {"state": 523365.0}, "00000000000000000111": {"state": 7.0}, "01111111111100001001": {"state": 524041.0}, "11111111111001101101": {"state": 1048173.0}, "11111111111000110110": {"state": 1048118.0}, "01111111111100111001": {"state": 524089.0}, "10000000000011111001": {"state": 524537.0}, "11111111111100000101": {"state": 1048325.0}, "11111111110111110001": {"state": 1048049.0}, "11111111111000000111": {"state": 1048071.0}, "11111111110110011011": {"state": 1047963.0}, "01111111110110010001": {"state": 523665.0}, "11111111111111111100": {"state": 1048572.0}, "11111111110011110111": {"state": 1047799.0}, "10000000000100001101": {"state": 524557.0}, "01111111111111110001": {"state": 524273.0}, "10000000000000000010": {"state": 524290.0}, "01111111111000001111": {"state": 523791.0}, "00000000000000001100": {"state": 12.0}, "11111111110001100100": {"state": 1047652.0}, "11111111111100000010": {"state": 1048322.0}, "01111111110000001001": {"state": 523273.0}, "10000000000111111110": {"state": 524798.0}, "01111111110110010110": {"state": 523670.0}, "01111111111000001110": {"state": 523790.0}, "11111111111100000100": {"state": 1048324.0}, "01111111111001010011": {"state": 523859.0}, "01111111110110011001": {"state": 523673.0}, "01111111111111110111": {"state": 524279.0}, "01111111110000001101": {"state": 523277.0}, "11111111111111110001": {"state": 1048561.0}, "11111111110001100111": {"state": 1047655.0}, "11111111110110011100": {"state": 1047964.0}, "00000000000000001101": {"state": 13.0}, "00000000001001010111": {"state": 599.0}, "01111111111100001101": {"state": 524045.0}, "11111111111000000010": {"state": 1048066.0}, "01111111110110011010": {"state": 523674.0}, "11111111111001011110": {"state": 1048158.0}, "01111111110001101111": {"state": 523375.0}, "11111111110111111011": {"state": 1048059.0}, "11111111111000001001": {"state": 1048073.0}, "11111111110011110100": {"state": 1047796.0}, "00000000000111111100": {"state": 508.0}, "11111111111111110111": {"state": 1048567.0}, "01111111111111110101": {"state": 524277.0}, "01111111111111111010": {"state": 524282.0}, "01111111110001101011": {"state": 523371.0}, "01111111111111111001": {"state": 524281.0}, "01111111110000000111": {"state": 523271.0}, "01111111111001100000": {"state": 523872.0}, "00000000000011111000": {"state": 248.0}, "01111111111000000010": {"state": 523778.0}, "00000000010000110101": {"state": 1077.0}, "01111111111111111000": {"state": 524280.0}, "11111111111100000011": {"state": 1048323.0}, "11111111111010011110": {"state": 1048222.0}, "11111111111110011110": {"state": 1048478.0}, "10000000001111001011": {"state": 525259.0}, "11111111111000001110": {"state": 1048078.0}, "01111111110110010111": {"state": 523671.0}, "10000000000111111010": {"state": 524794.0}, "00000000000000001000": {"state": 8.0}, "11111111111011110001": {"state": 1048305.0}, "10000000011111110001": {"state": 526321.0}, "11111111111000001111": {"state": 1048079.0}, "01111111100000001001": {"state": 522249.0}, "10000000000111110010": {"state": 524786.0}, "01111111110011110111": {"state": 523511.0}, "11111111111111110011": {"state": 1048563.0}, "11111111111111111011": {"state": 1048571.0}, "10000000000000000001": {"state": 524289.0}, "01111111111010010011": {"state": 523923.0}, "11111111110001101011": {"state": 1047659.0}, "10000000000100001100": {"state": 524556.0}, "10000000000000001110": {"state": 524302.0}, "01111111111111111011": {"state": 524283.0}}, "histogram": null, "output_qubits_map": {"state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]}, "state_vector": null, "parsed_state_vector_states": null, "physical_qubits_map": {"state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]}, "num_shots": 8192} \ No newline at end of file +{ + "vendor_format_result": {}, + "counts": { + "01111111111011111010": 1, + "10000000011111110010": 1, + "11111111111111110100": 1, + "10000000000011110110": 1, + "11111111110110010100": 1, + "10000000001111001011": 1, + "01111111111000000010": 4, + "11111111110011111011": 1, + "01111111111100111001": 1, + "01111111111001101100": 1, + "10000000000001100100": 1, + "11111111111111111110": 1, + "00000000000000001010": 1, + "01111111111000001101": 1, + "01111111111000111111": 1, + "11111111100111001100": 1, + "10000000011111110101": 3, + "11111111100010000111": 1, + "11111111111011110111": 1, + "00000000000111111101": 1, + "01111111110000001010": 1, + "00000000000011110100": 2, + "10000000000111111010": 1, + "01111111111101100000": 1, + "10000000001100001101": 1, + "11111111111111111010": 6, + "10000000011000001101": 4, + "00000000000000001111": 1681, + "11111111111000110101": 1, + "10000000011111111001": 1, + "01111111110110011011": 1, + "01111111111100011010": 1, + "11111111111001011110": 2, + "11111111110110011100": 2, + "00000000000000000010": 6, + "11111111111100000110": 1, + "01111111111100001100": 4, + "00000000001001011110": 1, + "01111111111000001001": 1, + "11111111111111111100": 37, + "01111111111110100000": 2, + "01111111111111110011": 1, + "11111111111100000000": 8, + "01111111111001100000": 4, + "11111111111001101101": 4, + "10000000001111110010": 1, + "01111111111001010011": 1, + "01111111110110011001": 5, + "01111111111111110111": 2, + "11111111111000001111": 5, + "10000000000111110010": 2, + "00000000000000000011": 30, + "01111111111110000010": 1, + "10000000000000001001": 302, + "00000000011111110100": 3, + "01111111111100001101": 11, + "01111111111001101101": 1, + "10000000000000000101": 62, + "00000000001111001001": 1, + "11111111110001100011": 1, + "11111111110110010000": 12, + "00000000000000001100": 41, + "10000000000100001101": 6, + "11111111110011110001": 2, + "11111111110110010001": 1, + "11111111110110011010": 3, + "11111111100000001111": 1, + "10000000000000000001": 7, + "01111111111010010011": 5, + "10000000000011110011": 1, + "01111111110001100110": 3, + "11111111111100000111": 7, + "10000000000000001101": 689, + "11111111111111110111": 1, + "11111111110011110100": 1, + "00000000000111111100": 8, + "10000000011111111110": 33, + "01111111100000000010": 1, + "00000000000000001011": 216, + "00000000000000000100": 125, + "01111111111011110010": 1, + "00000000000111110100": 16, + "01111111111111111010": 34, + "00000000000111110011": 45, + "00000000011111110011": 5, + "10000000000000001011": 1, + "01111111111100000111": 1, + "00000000000000000000": 3633, + "01111111111011111111": 1, + "11111111111111111001": 4, + "01111111111100001001": 8, + "10000000000000001010": 206, + "00000000000000000111": 14, + "01111111110001100101": 2, + "10000000000000000010": 37, + "01111111111111110001": 39, + "01111111110100000110": 1, + "11111111110110011011": 9, + "01111111110110010001": 2, + "01111111111111110101": 1, + "11111111111001101111": 1, + "11111111111011111000": 1, + "01111111111111110000": 3, + "01111111111101111001": 1, + "01111111111001111001": 1, + "11111111110110010010": 1, + "01111111110100001110": 1, + "01111111111100001111": 1, + "11111111111000001000": 2, + "11111111111100001011": 1, + "01111111110110011110": 3, + "11111111111000000100": 4, + "11111111111001101011": 1, + "01111111110001101001": 3, + "11111111111010101010": 1, + "01111111110001100010": 1, + "11111111111000111100": 1, + "11111111111100000010": 2, + "11111111110001100100": 1, + "01111111111011111110": 1, + "10000000000000000110": 52, + "01111111111010100000": 3, + "11111111111100000100": 7, + "01111111111001011100": 1, + "10000000000001100110": 1, + "01111111111111001101": 2, + "01111111110110010010": 3, + "10000000000000001110": 3, + "01111111111111111011": 2, + "00000000000000001000": 9, + "11111111111011110001": 2, + "11111111111100000001": 2, + "10000000000111110001": 215, + "11111111111000000001": 2, + "01111111110000001001": 1, + "10000000000111111110": 346, + "01111111110110010110": 4, + "11111111110001100001": 1, + "11111111111010011110": 5, + "11111111111000000011": 1, + "10000000011111110001": 3, + "01111111110011110101": 1, + "11111111111001101100": 1, + "10000000000111111011": 1, + "01111111111111111101": 2, + "11111111111101110111": 1, + "11111111110000000110": 1, + "11111111111000000000": 1, + "11111111111000000101": 1, + "01111111111001100110": 1, + "01111111111111110110": 3, + "00000000011000000000": 1, + "01111111110000000010": 1, + "11111111111111001011": 1, + "00000000000111110111": 6, + "11111111111111000000": 4, + "11111111110001100111": 2, + "01111111110110010101": 1, + "11111111111111110011": 3, + "11111111111111111011": 1, + "01111111111111111001": 4, + "10000000000111110101": 5, + "11111111111010101001": 1, + "01111111110110011101": 1, + "00000000000000001101": 1, + "00000000000110100010": 1 + }, + "counts_lsb_right": true, + "parsed_states": { + "01111111111011111010": { "state": 524026.0 }, + "10000000011111110010": { "state": 526322.0 }, + "11111111111111110100": { "state": 1048564.0 }, + "10000000000011110110": { "state": 524534.0 }, + "11111111110110010100": { "state": 1047956.0 }, + "10000000001111001011": { "state": 525259.0 }, + "01111111111000000010": { "state": 523778.0 }, + "11111111110011111011": { "state": 1047803.0 }, + "01111111111100111001": { "state": 524089.0 }, + "01111111111001101100": { "state": 523884.0 }, + "10000000000001100100": { "state": 524388.0 }, + "11111111111111111110": { "state": 1048574.0 }, + "00000000000000001010": { "state": 10.0 }, + "01111111111000001101": { "state": 523789.0 }, + "01111111111000111111": { "state": 523839.0 }, + "11111111100111001100": { "state": 1046988.0 }, + "10000000011111110101": { "state": 526325.0 }, + "11111111100010000111": { "state": 1046663.0 }, + "11111111111011110111": { "state": 1048311.0 }, + "00000000000111111101": { "state": 509.0 }, + "01111111110000001010": { "state": 523274.0 }, + "00000000000011110100": { "state": 244.0 }, + "10000000000111111010": { "state": 524794.0 }, + "01111111111101100000": { "state": 524128.0 }, + "10000000001100001101": { "state": 525069.0 }, + "11111111111111111010": { "state": 1048570.0 }, + "10000000011000001101": { "state": 525837.0 }, + "00000000000000001111": { "state": 15.0 }, + "11111111111000110101": { "state": 1048117.0 }, + "10000000011111111001": { "state": 526329.0 }, + "01111111110110011011": { "state": 523675.0 }, + "01111111111100011010": { "state": 524058.0 }, + "11111111111001011110": { "state": 1048158.0 }, + "11111111110110011100": { "state": 1047964.0 }, + "00000000000000000010": { "state": 2.0 }, + "11111111111100000110": { "state": 1048326.0 }, + "01111111111100001100": { "state": 524044.0 }, + "00000000001001011110": { "state": 606.0 }, + "01111111111000001001": { "state": 523785.0 }, + "11111111111111111100": { "state": 1048572.0 }, + "01111111111110100000": { "state": 524192.0 }, + "01111111111111110011": { "state": 524275.0 }, + "11111111111100000000": { "state": 1048320.0 }, + "01111111111001100000": { "state": 523872.0 }, + "11111111111001101101": { "state": 1048173.0 }, + "10000000001111110010": { "state": 525298.0 }, + "01111111111001010011": { "state": 523859.0 }, + "01111111110110011001": { "state": 523673.0 }, + "01111111111111110111": { "state": 524279.0 }, + "11111111111000001111": { "state": 1048079.0 }, + "10000000000111110010": { "state": 524786.0 }, + "00000000000000000011": { "state": 3.0 }, + "01111111111110000010": { "state": 524162.0 }, + "10000000000000001001": { "state": 524297.0 }, + "00000000011111110100": { "state": 2036.0 }, + "01111111111100001101": { "state": 524045.0 }, + "01111111111001101101": { "state": 523885.0 }, + "10000000000000000101": { "state": 524293.0 }, + "00000000001111001001": { "state": 969.0 }, + "11111111110001100011": { "state": 1047651.0 }, + "11111111110110010000": { "state": 1047952.0 }, + "00000000000000001100": { "state": 12.0 }, + "10000000000100001101": { "state": 524557.0 }, + "11111111110011110001": { "state": 1047793.0 }, + "11111111110110010001": { "state": 1047953.0 }, + "11111111110110011010": { "state": 1047962.0 }, + "11111111100000001111": { "state": 1046543.0 }, + "10000000000000000001": { "state": 524289.0 }, + "01111111111010010011": { "state": 523923.0 }, + "10000000000011110011": { "state": 524531.0 }, + "01111111110001100110": { "state": 523366.0 }, + "11111111111100000111": { "state": 1048327.0 }, + "10000000000000001101": { "state": 524301.0 }, + "11111111111111110111": { "state": 1048567.0 }, + "11111111110011110100": { "state": 1047796.0 }, + "00000000000111111100": { "state": 508.0 }, + "10000000011111111110": { "state": 526334.0 }, + "01111111100000000010": { "state": 522242.0 }, + "00000000000000001011": { "state": 11.0 }, + "00000000000000000100": { "state": 4.0 }, + "01111111111011110010": { "state": 524018.0 }, + "00000000000111110100": { "state": 500.0 }, + "01111111111111111010": { "state": 524282.0 }, + "00000000000111110011": { "state": 499.0 }, + "00000000011111110011": { "state": 2035.0 }, + "10000000000000001011": { "state": 524299.0 }, + "01111111111100000111": { "state": 524039.0 }, + "00000000000000000000": { "state": 0.0 }, + "01111111111011111111": { "state": 524031.0 }, + "11111111111111111001": { "state": 1048569.0 }, + "01111111111100001001": { "state": 524041.0 }, + "10000000000000001010": { "state": 524298.0 }, + "00000000000000000111": { "state": 7.0 }, + "01111111110001100101": { "state": 523365.0 }, + "10000000000000000010": { "state": 524290.0 }, + "01111111111111110001": { "state": 524273.0 }, + "01111111110100000110": { "state": 523526.0 }, + "11111111110110011011": { "state": 1047963.0 }, + "01111111110110010001": { "state": 523665.0 }, + "01111111111111110101": { "state": 524277.0 }, + "11111111111001101111": { "state": 1048175.0 }, + "11111111111011111000": { "state": 1048312.0 }, + "01111111111111110000": { "state": 524272.0 }, + "01111111111101111001": { "state": 524153.0 }, + "01111111111001111001": { "state": 523897.0 }, + "11111111110110010010": { "state": 1047954.0 }, + "01111111110100001110": { "state": 523534.0 }, + "01111111111100001111": { "state": 524047.0 }, + "11111111111000001000": { "state": 1048072.0 }, + "11111111111100001011": { "state": 1048331.0 }, + "01111111110110011110": { "state": 523678.0 }, + "11111111111000000100": { "state": 1048068.0 }, + "11111111111001101011": { "state": 1048171.0 }, + "01111111110001101001": { "state": 523369.0 }, + "11111111111010101010": { "state": 1048234.0 }, + "01111111110001100010": { "state": 523362.0 }, + "11111111111000111100": { "state": 1048124.0 }, + "11111111111100000010": { "state": 1048322.0 }, + "11111111110001100100": { "state": 1047652.0 }, + "01111111111011111110": { "state": 524030.0 }, + "10000000000000000110": { "state": 524294.0 }, + "01111111111010100000": { "state": 523936.0 }, + "11111111111100000100": { "state": 1048324.0 }, + "01111111111001011100": { "state": 523868.0 }, + "10000000000001100110": { "state": 524390.0 }, + "01111111111111001101": { "state": 524237.0 }, + "01111111110110010010": { "state": 523666.0 }, + "10000000000000001110": { "state": 524302.0 }, + "01111111111111111011": { "state": 524283.0 }, + "00000000000000001000": { "state": 8.0 }, + "11111111111011110001": { "state": 1048305.0 }, + "11111111111100000001": { "state": 1048321.0 }, + "10000000000111110001": { "state": 524785.0 }, + "11111111111000000001": { "state": 1048065.0 }, + "01111111110000001001": { "state": 523273.0 }, + "10000000000111111110": { "state": 524798.0 }, + "01111111110110010110": { "state": 523670.0 }, + "11111111110001100001": { "state": 1047649.0 }, + "11111111111010011110": { "state": 1048222.0 }, + "11111111111000000011": { "state": 1048067.0 }, + "10000000011111110001": { "state": 526321.0 }, + "01111111110011110101": { "state": 523509.0 }, + "11111111111001101100": { "state": 1048172.0 }, + "10000000000111111011": { "state": 524795.0 }, + "01111111111111111101": { "state": 524285.0 }, + "11111111111101110111": { "state": 1048439.0 }, + "11111111110000000110": { "state": 1047558.0 }, + "11111111111000000000": { "state": 1048064.0 }, + "11111111111000000101": { "state": 1048069.0 }, + "01111111111001100110": { "state": 523878.0 }, + "01111111111111110110": { "state": 524278.0 }, + "00000000011000000000": { "state": 1536.0 }, + "01111111110000000010": { "state": 523266.0 }, + "11111111111111001011": { "state": 1048523.0 }, + "00000000000111110111": { "state": 503.0 }, + "11111111111111000000": { "state": 1048512.0 }, + "11111111110001100111": { "state": 1047655.0 }, + "01111111110110010101": { "state": 523669.0 }, + "11111111111111110011": { "state": 1048563.0 }, + "11111111111111111011": { "state": 1048571.0 }, + "01111111111111111001": { "state": 524281.0 }, + "10000000000111110101": { "state": 524789.0 }, + "11111111111010101001": { "state": 1048233.0 }, + "01111111110110011101": { "state": 523677.0 }, + "00000000000000001101": { "state": 13.0 }, + "00000000000110100010": { "state": 418.0 } + }, + "histogram": null, + "output_qubits_map": { + "state": [ + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 + ] + }, + "state_vector": null, + "parsed_state_vector_states": null, + "physical_qubits_map": { + "state": [ + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 + ] + }, + "num_shots": 8192 +} diff --git a/algorithms/glued_trees/results/20-qubits/2n+12.json b/algorithms/glued_trees/results/20-qubits/2n+12.json index 99abee7e..d091e114 100644 --- a/algorithms/glued_trees/results/20-qubits/2n+12.json +++ b/algorithms/glued_trees/results/20-qubits/2n+12.json @@ -1 +1,422 @@ -{"vendor_format_result": {}, "counts": {"11111111111100001100": 1, "00000000000111110100": 1, "01111111111111110100": 1, "01111111110011111001": 2, "10000000001100000010": 1, "01111111100000000110": 1, "11111111110001101111": 1, "01111111100111110010": 1, "11111111111001011110": 1, "11111111111111111011": 1, "10000000000000001111": 1, "10000000000011111001": 1, "01111111111110000000": 1, "11111111110110011001": 1, "11111111110111110001": 1, "01111111111010101111": 2, "11111111111011110000": 1, "10000000000100001010": 1, "11111111111100001001": 1, "11111111111010010101": 1, "00000000011000001111": 1, "11111111110110010001": 1, "11111111111010101101": 1, "01111111110110010010": 2, "10000000000100000100": 1, "11111111111000110101": 1, "11111111111010011110": 2, "11111111111101111100": 1, "01111111111111001101": 1, "10000000011111110010": 1, "01111111111000111000": 1, "10000000000100001111": 1, "10000000000011110010": 1, "01111111110110010000": 1, "11111111111111000000": 1, "11111111111010011010": 2, "11111111111000110100": 1, "10000000011111111000": 1, "01111111100000001001": 1, "11111111111100010111": 1, "01111111111010100100": 1, "11111111111111110000": 3, "01111111110001101010": 1, "11111111111011110111": 2, "01111111110111110101": 1, "01111111110011111111": 1, "01111111111011111100": 4, "00000000000000001011": 8, "11111111111011110001": 2, "11111111111000111010": 1, "11111111111111111000": 6, "11111111110001100000": 1, "00000000000011111010": 1, "10000000000000001010": 12, "11111111111111111101": 1, "00000000000000000010": 6, "10000000000111111101": 1, "00000000011111111000": 5, "00000000000000000111": 14, "11111111110110010111": 7, "00000000000001011110": 1, "11111111111111111010": 1, "00000000000000001111": 1131, "01111111111001101111": 2, "10000000011000001101": 4, "01111111111111111101": 7, "11111111111110101101": 2, "01111111111110010111": 1, "11111111110110011101": 1, "10000000000111111010": 43, "01111111110110010111": 4, "00000000000111110111": 25, "10000000011111110101": 10, "01111111111111111010": 49, "00000000000111110011": 124, "10000000000111110001": 170, "00000000011111110011": 13, "01111111111011110100": 1, "10000000011111111110": 5, "01111111110110001110": 1, "11111111110000001011": 1, "11111111111110010001": 1, "01111111110110010011": 1, "11111111111111110110": 4, "00000000000111111100": 1, "11111111111111110111": 48, "10000000000011111111": 1, "01111111111000110001": 2, "10000000000000001110": 2, "01111111111111111011": 1, "01111111111001110101": 1, "10000000000111110101": 17, "00000000011111111111": 1, "01111111110011110101": 2, "00000000000000000000": 501, "00000000000000000011": 77, "10000000011111111010": 9, "01111111110001100010": 3, "10000000000111111110": 300, "11111111110110010010": 1, "11111111111001100100": 3, "11111111111011111110": 1, "01111111110001101101": 1, "01111111111111110111": 5, "01111111111001010011": 5, "01111111110110011001": 4, "11111111111001011010": 2, "00000000000000000100": 2266, "11111111111000001111": 6, "11111111100011111101": 1, "01111111111000001011": 1, "00000000000111111111": 3, "11111111110011110111": 1, "10000000000100001101": 1, "11111111111000000010": 3, "11111111111111001111": 1, "01111111111100001110": 1, "01111111111101111110": 1, "10000000000011110101": 1, "10000000000000001101": 340, "01111111111111110101": 5, "01111111110110011010": 3, "00000000000000001100": 83, "01111111111000001111": 3, "10000000000000000010": 47, "01111111111111110001": 24, "11111111111001101101": 4, "10000000000111110100": 1, "11111111110000001001": 2, "01111111111000110101": 1, "11111111111011111100": 1, "01111111111110011010": 1, "01111111110110011110": 11, "11111111111000000110": 1, "00000000000100000000": 1, "10000000001111001100": 1, "11111111111100000100": 2, "11111111111100000010": 2, "00000000000011110011": 2, "11111111110001100100": 8, "01111111111000000100": 2, "11111111111001101011": 1, "01111111110001101001": 3, "01111111111100001001": 8, "00000000000100000100": 1, "01111111111001100000": 9, "01111111111011110110": 1, "01111111111000000010": 5, "00000000000000001101": 1, "11111111111100000011": 1, "11111111111110000111": 2, "00000000000100001111": 3, "11111111110110011111": 1, "11111111111111111110": 8, "00000000000110101010": 1, "01111111111000001101": 1, "10000000000000001001": 1780, "00000000001111000010": 1, "11111111111000110000": 1, "01111111111111111110": 47, "11111111110110011110": 1, "11111111100000001111": 1, "10000000000000000001": 96, "01111111111010010011": 3, "01111111111010100000": 4, "10000000000000000110": 597, "10000000000000000000": 3, "01111111111110101011": 1, "00000000011000000000": 1, "10000000000000000100": 2, "11111111111000000000": 2, "11111111111010011101": 1, "01111111110110010101": 3, "01111111110001100110": 5, "11111111111100000111": 5, "00000000001000111110": 1, "10000000000101010000": 1, "11111111111111110001": 2, "01111111111011111101": 1, "11111111110001100111": 3, "10000000011111110001": 3, "11111111110001100011": 1, "11111111110110010000": 1, "11111111111000111000": 1, "10000000001000111110": 1, "01111111111010101011": 1, "10000000000011111110": 1, "11111111111111111100": 15, "01111111111000001001": 1, "11111111111000001110": 2, "01111111110110011111": 1, "01111111111100000011": 1, "01111111111111111100": 5, "01111111111001100110": 1, "01111111110111001101": 1, "01111111111111110011": 2, "11111111111100000000": 2}, "counts_lsb_right": true, "parsed_states": {"11111111111100001100": {"state": 1048332.0}, "00000000000111110100": {"state": 500.0}, "01111111111111110100": {"state": 524276.0}, "01111111110011111001": {"state": 523513.0}, "10000000001100000010": {"state": 525058.0}, "01111111100000000110": {"state": 522246.0}, "11111111110001101111": {"state": 1047663.0}, "01111111100111110010": {"state": 522738.0}, "11111111111001011110": {"state": 1048158.0}, "11111111111111111011": {"state": 1048571.0}, "10000000000000001111": {"state": 524303.0}, "10000000000011111001": {"state": 524537.0}, "01111111111110000000": {"state": 524160.0}, "11111111110110011001": {"state": 1047961.0}, "11111111110111110001": {"state": 1048049.0}, "01111111111010101111": {"state": 523951.0}, "11111111111011110000": {"state": 1048304.0}, "10000000000100001010": {"state": 524554.0}, "11111111111100001001": {"state": 1048329.0}, "11111111111010010101": {"state": 1048213.0}, "00000000011000001111": {"state": 1551.0}, "11111111110110010001": {"state": 1047953.0}, "11111111111010101101": {"state": 1048237.0}, "01111111110110010010": {"state": 523666.0}, "10000000000100000100": {"state": 524548.0}, "11111111111000110101": {"state": 1048117.0}, "11111111111010011110": {"state": 1048222.0}, "11111111111101111100": {"state": 1048444.0}, "01111111111111001101": {"state": 524237.0}, "10000000011111110010": {"state": 526322.0}, "01111111111000111000": {"state": 523832.0}, "10000000000100001111": {"state": 524559.0}, "10000000000011110010": {"state": 524530.0}, "01111111110110010000": {"state": 523664.0}, "11111111111111000000": {"state": 1048512.0}, "11111111111010011010": {"state": 1048218.0}, "11111111111000110100": {"state": 1048116.0}, "10000000011111111000": {"state": 526328.0}, "01111111100000001001": {"state": 522249.0}, "11111111111100010111": {"state": 1048343.0}, "01111111111010100100": {"state": 523940.0}, "11111111111111110000": {"state": 1048560.0}, "01111111110001101010": {"state": 523370.0}, "11111111111011110111": {"state": 1048311.0}, "01111111110111110101": {"state": 523765.0}, "01111111110011111111": {"state": 523519.0}, "01111111111011111100": {"state": 524028.0}, "00000000000000001011": {"state": 11.0}, "11111111111011110001": {"state": 1048305.0}, "11111111111000111010": {"state": 1048122.0}, "11111111111111111000": {"state": 1048568.0}, "11111111110001100000": {"state": 1047648.0}, "00000000000011111010": {"state": 250.0}, "10000000000000001010": {"state": 524298.0}, "11111111111111111101": {"state": 1048573.0}, "00000000000000000010": {"state": 2.0}, "10000000000111111101": {"state": 524797.0}, "00000000011111111000": {"state": 2040.0}, "00000000000000000111": {"state": 7.0}, "11111111110110010111": {"state": 1047959.0}, "00000000000001011110": {"state": 94.0}, "11111111111111111010": {"state": 1048570.0}, "00000000000000001111": {"state": 15.0}, "01111111111001101111": {"state": 523887.0}, "10000000011000001101": {"state": 525837.0}, "01111111111111111101": {"state": 524285.0}, "11111111111110101101": {"state": 1048493.0}, "01111111111110010111": {"state": 524183.0}, "11111111110110011101": {"state": 1047965.0}, "10000000000111111010": {"state": 524794.0}, "01111111110110010111": {"state": 523671.0}, "00000000000111110111": {"state": 503.0}, "10000000011111110101": {"state": 526325.0}, "01111111111111111010": {"state": 524282.0}, "00000000000111110011": {"state": 499.0}, "10000000000111110001": {"state": 524785.0}, "00000000011111110011": {"state": 2035.0}, "01111111111011110100": {"state": 524020.0}, "10000000011111111110": {"state": 526334.0}, "01111111110110001110": {"state": 523662.0}, "11111111110000001011": {"state": 1047563.0}, "11111111111110010001": {"state": 1048465.0}, "01111111110110010011": {"state": 523667.0}, "11111111111111110110": {"state": 1048566.0}, "00000000000111111100": {"state": 508.0}, "11111111111111110111": {"state": 1048567.0}, "10000000000011111111": {"state": 524543.0}, "01111111111000110001": {"state": 523825.0}, "10000000000000001110": {"state": 524302.0}, "01111111111111111011": {"state": 524283.0}, "01111111111001110101": {"state": 523893.0}, "10000000000111110101": {"state": 524789.0}, "00000000011111111111": {"state": 2047.0}, "01111111110011110101": {"state": 523509.0}, "00000000000000000000": {"state": 0.0}, "00000000000000000011": {"state": 3.0}, "10000000011111111010": {"state": 526330.0}, "01111111110001100010": {"state": 523362.0}, "10000000000111111110": {"state": 524798.0}, "11111111110110010010": {"state": 1047954.0}, "11111111111001100100": {"state": 1048164.0}, "11111111111011111110": {"state": 1048318.0}, "01111111110001101101": {"state": 523373.0}, "01111111111111110111": {"state": 524279.0}, "01111111111001010011": {"state": 523859.0}, "01111111110110011001": {"state": 523673.0}, "11111111111001011010": {"state": 1048154.0}, "00000000000000000100": {"state": 4.0}, "11111111111000001111": {"state": 1048079.0}, "11111111100011111101": {"state": 1046781.0}, "01111111111000001011": {"state": 523787.0}, "00000000000111111111": {"state": 511.0}, "11111111110011110111": {"state": 1047799.0}, "10000000000100001101": {"state": 524557.0}, "11111111111000000010": {"state": 1048066.0}, "11111111111111001111": {"state": 1048527.0}, "01111111111100001110": {"state": 524046.0}, "01111111111101111110": {"state": 524158.0}, "10000000000011110101": {"state": 524533.0}, "10000000000000001101": {"state": 524301.0}, "01111111111111110101": {"state": 524277.0}, "01111111110110011010": {"state": 523674.0}, "00000000000000001100": {"state": 12.0}, "01111111111000001111": {"state": 523791.0}, "10000000000000000010": {"state": 524290.0}, "01111111111111110001": {"state": 524273.0}, "11111111111001101101": {"state": 1048173.0}, "10000000000111110100": {"state": 524788.0}, "11111111110000001001": {"state": 1047561.0}, "01111111111000110101": {"state": 523829.0}, "11111111111011111100": {"state": 1048316.0}, "01111111111110011010": {"state": 524186.0}, "01111111110110011110": {"state": 523678.0}, "11111111111000000110": {"state": 1048070.0}, "00000000000100000000": {"state": 256.0}, "10000000001111001100": {"state": 525260.0}, "11111111111100000100": {"state": 1048324.0}, "11111111111100000010": {"state": 1048322.0}, "00000000000011110011": {"state": 243.0}, "11111111110001100100": {"state": 1047652.0}, "01111111111000000100": {"state": 523780.0}, "11111111111001101011": {"state": 1048171.0}, "01111111110001101001": {"state": 523369.0}, "01111111111100001001": {"state": 524041.0}, "00000000000100000100": {"state": 260.0}, "01111111111001100000": {"state": 523872.0}, "01111111111011110110": {"state": 524022.0}, "01111111111000000010": {"state": 523778.0}, "00000000000000001101": {"state": 13.0}, "11111111111100000011": {"state": 1048323.0}, "11111111111110000111": {"state": 1048455.0}, "00000000000100001111": {"state": 271.0}, "11111111110110011111": {"state": 1047967.0}, "11111111111111111110": {"state": 1048574.0}, "00000000000110101010": {"state": 426.0}, "01111111111000001101": {"state": 523789.0}, "10000000000000001001": {"state": 524297.0}, "00000000001111000010": {"state": 962.0}, "11111111111000110000": {"state": 1048112.0}, "01111111111111111110": {"state": 524286.0}, "11111111110110011110": {"state": 1047966.0}, "11111111100000001111": {"state": 1046543.0}, "10000000000000000001": {"state": 524289.0}, "01111111111010010011": {"state": 523923.0}, "01111111111010100000": {"state": 523936.0}, "10000000000000000110": {"state": 524294.0}, "10000000000000000000": {"state": 524288.0}, "01111111111110101011": {"state": 524203.0}, "00000000011000000000": {"state": 1536.0}, "10000000000000000100": {"state": 524292.0}, "11111111111000000000": {"state": 1048064.0}, "11111111111010011101": {"state": 1048221.0}, "01111111110110010101": {"state": 523669.0}, "01111111110001100110": {"state": 523366.0}, "11111111111100000111": {"state": 1048327.0}, "00000000001000111110": {"state": 574.0}, "10000000000101010000": {"state": 524624.0}, "11111111111111110001": {"state": 1048561.0}, "01111111111011111101": {"state": 524029.0}, "11111111110001100111": {"state": 1047655.0}, "10000000011111110001": {"state": 526321.0}, "11111111110001100011": {"state": 1047651.0}, "11111111110110010000": {"state": 1047952.0}, "11111111111000111000": {"state": 1048120.0}, "10000000001000111110": {"state": 524862.0}, "01111111111010101011": {"state": 523947.0}, "10000000000011111110": {"state": 524542.0}, "11111111111111111100": {"state": 1048572.0}, "01111111111000001001": {"state": 523785.0}, "11111111111000001110": {"state": 1048078.0}, "01111111110110011111": {"state": 523679.0}, "01111111111100000011": {"state": 524035.0}, "01111111111111111100": {"state": 524284.0}, "01111111111001100110": {"state": 523878.0}, "01111111110111001101": {"state": 523725.0}, "01111111111111110011": {"state": 524275.0}, "11111111111100000000": {"state": 1048320.0}}, "histogram": null, "output_qubits_map": {"state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]}, "state_vector": null, "parsed_state_vector_states": null, "physical_qubits_map": {"state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]}, "num_shots": 8192} \ No newline at end of file +{ + "vendor_format_result": {}, + "counts": { + "11111111110110011101": 1, + "11111111111101110011": 1, + "01111111111001011000": 1, + "11111111101001100100": 1, + "01111111111100001110": 1, + "11111111110110010001": 2, + "00000000000000110001": 1, + "11111111111010010101": 1, + "11111111111001010101": 1, + "10000000000011111101": 1, + "01111111110110011100": 1, + "10000000011111110001": 1, + "01111111111100001111": 1, + "01111111111011111010": 1, + "01111111111010100100": 1, + "11111111111100000100": 1, + "01111111110001101111": 1, + "10000000000011110101": 1, + "10000000000111111101": 1, + "01111111111000000110": 1, + "10000000001000001101": 1, + "11111111110110011100": 1, + "01111111111000000111": 1, + "11111111111111000100": 3, + "00000000001111000100": 1, + "11111111111110011000": 1, + "01111111111111001101": 1, + "10000000001000000101": 1, + "11111111111000000010": 4, + "00000000011111111111": 1, + "01111111110110010001": 2, + "11111111110110011010": 4, + "11111111111100000011": 1, + "11111111111111111101": 1, + "01111111111001100110": 2, + "10000000001001010011": 2, + "01111111101001100101": 1, + "11111111111010011110": 4, + "01111111111111110100": 5, + "00000000000000000111": 15, + "11111111110001100000": 2, + "00000000011111111110": 1, + "00000000000111111111": 4, + "10000000000111110010": 2, + "11111111111000001111": 9, + "10000000000000001110": 2, + "01111111111111111011": 4, + "11111111101001101100": 1, + "10000000011111110101": 10, + "01111111111111111010": 35, + "01111111110000001111": 1, + "11111111111100000111": 10, + "01111111110001100110": 3, + "10000000000000001001": 1755, + "00000000000000000011": 78, + "11111111111010010001": 1, + "01111111111000000010": 4, + "01111111111011110110": 2, + "00000000000000000000": 505, + "00000000001011110011": 1, + "11111111100000001010": 1, + "01111111111000001110": 1, + "01111111111011111100": 5, + "10000000000011111110": 1, + "11111111111111111100": 28, + "01111111111000001001": 3, + "00000000000111110111": 24, + "10000000001111001011": 2, + "00000000000100001111": 1, + "01111111111000110111": 2, + "01111111111100001001": 7, + "10000000000011111001": 1, + "11111111111111111111": 3, + "00000000000000001011": 17, + "11111111110100001011": 1, + "00000000000000001101": 5, + "01111111111010101111": 2, + "01111111111000110101": 2, + "11111111111011111100": 2, + "10000000000000001101": 352, + "00000000000000001111": 1024, + "01111111111001101111": 2, + "10000000011000001101": 4, + "11111111110011110111": 2, + "01111111110110010111": 4, + "10000000000111111010": 32, + "11111111110110010111": 6, + "01111111111001100000": 2, + "00000000000100000100": 1, + "11111111110011111000": 2, + "00000000000111110011": 137, + "00000000011000001111": 2, + "01111111110000001001": 1, + "10000000000111111110": 313, + "11111111111010101101": 4, + "10000000000000001010": 9, + "10000000000111110101": 9, + "01111111111100000010": 2, + "10000000000111110001": 157, + "01111111111011111101": 1, + "11111111110001100111": 5, + "11111111111111110001": 3, + "10000000000001100000": 1, + "00000000001111000110": 2, + "01111111110000000100": 1, + "00000000011111110011": 11, + "11111111110110011000": 3, + "11111111111001011110": 6, + "11111111100000001011": 1, + "11111111111011110111": 3, + "10000000000100000110": 2, + "00000000000000000100": 2351, + "01111111110110011110": 12, + "01111111111111110001": 28, + "10000000000000000010": 55, + "11111111110001101001": 1, + "11111111110100000010": 1, + "01111111111000001111": 2, + "00000000000000001100": 78, + "01111111111000110000": 1, + "11111111110001101010": 1, + "01111111111000110010": 1, + "01111111110110010011": 2, + "01111111111111111100": 4, + "01111111111110001001": 1, + "11111111111111110111": 45, + "00000000000111111100": 1, + "01111111111111111101": 3, + "01111111111111001111": 1, + "00000000011000000000": 2, + "10000000000000000100": 2, + "11111111111000000000": 4, + "01111111110111111010": 1, + "00000000000011110011": 1, + "11111111111100000010": 3, + "11111111110001100100": 7, + "01111111110111001001": 1, + "10000000000000000110": 563, + "01111111111010100000": 1, + "00000000000000001000": 2, + "11111111111011110001": 5, + "01111111110001101101": 1, + "01111111111111110111": 3, + "11111111111011111110": 1, + "11111111111111110100": 4, + "11111111111111110000": 4, + "11111111110110010000": 1, + "10000000000111001001": 1, + "11111111110110010010": 1, + "01111111111101111100": 1, + "01111111110110010010": 4, + "01111111111100000101": 2, + "10000000011111111110": 8, + "00000000000011111100": 1, + "01111111110110011010": 5, + "11111111111001101101": 3, + "01111111111111110101": 6, + "11111111111111110011": 2, + "01111111111000000011": 1, + "01111111110000001010": 1, + "11111111110001101111": 2, + "11111111111010011010": 2, + "00000000010000001111": 1, + "00000000000000001001": 1, + "01111111111001010011": 3, + "01111111110110011001": 1, + "11111111111101011010": 1, + "11111111110001101011": 2, + "10000000000000000001": 103, + "01111111111010010011": 1, + "10000000000000001111": 6, + "01111111110001100010": 4, + "10000000011111111010": 16, + "11111111110000000100": 1, + "01111111101001101010": 2, + "11111111111001010001": 1, + "00000000000000000010": 2, + "01111111111000001011": 1, + "01111111110000000110": 1, + "11111111111100000000": 2, + "01111111111111110011": 1, + "11111111111000111010": 2, + "11111111111111111000": 5, + "11111111110110011110": 1, + "01111111111000111100": 1, + "11111111110000000111": 2, + "01111111111111111110": 35, + "11111111111000110000": 1, + "01111111111010101011": 2, + "01111111111000001101": 4, + "01111111111010011000": 1, + "01111111110011111001": 2, + "00000000011111111000": 6, + "11111111111001101011": 2, + "01111111110001101001": 10, + "01111111110110100010": 1, + "11111111111111111110": 14, + "11111111110110011111": 2, + "11111111111111110110": 1, + "11111111111111001011": 1 + }, + "counts_lsb_right": true, + "parsed_states": { + "11111111110110011101": { "state": 1047965.0 }, + "11111111111101110011": { "state": 1048435.0 }, + "01111111111001011000": { "state": 523864.0 }, + "11111111101001100100": { "state": 1047140.0 }, + "01111111111100001110": { "state": 524046.0 }, + "11111111110110010001": { "state": 1047953.0 }, + "00000000000000110001": { "state": 49.0 }, + "11111111111010010101": { "state": 1048213.0 }, + "11111111111001010101": { "state": 1048149.0 }, + "10000000000011111101": { "state": 524541.0 }, + "01111111110110011100": { "state": 523676.0 }, + "10000000011111110001": { "state": 526321.0 }, + "01111111111100001111": { "state": 524047.0 }, + "01111111111011111010": { "state": 524026.0 }, + "01111111111010100100": { "state": 523940.0 }, + "11111111111100000100": { "state": 1048324.0 }, + "01111111110001101111": { "state": 523375.0 }, + "10000000000011110101": { "state": 524533.0 }, + "10000000000111111101": { "state": 524797.0 }, + "01111111111000000110": { "state": 523782.0 }, + "10000000001000001101": { "state": 524813.0 }, + "11111111110110011100": { "state": 1047964.0 }, + "01111111111000000111": { "state": 523783.0 }, + "11111111111111000100": { "state": 1048516.0 }, + "00000000001111000100": { "state": 964.0 }, + "11111111111110011000": { "state": 1048472.0 }, + "01111111111111001101": { "state": 524237.0 }, + "10000000001000000101": { "state": 524805.0 }, + "11111111111000000010": { "state": 1048066.0 }, + "00000000011111111111": { "state": 2047.0 }, + "01111111110110010001": { "state": 523665.0 }, + "11111111110110011010": { "state": 1047962.0 }, + "11111111111100000011": { "state": 1048323.0 }, + "11111111111111111101": { "state": 1048573.0 }, + "01111111111001100110": { "state": 523878.0 }, + "10000000001001010011": { "state": 524883.0 }, + "01111111101001100101": { "state": 522853.0 }, + "11111111111010011110": { "state": 1048222.0 }, + "01111111111111110100": { "state": 524276.0 }, + "00000000000000000111": { "state": 7.0 }, + "11111111110001100000": { "state": 1047648.0 }, + "00000000011111111110": { "state": 2046.0 }, + "00000000000111111111": { "state": 511.0 }, + "10000000000111110010": { "state": 524786.0 }, + "11111111111000001111": { "state": 1048079.0 }, + "10000000000000001110": { "state": 524302.0 }, + "01111111111111111011": { "state": 524283.0 }, + "11111111101001101100": { "state": 1047148.0 }, + "10000000011111110101": { "state": 526325.0 }, + "01111111111111111010": { "state": 524282.0 }, + "01111111110000001111": { "state": 523279.0 }, + "11111111111100000111": { "state": 1048327.0 }, + "01111111110001100110": { "state": 523366.0 }, + "10000000000000001001": { "state": 524297.0 }, + "00000000000000000011": { "state": 3.0 }, + "11111111111010010001": { "state": 1048209.0 }, + "01111111111000000010": { "state": 523778.0 }, + "01111111111011110110": { "state": 524022.0 }, + "00000000000000000000": { "state": 0.0 }, + "00000000001011110011": { "state": 755.0 }, + "11111111100000001010": { "state": 1046538.0 }, + "01111111111000001110": { "state": 523790.0 }, + "01111111111011111100": { "state": 524028.0 }, + "10000000000011111110": { "state": 524542.0 }, + "11111111111111111100": { "state": 1048572.0 }, + "01111111111000001001": { "state": 523785.0 }, + "00000000000111110111": { "state": 503.0 }, + "10000000001111001011": { "state": 525259.0 }, + "00000000000100001111": { "state": 271.0 }, + "01111111111000110111": { "state": 523831.0 }, + "01111111111100001001": { "state": 524041.0 }, + "10000000000011111001": { "state": 524537.0 }, + "11111111111111111111": { "state": 1048575.0 }, + "00000000000000001011": { "state": 11.0 }, + "11111111110100001011": { "state": 1047819.0 }, + "00000000000000001101": { "state": 13.0 }, + "01111111111010101111": { "state": 523951.0 }, + "01111111111000110101": { "state": 523829.0 }, + "11111111111011111100": { "state": 1048316.0 }, + "10000000000000001101": { "state": 524301.0 }, + "00000000000000001111": { "state": 15.0 }, + "01111111111001101111": { "state": 523887.0 }, + "10000000011000001101": { "state": 525837.0 }, + "11111111110011110111": { "state": 1047799.0 }, + "01111111110110010111": { "state": 523671.0 }, + "10000000000111111010": { "state": 524794.0 }, + "11111111110110010111": { "state": 1047959.0 }, + "01111111111001100000": { "state": 523872.0 }, + "00000000000100000100": { "state": 260.0 }, + "11111111110011111000": { "state": 1047800.0 }, + "00000000000111110011": { "state": 499.0 }, + "00000000011000001111": { "state": 1551.0 }, + "01111111110000001001": { "state": 523273.0 }, + "10000000000111111110": { "state": 524798.0 }, + "11111111111010101101": { "state": 1048237.0 }, + "10000000000000001010": { "state": 524298.0 }, + "10000000000111110101": { "state": 524789.0 }, + "01111111111100000010": { "state": 524034.0 }, + "10000000000111110001": { "state": 524785.0 }, + "01111111111011111101": { "state": 524029.0 }, + "11111111110001100111": { "state": 1047655.0 }, + "11111111111111110001": { "state": 1048561.0 }, + "10000000000001100000": { "state": 524384.0 }, + "00000000001111000110": { "state": 966.0 }, + "01111111110000000100": { "state": 523268.0 }, + "00000000011111110011": { "state": 2035.0 }, + "11111111110110011000": { "state": 1047960.0 }, + "11111111111001011110": { "state": 1048158.0 }, + "11111111100000001011": { "state": 1046539.0 }, + "11111111111011110111": { "state": 1048311.0 }, + "10000000000100000110": { "state": 524550.0 }, + "00000000000000000100": { "state": 4.0 }, + "01111111110110011110": { "state": 523678.0 }, + "01111111111111110001": { "state": 524273.0 }, + "10000000000000000010": { "state": 524290.0 }, + "11111111110001101001": { "state": 1047657.0 }, + "11111111110100000010": { "state": 1047810.0 }, + "01111111111000001111": { "state": 523791.0 }, + "00000000000000001100": { "state": 12.0 }, + "01111111111000110000": { "state": 523824.0 }, + "11111111110001101010": { "state": 1047658.0 }, + "01111111111000110010": { "state": 523826.0 }, + "01111111110110010011": { "state": 523667.0 }, + "01111111111111111100": { "state": 524284.0 }, + "01111111111110001001": { "state": 524169.0 }, + "11111111111111110111": { "state": 1048567.0 }, + "00000000000111111100": { "state": 508.0 }, + "01111111111111111101": { "state": 524285.0 }, + "01111111111111001111": { "state": 524239.0 }, + "00000000011000000000": { "state": 1536.0 }, + "10000000000000000100": { "state": 524292.0 }, + "11111111111000000000": { "state": 1048064.0 }, + "01111111110111111010": { "state": 523770.0 }, + "00000000000011110011": { "state": 243.0 }, + "11111111111100000010": { "state": 1048322.0 }, + "11111111110001100100": { "state": 1047652.0 }, + "01111111110111001001": { "state": 523721.0 }, + "10000000000000000110": { "state": 524294.0 }, + "01111111111010100000": { "state": 523936.0 }, + "00000000000000001000": { "state": 8.0 }, + "11111111111011110001": { "state": 1048305.0 }, + "01111111110001101101": { "state": 523373.0 }, + "01111111111111110111": { "state": 524279.0 }, + "11111111111011111110": { "state": 1048318.0 }, + "11111111111111110100": { "state": 1048564.0 }, + "11111111111111110000": { "state": 1048560.0 }, + "11111111110110010000": { "state": 1047952.0 }, + "10000000000111001001": { "state": 524745.0 }, + "11111111110110010010": { "state": 1047954.0 }, + "01111111111101111100": { "state": 524156.0 }, + "01111111110110010010": { "state": 523666.0 }, + "01111111111100000101": { "state": 524037.0 }, + "10000000011111111110": { "state": 526334.0 }, + "00000000000011111100": { "state": 252.0 }, + "01111111110110011010": { "state": 523674.0 }, + "11111111111001101101": { "state": 1048173.0 }, + "01111111111111110101": { "state": 524277.0 }, + "11111111111111110011": { "state": 1048563.0 }, + "01111111111000000011": { "state": 523779.0 }, + "01111111110000001010": { "state": 523274.0 }, + "11111111110001101111": { "state": 1047663.0 }, + "11111111111010011010": { "state": 1048218.0 }, + "00000000010000001111": { "state": 1039.0 }, + "00000000000000001001": { "state": 9.0 }, + "01111111111001010011": { "state": 523859.0 }, + "01111111110110011001": { "state": 523673.0 }, + "11111111111101011010": { "state": 1048410.0 }, + "11111111110001101011": { "state": 1047659.0 }, + "10000000000000000001": { "state": 524289.0 }, + "01111111111010010011": { "state": 523923.0 }, + "10000000000000001111": { "state": 524303.0 }, + "01111111110001100010": { "state": 523362.0 }, + "10000000011111111010": { "state": 526330.0 }, + "11111111110000000100": { "state": 1047556.0 }, + "01111111101001101010": { "state": 522858.0 }, + "11111111111001010001": { "state": 1048145.0 }, + "00000000000000000010": { "state": 2.0 }, + "01111111111000001011": { "state": 523787.0 }, + "01111111110000000110": { "state": 523270.0 }, + "11111111111100000000": { "state": 1048320.0 }, + "01111111111111110011": { "state": 524275.0 }, + "11111111111000111010": { "state": 1048122.0 }, + "11111111111111111000": { "state": 1048568.0 }, + "11111111110110011110": { "state": 1047966.0 }, + "01111111111000111100": { "state": 523836.0 }, + "11111111110000000111": { "state": 1047559.0 }, + "01111111111111111110": { "state": 524286.0 }, + "11111111111000110000": { "state": 1048112.0 }, + "01111111111010101011": { "state": 523947.0 }, + "01111111111000001101": { "state": 523789.0 }, + "01111111111010011000": { "state": 523928.0 }, + "01111111110011111001": { "state": 523513.0 }, + "00000000011111111000": { "state": 2040.0 }, + "11111111111001101011": { "state": 1048171.0 }, + "01111111110001101001": { "state": 523369.0 }, + "01111111110110100010": { "state": 523682.0 }, + "11111111111111111110": { "state": 1048574.0 }, + "11111111110110011111": { "state": 1047967.0 }, + "11111111111111110110": { "state": 1048566.0 }, + "11111111111111001011": { "state": 1048523.0 } + }, + "histogram": null, + "output_qubits_map": { + "state": [ + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 + ] + }, + "state_vector": null, + "parsed_state_vector_states": null, + "physical_qubits_map": { + "state": [ + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 + ] + }, + "num_shots": 8192 +} diff --git a/algorithms/glued_trees/results/20-qubits/2n+2.json b/algorithms/glued_trees/results/20-qubits/2n+2.json index 8bc954a2..56935c7f 100644 --- a/algorithms/glued_trees/results/20-qubits/2n+2.json +++ b/algorithms/glued_trees/results/20-qubits/2n+2.json @@ -1 +1,316 @@ -{"vendor_format_result": {}, "counts": {"11111111111001100011": 1, "11111111111010101101": 1, "11111111111010010010": 1, "01111111111011110110": 1, "01111111111010000010": 1, "11111111111011110100": 1, "00000000000000000010": 1, "11111111111000110101": 1, "10000000000111110010": 4, "01111111111000110101": 1, "11111111110110011100": 3, "10000000000000001110": 13, "01111111111101100000": 1, "11111111110110010101": 2, "11111111110011111010": 2, "00000000000111110011": 17, "01111111111111111110": 6, "11111111111100001011": 21, "11111111101001100000": 1, "10000000001111001010": 1, "10000000000111110001": 114, "00000000011000000000": 1, "11111111111100001010": 5, "00000000000000000011": 16, "10000000000000001001": 150, "01111111111100000100": 2, "01111111111011110010": 2, "00000000000111110100": 8, "11111111111011110010": 1, "00000000000011110100": 6, "11111111110110010000": 8, "00000000000000001101": 2, "01111111111011110111": 1, "00000000011000001111": 1, "11111111111111001001": 1, "00000000011111111100": 9, "11111111111011110000": 1, "01111111111100000001": 1, "10000000000111111110": 287, "11111111110110011010": 1, "01111111111100001101": 18, "00000000000000001011": 356, "01111111110110010101": 2, "00000000000111111100": 8, "11111111110011110100": 1, "11111111111100000000": 43, "00000000000000000000": 4026, "01111111111100000111": 1, "01111111111100001111": 1, "01111111110011111010": 1, "10000000000011110110": 1, "00000000000011111010": 1, "10000000000000001010": 435, "10000000011111111110": 21, "01111111111100000101": 17, "10000000000000000101": 863, "00000000000000001111": 981, "01111111110011110010": 2, "10000000000011111010": 4, "11111111111100000100": 14, "11111111110011111011": 1, "01111111110110011101": 15, "10000000000111110101": 1, "11111111111111110001": 1, "01111111111011111101": 1, "11111111111100000111": 10, "11111111111111110100": 2, "10000000000000001101": 267, "01111111110011110110": 1, "00000000000011111111": 3, "11111111110110010010": 1, "11111111111010011110": 9, "01111111111010100000": 1, "01111111111011111110": 2, "10000000000000000110": 52, "11111111111000111011": 1, "11111111110110010011": 3, "01111111101001100101": 1, "10000000011111110010": 3, "10000000011111110001": 1, "00000000000000000100": 20, "01111111101001100010": 1, "11111111111111001101": 1, "01111111111100000110": 2, "11111111111100011011": 1, "00000000000000001100": 47, "01111111111010011100": 1, "01111111110011111110": 1, "10000000000011111101": 1, "11111111110110010100": 2, "01111111111111001101": 1, "11111111110011111100": 2, "00000000000000001000": 87, "01111111110110010010": 1, "10000000000011110010": 3, "11111111111100001000": 5, "01111111111001100000": 4, "01111111110100000101": 1, "00000000011111110100": 3, "11111111111100001101": 5, "11111111111010010001": 2, "11111111111100000011": 2, "11111111110011110101": 1, "10000000000111111010": 1, "11111111110110010111": 2, "01111111111000110010": 3, "01111111111111111111": 1, "10000000000011111100": 1, "11111111111100000101": 5, "00000000000011111101": 1, "11111111111000110100": 1, "10000000000011111001": 1, "00000000000011111011": 2, "11111111111111001011": 1, "00000000000100000101": 1, "01111111100011111010": 1, "01111111111001101111": 1, "01111111111111111010": 4, "11111111111111001100": 1, "01111111111100000011": 1, "01111111101001100100": 1, "11111111110110011000": 2, "00000000011111110011": 2, "11111111111100001100": 7, "01111111111100001100": 2, "11111111110110011101": 2, "01111111110011111101": 2, "01111111111100001110": 2, "11111111110110011011": 2, "01111111110110010001": 1, "01111111111100000010": 4, "01111111111011110101": 1, "11111111110001100100": 2, "11111111111100000010": 6, "00000000000011110011": 1, "10000000000000000001": 50, "01111111111010010011": 1, "10000000000000000010": 9, "11111111100011110011": 1, "01111111110110010000": 1, "00000000001100001111": 1, "00000000000100001111": 1}, "counts_lsb_right": true, "parsed_states": {"11111111111001100011": {"state": 1048163.0}, "11111111111010101101": {"state": 1048237.0}, "11111111111010010010": {"state": 1048210.0}, "01111111111011110110": {"state": 524022.0}, "01111111111010000010": {"state": 523906.0}, "11111111111011110100": {"state": 1048308.0}, "00000000000000000010": {"state": 2.0}, "11111111111000110101": {"state": 1048117.0}, "10000000000111110010": {"state": 524786.0}, "01111111111000110101": {"state": 523829.0}, "11111111110110011100": {"state": 1047964.0}, "10000000000000001110": {"state": 524302.0}, "01111111111101100000": {"state": 524128.0}, "11111111110110010101": {"state": 1047957.0}, "11111111110011111010": {"state": 1047802.0}, "00000000000111110011": {"state": 499.0}, "01111111111111111110": {"state": 524286.0}, "11111111111100001011": {"state": 1048331.0}, "11111111101001100000": {"state": 1047136.0}, "10000000001111001010": {"state": 525258.0}, "10000000000111110001": {"state": 524785.0}, "00000000011000000000": {"state": 1536.0}, "11111111111100001010": {"state": 1048330.0}, "00000000000000000011": {"state": 3.0}, "10000000000000001001": {"state": 524297.0}, "01111111111100000100": {"state": 524036.0}, "01111111111011110010": {"state": 524018.0}, "00000000000111110100": {"state": 500.0}, "11111111111011110010": {"state": 1048306.0}, "00000000000011110100": {"state": 244.0}, "11111111110110010000": {"state": 1047952.0}, "00000000000000001101": {"state": 13.0}, "01111111111011110111": {"state": 524023.0}, "00000000011000001111": {"state": 1551.0}, "11111111111111001001": {"state": 1048521.0}, "00000000011111111100": {"state": 2044.0}, "11111111111011110000": {"state": 1048304.0}, "01111111111100000001": {"state": 524033.0}, "10000000000111111110": {"state": 524798.0}, "11111111110110011010": {"state": 1047962.0}, "01111111111100001101": {"state": 524045.0}, "00000000000000001011": {"state": 11.0}, "01111111110110010101": {"state": 523669.0}, "00000000000111111100": {"state": 508.0}, "11111111110011110100": {"state": 1047796.0}, "11111111111100000000": {"state": 1048320.0}, "00000000000000000000": {"state": 0.0}, "01111111111100000111": {"state": 524039.0}, "01111111111100001111": {"state": 524047.0}, "01111111110011111010": {"state": 523514.0}, "10000000000011110110": {"state": 524534.0}, "00000000000011111010": {"state": 250.0}, "10000000000000001010": {"state": 524298.0}, "10000000011111111110": {"state": 526334.0}, "01111111111100000101": {"state": 524037.0}, "10000000000000000101": {"state": 524293.0}, "00000000000000001111": {"state": 15.0}, "01111111110011110010": {"state": 523506.0}, "10000000000011111010": {"state": 524538.0}, "11111111111100000100": {"state": 1048324.0}, "11111111110011111011": {"state": 1047803.0}, "01111111110110011101": {"state": 523677.0}, "10000000000111110101": {"state": 524789.0}, "11111111111111110001": {"state": 1048561.0}, "01111111111011111101": {"state": 524029.0}, "11111111111100000111": {"state": 1048327.0}, "11111111111111110100": {"state": 1048564.0}, "10000000000000001101": {"state": 524301.0}, "01111111110011110110": {"state": 523510.0}, "00000000000011111111": {"state": 255.0}, "11111111110110010010": {"state": 1047954.0}, "11111111111010011110": {"state": 1048222.0}, "01111111111010100000": {"state": 523936.0}, "01111111111011111110": {"state": 524030.0}, "10000000000000000110": {"state": 524294.0}, "11111111111000111011": {"state": 1048123.0}, "11111111110110010011": {"state": 1047955.0}, "01111111101001100101": {"state": 522853.0}, "10000000011111110010": {"state": 526322.0}, "10000000011111110001": {"state": 526321.0}, "00000000000000000100": {"state": 4.0}, "01111111101001100010": {"state": 522850.0}, "11111111111111001101": {"state": 1048525.0}, "01111111111100000110": {"state": 524038.0}, "11111111111100011011": {"state": 1048347.0}, "00000000000000001100": {"state": 12.0}, "01111111111010011100": {"state": 523932.0}, "01111111110011111110": {"state": 523518.0}, "10000000000011111101": {"state": 524541.0}, "11111111110110010100": {"state": 1047956.0}, "01111111111111001101": {"state": 524237.0}, "11111111110011111100": {"state": 1047804.0}, "00000000000000001000": {"state": 8.0}, "01111111110110010010": {"state": 523666.0}, "10000000000011110010": {"state": 524530.0}, "11111111111100001000": {"state": 1048328.0}, "01111111111001100000": {"state": 523872.0}, "01111111110100000101": {"state": 523525.0}, "00000000011111110100": {"state": 2036.0}, "11111111111100001101": {"state": 1048333.0}, "11111111111010010001": {"state": 1048209.0}, "11111111111100000011": {"state": 1048323.0}, "11111111110011110101": {"state": 1047797.0}, "10000000000111111010": {"state": 524794.0}, "11111111110110010111": {"state": 1047959.0}, "01111111111000110010": {"state": 523826.0}, "01111111111111111111": {"state": 524287.0}, "10000000000011111100": {"state": 524540.0}, "11111111111100000101": {"state": 1048325.0}, "00000000000011111101": {"state": 253.0}, "11111111111000110100": {"state": 1048116.0}, "10000000000011111001": {"state": 524537.0}, "00000000000011111011": {"state": 251.0}, "11111111111111001011": {"state": 1048523.0}, "00000000000100000101": {"state": 261.0}, "01111111100011111010": {"state": 522490.0}, "01111111111001101111": {"state": 523887.0}, "01111111111111111010": {"state": 524282.0}, "11111111111111001100": {"state": 1048524.0}, "01111111111100000011": {"state": 524035.0}, "01111111101001100100": {"state": 522852.0}, "11111111110110011000": {"state": 1047960.0}, "00000000011111110011": {"state": 2035.0}, "11111111111100001100": {"state": 1048332.0}, "01111111111100001100": {"state": 524044.0}, "11111111110110011101": {"state": 1047965.0}, "01111111110011111101": {"state": 523517.0}, "01111111111100001110": {"state": 524046.0}, "11111111110110011011": {"state": 1047963.0}, "01111111110110010001": {"state": 523665.0}, "01111111111100000010": {"state": 524034.0}, "01111111111011110101": {"state": 524021.0}, "11111111110001100100": {"state": 1047652.0}, "11111111111100000010": {"state": 1048322.0}, "00000000000011110011": {"state": 243.0}, "10000000000000000001": {"state": 524289.0}, "01111111111010010011": {"state": 523923.0}, "10000000000000000010": {"state": 524290.0}, "11111111100011110011": {"state": 1046771.0}, "01111111110110010000": {"state": 523664.0}, "00000000001100001111": {"state": 783.0}, "00000000000100001111": {"state": 271.0}}, "histogram": null, "output_qubits_map": {"state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]}, "state_vector": null, "parsed_state_vector_states": null, "physical_qubits_map": {"state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]}, "num_shots": 8192} \ No newline at end of file +{ + "vendor_format_result": {}, + "counts": { + "11111111101001100000": 1, + "10000000001111001111": 1, + "11111111111100001110": 1, + "10000000000110100111": 1, + "11111111110110101111": 1, + "11111111110100001011": 1, + "00000000000100000100": 1, + "11111111110110010111": 1, + "11111111110110011011": 3, + "01111111111001101110": 1, + "01111111111111110110": 1, + "10000000000011111101": 7, + "01111111111111001101": 1, + "11111111110110010100": 3, + "01111111110011111110": 1, + "10000000000111110010": 6, + "11111111110110010101": 2, + "10000000000000001110": 24, + "01111111111101100000": 1, + "01111111111011110010": 1, + "00000000000111110100": 5, + "00000000000011110100": 2, + "00000000000111110011": 13, + "00000000000111110101": 1, + "11111111110110010000": 2, + "11111111110000000100": 1, + "10000000001100001010": 1, + "11111111111100000110": 2, + "01111111111100000110": 2, + "00000000000000000100": 14, + "11111111110011111011": 1, + "11111111111100000100": 12, + "11111111111001100101": 1, + "11111111111010011110": 13, + "10000000000000001101": 278, + "10000000000000000101": 876, + "10000000000011110100": 1, + "01111111110001101010": 1, + "11111111110110011100": 3, + "10000000000111110001": 106, + "10000000000011111010": 2, + "01111111110011110010": 2, + "11111111101001101101": 1, + "11111111111100000101": 6, + "00000000000000001011": 372, + "01111111111111111110": 5, + "11111111110000000111": 1, + "11111111111100000111": 7, + "11111111111100001011": 18, + "10000000000011110101": 2, + "10000000000110010001": 1, + "11111111111000001100": 1, + "01111111111100001010": 1, + "00000000000000001111": 933, + "10000000000000001001": 145, + "00000000000000000011": 24, + "10000000011111110010": 2, + "01111111111011110101": 1, + "01111111111100000010": 9, + "11111111110110010010": 2, + "00000000000011111111": 3, + "11111111111111111011": 2, + "10000000011111111110": 22, + "01111111111100000101": 14, + "00000000000011110010": 1, + "01111111111010010100": 2, + "10000000000111111110": 304, + "11111111111100000000": 40, + "00000000000000000000": 4031, + "01111111111100001111": 2, + "01111111110011111010": 1, + "00000000000100000011": 1, + "01111111110110011101": 11, + "11111111110110010011": 2, + "11111111111100111010": 1, + "00000000000011111011": 3, + "10000000000000001011": 2, + "00000000011111110100": 6, + "01111111111100001011": 2, + "01111111111100001101": 18, + "11111111111111000100": 1, + "11111111111101101010": 1, + "01111111111100000011": 2, + "00000000000000000101": 1, + "11111111111100000001": 1, + "00000000000000001000": 65, + "00000000000000001100": 32, + "10000000000000000010": 14, + "11111111110001100100": 1, + "00000000000011110011": 3, + "11111111111100000010": 3, + "11111111111111000000": 2, + "01111111111111001110": 1, + "11111111111100000011": 2, + "10000000011111110001": 3, + "10000000000011111001": 2, + "00000000000111111100": 5, + "11111111101001101011": 2, + "10000000001111000100": 1, + "10000000000011110010": 4, + "11111111111100001000": 4, + "11111111111011100010": 1, + "01111111111100001110": 2, + "01111111110011111101": 1, + "11111111101001100100": 1, + "11111111111111001001": 1, + "00000000011111111100": 1, + "01111111111111111111": 1, + "10000000000011111100": 3, + "01111111111011111010": 1, + "01111111111000110011": 1, + "11111111111011110100": 2, + "11111111111100001100": 5, + "01111111111111001001": 1, + "11111111111111001011": 1, + "01111111110000001101": 2, + "01111111110110010101": 1, + "10000000000000000001": 49, + "01111111111010010011": 2, + "01111111111000110010": 1, + "00000000001111001010": 1, + "10000000001111000011": 1, + "10000000000111111010": 2, + "01111111101001101010": 1, + "01111111110110010010": 2, + "01111111111010100000": 1, + "10000000000000000110": 66, + "01111111111011111110": 2, + "10000000000100001010": 1, + "01111111111000111110": 1, + "11111111110110011111": 1, + "00000000011111110011": 5, + "11111111110110011000": 1, + "11111111111001101101": 2, + "11111111111010010001": 2, + "11111111111100001101": 4, + "11111111111111000011": 1, + "01111111111100110110": 1, + "01111111111111110010": 2, + "01111111111000110101": 1, + "11111111111111001110": 1, + "11111111111111000001": 1, + "10000000000000001010": 464, + "11111111111101011001": 1, + "00000000000011111010": 1, + "11111111111011111011": 1, + "01111111101001101110": 1 + }, + "counts_lsb_right": true, + "parsed_states": { + "11111111101001100000": { "state": 1047136.0 }, + "10000000001111001111": { "state": 525263.0 }, + "11111111111100001110": { "state": 1048334.0 }, + "10000000000110100111": { "state": 524711.0 }, + "11111111110110101111": { "state": 1047983.0 }, + "11111111110100001011": { "state": 1047819.0 }, + "00000000000100000100": { "state": 260.0 }, + "11111111110110010111": { "state": 1047959.0 }, + "11111111110110011011": { "state": 1047963.0 }, + "01111111111001101110": { "state": 523886.0 }, + "01111111111111110110": { "state": 524278.0 }, + "10000000000011111101": { "state": 524541.0 }, + "01111111111111001101": { "state": 524237.0 }, + "11111111110110010100": { "state": 1047956.0 }, + "01111111110011111110": { "state": 523518.0 }, + "10000000000111110010": { "state": 524786.0 }, + "11111111110110010101": { "state": 1047957.0 }, + "10000000000000001110": { "state": 524302.0 }, + "01111111111101100000": { "state": 524128.0 }, + "01111111111011110010": { "state": 524018.0 }, + "00000000000111110100": { "state": 500.0 }, + "00000000000011110100": { "state": 244.0 }, + "00000000000111110011": { "state": 499.0 }, + "00000000000111110101": { "state": 501.0 }, + "11111111110110010000": { "state": 1047952.0 }, + "11111111110000000100": { "state": 1047556.0 }, + "10000000001100001010": { "state": 525066.0 }, + "11111111111100000110": { "state": 1048326.0 }, + "01111111111100000110": { "state": 524038.0 }, + "00000000000000000100": { "state": 4.0 }, + "11111111110011111011": { "state": 1047803.0 }, + "11111111111100000100": { "state": 1048324.0 }, + "11111111111001100101": { "state": 1048165.0 }, + "11111111111010011110": { "state": 1048222.0 }, + "10000000000000001101": { "state": 524301.0 }, + "10000000000000000101": { "state": 524293.0 }, + "10000000000011110100": { "state": 524532.0 }, + "01111111110001101010": { "state": 523370.0 }, + "11111111110110011100": { "state": 1047964.0 }, + "10000000000111110001": { "state": 524785.0 }, + "10000000000011111010": { "state": 524538.0 }, + "01111111110011110010": { "state": 523506.0 }, + "11111111101001101101": { "state": 1047149.0 }, + "11111111111100000101": { "state": 1048325.0 }, + "00000000000000001011": { "state": 11.0 }, + "01111111111111111110": { "state": 524286.0 }, + "11111111110000000111": { "state": 1047559.0 }, + "11111111111100000111": { "state": 1048327.0 }, + "11111111111100001011": { "state": 1048331.0 }, + "10000000000011110101": { "state": 524533.0 }, + "10000000000110010001": { "state": 524689.0 }, + "11111111111000001100": { "state": 1048076.0 }, + "01111111111100001010": { "state": 524042.0 }, + "00000000000000001111": { "state": 15.0 }, + "10000000000000001001": { "state": 524297.0 }, + "00000000000000000011": { "state": 3.0 }, + "10000000011111110010": { "state": 526322.0 }, + "01111111111011110101": { "state": 524021.0 }, + "01111111111100000010": { "state": 524034.0 }, + "11111111110110010010": { "state": 1047954.0 }, + "00000000000011111111": { "state": 255.0 }, + "11111111111111111011": { "state": 1048571.0 }, + "10000000011111111110": { "state": 526334.0 }, + "01111111111100000101": { "state": 524037.0 }, + "00000000000011110010": { "state": 242.0 }, + "01111111111010010100": { "state": 523924.0 }, + "10000000000111111110": { "state": 524798.0 }, + "11111111111100000000": { "state": 1048320.0 }, + "00000000000000000000": { "state": 0.0 }, + "01111111111100001111": { "state": 524047.0 }, + "01111111110011111010": { "state": 523514.0 }, + "00000000000100000011": { "state": 259.0 }, + "01111111110110011101": { "state": 523677.0 }, + "11111111110110010011": { "state": 1047955.0 }, + "11111111111100111010": { "state": 1048378.0 }, + "00000000000011111011": { "state": 251.0 }, + "10000000000000001011": { "state": 524299.0 }, + "00000000011111110100": { "state": 2036.0 }, + "01111111111100001011": { "state": 524043.0 }, + "01111111111100001101": { "state": 524045.0 }, + "11111111111111000100": { "state": 1048516.0 }, + "11111111111101101010": { "state": 1048426.0 }, + "01111111111100000011": { "state": 524035.0 }, + "00000000000000000101": { "state": 5.0 }, + "11111111111100000001": { "state": 1048321.0 }, + "00000000000000001000": { "state": 8.0 }, + "00000000000000001100": { "state": 12.0 }, + "10000000000000000010": { "state": 524290.0 }, + "11111111110001100100": { "state": 1047652.0 }, + "00000000000011110011": { "state": 243.0 }, + "11111111111100000010": { "state": 1048322.0 }, + "11111111111111000000": { "state": 1048512.0 }, + "01111111111111001110": { "state": 524238.0 }, + "11111111111100000011": { "state": 1048323.0 }, + "10000000011111110001": { "state": 526321.0 }, + "10000000000011111001": { "state": 524537.0 }, + "00000000000111111100": { "state": 508.0 }, + "11111111101001101011": { "state": 1047147.0 }, + "10000000001111000100": { "state": 525252.0 }, + "10000000000011110010": { "state": 524530.0 }, + "11111111111100001000": { "state": 1048328.0 }, + "11111111111011100010": { "state": 1048290.0 }, + "01111111111100001110": { "state": 524046.0 }, + "01111111110011111101": { "state": 523517.0 }, + "11111111101001100100": { "state": 1047140.0 }, + "11111111111111001001": { "state": 1048521.0 }, + "00000000011111111100": { "state": 2044.0 }, + "01111111111111111111": { "state": 524287.0 }, + "10000000000011111100": { "state": 524540.0 }, + "01111111111011111010": { "state": 524026.0 }, + "01111111111000110011": { "state": 523827.0 }, + "11111111111011110100": { "state": 1048308.0 }, + "11111111111100001100": { "state": 1048332.0 }, + "01111111111111001001": { "state": 524233.0 }, + "11111111111111001011": { "state": 1048523.0 }, + "01111111110000001101": { "state": 523277.0 }, + "01111111110110010101": { "state": 523669.0 }, + "10000000000000000001": { "state": 524289.0 }, + "01111111111010010011": { "state": 523923.0 }, + "01111111111000110010": { "state": 523826.0 }, + "00000000001111001010": { "state": 970.0 }, + "10000000001111000011": { "state": 525251.0 }, + "10000000000111111010": { "state": 524794.0 }, + "01111111101001101010": { "state": 522858.0 }, + "01111111110110010010": { "state": 523666.0 }, + "01111111111010100000": { "state": 523936.0 }, + "10000000000000000110": { "state": 524294.0 }, + "01111111111011111110": { "state": 524030.0 }, + "10000000000100001010": { "state": 524554.0 }, + "01111111111000111110": { "state": 523838.0 }, + "11111111110110011111": { "state": 1047967.0 }, + "00000000011111110011": { "state": 2035.0 }, + "11111111110110011000": { "state": 1047960.0 }, + "11111111111001101101": { "state": 1048173.0 }, + "11111111111010010001": { "state": 1048209.0 }, + "11111111111100001101": { "state": 1048333.0 }, + "11111111111111000011": { "state": 1048515.0 }, + "01111111111100110110": { "state": 524086.0 }, + "01111111111111110010": { "state": 524274.0 }, + "01111111111000110101": { "state": 523829.0 }, + "11111111111111001110": { "state": 1048526.0 }, + "11111111111111000001": { "state": 1048513.0 }, + "10000000000000001010": { "state": 524298.0 }, + "11111111111101011001": { "state": 1048409.0 }, + "00000000000011111010": { "state": 250.0 }, + "11111111111011111011": { "state": 1048315.0 }, + "01111111101001101110": { "state": 522862.0 } + }, + "histogram": null, + "output_qubits_map": { + "state": [ + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 + ] + }, + "state_vector": null, + "parsed_state_vector_states": null, + "physical_qubits_map": { + "state": [ + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 + ] + }, + "num_shots": 8192 +} diff --git a/algorithms/glued_trees/results/20-qubits/2n+4.json b/algorithms/glued_trees/results/20-qubits/2n+4.json index 73cbddab..2e0f5123 100644 --- a/algorithms/glued_trees/results/20-qubits/2n+4.json +++ b/algorithms/glued_trees/results/20-qubits/2n+4.json @@ -1 +1,358 @@ -{"vendor_format_result": {}, "counts": {"10000000000000001111": 1, "11111111110110010001": 1, "10000000011111110101": 1, "01111111111111000001": 1, "11111111111000001100": 1, "00000000000011100111": 1, "01111111110110011010": 2, "01111111110100001010": 1, "00000000001100001100": 1, "11111111101001101100": 1, "00000000011111111000": 2, "00000000001111111100": 1, "01111111111111001100": 1, "01111111111100001011": 1, "00000000011000001111": 1, "01111111111011111010": 2, "01111111111001101111": 1, "10000000000111110010": 3, "10000000000111111010": 7, "10000000000100000110": 1, "11111111111011110111": 1, "11111111110110011010": 1, "11111111111100001001": 2, "11111111111001101101": 1, "11111111110110011111": 1, "11111111111111001100": 2, "10000000000011110100": 1, "10000000000000000101": 5, "11111111111111110101": 1, "10000000000111111001": 1, "01111111110000000010": 1, "00000000000000001011": 29, "11111111111000000101": 1, "00000000000111111111": 2, "10000000000000001110": 102, "01111111110110011110": 4, "01111111111101100000": 3, "10000000011111110001": 9, "11111111110001100011": 1, "00000000000111110111": 2, "11111111111100001100": 16, "10000000000111111110": 302, "01111111110110010110": 2, "01111111110001100011": 1, "01111111111100001001": 11, "11111111111100000111": 13, "11111111111100001011": 2, "10000000000011110101": 3, "01111111111010010011": 3, "10000000000000000001": 651, "01111111110001101010": 1, "11111111110110011100": 3, "00000000000000000011": 769, "11111111111000111011": 1, "11111111111111110010": 2, "10000000000000000110": 271, "00000000000011111101": 2, "11111111111100000101": 4, "10000000001111001101": 1, "10000000011111110110": 1, "00000000000011111011": 1, "10000000000111111101": 10, "00000000000000000010": 1, "00000000000000000100": 1414, "00000000000011111100": 1, "01111111111100000101": 17, "10000000011111111110": 7, "11111111111111001011": 1, "11111111111111110110": 1, "11111111111010011110": 11, "10000000000011111011": 2, "01111111111100001010": 10, "00000000000000001111": 1178, "00000000000000000000": 1257, "01111111111101100100": 1, "01111111111100000111": 3, "01111111110011111010": 2, "10000000000000001010": 66, "00000000000000000111": 91, "01111111110001100101": 1, "01111111111101101111": 3, "01111111110110010101": 7, "11111111101001101011": 1, "11111111111111110111": 7, "00000000000000001100": 585, "01111111111111111111": 1, "10000000000000000010": 313, "10000000000111110001": 129, "00000000011000000000": 3, "11111111111100001010": 4, "01111111111000100001": 1, "00000000000111110011": 30, "11111111111000110000": 1, "11111111110000000111": 1, "01111111111111111110": 9, "11111111110110010010": 2, "10000000000000000100": 1, "01111111111100000010": 13, "10000000000111110101": 4, "00000000011111111111": 7, "01111111110011110101": 1, "01111111111011111101": 4, "01111111110110010001": 1, "11111111110110011011": 3, "01111111110001100010": 1, "10000000011111111010": 6, "01111111110110010000": 2, "11111111111000110011": 1, "11111111111100001110": 1, "10000000011111111101": 5, "10000000000000001101": 312, "00000000000011110000": 1, "11111111111100001111": 4, "01111111110110011101": 1, "00000000000100000011": 1, "01111111111001100010": 1, "11111111111100000010": 3, "00000000000011110011": 2, "01111111111111111001": 1, "11111111111100000000": 8, "01111111111010011000": 1, "01111111110011111001": 2, "10000000000011110001": 2, "11111111100000000000": 1, "11111111111111110011": 2, "11111111111111111011": 2, "01111111110110011111": 2, "01111111111111000101": 2, "01111111111111111101": 12, "00000000000011110101": 1, "11111111110011111100": 2, "00000000000000001000": 8, "11111111111100000001": 3, "10000000000011111101": 5, "10000000000000001001": 270, "01111111111100001000": 4, "01111111111100000001": 1, "11111111110011111101": 1, "11111111110000000010": 1, "11111111111010010001": 3, "11111111111100001101": 2, "11111111111100000100": 4, "10000000000011111010": 4, "01111111100000000101": 1, "01111111110110101101": 1, "11111111111100000011": 14, "11111111101001100010": 1, "01111111111100000110": 1, "01111111101001100010": 2, "01111111111001100000": 4, "00000000000111111011": 1, "00000000011111110011": 3, "00000000001100000100": 1, "01111111101001101010": 1, "11111111101001100011": 1, "11111111110001101011": 1, "11111111111010011010": 1, "01111111111111110101": 1, "10000000001100000001": 1, "01111111101001100001": 1, "11111111111010010101": 1, "11111111100011111000": 1, "11111111111000111001": 1, "11111111110110011101": 1, "11111111111111001111": 1}, "counts_lsb_right": true, "parsed_states": {"10000000000000001111": {"state": 524303.0}, "11111111110110010001": {"state": 1047953.0}, "10000000011111110101": {"state": 526325.0}, "01111111111111000001": {"state": 524225.0}, "11111111111000001100": {"state": 1048076.0}, "00000000000011100111": {"state": 231.0}, "01111111110110011010": {"state": 523674.0}, "01111111110100001010": {"state": 523530.0}, "00000000001100001100": {"state": 780.0}, "11111111101001101100": {"state": 1047148.0}, "00000000011111111000": {"state": 2040.0}, "00000000001111111100": {"state": 1020.0}, "01111111111111001100": {"state": 524236.0}, "01111111111100001011": {"state": 524043.0}, "00000000011000001111": {"state": 1551.0}, "01111111111011111010": {"state": 524026.0}, "01111111111001101111": {"state": 523887.0}, "10000000000111110010": {"state": 524786.0}, "10000000000111111010": {"state": 524794.0}, "10000000000100000110": {"state": 524550.0}, "11111111111011110111": {"state": 1048311.0}, "11111111110110011010": {"state": 1047962.0}, "11111111111100001001": {"state": 1048329.0}, "11111111111001101101": {"state": 1048173.0}, "11111111110110011111": {"state": 1047967.0}, "11111111111111001100": {"state": 1048524.0}, "10000000000011110100": {"state": 524532.0}, "10000000000000000101": {"state": 524293.0}, "11111111111111110101": {"state": 1048565.0}, "10000000000111111001": {"state": 524793.0}, "01111111110000000010": {"state": 523266.0}, "00000000000000001011": {"state": 11.0}, "11111111111000000101": {"state": 1048069.0}, "00000000000111111111": {"state": 511.0}, "10000000000000001110": {"state": 524302.0}, "01111111110110011110": {"state": 523678.0}, "01111111111101100000": {"state": 524128.0}, "10000000011111110001": {"state": 526321.0}, "11111111110001100011": {"state": 1047651.0}, "00000000000111110111": {"state": 503.0}, "11111111111100001100": {"state": 1048332.0}, "10000000000111111110": {"state": 524798.0}, "01111111110110010110": {"state": 523670.0}, "01111111110001100011": {"state": 523363.0}, "01111111111100001001": {"state": 524041.0}, "11111111111100000111": {"state": 1048327.0}, "11111111111100001011": {"state": 1048331.0}, "10000000000011110101": {"state": 524533.0}, "01111111111010010011": {"state": 523923.0}, "10000000000000000001": {"state": 524289.0}, "01111111110001101010": {"state": 523370.0}, "11111111110110011100": {"state": 1047964.0}, "00000000000000000011": {"state": 3.0}, "11111111111000111011": {"state": 1048123.0}, "11111111111111110010": {"state": 1048562.0}, "10000000000000000110": {"state": 524294.0}, "00000000000011111101": {"state": 253.0}, "11111111111100000101": {"state": 1048325.0}, "10000000001111001101": {"state": 525261.0}, "10000000011111110110": {"state": 526326.0}, "00000000000011111011": {"state": 251.0}, "10000000000111111101": {"state": 524797.0}, "00000000000000000010": {"state": 2.0}, "00000000000000000100": {"state": 4.0}, "00000000000011111100": {"state": 252.0}, "01111111111100000101": {"state": 524037.0}, "10000000011111111110": {"state": 526334.0}, "11111111111111001011": {"state": 1048523.0}, "11111111111111110110": {"state": 1048566.0}, "11111111111010011110": {"state": 1048222.0}, "10000000000011111011": {"state": 524539.0}, "01111111111100001010": {"state": 524042.0}, "00000000000000001111": {"state": 15.0}, "00000000000000000000": {"state": 0.0}, "01111111111101100100": {"state": 524132.0}, "01111111111100000111": {"state": 524039.0}, "01111111110011111010": {"state": 523514.0}, "10000000000000001010": {"state": 524298.0}, "00000000000000000111": {"state": 7.0}, "01111111110001100101": {"state": 523365.0}, "01111111111101101111": {"state": 524143.0}, "01111111110110010101": {"state": 523669.0}, "11111111101001101011": {"state": 1047147.0}, "11111111111111110111": {"state": 1048567.0}, "00000000000000001100": {"state": 12.0}, "01111111111111111111": {"state": 524287.0}, "10000000000000000010": {"state": 524290.0}, "10000000000111110001": {"state": 524785.0}, "00000000011000000000": {"state": 1536.0}, "11111111111100001010": {"state": 1048330.0}, "01111111111000100001": {"state": 523809.0}, "00000000000111110011": {"state": 499.0}, "11111111111000110000": {"state": 1048112.0}, "11111111110000000111": {"state": 1047559.0}, "01111111111111111110": {"state": 524286.0}, "11111111110110010010": {"state": 1047954.0}, "10000000000000000100": {"state": 524292.0}, "01111111111100000010": {"state": 524034.0}, "10000000000111110101": {"state": 524789.0}, "00000000011111111111": {"state": 2047.0}, "01111111110011110101": {"state": 523509.0}, "01111111111011111101": {"state": 524029.0}, "01111111110110010001": {"state": 523665.0}, "11111111110110011011": {"state": 1047963.0}, "01111111110001100010": {"state": 523362.0}, "10000000011111111010": {"state": 526330.0}, "01111111110110010000": {"state": 523664.0}, "11111111111000110011": {"state": 1048115.0}, "11111111111100001110": {"state": 1048334.0}, "10000000011111111101": {"state": 526333.0}, "10000000000000001101": {"state": 524301.0}, "00000000000011110000": {"state": 240.0}, "11111111111100001111": {"state": 1048335.0}, "01111111110110011101": {"state": 523677.0}, "00000000000100000011": {"state": 259.0}, "01111111111001100010": {"state": 523874.0}, "11111111111100000010": {"state": 1048322.0}, "00000000000011110011": {"state": 243.0}, "01111111111111111001": {"state": 524281.0}, "11111111111100000000": {"state": 1048320.0}, "01111111111010011000": {"state": 523928.0}, "01111111110011111001": {"state": 523513.0}, "10000000000011110001": {"state": 524529.0}, "11111111100000000000": {"state": 1046528.0}, "11111111111111110011": {"state": 1048563.0}, "11111111111111111011": {"state": 1048571.0}, "01111111110110011111": {"state": 523679.0}, "01111111111111000101": {"state": 524229.0}, "01111111111111111101": {"state": 524285.0}, "00000000000011110101": {"state": 245.0}, "11111111110011111100": {"state": 1047804.0}, "00000000000000001000": {"state": 8.0}, "11111111111100000001": {"state": 1048321.0}, "10000000000011111101": {"state": 524541.0}, "10000000000000001001": {"state": 524297.0}, "01111111111100001000": {"state": 524040.0}, "01111111111100000001": {"state": 524033.0}, "11111111110011111101": {"state": 1047805.0}, "11111111110000000010": {"state": 1047554.0}, "11111111111010010001": {"state": 1048209.0}, "11111111111100001101": {"state": 1048333.0}, "11111111111100000100": {"state": 1048324.0}, "10000000000011111010": {"state": 524538.0}, "01111111100000000101": {"state": 522245.0}, "01111111110110101101": {"state": 523693.0}, "11111111111100000011": {"state": 1048323.0}, "11111111101001100010": {"state": 1047138.0}, "01111111111100000110": {"state": 524038.0}, "01111111101001100010": {"state": 522850.0}, "01111111111001100000": {"state": 523872.0}, "00000000000111111011": {"state": 507.0}, "00000000011111110011": {"state": 2035.0}, "00000000001100000100": {"state": 772.0}, "01111111101001101010": {"state": 522858.0}, "11111111101001100011": {"state": 1047139.0}, "11111111110001101011": {"state": 1047659.0}, "11111111111010011010": {"state": 1048218.0}, "01111111111111110101": {"state": 524277.0}, "10000000001100000001": {"state": 525057.0}, "01111111101001100001": {"state": 522849.0}, "11111111111010010101": {"state": 1048213.0}, "11111111100011111000": {"state": 1046776.0}, "11111111111000111001": {"state": 1048121.0}, "11111111110110011101": {"state": 1047965.0}, "11111111111111001111": {"state": 1048527.0}}, "histogram": null, "output_qubits_map": {"state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]}, "state_vector": null, "parsed_state_vector_states": null, "physical_qubits_map": {"state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]}, "num_shots": 8192} \ No newline at end of file +{ + "vendor_format_result": {}, + "counts": { + "11111111111100001110": 1, + "01111111101001100101": 1, + "10000000000110010000": 1, + "11111111111011110111": 1, + "01111111110000000110": 1, + "00000000000111111011": 1, + "01111111111111000100": 1, + "01111111111100000011": 1, + "01111111110110011111": 1, + "01111111111001101100": 1, + "01111111111010011111": 1, + "00000000011000001111": 1, + "00000000000000001001": 1, + "11111111110110011001": 1, + "11111111111100001001": 2, + "01111111111100000001": 1, + "11111111110011111101": 1, + "01111111111010100011": 1, + "01111111110100000010": 1, + "01111111110011111001": 1, + "11111111110110011100": 2, + "11111111111010011010": 1, + "01111111110110011010": 10, + "00000000011111111111": 1, + "11111111110110010001": 2, + "10000000000011110100": 3, + "11111111111111110101": 1, + "11111111111100000100": 7, + "01111111110011110010": 1, + "10000000000011111010": 3, + "00000000000000001011": 23, + "11111111110011111000": 1, + "00000000000111110011": 20, + "11111111111000110000": 3, + "11111111110000000111": 1, + "01111111111111111110": 5, + "10000000000111111010": 6, + "11111111111000001011": 1, + "10000000000011111101": 2, + "00000000000000000101": 4, + "01111111111001101101": 1, + "10000000000000000101": 3, + "10000000000000001000": 1, + "01111111111100001101": 3, + "01111111111111110101": 5, + "11111111111100001100": 10, + "11111111110110010010": 2, + "01111111110110010101": 8, + "01111111111100000111": 8, + "00000000000000000000": 1313, + "01111111110100001111": 1, + "11111111111100000011": 11, + "11111111111100001101": 2, + "11111111111010010001": 4, + "11111111110110010000": 5, + "11111111110001100011": 1, + "01111111111000110001": 1, + "10000000000011110001": 2, + "11111111110110011101": 2, + "01111111111010011011": 3, + "00000000000000000011": 756, + "01111111111100001000": 5, + "10000000000000001001": 265, + "00000000000000000100": 1396, + "11111111111100000000": 15, + "00000000011111111011": 1, + "10000000000000001010": 66, + "10000000000000000100": 2, + "11111111111000000000": 2, + "11111111111100000001": 3, + "11111111110011111100": 1, + "00000000000000001000": 12, + "00000000000011111100": 1, + "01111111111100000101": 17, + "10000000011111111110": 13, + "01111111111011110100": 1, + "10000000000000000010": 328, + "00000000000000001100": 635, + "01111111111111111111": 3, + "11111111111111110100": 1, + "00000000001111000110": 1, + "01111111111011111110": 1, + "10000000000000000110": 231, + "11111111111000111011": 2, + "00000000000011111011": 2, + "10000000000111111101": 5, + "01111111110110000101": 1, + "01111111111100000010": 11, + "10000000000111110101": 11, + "00000000000111110100": 1, + "01111111111100011110": 1, + "01111111111111111011": 2, + "10000000000000001110": 101, + "00000000000000001111": 1178, + "01111111111100001010": 7, + "01111111110110011110": 1, + "00000000011111111000": 3, + "11111111111100000101": 5, + "00000000000011110111": 3, + "10000000001111001101": 1, + "10000000000111110001": 132, + "00000000011000000000": 3, + "11111111111100001010": 3, + "10000000000011001110": 1, + "01111111110011111101": 1, + "01111111111100001110": 1, + "11111111111100000111": 7, + "10000000000111110010": 1, + "11111111111010011110": 4, + "11111111111100001000": 1, + "01111111111010100100": 1, + "10000000011111111010": 9, + "10000000000000001101": 310, + "00000000000011110000": 7, + "10000000011111111101": 3, + "00000000000011110011": 1, + "11111111111100000010": 3, + "00000000000111111111": 3, + "00000000000100000100": 1, + "01111111111001100000": 2, + "00000000000100000011": 1, + "11111111111111001110": 1, + "01111111111111001100": 1, + "11111111111000110011": 3, + "10000000000011110101": 3, + "11111111111100001011": 2, + "01111111101001101110": 1, + "01111111110110010001": 1, + "11111111110110011011": 5, + "01111111110000000101": 1, + "01111111111101100011": 1, + "11111111111011111011": 1, + "11111111111111110111": 5, + "11111111101001101011": 1, + "10000000011111110001": 9, + "00000000011111110000": 1, + "11111111101001100011": 2, + "10000000001100001010": 2, + "00000000000000000111": 65, + "01111111111101111101": 2, + "01111111110110010110": 1, + "10000000000111111110": 291, + "11111111110011110011": 2, + "01111111111100001001": 8, + "10000000000110011111": 1, + "11111111111011111101": 1, + "10000000000000000001": 644, + "01111111111010010011": 3, + "00000000001100000011": 2, + "10000000000111111001": 2, + "11111111101110011101": 1, + "01111111111111000101": 2, + "01111111111111111101": 5, + "00000000000011110101": 1, + "10000000011111110101": 4, + "11111111111111110011": 2, + "11111111111111111011": 2, + "01111111111011111010": 3, + "01111111110001101101": 1, + "01111111111111110111": 1, + "01111111110110010010": 3, + "11111111111100001111": 4, + "11111111111111001100": 1, + "11111111110110011111": 2, + "00000000011111110011": 3, + "11111111100011111100": 1, + "11111111111000001100": 3, + "00000000000011110100": 1 + }, + "counts_lsb_right": true, + "parsed_states": { + "11111111111100001110": { "state": 1048334.0 }, + "01111111101001100101": { "state": 522853.0 }, + "10000000000110010000": { "state": 524688.0 }, + "11111111111011110111": { "state": 1048311.0 }, + "01111111110000000110": { "state": 523270.0 }, + "00000000000111111011": { "state": 507.0 }, + "01111111111111000100": { "state": 524228.0 }, + "01111111111100000011": { "state": 524035.0 }, + "01111111110110011111": { "state": 523679.0 }, + "01111111111001101100": { "state": 523884.0 }, + "01111111111010011111": { "state": 523935.0 }, + "00000000011000001111": { "state": 1551.0 }, + "00000000000000001001": { "state": 9.0 }, + "11111111110110011001": { "state": 1047961.0 }, + "11111111111100001001": { "state": 1048329.0 }, + "01111111111100000001": { "state": 524033.0 }, + "11111111110011111101": { "state": 1047805.0 }, + "01111111111010100011": { "state": 523939.0 }, + "01111111110100000010": { "state": 523522.0 }, + "01111111110011111001": { "state": 523513.0 }, + "11111111110110011100": { "state": 1047964.0 }, + "11111111111010011010": { "state": 1048218.0 }, + "01111111110110011010": { "state": 523674.0 }, + "00000000011111111111": { "state": 2047.0 }, + "11111111110110010001": { "state": 1047953.0 }, + "10000000000011110100": { "state": 524532.0 }, + "11111111111111110101": { "state": 1048565.0 }, + "11111111111100000100": { "state": 1048324.0 }, + "01111111110011110010": { "state": 523506.0 }, + "10000000000011111010": { "state": 524538.0 }, + "00000000000000001011": { "state": 11.0 }, + "11111111110011111000": { "state": 1047800.0 }, + "00000000000111110011": { "state": 499.0 }, + "11111111111000110000": { "state": 1048112.0 }, + "11111111110000000111": { "state": 1047559.0 }, + "01111111111111111110": { "state": 524286.0 }, + "10000000000111111010": { "state": 524794.0 }, + "11111111111000001011": { "state": 1048075.0 }, + "10000000000011111101": { "state": 524541.0 }, + "00000000000000000101": { "state": 5.0 }, + "01111111111001101101": { "state": 523885.0 }, + "10000000000000000101": { "state": 524293.0 }, + "10000000000000001000": { "state": 524296.0 }, + "01111111111100001101": { "state": 524045.0 }, + "01111111111111110101": { "state": 524277.0 }, + "11111111111100001100": { "state": 1048332.0 }, + "11111111110110010010": { "state": 1047954.0 }, + "01111111110110010101": { "state": 523669.0 }, + "01111111111100000111": { "state": 524039.0 }, + "00000000000000000000": { "state": 0.0 }, + "01111111110100001111": { "state": 523535.0 }, + "11111111111100000011": { "state": 1048323.0 }, + "11111111111100001101": { "state": 1048333.0 }, + "11111111111010010001": { "state": 1048209.0 }, + "11111111110110010000": { "state": 1047952.0 }, + "11111111110001100011": { "state": 1047651.0 }, + "01111111111000110001": { "state": 523825.0 }, + "10000000000011110001": { "state": 524529.0 }, + "11111111110110011101": { "state": 1047965.0 }, + "01111111111010011011": { "state": 523931.0 }, + "00000000000000000011": { "state": 3.0 }, + "01111111111100001000": { "state": 524040.0 }, + "10000000000000001001": { "state": 524297.0 }, + "00000000000000000100": { "state": 4.0 }, + "11111111111100000000": { "state": 1048320.0 }, + "00000000011111111011": { "state": 2043.0 }, + "10000000000000001010": { "state": 524298.0 }, + "10000000000000000100": { "state": 524292.0 }, + "11111111111000000000": { "state": 1048064.0 }, + "11111111111100000001": { "state": 1048321.0 }, + "11111111110011111100": { "state": 1047804.0 }, + "00000000000000001000": { "state": 8.0 }, + "00000000000011111100": { "state": 252.0 }, + "01111111111100000101": { "state": 524037.0 }, + "10000000011111111110": { "state": 526334.0 }, + "01111111111011110100": { "state": 524020.0 }, + "10000000000000000010": { "state": 524290.0 }, + "00000000000000001100": { "state": 12.0 }, + "01111111111111111111": { "state": 524287.0 }, + "11111111111111110100": { "state": 1048564.0 }, + "00000000001111000110": { "state": 966.0 }, + "01111111111011111110": { "state": 524030.0 }, + "10000000000000000110": { "state": 524294.0 }, + "11111111111000111011": { "state": 1048123.0 }, + "00000000000011111011": { "state": 251.0 }, + "10000000000111111101": { "state": 524797.0 }, + "01111111110110000101": { "state": 523653.0 }, + "01111111111100000010": { "state": 524034.0 }, + "10000000000111110101": { "state": 524789.0 }, + "00000000000111110100": { "state": 500.0 }, + "01111111111100011110": { "state": 524062.0 }, + "01111111111111111011": { "state": 524283.0 }, + "10000000000000001110": { "state": 524302.0 }, + "00000000000000001111": { "state": 15.0 }, + "01111111111100001010": { "state": 524042.0 }, + "01111111110110011110": { "state": 523678.0 }, + "00000000011111111000": { "state": 2040.0 }, + "11111111111100000101": { "state": 1048325.0 }, + "00000000000011110111": { "state": 247.0 }, + "10000000001111001101": { "state": 525261.0 }, + "10000000000111110001": { "state": 524785.0 }, + "00000000011000000000": { "state": 1536.0 }, + "11111111111100001010": { "state": 1048330.0 }, + "10000000000011001110": { "state": 524494.0 }, + "01111111110011111101": { "state": 523517.0 }, + "01111111111100001110": { "state": 524046.0 }, + "11111111111100000111": { "state": 1048327.0 }, + "10000000000111110010": { "state": 524786.0 }, + "11111111111010011110": { "state": 1048222.0 }, + "11111111111100001000": { "state": 1048328.0 }, + "01111111111010100100": { "state": 523940.0 }, + "10000000011111111010": { "state": 526330.0 }, + "10000000000000001101": { "state": 524301.0 }, + "00000000000011110000": { "state": 240.0 }, + "10000000011111111101": { "state": 526333.0 }, + "00000000000011110011": { "state": 243.0 }, + "11111111111100000010": { "state": 1048322.0 }, + "00000000000111111111": { "state": 511.0 }, + "00000000000100000100": { "state": 260.0 }, + "01111111111001100000": { "state": 523872.0 }, + "00000000000100000011": { "state": 259.0 }, + "11111111111111001110": { "state": 1048526.0 }, + "01111111111111001100": { "state": 524236.0 }, + "11111111111000110011": { "state": 1048115.0 }, + "10000000000011110101": { "state": 524533.0 }, + "11111111111100001011": { "state": 1048331.0 }, + "01111111101001101110": { "state": 522862.0 }, + "01111111110110010001": { "state": 523665.0 }, + "11111111110110011011": { "state": 1047963.0 }, + "01111111110000000101": { "state": 523269.0 }, + "01111111111101100011": { "state": 524131.0 }, + "11111111111011111011": { "state": 1048315.0 }, + "11111111111111110111": { "state": 1048567.0 }, + "11111111101001101011": { "state": 1047147.0 }, + "10000000011111110001": { "state": 526321.0 }, + "00000000011111110000": { "state": 2032.0 }, + "11111111101001100011": { "state": 1047139.0 }, + "10000000001100001010": { "state": 525066.0 }, + "00000000000000000111": { "state": 7.0 }, + "01111111111101111101": { "state": 524157.0 }, + "01111111110110010110": { "state": 523670.0 }, + "10000000000111111110": { "state": 524798.0 }, + "11111111110011110011": { "state": 1047795.0 }, + "01111111111100001001": { "state": 524041.0 }, + "10000000000110011111": { "state": 524703.0 }, + "11111111111011111101": { "state": 1048317.0 }, + "10000000000000000001": { "state": 524289.0 }, + "01111111111010010011": { "state": 523923.0 }, + "00000000001100000011": { "state": 771.0 }, + "10000000000111111001": { "state": 524793.0 }, + "11111111101110011101": { "state": 1047453.0 }, + "01111111111111000101": { "state": 524229.0 }, + "01111111111111111101": { "state": 524285.0 }, + "00000000000011110101": { "state": 245.0 }, + "10000000011111110101": { "state": 526325.0 }, + "11111111111111110011": { "state": 1048563.0 }, + "11111111111111111011": { "state": 1048571.0 }, + "01111111111011111010": { "state": 524026.0 }, + "01111111110001101101": { "state": 523373.0 }, + "01111111111111110111": { "state": 524279.0 }, + "01111111110110010010": { "state": 523666.0 }, + "11111111111100001111": { "state": 1048335.0 }, + "11111111111111001100": { "state": 1048524.0 }, + "11111111110110011111": { "state": 1047967.0 }, + "00000000011111110011": { "state": 2035.0 }, + "11111111100011111100": { "state": 1046780.0 }, + "11111111111000001100": { "state": 1048076.0 }, + "00000000000011110100": { "state": 244.0 } + }, + "histogram": null, + "output_qubits_map": { + "state": [ + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 + ] + }, + "state_vector": null, + "parsed_state_vector_states": null, + "physical_qubits_map": { + "state": [ + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 + ] + }, + "num_shots": 8192 +} diff --git a/algorithms/glued_trees/results/20-qubits/2n+6.json b/algorithms/glued_trees/results/20-qubits/2n+6.json index ac03fe71..cce4eecb 100644 --- a/algorithms/glued_trees/results/20-qubits/2n+6.json +++ b/algorithms/glued_trees/results/20-qubits/2n+6.json @@ -1 +1,358 @@ -{"vendor_format_result": {}, "counts": {"11111111110111000011": 1, "01111111111111000010": 1, "01111111111000001101": 1, "11111111110110010110": 1, "01111111111001100100": 1, "01111111111000110001": 1, "01111111110011111100": 1, "00000000000111111111": 1, "11111111101001101100": 1, "01111111111111111111": 3, "11111111111111110001": 1, "11111111110001100111": 1, "00000000011000000000": 1, "10000000011111110101": 1, "11111111111001011110": 1, "11111111100100000100": 1, "11111111111000001111": 1, "11111111111000000010": 1, "11111111111000000100": 1, "01111111110011110010": 1, "10000000000110010011": 1, "11111111111010010101": 1, "01111111101001100001": 1, "01111111110110011100": 1, "10000000011111111001": 1, "11111111111100000010": 8, "10000000011111111101": 3, "11111111111000000101": 2, "00000000000000001100": 148, "00000000001111000101": 1, "01111111111100000000": 1, "11111111110110011100": 5, "01111111111010010011": 1, "10000000000000000001": 388, "01111111111111110010": 1, "01111111111100001110": 1, "10000000011111110110": 2, "11111111111100001000": 2, "01111111111010100100": 2, "11111111110110010000": 7, "11111111101001100011": 2, "01111111111100001100": 3, "11111111111100000110": 7, "01111111110110011001": 2, "01111111101001100101": 2, "11111111110001101000": 1, "00000000011111110011": 5, "00000000000111111011": 2, "00000000000000000010": 1, "10000000000111111101": 5, "01111111111100001001": 10, "00000000000111110011": 59, "01111111111111111110": 30, "11111111110110011110": 2, "11111111111001011010": 2, "00000000000000000100": 1302, "10000000000000001001": 43, "11111111110111010001": 1, "01111111111010011011": 2, "00000000000000000011": 359, "11111111111100000111": 16, "01111111110001100110": 2, "10000000000000001010": 19, "00000000000000000000": 451, "10000000000111110001": 140, "00000000000000001111": 1806, "11111111111111111010": 2, "10000000000011111101": 5, "11111111110110010100": 1, "11111111111111110011": 3, "11111111111100001110": 2, "10000000011111110001": 9, "11111111111100001111": 6, "11111111111111111000": 9, "00000000000100000011": 1, "01111111110110011101": 1, "10000000000000000101": 252, "11111111111100111010": 1, "01111111111010101111": 2, "11111111110000001010": 1, "00000000000011110000": 2, "10000000000000001101": 603, "11111111111100001011": 8, "01111111110110010110": 1, "10000000000111111110": 306, "11111111110110011010": 3, "11111111111010101101": 1, "01111111111010011100": 1, "01111111110110010001": 1, "11111111110110011011": 9, "11111111111100000001": 1, "11111111110011111100": 1, "00000000000000001000": 70, "01111111111111001100": 1, "01111111111000110101": 2, "11111111111011111100": 3, "11111111111110110000": 1, "11111111111011111000": 3, "01111111111100000010": 7, "11111111111100001001": 1, "10000000011000000010": 1, "01111111110011111001": 3, "10000000000111111010": 20, "11111111110110010101": 4, "10000000000111111001": 3, "00000000000011110100": 2, "01111111101001101101": 1, "00000000000111110100": 2, "01111111101001101100": 1, "00000000011111111100": 6, "01111111111001100000": 4, "11111111111100000100": 4, "11111111111010011110": 5, "01111111110110011010": 2, "00000000011111111111": 3, "10000000001111111010": 1, "01111111110001100101": 1, "11111111111101101101": 1, "11111111111000001011": 2, "10000000001100001101": 1, "00000000011111111011": 6, "11111111111100000000": 8, "11111111110110011111": 3, "01111111110110010010": 11, "10000000000000001111": 4, "00000000000000001011": 21, "11111111101001101010": 1, "01111111111011111011": 1, "01111111111111110101": 2, "01111111110001100100": 1, "01111111111111110100": 1, "10000000000000000111": 1, "01111111110110010101": 2, "10000000000011110011": 2, "11111111110001101100": 2, "01111111111100000110": 9, "11111111110011110111": 1, "01111111111001101010": 1, "10000000000000000010": 1590, "01111111111111110001": 3, "11111111110100001010": 1, "11111111111000110100": 1, "11111111111111001111": 3, "11111111111010010001": 7, "01111111111011110001": 2, "01111111111101100100": 1, "11111111111100000011": 1, "00000000000011111100": 1, "01111111111100000101": 19, "10000000011111111110": 3, "00000000000111111100": 2, "01111111111000001001": 1, "00000000000110100101": 1, "00000000000100000000": 1, "11111111111111110100": 8, "11111111111111110000": 1, "01111111111010100000": 2, "10000000000000000110": 178, "01111111110110010100": 1, "11111111111111110010": 3, "11111111111111000000": 1, "11111111111010011010": 2, "11111111111101111100": 1, "11111111111111110110": 1, "01111111110000001101": 1, "10000000011111111010": 6, "11111111111000111100": 2, "01111111111100001101": 6, "11111111111011110100": 1, "11111111111000000111": 1, "00000000000011111101": 1, "01111111111111111010": 2}, "counts_lsb_right": true, "parsed_states": {"11111111110111000011": {"state": 1048003.0}, "01111111111111000010": {"state": 524226.0}, "01111111111000001101": {"state": 523789.0}, "11111111110110010110": {"state": 1047958.0}, "01111111111001100100": {"state": 523876.0}, "01111111111000110001": {"state": 523825.0}, "01111111110011111100": {"state": 523516.0}, "00000000000111111111": {"state": 511.0}, "11111111101001101100": {"state": 1047148.0}, "01111111111111111111": {"state": 524287.0}, "11111111111111110001": {"state": 1048561.0}, "11111111110001100111": {"state": 1047655.0}, "00000000011000000000": {"state": 1536.0}, "10000000011111110101": {"state": 526325.0}, "11111111111001011110": {"state": 1048158.0}, "11111111100100000100": {"state": 1046788.0}, "11111111111000001111": {"state": 1048079.0}, "11111111111000000010": {"state": 1048066.0}, "11111111111000000100": {"state": 1048068.0}, "01111111110011110010": {"state": 523506.0}, "10000000000110010011": {"state": 524691.0}, "11111111111010010101": {"state": 1048213.0}, "01111111101001100001": {"state": 522849.0}, "01111111110110011100": {"state": 523676.0}, "10000000011111111001": {"state": 526329.0}, "11111111111100000010": {"state": 1048322.0}, "10000000011111111101": {"state": 526333.0}, "11111111111000000101": {"state": 1048069.0}, "00000000000000001100": {"state": 12.0}, "00000000001111000101": {"state": 965.0}, "01111111111100000000": {"state": 524032.0}, "11111111110110011100": {"state": 1047964.0}, "01111111111010010011": {"state": 523923.0}, "10000000000000000001": {"state": 524289.0}, "01111111111111110010": {"state": 524274.0}, "01111111111100001110": {"state": 524046.0}, "10000000011111110110": {"state": 526326.0}, "11111111111100001000": {"state": 1048328.0}, "01111111111010100100": {"state": 523940.0}, "11111111110110010000": {"state": 1047952.0}, "11111111101001100011": {"state": 1047139.0}, "01111111111100001100": {"state": 524044.0}, "11111111111100000110": {"state": 1048326.0}, "01111111110110011001": {"state": 523673.0}, "01111111101001100101": {"state": 522853.0}, "11111111110001101000": {"state": 1047656.0}, "00000000011111110011": {"state": 2035.0}, "00000000000111111011": {"state": 507.0}, "00000000000000000010": {"state": 2.0}, "10000000000111111101": {"state": 524797.0}, "01111111111100001001": {"state": 524041.0}, "00000000000111110011": {"state": 499.0}, "01111111111111111110": {"state": 524286.0}, "11111111110110011110": {"state": 1047966.0}, "11111111111001011010": {"state": 1048154.0}, "00000000000000000100": {"state": 4.0}, "10000000000000001001": {"state": 524297.0}, "11111111110111010001": {"state": 1048017.0}, "01111111111010011011": {"state": 523931.0}, "00000000000000000011": {"state": 3.0}, "11111111111100000111": {"state": 1048327.0}, "01111111110001100110": {"state": 523366.0}, "10000000000000001010": {"state": 524298.0}, "00000000000000000000": {"state": 0.0}, "10000000000111110001": {"state": 524785.0}, "00000000000000001111": {"state": 15.0}, "11111111111111111010": {"state": 1048570.0}, "10000000000011111101": {"state": 524541.0}, "11111111110110010100": {"state": 1047956.0}, "11111111111111110011": {"state": 1048563.0}, "11111111111100001110": {"state": 1048334.0}, "10000000011111110001": {"state": 526321.0}, "11111111111100001111": {"state": 1048335.0}, "11111111111111111000": {"state": 1048568.0}, "00000000000100000011": {"state": 259.0}, "01111111110110011101": {"state": 523677.0}, "10000000000000000101": {"state": 524293.0}, "11111111111100111010": {"state": 1048378.0}, "01111111111010101111": {"state": 523951.0}, "11111111110000001010": {"state": 1047562.0}, "00000000000011110000": {"state": 240.0}, "10000000000000001101": {"state": 524301.0}, "11111111111100001011": {"state": 1048331.0}, "01111111110110010110": {"state": 523670.0}, "10000000000111111110": {"state": 524798.0}, "11111111110110011010": {"state": 1047962.0}, "11111111111010101101": {"state": 1048237.0}, "01111111111010011100": {"state": 523932.0}, "01111111110110010001": {"state": 523665.0}, "11111111110110011011": {"state": 1047963.0}, "11111111111100000001": {"state": 1048321.0}, "11111111110011111100": {"state": 1047804.0}, "00000000000000001000": {"state": 8.0}, "01111111111111001100": {"state": 524236.0}, "01111111111000110101": {"state": 523829.0}, "11111111111011111100": {"state": 1048316.0}, "11111111111110110000": {"state": 1048496.0}, "11111111111011111000": {"state": 1048312.0}, "01111111111100000010": {"state": 524034.0}, "11111111111100001001": {"state": 1048329.0}, "10000000011000000010": {"state": 525826.0}, "01111111110011111001": {"state": 523513.0}, "10000000000111111010": {"state": 524794.0}, "11111111110110010101": {"state": 1047957.0}, "10000000000111111001": {"state": 524793.0}, "00000000000011110100": {"state": 244.0}, "01111111101001101101": {"state": 522861.0}, "00000000000111110100": {"state": 500.0}, "01111111101001101100": {"state": 522860.0}, "00000000011111111100": {"state": 2044.0}, "01111111111001100000": {"state": 523872.0}, "11111111111100000100": {"state": 1048324.0}, "11111111111010011110": {"state": 1048222.0}, "01111111110110011010": {"state": 523674.0}, "00000000011111111111": {"state": 2047.0}, "10000000001111111010": {"state": 525306.0}, "01111111110001100101": {"state": 523365.0}, "11111111111101101101": {"state": 1048429.0}, "11111111111000001011": {"state": 1048075.0}, "10000000001100001101": {"state": 525069.0}, "00000000011111111011": {"state": 2043.0}, "11111111111100000000": {"state": 1048320.0}, "11111111110110011111": {"state": 1047967.0}, "01111111110110010010": {"state": 523666.0}, "10000000000000001111": {"state": 524303.0}, "00000000000000001011": {"state": 11.0}, "11111111101001101010": {"state": 1047146.0}, "01111111111011111011": {"state": 524027.0}, "01111111111111110101": {"state": 524277.0}, "01111111110001100100": {"state": 523364.0}, "01111111111111110100": {"state": 524276.0}, "10000000000000000111": {"state": 524295.0}, "01111111110110010101": {"state": 523669.0}, "10000000000011110011": {"state": 524531.0}, "11111111110001101100": {"state": 1047660.0}, "01111111111100000110": {"state": 524038.0}, "11111111110011110111": {"state": 1047799.0}, "01111111111001101010": {"state": 523882.0}, "10000000000000000010": {"state": 524290.0}, "01111111111111110001": {"state": 524273.0}, "11111111110100001010": {"state": 1047818.0}, "11111111111000110100": {"state": 1048116.0}, "11111111111111001111": {"state": 1048527.0}, "11111111111010010001": {"state": 1048209.0}, "01111111111011110001": {"state": 524017.0}, "01111111111101100100": {"state": 524132.0}, "11111111111100000011": {"state": 1048323.0}, "00000000000011111100": {"state": 252.0}, "01111111111100000101": {"state": 524037.0}, "10000000011111111110": {"state": 526334.0}, "00000000000111111100": {"state": 508.0}, "01111111111000001001": {"state": 523785.0}, "00000000000110100101": {"state": 421.0}, "00000000000100000000": {"state": 256.0}, "11111111111111110100": {"state": 1048564.0}, "11111111111111110000": {"state": 1048560.0}, "01111111111010100000": {"state": 523936.0}, "10000000000000000110": {"state": 524294.0}, "01111111110110010100": {"state": 523668.0}, "11111111111111110010": {"state": 1048562.0}, "11111111111111000000": {"state": 1048512.0}, "11111111111010011010": {"state": 1048218.0}, "11111111111101111100": {"state": 1048444.0}, "11111111111111110110": {"state": 1048566.0}, "01111111110000001101": {"state": 523277.0}, "10000000011111111010": {"state": 526330.0}, "11111111111000111100": {"state": 1048124.0}, "01111111111100001101": {"state": 524045.0}, "11111111111011110100": {"state": 1048308.0}, "11111111111000000111": {"state": 1048071.0}, "00000000000011111101": {"state": 253.0}, "01111111111111111010": {"state": 524282.0}}, "histogram": null, "output_qubits_map": {"state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]}, "state_vector": null, "parsed_state_vector_states": null, "physical_qubits_map": {"state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]}, "num_shots": 8192} \ No newline at end of file +{ + "vendor_format_result": {}, + "counts": { + "01111111111101111001": 1, + "00000000011000001111": 1, + "11111111111101100010": 1, + "00000000001111000101": 1, + "01111111111101100100": 1, + "10000000011111111101": 3, + "11111111110110010010": 1, + "11111111110110010001": 1, + "10000000000111000000": 1, + "01111111111100000100": 1, + "01111111110001101111": 1, + "01111111100000001101": 1, + "01111111111111111111": 2, + "11111111110000001011": 1, + "11111111111100111100": 1, + "10000000000111110010": 1, + "10000000011111111001": 1, + "11111111111001011110": 1, + "00000000000000000010": 2, + "01111111110111001010": 1, + "01111111110011110101": 1, + "00000000011111111111": 1, + "00000000000000000001": 1, + "10000000000111111001": 1, + "01111111101001100001": 1, + "01111111111111110100": 2, + "10000000011000000010": 1, + "01111111101001100101": 1, + "01111111110000000010": 1, + "11111111110110010000": 9, + "00000000000011110100": 5, + "11111111111100001011": 6, + "11111111111100001110": 3, + "11111111111111110011": 6, + "11111111111000000011": 1, + "11111111111010011110": 5, + "11111111110011111010": 1, + "00000000000000001011": 26, + "10000000000000001010": 18, + "01111111110110010101": 2, + "11111111111010011101": 2, + "01111111110001100101": 1, + "00000000011111111011": 5, + "11111111111100000000": 8, + "11111111111011111111": 1, + "01111111111111000100": 1, + "01111111111111110101": 4, + "00000000000011110000": 1, + "10000000000000001101": 585, + "10000000000000000101": 234, + "01111111111010010011": 1, + "10000000000000000001": 370, + "11111111110110011100": 3, + "11111111110110010110": 1, + "01111111111101110101": 1, + "11111111111100000110": 4, + "01111111111100001100": 6, + "00000000000011111011": 1, + "10000000000111111101": 2, + "10000000000000001001": 46, + "00000000000000000011": 329, + "10000000001100001101": 1, + "11111111110001100111": 1, + "10000000000011111101": 7, + "01111111111111001101": 1, + "01111111111010100100": 2, + "00000000000000000100": 1290, + "01111111111111111110": 36, + "00000000000111110011": 74, + "01111111111100001010": 1, + "00000000000000001111": 1908, + "11111111111111111010": 2, + "00000000011000000000": 2, + "00000000000000001100": 132, + "01111111111111110001": 3, + "10000000000000000010": 1588, + "11111111110110011010": 2, + "11111111111010101101": 2, + "11111111111000111100": 1, + "10000000011111111010": 4, + "01111111110001100010": 1, + "11111111111111110000": 4, + "11111111111111110100": 5, + "01111111101110011100": 1, + "01111111110001100110": 1, + "11111111111100000111": 4, + "10000000001000001001": 1, + "11111111111010011010": 3, + "11111111111000001000": 1, + "11111111110011110000": 1, + "11111111110110010100": 1, + "00000000000111110000": 1, + "10000000011111110001": 11, + "11111111111111111000": 9, + "11111111111100001111": 6, + "10000000000111110001": 134, + "01111111110110010010": 14, + "01111111111001100000": 5, + "00000000001011110011": 1, + "10000000000000000000": 1, + "10000000000000000110": 166, + "11111111101110010000": 1, + "11111111111111110010": 5, + "01111111111010100000": 1, + "01111111111100001001": 6, + "00000000000000000000": 492, + "01111111111100001101": 18, + "10000000000111110110": 1, + "01111111110110011100": 3, + "11111111101110010010": 1, + "11111111111010011001": 1, + "11111111111100000010": 2, + "01111111111010101100": 2, + "00000000011111110011": 5, + "00000000000111111011": 5, + "11111111111100000101": 1, + "01111111111010101111": 1, + "11111111111011111100": 2, + "01111111111000110101": 1, + "00000000011111111100": 3, + "11111111110110011011": 8, + "01111111110110010001": 1, + "10000000001111000010": 1, + "01111111110110011110": 1, + "00000000000000001001": 1, + "01111111110110011001": 1, + "11111111111000000110": 1, + "01111111111001100100": 2, + "10000000000111111110": 303, + "01111111110001100011": 1, + "10000000011000001101": 1, + "01111111111001101111": 2, + "11111111111100000011": 4, + "11111111111100001101": 1, + "11111111111010010001": 2, + "10000000000000001111": 3, + "01111111111111110010": 1, + "11111111111111001111": 1, + "01111111111100000110": 10, + "11111111110011111011": 1, + "11111111111100000100": 2, + "11111111111101010001": 1, + "11111111101001101011": 1, + "11111111111111110111": 1, + "00000000000111111100": 4, + "01111111111100000101": 23, + "11111111111110000100": 1, + "10000000011111111110": 1, + "11111111111000000000": 1, + "10000000000000000100": 1, + "11111111111001100100": 1, + "11111111111011111000": 2, + "01111111111100000010": 4, + "00000000000101011010": 1, + "11111111101100000010": 1, + "01111111110011111001": 1, + "01111111111000111110": 3, + "11111111110110011111": 2, + "00000000000111110111": 1, + "10000000000111111010": 17, + "10000000001111000011": 1, + "01111111110110010111": 1, + "11111111110011111100": 2, + "00000000000000001000": 67, + "11111111111100000001": 1, + "11111111111011110001": 1, + "11111111111100001000": 2, + "10000000000011110010": 1 + }, + "counts_lsb_right": true, + "parsed_states": { + "01111111111101111001": { "state": 524153.0 }, + "00000000011000001111": { "state": 1551.0 }, + "11111111111101100010": { "state": 1048418.0 }, + "00000000001111000101": { "state": 965.0 }, + "01111111111101100100": { "state": 524132.0 }, + "10000000011111111101": { "state": 526333.0 }, + "11111111110110010010": { "state": 1047954.0 }, + "11111111110110010001": { "state": 1047953.0 }, + "10000000000111000000": { "state": 524736.0 }, + "01111111111100000100": { "state": 524036.0 }, + "01111111110001101111": { "state": 523375.0 }, + "01111111100000001101": { "state": 522253.0 }, + "01111111111111111111": { "state": 524287.0 }, + "11111111110000001011": { "state": 1047563.0 }, + "11111111111100111100": { "state": 1048380.0 }, + "10000000000111110010": { "state": 524786.0 }, + "10000000011111111001": { "state": 526329.0 }, + "11111111111001011110": { "state": 1048158.0 }, + "00000000000000000010": { "state": 2.0 }, + "01111111110111001010": { "state": 523722.0 }, + "01111111110011110101": { "state": 523509.0 }, + "00000000011111111111": { "state": 2047.0 }, + "00000000000000000001": { "state": 1.0 }, + "10000000000111111001": { "state": 524793.0 }, + "01111111101001100001": { "state": 522849.0 }, + "01111111111111110100": { "state": 524276.0 }, + "10000000011000000010": { "state": 525826.0 }, + "01111111101001100101": { "state": 522853.0 }, + "01111111110000000010": { "state": 523266.0 }, + "11111111110110010000": { "state": 1047952.0 }, + "00000000000011110100": { "state": 244.0 }, + "11111111111100001011": { "state": 1048331.0 }, + "11111111111100001110": { "state": 1048334.0 }, + "11111111111111110011": { "state": 1048563.0 }, + "11111111111000000011": { "state": 1048067.0 }, + "11111111111010011110": { "state": 1048222.0 }, + "11111111110011111010": { "state": 1047802.0 }, + "00000000000000001011": { "state": 11.0 }, + "10000000000000001010": { "state": 524298.0 }, + "01111111110110010101": { "state": 523669.0 }, + "11111111111010011101": { "state": 1048221.0 }, + "01111111110001100101": { "state": 523365.0 }, + "00000000011111111011": { "state": 2043.0 }, + "11111111111100000000": { "state": 1048320.0 }, + "11111111111011111111": { "state": 1048319.0 }, + "01111111111111000100": { "state": 524228.0 }, + "01111111111111110101": { "state": 524277.0 }, + "00000000000011110000": { "state": 240.0 }, + "10000000000000001101": { "state": 524301.0 }, + "10000000000000000101": { "state": 524293.0 }, + "01111111111010010011": { "state": 523923.0 }, + "10000000000000000001": { "state": 524289.0 }, + "11111111110110011100": { "state": 1047964.0 }, + "11111111110110010110": { "state": 1047958.0 }, + "01111111111101110101": { "state": 524149.0 }, + "11111111111100000110": { "state": 1048326.0 }, + "01111111111100001100": { "state": 524044.0 }, + "00000000000011111011": { "state": 251.0 }, + "10000000000111111101": { "state": 524797.0 }, + "10000000000000001001": { "state": 524297.0 }, + "00000000000000000011": { "state": 3.0 }, + "10000000001100001101": { "state": 525069.0 }, + "11111111110001100111": { "state": 1047655.0 }, + "10000000000011111101": { "state": 524541.0 }, + "01111111111111001101": { "state": 524237.0 }, + "01111111111010100100": { "state": 523940.0 }, + "00000000000000000100": { "state": 4.0 }, + "01111111111111111110": { "state": 524286.0 }, + "00000000000111110011": { "state": 499.0 }, + "01111111111100001010": { "state": 524042.0 }, + "00000000000000001111": { "state": 15.0 }, + "11111111111111111010": { "state": 1048570.0 }, + "00000000011000000000": { "state": 1536.0 }, + "00000000000000001100": { "state": 12.0 }, + "01111111111111110001": { "state": 524273.0 }, + "10000000000000000010": { "state": 524290.0 }, + "11111111110110011010": { "state": 1047962.0 }, + "11111111111010101101": { "state": 1048237.0 }, + "11111111111000111100": { "state": 1048124.0 }, + "10000000011111111010": { "state": 526330.0 }, + "01111111110001100010": { "state": 523362.0 }, + "11111111111111110000": { "state": 1048560.0 }, + "11111111111111110100": { "state": 1048564.0 }, + "01111111101110011100": { "state": 523164.0 }, + "01111111110001100110": { "state": 523366.0 }, + "11111111111100000111": { "state": 1048327.0 }, + "10000000001000001001": { "state": 524809.0 }, + "11111111111010011010": { "state": 1048218.0 }, + "11111111111000001000": { "state": 1048072.0 }, + "11111111110011110000": { "state": 1047792.0 }, + "11111111110110010100": { "state": 1047956.0 }, + "00000000000111110000": { "state": 496.0 }, + "10000000011111110001": { "state": 526321.0 }, + "11111111111111111000": { "state": 1048568.0 }, + "11111111111100001111": { "state": 1048335.0 }, + "10000000000111110001": { "state": 524785.0 }, + "01111111110110010010": { "state": 523666.0 }, + "01111111111001100000": { "state": 523872.0 }, + "00000000001011110011": { "state": 755.0 }, + "10000000000000000000": { "state": 524288.0 }, + "10000000000000000110": { "state": 524294.0 }, + "11111111101110010000": { "state": 1047440.0 }, + "11111111111111110010": { "state": 1048562.0 }, + "01111111111010100000": { "state": 523936.0 }, + "01111111111100001001": { "state": 524041.0 }, + "00000000000000000000": { "state": 0.0 }, + "01111111111100001101": { "state": 524045.0 }, + "10000000000111110110": { "state": 524790.0 }, + "01111111110110011100": { "state": 523676.0 }, + "11111111101110010010": { "state": 1047442.0 }, + "11111111111010011001": { "state": 1048217.0 }, + "11111111111100000010": { "state": 1048322.0 }, + "01111111111010101100": { "state": 523948.0 }, + "00000000011111110011": { "state": 2035.0 }, + "00000000000111111011": { "state": 507.0 }, + "11111111111100000101": { "state": 1048325.0 }, + "01111111111010101111": { "state": 523951.0 }, + "11111111111011111100": { "state": 1048316.0 }, + "01111111111000110101": { "state": 523829.0 }, + "00000000011111111100": { "state": 2044.0 }, + "11111111110110011011": { "state": 1047963.0 }, + "01111111110110010001": { "state": 523665.0 }, + "10000000001111000010": { "state": 525250.0 }, + "01111111110110011110": { "state": 523678.0 }, + "00000000000000001001": { "state": 9.0 }, + "01111111110110011001": { "state": 523673.0 }, + "11111111111000000110": { "state": 1048070.0 }, + "01111111111001100100": { "state": 523876.0 }, + "10000000000111111110": { "state": 524798.0 }, + "01111111110001100011": { "state": 523363.0 }, + "10000000011000001101": { "state": 525837.0 }, + "01111111111001101111": { "state": 523887.0 }, + "11111111111100000011": { "state": 1048323.0 }, + "11111111111100001101": { "state": 1048333.0 }, + "11111111111010010001": { "state": 1048209.0 }, + "10000000000000001111": { "state": 524303.0 }, + "01111111111111110010": { "state": 524274.0 }, + "11111111111111001111": { "state": 1048527.0 }, + "01111111111100000110": { "state": 524038.0 }, + "11111111110011111011": { "state": 1047803.0 }, + "11111111111100000100": { "state": 1048324.0 }, + "11111111111101010001": { "state": 1048401.0 }, + "11111111101001101011": { "state": 1047147.0 }, + "11111111111111110111": { "state": 1048567.0 }, + "00000000000111111100": { "state": 508.0 }, + "01111111111100000101": { "state": 524037.0 }, + "11111111111110000100": { "state": 1048452.0 }, + "10000000011111111110": { "state": 526334.0 }, + "11111111111000000000": { "state": 1048064.0 }, + "10000000000000000100": { "state": 524292.0 }, + "11111111111001100100": { "state": 1048164.0 }, + "11111111111011111000": { "state": 1048312.0 }, + "01111111111100000010": { "state": 524034.0 }, + "00000000000101011010": { "state": 346.0 }, + "11111111101100000010": { "state": 1047298.0 }, + "01111111110011111001": { "state": 523513.0 }, + "01111111111000111110": { "state": 523838.0 }, + "11111111110110011111": { "state": 1047967.0 }, + "00000000000111110111": { "state": 503.0 }, + "10000000000111111010": { "state": 524794.0 }, + "10000000001111000011": { "state": 525251.0 }, + "01111111110110010111": { "state": 523671.0 }, + "11111111110011111100": { "state": 1047804.0 }, + "00000000000000001000": { "state": 8.0 }, + "11111111111100000001": { "state": 1048321.0 }, + "11111111111011110001": { "state": 1048305.0 }, + "11111111111100001000": { "state": 1048328.0 }, + "10000000000011110010": { "state": 524530.0 } + }, + "histogram": null, + "output_qubits_map": { + "state": [ + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 + ] + }, + "state_vector": null, + "parsed_state_vector_states": null, + "physical_qubits_map": { + "state": [ + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 + ] + }, + "num_shots": 8192 +} diff --git a/algorithms/glued_trees/results/20-qubits/2n+8.json b/algorithms/glued_trees/results/20-qubits/2n+8.json index be8258d2..7b427b1d 100644 --- a/algorithms/glued_trees/results/20-qubits/2n+8.json +++ b/algorithms/glued_trees/results/20-qubits/2n+8.json @@ -1 +1,384 @@ -{"vendor_format_result": {}, "counts": {"11111111111100011000": 1, "01111111110110011101": 1, "01111111101001100101": 1, "11111111111001100000": 2, "11111111110011111100": 1, "00000000000000001000": 1, "10000000001001011100": 1, "01111111111100000111": 2, "01111111111100000000": 1, "10000000000000000011": 1, "11111111111110100010": 1, "01111111111000001101": 2, "01111111111000000110": 1, "00000000000100000010": 1, "01111111111101110101": 1, "01111111111000111110": 1, "11111111110110011010": 1, "01111111111100001110": 2, "10000000000011110001": 1, "11111111110001101011": 2, "01111111111001100110": 1, "01111111111100000110": 4, "01111111111111111101": 1, "01111111111111110010": 1, "01111111111001101001": 1, "10000000000010100100": 1, "11111111111001011110": 1, "01111111110011111001": 2, "10000000011111111001": 1, "11111111111011110000": 1, "01111111111011111001": 2, "11111111111111111101": 4, "00000000000000001011": 6, "11111111111111111111": 3, "00000000000011110100": 2, "00000000011000001111": 1, "00000000000111110100": 2, "01111111111011110010": 1, "11111111110110011011": 9, "01111111110110010001": 2, "01111111111100001001": 2, "01111111111100001100": 1, "11111111101001100011": 1, "11111111111100000110": 1, "01111111111001010011": 1, "00000000000000001001": 2, "11111111111111000110": 1, "11111111110000001001": 1, "10000000000000001110": 13, "01111111110110011110": 7, "11111111110100001010": 1, "00000000000001100101": 1, "01111111111101100000": 2, "11111111111000000010": 3, "01111111111001010100": 1, "00000000011111111100": 7, "01111111111111110101": 3, "10000000000000001101": 24, "00000000011111110011": 8, "10000000000000001011": 1, "10000000000111110001": 216, "01111111110110010101": 3, "11111111111100001011": 14, "11111111111100001001": 2, "11111111111000001100": 1, "10000000000111111110": 323, "01111111111010011100": 4, "11111111111010101101": 1, "10000000000000000001": 33, "01111111111010010011": 5, "01111111110001100110": 1, "11111111111100000111": 20, "11111111101001101100": 2, "10000000000000001001": 705, "00000000000000000011": 8, "01111111111011111110": 1, "01111111111010100000": 3, "10000000000000000110": 678, "11111111110111101101": 1, "11111111111000111011": 3, "01111111111010101111": 1, "11111111110110010011": 4, "01111111111111110000": 1, "01111111111111110111": 9, "11111111111000111010": 1, "11111111111111111000": 10, "01111111111100001010": 7, "00000000000000001111": 1664, "10000000000011111011": 1, "00000000000000001100": 3, "01111111111111110001": 13, "10000000000000000010": 551, "10000000000100001101": 2, "00000000011000000000": 5, "11111111111000000000": 1, "10000000011111110110": 1, "11111111111100001000": 2, "11111111110110010111": 1, "11111111111101101101": 1, "00000000000000000111": 154, "00000000000100000100": 2, "01111111111001100000": 3, "01111111111000000010": 4, "11111111110000000100": 1, "01111111110001100010": 6, "11111111111000111100": 1, "11111111111100000100": 7, "10000000000000000101": 395, "10000000011111111110": 13, "01111111111100000101": 6, "11111111111011111000": 3, "01111111111100000010": 1, "10000000000100001001": 1, "11111111111111110011": 19, "11111111111111111011": 9, "11111111110110010010": 4, "10000000000000001010": 561, "00000000000000000000": 2384, "10000000000011110110": 1, "11111111111100000000": 6, "11111111111111001111": 1, "00000000011111110100": 2, "01111111111001101111": 1, "00000000000111110011": 30, "11111111110011111000": 2, "11111111110110010000": 7, "11111111110001100011": 3, "00000000000111111100": 4, "11111111111111110111": 1, "00000000000011110011": 3, "11111111111100000010": 4, "01111111111000001010": 2, "00000000000111111111": 1, "11111111110100000000": 1, "11111111111100001100": 4, "01111111111000001110": 1, "00000000001000110011": 1, "11111111111001101011": 1, "11111111111010011110": 4, "11111111100000000110": 1, "11111111110110010001": 2, "00000000000000000010": 1, "10000000000011111101": 2, "01111111111111111010": 1, "11111111111011111111": 1, "11111111111010100101": 1, "01111111110110011010": 1, "11111111111001101101": 1, "11111111111111000011": 1, "01111111111100001111": 3, "00000000000100000000": 1, "11111111111010101010": 1, "11111111110001101101": 1, "00000000000000111010": 1, "11111111111111001011": 4, "11111111111111111001": 1, "11111111111111001110": 1, "01111111110000001010": 1, "00000000000111110111": 2, "01111111111111111001": 4, "00000000011111111000": 2, "01111111110000000110": 1, "10000000000111111001": 1, "11111111110000000111": 2, "01111111111111111110": 1, "11111111111000110000": 1, "11111111110011111001": 1, "01111111110110010010": 1, "01111111111101011100": 1, "11111111111111110001": 4, "11111111110001100111": 2, "11111111111111111100": 33, "01111111111000001001": 2}, "counts_lsb_right": true, "parsed_states": {"11111111111100011000": {"state": 1048344.0}, "01111111110110011101": {"state": 523677.0}, "01111111101001100101": {"state": 522853.0}, "11111111111001100000": {"state": 1048160.0}, "11111111110011111100": {"state": 1047804.0}, "00000000000000001000": {"state": 8.0}, "10000000001001011100": {"state": 524892.0}, "01111111111100000111": {"state": 524039.0}, "01111111111100000000": {"state": 524032.0}, "10000000000000000011": {"state": 524291.0}, "11111111111110100010": {"state": 1048482.0}, "01111111111000001101": {"state": 523789.0}, "01111111111000000110": {"state": 523782.0}, "00000000000100000010": {"state": 258.0}, "01111111111101110101": {"state": 524149.0}, "01111111111000111110": {"state": 523838.0}, "11111111110110011010": {"state": 1047962.0}, "01111111111100001110": {"state": 524046.0}, "10000000000011110001": {"state": 524529.0}, "11111111110001101011": {"state": 1047659.0}, "01111111111001100110": {"state": 523878.0}, "01111111111100000110": {"state": 524038.0}, "01111111111111111101": {"state": 524285.0}, "01111111111111110010": {"state": 524274.0}, "01111111111001101001": {"state": 523881.0}, "10000000000010100100": {"state": 524452.0}, "11111111111001011110": {"state": 1048158.0}, "01111111110011111001": {"state": 523513.0}, "10000000011111111001": {"state": 526329.0}, "11111111111011110000": {"state": 1048304.0}, "01111111111011111001": {"state": 524025.0}, "11111111111111111101": {"state": 1048573.0}, "00000000000000001011": {"state": 11.0}, "11111111111111111111": {"state": 1048575.0}, "00000000000011110100": {"state": 244.0}, "00000000011000001111": {"state": 1551.0}, "00000000000111110100": {"state": 500.0}, "01111111111011110010": {"state": 524018.0}, "11111111110110011011": {"state": 1047963.0}, "01111111110110010001": {"state": 523665.0}, "01111111111100001001": {"state": 524041.0}, "01111111111100001100": {"state": 524044.0}, "11111111101001100011": {"state": 1047139.0}, "11111111111100000110": {"state": 1048326.0}, "01111111111001010011": {"state": 523859.0}, "00000000000000001001": {"state": 9.0}, "11111111111111000110": {"state": 1048518.0}, "11111111110000001001": {"state": 1047561.0}, "10000000000000001110": {"state": 524302.0}, "01111111110110011110": {"state": 523678.0}, "11111111110100001010": {"state": 1047818.0}, "00000000000001100101": {"state": 101.0}, "01111111111101100000": {"state": 524128.0}, "11111111111000000010": {"state": 1048066.0}, "01111111111001010100": {"state": 523860.0}, "00000000011111111100": {"state": 2044.0}, "01111111111111110101": {"state": 524277.0}, "10000000000000001101": {"state": 524301.0}, "00000000011111110011": {"state": 2035.0}, "10000000000000001011": {"state": 524299.0}, "10000000000111110001": {"state": 524785.0}, "01111111110110010101": {"state": 523669.0}, "11111111111100001011": {"state": 1048331.0}, "11111111111100001001": {"state": 1048329.0}, "11111111111000001100": {"state": 1048076.0}, "10000000000111111110": {"state": 524798.0}, "01111111111010011100": {"state": 523932.0}, "11111111111010101101": {"state": 1048237.0}, "10000000000000000001": {"state": 524289.0}, "01111111111010010011": {"state": 523923.0}, "01111111110001100110": {"state": 523366.0}, "11111111111100000111": {"state": 1048327.0}, "11111111101001101100": {"state": 1047148.0}, "10000000000000001001": {"state": 524297.0}, "00000000000000000011": {"state": 3.0}, "01111111111011111110": {"state": 524030.0}, "01111111111010100000": {"state": 523936.0}, "10000000000000000110": {"state": 524294.0}, "11111111110111101101": {"state": 1048045.0}, "11111111111000111011": {"state": 1048123.0}, "01111111111010101111": {"state": 523951.0}, "11111111110110010011": {"state": 1047955.0}, "01111111111111110000": {"state": 524272.0}, "01111111111111110111": {"state": 524279.0}, "11111111111000111010": {"state": 1048122.0}, "11111111111111111000": {"state": 1048568.0}, "01111111111100001010": {"state": 524042.0}, "00000000000000001111": {"state": 15.0}, "10000000000011111011": {"state": 524539.0}, "00000000000000001100": {"state": 12.0}, "01111111111111110001": {"state": 524273.0}, "10000000000000000010": {"state": 524290.0}, "10000000000100001101": {"state": 524557.0}, "00000000011000000000": {"state": 1536.0}, "11111111111000000000": {"state": 1048064.0}, "10000000011111110110": {"state": 526326.0}, "11111111111100001000": {"state": 1048328.0}, "11111111110110010111": {"state": 1047959.0}, "11111111111101101101": {"state": 1048429.0}, "00000000000000000111": {"state": 7.0}, "00000000000100000100": {"state": 260.0}, "01111111111001100000": {"state": 523872.0}, "01111111111000000010": {"state": 523778.0}, "11111111110000000100": {"state": 1047556.0}, "01111111110001100010": {"state": 523362.0}, "11111111111000111100": {"state": 1048124.0}, "11111111111100000100": {"state": 1048324.0}, "10000000000000000101": {"state": 524293.0}, "10000000011111111110": {"state": 526334.0}, "01111111111100000101": {"state": 524037.0}, "11111111111011111000": {"state": 1048312.0}, "01111111111100000010": {"state": 524034.0}, "10000000000100001001": {"state": 524553.0}, "11111111111111110011": {"state": 1048563.0}, "11111111111111111011": {"state": 1048571.0}, "11111111110110010010": {"state": 1047954.0}, "10000000000000001010": {"state": 524298.0}, "00000000000000000000": {"state": 0.0}, "10000000000011110110": {"state": 524534.0}, "11111111111100000000": {"state": 1048320.0}, "11111111111111001111": {"state": 1048527.0}, "00000000011111110100": {"state": 2036.0}, "01111111111001101111": {"state": 523887.0}, "00000000000111110011": {"state": 499.0}, "11111111110011111000": {"state": 1047800.0}, "11111111110110010000": {"state": 1047952.0}, "11111111110001100011": {"state": 1047651.0}, "00000000000111111100": {"state": 508.0}, "11111111111111110111": {"state": 1048567.0}, "00000000000011110011": {"state": 243.0}, "11111111111100000010": {"state": 1048322.0}, "01111111111000001010": {"state": 523786.0}, "00000000000111111111": {"state": 511.0}, "11111111110100000000": {"state": 1047808.0}, "11111111111100001100": {"state": 1048332.0}, "01111111111000001110": {"state": 523790.0}, "00000000001000110011": {"state": 563.0}, "11111111111001101011": {"state": 1048171.0}, "11111111111010011110": {"state": 1048222.0}, "11111111100000000110": {"state": 1046534.0}, "11111111110110010001": {"state": 1047953.0}, "00000000000000000010": {"state": 2.0}, "10000000000011111101": {"state": 524541.0}, "01111111111111111010": {"state": 524282.0}, "11111111111011111111": {"state": 1048319.0}, "11111111111010100101": {"state": 1048229.0}, "01111111110110011010": {"state": 523674.0}, "11111111111001101101": {"state": 1048173.0}, "11111111111111000011": {"state": 1048515.0}, "01111111111100001111": {"state": 524047.0}, "00000000000100000000": {"state": 256.0}, "11111111111010101010": {"state": 1048234.0}, "11111111110001101101": {"state": 1047661.0}, "00000000000000111010": {"state": 58.0}, "11111111111111001011": {"state": 1048523.0}, "11111111111111111001": {"state": 1048569.0}, "11111111111111001110": {"state": 1048526.0}, "01111111110000001010": {"state": 523274.0}, "00000000000111110111": {"state": 503.0}, "01111111111111111001": {"state": 524281.0}, "00000000011111111000": {"state": 2040.0}, "01111111110000000110": {"state": 523270.0}, "10000000000111111001": {"state": 524793.0}, "11111111110000000111": {"state": 1047559.0}, "01111111111111111110": {"state": 524286.0}, "11111111111000110000": {"state": 1048112.0}, "11111111110011111001": {"state": 1047801.0}, "01111111110110010010": {"state": 523666.0}, "01111111111101011100": {"state": 524124.0}, "11111111111111110001": {"state": 1048561.0}, "11111111110001100111": {"state": 1047655.0}, "11111111111111111100": {"state": 1048572.0}, "01111111111000001001": {"state": 523785.0}}, "histogram": null, "output_qubits_map": {"state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]}, "state_vector": null, "parsed_state_vector_states": null, "physical_qubits_map": {"state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]}, "num_shots": 8192} \ No newline at end of file +{ + "vendor_format_result": {}, + "counts": { + "00000000001111001010": 1, + "11111111110001101010": 1, + "11111111110001101101": 1, + "00000000011111111000": 2, + "11111111100011110111": 1, + "01111111111000000011": 1, + "11111111111000110100": 1, + "11111111111111001011": 1, + "01111111111111111100": 1, + "01111111111111000000": 1, + "01111111111001100110": 1, + "00000000001111001001": 1, + "11111111101001100101": 1, + "11111111101001101100": 1, + "00000000001000111010": 1, + "11111111111010010001": 1, + "10000000000011111010": 1, + "11111111111010101101": 1, + "01111111111001011100": 1, + "01111111111000000111": 1, + "01111111101110011011": 1, + "11111111111001100100": 1, + "00000000000000001001": 1, + "11111111110001101111": 1, + "00000000000111110101": 1, + "11111111110001100101": 1, + "11111111110110100000": 1, + "00000000000111111111": 1, + "01111111111111000010": 1, + "11111111100000110011": 1, + "00000000011000000000": 2, + "10000000000000001011": 2, + "01111111111111110111": 5, + "11111111111000001111": 1, + "01111111110001100111": 1, + "11111111111111111101": 12, + "01111111111111110010": 1, + "01111111111111111101": 1, + "01111111111101111010": 1, + "10000000000111110001": 223, + "01111111111100000000": 1, + "10000000000000000100": 1, + "11111111110110010010": 1, + "01111111111101110100": 1, + "00000000011000001111": 2, + "01111111111110010001": 1, + "00000000001111000110": 1, + "10000000000000001110": 22, + "01111111110110011110": 6, + "11111111111111110001": 8, + "11111111110001100111": 1, + "10000000000011111101": 3, + "10000000001111000000": 1, + "10000000000011110100": 3, + "10000000000000000101": 421, + "00000000000111110011": 31, + "01111111110000000010": 2, + "00000000000111110100": 1, + "11111111110001100011": 1, + "11111111110110010000": 10, + "01111111110110011111": 3, + "01111111111100000111": 5, + "00000000000000000000": 2396, + "10000000000111111100": 1, + "10000000000011110110": 2, + "01111111110110010101": 9, + "00000000000111111100": 8, + "00000000011111110011": 15, + "01111111111100010101": 1, + "10000000000000001001": 754, + "00000000000000000011": 16, + "10000000000111111101": 1, + "01111111111100000101": 7, + "10000000011111111110": 13, + "11111111111110000100": 1, + "10000000000000000000": 1, + "01111111111010100000": 5, + "10000000000000000110": 669, + "00000000011111111100": 10, + "11111111111100000000": 9, + "01111111101111111001": 1, + "10000000000000001010": 540, + "01111111111100001010": 5, + "00000000000000001111": 1569, + "01111111110110010110": 1, + "10000000000111111110": 308, + "01111111111010011100": 2, + "00000000000000001100": 2, + "01111111111111110001": 16, + "10000000000000000010": 551, + "10000000000100001101": 3, + "00000000000111110111": 1, + "11111111111101111011": 1, + "11111111111111111011": 7, + "11111111111111110011": 24, + "01111111111111110000": 3, + "01111111110001100110": 1, + "11111111111100000111": 19, + "01111111111100001110": 7, + "01111111111100000010": 3, + "11111111111011111000": 1, + "01111111111011110101": 2, + "11111111110110011011": 5, + "01111111110110010001": 3, + "11111111110000001010": 1, + "11111111110110010011": 1, + "11111111111011110011": 2, + "11111111111111111100": 47, + "01111111111111111001": 6, + "01111111111000000010": 5, + "00000000000000000111": 138, + "01111111111100001001": 5, + "11111111111100001011": 9, + "11111111111100001001": 1, + "11111111111010011110": 6, + "11111111111001100000": 2, + "00000000011000001011": 1, + "11111111111100001100": 4, + "01111111111011111100": 1, + "01111111111000001110": 1, + "11111111111111000010": 1, + "01111111111010011111": 1, + "10000000001111001011": 1, + "11111111111011110001": 2, + "11111111110011111100": 2, + "00000000000000001000": 3, + "11111111111011111100": 1, + "10000000000000000001": 26, + "01111111111010010011": 7, + "11111111111100000100": 5, + "10000000000000001101": 29, + "10000000001111111011": 1, + "11111111110011111001": 1, + "01111111110110010010": 1, + "01111111110011111001": 2, + "01111111110110011010": 1, + "11111111100000000100": 3, + "11111111111001101101": 2, + "11111111111000111010": 1, + "11111111111111111000": 5, + "11111111111100001111": 1, + "10000000000100000011": 1, + "11111111110001100100": 1, + "11111111111100000010": 3, + "01111111111100001111": 1, + "00000000000100000000": 1, + "01111111101001101111": 1, + "01111111101001100101": 1, + "01111111111100000110": 5, + "01111111110011111111": 1, + "01111111110011110101": 2, + "11111111111000000010": 3, + "01111111110110011100": 1, + "00000000000000001011": 2, + "11111111111111111111": 2, + "11111111111100000110": 2, + "11111111101001100011": 1, + "11111111111100001000": 2, + "10000000000011110010": 1, + "00000000011111110100": 2, + "00000000001000001101": 1, + "01111111111111111110": 1, + "11111111110000000111": 2, + "11111111111000110000": 2, + "10000000000001010111": 1, + "11111111111111111001": 2, + "00000000000111111110": 1, + "11111111111010010101": 1, + "01111111111111110101": 3, + "10000000000100000110": 1, + "01111111111001100000": 5, + "00000000000100000100": 2, + "01111111111000111110": 1, + "11111111110111001001": 1, + "11111111110000001011": 1, + "01111111111011111001": 3, + "01111111111010010100": 1, + "01111111110011111000": 1, + "01111111111101101011": 1, + "11111111111001011110": 2, + "01111111111001101111": 1 + }, + "counts_lsb_right": true, + "parsed_states": { + "00000000001111001010": { "state": 970.0 }, + "11111111110001101010": { "state": 1047658.0 }, + "11111111110001101101": { "state": 1047661.0 }, + "00000000011111111000": { "state": 2040.0 }, + "11111111100011110111": { "state": 1046775.0 }, + "01111111111000000011": { "state": 523779.0 }, + "11111111111000110100": { "state": 1048116.0 }, + "11111111111111001011": { "state": 1048523.0 }, + "01111111111111111100": { "state": 524284.0 }, + "01111111111111000000": { "state": 524224.0 }, + "01111111111001100110": { "state": 523878.0 }, + "00000000001111001001": { "state": 969.0 }, + "11111111101001100101": { "state": 1047141.0 }, + "11111111101001101100": { "state": 1047148.0 }, + "00000000001000111010": { "state": 570.0 }, + "11111111111010010001": { "state": 1048209.0 }, + "10000000000011111010": { "state": 524538.0 }, + "11111111111010101101": { "state": 1048237.0 }, + "01111111111001011100": { "state": 523868.0 }, + "01111111111000000111": { "state": 523783.0 }, + "01111111101110011011": { "state": 523163.0 }, + "11111111111001100100": { "state": 1048164.0 }, + "00000000000000001001": { "state": 9.0 }, + "11111111110001101111": { "state": 1047663.0 }, + "00000000000111110101": { "state": 501.0 }, + "11111111110001100101": { "state": 1047653.0 }, + "11111111110110100000": { "state": 1047968.0 }, + "00000000000111111111": { "state": 511.0 }, + "01111111111111000010": { "state": 524226.0 }, + "11111111100000110011": { "state": 1046579.0 }, + "00000000011000000000": { "state": 1536.0 }, + "10000000000000001011": { "state": 524299.0 }, + "01111111111111110111": { "state": 524279.0 }, + "11111111111000001111": { "state": 1048079.0 }, + "01111111110001100111": { "state": 523367.0 }, + "11111111111111111101": { "state": 1048573.0 }, + "01111111111111110010": { "state": 524274.0 }, + "01111111111111111101": { "state": 524285.0 }, + "01111111111101111010": { "state": 524154.0 }, + "10000000000111110001": { "state": 524785.0 }, + "01111111111100000000": { "state": 524032.0 }, + "10000000000000000100": { "state": 524292.0 }, + "11111111110110010010": { "state": 1047954.0 }, + "01111111111101110100": { "state": 524148.0 }, + "00000000011000001111": { "state": 1551.0 }, + "01111111111110010001": { "state": 524177.0 }, + "00000000001111000110": { "state": 966.0 }, + "10000000000000001110": { "state": 524302.0 }, + "01111111110110011110": { "state": 523678.0 }, + "11111111111111110001": { "state": 1048561.0 }, + "11111111110001100111": { "state": 1047655.0 }, + "10000000000011111101": { "state": 524541.0 }, + "10000000001111000000": { "state": 525248.0 }, + "10000000000011110100": { "state": 524532.0 }, + "10000000000000000101": { "state": 524293.0 }, + "00000000000111110011": { "state": 499.0 }, + "01111111110000000010": { "state": 523266.0 }, + "00000000000111110100": { "state": 500.0 }, + "11111111110001100011": { "state": 1047651.0 }, + "11111111110110010000": { "state": 1047952.0 }, + "01111111110110011111": { "state": 523679.0 }, + "01111111111100000111": { "state": 524039.0 }, + "00000000000000000000": { "state": 0.0 }, + "10000000000111111100": { "state": 524796.0 }, + "10000000000011110110": { "state": 524534.0 }, + "01111111110110010101": { "state": 523669.0 }, + "00000000000111111100": { "state": 508.0 }, + "00000000011111110011": { "state": 2035.0 }, + "01111111111100010101": { "state": 524053.0 }, + "10000000000000001001": { "state": 524297.0 }, + "00000000000000000011": { "state": 3.0 }, + "10000000000111111101": { "state": 524797.0 }, + "01111111111100000101": { "state": 524037.0 }, + "10000000011111111110": { "state": 526334.0 }, + "11111111111110000100": { "state": 1048452.0 }, + "10000000000000000000": { "state": 524288.0 }, + "01111111111010100000": { "state": 523936.0 }, + "10000000000000000110": { "state": 524294.0 }, + "00000000011111111100": { "state": 2044.0 }, + "11111111111100000000": { "state": 1048320.0 }, + "01111111101111111001": { "state": 523257.0 }, + "10000000000000001010": { "state": 524298.0 }, + "01111111111100001010": { "state": 524042.0 }, + "00000000000000001111": { "state": 15.0 }, + "01111111110110010110": { "state": 523670.0 }, + "10000000000111111110": { "state": 524798.0 }, + "01111111111010011100": { "state": 523932.0 }, + "00000000000000001100": { "state": 12.0 }, + "01111111111111110001": { "state": 524273.0 }, + "10000000000000000010": { "state": 524290.0 }, + "10000000000100001101": { "state": 524557.0 }, + "00000000000111110111": { "state": 503.0 }, + "11111111111101111011": { "state": 1048443.0 }, + "11111111111111111011": { "state": 1048571.0 }, + "11111111111111110011": { "state": 1048563.0 }, + "01111111111111110000": { "state": 524272.0 }, + "01111111110001100110": { "state": 523366.0 }, + "11111111111100000111": { "state": 1048327.0 }, + "01111111111100001110": { "state": 524046.0 }, + "01111111111100000010": { "state": 524034.0 }, + "11111111111011111000": { "state": 1048312.0 }, + "01111111111011110101": { "state": 524021.0 }, + "11111111110110011011": { "state": 1047963.0 }, + "01111111110110010001": { "state": 523665.0 }, + "11111111110000001010": { "state": 1047562.0 }, + "11111111110110010011": { "state": 1047955.0 }, + "11111111111011110011": { "state": 1048307.0 }, + "11111111111111111100": { "state": 1048572.0 }, + "01111111111111111001": { "state": 524281.0 }, + "01111111111000000010": { "state": 523778.0 }, + "00000000000000000111": { "state": 7.0 }, + "01111111111100001001": { "state": 524041.0 }, + "11111111111100001011": { "state": 1048331.0 }, + "11111111111100001001": { "state": 1048329.0 }, + "11111111111010011110": { "state": 1048222.0 }, + "11111111111001100000": { "state": 1048160.0 }, + "00000000011000001011": { "state": 1547.0 }, + "11111111111100001100": { "state": 1048332.0 }, + "01111111111011111100": { "state": 524028.0 }, + "01111111111000001110": { "state": 523790.0 }, + "11111111111111000010": { "state": 1048514.0 }, + "01111111111010011111": { "state": 523935.0 }, + "10000000001111001011": { "state": 525259.0 }, + "11111111111011110001": { "state": 1048305.0 }, + "11111111110011111100": { "state": 1047804.0 }, + "00000000000000001000": { "state": 8.0 }, + "11111111111011111100": { "state": 1048316.0 }, + "10000000000000000001": { "state": 524289.0 }, + "01111111111010010011": { "state": 523923.0 }, + "11111111111100000100": { "state": 1048324.0 }, + "10000000000000001101": { "state": 524301.0 }, + "10000000001111111011": { "state": 525307.0 }, + "11111111110011111001": { "state": 1047801.0 }, + "01111111110110010010": { "state": 523666.0 }, + "01111111110011111001": { "state": 523513.0 }, + "01111111110110011010": { "state": 523674.0 }, + "11111111100000000100": { "state": 1046532.0 }, + "11111111111001101101": { "state": 1048173.0 }, + "11111111111000111010": { "state": 1048122.0 }, + "11111111111111111000": { "state": 1048568.0 }, + "11111111111100001111": { "state": 1048335.0 }, + "10000000000100000011": { "state": 524547.0 }, + "11111111110001100100": { "state": 1047652.0 }, + "11111111111100000010": { "state": 1048322.0 }, + "01111111111100001111": { "state": 524047.0 }, + "00000000000100000000": { "state": 256.0 }, + "01111111101001101111": { "state": 522863.0 }, + "01111111101001100101": { "state": 522853.0 }, + "01111111111100000110": { "state": 524038.0 }, + "01111111110011111111": { "state": 523519.0 }, + "01111111110011110101": { "state": 523509.0 }, + "11111111111000000010": { "state": 1048066.0 }, + "01111111110110011100": { "state": 523676.0 }, + "00000000000000001011": { "state": 11.0 }, + "11111111111111111111": { "state": 1048575.0 }, + "11111111111100000110": { "state": 1048326.0 }, + "11111111101001100011": { "state": 1047139.0 }, + "11111111111100001000": { "state": 1048328.0 }, + "10000000000011110010": { "state": 524530.0 }, + "00000000011111110100": { "state": 2036.0 }, + "00000000001000001101": { "state": 525.0 }, + "01111111111111111110": { "state": 524286.0 }, + "11111111110000000111": { "state": 1047559.0 }, + "11111111111000110000": { "state": 1048112.0 }, + "10000000000001010111": { "state": 524375.0 }, + "11111111111111111001": { "state": 1048569.0 }, + "00000000000111111110": { "state": 510.0 }, + "11111111111010010101": { "state": 1048213.0 }, + "01111111111111110101": { "state": 524277.0 }, + "10000000000100000110": { "state": 524550.0 }, + "01111111111001100000": { "state": 523872.0 }, + "00000000000100000100": { "state": 260.0 }, + "01111111111000111110": { "state": 523838.0 }, + "11111111110111001001": { "state": 1048009.0 }, + "11111111110000001011": { "state": 1047563.0 }, + "01111111111011111001": { "state": 524025.0 }, + "01111111111010010100": { "state": 523924.0 }, + "01111111110011111000": { "state": 523512.0 }, + "01111111111101101011": { "state": 524139.0 }, + "11111111111001011110": { "state": 1048158.0 }, + "01111111111001101111": { "state": 523887.0 } + }, + "histogram": null, + "output_qubits_map": { + "state": [ + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 + ] + }, + "state_vector": null, + "parsed_state_vector_states": null, + "physical_qubits_map": { + "state": [ + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 + ] + }, + "num_shots": 8192 +} diff --git a/algorithms/glued_trees/results/20-qubits/2n-10.json b/algorithms/glued_trees/results/20-qubits/2n-10.json index 85da8b0c..15922d8d 100644 --- a/algorithms/glued_trees/results/20-qubits/2n-10.json +++ b/algorithms/glued_trees/results/20-qubits/2n-10.json @@ -1 +1,176 @@ -{"vendor_format_result": {}, "counts": {"11111111111000110100": 1, "11111111111000000000": 1, "00000000011000000000": 2, "11111111110001100111": 1, "10000000011111111101": 1, "01111111111111001101": 1, "10000000000011110010": 1, "10000000000111110010": 1, "01111111110011111001": 1, "11111111111010010010": 1, "10000000000000000010": 893, "00000000000000001100": 102, "01111111110110010101": 1, "11111111111111111100": 14, "00000000000111111100": 5, "10000000011111111110": 13, "10000000000000001101": 19, "10000000000000001010": 29, "10000000000111110101": 1, "00000000000000000000": 4663, "11111111111100000000": 1, "00000000000000000100": 11, "10000000000111110001": 28, "11111111111010011110": 4, "10000000000110100111": 1, "01111111111001100000": 1, "11111111110110011000": 1, "01111111111111111000": 2, "11111111111100000111": 22, "01111111110001101101": 1, "00000000000000001011": 142, "01111111111111110011": 1, "11111111111111111000": 4, "00000000000000000111": 97, "01111111110110011001": 4, "11111111111111111011": 11, "01111111111111110001": 6, "01111111111100000110": 2, "01111111111000111010": 2, "11111111110110010101": 1, "01111111110110011110": 13, "10000000000000001110": 35, "01111111111111111100": 1, "01111111111100000101": 5, "10000000000000000101": 127, "00000000000011111011": 15, "11111111110011111011": 1, "11111111111100000100": 3, "01111111111001101111": 1, "00000000000000001111": 927, "11111111111111111010": 2, "11111111111000110011": 4, "01111111111111111010": 3, "00000000000000000011": 733, "10000000000000001001": 8, "01111111111111111101": 1, "00000000011111111100": 2, "01111111110110010111": 2, "01111111111011111001": 1, "01111111111100001001": 3, "10000000000011111001": 1, "01111111111111110101": 1, "01111111111000111101": 1, "10000000011111110001": 3, "11111111111100000110": 1, "10000000000111111110": 182, "01111111110001100010": 1, "11111111110110011010": 1, "11111111111001100000": 1, "01111111111111111110": 5, "00000000000111110011": 1, "01111111110110011010": 5, "00000000000000001000": 7, "11111111111001101011": 1, "10000000000111111101": 1}, "counts_lsb_right": true, "parsed_states": {"11111111111000110100": {"state": 1048116.0}, "11111111111000000000": {"state": 1048064.0}, "00000000011000000000": {"state": 1536.0}, "11111111110001100111": {"state": 1047655.0}, "10000000011111111101": {"state": 526333.0}, "01111111111111001101": {"state": 524237.0}, "10000000000011110010": {"state": 524530.0}, "10000000000111110010": {"state": 524786.0}, "01111111110011111001": {"state": 523513.0}, "11111111111010010010": {"state": 1048210.0}, "10000000000000000010": {"state": 524290.0}, "00000000000000001100": {"state": 12.0}, "01111111110110010101": {"state": 523669.0}, "11111111111111111100": {"state": 1048572.0}, "00000000000111111100": {"state": 508.0}, "10000000011111111110": {"state": 526334.0}, "10000000000000001101": {"state": 524301.0}, "10000000000000001010": {"state": 524298.0}, "10000000000111110101": {"state": 524789.0}, "00000000000000000000": {"state": 0.0}, "11111111111100000000": {"state": 1048320.0}, "00000000000000000100": {"state": 4.0}, "10000000000111110001": {"state": 524785.0}, "11111111111010011110": {"state": 1048222.0}, "10000000000110100111": {"state": 524711.0}, "01111111111001100000": {"state": 523872.0}, "11111111110110011000": {"state": 1047960.0}, "01111111111111111000": {"state": 524280.0}, "11111111111100000111": {"state": 1048327.0}, "01111111110001101101": {"state": 523373.0}, "00000000000000001011": {"state": 11.0}, "01111111111111110011": {"state": 524275.0}, "11111111111111111000": {"state": 1048568.0}, "00000000000000000111": {"state": 7.0}, "01111111110110011001": {"state": 523673.0}, "11111111111111111011": {"state": 1048571.0}, "01111111111111110001": {"state": 524273.0}, "01111111111100000110": {"state": 524038.0}, "01111111111000111010": {"state": 523834.0}, "11111111110110010101": {"state": 1047957.0}, "01111111110110011110": {"state": 523678.0}, "10000000000000001110": {"state": 524302.0}, "01111111111111111100": {"state": 524284.0}, "01111111111100000101": {"state": 524037.0}, "10000000000000000101": {"state": 524293.0}, "00000000000011111011": {"state": 251.0}, "11111111110011111011": {"state": 1047803.0}, "11111111111100000100": {"state": 1048324.0}, "01111111111001101111": {"state": 523887.0}, "00000000000000001111": {"state": 15.0}, "11111111111111111010": {"state": 1048570.0}, "11111111111000110011": {"state": 1048115.0}, "01111111111111111010": {"state": 524282.0}, "00000000000000000011": {"state": 3.0}, "10000000000000001001": {"state": 524297.0}, "01111111111111111101": {"state": 524285.0}, "00000000011111111100": {"state": 2044.0}, "01111111110110010111": {"state": 523671.0}, "01111111111011111001": {"state": 524025.0}, "01111111111100001001": {"state": 524041.0}, "10000000000011111001": {"state": 524537.0}, "01111111111111110101": {"state": 524277.0}, "01111111111000111101": {"state": 523837.0}, "10000000011111110001": {"state": 526321.0}, "11111111111100000110": {"state": 1048326.0}, "10000000000111111110": {"state": 524798.0}, "01111111110001100010": {"state": 523362.0}, "11111111110110011010": {"state": 1047962.0}, "11111111111001100000": {"state": 1048160.0}, "01111111111111111110": {"state": 524286.0}, "00000000000111110011": {"state": 499.0}, "01111111110110011010": {"state": 523674.0}, "00000000000000001000": {"state": 8.0}, "11111111111001101011": {"state": 1048171.0}, "10000000000111111101": {"state": 524797.0}}, "histogram": null, "output_qubits_map": {"state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]}, "state_vector": null, "parsed_state_vector_states": null, "physical_qubits_map": {"state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]}, "num_shots": 8192} \ No newline at end of file +{ + "vendor_format_result": {}, + "counts": { + "11111111111111111000": 1, + "11111111111000110011": 1, + "00000000011111110100": 1, + "10000000011111110001": 1, + "11111111111000110100": 1, + "11111111111100000110": 1, + "01111111111000001101": 1, + "10000000011111111001": 1, + "10000000000011111110": 1, + "00000000000000000100": 10, + "01111111110110010101": 2, + "11111111111010010001": 1, + "11111111110110011000": 1, + "01111111111001100000": 3, + "00000000000000000111": 105, + "00000000011000000000": 1, + "11111111111000000000": 3, + "01111111111111110101": 1, + "10000000000000001101": 25, + "11111111111111111001": 1, + "11111111111111111011": 5, + "01111111111111110001": 2, + "10000000000000001010": 18, + "00000000000000000000": 4664, + "01111111111111111010": 4, + "11111111111111111010": 1, + "00000000000000001111": 922, + "10000000011111111110": 8, + "11111111111010011110": 4, + "10000000000111110001": 39, + "11111111111101111011": 1, + "10000000000000000010": 878, + "00000000000000001100": 108, + "11111111111001101011": 1, + "00000000000000001000": 8, + "11111111111100000111": 35, + "00000000000011001100": 1, + "11111111111111110011": 3, + "00000000000000001011": 130, + "10000000000000001001": 11, + "00000000000000000011": 735, + "00000000000011111011": 5, + "01111111110110011000": 1, + "11111111111111111100": 17, + "11111111110110011010": 1, + "01111111111010011100": 1, + "10000000000111111110": 188, + "01111111111100000001": 1, + "01111111111111111100": 2, + "10000000000000000101": 133, + "01111111111100000101": 6, + "01111111111100000110": 4, + "01111111111000111010": 1, + "11111111110110010101": 1, + "01111111111100001010": 1, + "10000000000000001110": 44, + "01111111110110011110": 9, + "00000000011111111100": 2, + "11111111110001100111": 2, + "01111111111111001101": 1, + "10000000000011111101": 1, + "01111111111111111110": 4, + "00000000000111110011": 3, + "01111111111100001110": 1, + "01111111110110010001": 2, + "01111111111100001001": 4, + "10000000000011111001": 2, + "00000000000011111000": 2, + "01111111110110011010": 2, + "00000000000011110100": 1, + "10000000000111110010": 1, + "11111111110110010011": 1, + "10000000000000000110": 1, + "01111111111100001101": 4, + "10000000000000000011": 1, + "01111111111111110010": 1, + "10000000000011110001": 1 + }, + "counts_lsb_right": true, + "parsed_states": { + "11111111111111111000": { "state": 1048568.0 }, + "11111111111000110011": { "state": 1048115.0 }, + "00000000011111110100": { "state": 2036.0 }, + "10000000011111110001": { "state": 526321.0 }, + "11111111111000110100": { "state": 1048116.0 }, + "11111111111100000110": { "state": 1048326.0 }, + "01111111111000001101": { "state": 523789.0 }, + "10000000011111111001": { "state": 526329.0 }, + "10000000000011111110": { "state": 524542.0 }, + "00000000000000000100": { "state": 4.0 }, + "01111111110110010101": { "state": 523669.0 }, + "11111111111010010001": { "state": 1048209.0 }, + "11111111110110011000": { "state": 1047960.0 }, + "01111111111001100000": { "state": 523872.0 }, + "00000000000000000111": { "state": 7.0 }, + "00000000011000000000": { "state": 1536.0 }, + "11111111111000000000": { "state": 1048064.0 }, + "01111111111111110101": { "state": 524277.0 }, + "10000000000000001101": { "state": 524301.0 }, + "11111111111111111001": { "state": 1048569.0 }, + "11111111111111111011": { "state": 1048571.0 }, + "01111111111111110001": { "state": 524273.0 }, + "10000000000000001010": { "state": 524298.0 }, + "00000000000000000000": { "state": 0.0 }, + "01111111111111111010": { "state": 524282.0 }, + "11111111111111111010": { "state": 1048570.0 }, + "00000000000000001111": { "state": 15.0 }, + "10000000011111111110": { "state": 526334.0 }, + "11111111111010011110": { "state": 1048222.0 }, + "10000000000111110001": { "state": 524785.0 }, + "11111111111101111011": { "state": 1048443.0 }, + "10000000000000000010": { "state": 524290.0 }, + "00000000000000001100": { "state": 12.0 }, + "11111111111001101011": { "state": 1048171.0 }, + "00000000000000001000": { "state": 8.0 }, + "11111111111100000111": { "state": 1048327.0 }, + "00000000000011001100": { "state": 204.0 }, + "11111111111111110011": { "state": 1048563.0 }, + "00000000000000001011": { "state": 11.0 }, + "10000000000000001001": { "state": 524297.0 }, + "00000000000000000011": { "state": 3.0 }, + "00000000000011111011": { "state": 251.0 }, + "01111111110110011000": { "state": 523672.0 }, + "11111111111111111100": { "state": 1048572.0 }, + "11111111110110011010": { "state": 1047962.0 }, + "01111111111010011100": { "state": 523932.0 }, + "10000000000111111110": { "state": 524798.0 }, + "01111111111100000001": { "state": 524033.0 }, + "01111111111111111100": { "state": 524284.0 }, + "10000000000000000101": { "state": 524293.0 }, + "01111111111100000101": { "state": 524037.0 }, + "01111111111100000110": { "state": 524038.0 }, + "01111111111000111010": { "state": 523834.0 }, + "11111111110110010101": { "state": 1047957.0 }, + "01111111111100001010": { "state": 524042.0 }, + "10000000000000001110": { "state": 524302.0 }, + "01111111110110011110": { "state": 523678.0 }, + "00000000011111111100": { "state": 2044.0 }, + "11111111110001100111": { "state": 1047655.0 }, + "01111111111111001101": { "state": 524237.0 }, + "10000000000011111101": { "state": 524541.0 }, + "01111111111111111110": { "state": 524286.0 }, + "00000000000111110011": { "state": 499.0 }, + "01111111111100001110": { "state": 524046.0 }, + "01111111110110010001": { "state": 523665.0 }, + "01111111111100001001": { "state": 524041.0 }, + "10000000000011111001": { "state": 524537.0 }, + "00000000000011111000": { "state": 248.0 }, + "01111111110110011010": { "state": 523674.0 }, + "00000000000011110100": { "state": 244.0 }, + "10000000000111110010": { "state": 524786.0 }, + "11111111110110010011": { "state": 1047955.0 }, + "10000000000000000110": { "state": 524294.0 }, + "01111111111100001101": { "state": 524045.0 }, + "10000000000000000011": { "state": 524291.0 }, + "01111111111111110010": { "state": 524274.0 }, + "10000000000011110001": { "state": 524529.0 } + }, + "histogram": null, + "output_qubits_map": { + "state": [ + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 + ] + }, + "state_vector": null, + "parsed_state_vector_states": null, + "physical_qubits_map": { + "state": [ + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 + ] + }, + "num_shots": 8192 +} diff --git a/algorithms/glued_trees/results/20-qubits/2n-12.json b/algorithms/glued_trees/results/20-qubits/2n-12.json index 580511d6..a6a92b3c 100644 --- a/algorithms/glued_trees/results/20-qubits/2n-12.json +++ b/algorithms/glued_trees/results/20-qubits/2n-12.json @@ -1 +1,154 @@ -{"vendor_format_result": {}, "counts": {"10000000011111110001": 1, "00000000011111111011": 1, "11111111111111111011": 1, "01111111111010100000": 1, "11111111111111111100": 1, "01111111111100001101": 1, "00000000000000000100": 37, "01111111111100000110": 3, "01111111111111111110": 11, "00000000000111110011": 3, "01111111111111110101": 3, "10000000000000001101": 213, "11111111111000110001": 1, "00000000000011111111": 1, "11111111111100000100": 7, "00000000000011111011": 1, "11111111110110011011": 1, "11111111111100000011": 3, "01111111110011111001": 2, "00000000000000001100": 12, "00000000000000001000": 13, "10000000000000000010": 550, "11111111111010011110": 8, "00000000000000001011": 122, "00000000000000000111": 312, "11111111111100001000": 1, "01111111111001100000": 2, "11111111111111111010": 8, "00000000000000001111": 619, "00000000000011110111": 1, "11111111111100000111": 23, "10000000000000000101": 558, "01111111111100000101": 1, "00000000000000000000": 5089, "10000000000000001010": 81, "10000000011111111110": 12, "00000000000111111100": 1, "10000000000111110001": 29, "01111111111000111110": 1, "01111111110110011001": 2, "00000000000000000011": 188, "10000000000000001001": 16, "01111111111100001001": 2, "00000000000111111111": 2, "01111111111101111001": 1, "11111111111000110011": 3, "00000000011111111100": 1, "11111111101001100100": 1, "10000000000000000001": 36, "11111111110110011100": 2, "11111111111111111000": 4, "01111111111111110011": 1, "01111111110110011110": 12, "10000000000000001110": 1, "01111111111111110001": 2, "10000000000011110010": 1, "00000000000011111000": 5, "01111111110110011010": 2, "10000000011111111101": 1, "01111111110110010001": 1, "01111111111111111101": 1, "10000000000111111110": 170, "01111111111010011100": 1, "11111111111010101101": 1}, "counts_lsb_right": true, "parsed_states": {"10000000011111110001": {"state": 526321.0}, "00000000011111111011": {"state": 2043.0}, "11111111111111111011": {"state": 1048571.0}, "01111111111010100000": {"state": 523936.0}, "11111111111111111100": {"state": 1048572.0}, "01111111111100001101": {"state": 524045.0}, "00000000000000000100": {"state": 4.0}, "01111111111100000110": {"state": 524038.0}, "01111111111111111110": {"state": 524286.0}, "00000000000111110011": {"state": 499.0}, "01111111111111110101": {"state": 524277.0}, "10000000000000001101": {"state": 524301.0}, "11111111111000110001": {"state": 1048113.0}, "00000000000011111111": {"state": 255.0}, "11111111111100000100": {"state": 1048324.0}, "00000000000011111011": {"state": 251.0}, "11111111110110011011": {"state": 1047963.0}, "11111111111100000011": {"state": 1048323.0}, "01111111110011111001": {"state": 523513.0}, "00000000000000001100": {"state": 12.0}, "00000000000000001000": {"state": 8.0}, "10000000000000000010": {"state": 524290.0}, "11111111111010011110": {"state": 1048222.0}, "00000000000000001011": {"state": 11.0}, "00000000000000000111": {"state": 7.0}, "11111111111100001000": {"state": 1048328.0}, "01111111111001100000": {"state": 523872.0}, "11111111111111111010": {"state": 1048570.0}, "00000000000000001111": {"state": 15.0}, "00000000000011110111": {"state": 247.0}, "11111111111100000111": {"state": 1048327.0}, "10000000000000000101": {"state": 524293.0}, "01111111111100000101": {"state": 524037.0}, "00000000000000000000": {"state": 0.0}, "10000000000000001010": {"state": 524298.0}, "10000000011111111110": {"state": 526334.0}, "00000000000111111100": {"state": 508.0}, "10000000000111110001": {"state": 524785.0}, "01111111111000111110": {"state": 523838.0}, "01111111110110011001": {"state": 523673.0}, "00000000000000000011": {"state": 3.0}, "10000000000000001001": {"state": 524297.0}, "01111111111100001001": {"state": 524041.0}, "00000000000111111111": {"state": 511.0}, "01111111111101111001": {"state": 524153.0}, "11111111111000110011": {"state": 1048115.0}, "00000000011111111100": {"state": 2044.0}, "11111111101001100100": {"state": 1047140.0}, "10000000000000000001": {"state": 524289.0}, "11111111110110011100": {"state": 1047964.0}, "11111111111111111000": {"state": 1048568.0}, "01111111111111110011": {"state": 524275.0}, "01111111110110011110": {"state": 523678.0}, "10000000000000001110": {"state": 524302.0}, "01111111111111110001": {"state": 524273.0}, "10000000000011110010": {"state": 524530.0}, "00000000000011111000": {"state": 248.0}, "01111111110110011010": {"state": 523674.0}, "10000000011111111101": {"state": 526333.0}, "01111111110110010001": {"state": 523665.0}, "01111111111111111101": {"state": 524285.0}, "10000000000111111110": {"state": 524798.0}, "01111111111010011100": {"state": 523932.0}, "11111111111010101101": {"state": 1048237.0}}, "histogram": null, "output_qubits_map": {"state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]}, "state_vector": null, "parsed_state_vector_states": null, "physical_qubits_map": {"state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]}, "num_shots": 8192} \ No newline at end of file +{ + "vendor_format_result": {}, + "counts": { + "00000000011111111011": 1, + "11111111111100001000": 1, + "11111111110001101000": 1, + "11111111110001100100": 1, + "00000000000011111011": 1, + "00000000001100001000": 1, + "01111111110011111001": 2, + "11111111111100000100": 6, + "10000000000000000101": 618, + "11111111110110011011": 1, + "10000000011111111110": 4, + "11111111111010011110": 6, + "01111111111111110111": 1, + "00000000000111110011": 1, + "01111111111111111110": 17, + "00000000000000000100": 19, + "01111111111100000110": 2, + "11111111111111111000": 2, + "01111111111111111111": 1, + "00000000000000001100": 23, + "10000000000000000010": 512, + "00000000000000001000": 8, + "00000000011000000000": 1, + "10000000000000001010": 62, + "11111111100011110111": 1, + "00000000000000000000": 5068, + "00000000000000001011": 105, + "11111111111111111111": 1, + "00000000000000000111": 325, + "01111111111001100000": 2, + "10000000000111111110": 171, + "11111111111100000111": 23, + "01111111111010010011": 1, + "10000000000111110001": 19, + "01111111110110010001": 1, + "10000000000000000001": 21, + "10000000000000001101": 180, + "01111111111111110101": 1, + "11111111111000111000": 1, + "00000000000000000011": 218, + "10000000000000001001": 17, + "11111111111100000011": 3, + "11111111111010010001": 3, + "11111111111000110011": 4, + "10000000000000000110": 2, + "11111111110110010011": 1, + "01111111110110011111": 1, + "11111111111111111011": 1, + "00000000000000001111": 689, + "11111111111001100101": 1, + "00000000000011111000": 4, + "01111111110110011010": 1, + "11111111111111111100": 2, + "01111111111100001001": 4, + "01111111111111111001": 1, + "11111111111000001011": 1, + "11111111111111110111": 4, + "10000000011111110001": 1, + "01111111110110011100": 3, + "01111111111100000010": 1, + "01111111111011111101": 1, + "01111111110110011110": 13, + "10000000000000001110": 1, + "01111111111101100000": 1, + "11111111111000000100": 1, + "10000000000011110010": 1 + }, + "counts_lsb_right": true, + "parsed_states": { + "00000000011111111011": { "state": 2043.0 }, + "11111111111100001000": { "state": 1048328.0 }, + "11111111110001101000": { "state": 1047656.0 }, + "11111111110001100100": { "state": 1047652.0 }, + "00000000000011111011": { "state": 251.0 }, + "00000000001100001000": { "state": 776.0 }, + "01111111110011111001": { "state": 523513.0 }, + "11111111111100000100": { "state": 1048324.0 }, + "10000000000000000101": { "state": 524293.0 }, + "11111111110110011011": { "state": 1047963.0 }, + "10000000011111111110": { "state": 526334.0 }, + "11111111111010011110": { "state": 1048222.0 }, + "01111111111111110111": { "state": 524279.0 }, + "00000000000111110011": { "state": 499.0 }, + "01111111111111111110": { "state": 524286.0 }, + "00000000000000000100": { "state": 4.0 }, + "01111111111100000110": { "state": 524038.0 }, + "11111111111111111000": { "state": 1048568.0 }, + "01111111111111111111": { "state": 524287.0 }, + "00000000000000001100": { "state": 12.0 }, + "10000000000000000010": { "state": 524290.0 }, + "00000000000000001000": { "state": 8.0 }, + "00000000011000000000": { "state": 1536.0 }, + "10000000000000001010": { "state": 524298.0 }, + "11111111100011110111": { "state": 1046775.0 }, + "00000000000000000000": { "state": 0.0 }, + "00000000000000001011": { "state": 11.0 }, + "11111111111111111111": { "state": 1048575.0 }, + "00000000000000000111": { "state": 7.0 }, + "01111111111001100000": { "state": 523872.0 }, + "10000000000111111110": { "state": 524798.0 }, + "11111111111100000111": { "state": 1048327.0 }, + "01111111111010010011": { "state": 523923.0 }, + "10000000000111110001": { "state": 524785.0 }, + "01111111110110010001": { "state": 523665.0 }, + "10000000000000000001": { "state": 524289.0 }, + "10000000000000001101": { "state": 524301.0 }, + "01111111111111110101": { "state": 524277.0 }, + "11111111111000111000": { "state": 1048120.0 }, + "00000000000000000011": { "state": 3.0 }, + "10000000000000001001": { "state": 524297.0 }, + "11111111111100000011": { "state": 1048323.0 }, + "11111111111010010001": { "state": 1048209.0 }, + "11111111111000110011": { "state": 1048115.0 }, + "10000000000000000110": { "state": 524294.0 }, + "11111111110110010011": { "state": 1047955.0 }, + "01111111110110011111": { "state": 523679.0 }, + "11111111111111111011": { "state": 1048571.0 }, + "00000000000000001111": { "state": 15.0 }, + "11111111111001100101": { "state": 1048165.0 }, + "00000000000011111000": { "state": 248.0 }, + "01111111110110011010": { "state": 523674.0 }, + "11111111111111111100": { "state": 1048572.0 }, + "01111111111100001001": { "state": 524041.0 }, + "01111111111111111001": { "state": 524281.0 }, + "11111111111000001011": { "state": 1048075.0 }, + "11111111111111110111": { "state": 1048567.0 }, + "10000000011111110001": { "state": 526321.0 }, + "01111111110110011100": { "state": 523676.0 }, + "01111111111100000010": { "state": 524034.0 }, + "01111111111011111101": { "state": 524029.0 }, + "01111111110110011110": { "state": 523678.0 }, + "10000000000000001110": { "state": 524302.0 }, + "01111111111101100000": { "state": 524128.0 }, + "11111111111000000100": { "state": 1048068.0 }, + "10000000000011110010": { "state": 524530.0 } + }, + "histogram": null, + "output_qubits_map": { + "state": [ + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 + ] + }, + "state_vector": null, + "parsed_state_vector_states": null, + "physical_qubits_map": { + "state": [ + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 + ] + }, + "num_shots": 8192 +} diff --git a/algorithms/glued_trees/results/20-qubits/2n-2.json b/algorithms/glued_trees/results/20-qubits/2n-2.json index 62a004e7..4d3df592 100644 --- a/algorithms/glued_trees/results/20-qubits/2n-2.json +++ b/algorithms/glued_trees/results/20-qubits/2n-2.json @@ -1 +1,262 @@ -{"vendor_format_result": {}, "counts": {"11111111111011111011": 1, "01111111111010011111": 1, "10000000000000000111": 1, "01111111111111110101": 1, "01111111111010100000": 1, "01111111111111111010": 1, "10000000001100000101": 1, "00000000001111000010": 1, "01111111111100001001": 1, "11111111111100001110": 1, "11111111110110011001": 1, "11111111111010010101": 1, "01111111111001101010": 1, "01111111111001100010": 2, "11111111110110011111": 2, "11111111111001101000": 1, "10000000000011110001": 1, "01111111111000111000": 1, "00000000011111111000": 2, "01111111101001100010": 2, "11111111100011111011": 1, "01111111111000110001": 1, "11111111111100001000": 1, "11111111110100001101": 1, "00000000001100000100": 2, "01111111111001100101": 1, "00000000000111111011": 1, "00000000000000000101": 1, "11111111111100000010": 2, "11111111110110011101": 2, "11111111111001100100": 1, "00000000000011111100": 1, "10000000000100001110": 1, "11111111111111001111": 2, "10000000000111111010": 2, "11111111111100001011": 1, "11111111111011110011": 1, "01111111110110010001": 1, "11111111111110011100": 1, "10000000000011110010": 5, "10000000011111110001": 7, "00000000000010100010": 1, "00000000000011111011": 8, "01111111111100000110": 3, "00000000000000000100": 488, "11111111111001101011": 1, "00000000000000001000": 57, "10000000000000000010": 1149, "01111111111111111111": 2, "00000000000000001100": 296, "11111111111111111101": 2, "11111111111011111010": 1, "11111111111010011101": 1, "10000000000000001010": 10, "10000000000000000101": 106, "01111111111100000101": 23, "10000000000000000001": 214, "11111111111111111010": 1, "00000000000000001111": 1490, "10000000011111111110": 7, "00000000000111111100": 3, "11111111110011110100": 2, "01111111111010011100": 2, "10000000000111111110": 238, "11111111111100000110": 3, "10000000000000000110": 78, "10000000000111111101": 7, "11111111110001100111": 1, "01111111111011111001": 1, "01111111110110011010": 2, "00000000011111111111": 2, "10000000000000001001": 13, "00000000000000000011": 1173, "00000000000000000111": 95, "10000000000011111110": 2, "11111111111100000101": 2, "00000000000000001011": 93, "11111111111100001101": 3, "01111111110011110010": 1, "10000000000111110001": 91, "10000000000000001101": 22, "11111111111100000000": 3, "00000000011111111011": 5, "00000000000011110000": 2, "10000000011111111101": 6, "01111111111010011011": 1, "01111111111000110010": 3, "11111111111000110111": 1, "01111111100101100000": 1, "11111111110110010101": 1, "01111111110110011110": 7, "01111111111100001010": 3, "10000000000000001110": 28, "00000000011111111100": 3, "11111111111100000011": 1, "11111111111010010001": 2, "01111111110011111001": 2, "11111111111010011110": 11, "11111111111001100011": 2, "11111111111111111011": 1, "00000000000100000011": 1, "00000000000011110011": 2, "01111111111111110001": 2, "10000000000111110101": 1, "01111111111100000010": 5, "01111111110011111010": 2, "00000000000000000000": 2231, "01111111111011110110": 2, "10000000001111000001": 1, "11111111111100000001": 1, "01111111111100001101": 21, "11111111110011111011": 1, "11111111111100000100": 16, "10000000000011111010": 7, "10000000000011111101": 1, "11111111110011111101": 1, "11111111110110010100": 6, "01111111111111001101": 1, "01111111111100001000": 1, "11111111111100000111": 14, "10000000000011110101": 1, "01111111111111111110": 4, "00000000000111110011": 7, "01111111110110011101": 20, "11111111111111111000": 3, "00000000000111111000": 1, "00000000000011110100": 2}, "counts_lsb_right": true, "parsed_states": {"11111111111011111011": {"state": 1048315.0}, "01111111111010011111": {"state": 523935.0}, "10000000000000000111": {"state": 524295.0}, "01111111111111110101": {"state": 524277.0}, "01111111111010100000": {"state": 523936.0}, "01111111111111111010": {"state": 524282.0}, "10000000001100000101": {"state": 525061.0}, "00000000001111000010": {"state": 962.0}, "01111111111100001001": {"state": 524041.0}, "11111111111100001110": {"state": 1048334.0}, "11111111110110011001": {"state": 1047961.0}, "11111111111010010101": {"state": 1048213.0}, "01111111111001101010": {"state": 523882.0}, "01111111111001100010": {"state": 523874.0}, "11111111110110011111": {"state": 1047967.0}, "11111111111001101000": {"state": 1048168.0}, "10000000000011110001": {"state": 524529.0}, "01111111111000111000": {"state": 523832.0}, "00000000011111111000": {"state": 2040.0}, "01111111101001100010": {"state": 522850.0}, "11111111100011111011": {"state": 1046779.0}, "01111111111000110001": {"state": 523825.0}, "11111111111100001000": {"state": 1048328.0}, "11111111110100001101": {"state": 1047821.0}, "00000000001100000100": {"state": 772.0}, "01111111111001100101": {"state": 523877.0}, "00000000000111111011": {"state": 507.0}, "00000000000000000101": {"state": 5.0}, "11111111111100000010": {"state": 1048322.0}, "11111111110110011101": {"state": 1047965.0}, "11111111111001100100": {"state": 1048164.0}, "00000000000011111100": {"state": 252.0}, "10000000000100001110": {"state": 524558.0}, "11111111111111001111": {"state": 1048527.0}, "10000000000111111010": {"state": 524794.0}, "11111111111100001011": {"state": 1048331.0}, "11111111111011110011": {"state": 1048307.0}, "01111111110110010001": {"state": 523665.0}, "11111111111110011100": {"state": 1048476.0}, "10000000000011110010": {"state": 524530.0}, "10000000011111110001": {"state": 526321.0}, "00000000000010100010": {"state": 162.0}, "00000000000011111011": {"state": 251.0}, "01111111111100000110": {"state": 524038.0}, "00000000000000000100": {"state": 4.0}, "11111111111001101011": {"state": 1048171.0}, "00000000000000001000": {"state": 8.0}, "10000000000000000010": {"state": 524290.0}, "01111111111111111111": {"state": 524287.0}, "00000000000000001100": {"state": 12.0}, "11111111111111111101": {"state": 1048573.0}, "11111111111011111010": {"state": 1048314.0}, "11111111111010011101": {"state": 1048221.0}, "10000000000000001010": {"state": 524298.0}, "10000000000000000101": {"state": 524293.0}, "01111111111100000101": {"state": 524037.0}, "10000000000000000001": {"state": 524289.0}, "11111111111111111010": {"state": 1048570.0}, "00000000000000001111": {"state": 15.0}, "10000000011111111110": {"state": 526334.0}, "00000000000111111100": {"state": 508.0}, "11111111110011110100": {"state": 1047796.0}, "01111111111010011100": {"state": 523932.0}, "10000000000111111110": {"state": 524798.0}, "11111111111100000110": {"state": 1048326.0}, "10000000000000000110": {"state": 524294.0}, "10000000000111111101": {"state": 524797.0}, "11111111110001100111": {"state": 1047655.0}, "01111111111011111001": {"state": 524025.0}, "01111111110110011010": {"state": 523674.0}, "00000000011111111111": {"state": 2047.0}, "10000000000000001001": {"state": 524297.0}, "00000000000000000011": {"state": 3.0}, "00000000000000000111": {"state": 7.0}, "10000000000011111110": {"state": 524542.0}, "11111111111100000101": {"state": 1048325.0}, "00000000000000001011": {"state": 11.0}, "11111111111100001101": {"state": 1048333.0}, "01111111110011110010": {"state": 523506.0}, "10000000000111110001": {"state": 524785.0}, "10000000000000001101": {"state": 524301.0}, "11111111111100000000": {"state": 1048320.0}, "00000000011111111011": {"state": 2043.0}, "00000000000011110000": {"state": 240.0}, "10000000011111111101": {"state": 526333.0}, "01111111111010011011": {"state": 523931.0}, "01111111111000110010": {"state": 523826.0}, "11111111111000110111": {"state": 1048119.0}, "01111111100101100000": {"state": 522592.0}, "11111111110110010101": {"state": 1047957.0}, "01111111110110011110": {"state": 523678.0}, "01111111111100001010": {"state": 524042.0}, "10000000000000001110": {"state": 524302.0}, "00000000011111111100": {"state": 2044.0}, "11111111111100000011": {"state": 1048323.0}, "11111111111010010001": {"state": 1048209.0}, "01111111110011111001": {"state": 523513.0}, "11111111111010011110": {"state": 1048222.0}, "11111111111001100011": {"state": 1048163.0}, "11111111111111111011": {"state": 1048571.0}, "00000000000100000011": {"state": 259.0}, "00000000000011110011": {"state": 243.0}, "01111111111111110001": {"state": 524273.0}, "10000000000111110101": {"state": 524789.0}, "01111111111100000010": {"state": 524034.0}, "01111111110011111010": {"state": 523514.0}, "00000000000000000000": {"state": 0.0}, "01111111111011110110": {"state": 524022.0}, "10000000001111000001": {"state": 525249.0}, "11111111111100000001": {"state": 1048321.0}, "01111111111100001101": {"state": 524045.0}, "11111111110011111011": {"state": 1047803.0}, "11111111111100000100": {"state": 1048324.0}, "10000000000011111010": {"state": 524538.0}, "10000000000011111101": {"state": 524541.0}, "11111111110011111101": {"state": 1047805.0}, "11111111110110010100": {"state": 1047956.0}, "01111111111111001101": {"state": 524237.0}, "01111111111100001000": {"state": 524040.0}, "11111111111100000111": {"state": 1048327.0}, "10000000000011110101": {"state": 524533.0}, "01111111111111111110": {"state": 524286.0}, "00000000000111110011": {"state": 499.0}, "01111111110110011101": {"state": 523677.0}, "11111111111111111000": {"state": 1048568.0}, "00000000000111111000": {"state": 504.0}, "00000000000011110100": {"state": 244.0}}, "histogram": null, "output_qubits_map": {"state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]}, "state_vector": null, "parsed_state_vector_states": null, "physical_qubits_map": {"state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]}, "num_shots": 8192} \ No newline at end of file +{ + "vendor_format_result": {}, + "counts": { + "01111111111001100101": 1, + "10000000000011110011": 1, + "01111111111101100011": 1, + "11111111101001101011": 1, + "11111111111110011110": 1, + "01111111111011111110": 1, + "10000000011111110001": 4, + "01111111111111110000": 1, + "11111111111100001110": 1, + "11111111111111000000": 1, + "00000000001100000100": 1, + "00000000000011110100": 2, + "01111111111111111000": 1, + "11111111110110010111": 1, + "10000000000111111010": 1, + "00000000001011111100": 1, + "11111111111111111110": 1, + "00000000001111001011": 1, + "11111111111111111001": 1, + "10000000011111110101": 1, + "01111111111001100001": 1, + "11111111111111110100": 1, + "11111111111000001111": 1, + "01111111111100000100": 1, + "11111111111100000010": 2, + "11111111111111001100": 1, + "10000000001111000100": 1, + "10000000000011111101": 2, + "11111111110110010100": 1, + "11111111111100001100": 1, + "01111111111111000101": 1, + "01111111111111000100": 2, + "01111111100011111101": 1, + "11111111111111001111": 1, + "01111111111100001101": 23, + "01111111111111111110": 5, + "00000000000111110011": 4, + "00000000000011111011": 17, + "10000000000011111011": 1, + "11111111111100001111": 1, + "01111111110110011101": 20, + "00000000000111111100": 1, + "10000000011111111110": 12, + "11111111111010011110": 9, + "01111111111111111111": 2, + "00000000000000001100": 276, + "10000000000000000010": 1158, + "00000000000000001000": 65, + "00000000011000000000": 3, + "01111111111100000110": 4, + "00000000000000000100": 479, + "10000000000111110001": 101, + "11111111111111111010": 1, + "11111111110011111100": 1, + "00000000000000001111": 1482, + "00000000000000000111": 104, + "10000000000011111110": 2, + "10000000011111111001": 1, + "01111111110110011011": 1, + "11111111111100000101": 2, + "11111111111000110100": 1, + "11111111111011111011": 4, + "11111111111011111101": 1, + "00000000000000001011": 81, + "11111111111100001101": 3, + "10000000000000000001": 208, + "10000000000000000101": 136, + "01111111111100000101": 22, + "00000000000111111011": 8, + "10000000000011110010": 8, + "01111111111011110110": 1, + "01111111110011111010": 3, + "00000000000000000000": 2237, + "00000000011111111011": 5, + "11111111111100000000": 3, + "10000000000000001010": 17, + "01111111111001101010": 1, + "01111111111100000010": 4, + "11111111111001100011": 2, + "11111111110110010010": 2, + "00000000000011110011": 3, + "01111111111111110001": 3, + "11111111111011110011": 1, + "01111111110110010001": 1, + "00000000000000000011": 1137, + "10000000000000001001": 11, + "10000000000000000110": 75, + "00000000000000000010": 1, + "10000000000111111101": 5, + "00000000000011110001": 1, + "00000000000011110000": 3, + "00000000000011111010": 1, + "10000000011111111101": 8, + "11111111110011110011": 2, + "11111111110001100010": 1, + "11111111101001100011": 1, + "01111111111000110001": 2, + "11111111111100000111": 18, + "01111111110001100010": 1, + "10000000000111111110": 257, + "01111111111100000001": 1, + "11111111111111111100": 2, + "11111111111100000110": 6, + "01111111111011111100": 1, + "11111111111100001000": 1, + "10000000011111111010": 1, + "11111111110110010101": 1, + "00000000000100001100": 1, + "01111111111100001010": 4, + "10000000000000001110": 29, + "11111111110011111011": 1, + "11111111111100000100": 23, + "10000000000011111010": 6, + "10000000000000001101": 9, + "11111111111100000011": 1, + "11111111111010010001": 3, + "11111111111100001011": 3, + "01111111111011111001": 2, + "01111111111100001001": 1, + "11111111110110100000": 1 + }, + "counts_lsb_right": true, + "parsed_states": { + "01111111111001100101": { "state": 523877.0 }, + "10000000000011110011": { "state": 524531.0 }, + "01111111111101100011": { "state": 524131.0 }, + "11111111101001101011": { "state": 1047147.0 }, + "11111111111110011110": { "state": 1048478.0 }, + "01111111111011111110": { "state": 524030.0 }, + "10000000011111110001": { "state": 526321.0 }, + "01111111111111110000": { "state": 524272.0 }, + "11111111111100001110": { "state": 1048334.0 }, + "11111111111111000000": { "state": 1048512.0 }, + "00000000001100000100": { "state": 772.0 }, + "00000000000011110100": { "state": 244.0 }, + "01111111111111111000": { "state": 524280.0 }, + "11111111110110010111": { "state": 1047959.0 }, + "10000000000111111010": { "state": 524794.0 }, + "00000000001011111100": { "state": 764.0 }, + "11111111111111111110": { "state": 1048574.0 }, + "00000000001111001011": { "state": 971.0 }, + "11111111111111111001": { "state": 1048569.0 }, + "10000000011111110101": { "state": 526325.0 }, + "01111111111001100001": { "state": 523873.0 }, + "11111111111111110100": { "state": 1048564.0 }, + "11111111111000001111": { "state": 1048079.0 }, + "01111111111100000100": { "state": 524036.0 }, + "11111111111100000010": { "state": 1048322.0 }, + "11111111111111001100": { "state": 1048524.0 }, + "10000000001111000100": { "state": 525252.0 }, + "10000000000011111101": { "state": 524541.0 }, + "11111111110110010100": { "state": 1047956.0 }, + "11111111111100001100": { "state": 1048332.0 }, + "01111111111111000101": { "state": 524229.0 }, + "01111111111111000100": { "state": 524228.0 }, + "01111111100011111101": { "state": 522493.0 }, + "11111111111111001111": { "state": 1048527.0 }, + "01111111111100001101": { "state": 524045.0 }, + "01111111111111111110": { "state": 524286.0 }, + "00000000000111110011": { "state": 499.0 }, + "00000000000011111011": { "state": 251.0 }, + "10000000000011111011": { "state": 524539.0 }, + "11111111111100001111": { "state": 1048335.0 }, + "01111111110110011101": { "state": 523677.0 }, + "00000000000111111100": { "state": 508.0 }, + "10000000011111111110": { "state": 526334.0 }, + "11111111111010011110": { "state": 1048222.0 }, + "01111111111111111111": { "state": 524287.0 }, + "00000000000000001100": { "state": 12.0 }, + "10000000000000000010": { "state": 524290.0 }, + "00000000000000001000": { "state": 8.0 }, + "00000000011000000000": { "state": 1536.0 }, + "01111111111100000110": { "state": 524038.0 }, + "00000000000000000100": { "state": 4.0 }, + "10000000000111110001": { "state": 524785.0 }, + "11111111111111111010": { "state": 1048570.0 }, + "11111111110011111100": { "state": 1047804.0 }, + "00000000000000001111": { "state": 15.0 }, + "00000000000000000111": { "state": 7.0 }, + "10000000000011111110": { "state": 524542.0 }, + "10000000011111111001": { "state": 526329.0 }, + "01111111110110011011": { "state": 523675.0 }, + "11111111111100000101": { "state": 1048325.0 }, + "11111111111000110100": { "state": 1048116.0 }, + "11111111111011111011": { "state": 1048315.0 }, + "11111111111011111101": { "state": 1048317.0 }, + "00000000000000001011": { "state": 11.0 }, + "11111111111100001101": { "state": 1048333.0 }, + "10000000000000000001": { "state": 524289.0 }, + "10000000000000000101": { "state": 524293.0 }, + "01111111111100000101": { "state": 524037.0 }, + "00000000000111111011": { "state": 507.0 }, + "10000000000011110010": { "state": 524530.0 }, + "01111111111011110110": { "state": 524022.0 }, + "01111111110011111010": { "state": 523514.0 }, + "00000000000000000000": { "state": 0.0 }, + "00000000011111111011": { "state": 2043.0 }, + "11111111111100000000": { "state": 1048320.0 }, + "10000000000000001010": { "state": 524298.0 }, + "01111111111001101010": { "state": 523882.0 }, + "01111111111100000010": { "state": 524034.0 }, + "11111111111001100011": { "state": 1048163.0 }, + "11111111110110010010": { "state": 1047954.0 }, + "00000000000011110011": { "state": 243.0 }, + "01111111111111110001": { "state": 524273.0 }, + "11111111111011110011": { "state": 1048307.0 }, + "01111111110110010001": { "state": 523665.0 }, + "00000000000000000011": { "state": 3.0 }, + "10000000000000001001": { "state": 524297.0 }, + "10000000000000000110": { "state": 524294.0 }, + "00000000000000000010": { "state": 2.0 }, + "10000000000111111101": { "state": 524797.0 }, + "00000000000011110001": { "state": 241.0 }, + "00000000000011110000": { "state": 240.0 }, + "00000000000011111010": { "state": 250.0 }, + "10000000011111111101": { "state": 526333.0 }, + "11111111110011110011": { "state": 1047795.0 }, + "11111111110001100010": { "state": 1047650.0 }, + "11111111101001100011": { "state": 1047139.0 }, + "01111111111000110001": { "state": 523825.0 }, + "11111111111100000111": { "state": 1048327.0 }, + "01111111110001100010": { "state": 523362.0 }, + "10000000000111111110": { "state": 524798.0 }, + "01111111111100000001": { "state": 524033.0 }, + "11111111111111111100": { "state": 1048572.0 }, + "11111111111100000110": { "state": 1048326.0 }, + "01111111111011111100": { "state": 524028.0 }, + "11111111111100001000": { "state": 1048328.0 }, + "10000000011111111010": { "state": 526330.0 }, + "11111111110110010101": { "state": 1047957.0 }, + "00000000000100001100": { "state": 268.0 }, + "01111111111100001010": { "state": 524042.0 }, + "10000000000000001110": { "state": 524302.0 }, + "11111111110011111011": { "state": 1047803.0 }, + "11111111111100000100": { "state": 1048324.0 }, + "10000000000011111010": { "state": 524538.0 }, + "10000000000000001101": { "state": 524301.0 }, + "11111111111100000011": { "state": 1048323.0 }, + "11111111111010010001": { "state": 1048209.0 }, + "11111111111100001011": { "state": 1048331.0 }, + "01111111111011111001": { "state": 524025.0 }, + "01111111111100001001": { "state": 524041.0 }, + "11111111110110100000": { "state": 1047968.0 } + }, + "histogram": null, + "output_qubits_map": { + "state": [ + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 + ] + }, + "state_vector": null, + "parsed_state_vector_states": null, + "physical_qubits_map": { + "state": [ + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 + ] + }, + "num_shots": 8192 +} diff --git a/algorithms/glued_trees/results/20-qubits/2n-4.json b/algorithms/glued_trees/results/20-qubits/2n-4.json index e0c288f8..bd468ae9 100644 --- a/algorithms/glued_trees/results/20-qubits/2n-4.json +++ b/algorithms/glued_trees/results/20-qubits/2n-4.json @@ -1 +1,252 @@ -{"vendor_format_result": {}, "counts": {"00000000011111111100": 1, "01111111111111110100": 1, "01111111111010011011": 1, "11111111111000110011": 1, "00000000000100000100": 1, "10000000000111111010": 1, "11111111111010010010": 1, "11111111111000110111": 1, "11111111110110011101": 1, "10000000000011110101": 1, "11111111111100000111": 3, "01111111111100000000": 1, "10000000000000000100": 1, "00000000000011111111": 3, "01111111111100000110": 1, "11111111111000111100": 1, "01111111111001100010": 4, "01111111111100000011": 1, "10000000011111110001": 5, "10000000000000001011": 1, "00000000000111111011": 10, "10000000001100000101": 2, "11111111111011111011": 1, "11111111111000110100": 1, "00000000011111111011": 1, "11111111111100000000": 6, "01111111111111111010": 2, "01111111111111110000": 1, "11111111111100001110": 1, "00000000011000001111": 3, "01111111111101101111": 1, "11111111111000111010": 1, "11111111111001101011": 1, "00000000000000001000": 19, "10000000000000000010": 1187, "00000000001111000101": 1, "01111111111111111111": 3, "00000000000000001100": 340, "11111111111011110100": 1, "00000000011000000000": 1, "01111111111111111110": 10, "11111111111111111100": 3, "01111111111011111010": 3, "00000000000000000100": 72, "00000000000011111000": 2, "01111111110110011010": 8, "11111111110011111011": 1, "10000000000011111010": 3, "11111111111100000100": 23, "00000000000011111011": 16, "11111111111010010001": 7, "11111111111100000011": 10, "01111111111011110101": 1, "11111111110110010011": 2, "11111111111000111011": 1, "10000000000000000110": 23, "10000000000111111101": 5, "00000000011111110100": 1, "01111111111001101010": 1, "01111111110011111010": 5, "00000000000000000000": 2868, "11111111111010011101": 1, "01111111110001100101": 2, "10000000000000001010": 14, "11111111111010011110": 13, "11111111111001101010": 1, "00000000000011111100": 3, "11111111111100000010": 1, "00000000000111111111": 1, "11111111111111111000": 2, "01111111110110011101": 5, "11111111111100001111": 2, "10000000000000000101": 225, "01111111111100000101": 9, "11111111111100001100": 3, "00000000000000001111": 1237, "11111111111000001101": 1, "10000000000111111110": 224, "01111111111001100101": 2, "00000000000000001011": 121, "11111111111100001101": 2, "00000000000000000111": 62, "10000000000000001101": 18, "10000000000111110001": 65, "11111111110110010100": 5, "11111111110011110011": 1, "00000000000011110000": 1, "10000000011111111101": 5, "11111111101001101010": 1, "01111111111000111011": 1, "10000000000011110010": 7, "00000000000111111100": 2, "10000000011111111110": 8, "11111111110011110100": 1, "01111111111111111101": 2, "11111111111111111101": 1, "11111111110110010101": 1, "01111111111100001010": 1, "10000000000000001110": 25, "10000000000000000001": 248, "11111111110110011100": 1, "10000000000111110101": 3, "01111111111100000010": 5, "01111111111011111101": 3, "00000000000000000011": 1145, "10000000000000001001": 7, "01111111111111110010": 1, "01111111111111111000": 1, "11111111111111000100": 2, "01111111111100001101": 6, "11111111111100000101": 2, "10000000000011111110": 1, "01111111110110011011": 1, "01111111111111001100": 1, "11111111111001100110": 1, "00000000000011110011": 1, "01111111111111110001": 2, "00000000000100000011": 1, "11111111111111110100": 3, "11111111110001100100": 2}, "counts_lsb_right": true, "parsed_states": {"00000000011111111100": {"state": 2044.0}, "01111111111111110100": {"state": 524276.0}, "01111111111010011011": {"state": 523931.0}, "11111111111000110011": {"state": 1048115.0}, "00000000000100000100": {"state": 260.0}, "10000000000111111010": {"state": 524794.0}, "11111111111010010010": {"state": 1048210.0}, "11111111111000110111": {"state": 1048119.0}, "11111111110110011101": {"state": 1047965.0}, "10000000000011110101": {"state": 524533.0}, "11111111111100000111": {"state": 1048327.0}, "01111111111100000000": {"state": 524032.0}, "10000000000000000100": {"state": 524292.0}, "00000000000011111111": {"state": 255.0}, "01111111111100000110": {"state": 524038.0}, "11111111111000111100": {"state": 1048124.0}, "01111111111001100010": {"state": 523874.0}, "01111111111100000011": {"state": 524035.0}, "10000000011111110001": {"state": 526321.0}, "10000000000000001011": {"state": 524299.0}, "00000000000111111011": {"state": 507.0}, "10000000001100000101": {"state": 525061.0}, "11111111111011111011": {"state": 1048315.0}, "11111111111000110100": {"state": 1048116.0}, "00000000011111111011": {"state": 2043.0}, "11111111111100000000": {"state": 1048320.0}, "01111111111111111010": {"state": 524282.0}, "01111111111111110000": {"state": 524272.0}, "11111111111100001110": {"state": 1048334.0}, "00000000011000001111": {"state": 1551.0}, "01111111111101101111": {"state": 524143.0}, "11111111111000111010": {"state": 1048122.0}, "11111111111001101011": {"state": 1048171.0}, "00000000000000001000": {"state": 8.0}, "10000000000000000010": {"state": 524290.0}, "00000000001111000101": {"state": 965.0}, "01111111111111111111": {"state": 524287.0}, "00000000000000001100": {"state": 12.0}, "11111111111011110100": {"state": 1048308.0}, "00000000011000000000": {"state": 1536.0}, "01111111111111111110": {"state": 524286.0}, "11111111111111111100": {"state": 1048572.0}, "01111111111011111010": {"state": 524026.0}, "00000000000000000100": {"state": 4.0}, "00000000000011111000": {"state": 248.0}, "01111111110110011010": {"state": 523674.0}, "11111111110011111011": {"state": 1047803.0}, "10000000000011111010": {"state": 524538.0}, "11111111111100000100": {"state": 1048324.0}, "00000000000011111011": {"state": 251.0}, "11111111111010010001": {"state": 1048209.0}, "11111111111100000011": {"state": 1048323.0}, "01111111111011110101": {"state": 524021.0}, "11111111110110010011": {"state": 1047955.0}, "11111111111000111011": {"state": 1048123.0}, "10000000000000000110": {"state": 524294.0}, "10000000000111111101": {"state": 524797.0}, "00000000011111110100": {"state": 2036.0}, "01111111111001101010": {"state": 523882.0}, "01111111110011111010": {"state": 523514.0}, "00000000000000000000": {"state": 0.0}, "11111111111010011101": {"state": 1048221.0}, "01111111110001100101": {"state": 523365.0}, "10000000000000001010": {"state": 524298.0}, "11111111111010011110": {"state": 1048222.0}, "11111111111001101010": {"state": 1048170.0}, "00000000000011111100": {"state": 252.0}, "11111111111100000010": {"state": 1048322.0}, "00000000000111111111": {"state": 511.0}, "11111111111111111000": {"state": 1048568.0}, "01111111110110011101": {"state": 523677.0}, "11111111111100001111": {"state": 1048335.0}, "10000000000000000101": {"state": 524293.0}, "01111111111100000101": {"state": 524037.0}, "11111111111100001100": {"state": 1048332.0}, "00000000000000001111": {"state": 15.0}, "11111111111000001101": {"state": 1048077.0}, "10000000000111111110": {"state": 524798.0}, "01111111111001100101": {"state": 523877.0}, "00000000000000001011": {"state": 11.0}, "11111111111100001101": {"state": 1048333.0}, "00000000000000000111": {"state": 7.0}, "10000000000000001101": {"state": 524301.0}, "10000000000111110001": {"state": 524785.0}, "11111111110110010100": {"state": 1047956.0}, "11111111110011110011": {"state": 1047795.0}, "00000000000011110000": {"state": 240.0}, "10000000011111111101": {"state": 526333.0}, "11111111101001101010": {"state": 1047146.0}, "01111111111000111011": {"state": 523835.0}, "10000000000011110010": {"state": 524530.0}, "00000000000111111100": {"state": 508.0}, "10000000011111111110": {"state": 526334.0}, "11111111110011110100": {"state": 1047796.0}, "01111111111111111101": {"state": 524285.0}, "11111111111111111101": {"state": 1048573.0}, "11111111110110010101": {"state": 1047957.0}, "01111111111100001010": {"state": 524042.0}, "10000000000000001110": {"state": 524302.0}, "10000000000000000001": {"state": 524289.0}, "11111111110110011100": {"state": 1047964.0}, "10000000000111110101": {"state": 524789.0}, "01111111111100000010": {"state": 524034.0}, "01111111111011111101": {"state": 524029.0}, "00000000000000000011": {"state": 3.0}, "10000000000000001001": {"state": 524297.0}, "01111111111111110010": {"state": 524274.0}, "01111111111111111000": {"state": 524280.0}, "11111111111111000100": {"state": 1048516.0}, "01111111111100001101": {"state": 524045.0}, "11111111111100000101": {"state": 1048325.0}, "10000000000011111110": {"state": 524542.0}, "01111111110110011011": {"state": 523675.0}, "01111111111111001100": {"state": 524236.0}, "11111111111001100110": {"state": 1048166.0}, "00000000000011110011": {"state": 243.0}, "01111111111111110001": {"state": 524273.0}, "00000000000100000011": {"state": 259.0}, "11111111111111110100": {"state": 1048564.0}, "11111111110001100100": {"state": 1047652.0}}, "histogram": null, "output_qubits_map": {"state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]}, "state_vector": null, "parsed_state_vector_states": null, "physical_qubits_map": {"state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]}, "num_shots": 8192} \ No newline at end of file +{ + "vendor_format_result": {}, + "counts": { + "00000000000011111001": 1, + "01111111101001100010": 1, + "11111111111010011010": 1, + "11111111111000000011": 1, + "11111111111100000010": 1, + "01111111111011111000": 1, + "11111111111100000110": 1, + "10000000001111000011": 1, + "00000000000100000100": 1, + "11111111111111110100": 2, + "01111111111111111110": 8, + "00000000000011111100": 4, + "11111111111111110111": 1, + "10000000000011110001": 1, + "01111111111111110010": 2, + "10000000001100000110": 1, + "11111111110001100100": 3, + "11111111111100000111": 3, + "11111111110110010100": 2, + "10000000000000000100": 1, + "00000000000011111111": 2, + "11111111111011111011": 1, + "10000000001111001011": 1, + "01111111101110011010": 1, + "00000000000111111100": 1, + "10000000011111111110": 9, + "10000000001100001010": 1, + "11111111111000110000": 1, + "10000000000111111101": 5, + "10000000011111110001": 4, + "00000000000011111011": 10, + "01111111111000111101": 1, + "10000000011111111101": 4, + "11111111110011110011": 2, + "11111111111100000101": 9, + "00000000000000000111": 84, + "11111111111000000000": 1, + "01111111111100000001": 1, + "10000000000111111110": 218, + "11111111110001101100": 1, + "00000000000111111011": 3, + "10000000000011110010": 6, + "01111111101001101101": 1, + "00000000000000000100": 84, + "01111111111111111010": 2, + "10000000011111110101": 3, + "10000000000000001001": 4, + "00000000000000000011": 1150, + "01111111110001101101": 1, + "00000000000000001011": 116, + "10000000000000001101": 28, + "10000000000111110101": 2, + "01111111111100000010": 4, + "01111111111011111101": 1, + "11111111110110011100": 2, + "10000000000000000001": 247, + "10000000000000000101": 249, + "01111111111100000101": 4, + "01111111111000111010": 1, + "01111111111111110001": 3, + "10000000000100000101": 1, + "00000000000011110011": 3, + "01111111111111001100": 1, + "01111111110011111010": 1, + "00000000000000000000": 2810, + "11111111111010011101": 1, + "10000000000000001010": 19, + "01111111111100001110": 1, + "11111111111011110011": 1, + "11111111111111111010": 3, + "11111111111000110101": 2, + "00000000000000001111": 1266, + "01111111111100000100": 2, + "11111111111000110011": 2, + "10000000000000000110": 34, + "11111111110110010011": 4, + "10000000000000000010": 1189, + "01111111111111111111": 3, + "00000000000000001100": 292, + "11111111111011111100": 1, + "11111111111001101011": 2, + "00000000000000001000": 21, + "00000000000100001100": 1, + "01111111111100001010": 1, + "10000000000000001110": 38, + "10000000000111110001": 72, + "01111111111111110000": 1, + "11111111111111111100": 5, + "11111111111111111000": 1, + "01111111110110011101": 6, + "11111111111100001111": 2, + "11111111111100001000": 1, + "10000000011111111010": 2, + "11111111111111000100": 1, + "01111111111100001101": 12, + "11111111111100000000": 5, + "00000000011111111011": 3, + "11111111111100001100": 5, + "01111111111001101101": 1, + "11111111111111111101": 1, + "01111111111111111101": 3, + "11111111111100000011": 6, + "11111111111010010001": 4, + "11111111111001100011": 1, + "11111111110011111011": 1, + "11111111111100000100": 25, + "10000000000011111010": 6, + "01111111111100001001": 1, + "11111111111000110110": 1, + "11111111111010011110": 5, + "00000000011111111100": 3, + "01111111111010011011": 2, + "01111111110110011010": 8, + "00000000000011111000": 3, + "00000000011111111111": 1 + }, + "counts_lsb_right": true, + "parsed_states": { + "00000000000011111001": { "state": 249.0 }, + "01111111101001100010": { "state": 522850.0 }, + "11111111111010011010": { "state": 1048218.0 }, + "11111111111000000011": { "state": 1048067.0 }, + "11111111111100000010": { "state": 1048322.0 }, + "01111111111011111000": { "state": 524024.0 }, + "11111111111100000110": { "state": 1048326.0 }, + "10000000001111000011": { "state": 525251.0 }, + "00000000000100000100": { "state": 260.0 }, + "11111111111111110100": { "state": 1048564.0 }, + "01111111111111111110": { "state": 524286.0 }, + "00000000000011111100": { "state": 252.0 }, + "11111111111111110111": { "state": 1048567.0 }, + "10000000000011110001": { "state": 524529.0 }, + "01111111111111110010": { "state": 524274.0 }, + "10000000001100000110": { "state": 525062.0 }, + "11111111110001100100": { "state": 1047652.0 }, + "11111111111100000111": { "state": 1048327.0 }, + "11111111110110010100": { "state": 1047956.0 }, + "10000000000000000100": { "state": 524292.0 }, + "00000000000011111111": { "state": 255.0 }, + "11111111111011111011": { "state": 1048315.0 }, + "10000000001111001011": { "state": 525259.0 }, + "01111111101110011010": { "state": 523162.0 }, + "00000000000111111100": { "state": 508.0 }, + "10000000011111111110": { "state": 526334.0 }, + "10000000001100001010": { "state": 525066.0 }, + "11111111111000110000": { "state": 1048112.0 }, + "10000000000111111101": { "state": 524797.0 }, + "10000000011111110001": { "state": 526321.0 }, + "00000000000011111011": { "state": 251.0 }, + "01111111111000111101": { "state": 523837.0 }, + "10000000011111111101": { "state": 526333.0 }, + "11111111110011110011": { "state": 1047795.0 }, + "11111111111100000101": { "state": 1048325.0 }, + "00000000000000000111": { "state": 7.0 }, + "11111111111000000000": { "state": 1048064.0 }, + "01111111111100000001": { "state": 524033.0 }, + "10000000000111111110": { "state": 524798.0 }, + "11111111110001101100": { "state": 1047660.0 }, + "00000000000111111011": { "state": 507.0 }, + "10000000000011110010": { "state": 524530.0 }, + "01111111101001101101": { "state": 522861.0 }, + "00000000000000000100": { "state": 4.0 }, + "01111111111111111010": { "state": 524282.0 }, + "10000000011111110101": { "state": 526325.0 }, + "10000000000000001001": { "state": 524297.0 }, + "00000000000000000011": { "state": 3.0 }, + "01111111110001101101": { "state": 523373.0 }, + "00000000000000001011": { "state": 11.0 }, + "10000000000000001101": { "state": 524301.0 }, + "10000000000111110101": { "state": 524789.0 }, + "01111111111100000010": { "state": 524034.0 }, + "01111111111011111101": { "state": 524029.0 }, + "11111111110110011100": { "state": 1047964.0 }, + "10000000000000000001": { "state": 524289.0 }, + "10000000000000000101": { "state": 524293.0 }, + "01111111111100000101": { "state": 524037.0 }, + "01111111111000111010": { "state": 523834.0 }, + "01111111111111110001": { "state": 524273.0 }, + "10000000000100000101": { "state": 524549.0 }, + "00000000000011110011": { "state": 243.0 }, + "01111111111111001100": { "state": 524236.0 }, + "01111111110011111010": { "state": 523514.0 }, + "00000000000000000000": { "state": 0.0 }, + "11111111111010011101": { "state": 1048221.0 }, + "10000000000000001010": { "state": 524298.0 }, + "01111111111100001110": { "state": 524046.0 }, + "11111111111011110011": { "state": 1048307.0 }, + "11111111111111111010": { "state": 1048570.0 }, + "11111111111000110101": { "state": 1048117.0 }, + "00000000000000001111": { "state": 15.0 }, + "01111111111100000100": { "state": 524036.0 }, + "11111111111000110011": { "state": 1048115.0 }, + "10000000000000000110": { "state": 524294.0 }, + "11111111110110010011": { "state": 1047955.0 }, + "10000000000000000010": { "state": 524290.0 }, + "01111111111111111111": { "state": 524287.0 }, + "00000000000000001100": { "state": 12.0 }, + "11111111111011111100": { "state": 1048316.0 }, + "11111111111001101011": { "state": 1048171.0 }, + "00000000000000001000": { "state": 8.0 }, + "00000000000100001100": { "state": 268.0 }, + "01111111111100001010": { "state": 524042.0 }, + "10000000000000001110": { "state": 524302.0 }, + "10000000000111110001": { "state": 524785.0 }, + "01111111111111110000": { "state": 524272.0 }, + "11111111111111111100": { "state": 1048572.0 }, + "11111111111111111000": { "state": 1048568.0 }, + "01111111110110011101": { "state": 523677.0 }, + "11111111111100001111": { "state": 1048335.0 }, + "11111111111100001000": { "state": 1048328.0 }, + "10000000011111111010": { "state": 526330.0 }, + "11111111111111000100": { "state": 1048516.0 }, + "01111111111100001101": { "state": 524045.0 }, + "11111111111100000000": { "state": 1048320.0 }, + "00000000011111111011": { "state": 2043.0 }, + "11111111111100001100": { "state": 1048332.0 }, + "01111111111001101101": { "state": 523885.0 }, + "11111111111111111101": { "state": 1048573.0 }, + "01111111111111111101": { "state": 524285.0 }, + "11111111111100000011": { "state": 1048323.0 }, + "11111111111010010001": { "state": 1048209.0 }, + "11111111111001100011": { "state": 1048163.0 }, + "11111111110011111011": { "state": 1047803.0 }, + "11111111111100000100": { "state": 1048324.0 }, + "10000000000011111010": { "state": 524538.0 }, + "01111111111100001001": { "state": 524041.0 }, + "11111111111000110110": { "state": 1048118.0 }, + "11111111111010011110": { "state": 1048222.0 }, + "00000000011111111100": { "state": 2044.0 }, + "01111111111010011011": { "state": 523931.0 }, + "01111111110110011010": { "state": 523674.0 }, + "00000000000011111000": { "state": 248.0 }, + "00000000011111111111": { "state": 2047.0 } + }, + "histogram": null, + "output_qubits_map": { + "state": [ + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 + ] + }, + "state_vector": null, + "parsed_state_vector_states": null, + "physical_qubits_map": { + "state": [ + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 + ] + }, + "num_shots": 8192 +} diff --git a/algorithms/glued_trees/results/20-qubits/2n-6.json b/algorithms/glued_trees/results/20-qubits/2n-6.json index b14faf12..e56260c4 100644 --- a/algorithms/glued_trees/results/20-qubits/2n-6.json +++ b/algorithms/glued_trees/results/20-qubits/2n-6.json @@ -1 +1,222 @@ -{"vendor_format_result": {}, "counts": {"10000000001100000001": 1, "01111111111100000010": 1, "00000000011000000000": 1, "01111111111000111010": 1, "11111111111100001000": 1, "01111111110110011001": 1, "00000000011111110000": 1, "11111111111111110100": 2, "10000000000011111101": 1, "11111111110110010100": 1, "01111111111100000011": 1, "00000000001100001100": 1, "11111111110001100100": 1, "00000000000111110100": 1, "01111111110110011100": 1, "00000000011111111100": 2, "10000000000011110010": 3, "11111111111111110000": 1, "11111111111010010001": 4, "01111111111111111001": 1, "01111111101001101010": 2, "00000000001111000010": 1, "10000000001100000101": 1, "01111111110001100100": 1, "11111111110110011000": 1, "01111111110110010010": 1, "01111111111100011010": 1, "11111111111100000101": 2, "00000000000000000111": 137, "00000000000011111011": 13, "10000000000111110001": 63, "00000000000000001100": 90, "00000000000000001000": 24, "10000000000000000010": 524, "00000000011111111011": 1, "11111111111100000000": 8, "00000000000000000000": 4370, "10000000000000000001": 134, "11111111111100001100": 1, "11111111111111111111": 2, "00000000000000001011": 277, "11111111111100001101": 1, "01111111110110011101": 13, "11111111111111111000": 3, "11111111111111111010": 4, "00000000000000001111": 838, "00000000000100000000": 1, "11111111111100000111": 14, "10000000000111111110": 230, "10000000000000001101": 14, "00000000000011111111": 3, "11111111111000110011": 1, "01111111111100000100": 1, "01111111111100001101": 9, "01111111110110010110": 1, "10000000011111110101": 1, "01111111111111111110": 14, "00000000000000000100": 4, "01111111111101100000": 1, "10000000000000001110": 13, "01111111110110011110": 5, "10000000011111111110": 15, "11111111111010011110": 14, "11111111111111111011": 3, "00000000000011110010": 1, "00000000000000000011": 251, "10000000000000001001": 2, "10000000000000000110": 14, "11111111110110010011": 1, "01111111111111110001": 1, "01111111111111111011": 2, "11111111110001100010": 1, "01111111111000000011": 1, "11111111111111111100": 5, "11111111111100000110": 2, "00000000011111111000": 1, "10000000011111110001": 1, "11111111111111110011": 4, "11111111111111111001": 1, "10000000000000000101": 700, "01111111111100000101": 7, "00000000000011101100": 1, "10000000001100000010": 1, "11111111110001100111": 2, "01111111111111111101": 5, "11111111111111111101": 1, "11111111110011111011": 1, "11111111111100000100": 30, "10000000000011111010": 1, "01111111110001100101": 2, "10000000000000001010": 263, "01111111101110011100": 1, "00000000000011111000": 1, "00000000011111111111": 2, "01111111110110011010": 2}, "counts_lsb_right": true, "parsed_states": {"10000000001100000001": {"state": 525057.0}, "01111111111100000010": {"state": 524034.0}, "00000000011000000000": {"state": 1536.0}, "01111111111000111010": {"state": 523834.0}, "11111111111100001000": {"state": 1048328.0}, "01111111110110011001": {"state": 523673.0}, "00000000011111110000": {"state": 2032.0}, "11111111111111110100": {"state": 1048564.0}, "10000000000011111101": {"state": 524541.0}, "11111111110110010100": {"state": 1047956.0}, "01111111111100000011": {"state": 524035.0}, "00000000001100001100": {"state": 780.0}, "11111111110001100100": {"state": 1047652.0}, "00000000000111110100": {"state": 500.0}, "01111111110110011100": {"state": 523676.0}, "00000000011111111100": {"state": 2044.0}, "10000000000011110010": {"state": 524530.0}, "11111111111111110000": {"state": 1048560.0}, "11111111111010010001": {"state": 1048209.0}, "01111111111111111001": {"state": 524281.0}, "01111111101001101010": {"state": 522858.0}, "00000000001111000010": {"state": 962.0}, "10000000001100000101": {"state": 525061.0}, "01111111110001100100": {"state": 523364.0}, "11111111110110011000": {"state": 1047960.0}, "01111111110110010010": {"state": 523666.0}, "01111111111100011010": {"state": 524058.0}, "11111111111100000101": {"state": 1048325.0}, "00000000000000000111": {"state": 7.0}, "00000000000011111011": {"state": 251.0}, "10000000000111110001": {"state": 524785.0}, "00000000000000001100": {"state": 12.0}, "00000000000000001000": {"state": 8.0}, "10000000000000000010": {"state": 524290.0}, "00000000011111111011": {"state": 2043.0}, "11111111111100000000": {"state": 1048320.0}, "00000000000000000000": {"state": 0.0}, "10000000000000000001": {"state": 524289.0}, "11111111111100001100": {"state": 1048332.0}, "11111111111111111111": {"state": 1048575.0}, "00000000000000001011": {"state": 11.0}, "11111111111100001101": {"state": 1048333.0}, "01111111110110011101": {"state": 523677.0}, "11111111111111111000": {"state": 1048568.0}, "11111111111111111010": {"state": 1048570.0}, "00000000000000001111": {"state": 15.0}, "00000000000100000000": {"state": 256.0}, "11111111111100000111": {"state": 1048327.0}, "10000000000111111110": {"state": 524798.0}, "10000000000000001101": {"state": 524301.0}, "00000000000011111111": {"state": 255.0}, "11111111111000110011": {"state": 1048115.0}, "01111111111100000100": {"state": 524036.0}, "01111111111100001101": {"state": 524045.0}, "01111111110110010110": {"state": 523670.0}, "10000000011111110101": {"state": 526325.0}, "01111111111111111110": {"state": 524286.0}, "00000000000000000100": {"state": 4.0}, "01111111111101100000": {"state": 524128.0}, "10000000000000001110": {"state": 524302.0}, "01111111110110011110": {"state": 523678.0}, "10000000011111111110": {"state": 526334.0}, "11111111111010011110": {"state": 1048222.0}, "11111111111111111011": {"state": 1048571.0}, "00000000000011110010": {"state": 242.0}, "00000000000000000011": {"state": 3.0}, "10000000000000001001": {"state": 524297.0}, "10000000000000000110": {"state": 524294.0}, "11111111110110010011": {"state": 1047955.0}, "01111111111111110001": {"state": 524273.0}, "01111111111111111011": {"state": 524283.0}, "11111111110001100010": {"state": 1047650.0}, "01111111111000000011": {"state": 523779.0}, "11111111111111111100": {"state": 1048572.0}, "11111111111100000110": {"state": 1048326.0}, "00000000011111111000": {"state": 2040.0}, "10000000011111110001": {"state": 526321.0}, "11111111111111110011": {"state": 1048563.0}, "11111111111111111001": {"state": 1048569.0}, "10000000000000000101": {"state": 524293.0}, "01111111111100000101": {"state": 524037.0}, "00000000000011101100": {"state": 236.0}, "10000000001100000010": {"state": 525058.0}, "11111111110001100111": {"state": 1047655.0}, "01111111111111111101": {"state": 524285.0}, "11111111111111111101": {"state": 1048573.0}, "11111111110011111011": {"state": 1047803.0}, "11111111111100000100": {"state": 1048324.0}, "10000000000011111010": {"state": 524538.0}, "01111111110001100101": {"state": 523365.0}, "10000000000000001010": {"state": 524298.0}, "01111111101110011100": {"state": 523164.0}, "00000000000011111000": {"state": 248.0}, "00000000011111111111": {"state": 2047.0}, "01111111110110011010": {"state": 523674.0}}, "histogram": null, "output_qubits_map": {"state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]}, "state_vector": null, "parsed_state_vector_states": null, "physical_qubits_map": {"state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]}, "num_shots": 8192} \ No newline at end of file +{ + "vendor_format_result": {}, + "counts": { + "11111111111011110011": 1, + "11111111111000110110": 1, + "11111111111100001101": 1, + "01111111111101111010": 1, + "11111111110110011111": 1, + "01111111111111110010": 1, + "00000000011111111100": 1, + "11111111111000111111": 1, + "10000000000111110010": 1, + "11111111111011111011": 1, + "01111111111111110101": 1, + "10000000011111110101": 1, + "11111111110001100111": 1, + "10000000011111110001": 2, + "11111111111111110100": 3, + "11111111111000110000": 2, + "01111111111111111101": 7, + "11111111111111111001": 2, + "11111111111111110011": 1, + "01111111110110011001": 6, + "00000000000011111111": 2, + "10000000001100000101": 1, + "10000000011111111010": 1, + "00000000000111110100": 1, + "00000000011111111000": 1, + "00000000000111110011": 1, + "01111111111111111110": 17, + "00000000000000000100": 8, + "11111111111111111100": 4, + "11111111111100000001": 1, + "00000000000000001100": 120, + "00000000000000001000": 39, + "11111111101001101111": 1, + "10000000000000000010": 516, + "01111111111100000010": 1, + "00000000000011110011": 3, + "01111111111111110001": 6, + "11111111111001100011": 1, + "11111111111111111011": 4, + "11111111110110010100": 1, + "01111111111111001101": 2, + "01111111110001101010": 1, + "01111111111100000001": 1, + "10000000000111111110": 203, + "11111111111100000100": 31, + "10000000000000000101": 762, + "00000000000011111011": 10, + "01111111111111110011": 1, + "11111111111111111000": 2, + "01111111110110011101": 5, + "10000000000000001010": 253, + "11111111111100000000": 2, + "10000000000111110001": 61, + "11111111111000110011": 1, + "01111111111100000100": 1, + "10000000000000001101": 11, + "10000000000000000001": 145, + "11111111110110011000": 1, + "11111111111100001100": 4, + "01111111111000111010": 2, + "10000000000011110101": 1, + "11111111111100000111": 7, + "11111111111111111010": 5, + "00000000000000001111": 863, + "00000000000000000000": 4269, + "01111111110011111010": 1, + "01111111110110010101": 2, + "11111111111010010001": 2, + "01111111111111111001": 2, + "10000000000000000110": 14, + "10000000011111110010": 3, + "00000000000000000011": 208, + "00000000000000000111": 163, + "10000000011111111001": 1, + "11111111111100000101": 5, + "11111111111111111111": 1, + "00000000000000001011": 299, + "00000000000111111100": 3, + "10000000011111111110": 10, + "11111111111010011110": 7, + "01111111111001100010": 3, + "11111111110110010101": 1, + "01111111110110011110": 4, + "10000000000000001110": 8, + "11111111110011111010": 3, + "01111111111001101010": 1, + "11111111110110000100": 1, + "01111111110011110011": 1, + "00000000000111111011": 2, + "10000000000011110010": 6, + "11111111111100000010": 1, + "00000000000111111111": 1, + "01111111111100001101": 12, + "10000000011111111101": 2, + "11111111110001100100": 3, + "01111111111111111011": 2, + "01111111110110011010": 4, + "00000000000011111000": 3, + "01111111111000110010": 2, + "11111111111100000110": 2 + }, + "counts_lsb_right": true, + "parsed_states": { + "11111111111011110011": { "state": 1048307.0 }, + "11111111111000110110": { "state": 1048118.0 }, + "11111111111100001101": { "state": 1048333.0 }, + "01111111111101111010": { "state": 524154.0 }, + "11111111110110011111": { "state": 1047967.0 }, + "01111111111111110010": { "state": 524274.0 }, + "00000000011111111100": { "state": 2044.0 }, + "11111111111000111111": { "state": 1048127.0 }, + "10000000000111110010": { "state": 524786.0 }, + "11111111111011111011": { "state": 1048315.0 }, + "01111111111111110101": { "state": 524277.0 }, + "10000000011111110101": { "state": 526325.0 }, + "11111111110001100111": { "state": 1047655.0 }, + "10000000011111110001": { "state": 526321.0 }, + "11111111111111110100": { "state": 1048564.0 }, + "11111111111000110000": { "state": 1048112.0 }, + "01111111111111111101": { "state": 524285.0 }, + "11111111111111111001": { "state": 1048569.0 }, + "11111111111111110011": { "state": 1048563.0 }, + "01111111110110011001": { "state": 523673.0 }, + "00000000000011111111": { "state": 255.0 }, + "10000000001100000101": { "state": 525061.0 }, + "10000000011111111010": { "state": 526330.0 }, + "00000000000111110100": { "state": 500.0 }, + "00000000011111111000": { "state": 2040.0 }, + "00000000000111110011": { "state": 499.0 }, + "01111111111111111110": { "state": 524286.0 }, + "00000000000000000100": { "state": 4.0 }, + "11111111111111111100": { "state": 1048572.0 }, + "11111111111100000001": { "state": 1048321.0 }, + "00000000000000001100": { "state": 12.0 }, + "00000000000000001000": { "state": 8.0 }, + "11111111101001101111": { "state": 1047151.0 }, + "10000000000000000010": { "state": 524290.0 }, + "01111111111100000010": { "state": 524034.0 }, + "00000000000011110011": { "state": 243.0 }, + "01111111111111110001": { "state": 524273.0 }, + "11111111111001100011": { "state": 1048163.0 }, + "11111111111111111011": { "state": 1048571.0 }, + "11111111110110010100": { "state": 1047956.0 }, + "01111111111111001101": { "state": 524237.0 }, + "01111111110001101010": { "state": 523370.0 }, + "01111111111100000001": { "state": 524033.0 }, + "10000000000111111110": { "state": 524798.0 }, + "11111111111100000100": { "state": 1048324.0 }, + "10000000000000000101": { "state": 524293.0 }, + "00000000000011111011": { "state": 251.0 }, + "01111111111111110011": { "state": 524275.0 }, + "11111111111111111000": { "state": 1048568.0 }, + "01111111110110011101": { "state": 523677.0 }, + "10000000000000001010": { "state": 524298.0 }, + "11111111111100000000": { "state": 1048320.0 }, + "10000000000111110001": { "state": 524785.0 }, + "11111111111000110011": { "state": 1048115.0 }, + "01111111111100000100": { "state": 524036.0 }, + "10000000000000001101": { "state": 524301.0 }, + "10000000000000000001": { "state": 524289.0 }, + "11111111110110011000": { "state": 1047960.0 }, + "11111111111100001100": { "state": 1048332.0 }, + "01111111111000111010": { "state": 523834.0 }, + "10000000000011110101": { "state": 524533.0 }, + "11111111111100000111": { "state": 1048327.0 }, + "11111111111111111010": { "state": 1048570.0 }, + "00000000000000001111": { "state": 15.0 }, + "00000000000000000000": { "state": 0.0 }, + "01111111110011111010": { "state": 523514.0 }, + "01111111110110010101": { "state": 523669.0 }, + "11111111111010010001": { "state": 1048209.0 }, + "01111111111111111001": { "state": 524281.0 }, + "10000000000000000110": { "state": 524294.0 }, + "10000000011111110010": { "state": 526322.0 }, + "00000000000000000011": { "state": 3.0 }, + "00000000000000000111": { "state": 7.0 }, + "10000000011111111001": { "state": 526329.0 }, + "11111111111100000101": { "state": 1048325.0 }, + "11111111111111111111": { "state": 1048575.0 }, + "00000000000000001011": { "state": 11.0 }, + "00000000000111111100": { "state": 508.0 }, + "10000000011111111110": { "state": 526334.0 }, + "11111111111010011110": { "state": 1048222.0 }, + "01111111111001100010": { "state": 523874.0 }, + "11111111110110010101": { "state": 1047957.0 }, + "01111111110110011110": { "state": 523678.0 }, + "10000000000000001110": { "state": 524302.0 }, + "11111111110011111010": { "state": 1047802.0 }, + "01111111111001101010": { "state": 523882.0 }, + "11111111110110000100": { "state": 1047940.0 }, + "01111111110011110011": { "state": 523507.0 }, + "00000000000111111011": { "state": 507.0 }, + "10000000000011110010": { "state": 524530.0 }, + "11111111111100000010": { "state": 1048322.0 }, + "00000000000111111111": { "state": 511.0 }, + "01111111111100001101": { "state": 524045.0 }, + "10000000011111111101": { "state": 526333.0 }, + "11111111110001100100": { "state": 1047652.0 }, + "01111111111111111011": { "state": 524283.0 }, + "01111111110110011010": { "state": 523674.0 }, + "00000000000011111000": { "state": 248.0 }, + "01111111111000110010": { "state": 523826.0 }, + "11111111111100000110": { "state": 1048326.0 } + }, + "histogram": null, + "output_qubits_map": { + "state": [ + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 + ] + }, + "state_vector": null, + "parsed_state_vector_states": null, + "physical_qubits_map": { + "state": [ + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 + ] + }, + "num_shots": 8192 +} diff --git a/algorithms/glued_trees/results/20-qubits/2n-8.json b/algorithms/glued_trees/results/20-qubits/2n-8.json index 68072334..0e656dc0 100644 --- a/algorithms/glued_trees/results/20-qubits/2n-8.json +++ b/algorithms/glued_trees/results/20-qubits/2n-8.json @@ -1 +1,192 @@ -{"vendor_format_result": {}, "counts": {"00000000000011110000": 1, "00000000000011111111": 1, "00000000000111111011": 1, "00000000001100001100": 1, "11111111111011110011": 1, "11111111111111110111": 1, "11111111111100000101": 1, "01111111110110011011": 1, "01111111101001100110": 1, "00000000000111110100": 2, "11111111111111111100": 1, "01111111110011111001": 2, "00000000000011111001": 1, "00000000000100000100": 1, "00000000011111110100": 2, "11111111111111001000": 1, "11111111111111110011": 2, "01111111111100000100": 2, "11111111111000110011": 2, "11111111110110011111": 1, "00000000011111111100": 2, "11111111111100001000": 2, "00000000000000000111": 173, "00000000000000001100": 45, "11111111111000000000": 1, "00000000011000000000": 1, "10000000000000000010": 758, "11111111110010000111": 1, "00000000000011111011": 10, "10000000000000000101": 545, "11111111111111111000": 3, "01111111111111110011": 2, "01111111110110011101": 3, "11111111111100000100": 9, "01111111111100001101": 2, "11111111111111111011": 2, "00000000000000000011": 162, "11111111111000001111": 1, "00000000000000001011": 187, "11111111111111111111": 2, "00000000000111111100": 1, "10000000011111111110": 6, "11111111111010011110": 10, "01111111111111110111": 2, "01111111110110011001": 3, "00000000000000001111": 886, "00000000000000000000": 4545, "10000000000000001010": 256, "11111111111100000000": 1, "11111111111100000111": 22, "00000000000000000100": 45, "11111111100111111100": 1, "01111111111001100011": 1, "11111111111100001011": 1, "01111111110011110110": 1, "10000000000000001101": 61, "00000000000000001000": 39, "11111111111011111100": 1, "11111111110110011100": 2, "10000000000000000001": 27, "01111111111111110001": 6, "01111111111111001100": 1, "01111111111000111010": 2, "01111111111001100010": 1, "10000000000111110001": 36, "01111111111111111001": 1, "11111111110110100000": 1, "01111111111100001001": 1, "10000000000111111110": 185, "01111111111010011100": 1, "01111111111000110010": 1, "01111111111111111010": 2, "10000000011111110001": 1, "11111111110110010011": 1, "10000000011111110010": 1, "10000000000000000110": 3, "11111111110110010100": 1, "10000000001111000000": 1, "10000000000011111101": 3, "11111111110001100111": 4, "10000000000011110010": 2, "11111111111100000011": 1, "11111111111010010001": 4, "01111111111111111110": 28, "00000000000111110011": 1, "01111111111000000100": 1, "11111111110001100100": 1, "01111111111010100000": 1, "01111111111101100000": 1, "01111111110110011110": 5, "10000000000000001110": 38, "11111111110110010101": 2, "00000000000011111000": 2, "01111111110110011010": 4}, "counts_lsb_right": true, "parsed_states": {"00000000000011110000": {"state": 240.0}, "00000000000011111111": {"state": 255.0}, "00000000000111111011": {"state": 507.0}, "00000000001100001100": {"state": 780.0}, "11111111111011110011": {"state": 1048307.0}, "11111111111111110111": {"state": 1048567.0}, "11111111111100000101": {"state": 1048325.0}, "01111111110110011011": {"state": 523675.0}, "01111111101001100110": {"state": 522854.0}, "00000000000111110100": {"state": 500.0}, "11111111111111111100": {"state": 1048572.0}, "01111111110011111001": {"state": 523513.0}, "00000000000011111001": {"state": 249.0}, "00000000000100000100": {"state": 260.0}, "00000000011111110100": {"state": 2036.0}, "11111111111111001000": {"state": 1048520.0}, "11111111111111110011": {"state": 1048563.0}, "01111111111100000100": {"state": 524036.0}, "11111111111000110011": {"state": 1048115.0}, "11111111110110011111": {"state": 1047967.0}, "00000000011111111100": {"state": 2044.0}, "11111111111100001000": {"state": 1048328.0}, "00000000000000000111": {"state": 7.0}, "00000000000000001100": {"state": 12.0}, "11111111111000000000": {"state": 1048064.0}, "00000000011000000000": {"state": 1536.0}, "10000000000000000010": {"state": 524290.0}, "11111111110010000111": {"state": 1047687.0}, "00000000000011111011": {"state": 251.0}, "10000000000000000101": {"state": 524293.0}, "11111111111111111000": {"state": 1048568.0}, "01111111111111110011": {"state": 524275.0}, "01111111110110011101": {"state": 523677.0}, "11111111111100000100": {"state": 1048324.0}, "01111111111100001101": {"state": 524045.0}, "11111111111111111011": {"state": 1048571.0}, "00000000000000000011": {"state": 3.0}, "11111111111000001111": {"state": 1048079.0}, "00000000000000001011": {"state": 11.0}, "11111111111111111111": {"state": 1048575.0}, "00000000000111111100": {"state": 508.0}, "10000000011111111110": {"state": 526334.0}, "11111111111010011110": {"state": 1048222.0}, "01111111111111110111": {"state": 524279.0}, "01111111110110011001": {"state": 523673.0}, "00000000000000001111": {"state": 15.0}, "00000000000000000000": {"state": 0.0}, "10000000000000001010": {"state": 524298.0}, "11111111111100000000": {"state": 1048320.0}, "11111111111100000111": {"state": 1048327.0}, "00000000000000000100": {"state": 4.0}, "11111111100111111100": {"state": 1047036.0}, "01111111111001100011": {"state": 523875.0}, "11111111111100001011": {"state": 1048331.0}, "01111111110011110110": {"state": 523510.0}, "10000000000000001101": {"state": 524301.0}, "00000000000000001000": {"state": 8.0}, "11111111111011111100": {"state": 1048316.0}, "11111111110110011100": {"state": 1047964.0}, "10000000000000000001": {"state": 524289.0}, "01111111111111110001": {"state": 524273.0}, "01111111111111001100": {"state": 524236.0}, "01111111111000111010": {"state": 523834.0}, "01111111111001100010": {"state": 523874.0}, "10000000000111110001": {"state": 524785.0}, "01111111111111111001": {"state": 524281.0}, "11111111110110100000": {"state": 1047968.0}, "01111111111100001001": {"state": 524041.0}, "10000000000111111110": {"state": 524798.0}, "01111111111010011100": {"state": 523932.0}, "01111111111000110010": {"state": 523826.0}, "01111111111111111010": {"state": 524282.0}, "10000000011111110001": {"state": 526321.0}, "11111111110110010011": {"state": 1047955.0}, "10000000011111110010": {"state": 526322.0}, "10000000000000000110": {"state": 524294.0}, "11111111110110010100": {"state": 1047956.0}, "10000000001111000000": {"state": 525248.0}, "10000000000011111101": {"state": 524541.0}, "11111111110001100111": {"state": 1047655.0}, "10000000000011110010": {"state": 524530.0}, "11111111111100000011": {"state": 1048323.0}, "11111111111010010001": {"state": 1048209.0}, "01111111111111111110": {"state": 524286.0}, "00000000000111110011": {"state": 499.0}, "01111111111000000100": {"state": 523780.0}, "11111111110001100100": {"state": 1047652.0}, "01111111111010100000": {"state": 523936.0}, "01111111111101100000": {"state": 524128.0}, "01111111110110011110": {"state": 523678.0}, "10000000000000001110": {"state": 524302.0}, "11111111110110010101": {"state": 1047957.0}, "00000000000011111000": {"state": 248.0}, "01111111110110011010": {"state": 523674.0}}, "histogram": null, "output_qubits_map": {"state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]}, "state_vector": null, "parsed_state_vector_states": null, "physical_qubits_map": {"state": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]}, "num_shots": 8192} \ No newline at end of file +{ + "vendor_format_result": {}, + "counts": { + "11111111111000111010": 1, + "10000000001100000101": 1, + "11111111111010010001": 1, + "01111111110110011010": 1, + "00000000000011111111": 1, + "00000000000111110000": 1, + "00000000011111111011": 1, + "01111111111100001001": 1, + "10000000000111111101": 1, + "11111111110110011101": 1, + "00000000011111110100": 1, + "01111111111111110100": 1, + "11111111111100000110": 1, + "11111111111000110011": 2, + "10000000011111110001": 2, + "11111111111111111000": 1, + "01111111110110011101": 1, + "01111111111000111010": 1, + "11111111111111111100": 3, + "00000000000000001100": 38, + "00000000000000001000": 16, + "10000000000000000010": 728, + "11111111111011110100": 1, + "00000000011000000000": 1, + "11111111110001100111": 2, + "00000000000011111011": 8, + "11111111111100000100": 8, + "01111111111111111100": 1, + "10000000000000000101": 517, + "11111111111111110111": 3, + "01111111111101111001": 1, + "00000000011111111100": 3, + "11111111111010011110": 9, + "11111111111010011101": 1, + "10000000000000001010": 249, + "10000000000111110101": 1, + "11111111111100000111": 18, + "01111111111010010011": 1, + "01111111111010011100": 1, + "01111111111100000001": 1, + "10000000000111111110": 206, + "10000000001111000111": 1, + "01111111110110011001": 5, + "11111111111111111010": 3, + "00000000000000001111": 857, + "01111111110110011110": 4, + "10000000000000001110": 37, + "00000000000000000111": 166, + "11111111111100001000": 1, + "00000000000000000011": 142, + "00000000000000001011": 202, + "11111111111111111111": 5, + "10000000000000001101": 59, + "00000000000000000100": 37, + "10000000011111110101": 1, + "01111111111111111010": 5, + "10000000000000000001": 30, + "11111111110110011100": 3, + "10000000000011110010": 2, + "01111111111111111101": 4, + "01111111110110010001": 2, + "11111111111001100011": 1, + "10000000000011111101": 2, + "11111111110110010100": 1, + "10000000000011111110": 1, + "01111111111111111110": 19, + "00000000000111110011": 2, + "10000000000111110001": 43, + "11111111111100001010": 1, + "01111111111111111001": 1, + "01111111111010011011": 1, + "01111111111010100000": 1, + "11111111110001100100": 2, + "00000000000000000000": 4685, + "01111111110011111010": 2, + "11111111110110010011": 2, + "10000000000000000110": 2, + "01111111111111110001": 6, + "00000000000011110011": 1, + "01111111111111110101": 2, + "01111111111000111101": 1, + "10000000011111111110": 4, + "00000000000111111100": 3, + "11111111111111000100": 2, + "01111111111100001101": 4 + }, + "counts_lsb_right": true, + "parsed_states": { + "11111111111000111010": { "state": 1048122.0 }, + "10000000001100000101": { "state": 525061.0 }, + "11111111111010010001": { "state": 1048209.0 }, + "01111111110110011010": { "state": 523674.0 }, + "00000000000011111111": { "state": 255.0 }, + "00000000000111110000": { "state": 496.0 }, + "00000000011111111011": { "state": 2043.0 }, + "01111111111100001001": { "state": 524041.0 }, + "10000000000111111101": { "state": 524797.0 }, + "11111111110110011101": { "state": 1047965.0 }, + "00000000011111110100": { "state": 2036.0 }, + "01111111111111110100": { "state": 524276.0 }, + "11111111111100000110": { "state": 1048326.0 }, + "11111111111000110011": { "state": 1048115.0 }, + "10000000011111110001": { "state": 526321.0 }, + "11111111111111111000": { "state": 1048568.0 }, + "01111111110110011101": { "state": 523677.0 }, + "01111111111000111010": { "state": 523834.0 }, + "11111111111111111100": { "state": 1048572.0 }, + "00000000000000001100": { "state": 12.0 }, + "00000000000000001000": { "state": 8.0 }, + "10000000000000000010": { "state": 524290.0 }, + "11111111111011110100": { "state": 1048308.0 }, + "00000000011000000000": { "state": 1536.0 }, + "11111111110001100111": { "state": 1047655.0 }, + "00000000000011111011": { "state": 251.0 }, + "11111111111100000100": { "state": 1048324.0 }, + "01111111111111111100": { "state": 524284.0 }, + "10000000000000000101": { "state": 524293.0 }, + "11111111111111110111": { "state": 1048567.0 }, + "01111111111101111001": { "state": 524153.0 }, + "00000000011111111100": { "state": 2044.0 }, + "11111111111010011110": { "state": 1048222.0 }, + "11111111111010011101": { "state": 1048221.0 }, + "10000000000000001010": { "state": 524298.0 }, + "10000000000111110101": { "state": 524789.0 }, + "11111111111100000111": { "state": 1048327.0 }, + "01111111111010010011": { "state": 523923.0 }, + "01111111111010011100": { "state": 523932.0 }, + "01111111111100000001": { "state": 524033.0 }, + "10000000000111111110": { "state": 524798.0 }, + "10000000001111000111": { "state": 525255.0 }, + "01111111110110011001": { "state": 523673.0 }, + "11111111111111111010": { "state": 1048570.0 }, + "00000000000000001111": { "state": 15.0 }, + "01111111110110011110": { "state": 523678.0 }, + "10000000000000001110": { "state": 524302.0 }, + "00000000000000000111": { "state": 7.0 }, + "11111111111100001000": { "state": 1048328.0 }, + "00000000000000000011": { "state": 3.0 }, + "00000000000000001011": { "state": 11.0 }, + "11111111111111111111": { "state": 1048575.0 }, + "10000000000000001101": { "state": 524301.0 }, + "00000000000000000100": { "state": 4.0 }, + "10000000011111110101": { "state": 526325.0 }, + "01111111111111111010": { "state": 524282.0 }, + "10000000000000000001": { "state": 524289.0 }, + "11111111110110011100": { "state": 1047964.0 }, + "10000000000011110010": { "state": 524530.0 }, + "01111111111111111101": { "state": 524285.0 }, + "01111111110110010001": { "state": 523665.0 }, + "11111111111001100011": { "state": 1048163.0 }, + "10000000000011111101": { "state": 524541.0 }, + "11111111110110010100": { "state": 1047956.0 }, + "10000000000011111110": { "state": 524542.0 }, + "01111111111111111110": { "state": 524286.0 }, + "00000000000111110011": { "state": 499.0 }, + "10000000000111110001": { "state": 524785.0 }, + "11111111111100001010": { "state": 1048330.0 }, + "01111111111111111001": { "state": 524281.0 }, + "01111111111010011011": { "state": 523931.0 }, + "01111111111010100000": { "state": 523936.0 }, + "11111111110001100100": { "state": 1047652.0 }, + "00000000000000000000": { "state": 0.0 }, + "01111111110011111010": { "state": 523514.0 }, + "11111111110110010011": { "state": 1047955.0 }, + "10000000000000000110": { "state": 524294.0 }, + "01111111111111110001": { "state": 524273.0 }, + "00000000000011110011": { "state": 243.0 }, + "01111111111111110101": { "state": 524277.0 }, + "01111111111000111101": { "state": 523837.0 }, + "10000000011111111110": { "state": 526334.0 }, + "00000000000111111100": { "state": 508.0 }, + "11111111111111000100": { "state": 1048516.0 }, + "01111111111100001101": { "state": 524045.0 } + }, + "histogram": null, + "output_qubits_map": { + "state": [ + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 + ] + }, + "state_vector": null, + "parsed_state_vector_states": null, + "physical_qubits_map": { + "state": [ + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 + ] + }, + "num_shots": 8192 +} diff --git a/algorithms/grover/3_sat_grover/3_sat_grover.json b/algorithms/grover/3_sat_grover/3_sat_grover.metadata.json similarity index 100% rename from algorithms/grover/3_sat_grover/3_sat_grover.json rename to algorithms/grover/3_sat_grover/3_sat_grover.metadata.json diff --git a/algorithms/grover/3_sat_grover_large/3_sat_grover_large.json b/algorithms/grover/3_sat_grover_large/3_sat_grover_large.metadata.json similarity index 100% rename from algorithms/grover/3_sat_grover_large/3_sat_grover_large.json rename to algorithms/grover/3_sat_grover_large/3_sat_grover_large.metadata.json diff --git a/algorithms/grover/grover_max_cut/grover_max_cut.json b/algorithms/grover/grover_max_cut/grover_max_cut.metadata.json similarity index 100% rename from algorithms/grover/grover_max_cut/grover_max_cut.json rename to algorithms/grover/grover_max_cut/grover_max_cut.metadata.json diff --git a/algorithms/hhl/hhl/hhl.json b/algorithms/hhl/hhl/hhl.metadata.json similarity index 100% rename from algorithms/hhl/hhl/hhl.json rename to algorithms/hhl/hhl/hhl.metadata.json diff --git a/algorithms/hhl/hhl/hhl.qmod b/algorithms/hhl/hhl/hhl.qmod index 92a5d7c7..1388d772 100644 --- a/algorithms/hhl/hhl/hhl.qmod +++ b/algorithms/hhl/hhl/hhl.qmod @@ -26,7 +26,7 @@ qfunc main(output res: qbit[floor(log(4, 2))], output indicator: qbit) { 0.7302967433, 0.5477225575 ], 0.0>(res); - my_matrix_inversion_flexible(arg1) { + my_matrix_inversion_flexible(target) { suzuki_trotter1_with_power_logic<[ PauliTerm { pauli=[Pauli::I, Pauli::I], @@ -68,6 +68,6 @@ qfunc main(output res: qbit[floor(log(4, 2))], output indicator: qbit) { pauli=[Pauli::Y, Pauli::Y], coefficient=-0.06 } - ], pw, 4, 1.8, -6.2831853072>(arg1); + ], pw, 4, 1.8, -6.2831853072>(target); }, 4>(res, indicator); } diff --git a/algorithms/qml/qsvm/qsvm.json b/algorithms/qml/qsvm/qsvm.metadata.json similarity index 100% rename from algorithms/qml/qsvm/qsvm.json rename to algorithms/qml/qsvm/qsvm.metadata.json diff --git a/algorithms/qml/qsvm_pauli_feature_map/qsvm_pauli_feature_map.json b/algorithms/qml/qsvm_pauli_feature_map/qsvm_pauli_feature_map.metadata.json similarity index 100% rename from algorithms/qml/qsvm_pauli_feature_map/qsvm_pauli_feature_map.json rename to algorithms/qml/qsvm_pauli_feature_map/qsvm_pauli_feature_map.metadata.json diff --git a/algorithms/qpe/qpe_for_matrix/qpe_for_matrix.json b/algorithms/qpe/qpe_for_matrix/qpe_for_matrix.metadata.json similarity index 100% rename from algorithms/qpe/qpe_for_matrix/qpe_for_matrix.json rename to algorithms/qpe/qpe_for_matrix/qpe_for_matrix.metadata.json diff --git a/algorithms/qpe/qpe_for_matrix/qpe_for_matrix.qmod b/algorithms/qpe/qpe_for_matrix/qpe_for_matrix.qmod index 80af55a3..695024fb 100644 --- a/algorithms/qpe/qpe_for_matrix/qpe_for_matrix.qmod +++ b/algorithms/qpe/qpe_for_matrix/qpe_for_matrix.qmod @@ -24,13 +24,13 @@ qfunc my_qpe_flexible(arg1: qbit[]), preci qfunc main(output phase_result: qnum<8, False, 8>) { state: qbit[]; prepare_amplitudes<[ - 0.513396396241511, - 0.451402223282909, - 0.714366707564118, - 0.149466987209476 + 0.30132518685935, + 0.675974655003596, + 0.286332054507695, + 0.608502548982623 ], 0.0>(state); phase_array: qbit[]; - my_qpe_flexible(arg1) { + my_qpe_flexible(target) { if (True) { unitary_with_power_logic) { ((-0.026023894036146) + 0.012295427374176j), ((-0.895413431349899) - 0.401691392328609j) ] - ]>(arg1); + ]>(target); } else { suzuki_trotter1_with_power_logic<[ PauliTerm { @@ -100,7 +100,7 @@ qfunc main(output phase_result: qnum<8, False, 8>) { pauli=[Pauli::Y, Pauli::Y], coefficient=0.09539162 } - ], pw, 2, 1.8, -6.283185307179586>(arg1); + ], pw, 2, 1.8, -6.283185307179586>(target); } }, 8>(state, phase_array); phase_array -> phase_result; diff --git a/algorithms/qsvt/qsvt_fixed_point_amplitude_amplification/qsvt_fixed_point_amplitude_amplification.json b/algorithms/qsvt/qsvt_fixed_point_amplitude_amplification/qsvt_fixed_point_amplitude_amplification.metadata.json similarity index 100% rename from algorithms/qsvt/qsvt_fixed_point_amplitude_amplification/qsvt_fixed_point_amplitude_amplification.json rename to algorithms/qsvt/qsvt_fixed_point_amplitude_amplification/qsvt_fixed_point_amplitude_amplification.metadata.json diff --git a/algorithms/qsvt/qsvt_fixed_point_amplitude_amplification/qsvt_fixed_point_amplitude_amplification.qmod b/algorithms/qsvt/qsvt_fixed_point_amplitude_amplification/qsvt_fixed_point_amplitude_amplification.qmod index f295a61d..58453d18 100644 --- a/algorithms/qsvt/qsvt_fixed_point_amplitude_amplification/qsvt_fixed_point_amplitude_amplification.qmod +++ b/algorithms/qsvt/qsvt_fixed_point_amplitude_amplification/qsvt_fixed_point_amplitude_amplification.qmod @@ -25,24 +25,24 @@ qfunc my_qsvt(arg1: qbi qfunc qsvt_fpaa(qbv_reg: qbit[], output qbv_aux: qbit) { allocate<1>(qbv_aux); - my_qsvt(arg1, arg2) { - hadamard_transform(arg1); - apply_to_all(arg1); - control (arg1) { - X(arg2); + my_qsvt(state, aux) { + hadamard_transform(state); + apply_to_all(state); + control (state) { + X(aux); } - RZ(arg2); - control (arg1) { - X(arg2); + RZ(aux); + control (state) { + X(aux); } - apply_to_all(arg1); - hadamard_transform(arg1); - }, lambda(arg1, arg2) { - arith_oracle(arg1, arg2); - RZ(arg2); - arith_oracle(arg1, arg2); - }, lambda(arg0) { - IDENTITY(arg0); + apply_to_all(state); + hadamard_transform(state); + }, lambda(state, aux) { + arith_oracle(state, aux); + RZ(aux); + arith_oracle(state, aux); + }, lambda(state) { + IDENTITY(state); }>(qbv_reg, qbv_aux); } @@ -50,33 +50,33 @@ qfunc main(output state: qbit[], output aux: qbit) { allocate<6>(state); hadamard_transform(state); qsvt_fpaa<[ - 3.7966, - 4.059, - 4.3526, - 1.9162, - 2.8594, - (-1.0825), - 3.6073, - 3.1312, - 6.962, - 2.5015, - 2.4699, - 1.6874, - 4.1289, - 4.1289, - 1.6874, - 2.4699, - 2.5015, - 6.962, - 3.1312, - 3.6073, - (-1.0825), - 2.8594, - 8.1994, - (-1.9306), - 4.059, - (-2.4866) - ], lambda(arg0, arg1) { - arith_equation(arg0[0:2], arg0[2:3], arg0[3:6], arg1); + 4.6247, + 3.3506, + 3.2361, + 2.6425, + 2.7655, + 4.6477, + 3.1328, + 1.3116, + 3.1851, + 4.7221, + 2.8952, + 3.466, + 1.3118, + 1.3118, + 3.466, + 2.8952, + 4.7221, + 3.1851, + 1.3116, + 3.1328, + 4.6477, + 2.7655, + 2.6425, + 3.2361, + 3.3506, + (-1.6585) + ], lambda(state_reg, aux_reg) { + arith_equation(state_reg[0:2], state_reg[2:3], state_reg[3:6], aux_reg); }>(state, aux); } diff --git a/algorithms/qsvt/qsvt_matrix_inversion/qsvt_matrix_inversion.json b/algorithms/qsvt/qsvt_matrix_inversion/qsvt_matrix_inversion.metadata.json similarity index 100% rename from algorithms/qsvt/qsvt_matrix_inversion/qsvt_matrix_inversion.json rename to algorithms/qsvt/qsvt_matrix_inversion/qsvt_matrix_inversion.metadata.json diff --git a/algorithms/simon/simon_example.json b/algorithms/simon/simon_example.metadata.json similarity index 100% rename from algorithms/simon/simon_example.json rename to algorithms/simon/simon_example.metadata.json diff --git a/algorithms/simon/simon_example.qmod b/algorithms/simon/simon_example.qmod index 89c39c4a..6ea8f381 100644 --- a/algorithms/simon/simon_example.qmod +++ b/algorithms/simon/simon_example.qmod @@ -11,7 +11,7 @@ qfunc simon_qfunc(x: qnum) { qfunc main(output x: qnum) { allocate<5>(x); - simon_qfunc(arg0, arg1); + simon_qfunc(x, res); }>(x); } diff --git a/algorithms/simon/simon_shallow_example.json b/algorithms/simon/simon_shallow_example.metadata.json similarity index 100% rename from algorithms/simon/simon_shallow_example.json rename to algorithms/simon/simon_shallow_example.metadata.json diff --git a/algorithms/simon/simon_shallow_example.qmod b/algorithms/simon/simon_shallow_example.qmod index 18f3e0c3..4efeecee 100644 --- a/algorithms/simon/simon_shallow_example.qmod +++ b/algorithms/simon/simon_shallow_example.qmod @@ -18,7 +18,7 @@ qfunc simon_qfunc(x: qnum) { qfunc main(output x: qnum) { allocate<6>(x); - simon_qfunc(arg0, arg1); + simon_qfunc(x, res); }>(x); } diff --git a/algorithms/swap_test/swap_test.json b/algorithms/swap_test/swap_test.metadata.json similarity index 100% rename from algorithms/swap_test/swap_test.json rename to algorithms/swap_test/swap_test.metadata.json diff --git a/algorithms/vqls/lcu_vqls/vqls_with_lcu.ipynb b/algorithms/vqls/lcu_vqls/vqls_with_lcu.ipynb index 49005fe7..65e88a49 100644 --- a/algorithms/vqls/lcu_vqls/vqls_with_lcu.ipynb +++ b/algorithms/vqls/lcu_vqls/vqls_with_lcu.ipynb @@ -209,6 +209,7 @@ "\n", " def get_cond_prop(self, res):\n", " aux_prob_0 = 0\n", + " all_prob_0 = 0\n", " for s in res:\n", " if s.state[self.aux_var_name] == 0:\n", " aux_prob_0 += s.shots\n", @@ -698,7 +699,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Constructing the model, synthesizing and executing on \"aer_simulator\": " + "Constructing the model, synthesizing and executing on Classiq's simulator:" ] }, { @@ -718,9 +719,7 @@ "from classiq.execution import ClassiqBackendPreferences, ExecutionPreferences\n", "from classiq.synthesis import set_execution_preferences\n", "\n", - "backend_preferences = ClassiqBackendPreferences(\n", - " backend_name=\"aer_simulator_statevector\"\n", - ")\n", + "backend_preferences = ClassiqBackendPreferences(backend_name=\"simulator_statevector\")\n", "model = create_model(main)\n", "\n", "model = set_execution_preferences(\n", @@ -838,9 +837,7 @@ "from classiq.execution import ClassiqBackendPreferences, ExecutionPreferences\n", "from classiq.synthesis import set_execution_preferences\n", "\n", - "backend_preferences = ClassiqBackendPreferences(\n", - " backend_name=\"aer_simulator_statevector\"\n", - ")\n", + "backend_preferences = ClassiqBackendPreferences(backend_name=\"simulator_statevector\")\n", "qmod = create_model(main)\n", "\n", "qmod = set_execution_preferences(\n", @@ -1105,9 +1102,9 @@ ], "metadata": { "kernelspec": { - "display_name": "dev_py3.11", + "display_name": "Python 3 (ipykernel)", "language": "python", - "name": "dev_py3.11" + "name": "python3" }, "language_info": { "codemirror_mode": { @@ -1119,7 +1116,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.4" + "version": "3.11.7" }, "vscode": { "interpreter": { diff --git a/algorithms/vqls/lcu_vqls/vqls_with_lcu.json b/algorithms/vqls/lcu_vqls/vqls_with_lcu.metadata.json similarity index 100% rename from algorithms/vqls/lcu_vqls/vqls_with_lcu.json rename to algorithms/vqls/lcu_vqls/vqls_with_lcu.metadata.json diff --git a/applications/chemistry/molecular_energy_curve/molecular_energy_curve.json b/applications/chemistry/molecular_energy_curve/molecular_energy_curve.metadata.json similarity index 100% rename from applications/chemistry/molecular_energy_curve/molecular_energy_curve.json rename to applications/chemistry/molecular_energy_curve/molecular_energy_curve.metadata.json diff --git a/applications/chemistry/molecule_eigensolver/molecule_eigensolver.json b/applications/chemistry/molecule_eigensolver/molecule_eigensolver.metadata.json similarity index 100% rename from applications/chemistry/molecule_eigensolver/molecule_eigensolver.json rename to applications/chemistry/molecule_eigensolver/molecule_eigensolver.metadata.json diff --git a/applications/chemistry/protein_folding/protein_folding.ipynb b/applications/chemistry/protein_folding/protein_folding.ipynb index 62bcae3a..e5e0db72 100644 --- a/applications/chemistry/protein_folding/protein_folding.ipynb +++ b/applications/chemistry/protein_folding/protein_folding.ipynb @@ -273,7 +273,7 @@ "from classiq.execution import ClassiqBackendPreferences, ExecutionPreferences\n", "\n", "backend_preferences = ExecutionPreferences(\n", - " backend_preferences=ClassiqBackendPreferences(backend_name=\"aer_simulator\")\n", + " backend_preferences=ClassiqBackendPreferences(backend_name=\"simulator\")\n", ")\n", "\n", "qmod = set_execution_preferences(qmod, backend_preferences)" diff --git a/applications/chemistry/protein_folding/protein_folding.json b/applications/chemistry/protein_folding/protein_folding.metadata.json similarity index 100% rename from applications/chemistry/protein_folding/protein_folding.json rename to applications/chemistry/protein_folding/protein_folding.metadata.json diff --git a/applications/chemistry/qpe_for_molecules/qpe_for_molecules.json b/applications/chemistry/qpe_for_molecules/qpe_for_molecules.metadata.json similarity index 100% rename from applications/chemistry/qpe_for_molecules/qpe_for_molecules.json rename to applications/chemistry/qpe_for_molecules/qpe_for_molecules.metadata.json diff --git a/applications/chemistry/second_quantized_hamiltonian/second_quantized_hamiltonian.json b/applications/chemistry/second_quantized_hamiltonian/second_quantized_hamiltonian.metadata.json similarity index 100% rename from applications/chemistry/second_quantized_hamiltonian/second_quantized_hamiltonian.json rename to applications/chemistry/second_quantized_hamiltonian/second_quantized_hamiltonian.metadata.json diff --git a/applications/cybersecurity/link_monitoring/link_monitoring.ipynb b/applications/cybersecurity/link_monitoring/link_monitoring.ipynb index bdadf58a..797d3c7d 100644 --- a/applications/cybersecurity/link_monitoring/link_monitoring.ipynb +++ b/applications/cybersecurity/link_monitoring/link_monitoring.ipynb @@ -547,7 +547,7 @@ "from classiq.execution import ClassiqBackendPreferences, ExecutionPreferences\n", "\n", "backend_preferences = ExecutionPreferences(\n", - " backend_preferences=ClassiqBackendPreferences(backend_name=\"aer_simulator\")\n", + " backend_preferences=ClassiqBackendPreferences(backend_name=\"simulator\")\n", ")\n", "\n", "qmod = set_execution_preferences(qmod, backend_preferences)" diff --git a/applications/cybersecurity/link_monitoring/link_monitoring.json b/applications/cybersecurity/link_monitoring/link_monitoring.metadata.json similarity index 100% rename from applications/cybersecurity/link_monitoring/link_monitoring.json rename to applications/cybersecurity/link_monitoring/link_monitoring.metadata.json diff --git a/applications/cybersecurity/patching_management/patch_min_vertex_cover.json b/applications/cybersecurity/patching_management/patch_min_vertex_cover.metadata.json similarity index 100% rename from applications/cybersecurity/patching_management/patch_min_vertex_cover.json rename to applications/cybersecurity/patching_management/patch_min_vertex_cover.metadata.json diff --git a/applications/cybersecurity/patching_management/patching_managment.ipynb b/applications/cybersecurity/patching_management/patching_managment.ipynb index e67573f6..bc9c415a 100644 --- a/applications/cybersecurity/patching_management/patching_managment.ipynb +++ b/applications/cybersecurity/patching_management/patching_managment.ipynb @@ -639,7 +639,7 @@ "from classiq.execution import ClassiqBackendPreferences, ExecutionPreferences\n", "\n", "backend_preferences = ExecutionPreferences(\n", - " backend_preferences=ClassiqBackendPreferences(backend_name=\"aer_simulator\")\n", + " backend_preferences=ClassiqBackendPreferences(backend_name=\"simulator\")\n", ")\n", "\n", "qmod = set_execution_preferences(qmod, backend_preferences)" diff --git a/applications/cybersecurity/whitebox_fuzzing/whitebox_fuzzing.json b/applications/cybersecurity/whitebox_fuzzing/whitebox_fuzzing.metadata.json similarity index 100% rename from applications/cybersecurity/whitebox_fuzzing/whitebox_fuzzing.json rename to applications/cybersecurity/whitebox_fuzzing/whitebox_fuzzing.metadata.json diff --git a/applications/cybersecurity/whitebox_fuzzing/whitebox_fuzzing.qmod b/applications/cybersecurity/whitebox_fuzzing/whitebox_fuzzing.qmod index fffbc22b..ac68ec73 100644 --- a/applications/cybersecurity/whitebox_fuzzing/whitebox_fuzzing.qmod +++ b/applications/cybersecurity/whitebox_fuzzing/whitebox_fuzzing.qmod @@ -37,8 +37,8 @@ qfunc my_diffuser(x: qnum, y: qnum) sp_operand(x, y); } } apply { - my_oracle(); } } @@ -54,12 +54,12 @@ qfunc main(output x: qnum, output y: qnum) { my_sp(x, y); power (4) { my_grover_operator(); }, lambda() { - my_diffuser(x, y); }>(); } diff --git a/applications/finance/credit_card_fraud/credit_card_fraud.json b/applications/finance/credit_card_fraud/credit_card_fraud.metadata.json similarity index 100% rename from applications/finance/credit_card_fraud/credit_card_fraud.json rename to applications/finance/credit_card_fraud/credit_card_fraud.metadata.json diff --git a/applications/finance/option_pricing/option_pricing.json b/applications/finance/option_pricing/option_pricing.metadata.json similarity index 82% rename from applications/finance/option_pricing/option_pricing.json rename to applications/finance/option_pricing/option_pricing.metadata.json index f1a703d0..91e5bafb 100644 --- a/applications/finance/option_pricing/option_pricing.json +++ b/applications/finance/option_pricing/option_pricing.metadata.json @@ -2,6 +2,7 @@ "friendly_name": "Option Pricing", "description": "Estimating European Call Options Price Using Amplitude Estimation", "vertical_tags": ["finance"], + "problem_domain_tags": ["risk analysis"], "qmod_type": ["application"], "level": ["demos"] } diff --git a/applications/finance/option_pricing/option_pricing.qmod b/applications/finance/option_pricing/option_pricing.qmod index 9166436b..3aac9f86 100644 --- a/applications/finance/option_pricing/option_pricing.qmod +++ b/applications/finance/option_pricing/option_pricing.qmod @@ -1,8 +1,8 @@ qfunc qmci(phase: qnum, packed_vars: qbit[]) { - amplitude_estimation(phase, packed_vars); } @@ -27,17 +27,15 @@ qfunc main(output phase_port: qbit[2]) { } cscope ``` -def execute_amplitude_estimation(phase_port_size): - result = sample() - estimation = qae_with_qpe_result_post_processing( - estimation_register_size=phase_port_size, - estimation_method=1, - result=result - ) - save({"result": result, "estimation": estimation}) - return estimation - -estimation = execute_amplitude_estimation(2) -result = log_normal_finance_post_process(struct_literal(LogNormalModel, num_qubits=5, mu=0.7, sigma=0.13), struct_literal(FinanceFunction, f=FinanceFunctionType.EUROPEAN_CALL_OPTION, threshold=1.9, larger=True, polynomial_degree=0, use_chebyshev_polynomial_approximation=False, tail_probability=0.0), estimation) -save({'result': result}) +phase_port_size = 2 +counts = sample() +save({"counts": counts}) +probability_estimation = qae_with_qpe_result_post_processing( + estimation_register_size=phase_port_size, + estimation_method=1, + result=counts +) +save({"probability_estimation": probability_estimation}) +payoff_estimation = log_normal_finance_post_process(struct_literal(LogNormalModel, num_qubits=5, mu=0.7, sigma=0.13), struct_literal(FinanceFunction, f=FinanceFunctionType.EUROPEAN_CALL_OPTION, threshold=1.9, larger=True, polynomial_degree=0, use_chebyshev_polynomial_approximation=False, tail_probability=0.0), probability_estimation) +save({"payoff_estimation": payoff_estimation}) ``` diff --git a/applications/finance/portfolio_optimization/portfolio_optimization.ipynb b/applications/finance/portfolio_optimization/portfolio_optimization.ipynb index 7611569e..cfa4ee45 100644 --- a/applications/finance/portfolio_optimization/portfolio_optimization.ipynb +++ b/applications/finance/portfolio_optimization/portfolio_optimization.ipynb @@ -283,7 +283,7 @@ "from classiq.execution import ClassiqBackendPreferences, ExecutionPreferences\n", "\n", "backend_preferences = ExecutionPreferences(\n", - " backend_preferences=ClassiqBackendPreferences(backend_name=\"aer_simulator\")\n", + " backend_preferences=ClassiqBackendPreferences(backend_name=\"simulator\")\n", ")\n", "\n", "qmod = set_execution_preferences(qmod, backend_preferences)" diff --git a/applications/finance/portfolio_optimization/portfolio_optimization.json b/applications/finance/portfolio_optimization/portfolio_optimization.metadata.json similarity index 100% rename from applications/finance/portfolio_optimization/portfolio_optimization.json rename to applications/finance/portfolio_optimization/portfolio_optimization.metadata.json diff --git a/applications/logistics/facility_location/facility_location.ipynb b/applications/logistics/facility_location/facility_location.ipynb index 43410afd..474a5755 100644 --- a/applications/logistics/facility_location/facility_location.ipynb +++ b/applications/logistics/facility_location/facility_location.ipynb @@ -406,7 +406,7 @@ "from classiq.execution import ClassiqBackendPreferences, ExecutionPreferences\n", "\n", "backend_preferences = ExecutionPreferences(\n", - " backend_preferences=ClassiqBackendPreferences(backend_name=\"aer_simulator\")\n", + " backend_preferences=ClassiqBackendPreferences(backend_name=\"simulator\")\n", ")\n", "\n", "qmod = set_execution_preferences(qmod, backend_preferences)" diff --git a/applications/logistics/facility_location/facility_location.json b/applications/logistics/facility_location/facility_location.metadata.json similarity index 100% rename from applications/logistics/facility_location/facility_location.json rename to applications/logistics/facility_location/facility_location.metadata.json diff --git a/applications/logistics/task_scheduling_problem/task_scheduling_problem.ipynb b/applications/logistics/task_scheduling_problem/task_scheduling_problem.ipynb index 05e89360..a011aac3 100644 --- a/applications/logistics/task_scheduling_problem/task_scheduling_problem.ipynb +++ b/applications/logistics/task_scheduling_problem/task_scheduling_problem.ipynb @@ -676,7 +676,7 @@ "from classiq.execution import ClassiqBackendPreferences, ExecutionPreferences\n", "\n", "backend_preferences = ExecutionPreferences(\n", - " backend_preferences=ClassiqBackendPreferences(backend_name=\"aer_simulator\")\n", + " backend_preferences=ClassiqBackendPreferences(backend_name=\"simulator\")\n", ")\n", "\n", "qmod = set_execution_preferences(qmod, backend_preferences)" @@ -1527,7 +1527,7 @@ ")\n", "\n", "backend_preferences = ExecutionPreferences(\n", - " backend_preferences=ClassiqBackendPreferences(backend_name=\"aer_simulator\")\n", + " backend_preferences=ClassiqBackendPreferences(backend_name=\"simulator\")\n", ")\n", "\n", "qmod = set_execution_preferences(qmod, backend_preferences)" diff --git a/applications/logistics/task_scheduling_problem/task_scheduling_problem.json b/applications/logistics/task_scheduling_problem/task_scheduling_problem.metadata.json similarity index 100% rename from applications/logistics/task_scheduling_problem/task_scheduling_problem.json rename to applications/logistics/task_scheduling_problem/task_scheduling_problem.metadata.json diff --git a/applications/logistics/task_scheduling_problem/task_scheduling_problem_large.json b/applications/logistics/task_scheduling_problem/task_scheduling_problem_large.metadata.json similarity index 100% rename from applications/logistics/task_scheduling_problem/task_scheduling_problem_large.json rename to applications/logistics/task_scheduling_problem/task_scheduling_problem_large.metadata.json diff --git a/applications/logistics/traveling_salesman_problem/traveling_saleman_problem.json b/applications/logistics/traveling_salesman_problem/traveling_saleman_problem.metadata.json similarity index 100% rename from applications/logistics/traveling_salesman_problem/traveling_saleman_problem.json rename to applications/logistics/traveling_salesman_problem/traveling_saleman_problem.metadata.json diff --git a/applications/logistics/traveling_salesman_problem/traveling_salesman_problem.ipynb b/applications/logistics/traveling_salesman_problem/traveling_salesman_problem.ipynb index d54beddd..dc8d7aae 100644 --- a/applications/logistics/traveling_salesman_problem/traveling_salesman_problem.ipynb +++ b/applications/logistics/traveling_salesman_problem/traveling_salesman_problem.ipynb @@ -430,7 +430,7 @@ "from classiq.execution import ClassiqBackendPreferences, ExecutionPreferences\n", "\n", "backend_preferences = ExecutionPreferences(\n", - " backend_preferences=ClassiqBackendPreferences(backend_name=\"aer_simulator\")\n", + " backend_preferences=ClassiqBackendPreferences(backend_name=\"simulator\")\n", ")\n", "\n", "qmod = set_execution_preferences(qmod, backend_preferences)" diff --git a/applications/optimization/electric_grid_optimization/electric_grid_optimization.ipynb b/applications/optimization/electric_grid_optimization/electric_grid_optimization.ipynb index 67967d01..0bdba387 100644 --- a/applications/optimization/electric_grid_optimization/electric_grid_optimization.ipynb +++ b/applications/optimization/electric_grid_optimization/electric_grid_optimization.ipynb @@ -311,7 +311,7 @@ ")\n", "\n", "# defining cosntraint such as computer and parameters for a quicker and more optimized circuit.\n", - "preferences = Preferences(transpilation_option=\"none\", timeout_seconds=3000)\n", + "preferences = Preferences(timeout_seconds=3000)\n", "\n", "qmod = set_preferences(qmod, preferences)" ] diff --git a/applications/optimization/electric_grid_optimization/electric_grid_optimization.json b/applications/optimization/electric_grid_optimization/electric_grid_optimization.metadata.json similarity index 100% rename from applications/optimization/electric_grid_optimization/electric_grid_optimization.json rename to applications/optimization/electric_grid_optimization/electric_grid_optimization.metadata.json diff --git a/applications/optimization/integer_linear_programming/integer_linear_programming.ipynb b/applications/optimization/integer_linear_programming/integer_linear_programming.ipynb index 80ab1209..93f7b4ae 100644 --- a/applications/optimization/integer_linear_programming/integer_linear_programming.ipynb +++ b/applications/optimization/integer_linear_programming/integer_linear_programming.ipynb @@ -325,7 +325,7 @@ "from classiq.execution import ClassiqBackendPreferences, ExecutionPreferences\n", "\n", "backend_preferences = ExecutionPreferences(\n", - " backend_preferences=ClassiqBackendPreferences(backend_name=\"aer_simulator\")\n", + " backend_preferences=ClassiqBackendPreferences(backend_name=\"simulator\")\n", ")\n", "\n", "qmod = set_execution_preferences(qmod, backend_preferences)" diff --git a/applications/optimization/integer_linear_programming/integer_linear_programming.json b/applications/optimization/integer_linear_programming/integer_linear_programming.metadata.json similarity index 100% rename from applications/optimization/integer_linear_programming/integer_linear_programming.json rename to applications/optimization/integer_linear_programming/integer_linear_programming.metadata.json diff --git a/applications/optimization/knapsack_binary/knapsack_binary.ipynb b/applications/optimization/knapsack_binary/knapsack_binary.ipynb index 512df04d..a6ca876d 100644 --- a/applications/optimization/knapsack_binary/knapsack_binary.ipynb +++ b/applications/optimization/knapsack_binary/knapsack_binary.ipynb @@ -251,7 +251,7 @@ "from classiq.execution import ClassiqBackendPreferences, ExecutionPreferences\n", "\n", "backend_preferences = ExecutionPreferences(\n", - " backend_preferences=ClassiqBackendPreferences(backend_name=\"aer_simulator\")\n", + " backend_preferences=ClassiqBackendPreferences(backend_name=\"simulator\")\n", ")\n", "\n", "qmod = set_execution_preferences(qmod, backend_preferences)" diff --git a/applications/optimization/knapsack_binary/knapsack_binary.json b/applications/optimization/knapsack_binary/knapsack_binary.metadata.json similarity index 100% rename from applications/optimization/knapsack_binary/knapsack_binary.json rename to applications/optimization/knapsack_binary/knapsack_binary.metadata.json diff --git a/applications/optimization/knapsack_integer/knapsack_integer.ipynb b/applications/optimization/knapsack_integer/knapsack_integer.ipynb index f4dbf2eb..4f2c0075 100644 --- a/applications/optimization/knapsack_integer/knapsack_integer.ipynb +++ b/applications/optimization/knapsack_integer/knapsack_integer.ipynb @@ -267,7 +267,7 @@ "from classiq.execution import ClassiqBackendPreferences, ExecutionPreferences\n", "\n", "backend_preferences = ExecutionPreferences(\n", - " backend_preferences=ClassiqBackendPreferences(backend_name=\"aer_simulator\")\n", + " backend_preferences=ClassiqBackendPreferences(backend_name=\"simulator\")\n", ")\n", "\n", "qmod = set_execution_preferences(qmod, backend_preferences)" diff --git a/applications/optimization/knapsack_integer/knapsack_integer.json b/applications/optimization/knapsack_integer/knapsack_integer.metadata.json similarity index 100% rename from applications/optimization/knapsack_integer/knapsack_integer.json rename to applications/optimization/knapsack_integer/knapsack_integer.metadata.json diff --git a/applications/optimization/max_clique/max_clique.ipynb b/applications/optimization/max_clique/max_clique.ipynb index 29447ba5..b90d89ba 100644 --- a/applications/optimization/max_clique/max_clique.ipynb +++ b/applications/optimization/max_clique/max_clique.ipynb @@ -251,7 +251,7 @@ "from classiq.execution import ClassiqBackendPreferences, ExecutionPreferences\n", "\n", "backend_preferences = ExecutionPreferences(\n", - " backend_preferences=ClassiqBackendPreferences(backend_name=\"aer_simulator\")\n", + " backend_preferences=ClassiqBackendPreferences(backend_name=\"simulator\")\n", ")\n", "\n", "qmod = set_execution_preferences(qmod, backend_preferences)" diff --git a/applications/optimization/max_clique/max_clique.json b/applications/optimization/max_clique/max_clique.metadata.json similarity index 100% rename from applications/optimization/max_clique/max_clique.json rename to applications/optimization/max_clique/max_clique.metadata.json diff --git a/applications/optimization/max_cut/max_cut.ipynb b/applications/optimization/max_cut/max_cut.ipynb index b47bccf6..e5c6bbc8 100644 --- a/applications/optimization/max_cut/max_cut.ipynb +++ b/applications/optimization/max_cut/max_cut.ipynb @@ -274,7 +274,7 @@ "from classiq.execution import ClassiqBackendPreferences, ExecutionPreferences\n", "\n", "backend_preferences = ExecutionPreferences(\n", - " backend_preferences=ClassiqBackendPreferences(backend_name=\"aer_simulator\")\n", + " backend_preferences=ClassiqBackendPreferences(backend_name=\"simulator\")\n", ")\n", "\n", "qmod = set_execution_preferences(qmod, backend_preferences)" diff --git a/applications/optimization/max_cut/max_cut.json b/applications/optimization/max_cut/max_cut.metadata.json similarity index 100% rename from applications/optimization/max_cut/max_cut.json rename to applications/optimization/max_cut/max_cut.metadata.json diff --git a/applications/optimization/max_independent_set/max_independent_set.ipynb b/applications/optimization/max_independent_set/max_independent_set.ipynb index fdd9e557..cc5e0e16 100644 --- a/applications/optimization/max_independent_set/max_independent_set.ipynb +++ b/applications/optimization/max_independent_set/max_independent_set.ipynb @@ -339,7 +339,7 @@ "from classiq.execution import ClassiqBackendPreferences, ExecutionPreferences\n", "\n", "backend_preferences = ExecutionPreferences(\n", - " backend_preferences=ClassiqBackendPreferences(backend_name=\"aer_simulator\")\n", + " backend_preferences=ClassiqBackendPreferences(backend_name=\"simulator\")\n", ")\n", "\n", "qmod = set_execution_preferences(qmod, backend_preferences)" diff --git a/applications/optimization/max_independent_set/max_independent_set.json b/applications/optimization/max_independent_set/max_independent_set.metadata.json similarity index 100% rename from applications/optimization/max_independent_set/max_independent_set.json rename to applications/optimization/max_independent_set/max_independent_set.metadata.json diff --git a/applications/optimization/max_induced_k_color_subgraph/max_induced_k_color_subgraph.ipynb b/applications/optimization/max_induced_k_color_subgraph/max_induced_k_color_subgraph.ipynb index 8b9307c1..a5d78c0e 100644 --- a/applications/optimization/max_induced_k_color_subgraph/max_induced_k_color_subgraph.ipynb +++ b/applications/optimization/max_induced_k_color_subgraph/max_induced_k_color_subgraph.ipynb @@ -340,7 +340,7 @@ "from classiq.execution import ClassiqBackendPreferences, ExecutionPreferences\n", "\n", "backend_preferences = ExecutionPreferences(\n", - " backend_preferences=ClassiqBackendPreferences(backend_name=\"aer_simulator\")\n", + " backend_preferences=ClassiqBackendPreferences(backend_name=\"simulator\")\n", ")\n", "\n", "qmod = set_execution_preferences(qmod, backend_preferences)" diff --git a/applications/optimization/max_induced_k_color_subgraph/max_induced_k_color_subgraph.json b/applications/optimization/max_induced_k_color_subgraph/max_induced_k_color_subgraph.metadata.json similarity index 100% rename from applications/optimization/max_induced_k_color_subgraph/max_induced_k_color_subgraph.json rename to applications/optimization/max_induced_k_color_subgraph/max_induced_k_color_subgraph.metadata.json diff --git a/applications/optimization/max_k_vertex_cover/max_k_vertex_cover.ipynb b/applications/optimization/max_k_vertex_cover/max_k_vertex_cover.ipynb index 7aee3256..50fb1612 100644 --- a/applications/optimization/max_k_vertex_cover/max_k_vertex_cover.ipynb +++ b/applications/optimization/max_k_vertex_cover/max_k_vertex_cover.ipynb @@ -338,7 +338,7 @@ "from classiq.execution import ClassiqBackendPreferences, ExecutionPreferences\n", "\n", "backend_preferences = ExecutionPreferences(\n", - " backend_preferences=ClassiqBackendPreferences(backend_name=\"aer_simulator\")\n", + " backend_preferences=ClassiqBackendPreferences(backend_name=\"simulator\")\n", ")\n", "\n", "qmod = set_execution_preferences(qmod, backend_preferences)" diff --git a/applications/optimization/max_k_vertex_cover/max_k_vertex_cover.json b/applications/optimization/max_k_vertex_cover/max_k_vertex_cover.metadata.json similarity index 100% rename from applications/optimization/max_k_vertex_cover/max_k_vertex_cover.json rename to applications/optimization/max_k_vertex_cover/max_k_vertex_cover.metadata.json diff --git a/applications/optimization/min_graph_coloring/min_graph_coloring.ipynb b/applications/optimization/min_graph_coloring/min_graph_coloring.ipynb index 659add94..6b5be50b 100644 --- a/applications/optimization/min_graph_coloring/min_graph_coloring.ipynb +++ b/applications/optimization/min_graph_coloring/min_graph_coloring.ipynb @@ -372,7 +372,7 @@ "from classiq.execution import ClassiqBackendPreferences, ExecutionPreferences\n", "\n", "backend_preferences = ExecutionPreferences(\n", - " backend_preferences=ClassiqBackendPreferences(backend_name=\"aer_simulator\")\n", + " backend_preferences=ClassiqBackendPreferences(backend_name=\"simulator\")\n", ")\n", "\n", "qmod = set_execution_preferences(qmod, backend_preferences)" diff --git a/applications/optimization/min_graph_coloring/min_graph_coloring.json b/applications/optimization/min_graph_coloring/min_graph_coloring.metadata.json similarity index 100% rename from applications/optimization/min_graph_coloring/min_graph_coloring.json rename to applications/optimization/min_graph_coloring/min_graph_coloring.metadata.json diff --git a/applications/optimization/minimum_dominating_set/minimum_dominating_set.ipynb b/applications/optimization/minimum_dominating_set/minimum_dominating_set.ipynb index cb9907f0..2cc5bb24 100644 --- a/applications/optimization/minimum_dominating_set/minimum_dominating_set.ipynb +++ b/applications/optimization/minimum_dominating_set/minimum_dominating_set.ipynb @@ -344,7 +344,7 @@ "from classiq.execution import ClassiqBackendPreferences, ExecutionPreferences\n", "\n", "backend_preferences = ExecutionPreferences(\n", - " backend_preferences=ClassiqBackendPreferences(backend_name=\"aer_simulator\")\n", + " backend_preferences=ClassiqBackendPreferences(backend_name=\"simulator\")\n", ")\n", "\n", "qmod = set_execution_preferences(qmod, backend_preferences)" diff --git a/applications/optimization/minimum_dominating_set/minimum_dominating_set.json b/applications/optimization/minimum_dominating_set/minimum_dominating_set.metadata.json similarity index 100% rename from applications/optimization/minimum_dominating_set/minimum_dominating_set.json rename to applications/optimization/minimum_dominating_set/minimum_dominating_set.metadata.json diff --git a/applications/optimization/set_cover/set_cover.ipynb b/applications/optimization/set_cover/set_cover.ipynb index bd6b882e..9afbff69 100644 --- a/applications/optimization/set_cover/set_cover.ipynb +++ b/applications/optimization/set_cover/set_cover.ipynb @@ -332,7 +332,7 @@ "from classiq.execution import ClassiqBackendPreferences, ExecutionPreferences\n", "\n", "backend_preferences = ExecutionPreferences(\n", - " backend_preferences=ClassiqBackendPreferences(backend_name=\"aer_simulator\")\n", + " backend_preferences=ClassiqBackendPreferences(backend_name=\"simulator\")\n", ")\n", "\n", "qmod = set_execution_preferences(qmod, backend_preferences)" diff --git a/applications/optimization/set_cover/set_cover.json b/applications/optimization/set_cover/set_cover.metadata.json similarity index 100% rename from applications/optimization/set_cover/set_cover.json rename to applications/optimization/set_cover/set_cover.metadata.json diff --git a/applications/optimization/set_partition/set_partition.ipynb b/applications/optimization/set_partition/set_partition.ipynb index 16500061..6361c5bb 100644 --- a/applications/optimization/set_partition/set_partition.ipynb +++ b/applications/optimization/set_partition/set_partition.ipynb @@ -298,7 +298,7 @@ "from classiq.execution import ClassiqBackendPreferences, ExecutionPreferences\n", "\n", "backend_preferences = ExecutionPreferences(\n", - " backend_preferences=ClassiqBackendPreferences(backend_name=\"aer_simulator\")\n", + " backend_preferences=ClassiqBackendPreferences(backend_name=\"simulator\")\n", ")\n", "\n", "qmod = set_execution_preferences(qmod, backend_preferences)" diff --git a/applications/optimization/set_partition/set_partition.json b/applications/optimization/set_partition/set_partition.metadata.json similarity index 100% rename from applications/optimization/set_partition/set_partition.json rename to applications/optimization/set_partition/set_partition.metadata.json diff --git a/applications/physical_systems/ising_model/ising_model.ipynb b/applications/physical_systems/ising_model/ising_model.ipynb index ffe96756..927ecaf3 100644 --- a/applications/physical_systems/ising_model/ising_model.ipynb +++ b/applications/physical_systems/ising_model/ising_model.ipynb @@ -198,7 +198,7 @@ "from classiq.execution import ClassiqBackendPreferences, ExecutionPreferences\n", "\n", "backend_preferences = ExecutionPreferences(\n", - " backend_preferences=ClassiqBackendPreferences(backend_name=\"aer_simulator\")\n", + " backend_preferences=ClassiqBackendPreferences(backend_name=\"simulator\")\n", ")\n", "\n", "qmod = set_execution_preferences(qmod, backend_preferences)" diff --git a/applications/physical_systems/ising_model/ising_model.json b/applications/physical_systems/ising_model/ising_model.metadata.json similarity index 100% rename from applications/physical_systems/ising_model/ising_model.json rename to applications/physical_systems/ising_model/ising_model.metadata.json diff --git a/built_in_apps/chemistry/chemistry.json b/built_in_apps/chemistry/chemistry.metadata.json similarity index 100% rename from built_in_apps/chemistry/chemistry.json rename to built_in_apps/chemistry/chemistry.metadata.json diff --git a/built_in_apps/grover/grover.json b/built_in_apps/grover/grover.metadata.json similarity index 100% rename from built_in_apps/grover/grover.json rename to built_in_apps/grover/grover.metadata.json diff --git a/built_in_apps/option_pricing/option_pricing.json b/built_in_apps/option_pricing/option_pricing.metadata.json similarity index 82% rename from built_in_apps/option_pricing/option_pricing.json rename to built_in_apps/option_pricing/option_pricing.metadata.json index f1a703d0..91e5bafb 100644 --- a/built_in_apps/option_pricing/option_pricing.json +++ b/built_in_apps/option_pricing/option_pricing.metadata.json @@ -2,6 +2,7 @@ "friendly_name": "Option Pricing", "description": "Estimating European Call Options Price Using Amplitude Estimation", "vertical_tags": ["finance"], + "problem_domain_tags": ["risk analysis"], "qmod_type": ["application"], "level": ["demos"] } diff --git a/built_in_apps/option_pricing/option_pricing.qmod b/built_in_apps/option_pricing/option_pricing.qmod index 9d97c0f2..a5c529aa 100644 --- a/built_in_apps/option_pricing/option_pricing.qmod +++ b/built_in_apps/option_pricing/option_pricing.qmod @@ -1,8 +1,8 @@ qfunc qmci(phase: qnum, packed_vars: qbit[]) { - amplitude_estimation(phase, packed_vars); } @@ -27,17 +27,15 @@ qfunc main(output phase_port: qbit[1]) { } cscope ``` -def execute_amplitude_estimation(phase_port_size): - result = sample() - estimation = qae_with_qpe_result_post_processing( - estimation_register_size=phase_port_size, - estimation_method=1, - result=result - ) - save({"result": result, "estimation": estimation}) - return estimation - -estimation = execute_amplitude_estimation(1) -result = log_normal_finance_post_process(struct_literal(LogNormalModel, num_qubits=5, mu=0.7, sigma=0.13), struct_literal(FinanceFunction, f=FinanceFunctionType.EUROPEAN_CALL_OPTION, threshold=2.0, larger=True, polynomial_degree=0, use_chebyshev_polynomial_approximation=False, tail_probability=0.0), estimation) -save({'result': result}) +phase_port_size = 1 +counts = sample() +save({"counts": counts}) +probability_estimation = qae_with_qpe_result_post_processing( + estimation_register_size=phase_port_size, + estimation_method=1, + result=counts +) +save({"probability_estimation": probability_estimation}) +payoff_estimation = log_normal_finance_post_process(struct_literal(LogNormalModel, num_qubits=5, mu=0.7, sigma=0.13), struct_literal(FinanceFunction, f=FinanceFunctionType.EUROPEAN_CALL_OPTION, threshold=2.0, larger=True, polynomial_degree=0, use_chebyshev_polynomial_approximation=False, tail_probability=0.0), probability_estimation) +save({"payoff_estimation": payoff_estimation}) ``` diff --git a/community/QClass_2024/Submissions/HW1/HW1_QClass2024.ipynb b/community/QClass_2024/Assignments/HW1_QClass2024.ipynb similarity index 70% rename from community/QClass_2024/Submissions/HW1/HW1_QClass2024.ipynb rename to community/QClass_2024/Assignments/HW1_QClass2024.ipynb index 33c673d5..fde33bd8 100644 --- a/community/QClass_2024/Submissions/HW1/HW1_QClass2024.ipynb +++ b/community/QClass_2024/Assignments/HW1_QClass2024.ipynb @@ -10,7 +10,7 @@ "\n", "In this workshop, we will learn how to write quantum models using Qmod. We will be using the Python embedding of Qmod, available as part of the Classiq Python SDK. We will learn basic concepts in the Qmod language, such as functions, operators, quantum variables, and quantum types. We will develop useful building blocks and small algorithms.\n", "\n", - "The [QMOD language reference](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/) covers these concepts more systematically and includes more examples.\n", + "The [QMOD language reference](https://docs.classiq.io/latest/reference-manual/platform/qmod/language-reference/) covers these concepts more systematically and includes more examples.\n", "\n", "This workshop consists of step-by-step exercises. It is structured as follows:\n", "\n", @@ -24,7 +24,7 @@ "\n", "Make sure you have a Python version of 3.8 through 3.11 installed. Unfortunately, Classiq is not yet supported with Python 3.12.\n", "\n", - "Install Classiq’s Python SDK by following the instructions on this page: [Getting Started - Classiq](https://docs.classiq.io/latest/getting-started/).\n", + "Install Classiq’s Python SDK by following the instructions on this page: [Getting Started - Classiq](https://docs.classiq.io/latest/classiq_101/registration_installations/).\n", "\n", "### Python Qmod Exercises - General Instructions\n", "\n", @@ -32,7 +32,7 @@ "1. Make sure you define a `main` function that calls functions you create.\n", "2. Use `create_model` by running `qmod = create_model(main)` to construct a representation of your model.\n", "3. You can synthesize the model (using `qprog = synthesize(qmod)`) to obtain an implementation - a quantum program.\n", - "4. You can then visualize the quantum program (`show(qprog)`) or execute it (using `execute(qprog)`. See: [Execution - Classiq](https://docs.classiq.io/latest/user-guide/platform/executor/#full-example)). You can also execute it with the IDE after visualizing the circuit.\n" + "4. You can then visualize the quantum program (`show(qprog)`) or execute it (using `execute(qprog)`. See: [Execution - Classiq](https://docs.classiq.io/latest/reference-manual/platform/executor/). You can also execute it with the IDE after visualizing the circuit.\n" ] }, { @@ -46,15 +46,10 @@ }, { "cell_type": "code", - "metadata": { - "ExecuteTime": { - "end_time": "2024-05-19T02:17:30.695401Z", - "start_time": "2024-05-19T02:17:30.691705Z" - } - }, + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ - "import math\n", - "\n", "from classiq import *\n", "\n", "\n", @@ -64,15 +59,13 @@ " X(target=q)\n", " H(target=q)\n", "\n", - "##Syntax may not be correct on this exercise or other exercises\n", + "\n", "# Define a main function\n", "@qfunc\n", "def main(res: Output[QBit]) -> None:\n", " allocate(1, res)\n", " foo(q=res)" - ], - "outputs": [], - "execution_count": 3 + ] }, { "cell_type": "markdown", @@ -85,33 +78,14 @@ }, { "cell_type": "code", - "metadata": { - "ExecuteTime": { - "end_time": "2024-05-19T02:14:17.739674Z", - "start_time": "2024-05-19T02:14:17.727247Z" - } - }, + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "from classiq import *\n", "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ], - "outputs": [ - { - "ename": "NameError", - "evalue": "name 'main' is not defined", - "output_type": "error", - "traceback": [ - "\u001B[0;31m---------------------------------------------------------------------------\u001B[0m", - "\u001B[0;31mNameError\u001B[0m Traceback (most recent call last)", - "\u001B[0;32m/var/folders/xd/g2xmyd4n50qf68f46q132kk00000gn/T/ipykernel_42181/919198635.py\u001B[0m in \u001B[0;36m\u001B[0;34m\u001B[0m\n\u001B[1;32m 1\u001B[0m \u001B[0;32mfrom\u001B[0m \u001B[0mclassiq\u001B[0m \u001B[0;32mimport\u001B[0m \u001B[0;34m*\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n\u001B[1;32m 2\u001B[0m \u001B[0;34m\u001B[0m\u001B[0m\n\u001B[0;32m----> 3\u001B[0;31m \u001B[0mqmod\u001B[0m \u001B[0;34m=\u001B[0m \u001B[0mcreate_model\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0mmain\u001B[0m\u001B[0;34m)\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n\u001B[0m\u001B[1;32m 4\u001B[0m \u001B[0;34m\u001B[0m\u001B[0m\n", - "\u001B[0;31mNameError\u001B[0m: name 'main' is not defined" - ] - } - ], - "execution_count": 2 + "# Your code here:" + ] }, { "cell_type": "markdown", @@ -119,7 +93,7 @@ "source": [ "In Qmod `QBit` is the simplest quantum type, and in this example, `q` is a quantum variable of type `QBit`. Quantum variables abstract away the mapping of quantum objects to qubits in the actual circuit.\n", "\n", - "See also [Quantum Variables](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/quantum-variables/).\n", + "See also [Quantum Variables](https://docs.classiq.io/latest/classiq_101/classiq_concepts/design/quantum_variables_and_functions/).\n", "\n", "We will discuss other quantum types during the workshop.\n" ] @@ -142,7 +116,7 @@ "Create a function that takes two single-qubit (`QBit`) quantum arguments and prepares the bell state on them ([Bell state](https://en.wikipedia.org/wiki/Bell_state)) by applying `H` on one variable and then using it as the control of a `CX` function with the second variable as the target.\n", "Create a main function that uses this function and has two single-qubit outputs, initialize them to the |0> state (using the `allocate` function), and apply your function to them.\n", "\n", - "See also [Functions](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/functions#syntax)\n" + "See also [Functions](https://docs.classiq.io/latest/reference-manual/platform/qmod/library-reference/core-library-functions/)\n" ] }, { @@ -153,16 +127,7 @@ "source": [ "from classiq import *\n", "\n", - "def test(a: QBit, b: QBit) -> None:\n", - " H(target=a)\n", - " CX(\n", - " control=a,\n", - " target=b\n", - " ) \n", - "\n", - "def main(res: Output[QBit]) -> None:\n", - " allocate(2, res)\n", - " test(a=res[0], b=res[1])\n", + "# Your code here:\n", "\n", "qmod = create_model(main)\n", "qprog = synthesize(qmod)\n", @@ -185,16 +150,7 @@ "source": [ "from classiq import *\n", "\n", - "def test(res: QArray[QBit]) -> None:\n", - " H(target=res[0])\n", - " CX(\n", - " control=res[0],\n", - " target=res[1]\n", - " ) \n", - "\n", - "def main(res: Output[QBit]) -> None:\n", - " allocate(2, res)\n", - " test(a=res[0], b=res[1])\n", + "# Your code here:\n", "\n", "qmod = create_model(main)\n", "qprog = synthesize(qmod)\n", @@ -209,7 +165,7 @@ "\n", "Use the built-in `repeat` operator to create your own Hadamard transform function (call it `my_hadamard_transform`). The Hadamard transform function is a function that takes as argument a qubit array of an unspecified size and applies `H` to each of its qubit.\n", "\n", - "See also [Classical repeat](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/classical-control-flow/#classical-repeat).\n", + "See also [Classical repeat](https://docs.classiq.io/latest/reference-manual/platform/qmod/language-reference/statements/classical-control-flow/#classical-repeat).\n", "\n", "Set your main function to have a quantum array output of unspecified size, allocate 10 qubits, and then apply your Hadamard transform function.\n" ] @@ -222,12 +178,7 @@ "source": [ "from classiq import *\n", "\n", - "def my_hadamard_transform(res: QArray[QBit]) -> None:\n", - " repeat(H(target=res[0]), 0)\n", - "\n", - "def main(res: Output[QBit]) -> None:\n", - " allocate(10, res)\n", - " my_hadamard_transform(res)\n", + "# Your code here:\n", "\n", "qmod = create_model(main)\n", "qprog = synthesize(qmod)\n", @@ -242,7 +193,7 @@ "The `repeat` operator invokes a statement block multiple times. The statement block is specified using a Python callable, typically a lambda expression. Inside the block you can refer to variables declared in the outer function scope.\n", "This concept is called `quantum variable capture`, equivalent to [capture](https://en.wikipedia.org/wiki/Closure_(computer_programming)) in classical languages.\n", "\n", - "See also [Capturing context variables and parameters](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/operators/#capturing-context-variables-and-parameters)." + "See also [Capturing context variables and parameters](https://docs.classiq.io/latest/reference-manual/platform/qmod/language-reference/operators/#example-2)." ] }, { @@ -256,7 +207,7 @@ "Sometimes, however, power can be simplified, thus saving computational resources.\n", "The most trivial example is a quantum operation expressed as a single explicit unitary matrix (i.e., all n*n matrix terms are given) - raising the operation can be done by raising the matrix to that power via classical programming.\n", "\n", - "See also [Power operator](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/quantum-operators/#syntax).\n", + "See also [Power operator](https://docs.classiq.io/latest/reference-manual/platform/qmod/language-reference/statements/power/).\n", "\n", "Use the following code to generate a 2-qubit (real) unitary matrix:" ] @@ -314,9 +265,7 @@ "source": [ "from classiq import *\n", "\n", - "def main(res: Output[QBit], res2: Output[QBit]) -> None:\n", - " unitary_matrix(res)\n", - " power(unitary_matrix, 3)(res2)\n", + "# Your code here:\n", "\n", "qmod = create_model(main)\n", "qprog = synthesize(qmod)\n", @@ -330,7 +279,7 @@ "## Exercise 4 - User-defined Operators\n", "Create a function that applies a given single-qubit operation to all qubits in its quantum argument (Call your function `my_apply_to_all`). Such a function is also called an operator, i.e. a function that one of its arguments is another function (its operand).\n", "\n", - "See also [Operators](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/operators/).\n", + "See also [Operators](https://docs.classiq.io/latest/reference-manual/platform/qmod/language-reference/operators/).\n", "\n", "Follow these guidelines:\n", "1. Your function should declare a quantum argument of type qubit array. It should also declare an argument of a function type with a single qubit argument.\n", @@ -348,13 +297,7 @@ "source": [ "from classiq import *\n", "\n", - "def my_apply_to_all(res: QArray[QBit]) -> None:\n", - " for i in res:\n", - " H(target=i)\n", - "\n", - "def main(res: Output[QBit]) -> None:\n", - " allocate(10, res)\n", - " my_apply_to_all(res)\n", + "# Your code here:\n", "\n", "qmod = create_model(main)\n", "qprog = synthesize(qmod)\n", @@ -370,7 +313,7 @@ "### Exercise 5a - Control Operator\n", "Use the built-in `control` operator to create a function that receives two single qubit variables and uses one of the variables to control an RY gate with a `pi/2` angle acting on the other variable (without using the `CRY` function).\n", "\n", - "See also [Quantum operators](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/quantum-operators/#syntax).\n" + "See also [Quantum operators](https://docs.classiq.io/latest/classiq_101/classiq_concepts/design/quantum_operations/).\n" ] }, { @@ -381,12 +324,8 @@ "source": [ "from classiq import *\n", "\n", - "def function(a: QBit, b: QBit) -> None:\n", - " control(a, RY(b, angle=math.pi/2, ))\n", - " \n", - "def main(res: Output[QBit]) -> None:\n", - " allocate(2,res)\n", - " function(a=res[0], b=res[1])\n", + "# Your code here:\n", + "\n", "qmod = create_model(main)\n", "qprog = synthesize(qmod)\n", "show(qprog)" @@ -399,11 +338,11 @@ "### Exercise 5b - Control (\"Quantum If\")\n", "The `control` operator is the conditional application of some operation, with the condition being that all control qubits are in the state |1>. This notion is generalized in QMOD to other control states, where the condition is specified as a comparison between a quantum numeric variable and a numeric value, similar to a classical `if` statement. Quantum numeric variables are declared with class `QNum`.\n", "\n", - "See also [Numeric types](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/quantum-types/#syntax).\n", + "See also [Numeric types](https://docs.classiq.io/latest/reference-manual/platform/qmod/language-reference/quantum-types/).\n", "\n", "In QMOD this generalization is available as a native statement - control.\n", "\n", - "See also [control](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/quantum-operators/).\n", + "See also [control](https://docs.classiq.io/latest/reference-manual/platform/qmod/language-reference/operators/).\n", "\n", "1. Declare a `QNum` output argument using `Output[QNum]` and name it `x`.\n", "2. Use the `prepare_int` function to initialize it to `9`. Note that you don't need to specify the `QNum` attributes - size, sign, and fraction digits, as they are inferred at the point of initialization.\n", @@ -413,46 +352,23 @@ }, { "cell_type": "code", - "metadata": { - "ExecuteTime": { - "end_time": "2024-05-19T20:22:27.509721Z", - "start_time": "2024-05-19T20:22:27.503014Z" - } - }, + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "from classiq import *\n", "\n", - "def main(x: Output[QNum], y: QBit) -> None:\n", - " prepare_int(x, 9)\n", - " control(x, RX(y))\n", + "# Your code here:\n", "\n", "qmod = create_model(main)\n", "qprog = synthesize(qmod)\n", "show(qprog)" - ], - "outputs": [ - { - "ename": "IndentationError", - "evalue": "expected an indented block (3255054010.py, line 5)", - "output_type": "error", - "traceback": [ - "\u001B[0;36m File \u001B[0;32m\"/var/folders/xd/g2xmyd4n50qf68f46q132kk00000gn/T/ipykernel_50658/3255054010.py\"\u001B[0;36m, line \u001B[0;32m5\u001B[0m\n\u001B[0;31m qmod = create_model(main)\u001B[0m\n\u001B[0m ^\u001B[0m\n\u001B[0;31mIndentationError\u001B[0m\u001B[0;31m:\u001B[0m expected an indented block\n" - ] - } - ], - "execution_count": 1 - }, - { - "metadata": {}, - "cell_type": "code", - "outputs": [], - "execution_count": null, - "source": "" + ] } ], "metadata": { "kernelspec": { - "display_name": "Python 3 (ipykernel)", + "display_name": "Python 3.11.7 ('classiq')", "language": "python", "name": "python3" }, @@ -466,7 +382,12 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.8" + "version": "3.11.7" + }, + "vscode": { + "interpreter": { + "hash": "529b62266d4f537a408698cf820854c65fe877011c7661f0f70aa11c4383fddc" + } } }, "nbformat": 4, diff --git a/community/QClass_2024/Assignments/HW2_QClass2024.ipynb b/community/QClass_2024/Assignments/HW2_QClass2024.ipynb index 8bea9958..57665786 100644 --- a/community/QClass_2024/Assignments/HW2_QClass2024.ipynb +++ b/community/QClass_2024/Assignments/HW2_QClass2024.ipynb @@ -11,10 +11,12 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 25, "metadata": {}, "outputs": [], "source": [ + "from dataclasses import dataclass\n", + "\n", "from classiq import *" ] }, @@ -26,18 +28,18 @@ "\n", "The Qmod language supports different classical types: scalars, arrays, and structs. Structs are objects with member variables, or fields.\n", "\n", - "See also [Classical Types](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/classical-types/#structs).\n", + "See also [Classical Types](https://docs.classiq.io/latest/classiq_101/classiq_concepts/design/classical_variables_and_operations/)\n", "\n", "The builtin struct type `PauliTerm` is defined as follows:" ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 26, "metadata": {}, "outputs": [], "source": [ - "@struct\n", + "@dataclass\n", "class PauliTerm:\n", " pauli: CArray[Pauli]\n", " coefficient: CReal" @@ -58,7 +60,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 27, "metadata": {}, "outputs": [], "source": [ @@ -82,50 +84,28 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 28, "metadata": {}, "outputs": [ { - "name": "stderr", + "name": "stdout", "output_type": "stream", "text": [ - "The current version of 'classiq' has been deprecated, and will not be supported as of 2024-06-06. Please run \"pip install -U classiq\" to upgrade the classiq SDK to the latest version.\n" - ] - }, - { - "ename": "ClassiqAPIError", - "evalue": "An unknown error occurred.\n\nError identifier: ED0CFFBF2-00D3-4B9E-9F24-F74A461E998F.\nIf you need further assistance, please reach out on our Community Slack channel at: https://short.classiq.io/join-slack\nIf the error persists feel free to open a ticket at: https://short.classiq.io/support", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mClassiqAPIError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[6], line 17\u001b[0m\n\u001b[1;32m 7\u001b[0m suzuki_trotter(\n\u001b[1;32m 8\u001b[0m \u001b[38;5;241m.\u001b[39m\u001b[38;5;241m.\u001b[39m\u001b[38;5;241m.\u001b[39m,\n\u001b[1;32m 9\u001b[0m evolution_coefficient\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m3\u001b[39m,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 12\u001b[0m qbv\u001b[38;5;241m=\u001b[39mq,\n\u001b[1;32m 13\u001b[0m )\n\u001b[1;32m 16\u001b[0m qmod \u001b[38;5;241m=\u001b[39m create_model(main)\n\u001b[0;32m---> 17\u001b[0m qprog \u001b[38;5;241m=\u001b[39m \u001b[43msynthesize\u001b[49m\u001b[43m(\u001b[49m\u001b[43mqmod\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 18\u001b[0m show(qprog)\n", - "File \u001b[0;32m~/opt/anaconda3/envs/Classiq/lib/python3.11/site-packages/classiq/_internals/async_utils.py:45\u001b[0m, in \u001b[0;36msyncify_function..async_wrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 43\u001b[0m \u001b[38;5;129m@functools\u001b[39m\u001b[38;5;241m.\u001b[39mwraps(async_func)\n\u001b[1;32m 44\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21masync_wrapper\u001b[39m(\u001b[38;5;241m*\u001b[39margs: Any, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs: Any) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m T:\n\u001b[0;32m---> 45\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mrun\u001b[49m\u001b[43m(\u001b[49m\u001b[43masync_func\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m~/opt/anaconda3/envs/Classiq/lib/python3.11/site-packages/classiq/_internals/async_utils.py:39\u001b[0m, in \u001b[0;36mrun\u001b[0;34m(coro)\u001b[0m\n\u001b[1;32m 34\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mrun\u001b[39m(coro: Awaitable[T]) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m T:\n\u001b[1;32m 35\u001b[0m \u001b[38;5;66;03m# Use this function instead of asyncio.run, since it ALWAYS\u001b[39;00m\n\u001b[1;32m 36\u001b[0m \u001b[38;5;66;03m# creates a new event loop and clears the thread event loop.\u001b[39;00m\n\u001b[1;32m 37\u001b[0m \u001b[38;5;66;03m# Never use asyncio.run in library code.\u001b[39;00m\n\u001b[1;32m 38\u001b[0m loop \u001b[38;5;241m=\u001b[39m get_event_loop()\n\u001b[0;32m---> 39\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mloop\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrun_until_complete\u001b[49m\u001b[43m(\u001b[49m\u001b[43mcoro\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m~/opt/anaconda3/envs/Classiq/lib/python3.11/site-packages/nest_asyncio.py:98\u001b[0m, in \u001b[0;36m_patch_loop..run_until_complete\u001b[0;34m(self, future)\u001b[0m\n\u001b[1;32m 95\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m f\u001b[38;5;241m.\u001b[39mdone():\n\u001b[1;32m 96\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mRuntimeError\u001b[39;00m(\n\u001b[1;32m 97\u001b[0m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mEvent loop stopped before Future completed.\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[0;32m---> 98\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mf\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mresult\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m~/opt/anaconda3/envs/Classiq/lib/python3.11/asyncio/futures.py:203\u001b[0m, in \u001b[0;36mFuture.result\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 201\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m__log_traceback \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mFalse\u001b[39;00m\n\u001b[1;32m 202\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_exception \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m--> 203\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_exception\u001b[38;5;241m.\u001b[39mwith_traceback(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_exception_tb)\n\u001b[1;32m 204\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_result\n", - "File \u001b[0;32m~/opt/anaconda3/envs/Classiq/lib/python3.11/asyncio/tasks.py:277\u001b[0m, in \u001b[0;36mTask.__step\u001b[0;34m(***failed resolving arguments***)\u001b[0m\n\u001b[1;32m 273\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 274\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m exc \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 275\u001b[0m \u001b[38;5;66;03m# We use the `send` method directly, because coroutines\u001b[39;00m\n\u001b[1;32m 276\u001b[0m \u001b[38;5;66;03m# don't have `__iter__` and `__next__` methods.\u001b[39;00m\n\u001b[0;32m--> 277\u001b[0m result \u001b[38;5;241m=\u001b[39m coro\u001b[38;5;241m.\u001b[39msend(\u001b[38;5;28;01mNone\u001b[39;00m)\n\u001b[1;32m 278\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 279\u001b[0m result \u001b[38;5;241m=\u001b[39m coro\u001b[38;5;241m.\u001b[39mthrow(exc)\n", - "File \u001b[0;32m~/opt/anaconda3/envs/Classiq/lib/python3.11/site-packages/classiq/synthesis.py:21\u001b[0m, in \u001b[0;36msynthesize_async\u001b[0;34m(serialized_model)\u001b[0m\n\u001b[1;32m 17\u001b[0m \u001b[38;5;28;01masync\u001b[39;00m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21msynthesize_async\u001b[39m(\n\u001b[1;32m 18\u001b[0m serialized_model: SerializedModelInput,\n\u001b[1;32m 19\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m SerializedQuantumProgram:\n\u001b[1;32m 20\u001b[0m model: ModelInput \u001b[38;5;241m=\u001b[39m pydantic\u001b[38;5;241m.\u001b[39mparse_raw_as(ModelInput, serialized_model) \u001b[38;5;66;03m# type: ignore[arg-type]\u001b[39;00m\n\u001b[0;32m---> 21\u001b[0m quantum_program \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mawait\u001b[39;00m ApiWrapper\u001b[38;5;241m.\u001b[39mcall_generation_task(model)\n\u001b[1;32m 22\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m SerializedQuantumProgram(quantum_program\u001b[38;5;241m.\u001b[39mjson(indent\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m2\u001b[39m))\n", - "File \u001b[0;32m~/opt/anaconda3/envs/Classiq/lib/python3.11/site-packages/classiq/_internals/api_wrapper.py:108\u001b[0m, in \u001b[0;36mApiWrapper.call_generation_task\u001b[0;34m(cls, model)\u001b[0m\n\u001b[1;32m 106\u001b[0m poller \u001b[38;5;241m=\u001b[39m JobPoller(base_url\u001b[38;5;241m=\u001b[39mroutes\u001b[38;5;241m.\u001b[39mTASKS_GENERATE_FULL_PATH)\n\u001b[1;32m 107\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mawait\u001b[39;00m poller\u001b[38;5;241m.\u001b[39mrun_pydantic(model, timeout_sec\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m)\n\u001b[0;32m--> 108\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_parse_job_response\u001b[49m\u001b[43m(\u001b[49m\u001b[43mresult\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mgenerator_result\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mQuantumProgram\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m~/opt/anaconda3/envs/Classiq/lib/python3.11/site-packages/classiq/_internals/api_wrapper.py:58\u001b[0m, in \u001b[0;36m_parse_job_response\u001b[0;34m(job_result, output_type)\u001b[0m\n\u001b[1;32m 56\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m output_type\u001b[38;5;241m.\u001b[39mparse_obj(job_result\u001b[38;5;241m.\u001b[39mdescription)\n\u001b[1;32m 57\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(job_result, JobDescriptionFailure):\n\u001b[0;32m---> 58\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m ClassiqAPIError(job_result\u001b[38;5;241m.\u001b[39mdescription\u001b[38;5;241m.\u001b[39mdetails)\n\u001b[1;32m 60\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m ClassiqAPIError(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mUnexpected response from server\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n", - "\u001b[0;31mClassiqAPIError\u001b[0m: An unknown error occurred.\n\nError identifier: ED0CFFBF2-00D3-4B9E-9F24-F74A461E998F.\nIf you need further assistance, please reach out on our Community Slack channel at: https://short.classiq.io/join-slack\nIf the error persists feel free to open a ticket at: https://short.classiq.io/support" + "Opening: https://platform.classiq.io/circuit/338a2b73-d26c-49cc-84ba-1e42239bc2ea?version=0.41.2\n" ] } ], "source": [ - "from classiq import *\n", - "\n", - "\n", "@qfunc\n", "def main(q: Output[QArray[QBit]]) -> None:\n", " allocate(4, q)\n", - " suzuki_trotter(\n", - " ...,\n", - " evolution_coefficient=3,\n", - " repetitions=4,\n", - " order=2,\n", - " qbv=q,\n", - " )\n", + " # suzuki_trotter(\n", + " # ...,\n", + " # evolution_coefficient=3,\n", + " # repetitions=4,\n", + " # order=2,\n", + " # qbv=q,\n", + " # )\n", "\n", "\n", "qmod = create_model(main)\n", @@ -142,8 +122,8 @@ "#### Exercise 7a\n", "In this exercise we will use quantum numeric variables and calculate expressions over them.\n", "\n", - "See details on the syntax of numeric types under [Quantum types](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/quantum-types/#syntax).\n", - "See more on quantum expressions under [Numeric assignment](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/numeric-assignment/)\n", + "See details on the syntax of numeric types under [Quantum types](https://docs.classiq.io/latest/classiq_101/classiq_concepts/design/quantum_variables_and_functions/).\n", + "See more on quantum expressions under [Numeric assignment](https://docs.classiq.io/latest/reference-manual/platform/qmod/language-reference/statements/numeric-assignment/)\n", "\n", "Create the following quantum programs:\n", "1. Initialize variables `x=2`, `y=7` and computes `res = x + y`.\n", @@ -157,17 +137,11 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 29, "metadata": {}, "outputs": [], "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" + "# Your code here:" ] }, { @@ -196,17 +170,11 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 30, "metadata": {}, "outputs": [], "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" + "# Your code here:" ] }, { @@ -218,7 +186,7 @@ "The within-apply statement applies the pattern `U_dagger V U` that appears frequently in quantum computing.\n", "It allows you to compute some function `V` within the context of another function `U`, and afterward uncompute `U` in order to release auxiliary qubits storing intermediate results.\n", "\n", - "See also [Within Apply](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/within-apply/).\n", + "See also [Within Apply](https://docs.classiq.io/latest/reference-manual/platform/qmod/language-reference/statements/within-apply/).\n", "\n", "#### Exercise 8a\n", "\n", @@ -241,17 +209,11 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 31, "metadata": {}, "outputs": [], "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" + "# Your code here:" ] }, { @@ -264,7 +226,7 @@ "To understand the motivation, we will create another arithmetic circuit.\n", "This time, however, we will also set Classiq’s synthesis engine to optimize on the circuit’s number of qubits, i.e., its width.\n", "\n", - "Setting constraints can be done via the `set_constraints` operation - see [here](https://docs.classiq.io/latest/user-guide/platform/synthesis/constraints/).\n", + "Setting constraints can be done via the `set_constraints` operation - see [here](https://docs.classiq.io/latest/classiq_101/classiq_concepts/optimize/).\n", "\n", "Perform the operation `res = w + x + y + z`, where w is initialized to 4 and the rest as before:\n", "\n", @@ -278,17 +240,11 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 32, "metadata": {}, "outputs": [], "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" + "# Your code here:" ] }, { @@ -305,17 +261,11 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 33, "metadata": {}, "outputs": [], "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" + "# Your code here:" ] }, { @@ -328,8 +278,6 @@ "\n", "Arithmetic expressions can be calculated in-place into a target variable, without allocating new qubits to store the result. This is done using the in-place-xor operator.\n", "\n", - "See also [Numeric assignment](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/numeric-assignment/#semantics).\n", - "\n", "In-place assignment is often used to nest arithmetic expressions under quantum operators. Note that out-of-place assignment requires its left-value variable to be un-initialized, and therefore cannot be used under an operator if the variable is declared outside its scope. Applying operators to arithmetic expressions is required in many algorithms. One example is the piecewise evaluation of mathematical functions - calculating different expressions over `x` depending on the subdomain where `x` falls.\n", "\n", "For this exercise, replace the missing parts in the code snippet below to evaluate the result of:\n", @@ -346,53 +294,6 @@ "- In Python assignment operators cannot be used in lambda expressions, so the computation of the function needs to be factored out to a named Python function (but not necessarily a Qmod function).\n" ] }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/820a33c8-8d74-40f1-910d-bc58a9036ae0?version=0.40.0\n" - ] - } - ], - "source": [ - "\n", - "from classiq import *\n", - "\n", - "\n", - "def linear_func(a: float, b: float, x: QNum, res: QNum) -> None:\n", - " res ^= a * x + b\n", - "\n", - "\n", - "@qfunc\n", - "def dup_msb(qba: QArray[QBit], msb: QBit) -> None:\n", - " CX(qba[qba.len - 1], msb)\n", - "\n", - "\n", - "@qfunc\n", - "def main(x: Output[QNum[3, False, 3]], res: Output[QNum[5, False, 3]]) -> None:\n", - " allocate(5, res)\n", - " allocate(3, x)\n", - " hadamard_transform(x)\n", - "\n", - " label = QArray(\"label\")\n", - " allocate(1, label)\n", - "\n", - " dup_msb(x, label)\n", - " control(label, lambda: linear_func(1.0, 0.5, x, res)) # 0.5 <= x < 1.0\n", - " X(label)\n", - " control(label, lambda: linear_func(2.0, 1.0, x, res)) # 0.0 <= x < 0.5\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, { "cell_type": "markdown", "metadata": {}, @@ -405,23 +306,18 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 35, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Opening: https://platform.classiq.io/circuit/d865c2f7-c7ab-4092-8192-602cf2de60dc?version=0.40.0\n" + "Opening: https://platform.classiq.io/circuit/462d8604-ac48-4518-8d41-9580a986d56a?version=0.41.2\n" ] } ], "source": [ - "from classiq import *\n", - "\n", - "\n", - "\n", - "from classiq import *\n", "from math import pi\n", "\n", "\n", @@ -435,10 +331,13 @@ " msb = QNum(\"msb\", 2, False, 0)\n", " bind(x, [lsb, msb])\n", "\n", - " control(msb == 1, lambda: RY(pi / 3, lsb)) # msb==1 <==> bit1 bit2 == 01 (binary of decimal 1)\n", + " control(\n", + " msb == 1, lambda: RY(pi / 3, lsb)\n", + " ) # msb==1 <==> bit1 bit2 == 01 (binary of decimal 1)\n", "\n", " bind([lsb, msb], res)\n", "\n", + "\n", "model = create_model(main)\n", "qprog = synthesize(model)\n", "show(qprog)" @@ -473,39 +372,15 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 39, "metadata": {}, "outputs": [], "source": [ - "from classiq import *\n", - "from classiq.qmod.symbolic import sqrt\n", - "\n", - "prob_list= [\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " -sqrt(3) / 16,\n", - " 1 / 8 + sqrt(3) / 16,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " ]\n", "@qfunc\n", - "def pre_prepared_state(q: QArray[QBit]) -> None:\n", + "def pre_prepared_state(q: Output[QArray[QBit]]) -> None:\n", " prepare_state(\n", - " [\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " -sqrt(3) / 16,\n", - " 1 / 8 + sqrt(3) / 16,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " ],\n", - " 0.0,\n", + " [1 / 8, 1 / 8, 1 / 8, 1 / 8 + 0.10825, 1 / 8 - 0.10825, 1 / 8, 1 / 8, 1 / 8],\n", + " 0.01,\n", " q,\n", " )\n", "\n", @@ -516,7 +391,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3 (ipykernel)", + "display_name": "Python 3.11.7 ('classiq_devolpment')", "language": "python", "name": "python3" }, @@ -530,7 +405,12 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.8" + "version": "3.11.7" + }, + "vscode": { + "interpreter": { + "hash": "e992e515f6583afc67b46eeabcda0f30363069fab8b382c7517b274ba7a59477" + } } }, "nbformat": 4, diff --git a/community/QClass_2024/Assignments/HW3_VQE.ipynb b/community/QClass_2024/Assignments/HW3_VQE.ipynb deleted file mode 100644 index a0960f84..00000000 --- a/community/QClass_2024/Assignments/HW3_VQE.ipynb +++ /dev/null @@ -1,287 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "id": "fc72d98f-8993-4bd4-a545-23d122f3df71", - "metadata": {}, - "source": [ - "# H₂ Molecule Homework Assignment\n", - "### Quantum Software Development Journey: From Theory to Application with Classiq - Part 3\n", - "\n", - "- Similarly to what we have done in class, in this exercise we will implement the VQE on H2 molecule.\n", - "- This time instead of using the built-in methods and functions (such as `Molecule` and `MoleculeProblem`) to difne and solve the problem, you will be provided with a two qubits Hamiltonian." - ] - }, - { - "cell_type": "markdown", - "id": "56eda6d8-76c4-4862-b914-0c4598d67274", - "metadata": {}, - "source": [ - "## Submission\n", - "- Submit the completed Jupyter notebook and report via GitHub. Ensure all files are correctly named and organized.\n", - "- Use the Typeform link provided in the submission folder to confirm your submission.\n", - "\n", - "## Additional Resources\n", - "- [Classiq Documentation](https://docs.classiq.io/latest/)\n", - "- The notebook from live session #3\n", - "\n", - "## Important Dates\n", - "- **Assignment Release:** 22.5.2024\n", - "- **Submission Deadline:** 3.6.2024 (7 A.M GMT+3)\n", - "\n", - "---\n", - "\n", - "Happy coding and good luck!" - ] - }, - { - "cell_type": "markdown", - "id": "d41e969d-f6a7-4ff7-9660-19ce6c97ba6b", - "metadata": {}, - "source": [ - "### Part 1" - ] - }, - { - "cell_type": "markdown", - "id": "f710d6f4-d40b-42d5-b524-c6acb8059fe2", - "metadata": {}, - "source": [ - "Given the following Hamiltonian:" - ] - }, - { - "cell_type": "markdown", - "id": "6ba8a6f1-3259-4492-a1ca-3abde7530cd4", - "metadata": {}, - "source": [ - "$$\n", - "\\hat{H} = -1.0523 \\cdot (I \\otimes I) + 0.3979 \\cdot (I \\otimes Z) - 0.3979 \\cdot (Z \\otimes I) - 0.0112 \\cdot (Z \\otimes Z) + 0.1809 \\cdot (X \\otimes X)\n", - "$$" - ] - }, - { - "cell_type": "markdown", - "id": "736d275c-9a5a-4c08-b891-3078430dc6c1", - "metadata": {}, - "source": [ - "Complete the following code" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "id": "19266c11-6acc-4edb-910f-2d0dfe80a6c8", - "metadata": {}, - "outputs": [], - "source": [ - "from typing import List\n", - "from classiq import *\n", - "\n", - "HAMILTONIAN = QConstant(\"HAMILTONIAN\", List[PauliTerm], [...]) #TODO: Complete Hamiltonian" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "id": "0bb68899-2076-45c0-8868-131f38aa3b78", - "metadata": {}, - "outputs": [], - "source": [ - "@qfunc\n", - "def main(q: Output[QArray[QBit]], angles: CArray[CReal, 3]) -> None:\n", - " # TODO: Create an ansatz which allows each qubit to have arbitrary rotation\n", - "\n", - "\n", - "@cfunc\n", - "def cmain() -> None:\n", - " res = vqe(\n", - " ..., # TODO: complete the missing argument\n", - " False,\n", - " [],\n", - " optimizer=Optimizer.COBYLA,\n", - " max_iteration=1000,\n", - " tolerance=0.001,\n", - " step_size=0,\n", - " skip_compute_variance=False,\n", - " alpha_cvar=1.0,\n", - " )\n", - " save({\"result\": res})\n", - "\n", - "qmod = #TODO: complete the line, use classical_execution_function\n", - "qprog = synthesize(qmod)\n", - "# show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "id": "0563c1a8-7aec-4da9-9105-6b16c5c24382", - "metadata": {}, - "outputs": [], - "source": [ - "execution = execute(qprog)\n", - "res = execution.result()\n", - "# execution.open_in_ide()\n", - "vqe_result = #TODO: complete the line" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "id": "de17cfc0-8e64-4493-b4c2-4a97fc9797a0", - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "11\n", - "Optimal parameters: {'angles_0': -3.0292653800801213, 'angles_1': 0.13084292242999915, 'angles_2': -5.614248543217801}\n", - "Eigenstate: {'10': (0.07328774624724109+0j), '11': (0.07328774624724109+0j), '01': (0.9946144039274718+0j)}\n" - ] - } - ], - "source": [ - "print(f\"Optimal energy: {vqe_result.energy}\")\n", - "print(f\"Optimal parameters: {vqe_result.optimal_parameters}\")\n", - "print(f\"Eigenstate: {vqe_result.eigenstate}\")" - ] - }, - { - "cell_type": "markdown", - "id": "5df11dfc-3e3a-4191-bd47-d522ca3dcbfa", - "metadata": {}, - "source": [ - "Does it similar to the `optimal energy` we calculated in class? \\\n", - "Does it similar to the `total energy` we calculated in class?" - ] - }, - { - "cell_type": "markdown", - "id": "4f0e0bea-b12f-43ad-94e8-100fedf2b57f", - "metadata": {}, - "source": [ - "### Part 2" - ] - }, - { - "cell_type": "markdown", - "id": "66882248-de08-4a6e-b33c-647f015f7d79", - "metadata": {}, - "source": [ - "**Now, we want to have a more interesting ansatz in our `main`.** \n", - "Add **one** line of code to the `main` function you created in Part 1 that creates **entanglement** between the two qubits. \n", - "Which gate should you use?" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "id": "bb39be9e-4994-44e5-84d8-c99bc8b77145", - "metadata": {}, - "outputs": [], - "source": [ - "@qfunc\n", - "def main(q: Output[QArray[QBit]], angles: CArray[CReal, 3]) -> None:\n", - " # TODO: Create an ansatz which allows each qubit to have arbitrary rotation\n", - "\n", - "\n", - "\n", - "@cfunc\n", - "def cmain() -> None:\n", - " res = vqe(\n", - " ..., # TODO: complete the missing argument\n", - " False,\n", - " [],\n", - " optimizer=Optimizer.COBYLA,\n", - " max_iteration=1000,\n", - " tolerance=0.001,\n", - " step_size=0,\n", - " skip_compute_variance=False,\n", - " alpha_cvar=1.0,\n", - " )\n", - " save({\"result\": res})\n", - "\n", - "qmod = #TODO: complete the line, use classical_execution_function\n", - "qprog = synthesize(qmod)\n", - "# show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "id": "112a1590-283c-4f79-8035-72936561102d", - "metadata": {}, - "outputs": [], - "source": [ - "execution = execute(qprog)\n", - "res = execution.result()\n", - "# execution.open_in_ide()\n", - "vqe_result = #TODO: complete the line" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "id": "06500e4c-a04b-4cfa-a84d-41f96a0c68eb", - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true - } - }, - "outputs": [ - { - "ename": "NameError", - "evalue": "name 'vqe_result' is not defined", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[2], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mOptimal energy: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[43mvqe_result\u001b[49m\u001b[38;5;241m.\u001b[39menergy\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 2\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mOptimal parameters: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mvqe_result\u001b[38;5;241m.\u001b[39moptimal_parameters\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 3\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mEigenstate: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mvqe_result\u001b[38;5;241m.\u001b[39meigenstate\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n", - "\u001b[0;31mNameError\u001b[0m: name 'vqe_result' is not defined" - ] - } - ], - "source": [ - "print(f\"Optimal energy: {vqe_result.energy}\")\n", - "print(f\"Optimal parameters: {vqe_result.optimal_parameters}\")\n", - "print(f\"Eigenstate: {vqe_result.eigenstate}\")" - ] - }, - { - "cell_type": "markdown", - "id": "30a635d7-2f15-4c94-a94b-f4270f17aed8", - "metadata": {}, - "source": [ - "Does it similar to the `optimal energy` we calculated in class? \\\n", - "Does it similar to the `total energy` we calculated in class? \\\n", - "What can we learn about the provided form this result Hamiltonian?" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.16" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/community/QClass_2024/Assignments/Preparation_for_Week2_Git & GitHub.ipynb b/community/QClass_2024/Assignments/Preparation_for_Week2_Git_GitHub.ipynb similarity index 99% rename from community/QClass_2024/Assignments/Preparation_for_Week2_Git & GitHub.ipynb rename to community/QClass_2024/Assignments/Preparation_for_Week2_Git_GitHub.ipynb index 3b1d78cb..e3c15657 100644 --- a/community/QClass_2024/Assignments/Preparation_for_Week2_Git & GitHub.ipynb +++ b/community/QClass_2024/Assignments/Preparation_for_Week2_Git_GitHub.ipynb @@ -83,7 +83,7 @@ "\n", "\n", "**Starting Steps:**\n", - "To begin, visit the [Classiq Library](https://github.com/Classiq/classiq-library) page and click the **Fork** button in the upper right corner (as indicated in the image).\n" + "To begin, visit the [Classiq Library](https://github.com/Classiq/classiq-library/blob/main/) page and click the **Fork** button in the upper right corner (as indicated in the image).\n" ] }, { @@ -155,7 +155,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3 (ipykernel)", + "display_name": "Python 3.11.7 ('classiq')", "language": "python", "name": "python3" }, @@ -169,7 +169,12 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.8" + "version": "3.11.7" + }, + "vscode": { + "interpreter": { + "hash": "529b62266d4f537a408698cf820854c65fe877011c7661f0f70aa11c4383fddc" + } } }, "nbformat": 4, diff --git a/community/QClass_2024/HW1/Stefanie_Muroya_Lei_HW1_QClass2024.ipynb b/community/QClass_2024/HW1/Stefanie_Muroya_Lei_HW1_QClass2024.ipynb deleted file mode 100644 index eb1805c5..00000000 --- a/community/QClass_2024/HW1/Stefanie_Muroya_Lei_HW1_QClass2024.ipynb +++ /dev/null @@ -1,1601 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Quantum Software Development Journey: \n", - "# From Theory to Application with Classiq - Part 1" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Welcome to the Classiq Workshop Series for QClass 2024!**\n", - "\n", - "In this series, we will develop the skills needed to participate in quantum software development!\n", - "\n", - "- Week 1: Classiq's Basics & High-Level Functional Design\n", - "- Week 2: Using Git as a Tool for In-Team Collaboration and Open Source Contributions\n", - "- Weeks 3-4: Advanced Algorithms, Introduction to Quantum Machine Learning (QML), and Their Applications\n", - "\n", - "**Here, you have early access to our [New Classiq's documentation](https://nightly.docs.classiq.io/latest/)!**\n", - "\n", - "\n", - "\n", - "\n", - "Additional resources you should use are\n", - "- The IDE of the classiq platform at [platform.classiq.io](platform.classiq.io)\n", - "- The [community Slack of Classiq](https://short.classiq.io/join-slack) - Classiq's team will answer any question you have over there, including implementation questions\n", - "- [Classiq's documentation](https://docs.classiq.io/latest/user-guide/platform/) with the dedicated [Python SDK explanations](https://docs.classiq.io/latest/user-guide/platform/qmod/python/functions/)\n", - "\n", - "Good luck!" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Setting The Scene" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Install the Classiq SDK package:" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Collecting classiq\n", - " Downloading classiq-0.41.0-py3-none-any.whl.metadata (3.1 kB)\n", - "Collecting ConfigArgParse<2.0.0,>=1.5.3 (from classiq)\n", - " Downloading ConfigArgParse-1.7-py3-none-any.whl.metadata (23 kB)\n", - "Collecting Pyomo<6.6,>=6.5 (from classiq)\n", - " Downloading Pyomo-6.5.0.tar.gz (2.4 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.4/2.4 MB\u001b[0m \u001b[31m6.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0mm\n", - "\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25ldone\n", - "\u001b[?25hCollecting black<25.0,>=24.0 (from classiq)\n", - " Downloading black-24.4.2-cp310-cp310-macosx_11_0_arm64.whl.metadata (77 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m77.1/77.1 kB\u001b[0m \u001b[31m12.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hRequirement already satisfied: httpx<1,>=0.23.0 in /Users/stefaniemuroyalei/Documents/qworld_education/.env/lib/python3.10/site-packages (from classiq) (0.27.0)\n", - "Collecting keyring<24.0.0,>=23.5.0 (from classiq)\n", - " Downloading keyring-23.13.1-py3-none-any.whl.metadata (20 kB)\n", - "Requirement already satisfied: matplotlib<4.0.0,>=3.4.3 in /Users/stefaniemuroyalei/Documents/qworld_education/.env/lib/python3.10/site-packages (from classiq) (3.8.4)\n", - "Collecting networkx<3.0.0,>=2.5.1 (from classiq)\n", - " Downloading networkx-2.8.8-py3-none-any.whl.metadata (5.1 kB)\n", - "Collecting numexpr<3.0.0,>=2.7.3 (from classiq)\n", - " Downloading numexpr-2.10.0-cp310-cp310-macosx_11_0_arm64.whl.metadata (7.9 kB)\n", - "Requirement already satisfied: numpy<2.0.0,>=1.20.1 in /Users/stefaniemuroyalei/Documents/qworld_education/.env/lib/python3.10/site-packages (from classiq) (1.26.4)\n", - "Collecting packaging<23.0,>=22.0 (from classiq)\n", - " Downloading packaging-22.0-py3-none-any.whl.metadata (3.1 kB)\n", - "Collecting pandas<3.0.0,>=1.4.0 (from classiq)\n", - " Downloading pandas-2.2.2-cp310-cp310-macosx_11_0_arm64.whl.metadata (19 kB)\n", - "Collecting plotly<6.0.0,>=5.7.0 (from classiq)\n", - " Downloading plotly-5.22.0-py3-none-any.whl.metadata (7.1 kB)\n", - "Collecting pydantic<2.0.0,>=1.9.1 (from classiq)\n", - " Downloading pydantic-1.10.15-cp310-cp310-macosx_11_0_arm64.whl.metadata (150 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m150.6/150.6 kB\u001b[0m \u001b[31m18.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hRequirement already satisfied: scipy<2.0.0,>=1.10.1 in /Users/stefaniemuroyalei/Documents/qworld_education/.env/lib/python3.10/site-packages (from classiq) (1.13.0)\n", - "Collecting sympy<1.11.0,>=1.9.0 (from classiq)\n", - " Downloading sympy-1.10.1-py3-none-any.whl.metadata (12 kB)\n", - "Requirement already satisfied: tabulate<1,>=0.8.9 in /Users/stefaniemuroyalei/Documents/qworld_education/.env/lib/python3.10/site-packages (from classiq) (0.9.0)\n", - "Collecting click>=8.0.0 (from black<25.0,>=24.0->classiq)\n", - " Downloading click-8.1.7-py3-none-any.whl.metadata (3.0 kB)\n", - "Collecting mypy-extensions>=0.4.3 (from black<25.0,>=24.0->classiq)\n", - " Downloading mypy_extensions-1.0.0-py3-none-any.whl.metadata (1.1 kB)\n", - "Collecting pathspec>=0.9.0 (from black<25.0,>=24.0->classiq)\n", - " Downloading pathspec-0.12.1-py3-none-any.whl.metadata (21 kB)\n", - "Requirement already satisfied: platformdirs>=2 in /Users/stefaniemuroyalei/Documents/qworld_education/.env/lib/python3.10/site-packages (from black<25.0,>=24.0->classiq) (4.2.1)\n", - "Requirement already satisfied: tomli>=1.1.0 in /Users/stefaniemuroyalei/Documents/qworld_education/.env/lib/python3.10/site-packages (from black<25.0,>=24.0->classiq) (2.0.1)\n", - "Requirement already satisfied: typing-extensions>=4.0.1 in /Users/stefaniemuroyalei/Documents/qworld_education/.env/lib/python3.10/site-packages (from black<25.0,>=24.0->classiq) (4.11.0)\n", - "Requirement already satisfied: anyio in /Users/stefaniemuroyalei/Documents/qworld_education/.env/lib/python3.10/site-packages (from httpx<1,>=0.23.0->classiq) (4.3.0)\n", - "Requirement already satisfied: certifi in /Users/stefaniemuroyalei/Documents/qworld_education/.env/lib/python3.10/site-packages (from httpx<1,>=0.23.0->classiq) (2024.2.2)\n", - "Requirement already satisfied: httpcore==1.* in /Users/stefaniemuroyalei/Documents/qworld_education/.env/lib/python3.10/site-packages (from httpx<1,>=0.23.0->classiq) (1.0.5)\n", - "Requirement already satisfied: idna in /Users/stefaniemuroyalei/Documents/qworld_education/.env/lib/python3.10/site-packages (from httpx<1,>=0.23.0->classiq) (3.7)\n", - "Requirement already satisfied: sniffio in /Users/stefaniemuroyalei/Documents/qworld_education/.env/lib/python3.10/site-packages (from httpx<1,>=0.23.0->classiq) (1.3.1)\n", - "Requirement already satisfied: h11<0.15,>=0.13 in /Users/stefaniemuroyalei/Documents/qworld_education/.env/lib/python3.10/site-packages (from httpcore==1.*->httpx<1,>=0.23.0->classiq) (0.14.0)\n", - "Collecting jaraco.classes (from keyring<24.0.0,>=23.5.0->classiq)\n", - " Downloading jaraco.classes-3.4.0-py3-none-any.whl.metadata (2.6 kB)\n", - "Collecting importlib-metadata>=4.11.4 (from keyring<24.0.0,>=23.5.0->classiq)\n", - " Downloading importlib_metadata-7.1.0-py3-none-any.whl.metadata (4.7 kB)\n", - "Requirement already satisfied: contourpy>=1.0.1 in /Users/stefaniemuroyalei/Documents/qworld_education/.env/lib/python3.10/site-packages (from matplotlib<4.0.0,>=3.4.3->classiq) (1.2.1)\n", - "Requirement already satisfied: cycler>=0.10 in /Users/stefaniemuroyalei/Documents/qworld_education/.env/lib/python3.10/site-packages (from matplotlib<4.0.0,>=3.4.3->classiq) (0.12.1)\n", - "Requirement already satisfied: fonttools>=4.22.0 in /Users/stefaniemuroyalei/Documents/qworld_education/.env/lib/python3.10/site-packages (from matplotlib<4.0.0,>=3.4.3->classiq) (4.51.0)\n", - "Requirement already satisfied: kiwisolver>=1.3.1 in /Users/stefaniemuroyalei/Documents/qworld_education/.env/lib/python3.10/site-packages (from matplotlib<4.0.0,>=3.4.3->classiq) (1.4.5)\n", - "Requirement already satisfied: pillow>=8 in /Users/stefaniemuroyalei/Documents/qworld_education/.env/lib/python3.10/site-packages (from matplotlib<4.0.0,>=3.4.3->classiq) (10.3.0)\n", - "Requirement already satisfied: pyparsing>=2.3.1 in /Users/stefaniemuroyalei/Documents/qworld_education/.env/lib/python3.10/site-packages (from matplotlib<4.0.0,>=3.4.3->classiq) (3.1.2)\n", - "Requirement already satisfied: python-dateutil>=2.7 in /Users/stefaniemuroyalei/Documents/qworld_education/.env/lib/python3.10/site-packages (from matplotlib<4.0.0,>=3.4.3->classiq) (2.9.0.post0)\n", - "Collecting pytz>=2020.1 (from pandas<3.0.0,>=1.4.0->classiq)\n", - " Using cached pytz-2024.1-py2.py3-none-any.whl.metadata (22 kB)\n", - "Collecting tzdata>=2022.7 (from pandas<3.0.0,>=1.4.0->classiq)\n", - " Using cached tzdata-2024.1-py2.py3-none-any.whl.metadata (1.4 kB)\n", - "Collecting tenacity>=6.2.0 (from plotly<6.0.0,>=5.7.0->classiq)\n", - " Downloading tenacity-8.3.0-py3-none-any.whl.metadata (1.2 kB)\n", - "Requirement already satisfied: ply in /Users/stefaniemuroyalei/Documents/qworld_education/.env/lib/python3.10/site-packages (from Pyomo<6.6,>=6.5->classiq) (3.11)\n", - "Requirement already satisfied: mpmath>=0.19 in /Users/stefaniemuroyalei/Documents/qworld_education/.env/lib/python3.10/site-packages (from sympy<1.11.0,>=1.9.0->classiq) (1.3.0)\n", - "Collecting zipp>=0.5 (from importlib-metadata>=4.11.4->keyring<24.0.0,>=23.5.0->classiq)\n", - " Downloading zipp-3.18.2-py3-none-any.whl.metadata (3.5 kB)\n", - "Requirement already satisfied: six>=1.5 in /Users/stefaniemuroyalei/Documents/qworld_education/.env/lib/python3.10/site-packages (from python-dateutil>=2.7->matplotlib<4.0.0,>=3.4.3->classiq) (1.16.0)\n", - "Requirement already satisfied: exceptiongroup>=1.0.2 in /Users/stefaniemuroyalei/Documents/qworld_education/.env/lib/python3.10/site-packages (from anyio->httpx<1,>=0.23.0->classiq) (1.2.1)\n", - "Collecting more-itertools (from jaraco.classes->keyring<24.0.0,>=23.5.0->classiq)\n", - " Downloading more_itertools-10.2.0-py3-none-any.whl.metadata (34 kB)\n", - "Downloading classiq-0.41.0-py3-none-any.whl (398 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m398.1/398.1 kB\u001b[0m \u001b[31m28.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hDownloading black-24.4.2-cp310-cp310-macosx_11_0_arm64.whl (1.5 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.5/1.5 MB\u001b[0m \u001b[31m39.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hDownloading ConfigArgParse-1.7-py3-none-any.whl (25 kB)\n", - "Downloading keyring-23.13.1-py3-none-any.whl (37 kB)\n", - "Downloading networkx-2.8.8-py3-none-any.whl (2.0 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.0/2.0 MB\u001b[0m \u001b[31m44.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m\n", - "\u001b[?25hDownloading numexpr-2.10.0-cp310-cp310-macosx_11_0_arm64.whl (92 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m92.7/92.7 kB\u001b[0m \u001b[31m6.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hDownloading packaging-22.0-py3-none-any.whl (42 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m42.6/42.6 kB\u001b[0m \u001b[31m3.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hDownloading pandas-2.2.2-cp310-cp310-macosx_11_0_arm64.whl (11.3 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m11.3/11.3 MB\u001b[0m \u001b[31m31.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m0:01\u001b[0m\n", - "\u001b[?25hDownloading plotly-5.22.0-py3-none-any.whl (16.4 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m16.4/16.4 MB\u001b[0m \u001b[31m26.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n", - "\u001b[?25hDownloading pydantic-1.10.15-cp310-cp310-macosx_11_0_arm64.whl (2.6 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.6/2.6 MB\u001b[0m \u001b[31m14.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n", - "\u001b[?25hDownloading sympy-1.10.1-py3-none-any.whl (6.4 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m6.4/6.4 MB\u001b[0m \u001b[31m14.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n", - "\u001b[?25hDownloading click-8.1.7-py3-none-any.whl (97 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m97.9/97.9 kB\u001b[0m \u001b[31m13.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hDownloading importlib_metadata-7.1.0-py3-none-any.whl (24 kB)\n", - "Downloading mypy_extensions-1.0.0-py3-none-any.whl (4.7 kB)\n", - "Downloading pathspec-0.12.1-py3-none-any.whl (31 kB)\n", - "Using cached pytz-2024.1-py2.py3-none-any.whl (505 kB)\n", - "Downloading tenacity-8.3.0-py3-none-any.whl (25 kB)\n", - "Using cached tzdata-2024.1-py2.py3-none-any.whl (345 kB)\n", - "Downloading jaraco.classes-3.4.0-py3-none-any.whl (6.8 kB)\n", - "Downloading zipp-3.18.2-py3-none-any.whl (8.3 kB)\n", - "Downloading more_itertools-10.2.0-py3-none-any.whl (57 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m57.0/57.0 kB\u001b[0m \u001b[31m5.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hBuilding wheels for collected packages: Pyomo\n", - " Building wheel for Pyomo (setup.py) ... \u001b[?25ldone\n", - "\u001b[?25h Created wheel for Pyomo: filename=Pyomo-6.5.0-py2.py3-none-any.whl size=3066212 sha256=684b17b7788af8822ee5ac62a7d41e3943781b7216f30a5ecf38dc8e08720e0d\n", - " Stored in directory: /Users/stefaniemuroyalei/Library/Caches/pip/wheels/27/1c/3d/2c758b6a4065881cd0f05b7d8e95d3f537ac7f9873b499ac6c\n", - "Successfully built Pyomo\n", - "Installing collected packages: pytz, zipp, tzdata, tenacity, sympy, Pyomo, pydantic, pathspec, packaging, numexpr, networkx, mypy-extensions, more-itertools, ConfigArgParse, click, plotly, pandas, jaraco.classes, importlib-metadata, black, keyring, classiq\n", - " Attempting uninstall: sympy\n", - " Found existing installation: sympy 1.12\n", - " Uninstalling sympy-1.12:\n", - " Successfully uninstalled sympy-1.12\n", - " Attempting uninstall: packaging\n", - " Found existing installation: packaging 24.0\n", - " Uninstalling packaging-24.0:\n", - " Successfully uninstalled packaging-24.0\n", - " Attempting uninstall: networkx\n", - " Found existing installation: networkx 3.3\n", - " Uninstalling networkx-3.3:\n", - " Successfully uninstalled networkx-3.3\n", - "Successfully installed ConfigArgParse-1.7 Pyomo-6.5.0 black-24.4.2 classiq-0.41.0 click-8.1.7 importlib-metadata-7.1.0 jaraco.classes-3.4.0 keyring-23.13.1 more-itertools-10.2.0 mypy-extensions-1.0.0 networkx-2.8.8 numexpr-2.10.0 packaging-22.0 pandas-2.2.2 pathspec-0.12.1 plotly-5.22.0 pydantic-1.10.15 pytz-2024.1 sympy-1.10.1 tenacity-8.3.0 tzdata-2024.1 zipp-3.18.2\n" - ] - } - ], - "source": [ - "# !pip install -U classiq" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "You need to authenticate your device in order to use Classiq's backend synthesis engine and IDE. \n", - "**Make sure to register to the platform** at [platform.classiq.io](https://platform.classiq.io/) before you run the next cell:" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Your user code: FSWF-CZBV\n", - "If a browser doesn't automatically open, please visit this URL from any trusted device: https://auth.classiq.io/activate?user_code=FSWF-CZBV\n" - ] - } - ], - "source": [ - "import classiq\n", - "classiq.authenticate()" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "from classiq import *" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## A Warm Up" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### First Example" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Write a function that prepares the minus state $\\ket{-}=\\frac{1}{\\sqrt2}(\\ket{0}-\\ket{1})$, assuming it recives the qubit $\\ket{x}=\\ket{0}$ (hint): \n", - "\n", - "
\n", - "\n", - "HINT\n", - "\n", - "\n", - "Use `H(x)`,`X(x)`\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "@qfunc\n", - "def prepare_minus_state(x:QBit):\n", - " X(x)\n", - " hadamard_transform(x)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now we will test our code:" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "@qfunc\n", - "def main(x: Output[QBit]):\n", - " allocate(1,x) # Initialize the qubit x\n", - " prepare_minus_state(x)" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "quantum_model = create_model(main)\n", - "quantum_program = synthesize(quantum_model)" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/0271d743-8117-45b4-a600-46dd5c3c7def?version=0.41.0\n" - ] - } - ], - "source": [ - "show(quantum_program)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Uniform Superposition" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's continue warming up with creating a function that receives a quantum register and creates a uniform superposition for all qubits within this array. You should use the function `apply_to_all(gate_operand=, target=)`:" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], - "source": [ - "@qfunc\n", - "def create_initial_state(reg: QArray[QBit]):\n", - " #TODO use the function apply_to_all in order create a uniform superposition\n", - " apply_to_all(gate_operand=hadamard_transform, target=reg)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Test your function by creating a new main function, synthesizing and viewing the circuit:" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [], - "source": [ - "@qfunc\n", - "def main(reg: Output[QArray[QBit]]): #TODO fill in the correct declaration here, what variables this model should output?\n", - " #TODO allocate reg with a few qubits\n", - " allocate(num_qubits=5, out=reg)\n", - " create_initial_state(reg)" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/0271d743-8117-45b4-a600-46dd5c3c7def?version=0.41.0\n" - ] - } - ], - "source": [ - "# TODO uncomment the following line:\n", - "qprog = synthesize(create_model(main))\n", - "\n", - "#TODO show the quantum program\n", - "show(quantum_program)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Another implementation could utilize the `repeat(count=, iteration=)` function. The `repeat` function can be thought of as a \"classical for loop\". It could be handy in many situations, especially when combined with `if_` function, the \"classical if\" statement in Classiq. Together, they form 'Classical Control Flow'. \n", - "\n", - "Read more: [Classical Control Flow (repeat, if_)](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/classical-control-flow/?h=repea#__tabbed_1_2)" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/6918f036-a65d-4a57-9f39-ee055588546b?version=0.41.0\n" - ] - } - ], - "source": [ - "@qfunc\n", - "def create_initial_state(q: QArray[QBit]) -> None:\n", - " repeat(q.len, lambda i: H(q[i]))\n", - "\n", - "@qfunc\n", - "def main(reg: Output[QArray]): \n", - " allocate(4,reg)\n", - " create_initial_state(reg)\n", - "\n", - "qprog = synthesize(create_model(main))\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Guidelines for High-Level Functional Design with Classiq" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Some basic explanations about the high-level functional design with Classiq:**\n", - "\n", - "* There should always be a main (`def main(...)`) function - the model that captures your algorithm is described there\n", - "\n", - "* The model is always generated out of the main function \n", - "\n", - "* The model is sent to the synthesis engine (compiler) that return a quantum program which contains the quantum circuit" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Some basic guidelines about the modeling language (QMOD):**\n", - "\n", - "1. Every function you use with the QMOD language should have the decorator `@qfunc` before it\n", - "2. Every quantum variable should be declared, either as an argument of a function e.g. `def prepare_minus(x: QBit)` or as a local variable within the function itself with `x = QBit('x')`\n", - "\n", - "\n", - "3. Some quantum variables need to be initialized with the `allocate` function. This is required in 2 cases:\n", - "* A variable is an argument of a function with the declaration `Output` like `def main(x: Output[QNum])`\n", - "* A variable that was declared within a function like `a = QNum('a')`\n", - "\n", - "4. For the `main` function, you will always use `Output` for all variables. The `output` indicates that these quantum variables are not initialized outside the scope of the function.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - " Types of Initializations \n", - "There are a few ways to initialize a quantum variable:\n", - "\n", - "1. With `allocate` or `allocate_num` \n", - "2. With `prepare_int`, `prepare_state` or `prepare_amplitudes`\n", - "3. As the result of a numeric operation `|=`\n", - "4. With the `bind` operation (`->` in native)\n", - "5. With any function that declares its quantum variable argument as `output`\n", - "\n", - "
\n", - "\n", - "
\n", - " Types of Quantum Variables \n", - "In Qmod there are 3 types of quantum variables:\n", - "\n", - "1. `QBit` (`qbit`)\n", - "2. `QArray[QBit]` (`qbit[]`)\n", - "3. `QNum` (`qnum`)\n", - "\n", - "(See also [Quantum Variables](https://nightly.docs.classiq.io/latest/classiq_101/classiq_concepts/design/quantum_variables_and_functions/))\n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Tutorial - State Preparation " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Prepare State" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, we will see how we can easily make arbitrary state using Classiq's `prepare_state`.\n", - "\n", - "For example, let’s say we want to prepare the state $ \\ket{\\Phi^+}=\\frac{1}{\\sqrt{2}}(\\ket{00}+\\ket{11}) $" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/8f29a5a9-1ca2-4887-acc0-dee6661510d3?version=0.41.0\n" - ] - } - ], - "source": [ - "@qfunc\n", - "def main(x: Output[QArray[QBit]]):\n", - " prepare_state(probabilities=[0.5,0,0,0.5], bound=0.01, out=x)\n", - "\n", - "model = create_model(main)\n", - "qprog = synthesize(model)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Or using `prepare_bell_state` in order to prepare states with relative phase:" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [], - "source": [ - "@qfunc\n", - "def main(x:Output[QArray]):\n", - " prepare_bell_state(state_num=1, q=x) # phi-" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/81f1c173-9a7d-4df3-a9eb-b5dc69091c9e?version=0.41.0\n" - ] - } - ], - "source": [ - "quantum_model = create_model(main)\n", - "quantum_program = synthesize(quantum_model)\n", - "show(quantum_program)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "\n", - "NOTE\n", - "\n", - "\n", - "\n", - "| State Number | Bell State | \n", - "|--------------|------------|\n", - "| 0 | $ \\ket{\\phi^+}= \\frac{1}{\\sqrt{2}}[\\ket{00}+\\ket{11}] $ | \n", - "| 1 | $ \\ket{\\phi^-}= \\frac{1}{\\sqrt{2}}[\\ket{00}-\\ket{11}]$ |\n", - "| 2 | $ \\ket{\\psi^+}= \\frac{1}{\\sqrt{2}}[\\ket{01}+\\ket{10}]$ |\n", - "| 3 | $ \\ket{\\psi^-}= \\frac{1}{\\sqrt{2}}[\\ket{01}-\\ket{10}]$ |\n", - "| 4=0 | $ \\ket{\\phi^+}= ...$ |\n", - "| ... | ... | ... | \n", - "\n", - "\n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now it's your turn to prepare the state $ \\ket{\\Psi^+}=\\frac{1}{\\sqrt{2}}(\\ket{01}+\\ket{10}) $" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/8d827a63-de2c-4858-8057-edaa6ab7f84f?version=0.41.0\n" - ] - } - ], - "source": [ - "@qfunc\n", - "def main(x: Output[QArray[QBit]]):\n", - " #TODO use the function prepare_state/ prepare_bell_state in order create a the desired state\n", - " prepare_bell_state(state_num=2, q=x) # phi-\n", - "\n", - "#TODO create model, synthesize it, and show it\n", - "model = create_model(main)\n", - "qprog = synthesize(model)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Note that we can use `prepare_state` to create much more complex states, for instance, we can create list of probabilities:" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [], - "source": [ - "probabilities = [\n", - " 0,\n", - " 0.002,\n", - " 0.004,\n", - " 0.006,\n", - " 0.0081,\n", - " 0.0101,\n", - " 0.0121,\n", - " 0.0141,\n", - " 0.0161,\n", - " 0.0181,\n", - " 0.0202,\n", - " 0.0222,\n", - " 0.0242,\n", - " 0.0262,\n", - " 0.0282,\n", - " 0.0302,\n", - " 0.0323,\n", - " 0.0343,\n", - " 0.0363,\n", - " 0.0383,\n", - " 0.0403,\n", - " 0.0423,\n", - " 0.0444,\n", - " 0.0464,\n", - " 0.0484,\n", - " 0.0504,\n", - " 0.0524,\n", - " 0.0544,\n", - " 0.0565,\n", - " 0.0585,\n", - " 0.0605,\n", - " 0.0625,\n", - "]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "And then generate the state:" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/812fe320-5244-4f7d-8829-d83fc7c7d777?version=0.41.0\n" - ] - } - ], - "source": [ - "@qfunc\n", - "def main(x: Output[QArray[QBit]]):\n", - " prepare_state(probabilities=probabilities, bound=0.01, out=x)\n", - " \n", - "model = create_model(main)\n", - "qprog = synthesize(model)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Prepare Int" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We also have a `prepare_int` function, which allows us to register integers effortlessly. For example, $binary(9) = 1001$, or any other integer can be prepared in a single line of code:" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/a909dbba-7adc-4db9-88db-df392b39db1e?version=0.41.0\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "@qfunc\n", - "def main(x: Output[QNum]) -> None:\n", - " prepare_int(9, x)\n", - "\n", - "model = create_model(main)\n", - "qprog = synthesize(model)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise: Parallel Addition " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In this exercise, we will conclude state preparation and also get a teaser of the next part of the tutorial - Arithmetic Operations. \n", - "\n", - "Let's say that for some reason we used `prepare_int` to create the integer 7, and we want to perform addition operations with the integers 0, 4, and 7. We will do that using `prepare_state`." - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [], - "source": [ - "@qfunc\n", - "def main(res: Output[QNum]) -> None:\n", - " x = QNum(\"x\") #TODO complete the declarations of x,y\n", - " y = QNum(\"y\")\n", - " \n", - " # TODO prepare the above-mentioned integer using prepare_int\n", - " prepare_int(7, x)\n", - " prepare_state(probabilities=[1/3, 0,0,0, 1/3, 0 ,0, 1/3], bound=0.01, out=y) # TODO complete the 'probabilities' list\n", - " \n", - " res|=x+y\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/bc807842-7b3e-437a-84ef-f0aa2e69fa5f?version=0.41.0\n" - ] - } - ], - "source": [ - "# TODO uncomment the folllowing lines:\n", - "\n", - "model = create_model(main)\n", - "qprog = synthesize(model)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Tutorial - Arithmetic Operations with Classiq" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "One of the key advantages of Classiq is it's simplistic and powerful compiler for quantum arithmetic. Let's see an example:" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [], - "source": [ - "num_qubits = 4\n", - "fraction_digits = 0 \n", - "is_signed = True\n", - "\n", - "@qfunc\n", - "def main(x: Output[QNum], y: Output[QNum]):\n", - " allocate_num(num_qubits=num_qubits, is_signed=is_signed, fraction_digits=fraction_digits, out=x)\n", - " hadamard_transform(x)\n", - " y|= x**2 + 1\n", - "\n", - "qmod = create_model(main)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The `allocate_num` function initializes a quantum variable that represent numbers. By default, it is initialized to the $\\ket{0}$ state. Then the `hadmard_transform` creates a superposition of all possible states in the domain $[-2^3,2^3-1]$. Finally, the arithmetic operation creates the entangled superposition of states:\n", - "$\\begin{equation}\n", - "\\sum_{x =-2^3}^{2^3-1}\\ket{x}\\ket{x^2+1}.\n", - "\\end{equation}$\n", - "\n", - "The `qmod` variable is a string that captures the algorithm we have just created in a JSON format. Now, what we want is to synthesize (compile) in order to receive a concrete quantum program that contains the quantum circuit implementation." - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/af93bf3d-a459-4bfe-b057-3502afd1c9ca?version=0.41.0\n" - ] - } - ], - "source": [ - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Advanced Arithmetics" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now let's create a general linear function with Classiq: $y= ax+b$ where $a,b$ are classical integer parameters and $x,y$ is a quantum states representing integers:" - ] - }, - { - "cell_type": "code", - "execution_count": 61, - "metadata": {}, - "outputs": [], - "source": [ - "@qfunc\n", - "def linear_func(a:CInt,b: CInt, x:QNum, y: Output[QNum]):\n", - " y |= a*x+b" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": {}, - "outputs": [], - "source": [ - "@qfunc\n", - "def main(x:Output[QNum], y: Output[QNum]):\n", - "\n", - " a = 2\n", - " b = 1\n", - " allocate_num(num_qubits=4,is_signed=False,fraction_digits=0,out=x)\n", - " hadamard_transform(x)\n", - " linear_func(a,b,x,y)\n", - "\n", - "qmod = create_model(main)" - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": {}, - "outputs": [], - "source": [ - "qprog = synthesize(qmod)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's execute the circuit from directly from the SDK:" - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": {}, - "outputs": [], - "source": [ - "job = execute(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "And we can view the results in the IDE:" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": {}, - "outputs": [], - "source": [ - "job.open_in_ide()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Or to directly analyze it within the SDK:" - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'x': 2.0, 'y': 5.0}\n", - "{'x': 6.0, 'y': 13.0}\n", - "{'x': 3.0, 'y': 7.0}\n", - "{'x': 0.0, 'y': 1.0}\n", - "{'x': 8.0, 'y': 17.0}\n", - "{'x': 5.0, 'y': 11.0}\n", - "{'x': 7.0, 'y': 15.0}\n", - "{'x': 12.0, 'y': 25.0}\n", - "{'x': 1.0, 'y': 3.0}\n", - "{'x': 11.0, 'y': 23.0}\n", - "{'x': 13.0, 'y': 27.0}\n", - "{'x': 14.0, 'y': 29.0}\n", - "{'x': 4.0, 'y': 9.0}\n", - "{'x': 15.0, 'y': 31.0}\n", - "{'x': 10.0, 'y': 21.0}\n", - "{'x': 9.0, 'y': 19.0}\n" - ] - } - ], - "source": [ - "results = job.result()\n", - "parsed_counts = results[0].value.parsed_counts\n", - "for sampled_state in parsed_counts: print(sampled_state.state)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Now it's your turn!** \n", - "\n", - "Implement the same linear function, but now $x$ is in the domain $[0,1)$ and is represented by 4 qubits. The parameters $a,b$ should be now `float` with the values of: $a=0.5, b=1.5$." - ] - }, - { - "cell_type": "code", - "execution_count": 60, - "metadata": {}, - "outputs": [], - "source": [ - "@qfunc\n", - "def linear_func2(a:CReal,b: CReal, x:QNum, y: Output[QNum]):\n", - " y |= a*x+b\n", - " \n", - "@qfunc\n", - "def main(x:Output[QNum], y: Output[QNum]):\n", - "\n", - " a = 0.5\n", - " b = 1.5\n", - " allocate_num(num_qubits=4,is_signed=False,fraction_digits=4,out=x)\n", - " hadamard_transform(x)\n", - " linear_func2(a,b,x,y)\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "job = execute(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": 53, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'x': 0.0625, 'y': 1.53125}\n", - "{'x': 0.4375, 'y': 1.71875}\n", - "{'x': 0.1875, 'y': 1.59375}\n", - "{'x': 0.25, 'y': 1.625}\n", - "{'x': 0.375, 'y': 1.6875}\n", - "{'x': 0.0, 'y': 1.5}\n", - "{'x': 0.8125, 'y': 1.90625}\n", - "{'x': 0.6875, 'y': 1.84375}\n", - "{'x': 0.5, 'y': 1.75}\n", - "{'x': 0.75, 'y': 1.875}\n", - "{'x': 0.875, 'y': 1.9375}\n", - "{'x': 0.9375, 'y': 1.96875}\n", - "{'x': 0.125, 'y': 1.5625}\n", - "{'x': 0.625, 'y': 1.8125}\n", - "{'x': 0.3125, 'y': 1.65625}\n", - "{'x': 0.5625, 'y': 1.78125}\n" - ] - } - ], - "source": [ - "results = job.result()\n", - "parsed_counts = results[0].value.parsed_counts\n", - "for sampled_state in parsed_counts: print(sampled_state.state)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Tutorial - Two controlled Linear operations" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's say we want now to have two linear operations applied on the same quantum variable (register). But the arithmetic operation initialize a new quantum variable, so how can we do that? The answer is that we need to apply the operation to another variable and then XOR it to the variable we want. \n", - "\n", - "This can be useful if the linear operation we want to apply is controlled upon a control variable. Let's first define the functional building block:" - ] - }, - { - "cell_type": "code", - "execution_count": 62, - "metadata": {}, - "outputs": [], - "source": [ - "@qfunc\n", - "def inplace_linear_attempt(a:CInt,b: CInt, x:QNum, y: QNum):\n", - " tmp = QNum('tmp')\n", - " linear_func(a,b,x,tmp)\n", - " inplace_xor(tmp,y)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "And checking our basic function implementation:" - ] - }, - { - "cell_type": "code", - "execution_count": 63, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/f09b4bff-fba8-4d90-83a8-f4acf6543af6?version=0.41.0\n" - ] - } - ], - "source": [ - "@qfunc\n", - "def main(x: Output[QNum],y: Output[QNum]):\n", - " a = 1\n", - " b = 2\n", - "\n", - " allocate_num(4,False,0,y)\n", - " allocate_num(4,False,0,x)\n", - " hadamard_transform(x)\n", - " inplace_linear_attempt(a,b,x,y)\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "OK, cool. So now we want to add a control qubit that controlled on the state $\\ket{0}$ implements the linear function $\\ket{x}\\rightarrow\\ket{x}\\ket{x+2}$ and controlled on the state $\\ket{1}$ implements the linear function $\\ket{x}\\rightarrow\\ket{x}\\ket{2x+1}$:" - ] - }, - { - "cell_type": "code", - "execution_count": 64, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "@qfunc\n", - "def control_logic(a: CArray[CInt], b: CArray[CInt], controller:QNum, x: QNum, y: QNum):\n", - " \n", - " repeat( count=a.len, \n", - " iteration=lambda i: control(controller==i, lambda: inplace_linear_attempt(a[i],b[i],x,y)))\n" - ] - }, - { - "cell_type": "code", - "execution_count": 65, - "metadata": {}, - "outputs": [], - "source": [ - "@qfunc\n", - "def main(controller: Output[QNum], x: Output[QNum],y: Output[QNum]):\n", - "\n", - " # Linear polynom parameters\n", - " a = [1,2]\n", - " b = [2,1]\n", - "\n", - " # Initializing x to a superposition in the domain [0,2^4-1]\n", - " allocate_num(4,False,0,x)\n", - " hadamard_transform(x)\n", - " \n", - " #Initialize y\n", - " allocate_num(4,False,0,y)\n", - "\n", - " # Setting the controller in a superposition\n", - " allocate_num(1,False,0,controller)\n", - " H(controller)\n", - "\n", - " # Implementing the control logic\n", - " control_logic(a,b,controller,x,y)\n", - "\n", - " \n", - "qmod = create_model(main)" - ] - }, - { - "cell_type": "code", - "execution_count": 66, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/5ddd48f7-190b-426c-b8fd-9bde42324a91?version=0.41.0\n" - ] - } - ], - "source": [ - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "By executing we can actually see we get what we want:" - ] - }, - { - "cell_type": "code", - "execution_count": 67, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'controller': 1.0, 'x': 5.0, 'y': 11.0}\n", - "{'controller': 0.0, 'x': 2.0, 'y': 4.0}\n", - "{'controller': 0.0, 'x': 13.0, 'y': 15.0}\n", - "{'controller': 0.0, 'x': 11.0, 'y': 13.0}\n", - "{'controller': 0.0, 'x': 6.0, 'y': 8.0}\n", - "{'controller': 1.0, 'x': 7.0, 'y': 15.0}\n", - "{'controller': 0.0, 'x': 12.0, 'y': 14.0}\n", - "{'controller': 1.0, 'x': 10.0, 'y': 5.0}\n", - "{'controller': 0.0, 'x': 1.0, 'y': 3.0}\n", - "{'controller': 1.0, 'x': 12.0, 'y': 9.0}\n", - "{'controller': 0.0, 'x': 15.0, 'y': 1.0}\n", - "{'controller': 1.0, 'x': 2.0, 'y': 5.0}\n", - "{'controller': 0.0, 'x': 0.0, 'y': 2.0}\n", - "{'controller': 1.0, 'x': 8.0, 'y': 1.0}\n", - "{'controller': 1.0, 'x': 11.0, 'y': 7.0}\n", - "{'controller': 1.0, 'x': 4.0, 'y': 9.0}\n", - "{'controller': 0.0, 'x': 3.0, 'y': 5.0}\n", - "{'controller': 1.0, 'x': 0.0, 'y': 1.0}\n", - "{'controller': 1.0, 'x': 15.0, 'y': 15.0}\n", - "{'controller': 0.0, 'x': 8.0, 'y': 10.0}\n", - "{'controller': 1.0, 'x': 3.0, 'y': 7.0}\n", - "{'controller': 0.0, 'x': 9.0, 'y': 11.0}\n", - "{'controller': 1.0, 'x': 13.0, 'y': 11.0}\n", - "{'controller': 0.0, 'x': 10.0, 'y': 12.0}\n", - "{'controller': 1.0, 'x': 6.0, 'y': 13.0}\n", - "{'controller': 0.0, 'x': 5.0, 'y': 7.0}\n", - "{'controller': 1.0, 'x': 1.0, 'y': 3.0}\n", - "{'controller': 1.0, 'x': 9.0, 'y': 3.0}\n", - "{'controller': 0.0, 'x': 14.0, 'y': 0.0}\n", - "{'controller': 1.0, 'x': 14.0, 'y': 13.0}\n", - "{'controller': 0.0, 'x': 4.0, 'y': 6.0}\n", - "{'controller': 0.0, 'x': 7.0, 'y': 9.0}\n" - ] - } - ], - "source": [ - "def print_parsed_counts(job):\n", - " results = job.result()\n", - " parsed_counts = results[0].value.parsed_counts\n", - " for parsed_state in parsed_counts: print(parsed_state.state)\n", - "\n", - "job = execute(qprog)\n", - "print_parsed_counts(job)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Of course there is the issue of rounding and overflow - when one tries to represent $2*15+1=31$ with $4$ binary digits that's not possible (because the domain $[0,31]$ of integers is represented by at least 5 bits). See our [documentation](https://docs.classiq.io/latest/user-guide/platform/qmod/python/quantum-expressions/#inplace-arithmetic-operators) for further explanations.\n", - "\n", - "Let's try to use Classiq and optimize the circuit for minimal circuit width:" - ] - }, - { - "cell_type": "code", - "execution_count": 68, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Synthesized circuit width: 20, depth: 688\n" - ] - } - ], - "source": [ - "def print_depth_width(quantum_program):\n", - " generated_circuit = QuantumProgram.parse_raw(quantum_program)\n", - " print(f\"Synthesized circuit width: {generated_circuit.data.width}, depth: {generated_circuit.transpiled_circuit.depth}\")\n", - " \n", - "qmod = set_constraints(qmod,Constraints(optimization_parameter='width'))\n", - "qprog = synthesize(qmod)\n", - "print_depth_width(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "And when optimizing for depth:" - ] - }, - { - "cell_type": "code", - "execution_count": 69, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Synthesized circuit width: 32, depth: 398\n" - ] - } - ], - "source": [ - "qmod = set_constraints(qmod,Constraints(optimization_parameter='depth'))\n", - "qprog = synthesize(qmod)\n", - "print_depth_width(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Firstly, we can see here a clear demonstration of the power of high-level functional design!** The same algorithm with the same functionality was optimized once for depth and once for width and the result is 2 different circuits with different characteristics that implement the same functionality.\n", - "\n", - "Secondly, is this the best we can do? Obviously the Classiq synthesis engine is optimizing for us the algorithm quite good. But, can we change something with our functionality, with our algorithm to get more efficient circuits? \n", - "\n", - "If we go back to out `inplace_linear_attempt` function, we can see that we initialize a `tmp` variable that requires more qubits and is not used. For such scenarios we have the `within_apply`. This logic implements sort of $UVU^{\\dagger}$ and when temporary variables are outputs of $U$ and used only by $V$ they are uncomputed by $U^{\\dagger}$. Let's see for our example:" - ] - }, - { - "cell_type": "code", - "execution_count": 70, - "metadata": {}, - "outputs": [], - "source": [ - "@qfunc\n", - "def inplace_linear_func(a:CInt,b: CInt, x:QNum, y: QNum):\n", - " tmp = QNum('tmp')\n", - " within_apply(compute= lambda: linear_func(a,b,x,tmp),\n", - " action= lambda: inplace_xor(tmp,y))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "With the new `control_logic`:" - ] - }, - { - "cell_type": "code", - "execution_count": 71, - "metadata": {}, - "outputs": [], - "source": [ - "@qfunc\n", - "def control_logic_2(a: CArray[CInt], b: CArray[CInt], controller:QNum, x: QNum, y: QNum):\n", - " \n", - " repeat( count=a.len, \n", - " iteration=lambda i: control(controller==i, lambda: inplace_linear_func(a[i],b[i],x,y)))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "And when we put all together now:" - ] - }, - { - "cell_type": "code", - "execution_count": 72, - "metadata": {}, - "outputs": [], - "source": [ - "@qfunc\n", - "def main(controller: Output[QNum], x: Output[QNum],y: Output[QNum]):\n", - "\n", - " # Linear polynom parameters\n", - " a = [1,2]\n", - " b = [2,1]\n", - "\n", - " # Initializing x to a superposition in the domain [0,2^4-1]\n", - " allocate_num(4,False,0,x)\n", - " hadamard_transform(x)\n", - " \n", - " #Initialize y\n", - " allocate_num(4,False,0,y)\n", - "\n", - " # Setting the controller in a superposition\n", - " allocate_num(1,False,0,controller)\n", - " H(controller)\n", - "\n", - " # Implementing the control logic\n", - " control_logic_2(a,b,controller,x,y)\n", - "\n", - " \n", - "qmod = create_model(main)" - ] - }, - { - "cell_type": "code", - "execution_count": 73, - "metadata": {}, - "outputs": [], - "source": [ - "qprog = synthesize(qmod)" - ] - }, - { - "cell_type": "code", - "execution_count": 74, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/1b37f533-7e54-4085-8efa-3fb61cca0a0d?version=0.41.0\n" - ] - } - ], - "source": [ - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "And now when we optimize for width:" - ] - }, - { - "cell_type": "code", - "execution_count": 75, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Synthesized circuit width: 16, depth: 244\n" - ] - } - ], - "source": [ - "qmod = set_constraints(qmod,Constraints(optimization_parameter='width'))\n", - "qprog = synthesize(qmod)\n", - "print_depth_width(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "And for depth:" - ] - }, - { - "cell_type": "code", - "execution_count": 76, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Synthesized circuit width: 45, depth: 203\n" - ] - } - ], - "source": [ - "qmod = set_constraints(qmod,Constraints(optimization_parameter='depth'))\n", - "qprog = synthesize(qmod)\n", - "print_depth_width(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "So using the `within_apply` logic enabled us to reduce the optimal circuit implementation in terms of width from $20$ to $16$ and the optimal circuit depth from $398$ to $203$! " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Cheat Sheet" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Initalizations" - ] - }, - { - "cell_type": "code", - "execution_count": 77, - "metadata": {}, - "outputs": [ - { - "ename": "SyntaxError", - "evalue": "invalid syntax (519441306.py, line 2)", - "output_type": "error", - "traceback": [ - "\u001b[0;36m Cell \u001b[0;32mIn[77], line 2\u001b[0;36m\u001b[0m\n\u001b[0;31m num_qubits: CInt,\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m invalid syntax\n" - ] - } - ], - "source": [ - "allocate(\n", - " num_qubits: CInt,\n", - " out: Output[QArray[QBit, Literal[\"num_qubits\"]]])\n", - " '''\n", - " x = QArray('x')\n", - " allocate(4,x)\n", - " '''\n", - "\n", - "allocate_num(\n", - " num_qubits: CInt,\n", - " is_signed: QParam[bool],\n", - " fraction_digits: CInt,\n", - " out: Output[QNum])\n", - "'''\n", - "x = QNum('x')\n", - "allocate_num(4,False,4,x)\n", - "'''" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Operations" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "repeat(\n", - " count: CInt,\n", - " iteration: QCallable[CInt],\n", - ")\n", - "'''\n", - "x = QArray\n", - "allocate(4,x)\n", - "repeat(x.len,lambda index: H(x))\n", - "'''\n", - "\n", - "control(\n", - " operand: QCallable,\n", - " ctrl: QArray[QBit],\n", - ") \n", - "'''\n", - "x = QArray('x')\n", - "y = QArray('y')\n", - "x = allocate(4,x)\n", - "y = allocate(4,y)\n", - "repeat(x.len,lambda i: control(lambda: X(y[i]),x[i]))\n", - "'''" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.13" - }, - "vscode": { - "interpreter": { - "hash": "529b62266d4f537a408698cf820854c65fe877011c7661f0f70aa11c4383fddc" - } - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/community/QClass_2024/HW2/Stefanie_Muroya_Lei_HW2_QClass2024.ipynb b/community/QClass_2024/HW2/Stefanie_Muroya_Lei_HW2_QClass2024.ipynb deleted file mode 100644 index f0575bf6..00000000 --- a/community/QClass_2024/HW2/Stefanie_Muroya_Lei_HW2_QClass2024.ipynb +++ /dev/null @@ -1,650 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# The Qmod Workshop - Part 2: Higher-Level Concepts\n", - "\n", - "This is the second part of the Qmod workshop, covering exercises 6 through 10. Make sure to go through Part 1 before continuing with this notebook." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "from classiq import *" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 6 - Exponentiation and Pauli Operators\n", - "\n", - "The Qmod language supports different classical types: scalars, arrays, and structs. Structs are objects with member variables, or fields.\n", - "\n", - "See also [Classical Types](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/classical-types/#structs).\n", - "\n", - "The builtin struct type `PauliTerm` is defined as follows:" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "@struct\n", - "class PauliTerm:\n", - " pauli: CArray[Pauli]\n", - " coefficient: CReal" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Note that `Pauli` is an enum for all the Pauli matrices (I, X, Y, Z).\n", - "\n", - "Pauli based hamiltonian can be represented as a list of `PauliTerm`s. A Pauli operator defined this way is the argument to a hamiltonian evolution functions.\n", - "\n", - "In this exercise we will use the Suzuki-Trotter function to find the evolution of `H=0.5XZXX + 0.25YIZI + 0.3 XIZY` (captured as a literal value for the pauli-operator), with the evolution coefficient being 3, the order being 2, and use 4 repetitions.\n", - "\n", - "The declaration of the `suzuki_trotter` function is:" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "@qfunc(external=True)\n", - "def suzuki_trotter(\n", - " pauli_operator: CArray[PauliTerm],\n", - " evolution_coefficient: CReal,\n", - " order: CInt,\n", - " repetitions: CInt,\n", - " qbv: QArray[QBit],\n", - ") -> None:\n", - " pass" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Fill in the missing parts of the following code in order to complete this exercise:" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/e33741d2-bec4-4a30-bfdd-3a097fba66f8?version=0.41.1\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "\n", - "@qfunc\n", - "def main(q: Output[QArray[QBit]]) -> None:\n", - " allocate(4, q)\n", - " suzuki_trotter(\n", - " [\n", - " PauliTerm(pauli=[Pauli.X, Pauli.Z, Pauli.X, Pauli.X], coefficient=0.5),\n", - " PauliTerm(pauli=[Pauli.Y, Pauli.I, Pauli.Z, Pauli.I], coefficient=0.25),\n", - " PauliTerm(pauli=[Pauli.X, Pauli.I, Pauli.Z, Pauli.Y], coefficient=0.3),\n", - " ],\n", - " evolution_coefficient=3,\n", - " repetitions=4,\n", - " order=2,\n", - " qbv=q,\n", - " )\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 7 - Basic Arithmetics\n", - "\n", - "#### Exercise 7a\n", - "In this exercise we will use quantum numeric variables and calculate expressions over them.\n", - "\n", - "See details on the syntax of numeric types under [Quantum types](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/quantum-types/#syntax).\n", - "See more on quantum expressions under [Numeric assignment](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/numeric-assignment/)\n", - "\n", - "Create the following quantum programs:\n", - "1. Initialize variables `x=2`, `y=7` and computes `res = x + y`.\n", - "2. Initialize variables `x=2`, `y=7` and computes `res = x * y`.\n", - "3. Initialize variables `x=2`, `y=7`, `z=1` and computes `res = x * y - z`.\n", - "\n", - "Guidance:\n", - "* Use the operator `|=` to perform out-of-place assignment of arithmetic expression.\n", - "* To initialize the variables, use the function `prepare_int`.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/78e20727-cd38-44eb-b936-633e818af4ca?version=0.41.1\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "@qfunc\n", - "def main(x: Output[QNum], y: Output[QNum], z: Output[QNum], res0: Output[QNum], res1: Output[QNum], res2: Output[QNum]) -> None:\n", - " \n", - " prepare_int(2, x)\n", - " prepare_int(7, y)\n", - " prepare_int(1, z)\n", - "\n", - " res0 |= x + y\n", - " res1 |= x * y\n", - " res2 |= x * y -z\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Exercise 7b\n", - "Declare `x` to be a 2-qubit variable and `y` to be 3-qubit variable.\n", - "\n", - "We will perform an addition of two superposition states: `x` is an equal superposition of `0` and `2`, and `y` is an equal superposition of `1`, `2`, `3`, and `6`.\n", - "\n", - "1. Use `prepare_state` to initialize `x` and `y`. Note that `prepare_state` works with probabilities, not amplitudes.\n", - " The declaration of the `prepare_state` function is:\n", - " ```\n", - " @qfunc(external=True)\n", - " def prepare_state(\n", - " probabilities: CArray[CReal],\n", - " bound: CReal,\n", - " out: Output[QArray[QBit]],\n", - " ) -> None:\n", - " pass\n", - " ```\n", - " (Set the bound to 0 in your code)\n", - "2. Compute `res = x + y`. Execute the resulting circuit. What did you get?" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/7a0111aa-483b-4c69-9625-d15287ffceda?version=0.41.1\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def main(x: Output[QNum], y:Output[QNum], res: Output[QNum]):\n", - " prepare_state([0.5, 0, 0.5, 0], bound=0, out=x)\n", - " prepare_state([0, 0.25, 0.25, 0.25, 0, 0, 0.25, 0], bound=0, out=y)\n", - " res |= x + y\n", - " \n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 8 - Within-Apply\n", - "\n", - "The within-apply statement applies the pattern `U_dagger V U` that appears frequently in quantum computing.\n", - "It allows you to compute some function `V` within the context of another function `U`, and afterward uncompute `U` in order to release auxiliary qubits storing intermediate results.\n", - "\n", - "See also [Within Apply](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/within-apply/).\n", - "\n", - "#### Exercise 8a\n", - "\n", - "In this exercise, we will use within-apply to compute an arithmetic expression in steps.\n", - "\n", - "Use the `within_apply` operation to calculate `res = x + y + z` from a two-variable addition building block with the following steps:\n", - "1. Add `x` and `y`\n", - "2. Add the result to `z`\n", - "3. Uncompute the result of the first operation\n", - "\n", - "For simplicity, initialize the registers to simple integers: `x=3`, `y=5`, `z=2`.\n", - "\n", - "Hints:\n", - "\n", - "* Use a temporary variable.\n", - "* Wrap the arithmetic operation in a function.\n", - "\n", - "Execute the circuit and make sure you obtain the expected result." - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/98539fec-c38f-4582-a004-21be7c41aa62?version=0.41.1\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "def addition(x: Output[QNum], y: Output[QNum], temp: Output[QNum]):\n", - " temp |= x + y\n", - "\n", - " \n", - "@qfunc\n", - "def main(x: Output[QNum], y: Output[QNum], z: Output[QNum], res: Output[QNum]) -> None:\n", - " prepare_int(3, x)\n", - " prepare_int(5, y)\n", - " prepare_int(2, z)\n", - " temp = QNum(\"temp\")\n", - " within_apply(lambda: addition(x,y,temp), lambda: addition(temp, z, res))\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Exercise 8b\n", - "\n", - "Why should we use `within-apply` and not just write three concatenated functions?\n", - "To understand the motivation, we will create another arithmetic circuit.\n", - "This time, however, we will also set Classiq’s synthesis engine to optimize on the circuit’s number of qubits, i.e., its width.\n", - "\n", - "Setting constraints can be done via the `set_constraints` operation - see [here](https://docs.classiq.io/latest/user-guide/platform/synthesis/constraints/).\n", - "\n", - "Perform the operation `res = w + x + y + z`, where w is initialized to 4 and the rest as before:\n", - "\n", - "1. Add `x` and `y` (as part of the `within_apply` operation)\n", - "2. Add the result to `z` (as part of the within_apply operation)\n", - "3. Uncompute the result of the first operation (as part of the `within_apply` operation)\n", - "4. Add the result of the second operation to `w`. There’s no need to perform another uncomputation, as this brings our calculation to an end.\n", - "\n", - "Create the model, optimize on the circuit’s width, and run the circuit. Can you identify where qubits have been released and reused?" - ] - }, - { - "cell_type": "code", - "execution_count": 49, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/bcf7b3b3-7383-454e-a65f-60c5f533f983?version=0.41.1\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "def addition(x: Output[QNum], y: Output[QNum], temp: Output[QNum]):\n", - " temp |= x + y\n", - "\n", - " \n", - "@qfunc\n", - "def main(x: Output[QNum], y: Output[QNum], z: Output[QNum], w: Output[QNum], res: Output[QNum]) -> None:\n", - " prepare_int(3, x)\n", - " prepare_int(5, y)\n", - " prepare_int(2, z)\n", - " prepare_int(4, w)\n", - " temp = QNum(\"temp\")\n", - " temp2 = QNum(\"temp2\")\n", - " within_apply(lambda: addition(x,y,temp), lambda: addition(temp, z, temp2))\n", - " res |= temp2 + w\n", - "\n", - "constraints = Constraints(\n", - " max_width=16,\n", - " max_depth=1200,\n", - ")\n", - "\n", - "qmod = create_model(main)\n", - "qmod = set_constraints(qmod, constraints)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Bonus: Use a Single Arithmetic Expression\n", - "\n", - "What happens when we don't manually decompose this expression?\n", - "\n", - "Use Classiq’s arithmetic engine to calculate `res |= x + y + z + w` and optimize for width.\n", - "Look at the resulting quantum program - can you identify the computation and uncomputation blocks? What else did you notice?" - ] - }, - { - "cell_type": "code", - "execution_count": 45, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/ff505abe-5784-4b24-8a6a-8d66dfb9f5bb?version=0.41.1\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "\n", - "@qfunc\n", - "def main(x: Output[QNum], y: Output[QNum], z: Output[QNum], w: Output[QNum], res: Output[QNum]) -> None:\n", - " prepare_int(3, x)\n", - " prepare_int(5, y)\n", - " prepare_int(2, z)\n", - " prepare_int(4, w)\n", - " res |= x + y + z + w\n", - "\n", - "constraints = Constraints(\n", - " max_width=15,\n", - " max_depth=1200,\n", - ")\n", - "\n", - "qmod = create_model(main)\n", - "qmod = set_constraints(qmod, constraints)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 9 - In-place Arithmetics\n", - "\n", - "For the following exercise we will use numeric quantum variables that represent fixed-point reals.\n", - "\n", - "Arithmetic expressions can be calculated in-place into a target variable, without allocating new qubits to store the result. This is done using the in-place-xor operator.\n", - "\n", - "See also [Numeric assignment](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/numeric-assignment/#semantics).\n", - "\n", - "In-place assignment is often used to nest arithmetic expressions under quantum operators. Note that out-of-place assignment requires its left-value variable to be un-initialized, and therefore cannot be used under an operator if the variable is declared outside its scope. Applying operators to arithmetic expressions is required in many algorithms. One example is the piecewise evaluation of mathematical functions - calculating different expressions over `x` depending on the subdomain where `x` falls.\n", - "\n", - "For this exercise, replace the missing parts in the code snippet below to evaluate the result of:\n", - "\n", - "$$\n", - "f(x) = \\begin{cases}\n", - " 2x + 1 & \\text{ if } 0 \\leq x < 0.5 \\\\\n", - " x + 0.5 & \\text{ if } 0.5 \\leq x < 1\n", - " \\end{cases}\n", - "$$\n", - "\n", - "Notes:\n", - "- We cannot use `x` directly as the control variable in a `constrol` operator, because it also occurs in the nested scope. to determine if `x` is in the lower or higher half of the domain we duplicate the most significant bit onto a separate variable called `label`.\n", - "- In Python assignment operators cannot be used in lambda expressions, so the computation of the function needs to be factored out to a named Python function (but not necessarily a Qmod function).\n" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/820a33c8-8d74-40f1-910d-bc58a9036ae0?version=0.40.0\n" - ] - } - ], - "source": [ - "\n", - "from classiq import *\n", - "\n", - "\n", - "def linear_func(a: float, b: float, x: QNum, res: QNum) -> None:\n", - " res ^= a * x + b\n", - "\n", - "\n", - "@qfunc\n", - "def dup_msb(qba: QArray[QBit], msb: QBit) -> None:\n", - " CX(qba[qba.len - 1], msb)\n", - "\n", - "\n", - "@qfunc\n", - "def main(x: Output[QNum[3, False, 3]], res: Output[QNum[5, False, 3]]) -> None:\n", - " allocate(5, res)\n", - " allocate(3, x)\n", - " hadamard_transform(x)\n", - "\n", - " label = QArray(\"label\")\n", - " allocate(1, label)\n", - "\n", - " dup_msb(x, label)\n", - " control(label, lambda: linear_func(1.0, 0.5, x, res)) # 0.5 <= x < 1.0\n", - " X(label)\n", - " control(label, lambda: linear_func(2.0, 1.0, x, res)) # 0.0 <= x < 0.5\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 10 - State-preparation Algorithm using Quantum-if\n", - "\n", - "#### Binding\n", - "The `bind` operation allows to convert smoothly between different quantum types and split or slice bits when necessary. Here’s an example:" - ] - }, - { - "cell_type": "code", - "execution_count": 50, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/dba94f6c-1abe-4d42-b0a2-8c5541c63c70?version=0.41.1\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "from math import pi\n", - "\n", - "\n", - "@qfunc\n", - "def main(res: Output[QArray[QBit]]) -> None:\n", - " x: QArray[QBit] = QArray(\"x\")\n", - " allocate(3, x)\n", - " hadamard_transform(x)\n", - "\n", - " lsb = QBit(\"lsb\")\n", - " msb = QNum(\"msb\", 2, False, 0)\n", - " bind(x, [lsb, msb])\n", - "\n", - " control(msb == 1, lambda: RY(pi / 3, lsb)) # msb==1 <==> bit1 bit2 == 01 (binary of decimal 1)\n", - "\n", - " bind([lsb, msb], res)\n", - "\n", - "model = create_model(main)\n", - "qprog = synthesize(model)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The first `bind` operation splits the 3-qubit register `x` into the 2-qubit and single-qubit registers `lsb` and `msb`, respectively.\n", - "\n", - "After the `bind` operation:\n", - "1. The registers `lsb` and `msb` can be operated on as separated registers.\n", - "2. The register`x` is consumed and can no longer be used.\n", - "\n", - "The second `bind` operation concatenates the registers to the output register `res`.\n", - "\n", - "For this exercise, fill in the missing code parts in the above snippet and use the `control` statement to manually generate the following lovely 3-qubit probability distribution: `[1/8, 1/8, 1/8, -sqrt(3)/16, 1/8 + sqrt(3)/16, 1/8, 1/8, 1/8, 1/8]`.\n", - "\n", - "The following series of gates generate it:\n", - "\n", - "Perform the Hadamard transform on all three qubits.\n", - "\n", - "Apply a rotation on the LSB (least-significant bit) conditioned by the MSB being |0> and the second to last MSB being |1>. How would you write this condition using a QNum?\n", - "\n", - "The following series of gates generate it:\n", - "1. Perform the Hadamard transform on all three qubits.\n", - "2. Apply a `pi/3` rotation on the LSB (least-significant bit) conditioned by the MSB being |0> and the second to last MSB being |1>. How would you write this condition using a QNum?\n", - "\n", - "If you want to validate your results without looking at the full solution, compare them to running using Classiq’s built-in `prepare_state` function.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/cdb5ffbc-00ae-4577-ac53-c16ceba55e5d?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "from classiq.qmod.symbolic import sqrt\n", - "from math import pi\n", - "\n", - "prob_list= [\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " -sqrt(3) / 16,\n", - " 1 / 8 + sqrt(3) / 16,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " ]\n", - "@qfunc\n", - "def pre_prepared_state(q: QArray[QBit]) -> None:\n", - " prepare_state(\n", - " [\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " sqrt(3) / 16,\n", - " 1 / 8 + sqrt(3) / 16,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " ],\n", - " bound=0.0,\n", - " out=q,\n", - " )\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def main(res: Output[QArray[QBit]]) -> None:\n", - " x: QArray[QBit] = QArray(\"x\")\n", - " allocate(3, x)\n", - " hadamard_transform(x)\n", - "\n", - " lsb = QBit(\"lsb\")\n", - " msb = QNum(\"msb\", 2, False, 0)\n", - " bind(x, [lsb, msb])\n", - "\n", - " control(msb == 1, lambda: RY(pi / 3, lsb)) # msb==1 <==> bit1 bit2 == 01 (binary of decimal 1)\n", - "\n", - " bind([lsb, msb], res)\n", - "\n", - "model = create_model(main)\n", - "qprog = synthesize(model)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.13" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/community/QClass_2024/HW3/Stefanie_Muroya_Lei_HW3_QClass2024.ipynb b/community/QClass_2024/HW3/Stefanie_Muroya_Lei_HW3_QClass2024.ipynb deleted file mode 100644 index 37214512..00000000 --- a/community/QClass_2024/HW3/Stefanie_Muroya_Lei_HW3_QClass2024.ipynb +++ /dev/null @@ -1,321 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "id": "fc72d98f-8993-4bd4-a545-23d122f3df71", - "metadata": {}, - "source": [ - "# H₂ Molecule Homework Assignment\n", - "### Quantum Software Development Journey: From Theory to Application with Classiq - Part 3\n", - "\n", - "- Similarly to what we have done in class, in this exercise we will implement the VQE on H2 molecule.\n", - "- This time instead of using the built-in methods and functions (such as `Molecule` and `MoleculeProblem`) to difne and solve the problem, you will be provided with a two qubits Hamiltonian." - ] - }, - { - "cell_type": "markdown", - "id": "56eda6d8-76c4-4862-b914-0c4598d67274", - "metadata": {}, - "source": [ - "## Submission\n", - "- Submit the completed Jupyter notebook and report via GitHub. Ensure all files are correctly named and organized.\n", - "- Use the Typeform link provided in the submission folder to confirm your submission.\n", - "\n", - "## Additional Resources\n", - "- [Classiq Documentation](https://docs.classiq.io/latest/)\n", - "- The notebook from live session #3\n", - "\n", - "## Important Dates\n", - "- **Assignment Release:** 22.5.2024\n", - "- **Submission Deadline:** 3.6.2024 (7 A.M GMT+3)\n", - "\n", - "---\n", - "\n", - "Happy coding and good luck!" - ] - }, - { - "cell_type": "markdown", - "id": "d41e969d-f6a7-4ff7-9660-19ce6c97ba6b", - "metadata": {}, - "source": [ - "### Part 1" - ] - }, - { - "cell_type": "markdown", - "id": "f710d6f4-d40b-42d5-b524-c6acb8059fe2", - "metadata": {}, - "source": [ - "Given the following Hamiltonian:" - ] - }, - { - "cell_type": "markdown", - "id": "6ba8a6f1-3259-4492-a1ca-3abde7530cd4", - "metadata": {}, - "source": [ - "$$\n", - "\\hat{H} = -1.0523 \\cdot (I \\otimes I) + 0.3979 \\cdot (I \\otimes Z) - 0.3979 \\cdot (Z \\otimes I) - 0.0112 \\cdot (Z \\otimes Z) + 0.1809 \\cdot (X \\otimes X)\n", - "$$" - ] - }, - { - "cell_type": "markdown", - "id": "736d275c-9a5a-4c08-b891-3078430dc6c1", - "metadata": {}, - "source": [ - "Complete the following code" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "id": "19266c11-6acc-4edb-910f-2d0dfe80a6c8", - "metadata": {}, - "outputs": [], - "source": [ - "from typing import List\n", - "from classiq import *\n", - "\n", - "HAMILTONIAN = QConstant(\"HAMILTONIAN\", List[PauliTerm], [\n", - " PauliTerm([Pauli.I, Pauli.I], -1.0523),\n", - " PauliTerm([Pauli.I, Pauli.Z], 0.3979),\n", - " PauliTerm([Pauli.Z, Pauli.I], -0.3979),\n", - " PauliTerm([Pauli.Z, Pauli.Z], -0.0112),\n", - " PauliTerm([Pauli.X, Pauli.X], 0.1809)\n", - "]) #TODO: Complete Hamiltonian\n" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "id": "0bb68899-2076-45c0-8868-131f38aa3b78", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/660cc65e-5a89-4101-908e-3b3af9e6fc5a?version=0.41.2\n" - ] - } - ], - "source": [ - "@qfunc\n", - "def main(q: Output[QArray[QBit]], angles: CArray[CReal, 3]) -> None:\n", - " # TODO: Create an ansatz which allows each qubit to have arbitrary rotation\n", - " allocate(2, q)\n", - " U(angles[0], angles[1], angles[2], 0, q[0])\n", - " U(angles[0], angles[1], angles[2], 0, q[1])\n", - "\n", - "@cfunc\n", - "def cmain() -> None:\n", - " res = vqe(\n", - " HAMILTONIAN, # TODO: complete the missing argument\n", - " False,\n", - " [],\n", - " optimizer=Optimizer.COBYLA,\n", - " max_iteration=1000,\n", - " tolerance=0.001,\n", - " step_size=0,\n", - " skip_compute_variance=False,\n", - " alpha_cvar=1.0,\n", - " )\n", - " save({\"result\": res})\n", - "\n", - "qmod = create_model(main, classical_execution_function=cmain) #TODO: complete the line, use classical_execution_function\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "id": "0563c1a8-7aec-4da9-9105-6b16c5c24382", - "metadata": {}, - "outputs": [], - "source": [ - "execution = execute(qprog)\n", - "res = execution.result()\n", - "# execution.open_in_ide()\n", - "vqe_result = res[0].value #TODO: complete the line" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "id": "6843dd8d-f19b-4eb4-bbef-a1b4765cd678", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Optimal energy: -1.07072861328125\n", - "Optimal parameters: {'angles_0': 2.959328274164938, 'angles_1': 1.1257088647469409, 'angles_2': -3.5693364096056146}\n", - "Eigenstate: {'10': (0.11048543456039805+0j), '01': (0.10364452469860624+0j), '11': (0.9884587908709194+0j)}\n" - ] - } - ], - "source": [ - "print(f\"Optimal energy: {vqe_result.energy}\")\n", - "print(f\"Optimal parameters: {vqe_result.optimal_parameters}\")\n", - "print(f\"Eigenstate: {vqe_result.eigenstate}\")" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "id": "de17cfc0-8e64-4493-b4c2-4a97fc9797a0", - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "11\n", - "Optimal parameters: {'angles_0': -3.0292653800801213, 'angles_1': 0.13084292242999915, 'angles_2': -5.614248543217801}\n", - "Eigenstate: {'10': (0.07328774624724109+0j), '11': (0.07328774624724109+0j), '01': (0.9946144039274718+0j)}\n" - ] - } - ], - "source": [ - "print(f\"Optimal energy: {vqe_result.energy}\")\n", - "print(f\"Optimal parameters: {vqe_result.optimal_parameters}\")\n", - "print(f\"Eigenstate: {vqe_result.eigenstate}\")" - ] - }, - { - "cell_type": "markdown", - "id": "5df11dfc-3e3a-4191-bd47-d522ca3dcbfa", - "metadata": {}, - "source": [ - "Does it similar to the `optimal energy` we calculated in class? \\\n", - "Does it similar to the `total energy` we calculated in class?" - ] - }, - { - "cell_type": "markdown", - "id": "4f0e0bea-b12f-43ad-94e8-100fedf2b57f", - "metadata": {}, - "source": [ - "### Part 2" - ] - }, - { - "cell_type": "markdown", - "id": "66882248-de08-4a6e-b33c-647f015f7d79", - "metadata": {}, - "source": [ - "**Now, we want to have a more interesting ansatz in our `main`.** \n", - "Add **one** line of code to the `main` function you created in Part 1 that creates **entanglement** between the two qubits. \n", - "Which gate should you use?" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "id": "bb39be9e-4994-44e5-84d8-c99bc8b77145", - "metadata": {}, - "outputs": [], - "source": [ - "@qfunc\n", - "def main(q: Output[QArray[QBit]], angles: CArray[CReal, 3]) -> None:\n", - " # TODO: Create an ansatz which allows each qubit to have arbitrary rotation\n", - " allocate(2, q)\n", - " U(angles[0], angles[1], angles[2], 0, q[0])\n", - " CX(control=q[0], target=q[1])\n", - " U(angles[0], angles[1], angles[2], 0, q[1])\n", - "\n", - "\n", - "@cfunc\n", - "def cmain() -> None:\n", - " res = vqe(\n", - " HAMILTONIAN, # TODO: complete the missing argument\n", - " False,\n", - " [],\n", - " optimizer=Optimizer.COBYLA,\n", - " max_iteration=1000,\n", - " tolerance=0.001,\n", - " step_size=0,\n", - " skip_compute_variance=False,\n", - " alpha_cvar=1.0,\n", - " )\n", - " save({\"result\": res})\n", - "\n", - "qmod = create_model(main, classical_execution_function=cmain) #TODO: complete the line, use classical_execution_function\n", - "qprog = synthesize(qmod)\n", - "# show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "id": "112a1590-283c-4f79-8035-72936561102d", - "metadata": {}, - "outputs": [], - "source": [ - "execution = execute(qprog)\n", - "res = execution.result()\n", - "# execution.open_in_ide()\n", - "vqe_result = res[0].value #TODO: complete the line" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "id": "06500e4c-a04b-4cfa-a84d-41f96a0c68eb", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Optimal energy: -1.8515594726562499\n", - "Optimal parameters: {'angles_0': 3.0043706282977434, 'angles_1': -1.328156889572427, 'angles_2': 6.343052137377648}\n", - "Eigenstate: {'11': (0.07654655446197431+0j), '10': (0.07967217989988726+0j), '00': (0.02209708691207961+0j), '01': (0.9936320684740404+0j)}\n" - ] - } - ], - "source": [ - "print(f\"Optimal energy: {vqe_result.energy}\")\n", - "print(f\"Optimal parameters: {vqe_result.optimal_parameters}\")\n", - "print(f\"Eigenstate: {vqe_result.eigenstate}\")" - ] - }, - { - "cell_type": "markdown", - "id": "30a635d7-2f15-4c94-a94b-f4270f17aed8", - "metadata": {}, - "source": [ - "Does it similar to the `optimal energy` we calculated in class? \\\n", - "Does it similar to the `total energy` we calculated in class? \\\n", - "What can we learn about the provided form this result Hamiltonian?" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.13" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/community/QClass_2024/Presentations/QClass_week1.pptx.pdf b/community/QClass_2024/Presentations/QClass_week1.pptx.pdf deleted file mode 100644 index dd8bc4bd..00000000 Binary files a/community/QClass_2024/Presentations/QClass_week1.pptx.pdf and /dev/null differ diff --git a/community/QClass_2024/Presentations/QClass_week2.pptx.pdf b/community/QClass_2024/Presentations/QClass_week2.pptx.pdf deleted file mode 100644 index c7a55ba4..00000000 Binary files a/community/QClass_2024/Presentations/QClass_week2.pptx.pdf and /dev/null differ diff --git a/community/QClass_2024/Presentations/QClass_week3.pptx.pdf b/community/QClass_2024/Presentations/QClass_week3.pptx.pdf deleted file mode 100644 index 95a85b5b..00000000 Binary files a/community/QClass_2024/Presentations/QClass_week3.pptx.pdf and /dev/null differ diff --git a/community/QClass_2024/Presentations/_QClass_week4.pptx.pdf b/community/QClass_2024/Presentations/_QClass_week4.pptx.pdf deleted file mode 100644 index 7889e7e9..00000000 Binary files a/community/QClass_2024/Presentations/_QClass_week4.pptx.pdf and /dev/null differ diff --git a/community/QClass_2024/README.md b/community/QClass_2024/README.md index 4139b473..1149e538 100644 --- a/community/QClass_2024/README.md +++ b/community/QClass_2024/README.md @@ -1,34 +1,35 @@ # Welcome to QClass 2024! -**This repository serves as our central hub for all course activities, including mastering Git & GitHub skills, submitting assignments, and accessing course materials.** +**This is our workspace for mastering Git & GitHub skills.** ## What is This Repository For? -- **Assignment Submissions:** As an initial practice in opening a pull request, we'll use this repository to submit assignments. -- **Practice and Learning:** Gain hands-on experience with Git & GitHub, crucial for collaborative software development. + +We'll use this repository to submit assignments as an initial practice in opening a pull request. ## Getting Started -If you haven't already, please ensure you fork and clone the [classiq-library](https://github.com/Classiq/classiq-library): + +If you didn't forked and clone the [classiq-library](https://github.com/Classiq/classiq-library) already, follow this: + 1. **Fork** the repo to add it to your GitHub account. 2. **Clone** your forked repository to your local machine. ## Submission: Rules & Instructions -To ensure efficient tracking and management of submissions, please adhere to the following: + +To keep track of submissions, we kindly ask you to: + 1. Complete the assignment. -2. Rename the files to include your full name, e.g., `Nadav_Ben-Ami_HW1_QClass2024.ipynb`. +2. Rename the files to include your full name, for example: `Nadav_Ben-Ami_HW1_QClass2024.ipynb`. 3. Navigate to your local clone of the `classiq-library`. -4. Access the `community/QClass_2024` folder. +4. Go to `community/QClass_2024`. 5. Place your solutions in the correct folder. -6. Use command line commands to `add`, `commit`, and `push` your changes to the remote (your fork of the `classiq-library`). -7. Create a new Pull Request (PR) from your fork to the original repository (`Classiq/classiq-library`). Ensure your PR is descriptive. -8. Confirm your submission by completing the Typeform linked in `index.md` in the submission folder. - -### Important Dates -- **Submission Deadline:** All assignments must be submitted by 10.6.2024, 7 A.M GMT+3. Note that the deadline for HW4 may be extended depending on the project specifics. +6. Use the command line to `add`, `commit`, and `push` those changes to the remote (your fork of the `classiq-library`). +7. Navigate to your GitHub repository `classiq-library` and create a new Pull Request (PR) to merge the changes from your fork to the original repository (`Classiq/classiq-library`). Make sure that your PR is well described. +8. After you are done, please let us know by submitting the Typeform (links in index.md in the submission folder). -## Certification -Upon fulfilling the course requirements, complete the following [Survey](https://fvrn0h72gwo.typeform.com/to/V2nZ8Nnn) to receive your certificate. +**Please ensure you follow these steps carefully to properly submit your assignment!** ## Support -For assistance or inquiries, please reach out on our Slack channel. -## Enjoy your learning journey at QClass 2024! \ No newline at end of file +If you need help or have questions, feel free to reach out in our Slack channel! + +## Enjoy your learning journey at QClass 2024! diff --git a/community/QClass_2024/Sessions/week 4/QNN_full_example.ipynb b/community/QClass_2024/Sessions/week 4/QNN_full_example.ipynb deleted file mode 100644 index c4b6dac9..00000000 --- a/community/QClass_2024/Sessions/week 4/QNN_full_example.ipynb +++ /dev/null @@ -1,679 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "id": "882c596f-7a9c-4456-9ce1-b7a4cb72d10b", - "metadata": { - "id": "882c596f-7a9c-4456-9ce1-b7a4cb72d10b" - }, - "source": [ - "# Quantum Software Development Journey:\n", - "# From Theory to Application with Classiq - Part 4" - ] - }, - { - "cell_type": "markdown", - "id": "2dbea8e0-9710-4ee8-90f6-a04358d2e157", - "metadata": { - "id": "2dbea8e0-9710-4ee8-90f6-a04358d2e157" - }, - "source": [ - "**Welcome to the Classiq Workshop Series for QClass 2024!**\n", - "\n", - "In this series, we will develop the skills needed to participate in quantum software development!\n", - "\n", - "- Week 1: Classiq's Basics & High-Level Functional Design\n", - "- Week 2: Using Git as a Tool for In-Team Collaboration and Open Source Contributions\n", - "- Week 3: Introduction to Quantum Machine Learning (QML) & VQE\n", - "- **Week 4: QNN and and Advanced Applications**\n", - "\n", - "**[New Classiq's documentation](https://docs.classiq.io/latest/)!**\n", - "\n", - "\n", - "\n", - "\n", - "Additional resources you should use are\n", - "- The IDE of the classiq platform at [platform.classiq.io](platform.classiq.io)\n", - "- The [community Slack of Classiq](https://short.classiq.io/join-slack) - Classiq's team will answer any question you have over there, including implementation questions\n", - "- Course's [GitHub repository](https://github.com/Classiq/classiq-library/tree/main/community/QClass_2024)\n", - "\n", - " \n", - "**Good luck!**" - ] - }, - { - "cell_type": "markdown", - "source": [ - "## Setting The Scene" - ], - "metadata": { - "id": "p5c9gA_h9tZF" - }, - "id": "p5c9gA_h9tZF" - }, - { - "cell_type": "markdown", - "source": [ - "When running from Google Colab, we need to install Classiq's SDK and authenticate the remote device:" - ], - "metadata": { - "id": "F5A8mXw389nQ" - }, - "id": "F5A8mXw389nQ" - }, - { - "cell_type": "code", - "source": [ - "# !pip install -U classiq" - ], - "metadata": { - "id": "4oEdGj8m88xp" - }, - "id": "4oEdGj8m88xp", - "execution_count": 15, - "outputs": [] - }, - { - "cell_type": "code", - "source": [ - "# import classiq\n", - "# classiq.authenticate()" - ], - "metadata": { - "id": "wUz9_4419L1H" - }, - "id": "wUz9_4419L1H", - "execution_count": 16, - "outputs": [] - }, - { - "cell_type": "markdown", - "source": [ - "If you are working locally, make sure to install PyTorch according to your operating system using the official installation [website](https://pytorch.org/)." - ], - "metadata": { - "id": "Ugp1GzuuBXQt" - }, - "id": "Ugp1GzuuBXQt" - }, - { - "cell_type": "markdown", - "id": "44ebd39d-edc7-47d6-8132-f98c662a3443", - "metadata": { - "id": "44ebd39d-edc7-47d6-8132-f98c662a3443" - }, - "source": [ - "## Intro" - ] - }, - { - "cell_type": "markdown", - "id": "a215faeb-363d-49e4-b2d9-34c945138ba0", - "metadata": { - "id": "a215faeb-363d-49e4-b2d9-34c945138ba0" - }, - "source": [ - "In this example, we will show a simple example of parametric quantum program (PQC).\n", - "\n", - "We will take 1 input from the user, and consider 1 weight, while utilizing 1 qubit in the PQC. During this example, the goal of the learning process is to assess the right angle for a Rx gate for performing a \"NOT\" operation (spoiler, the correct answer is $\\pi$\n", - ").\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "id": "5f7de2e4-a645-44af-99a3-f3eb85473ec5", - "metadata": { - "id": "5f7de2e4-a645-44af-99a3-f3eb85473ec5" - }, - "source": [ - "## General flow" - ] - }, - { - "cell_type": "markdown", - "id": "d41dd8d0-6eca-4edc-8af5-5c5b7767008b", - "metadata": { - "id": "d41dd8d0-6eca-4edc-8af5-5c5b7767008b" - }, - "source": [ - "In [section 1](#step-1-create-our-torchnnmodule) we will see the code required for defining a quantum layer.\n", - "This will include:\n", - "\n", - "- section 1.1: defining the quantum model and synthesizing it to a quantum program\n", - "- section 1.2: defining the execute and post-process callables\n", - "- section 1.3: defining a `torch.nn.Module` network\n", - "\n", - "In section 2 we will choose our dataset, loss function, and optimizer.\n", - "Section 3 will demostrate how to handle the learning process, and section 4 will test our network's performance.\n", - "\n", - "If you're not familiar with PyTorch, it is highly recommended that you'll check out the following pages from their documentation:\n", - "\n", - "- [Creating Models](https://pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html#creating-models)\n", - "- [Build the Neural Network](https://pytorch.org/tutorials/beginner/basics/buildmodel_tutorial.html)\n", - "- [Optimizing the Model Parameters](https://pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html#optimizing-the-model-parameters)\n", - "- [Tensors](https://pytorch.org/tutorials/beginner/basics/tensorqs_tutorial.html)\n", - "- [Datasets & DataLoaders](https://pytorch.org/tutorials/beginner/basics/data_tutorial.html)\n" - ] - }, - { - "cell_type": "markdown", - "id": "ed136231-3910-45ca-9ec6-c33f5ef428cd", - "metadata": { - "id": "ed136231-3910-45ca-9ec6-c33f5ef428cd" - }, - "source": [ - "# Step 1 - Create our `torch.nn.Module`" - ] - }, - { - "cell_type": "markdown", - "id": "dae15b1c-0d3f-4807-ae48-edfba8425962", - "metadata": { - "id": "dae15b1c-0d3f-4807-ae48-edfba8425962" - }, - "source": [ - "## Step 1.1 - Create our parametric quantum program" - ] - }, - { - "cell_type": "markdown", - "id": "5105b43a-340e-4f79-8d54-f6e898ba415c", - "metadata": { - "id": "5105b43a-340e-4f79-8d54-f6e898ba415c" - }, - "source": [ - "Our quantum model will be defined and synthesized as follows:" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "id": "16b7cd0b-5438-4ec8-ae83-3b17b450bbe5", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "16b7cd0b-5438-4ec8-ae83-3b17b450bbe5", - "outputId": "817659cc-4556-49b3-cdf9-cc6cb33c35ee" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Opening: https://platform.classiq.io/circuit/9087e174-1b7d-4e73-a0ba-dc5e37ad097b?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import synthesize, qfunc, QArray, QBit, RX, Output, allocate, CReal, show\n", - "from classiq.qmod.quantum_function import create_model\n", - "\n", - "\n", - "@qfunc\n", - "def encoding(theta: CReal, q: QArray[QBit]) -> None:\n", - " RX(theta=theta, target=q[0])\n", - "\n", - "\n", - "@qfunc\n", - "def mixing(theta: CReal, q: QArray[QBit]) -> None:\n", - " RX(theta=theta, target=q[0])\n", - "\n", - "\n", - "@qfunc\n", - "def main(input_0: CReal, weight_0: CReal, res: Output[QArray[QBit]]) -> None:\n", - " allocate(1, res)\n", - " encoding(theta=input_0, q=res) # Loading input\n", - " mixing(theta=weight_0, q=res) # Adjustable parameter\n", - "\n", - "\n", - "model = create_model(main)\n", - "\n", - "quantum_program = synthesize(model)\n", - "show(quantum_program)" - ] - }, - { - "cell_type": "markdown", - "id": "7abccf3f-59a9-4ca4-9abd-a3f73f80efc0", - "metadata": { - "id": "7abccf3f-59a9-4ca4-9abd-a3f73f80efc0" - }, - "source": [ - "The input (`input_0`), logically indicating the state `|0>` or `|1>`, is transformed into an angle, either `0` or `pi`.\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "id": "bef15105-d942-45a6-a615-7b5458241703", - "metadata": { - "id": "bef15105-d942-45a6-a615-7b5458241703" - }, - "source": [ - "## Step 1.2 - Create the Execution and Post-processing" - ] - }, - { - "cell_type": "markdown", - "id": "69875135-2a3d-4d8a-91df-ee501f01eac2", - "metadata": { - "id": "69875135-2a3d-4d8a-91df-ee501f01eac2" - }, - "source": [ - "The following example defines a function that takes in a parametric quantum program plus parameters, executes the program, and returns the result. Notes:\n", - "\n", - "1. The code can be executed on a physical computer or on a simulator. In any case, implement the execution using `execute_qnn`.\n", - "2. Post-process the result of the execution to obtain a single number (`float`) and a single dimension `Tensor`.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "id": "e86e8923-1b0a-48a3-a973-9a31773f08e6", - "metadata": { - "id": "e86e8923-1b0a-48a3-a973-9a31773f08e6" - }, - "outputs": [], - "source": [ - "import torch\n", - "\n", - "from classiq.applications.qnn.types import (\n", - " MultipleArguments,\n", - " SavedResult,\n", - " ResultsCollection,\n", - ")\n", - "\n", - "from classiq.execution import execute_qnn\n", - "from classiq.synthesis import SerializedQuantumProgram\n", - "\n", - "\n", - "def execute(\n", - " quantum_program: SerializedQuantumProgram, arguments: MultipleArguments\n", - ") -> ResultsCollection:\n", - " return execute_qnn(quantum_program, arguments)\n", - "\n", - "\n", - "# Post-process the result, returning a dict:\n", - "# Note: this function assumes that we only care about\n", - "# differentiating a single state (|0>)\n", - "# from all the rest of the states.\n", - "# In case of a different differentiation, this function should change.\n", - "def post_process(result: SavedResult) -> torch.Tensor:\n", - " \"\"\"\n", - " Take in a `SavedResult` with `ExecutionDetails` value type, and return the\n", - " probability of measuring |0> which equals the amount of `|0>` measurements\n", - " divided by the total amount of measurements.\n", - " \"\"\"\n", - " counts: dict = result.value.counts\n", - " # The probability of measuring |0>\n", - " p_zero: float = counts.get(\"0\", 0.0) / sum(counts.values())\n", - " return torch.tensor(p_zero)\n" - ] - }, - { - "cell_type": "markdown", - "id": "aa6a64b5-bdff-4e66-b16c-6ede1d69877d", - "metadata": { - "id": "aa6a64b5-bdff-4e66-b16c-6ede1d69877d" - }, - "source": [ - "## Step 1.3 - Create a network" - ] - }, - { - "cell_type": "markdown", - "id": "1937b4d5-abfa-40bd-b26e-32c93936be18", - "metadata": { - "id": "1937b4d5-abfa-40bd-b26e-32c93936be18" - }, - "source": [ - "Now we're going to define a network, just like any other PyTorch network, only that this time, we will have only 1 layer, and it will be a quantum layer." - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "id": "9731c78f-ed71-47e8-9529-dcbb7e6d0bdf", - "metadata": { - "id": "9731c78f-ed71-47e8-9529-dcbb7e6d0bdf" - }, - "outputs": [], - "source": [ - "import torch\n", - "\n", - "from classiq.applications.qnn import QLayer\n", - "\n", - "\n", - "class Net(torch.nn.Module):\n", - " def __init__(self, *args, **kwargs) -> None:\n", - " super().__init__()\n", - " self.qlayer = QLayer(\n", - " quantum_program, # the quantum program, the result of `synthesize()`\n", - " execute, # a callable that takes\n", - " # - a quantum program\n", - " # - parameters to that program (a tuple of dictionaries)\n", - " # and returns a `ResultsCollection`\n", - " post_process, # a callable that takes\n", - " # - a single `SavedResult`\n", - " # and returns a `torch.Tensor`\n", - " *args,\n", - " **kwargs\n", - " )\n", - "\n", - " def forward(self, x: torch.Tensor) -> torch.Tensor:\n", - " x = self.qlayer(x)\n", - " return x\n", - "\n", - "\n", - "model = Net()" - ] - }, - { - "cell_type": "markdown", - "id": "a94ff1bc-58f5-4743-aa09-0cc77dcfecd6", - "metadata": { - "id": "a94ff1bc-58f5-4743-aa09-0cc77dcfecd6" - }, - "source": [ - "# Step 2 - Choose a dataset, loss function, and optimizer" - ] - }, - { - "cell_type": "markdown", - "id": "8ac9fb68-bbf5-48c1-ba7a-2af0d9219b74", - "metadata": { - "id": "8ac9fb68-bbf5-48c1-ba7a-2af0d9219b74" - }, - "source": [ - "We will use the DATALOADER_NOT dataset, defined [here](https://docs.classiq.io/latest/reference-manual/built-in-algorithms/qml/qnn/datasets/) as well as [L1Loss](https://pytorch.org/docs/stable/generated/torch.nn.L1Loss.html) and [SGD](https://pytorch.org/docs/stable/generated/torch.optim.SGD.html)" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "id": "a5d47c00-3040-43d2-b3d6-1d5a1614a2ee", - "metadata": { - "id": "a5d47c00-3040-43d2-b3d6-1d5a1614a2ee" - }, - "outputs": [], - "source": [ - "from classiq.applications.qnn.datasets import DATALOADER_NOT\n", - "import torch.nn as nn\n", - "import torch.optim as optim\n", - "\n", - "_LEARNING_RATE = 1\n", - "\n", - "# choosing our data\n", - "data_loader = DATALOADER_NOT\n", - "# choosing our loss function\n", - "loss_func = nn.L1Loss() # Mean Absolute Error (MAE)\n", - "# choosing our optimizer\n", - "optimizer = optim.SGD(model.parameters(), lr=_LEARNING_RATE)\n" - ] - }, - { - "cell_type": "markdown", - "id": "b0087ab6-addd-41ac-b609-f60b0b4591cd", - "metadata": { - "id": "b0087ab6-addd-41ac-b609-f60b0b4591cd" - }, - "source": [ - "# Step 3 - Train" - ] - }, - { - "cell_type": "markdown", - "id": "ae072cf7-431f-4583-b5c7-a21be4ef56f2", - "metadata": { - "id": "ae072cf7-431f-4583-b5c7-a21be4ef56f2" - }, - "source": [ - "For the training process, we will use a loop similar to [the one recommended by PyTorch](https://pytorch.org/tutorials/beginner/blitz/neural_networks_tutorial.html#update-the-weights)" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "id": "bab03c43-9d90-4d3b-9ece-4b2f8655be33", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "bab03c43-9d90-4d3b-9ece-4b2f8655be33", - "outputId": "2801de37-411f-4fa8-d9c7-bb9d3fa0db87" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "0 Parameter containing:\n", - "tensor([0.1470], requires_grad=True)\n", - "1 Parameter containing:\n", - "tensor([0.3423], requires_grad=True)\n", - "2 Parameter containing:\n", - "tensor([0.5132], requires_grad=True)\n", - "3 Parameter containing:\n", - "tensor([0.6474], requires_grad=True)\n", - "4 Parameter containing:\n", - "tensor([0.9892], requires_grad=True)\n", - "5 Parameter containing:\n", - "tensor([0.9282], requires_grad=True)\n", - "6 Parameter containing:\n", - "tensor([1.0137], requires_grad=True)\n", - "7 Parameter containing:\n", - "tensor([1.0747], requires_grad=True)\n", - "8 Parameter containing:\n", - "tensor([1.5386], requires_grad=True)\n", - "9 Parameter containing:\n", - "tensor([2.1977], requires_grad=True)\n", - "10 Parameter containing:\n", - "tensor([2.8691], requires_grad=True)\n", - "11 Parameter containing:\n", - "tensor([3.0522], requires_grad=True)\n", - "12 Parameter containing:\n", - "tensor([3.0034], requires_grad=True)\n", - "13 Parameter containing:\n", - "tensor([3.1743], requires_grad=True)\n", - "14 Parameter containing:\n", - "tensor([3.1499], requires_grad=True)\n", - "15 Parameter containing:\n", - "tensor([3.1499], requires_grad=True)\n", - "16 Parameter containing:\n", - "tensor([3.1499], requires_grad=True)\n", - "17 Parameter containing:\n", - "tensor([3.1499], requires_grad=True)\n", - "18 Parameter containing:\n", - "tensor([3.1499], requires_grad=True)\n", - "19 Parameter containing:\n", - "tensor([3.1499], requires_grad=True)\n" - ] - } - ], - "source": [ - "import torch.nn as nn\n", - "import torch.optim as optim\n", - "from torch.utils.data import DataLoader\n", - "\n", - "\n", - "def train(\n", - " model: nn.Module,\n", - " data_loader: DataLoader,\n", - " loss_func: nn.modules.loss._Loss,\n", - " optimizer: optim.Optimizer,\n", - " epoch: int = 20,\n", - ") -> None:\n", - " for index in range(epoch):\n", - " print(index, model.qlayer.weight)\n", - " for data, label in data_loader:\n", - " optimizer.zero_grad()\n", - "\n", - " output = model(data)\n", - "\n", - " loss = loss_func(output, label)\n", - " loss.backward()\n", - "\n", - " optimizer.step()\n", - "\n", - "\n", - "train(model, data_loader, loss_func, optimizer)" - ] - }, - { - "cell_type": "markdown", - "id": "61fa4f83-8bd2-4290-9ca4-f6c5c1ca0e32", - "metadata": { - "id": "61fa4f83-8bd2-4290-9ca4-f6c5c1ca0e32" - }, - "source": [ - "# Step 4 - Test" - ] - }, - { - "cell_type": "markdown", - "id": "7533b162-6214-4606-9e66-ec3332a2f446", - "metadata": { - "id": "7533b162-6214-4606-9e66-ec3332a2f446" - }, - "source": [ - "Lastly, we will test our network accuracy, using [the following answer](https://stackoverflow.com/questions/52176178/pytorch-model-accuracy-test#answer-64838681)" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "id": "010caccd-d1ca-4aac-88a4-d115a63c7c7d", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "010caccd-d1ca-4aac-88a4-d115a63c7c7d", - "outputId": "36e7fdd7-5bdf-4050-f8c4-a929c719e8b8" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Test Accuracy of the model: 100.00%\n" - ] - }, - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "1.0" - ] - }, - "metadata": {}, - "execution_count": 22 - } - ], - "source": [ - "def check_accuracy(model: nn.Module, data_loader: DataLoader, atol=1e-4) -> float:\n", - " num_correct = 0\n", - " total = 0\n", - " model.eval()\n", - "\n", - " with torch.no_grad(): # Temporarily disable gradient calculation\n", - " for data, labels in data_loader:\n", - " # Let the model predict\n", - " predictions = model(data)\n", - "\n", - " # Get a tensor of booleans, indicating if each label is close to the real label\n", - " is_prediction_correct = predictions.isclose(labels, atol=atol)\n", - "\n", - " # Count the amount of `True` predictions\n", - " num_correct += is_prediction_correct.sum().item()\n", - " # Count the total evaluations\n", - " # the first dimension of `labels` is `batch_size`\n", - " total += labels.size(0)\n", - "\n", - " accuracy = float(num_correct) / float(total)\n", - " print(f\"Test Accuracy of the model: {accuracy*100:.2f}%\")\n", - " return accuracy\n", - "\n", - "\n", - "check_accuracy(model, data_loader)" - ] - }, - { - "cell_type": "markdown", - "id": "0bc93c12-6643-4623-9ce5-7984ba5ff429", - "metadata": { - "id": "0bc93c12-6643-4623-9ce5-7984ba5ff429" - }, - "source": [ - "**The results show that the accuracy is $1$**, meaning a 100% success rate at performing the required transformation (i.e. the network learned to perform a X-gate). We may further test it by printing the value of `model.qlayer.weight`, which is a tensor of shape (1,1), which should, after training, be close to $\\pi$" - ] - }, - { - "cell_type": "markdown", - "id": "eb4ce7b7-3410-491e-aaff-430b61f67157", - "metadata": { - "id": "eb4ce7b7-3410-491e-aaff-430b61f67157" - }, - "source": [ - "# Summary" - ] - }, - { - "cell_type": "markdown", - "id": "fadd4057-34e8-4103-8aca-a13026fea660", - "metadata": { - "id": "fadd4057-34e8-4103-8aca-a13026fea660" - }, - "source": [ - "In this example, we wrote a fully working Quantum Neural Network from scratch, trained it, and saw its success at learning the requested transformation.\n", - "\n", - "In section 1 we defined our parametric quantum program, as well as our execution function. Together, these two are sent as arguments to [the QLayer object](https://docs.classiq.io/latest/reference-manual/built-in-algorithms/qml/qnn/qlayer/). In section 2 we set some hyperparameters, and in section 3 we trained our model. Section 4 helped us verify that our network is working as intended." - ] - }, - { - "cell_type": "markdown", - "source": [ - "# Advanced Application: Quantum Auto-Encoder" - ], - "metadata": { - "id": "EhRpt6iTcmYC" - }, - "id": "EhRpt6iTcmYC" - }, - { - "cell_type": "code", - "source": [], - "metadata": { - "id": "2t_yTMCu-ngV" - }, - "id": "2t_yTMCu-ngV", - "execution_count": null, - "outputs": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.8" - }, - "colab": { - "provenance": [] - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} \ No newline at end of file diff --git a/community/QClass_2024/Sessions/week 4/quantum_autoencoder.ipynb b/community/QClass_2024/Sessions/week 4/quantum_autoencoder.ipynb deleted file mode 100644 index e2a97a9e..00000000 --- a/community/QClass_2024/Sessions/week 4/quantum_autoencoder.ipynb +++ /dev/null @@ -1,1567 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "source": [ - "## Setting The Scene" - ], - "metadata": { - "id": "-0f46r38ypTZ" - }, - "id": "-0f46r38ypTZ" - }, - { - "cell_type": "markdown", - "source": [ - "When running from Google Colab, we need to install Classiq's SDK and authenticate the remote device:" - ], - "metadata": { - "id": "YnCW9MSjyvEu" - }, - "id": "YnCW9MSjyvEu" - }, - { - "cell_type": "code", - "source": [ - "# !pip install -U classiq" - ], - "metadata": { - "id": "EQ3Hd32IyjCn" - }, - "id": "EQ3Hd32IyjCn", - "execution_count": 69, - "outputs": [] - }, - { - "cell_type": "code", - "source": [ - "# import classiq\n", - "# classiq.authenticate()" - ], - "metadata": { - "id": "jBUGnP8ky0h3" - }, - "id": "jBUGnP8ky0h3", - "execution_count": 70, - "outputs": [] - }, - { - "cell_type": "markdown", - "id": "88da6df0", - "metadata": { - "id": "88da6df0" - }, - "source": [ - "# Short introduction" - ] - }, - { - "cell_type": "markdown", - "id": "201ce387", - "metadata": { - "id": "201ce387" - }, - "source": [ - "### Classical encoders:\n", - "Refer to encoding/compressing classical data into a smaller sized data via deterministic algorithm. For example, JPEG is essentially an algorithm which compresses images into a smaller sized images.\n", - "\n", - "### Classical auto-encoders:\n", - "One can use machine-learning technics and train a variational network for compressing data. In general, an auto-encoder network looks as follows:\n", - "\n", - "
\n", - "\n", - "![Autoencoder_structure.png]()\n", - "\n", - "\n", - "The network has three main parts: (1) The encoder part that compresses the data into a smaller, coded layer (2). The latter is the input to a decoder part (3). Typically, training is done against the comparison between the input and the output of this network.\n", - "\n", - "**Classical auto encoders can also be used for anomaly detection (see below).**" - ] - }, - { - "cell_type": "markdown", - "id": "5be9dbfd", - "metadata": { - "id": "5be9dbfd" - }, - "source": [ - "### Quantum auto-encoders:\n", - "In a similar fashion to the classical counterpart, quantum auto-encoder refers to \"compressing\" quantum data stored initially on $n$ qubits into a smaller quantum register of $m\n", - "\n", - "![Autoencoder_structure.png]()\n", - "\n", - "
Quantum auto encoder layout: uncoded data of size 5 transforms into two outputs, a coded register of size 3 and trash outputs of size 2 at state $|00\\rangle$
\n", - "
-->" - ] - }, - { - "cell_type": "markdown", - "id": "e40c41f0", - "metadata": { - "id": "e40c41f0" - }, - "source": [ - "# Training of quantum auto encoders\n", - "\n", - "To train a quantum auto encoder one should define a proper cost function. Below we propose two common approaches, one using a swap test and the other uses Hamiltonian measurements. We focus on the swap test case, and comment on the other approach at the end of this notebook.\n", - "\n", - "## The swap test\n", - "\n", - "The swap test is a quantum function which checks the overlap between two quantum states: the inputs of the function are two |quantum registers of the same size, $|\\psi_1\\rangle, \\,|\\psi_2\\rangle$, and it returns as an output a single \"test\" qubit whose state encodes the overlap between the two inputs: $|q\\rangle_{\\rm test} = \\alpha|0\\rangle + \\sqrt{1-\\alpha^2}|1\\rangle$, with\n", - "$$\n", - "\\alpha^2 = \\frac{1}{2}\\left(1+|\\langle \\psi_1 |\\psi_2 \\rangle |^2\\right).\n", - "$$\n", - "Thus, the probability to measure the test qubit at state $0$ is 1 if the states are identical (up to a global phase), and 0.5 if the states are orthogonal to each other.\n", - "\n", - "The quantum model starts with an H gate on the test qubit, followed by swapping between the two states controlled on the test qubit, and a final H gate on the test qubit:\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
\n", - "\n", - "\n", - "
\n", - "\n", - "![swap_test_closed.png]()\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "![swap_test_opened.png]()\n", - "\n", - "\n", - "\n", - "\n", - "
\n", - "
Closed (left panel) and opened (right panel) visualization of the swap test algorithm
\n", - "\n", - "
" - ] - }, - { - "cell_type": "markdown", - "id": "443577d1", - "metadata": { - "id": "443577d1" - }, - "source": [ - "## Quantum neural network for quantum auto encoder\n", - "\n", - "The quantum auto encoder can be built as a quantum neural network, having the following three parts:\n", - "\n", - "1. A data loading block that loads classical data on $n$ qubits.\n", - "2. An encoder block which is some variational quantum ansatz; input port of size $n$ and output ports of size $m$ and $n-m$.\n", - "3. A swap test block between the $n-m$ trash output of the encoder and new $n-m$ zero registers.\n", - "\n", - "We train the network such that the test qubit of the swap test is at state |0⟩ with probability 1.\n", - "
\n", - "\n", - "![qae_qlayer.png]()\n", - "\n", - "
Quantum auto encoder layout: uncoded data of size 4 transforms into two outputs, a coded register of size 2 and trash outputs of size 2 at state $|00\\rangle$\n", - "
\n", - "
" - ] - }, - { - "cell_type": "markdown", - "id": "6a685c3b", - "metadata": { - "id": "6a685c3b" - }, - "source": [ - "# Pre-user-defined functions which will be used to construct the quantum layer\n", - "\n", - "As a first step we build some user-defined functions which allow us flexible modeling. We have three functions:\n", - "1. `angle_encoding`: This function loads data of size `num_qubits` on `num_qubits` qubits via RY gates. It has an output port named `qbv`.\n", - "2. `encoder_ansatz` : A simple variational ansatz for encoding `num_qubits` qubits on `num_encoding_qubits` qubits (see description within the code-block). The input port is `x`, and the output ports are `coded` and `trash`." - ] - }, - { - "cell_type": "code", - "execution_count": 71, - "id": "f2b814d9", - "metadata": { - "execution": { - "iopub.execute_input": "2024-05-07T14:51:55.917096Z", - "iopub.status.busy": "2024-05-07T14:51:55.916566Z", - "iopub.status.idle": "2024-05-07T14:51:59.024617Z", - "shell.execute_reply": "2024-05-07T14:51:59.023600Z" - }, - "pycharm": { - "is_executing": true - }, - "id": "f2b814d9" - }, - "outputs": [], - "source": [ - "from classiq import (\n", - " CX,\n", - " RY,\n", - " CArray,\n", - " CInt,\n", - " CReal,\n", - " Input,\n", - " Output,\n", - " QArray,\n", - " QBit,\n", - " allocate,\n", - " bind,\n", - " create_model,\n", - " qfunc,\n", - " repeat,\n", - ")\n", - "from classiq.qmod.symbolic import pi" - ] - }, - { - "cell_type": "code", - "execution_count": 72, - "id": "75634100", - "metadata": { - "execution": { - "iopub.execute_input": "2024-05-07T14:51:59.030300Z", - "iopub.status.busy": "2024-05-07T14:51:59.028905Z", - "iopub.status.idle": "2024-05-07T14:51:59.037330Z", - "shell.execute_reply": "2024-05-07T14:51:59.036640Z" - }, - "id": "75634100" - }, - "outputs": [], - "source": [ - "@qfunc\n", - "def angle_encoding(exe_params: CArray[CReal], qbv: Output[QArray[QBit]]) -> None:\n", - " allocate(exe_params.len, qbv)\n", - " repeat(\n", - " count=exe_params.len,\n", - " iteration=lambda index: RY(pi * exe_params[index], qbv[index]),\n", - " )" - ] - }, - { - "cell_type": "code", - "execution_count": 73, - "id": "7132bf7f", - "metadata": { - "execution": { - "iopub.execute_input": "2024-05-07T14:51:59.041648Z", - "iopub.status.busy": "2024-05-07T14:51:59.040513Z", - "iopub.status.idle": "2024-05-07T14:51:59.048695Z", - "shell.execute_reply": "2024-05-07T14:51:59.048146Z" - }, - "id": "7132bf7f" - }, - "outputs": [], - "source": [ - "@qfunc\n", - "def encoder_ansatz(\n", - " num_qubits: CInt,\n", - " num_encoding_qubits: CInt,\n", - " exe_params: CArray[CReal],\n", - " x: Input[QArray[QBit, \"num_qubits\"]],\n", - " trash: Output[QArray[QBit, \"num_qubits-num_encoding_qubits\"]],\n", - " coded: Output[QArray[QBit, \"num_encoding_qubits\"]],\n", - ") -> None:\n", - " \"\"\"\n", - " This is a parametric model which has num_trash_qubits = num_qubits-num_encoding_qubits as an output.\n", - " It contains num_trash_qubits layers, each composed of RY gates and CX gates with a linear connectivity,\n", - " and a final layer with RY gate on each of the trash qubits is applied.\n", - " \"\"\"\n", - "\n", - " def single_layer(rep: CInt) -> None:\n", - " repeat(\n", - " count=num_qubits,\n", - " iteration=lambda index: RY(exe_params[rep * num_qubits + index], x[index]), # What is the logic behind 1st arg of RY?\n", - " )\n", - " repeat(\n", - " count=num_qubits - 1,\n", - " iteration=lambda index: CX(x[index], x[index + 1]),\n", - " )\n", - "\n", - " repeat(count=num_qubits - num_encoding_qubits, iteration=single_layer) # Could be lammbda func\n", - " bind(x, [coded, trash])\n", - " repeat(\n", - " count=num_qubits - num_encoding_qubits,\n", - " iteration=lambda index: RY(\n", - " exe_params[(num_qubits - num_encoding_qubits) * num_qubits + index], # What is the logic behind 1st arg of RY?\n", - " trash[index],\n", - " ),\n", - " )" - ] - }, - { - "cell_type": "markdown", - "id": "493d4499", - "metadata": { - "id": "493d4499" - }, - "source": [ - "# An example: auto encoder for domain wall data" - ] - }, - { - "cell_type": "markdown", - "id": "428691bc", - "metadata": { - "id": "428691bc" - }, - "source": [ - "In the following example we will try to encode data which has a domain wall structure. Let us define the relevant data for strings of size 4." - ] - }, - { - "cell_type": "markdown", - "id": "535d9181", - "metadata": { - "id": "535d9181" - }, - "source": [ - "## The data" - ] - }, - { - "cell_type": "code", - "execution_count": 74, - "id": "1cdcd74c", - "metadata": { - "execution": { - "iopub.execute_input": "2024-05-07T14:51:59.051331Z", - "iopub.status.busy": "2024-05-07T14:51:59.050956Z", - "iopub.status.idle": "2024-05-07T14:51:59.055305Z", - "shell.execute_reply": "2024-05-07T14:51:59.054655Z" - }, - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "1cdcd74c", - "outputId": "73ddf030-feac-429b-efd8-9e00e08db78a" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "domain wall data:\n" - ] - }, - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "array([[0, 0, 1, 1],\n", - " [0, 0, 0, 1],\n", - " [0, 1, 1, 1]])" - ] - }, - "metadata": {}, - "execution_count": 74 - } - ], - "source": [ - "import numpy as np\n", - "\n", - "domain_wall_data = np.array([[0, 0, 1, 1], [0, 0, 0, 1], [0, 1, 1, 1]])\n", - "print(\"domain wall data:\")\n", - "domain_wall_data" - ] - }, - { - "cell_type": "markdown", - "id": "0a09e977", - "metadata": { - "id": "0a09e977" - }, - "source": [ - "## The quantum program" - ] - }, - { - "cell_type": "markdown", - "id": "decfc82e-fae0-4d3d-91c8-3b2a660af884", - "metadata": { - "id": "decfc82e-fae0-4d3d-91c8-3b2a660af884" - }, - "source": [ - "We will try to encode this data on size 4 on 2 qubits. Let us built the corresponding quantum layer based on the pre-defined functions above." - ] - }, - { - "cell_type": "code", - "execution_count": 75, - "id": "6fb450af-1613-4284-8625-ff7f2ae12557", - "metadata": { - "execution": { - "iopub.execute_input": "2024-05-07T14:51:59.057848Z", - "iopub.status.busy": "2024-05-07T14:51:59.057452Z", - "iopub.status.idle": "2024-05-07T14:51:59.061978Z", - "shell.execute_reply": "2024-05-07T14:51:59.061324Z" - }, - "id": "6fb450af-1613-4284-8625-ff7f2ae12557" - }, - "outputs": [], - "source": [ - "from classiq import show, swap_test, synthesize\n", - "\n", - "NUM_QUBITS = 4\n", - "NUM_ENCODING_QUBITS = 2\n", - "num_trash_qubits = NUM_QUBITS - NUM_ENCODING_QUBITS\n", - "num_weights_in_encoder = NUM_QUBITS * num_trash_qubits + num_trash_qubits" - ] - }, - { - "cell_type": "markdown", - "id": "2454d248-5614-4300-a5e3-d4826469e1c8", - "metadata": { - "id": "2454d248-5614-4300-a5e3-d4826469e1c8" - }, - "source": [ - "Let us construct the model" - ] - }, - { - "cell_type": "code", - "execution_count": 76, - "id": "5f1bc0cd", - "metadata": { - "execution": { - "iopub.execute_input": "2024-05-07T14:51:59.065357Z", - "iopub.status.busy": "2024-05-07T14:51:59.064898Z", - "iopub.status.idle": "2024-05-07T14:51:59.109586Z", - "shell.execute_reply": "2024-05-07T14:51:59.108752Z" - }, - "id": "5f1bc0cd" - }, - "outputs": [], - "source": [ - "@qfunc\n", - "def main(\n", - " w: CArray[CReal, num_weights_in_encoder],\n", - " input: CArray[CReal, NUM_QUBITS],\n", - " trash: Output[QArray[QBit, num_trash_qubits]],\n", - " coded: Output[QArray[QBit, NUM_ENCODING_QUBITS]],\n", - " test: Output[QBit],\n", - ") -> None:\n", - " x = QArray(\"x\")\n", - " psi2 = QArray(\"psi2\")\n", - " allocate(num_trash_qubits, psi2)\n", - " angle_encoding(exe_params=input, qbv=x)\n", - " encoder_ansatz(\n", - " num_qubits=NUM_QUBITS,\n", - " num_encoding_qubits=NUM_ENCODING_QUBITS,\n", - " exe_params=w,\n", - " x=x,\n", - " trash=trash,\n", - " coded=coded,\n", - " )\n", - "\n", - " swap_test(state1=trash, state2=psi2, test=test)\n", - "\n", - "\n", - "ae_qmod = create_model(main)" - ] - }, - { - "cell_type": "markdown", - "id": "4597538f", - "metadata": { - "id": "4597538f" - }, - "source": [ - "We synthesize and visualize the quantum layer:" - ] - }, - { - "cell_type": "code", - "execution_count": 77, - "id": "1ef859c2-02ef-46e7-a4fc-ff02ae77b28a", - "metadata": { - "execution": { - "iopub.execute_input": "2024-05-07T14:51:59.114780Z", - "iopub.status.busy": "2024-05-07T14:51:59.113594Z", - "iopub.status.idle": "2024-05-07T14:52:01.559527Z", - "shell.execute_reply": "2024-05-07T14:52:01.558874Z" - }, - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "1ef859c2-02ef-46e7-a4fc-ff02ae77b28a", - "outputId": "578495ad-65eb-4b8c-878d-9c7d8007faae" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Opening: https://platform.classiq.io/circuit/43212190-cc36-47d8-a3ea-a2929ae4e696?version=0.41.2\n" - ] - } - ], - "source": [ - "qprog = synthesize(ae_qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "id": "5a41ccaa", - "metadata": { - "id": "5a41ccaa" - }, - "source": [ - "## The network\n", - "\n", - "The network for training contains only a quantum layer. The corresponding quantum program was already defined above, what is left is to define some execution preferences and the classical post-process. The classical output is defined as $1-\\alpha^2$, with $\\alpha$ being the probability of the test qubit to be at state 0." - ] - }, - { - "cell_type": "code", - "execution_count": 78, - "id": "20c207bc", - "metadata": { - "execution": { - "iopub.execute_input": "2024-05-07T14:52:01.562592Z", - "iopub.status.busy": "2024-05-07T14:52:01.562150Z", - "iopub.status.idle": "2024-05-07T14:52:02.797968Z", - "shell.execute_reply": "2024-05-07T14:52:02.797311Z" - }, - "id": "20c207bc" - }, - "outputs": [], - "source": [ - "import torch\n", - "import torch.nn as nn\n", - "import torch.optim as optim\n", - "from torch.utils.data import DataLoader\n", - "\n", - "from classiq.applications.qnn import QLayer\n", - "from classiq.applications.qnn.types import (\n", - " MultipleArguments,\n", - " ResultsCollection,\n", - " SavedResult,\n", - ")\n", - "from classiq.execution import (\n", - " ExecutionPreferences,\n", - " execute_qnn,\n", - " set_quantum_program_execution_preferences,\n", - ")\n", - "from classiq.synthesis import SerializedQuantumProgram" - ] - }, - { - "cell_type": "code", - "execution_count": 79, - "id": "9f55ec56", - "metadata": { - "execution": { - "iopub.execute_input": "2024-05-07T14:52:02.801081Z", - "iopub.status.busy": "2024-05-07T14:52:02.800375Z", - "iopub.status.idle": "2024-05-07T14:52:02.804668Z", - "shell.execute_reply": "2024-05-07T14:52:02.804076Z" - }, - "id": "9f55ec56" - }, - "outputs": [], - "source": [ - "num_shots = 4096\n", - "\n", - "\n", - "def execute(\n", - " quantum_program: SerializedQuantumProgram, arguments: MultipleArguments\n", - ") -> ResultsCollection:\n", - " quantum_program = set_quantum_program_execution_preferences(\n", - " quantum_program, preferences=ExecutionPreferences(num_shots=num_shots)\n", - " )\n", - " return execute_qnn(quantum_program, arguments)\n", - "\n", - "\n", - "def post_process(result: SavedResult) -> torch.Tensor:\n", - " alpha_sqaured = result.value.counts_of_output(\"test\")[\"0\"] / num_shots\n", - " out = 1 - alpha_sqaured\n", - " return torch.tensor(out)" - ] - }, - { - "cell_type": "code", - "execution_count": 80, - "id": "d7913804", - "metadata": { - "execution": { - "iopub.execute_input": "2024-05-07T14:52:02.807180Z", - "iopub.status.busy": "2024-05-07T14:52:02.806812Z", - "iopub.status.idle": "2024-05-07T14:52:02.815094Z", - "shell.execute_reply": "2024-05-07T14:52:02.814520Z" - }, - "id": "d7913804" - }, - "outputs": [], - "source": [ - "def create_net(*args, **kwargs) -> nn.Module:\n", - " class Net(nn.Module):\n", - " def __init__(self, *args, **kwargs):\n", - " super().__init__()\n", - "\n", - " self.qlayer = QLayer(\n", - " qprog,\n", - " execute,\n", - " post_process,\n", - " *args,\n", - " **kwargs,\n", - " )\n", - "\n", - " def forward(self, x):\n", - " x = self.qlayer(x)\n", - " return x\n", - "\n", - " return Net(*args, **kwargs)\n", - "\n", - "\n", - "encoder_train_network = create_net()" - ] - }, - { - "cell_type": "markdown", - "id": "7590c55d", - "metadata": { - "id": "7590c55d" - }, - "source": [ - "## Creating dataset\n", - "\n", - "The cost function we would like to minimize is $|1-\\alpha^2|$ for all our training data. Looking at the qlayer output this means that we should define the corresponding labels as $0$." - ] - }, - { - "cell_type": "code", - "execution_count": 81, - "id": "931ecd5a", - "metadata": { - "execution": { - "iopub.execute_input": "2024-05-07T14:52:02.817442Z", - "iopub.status.busy": "2024-05-07T14:52:02.817102Z", - "iopub.status.idle": "2024-05-07T14:52:02.820913Z", - "shell.execute_reply": "2024-05-07T14:52:02.820320Z" - }, - "id": "931ecd5a" - }, - "outputs": [], - "source": [ - "class MyDWDataset:\n", - " def __init__(self, data, labels) -> None:\n", - " self.data = torch.from_numpy(data).float()\n", - " self.labels = torch.unsqueeze(torch.from_numpy(labels), dim=-1).float()\n", - "\n", - " def __len__(self):\n", - " return self.data.shape[0]\n", - "\n", - " def __getitem__(self, idx):\n", - " return self.data[idx], self.labels[idx]" - ] - }, - { - "cell_type": "code", - "execution_count": 82, - "id": "775728a9", - "metadata": { - "execution": { - "iopub.execute_input": "2024-05-07T14:52:02.823056Z", - "iopub.status.busy": "2024-05-07T14:52:02.822880Z", - "iopub.status.idle": "2024-05-07T14:52:02.827516Z", - "shell.execute_reply": "2024-05-07T14:52:02.826900Z" - }, - "id": "775728a9" - }, - "outputs": [], - "source": [ - "labels = np.array([0, 0, 0])\n", - "train_dataset = MyDWDataset(domain_wall_data, labels)\n", - "train_data_loader = DataLoader(\n", - " train_dataset, batch_size=2, shuffle=True, drop_last=False\n", - ")" - ] - }, - { - "cell_type": "markdown", - "id": "608173a0", - "metadata": { - "id": "608173a0" - }, - "source": [ - "## Define the training" - ] - }, - { - "cell_type": "code", - "execution_count": 160, - "id": "938eab77", - "metadata": { - "execution": { - "iopub.execute_input": "2024-05-07T14:52:02.829661Z", - "iopub.status.busy": "2024-05-07T14:52:02.829493Z", - "iopub.status.idle": "2024-05-07T14:52:02.833752Z", - "shell.execute_reply": "2024-05-07T14:52:02.833184Z" - }, - "id": "938eab77" - }, - "outputs": [], - "source": [ - "import time as time\n", - "\n", - "\n", - "def train(\n", - " model: nn.Module,\n", - " data_loader: DataLoader,\n", - " loss_func: nn.modules.loss._Loss,\n", - " optimizer: optim.Optimizer,\n", - " epoch: int = 40,\n", - ") -> None:\n", - " for index in range(epoch):\n", - " start = time.time()\n", - " for data, label in data_loader:\n", - " optimizer.zero_grad()\n", - " output = model(data)\n", - " loss = loss_func(torch.squeeze(output), torch.squeeze(label))\n", - " loss.backward()\n", - " optimizer.step()\n", - "\n", - " print(time.time() - start) # Prints time per step\n", - " print(index, f\"\\tloss = {loss.item()}\")" - ] - }, - { - "cell_type": "markdown", - "id": "ee98061f", - "metadata": { - "id": "ee98061f" - }, - "source": [ - "## Setting some hyper-parameters\n", - "\n", - "The L1 loss function fits the intended cost function we aim to minimize." - ] - }, - { - "cell_type": "code", - "execution_count": 171, - "id": "ee0a0551", - "metadata": { - "execution": { - "iopub.execute_input": "2024-05-07T14:52:02.836010Z", - "iopub.status.busy": "2024-05-07T14:52:02.835828Z", - "iopub.status.idle": "2024-05-07T14:52:02.838960Z", - "shell.execute_reply": "2024-05-07T14:52:02.838372Z" - }, - "id": "ee0a0551" - }, - "outputs": [], - "source": [ - "_LEARNING_RATE = 0.03\n", - "loss_func = nn.L1Loss()\n", - "optimizer = optim.SGD(encoder_train_network.parameters(), lr=_LEARNING_RATE)\n", - "# optimizer = optim.SGD(encoder_train_network.parameters(), lr=_LEARNING_RATE, momentum=0.9)\n", - "# optimizer = optim.Adam(encoder_train_network.parameters(), lr=_LEARNING_RATE)" - ] - }, - { - "cell_type": "markdown", - "id": "e38d76f1", - "metadata": { - "id": "e38d76f1" - }, - "source": [ - "## Training\n", - "\n", - "In this demo we will initialize the network with trained parameters, and run only 1 epoch for demonstration. A reasonable training with the above hyper-parameters can be achieved with $\\sim 40$ epochs. To train the network from the beginning uncomment the following code line:" - ] - }, - { - "cell_type": "code", - "execution_count": 172, - "id": "868a106c", - "metadata": { - "execution": { - "iopub.execute_input": "2024-05-07T14:52:02.841035Z", - "iopub.status.busy": "2024-05-07T14:52:02.840865Z", - "iopub.status.idle": "2024-05-07T14:52:02.844053Z", - "shell.execute_reply": "2024-05-07T14:52:02.843452Z" - }, - "id": "868a106c" - }, - "outputs": [], - "source": [ - "trained_weights = torch.nn.Parameter(\n", - " torch.Tensor(\n", - " [1.5227, 0.3588, 0.6905, 1.4777, 1.5718, 1.5615, 1.5414, 0.6021, 0.1254, 0.9903]\n", - " )\n", - ")\n", - "\n", - "# trained_weights = torch.nn.Parameter(torch.rand(10)) # if uncomment parameters will be prepared for training from scratch\n", - "\n", - "\n", - "encoder_train_network.qlayer.weight = trained_weights" - ] - }, - { - "cell_type": "code", - "execution_count": 173, - "id": "4a0f11fa", - "metadata": { - "execution": { - "iopub.execute_input": "2024-05-07T14:52:02.846070Z", - "iopub.status.busy": "2024-05-07T14:52:02.845891Z", - "iopub.status.idle": "2024-05-07T14:52:09.887741Z", - "shell.execute_reply": "2024-05-07T14:52:09.887070Z" - }, - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "4a0f11fa", - "outputId": "1449653a-c212-4c93-e524-956018c8a36f" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "9.504712343215942\n", - "0 \tloss = 0.9384765625\n", - "9.940344333648682\n", - "1 \tloss = 0.8662109375\n", - "8.715864419937134\n", - "2 \tloss = 0.9384765625\n", - "8.663626194000244\n", - "3 \tloss = 0.8662109375\n", - "8.422551393508911\n", - "4 \tloss = 0.8662109375\n", - "10.218191146850586\n", - "5 \tloss = 1.5341796875\n", - "8.701385498046875\n", - "6 \tloss = 0.9384765625\n", - "8.76116394996643\n", - "7 \tloss = 0.8662109375\n", - "8.970725297927856\n", - "8 \tloss = 1.5341796875\n", - "8.719649314880371\n", - "9 \tloss = 0.8662109375\n", - "10.413763761520386\n", - "10 \tloss = 0.9384765625\n", - "9.923221111297607\n", - "11 \tloss = 0.9384765625\n", - "9.860797882080078\n", - "12 \tloss = 0.8662109375\n", - "8.769683361053467\n", - "13 \tloss = 0.9384765625\n", - "8.7511465549469\n", - "14 \tloss = 1.5341796875\n", - "8.806759119033813\n", - "15 \tloss = 0.8662109375\n", - "8.751865863800049\n", - "16 \tloss = 0.9384765625\n", - "8.84875226020813\n", - "17 \tloss = 0.8662109375\n", - "8.649004459381104\n", - "18 \tloss = 0.9384765625\n", - "8.527371168136597\n", - "19 \tloss = 1.5341796875\n", - "8.607317924499512\n", - "20 \tloss = 0.9384765625\n", - "8.692336320877075\n", - "21 \tloss = 1.5341796875\n", - "8.559823036193848\n", - "22 \tloss = 0.8662109375\n", - "8.736822366714478\n", - "23 \tloss = 0.9384765625\n", - "8.550743341445923\n", - "24 \tloss = 0.9384765625\n", - "8.747317552566528\n", - "25 \tloss = 1.5341796875\n", - "8.791818857192993\n", - "26 \tloss = 0.9384765625\n", - "8.596765518188477\n", - "27 \tloss = 1.5341796875\n", - "8.465184688568115\n", - "28 \tloss = 0.9384765625\n", - "8.531871557235718\n", - "29 \tloss = 1.5341796875\n", - "8.585519313812256\n", - "30 \tloss = 0.8662109375\n", - "8.611732244491577\n", - "31 \tloss = 0.9384765625\n", - "8.495190143585205\n", - "32 \tloss = 0.9384765625\n", - "9.039399147033691\n", - "33 \tloss = 0.9384765625\n", - "8.793837070465088\n", - "34 \tloss = 1.5341796875\n", - "8.449427843093872\n", - "35 \tloss = 1.5341796875\n", - "8.70375394821167\n", - "36 \tloss = 0.8662109375\n", - "8.75142765045166\n", - "37 \tloss = 1.5341796875\n", - "8.50106692314148\n", - "38 \tloss = 0.9384765625\n", - "8.682931661605835\n", - "39 \tloss = 0.9384765625\n", - "8.873902082443237\n", - "40 \tloss = 0.9384765625\n", - "8.528905153274536\n", - "41 \tloss = 0.9384765625\n", - "8.679835319519043\n", - "42 \tloss = 1.5341796875\n", - "9.041699409484863\n", - "43 \tloss = 0.8662109375\n", - "8.815622806549072\n", - "44 \tloss = 1.5341796875\n", - "8.466412782669067\n", - "45 \tloss = 0.9384765625\n", - "8.495747566223145\n", - "46 \tloss = 0.8662109375\n", - "9.709753274917603\n", - "47 \tloss = 1.5341796875\n", - "8.380079746246338\n", - "48 \tloss = 0.9384765625\n", - "8.505638122558594\n", - "49 \tloss = 1.5341796875\n" - ] - } - ], - "source": [ - "data_loader = train_data_loader\n", - "\n", - "train(encoder_train_network, data_loader, loss_func, optimizer, epoch=5)" - ] - }, - { - "cell_type": "markdown", - "id": "7fb11e18", - "metadata": { - "id": "7fb11e18" - }, - "source": [ - "## Verification\n", - "\n", - "Once we trained our network, we can build a new network with the trained variables. We can thus verify our encoder by taking only the encoding block, changing post_process, etc.\n", - "\n", - "Below we verify our quantum auto encoder by comparing between input and output of an encoder-decoder network:\n", - "\n", - "We will create the following network, which contains two quantum blocks:\n", - "* The first two blocks of the previous network: a block for loading the inputs followed by our quantum encoder.\n", - "* The inverse of the quantum encoder, where the inputs for the trash qubits are new zero inputs.\n", - "\n", - "**The network's weights will be allocated with the trained ones**\n", - "\n", - "
\n", - "\n", - "![encoder-decoder.jpg]()\n", - "\n", - "\n", - "
QLayer for verifying quantum auto encoder, containing three quantum blocks: (1) data encoding, (2) trained encoder, and (3) inverse of trained encoder (i.e., decoder).
\n", - "
" - ] - }, - { - "cell_type": "markdown", - "id": "812d2bc5", - "metadata": { - "id": "812d2bc5" - }, - "source": [ - "### We start with building the quantum layer for the validator" - ] - }, - { - "cell_type": "markdown", - "id": "952545a9-6e50-4a62-8538-f896220d15de", - "metadata": { - "id": "952545a9-6e50-4a62-8538-f896220d15de" - }, - "source": [ - "The validator contains the inverse of our encoder, for this, we will have to wrap our encoder function. This is because the `invert` quantum function except a single inout port." - ] - }, - { - "cell_type": "code", - "execution_count": 145, - "id": "e2eb15db-866e-4ac1-8b7d-a3efa239f994", - "metadata": { - "execution": { - "iopub.execute_input": "2024-05-07T14:52:09.890580Z", - "iopub.status.busy": "2024-05-07T14:52:09.890066Z", - "iopub.status.idle": "2024-05-07T14:52:09.894377Z", - "shell.execute_reply": "2024-05-07T14:52:09.893824Z" - }, - "id": "e2eb15db-866e-4ac1-8b7d-a3efa239f994" - }, - "outputs": [], - "source": [ - "@qfunc\n", - "def encoder_ansatz_wrapper(\n", - " num_qubits: CInt,\n", - " num_encoding_qubits: CInt,\n", - " exe_params: CArray[CReal],\n", - " qbv: QArray[QBit, \"num_qubits\"],\n", - ") -> None:\n", - " coded = QArray(\"coded\")\n", - " trash = QArray(\"trash\")\n", - " encoder_ansatz(\n", - " num_qubits=num_qubits,\n", - " num_encoding_qubits=num_encoding_qubits,\n", - " exe_params=exe_params,\n", - " x=qbv,\n", - " trash=trash,\n", - " coded=coded,\n", - " )\n", - " bind([coded, trash], qbv)" - ] - }, - { - "cell_type": "markdown", - "id": "e01fcd94-072b-4483-8373-404826057669", - "metadata": { - "id": "e01fcd94-072b-4483-8373-404826057669" - }, - "source": [ - "We are now ready for modeling our verification quantum layer" - ] - }, - { - "cell_type": "code", - "execution_count": 146, - "id": "e87cfbcc-cc20-4728-a2b9-e8abf18ec52d", - "metadata": { - "execution": { - "iopub.execute_input": "2024-05-07T14:52:09.896624Z", - "iopub.status.busy": "2024-05-07T14:52:09.896454Z", - "iopub.status.idle": "2024-05-07T14:52:09.926569Z", - "shell.execute_reply": "2024-05-07T14:52:09.926000Z" - }, - "id": "e87cfbcc-cc20-4728-a2b9-e8abf18ec52d" - }, - "outputs": [], - "source": [ - "from classiq import invert\n", - "\n", - "\n", - "@qfunc\n", - "def main(\n", - " w: CArray[CReal, num_weights_in_encoder],\n", - " input: CArray[CReal, NUM_QUBITS],\n", - " decoded: Output[QArray[QBit, NUM_QUBITS]],\n", - " trash: Output[QArray[QBit, num_trash_qubits]],\n", - ") -> None:\n", - " psi2 = QArray(\"psi2\")\n", - " coded = QArray(\"coded\")\n", - " allocate(num_trash_qubits, psi2)\n", - " angle_encoding(exe_params=input, qbv=decoded)\n", - " encoder_ansatz(\n", - " num_qubits=NUM_QUBITS,\n", - " num_encoding_qubits=NUM_ENCODING_QUBITS,\n", - " exe_params=w,\n", - " x=decoded,\n", - " trash=trash,\n", - " coded=coded,\n", - " )\n", - "\n", - " bind([coded, psi2], decoded)\n", - " invert(\n", - " operand=lambda: encoder_ansatz_wrapper(\n", - " num_qubits=NUM_QUBITS,\n", - " num_encoding_qubits=NUM_ENCODING_QUBITS,\n", - " exe_params=w,\n", - " qbv=decoded,\n", - " ),\n", - " )\n", - "\n", - "\n", - "validator_qmod = create_model(main)" - ] - }, - { - "cell_type": "code", - "execution_count": 147, - "id": "02ed5fc2-85a9-4473-bbbb-a443a765919d", - "metadata": { - "execution": { - "iopub.execute_input": "2024-05-07T14:52:09.928600Z", - "iopub.status.busy": "2024-05-07T14:52:09.928429Z", - "iopub.status.idle": "2024-05-07T14:52:12.227982Z", - "shell.execute_reply": "2024-05-07T14:52:12.227270Z" - }, - "id": "02ed5fc2-85a9-4473-bbbb-a443a765919d", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "90fa2a76-71b6-4515-ad48-bdae962bb5d5" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Opening: https://platform.classiq.io/circuit/ce332293-cc22-4da0-a755-e9b304aaa55f?version=0.41.2\n" - ] - } - ], - "source": [ - "validator_qprog = synthesize(validator_qmod)\n", - "show(validator_qprog)" - ] - }, - { - "cell_type": "markdown", - "id": "7f3f9983", - "metadata": { - "id": "7f3f9983" - }, - "source": [ - "### Next, we define the classical output of the network. For the validator post-process we take the output with the maximal counts." - ] - }, - { - "cell_type": "code", - "execution_count": 148, - "id": "41266c52", - "metadata": { - "execution": { - "iopub.execute_input": "2024-05-07T14:52:12.232075Z", - "iopub.status.busy": "2024-05-07T14:52:12.231653Z", - "iopub.status.idle": "2024-05-07T14:52:12.236387Z", - "shell.execute_reply": "2024-05-07T14:52:12.235709Z" - }, - "id": "41266c52" - }, - "outputs": [], - "source": [ - "def execute_validator(\n", - " quantum_program: SerializedQuantumProgram, arguments: MultipleArguments\n", - ") -> ResultsCollection:\n", - " return execute_qnn(quantum_program, arguments)" - ] - }, - { - "cell_type": "code", - "execution_count": 149, - "id": "e5e8f6f2", - "metadata": { - "execution": { - "iopub.execute_input": "2024-05-07T14:52:12.239751Z", - "iopub.status.busy": "2024-05-07T14:52:12.239371Z", - "iopub.status.idle": "2024-05-07T14:52:12.243655Z", - "shell.execute_reply": "2024-05-07T14:52:12.242996Z" - }, - "id": "e5e8f6f2" - }, - "outputs": [], - "source": [ - "def post_process_validator(result: SavedResult) -> torch.Tensor:\n", - " counts = result.value.counts_of_output(\"decoded\")\n", - "\n", - " max_key = max(counts, key=counts.get)\n", - " # print(counts)\n", - " return torch.tensor([int(k) for k in max_key])" - ] - }, - { - "cell_type": "markdown", - "id": "39a94e36", - "metadata": { - "id": "39a94e36" - }, - "source": [ - "### We create the network and assign the trained parameters" - ] - }, - { - "cell_type": "code", - "execution_count": 150, - "id": "43b1a4f8", - "metadata": { - "execution": { - "iopub.execute_input": "2024-05-07T14:52:12.247036Z", - "iopub.status.busy": "2024-05-07T14:52:12.246591Z", - "iopub.status.idle": "2024-05-07T14:52:12.262065Z", - "shell.execute_reply": "2024-05-07T14:52:12.261452Z" - }, - "id": "43b1a4f8" - }, - "outputs": [], - "source": [ - "def create_encoder_decoder_net(*args, **kwargs) -> nn.Module:\n", - " class Net(nn.Module):\n", - " def __init__(self, *args, **kwargs):\n", - " super().__init__()\n", - "\n", - " self.qlayer = QLayer(\n", - " validator_qprog,\n", - " execute_validator,\n", - " post_process_validator,\n", - " *args,\n", - " **kwargs,\n", - " )\n", - "\n", - " def forward(self, x):\n", - " x = self.qlayer(x)\n", - " return x\n", - "\n", - " return Net(*args, **kwargs)\n", - "\n", - "\n", - "validator_network = create_encoder_decoder_net()\n", - "validator_network.qlayer.weight = encoder_train_network.qlayer.weight" - ] - }, - { - "cell_type": "markdown", - "id": "0db9d1a8", - "metadata": { - "id": "0db9d1a8" - }, - "source": [ - "Now we can compare between the input and output of the validator, for each different data:" - ] - }, - { - "cell_type": "code", - "execution_count": 151, - "id": "28c93e9e", - "metadata": { - "execution": { - "iopub.execute_input": "2024-05-07T14:52:12.266494Z", - "iopub.status.busy": "2024-05-07T14:52:12.265482Z", - "iopub.status.idle": "2024-05-07T14:52:16.622434Z", - "shell.execute_reply": "2024-05-07T14:52:16.621830Z" - }, - "id": "28c93e9e", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "36118536-d37d-4568-8181-62d6d87cabcb" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "input= [0.0, 0.0, 0.0, 1.0] , output= [0.0, 0.0, 0.0, 0.0]\n", - "input= [0.0, 1.0, 1.0, 1.0] , output= [0.0, 1.0, 0.0, 1.0]\n", - "input= [0.0, 0.0, 1.0, 1.0] , output= [0.0, 0.0, 0.0, 0.0]\n" - ] - } - ], - "source": [ - "validator_data_loader = DataLoader(\n", - " train_dataset, batch_size=1, shuffle=True, drop_last=False\n", - ")\n", - "\n", - "for data, label in validator_data_loader:\n", - " output = validator_network(data)\n", - " print(\"input=\", data.tolist()[0], \", output=\", output.tolist()[0])" - ] - }, - { - "cell_type": "markdown", - "id": "6dca60d3", - "metadata": { - "id": "6dca60d3" - }, - "source": [ - "# Usage for anomaly detection" - ] - }, - { - "cell_type": "markdown", - "id": "2479f917", - "metadata": { - "id": "2479f917" - }, - "source": [ - "We can use our trained network for anomaly detection. Let see what happens to the trash qubits when we insert anomaly, namely, a non domain-wall data:" - ] - }, - { - "cell_type": "code", - "execution_count": 94, - "id": "31253024", - "metadata": { - "execution": { - "iopub.execute_input": "2024-05-07T14:52:16.624992Z", - "iopub.status.busy": "2024-05-07T14:52:16.624545Z", - "iopub.status.idle": "2024-05-07T14:52:16.628713Z", - "shell.execute_reply": "2024-05-07T14:52:16.628149Z" - }, - "id": "31253024" - }, - "outputs": [], - "source": [ - "input_anomaly_data = np.array(\n", - " [[0, 0, 1, 1], [0, 0, 0, 1], [0, 0, 1, 1], [1, 0, 1, 0], [1, 1, 1, 1]]\n", - ")\n", - "anomaly_labels = np.array([0, 0, 0, 0, 0])\n", - "anomaly_dataset = MyDWDataset(input_anomaly_data, anomaly_labels)\n", - "anomaly_data_loader = DataLoader(\n", - " anomaly_dataset, batch_size=1, shuffle=True, drop_last=False\n", - ")" - ] - }, - { - "cell_type": "markdown", - "id": "f45de115", - "metadata": { - "id": "f45de115" - }, - "source": [ - "We print all the anomaly data based on some pre-defined accuracy for the cost function:" - ] - }, - { - "cell_type": "code", - "execution_count": 95, - "id": "e9ac2d78", - "metadata": { - "execution": { - "iopub.execute_input": "2024-05-07T14:52:16.631149Z", - "iopub.status.busy": "2024-05-07T14:52:16.630672Z", - "iopub.status.idle": "2024-05-07T14:52:23.745511Z", - "shell.execute_reply": "2024-05-07T14:52:23.743996Z" - }, - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "e9ac2d78", - "outputId": "7b329d75-6c0a-4a17-cc12-3c0285febddc" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "anomaly: [0.0, 0.0, 0.0, 1.0]\n", - "anomaly: [1.0, 0.0, 1.0, 0.0]\n", - "anomaly: [1.0, 1.0, 1.0, 1.0]\n", - "anomaly: [0.0, 0.0, 1.0, 1.0]\n", - "anomaly: [0.0, 0.0, 1.0, 1.0]\n" - ] - } - ], - "source": [ - "tolerance = 1e-2\n", - "for data, label in anomaly_data_loader:\n", - " output = encoder_train_network(data)\n", - " if abs(output.tolist()[0]) > tolerance:\n", - " print(\"anomaly:\", data.tolist()[0])" - ] - }, - { - "cell_type": "markdown", - "id": "1949ec76", - "metadata": { - "id": "1949ec76" - }, - "source": [ - "# Alternative network for training a quantum auto encoder\n", - "\n", - "Another way to introduce a cost function is via estimation of Hamiltonians. Measuring the Pauli $Z$ matrix on a qubit at the general state $|q\\rangle=a|0\\rangle+b|1\\rangle$ is $\\langle q |Z|q \\rangle=a^2-b^2$. Therefore, a cost function can be defined by taking expectation values on the trash output (without a swap-test) as follows:\n", - "$$\n", - "\\text{Cost} = \\frac{1}{2}\\sum^{\\text{num of trash qubits}}_{k=1} 1 - \\langle Z_k \\rangle.\n", - "$$" - ] - }, - { - "cell_type": "markdown", - "id": "188687e5-95c1-4841-ac59-3d47de5e1748", - "metadata": { - "id": "188687e5-95c1-4841-ac59-3d47de5e1748" - }, - "source": [ - "Below we show how the define the corresponding Qlayer: the quantum program and post-processing:" - ] - }, - { - "cell_type": "markdown", - "id": "3cf8c081-3853-4d43-b003-5a3aa50ebf12", - "metadata": { - "id": "3cf8c081-3853-4d43-b003-5a3aa50ebf12" - }, - "source": [ - "## The quantum program" - ] - }, - { - "cell_type": "code", - "execution_count": 96, - "id": "cdcab73f-a9cd-4779-9043-ee1813d82b38", - "metadata": { - "execution": { - "iopub.execute_input": "2024-05-07T14:52:23.750598Z", - "iopub.status.busy": "2024-05-07T14:52:23.749376Z", - "iopub.status.idle": "2024-05-07T14:52:26.038135Z", - "shell.execute_reply": "2024-05-07T14:52:26.037439Z" - }, - "id": "cdcab73f-a9cd-4779-9043-ee1813d82b38", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "73cabece-c106-4a7c-c13b-3c7e2ce17240" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Opening: https://platform.classiq.io/circuit/e4318b40-1f0e-4a80-9003-41ea4a335cd9?version=0.41.2\n" - ] - } - ], - "source": [ - "@qfunc\n", - "def main(\n", - " w: CArray[CReal, num_weights_in_encoder],\n", - " input: CArray[CReal, NUM_QUBITS],\n", - " trash: Output[QArray[QBit, num_trash_qubits]],\n", - ") -> None:\n", - " x = QArray(\"x\")\n", - " coded = QArray(\"coded\")\n", - " angle_encoding(exe_params=input, qbv=x)\n", - " encoder_ansatz(\n", - " num_qubits=NUM_QUBITS,\n", - " num_encoding_qubits=NUM_ENCODING_QUBITS,\n", - " exe_params=w,\n", - " x=x,\n", - " trash=trash,\n", - " coded=coded,\n", - " )\n", - "\n", - "\n", - "ae_qmod = create_model(main)\n", - "\n", - "\n", - "qprog = synthesize(ae_qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "id": "1160bc2e-84ea-42de-b48c-9a2113bee98c", - "metadata": { - "id": "1160bc2e-84ea-42de-b48c-9a2113bee98c" - }, - "source": [ - "## Execution and post-process\n", - "\n", - "The trash register is of size 2, we measure the Pauli $Z$ matrix on each of its qubits" - ] - }, - { - "cell_type": "code", - "execution_count": 97, - "id": "a56ea5a2-b040-4923-a8fa-1b46faeb5d1a", - "metadata": { - "execution": { - "iopub.execute_input": "2024-05-07T14:52:26.040751Z", - "iopub.status.busy": "2024-05-07T14:52:26.040244Z", - "iopub.status.idle": "2024-05-07T14:52:26.044916Z", - "shell.execute_reply": "2024-05-07T14:52:26.044072Z" - }, - "id": "a56ea5a2-b040-4923-a8fa-1b46faeb5d1a" - }, - "outputs": [], - "source": [ - "from classiq.applications.chemistry import PauliOperator, PauliOperators\n", - "\n", - "\n", - "def execute(\n", - " quantum_program: SerializedQuantumProgram, arguments: MultipleArguments\n", - ") -> ResultsCollection:\n", - " return execute_qnn(\n", - " quantum_program,\n", - " arguments,\n", - " observable=PauliOperator(pauli_list=[(\"IZ\", 1), (\"ZI\", 1)]),\n", - " )\n", - "\n", - "\n", - "def post_process(result: SavedResult) -> torch.Tensor:\n", - " out = 1 / 2 * (2 - np.real(result.value.value))\n", - " return torch.tensor(out)" - ] - }, - { - "cell_type": "code", - "execution_count": 98, - "id": "f87fef6b-36b3-4707-b1cd-7042b0ff053c", - "metadata": { - "execution": { - "iopub.execute_input": "2024-05-07T14:52:26.048898Z", - "iopub.status.busy": "2024-05-07T14:52:26.048111Z", - "iopub.status.idle": "2024-05-07T14:52:26.059915Z", - "shell.execute_reply": "2024-05-07T14:52:26.058954Z" - }, - "id": "f87fef6b-36b3-4707-b1cd-7042b0ff053c" - }, - "outputs": [], - "source": [ - "def create_net(*args, **kwargs) -> nn.Module:\n", - " class Net(nn.Module):\n", - " def __init__(self, *args, **kwargs):\n", - " super().__init__()\n", - "\n", - " self.qlayer = QLayer(\n", - " qprog,\n", - " execute,\n", - " post_process,\n", - " *args,\n", - " **kwargs,\n", - " )\n", - "\n", - " def forward(self, x):\n", - " x = self.qlayer(x)\n", - " return x\n", - "\n", - " return Net(*args, **kwargs)\n", - "\n", - "\n", - "encoder_train_network = create_net()" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.9" - }, - "colab": { - "provenance": [], - "collapsed_sections": [ - "6dca60d3", - "1949ec76" - ] - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} \ No newline at end of file diff --git a/community/QClass_2024/Sessions/week1_ QClass_workshop_with_sol.ipynb b/community/QClass_2024/Sessions/week1_ QClass_workshop_with_sol.ipynb deleted file mode 100644 index 8adcc3a6..00000000 --- a/community/QClass_2024/Sessions/week1_ QClass_workshop_with_sol.ipynb +++ /dev/null @@ -1,1487 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Quantum Software Development Journey: \n", - "# From Theory to Application with Classiq - Part 1" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Welcome to the Classiq Workshop Series for QClass 2024!**\n", - "\n", - "In this series, we will develop the skills needed to participate in quantum software development!\n", - "\n", - "- Week 1: Classiq's Basics & High-Level Functional Design\n", - "- Week 2: Using Git as a Tool for In-Team Collaboration and Open Source Contributions\n", - "- Weeks 3-4: Advanced Algorithms, Introduction to Quantum Machine Learning (QML), and Their Applications\n", - "\n", - "**Here, you have early access to our [New Classiq's documentation](https://nightly.docs.classiq.io/latest/)!**\n", - "\n", - "\n", - "\n", - "\n", - "Additional resources you should use are\n", - "- The IDE of the classiq platform at [platform.classiq.io](platform.classiq.io)\n", - "- The [community Slack of Classiq](https://short.classiq.io/join-slack) - Classiq's team will answer any question you have over there, including implementation questions\n", - "- [Classiq's documentation](https://docs.classiq.io/latest/user-guide/platform/) with the dedicated [Python SDK explanations](https://docs.classiq.io/latest/user-guide/platform/qmod/python/functions/)\n", - "\n", - "Good luck!" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Setting The Scene" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Install the Classiq SDK package:" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "# !pip install -U classiq" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "You need to authenticate your device in order to use Classiq's backend synthesis engine and IDE. \n", - "**Make sure to register to the platform** at [platform.classiq.io](https://platform.classiq.io/) before you run the next cell:" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "import classiq\n", - "# classiq.authenticate()" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "from classiq import *" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## A Warm Up" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### First Example" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Write a function that prepares the minus state $\\ket{-}=\\frac{1}{\\sqrt2}(\\ket{0}-\\ket{1})$, assuming it recives the qubit $\\ket{x}=\\ket{0}$ (hint): \n", - "\n", - "
\n", - "\n", - "HINT\n", - "\n", - "\n", - "Use `H(x)`,`X(x)`\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [], - "source": [ - "@qfunc\n", - "def prepare_minus_state(x:QBit):\n", - " pass #TODO delete pass\n", - " #TODO prepare |-> function" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now we will test our code:" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [], - "source": [ - "@qfunc\n", - "def main(x: Output[QBit]):\n", - " allocate(1,x) # Initialize the qubit x\n", - " pass #TODO delete pass\n", - " #TODO apply the function prepare_minus" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "quantum_model = create_model(main)\n", - "quantum_program = synthesize(quantum_model)" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/185d88cf-237a-4991-acb9-802f796c99ee?version=0.40.0\n" - ] - } - ], - "source": [ - "show(quantum_program)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Uniform Superposition" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's continue warming up with creating a function that receives a quantum register and creates a uniform superposition for all qubits within this array. You should use the function `apply_to_all(gate_operand=, target=)`:" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [], - "source": [ - "@qfunc\n", - "def create_initial_state(reg: QArray[QBit]):\n", - " pass #TODO delete pass\n", - " #TODO use the function apply_to_all in order create a uniform superposition" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Test your function by creating a new main function, synthesizing and viewing the circuit:" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": {}, - "outputs": [], - "source": [ - "@qfunc\n", - "def main(): #TODO fill in the correct declaration here, what variables this model should output?\n", - " pass #TODO delete pass\n", - " #TODO allocate reg with a few qubits\n", - " create_initial_state(reg)" - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": {}, - "outputs": [], - "source": [ - "# TODO uncomment the following line:\n", - "# qprog = synthesize(create_model(main))\n", - "\n", - "#TODO show the quantum program" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Another implementation could utilize the `repeat(count=, iteration=)` function. The `repeat` function can be thought of as a \"classical for loop\". It could be handy in many situations, especially when combined with `if_` function, the \"classical if\" statement in Classiq. Together, they form 'Classical Control Flow'. \n", - "\n", - "Read more: [Classical Control Flow (repeat, if_)](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/classical-control-flow/?h=repea#__tabbed_1_2)" - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/9ef28f93-59fe-467a-8b6d-efd7a0648fce?version=0.40.0\n" - ] - } - ], - "source": [ - "@qfunc\n", - "def create_initial_state(q: QArray[QBit]) -> None:\n", - " repeat(q.len, lambda i: H(q[i]))\n", - "\n", - "@qfunc\n", - "def main(reg: Output[QArray]): \n", - " allocate(4,reg)\n", - " create_initial_state(reg)\n", - "\n", - "qprog = synthesize(create_model(main))\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Guidelines for High-Level Functional Design with Classiq" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Some basic explanations about the high-level functional design with Classiq:**\n", - "\n", - "* There should always be a main (`def main(...)`) function - the model that captures your algorithm is described there\n", - "\n", - "* The model is always generated out of the main function \n", - "\n", - "* The model is sent to the synthesis engine (compiler) that return a quantum program which contains the quantum circuit" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Some basic guidelines about the modeling language (QMOD):**\n", - "\n", - "1. Every function you use with the QMOD language should have the decorator `@qfunc` before it\n", - "2. Every quantum variable should be declared, either as an argument of a function e.g. `def prepare_minus(x: QBit)` or as a local variable within the function itself with `x = QBit('x')`\n", - "\n", - "\n", - "3. Some quantum variables need to be initialized with the `allocate` function. This is required in 2 cases:\n", - "* A variable is an argument of a function with the declaration `Output` like `def main(x: Output[QNum])`\n", - "* A variable that was declared within a function like `a = QNum('a')`\n", - "\n", - "4. For the `main` function, you will always use `Output` for all variables. The `output` indicates that these quantum variables are not initialized outside the scope of the function.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - " Types of Initializations \n", - "There are a few ways to initialize a quantum variable:\n", - "\n", - "1. With `allocate` or `allocate_num` \n", - "2. With `prepare_int`, `prepare_state` or `prepare_amplitudes`\n", - "3. As the result of a numeric operation `|=`\n", - "4. With the `bind` operation (`->` in native)\n", - "5. With any function that declares its quantum variable argument as `output`\n", - "\n", - "
\n", - "\n", - "
\n", - " Types of Quantum Variables \n", - "In Qmod there are 3 types of quantum variables:\n", - "\n", - "1. `QBit` (`qbit`)\n", - "2. `QArray[QBit]` (`qbit[]`)\n", - "3. `QNum` (`qnum`)\n", - "\n", - "(See also [Quantum Variables](https://nightly.docs.classiq.io/latest/classiq_101/classiq_concepts/design/quantum_variables_and_functions/))\n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Tutorial - State Preparation " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Prepare State" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, we will see how we can easily make arbitrary state using Classiq's `prepare_state`.\n", - "\n", - "For example, let’s say we want to prepare the state $ \\ket{\\Phi^+}=\\frac{1}{\\sqrt{2}}(\\ket{00}+\\ket{11}) $" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/9e0cede6-2313-4bf2-a1c8-884b0ce731d7?version=0.40.0\n" - ] - } - ], - "source": [ - "@qfunc\n", - "def main(x: Output[QArray[QBit]]):\n", - " prepare_state(probabilities=[0.5,0,0,0.5], bound=0.01, out=x)\n", - "\n", - "model = create_model(main)\n", - "qprog = synthesize(model)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Or using `prepare_bell_state` in order to prepare states with relative phase:" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [], - "source": [ - "@qfunc\n", - "def main(x:Output[QArray]):\n", - " prepare_bell_state(state_num=0, q=x) # phi-" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/b172cbea-d4a9-468e-9323-6159e9f0fb88?version=0.40.0\n" - ] - } - ], - "source": [ - "quantum_model = create_model(main)\n", - "quantum_program = synthesize(quantum_model)\n", - "show(quantum_program)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "\n", - "NOTE\n", - "\n", - "\n", - "\n", - "| State Number | Bell State | \n", - "|--------------|------------|\n", - "| 0 | $ \\ket{\\phi^+}= \\frac{1}{\\sqrt{2}}[\\ket{00}+\\ket{11}] $ | \n", - "| 1 | $ \\ket{\\phi^-}= \\frac{1}{\\sqrt{2}}[\\ket{00}-\\ket{11}]$ |\n", - "| 2 | $ \\ket{\\psi^+}= \\frac{1}{\\sqrt{2}}[\\ket{01}+\\ket{10}]$ |\n", - "| 3 | $ \\ket{\\psi^-}= \\frac{1}{\\sqrt{2}}[\\ket{01}-\\ket{10}]$ |\n", - "| 4=0 | $ \\ket{\\phi^+}= ...$ |\n", - "| ... | ... | ... | \n", - "\n", - "\n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now it's your turn to prepare the state $ \\ket{\\Psi^+}=\\frac{1}{\\sqrt{2}}(\\ket{01}+\\ket{10}) $" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [], - "source": [ - "@qfunc\n", - "def main(x: Output[QArray[QBit]]):\n", - " pass #TODO delete pass\n", - " #TODO use the function prepare_state/ prepare_bell_state in order create a the desired state\n", - "\n", - "#TODO create model, synthesize it, and show it" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Note that we can use `prepare_state` to create much more complex states, for instance, we can create list of probabilities:" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "outputs": [], - "source": [ - "probabilities = [\n", - " 0,\n", - " 0.002,\n", - " 0.004,\n", - " 0.006,\n", - " 0.0081,\n", - " 0.0101,\n", - " 0.0121,\n", - " 0.0141,\n", - " 0.0161,\n", - " 0.0181,\n", - " 0.0202,\n", - " 0.0222,\n", - " 0.0242,\n", - " 0.0262,\n", - " 0.0282,\n", - " 0.0302,\n", - " 0.0323,\n", - " 0.0343,\n", - " 0.0363,\n", - " 0.0383,\n", - " 0.0403,\n", - " 0.0423,\n", - " 0.0444,\n", - " 0.0464,\n", - " 0.0484,\n", - " 0.0504,\n", - " 0.0524,\n", - " 0.0544,\n", - " 0.0565,\n", - " 0.0585,\n", - " 0.0605,\n", - " 0.0625,\n", - "]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "And then generate the state:" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/42118092-b20e-4172-98c6-00943a067da4?version=0.40.0\n" - ] - } - ], - "source": [ - "@qfunc\n", - "def main(x: Output[QArray[QBit]]):\n", - " prepare_state(probabilities=probabilities, bound=0.01, out=x)\n", - " \n", - "model = create_model(main)\n", - "qprog = synthesize(model)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Prepare Int" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We also have a `prepare_int` function, which allows us to register integers effortlessly. For example, $binary(9) = 1001$, or any other integer can be prepared in a single line of code:" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/57617572-0d31-42e6-88c4-a54efb0d7b47?version=0.40.0\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "@qfunc\n", - "def main(x: Output[QNum]) -> None:\n", - " prepare_int(9, x)\n", - "\n", - "model = create_model(main)\n", - "qprog = synthesize(model)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise: Parallel Addition " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In this exercise, we will conclude state preparation and also get a teaser of the next part of the tutorial - Arithmetic Operations. \n", - "\n", - "Let's say that for some reason we used `prepare_int` to create the integer 7, and we want to perform addition operations with the integers 0, 4, and 7. We will do that using `prepare_state`." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "@qfunc\n", - "def main(res: Output[QNum]) -> None:\n", - " pass #TODO delete pass\n", - " x = QNum() #TODO complete the declarations of x,y\n", - " y = QNum()\n", - " \n", - " # TODO prepare the above-mentioned integer using prepare_int\n", - " prepare_state(probabilities=[], bound=0.01, out=y) # TODO complete the 'probabilities' list\n", - " \n", - " res|=x+y\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "# TODO uncomment the folllowing lines:\n", - "\n", - "# model = create_model(main)\n", - "# qprog = synthesize(model)\n", - "# show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Tutorial - Arithmetic Operations with Classiq" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "One of the key advantages of Classiq is it's simplistic and powerful compiler for quantum arithmetic. Let's see an example:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "num_qubits = 4\n", - "fraction_digits = 0 \n", - "is_signed = True\n", - "\n", - "@qfunc\n", - "def main(x: Output[QNum], y: Output[QNum]):\n", - " allocate_num(num_qubits=num_qubits, is_signed=is_signed, fraction_digits=fraction_digits, out=x)\n", - " hadamard_transform(x)\n", - " y|= x**2 + 1\n", - "\n", - "qmod = create_model(main)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The `allocate_num` function initializes a quantum variable that represent numbers. By default, it is initialized to the $\\ket{0}$ state. Then the `hadmard_transform` creates a superposition of all possible states in the domain $[-2^3,2^3-1]$. Finally, the arithmetic operation creates the entangled superposition of states:\n", - "$\\begin{equation}\n", - "\\sum_{x =-2^3}^{2^3-1}\\ket{x}\\ket{x^2+1}.\n", - "\\end{equation}$\n", - "\n", - "The `qmod` variable is a string that captures the algorithm we have just created in a JSON format. Now, what we want is to synthesize (compile) in order to receive a concrete quantum program that contains the quantum circuit implementation." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Advanced Arithmetics" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now let's create a general linear function with Classiq: $y= ax+b$ where $a,b$ are classical integer parameters and $x,y$ is a quantum states representing integers:" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "@qfunc\n", - "def linear_func(a:CInt,b: CInt, x:QNum, y: Output[QNum]):\n", - " y |= a*x+b" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "@qfunc\n", - "def main(x:Output[QNum], y: Output[QNum]):\n", - "\n", - " a = 2\n", - " b = 1\n", - " allocate_num(num_qubits=4,is_signed=False,fraction_digits=0,out=x)\n", - " hadamard_transform(x)\n", - " linear_func(a,b,x,y)\n", - "\n", - "qmod = create_model(main)" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "qprog = synthesize(qmod)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's execute the circuit from directly from the SDK:" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "job = execute(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "And we can view the results in the IDE:" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "job.open_in_ide()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Or to directly analyze it within the SDK:" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true - }, - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'x': 8.0, 'y': 17.0}\n", - "{'x': 5.0, 'y': 11.0}\n", - "{'x': 13.0, 'y': 27.0}\n", - "{'x': 7.0, 'y': 15.0}\n", - "{'x': 14.0, 'y': 29.0}\n", - "{'x': 6.0, 'y': 13.0}\n", - "{'x': 2.0, 'y': 5.0}\n", - "{'x': 15.0, 'y': 31.0}\n", - "{'x': 1.0, 'y': 3.0}\n", - "{'x': 12.0, 'y': 25.0}\n", - "{'x': 10.0, 'y': 21.0}\n", - "{'x': 9.0, 'y': 19.0}\n", - "{'x': 11.0, 'y': 23.0}\n", - "{'x': 0.0, 'y': 1.0}\n", - "{'x': 4.0, 'y': 9.0}\n", - "{'x': 3.0, 'y': 7.0}\n" - ] - } - ], - "source": [ - "results = job.result()\n", - "parsed_counts = results[0].value.parsed_counts\n", - "for sampled_state in parsed_counts: print(sampled_state.state)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Now it's your turn!** \n", - "\n", - "Implement the same linear function, but now $x$ is in the domain $[0,1)$ and is represented by 4 qubits. The parameters $a,b$ should be now `float` with the values of: $a=0.5, b=1.5$." - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": {}, - "outputs": [], - "source": [ - "#TODO complete here" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Tutorial - Two controlled Linear operations" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's say we want now to have two linear operations applied on the same quantum variable (register). But the arithmetic operation initialize a new quantum variable, so how can we do that? The answer is that we need to apply the operation to another variable and then XOR it to the variable we want. \n", - "\n", - "This can be useful if the linear operation we want to apply is controlled upon a control variable. Let's first define the functional building block:" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "@qfunc\n", - "def inplace_linear_attempt(a:CInt,b: CInt, x:QNum, y: QNum):\n", - " tmp = QNum('tmp')\n", - " linear_func(a,b,x,tmp)\n", - " inplace_xor(tmp,y)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "And checking our basic function implementation:" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/6e172347-e427-4622-84d0-01d46371a787?version=0.40.0\n" - ] - } - ], - "source": [ - "@qfunc\n", - "def main(x: Output[QNum],y: Output[QNum]):\n", - " a = 1\n", - " b = 2\n", - "\n", - " allocate_num(4,False,0,y)\n", - " allocate_num(4,False,0,x)\n", - " hadamard_transform(x)\n", - " inplace_linear_attempt(a,b,x,y)\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "OK, cool. So now we want to add a control qubit that controlled on the state $\\ket{0}$ implements the linear function $\\ket{x}\\rightarrow\\ket{x}\\ket{x+2}$ and controlled on the state $\\ket{1}$ implements the linear function $\\ket{x}\\rightarrow\\ket{x}\\ket{2x+1}$:" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "@qfunc\n", - "def control_logic(a: CArray[CInt], b: CArray[CInt], controller:QNum, x: QNum, y: QNum):\n", - " \n", - " repeat( count=a.len, \n", - " iteration=lambda i: control(controller==i, lambda: inplace_linear_attempt(a[i],b[i],x,y)))\n" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [], - "source": [ - "@qfunc\n", - "def main(controller: Output[QNum], x: Output[QNum],y: Output[QNum]):\n", - "\n", - " # Linear polynom parameters\n", - " a = [1,2]\n", - " b = [2,1]\n", - "\n", - " # Initializing x to a superposition in the domain [0,2^4-1]\n", - " allocate_num(4,False,0,x)\n", - " hadamard_transform(x)\n", - " \n", - " #Initialize y\n", - " allocate_num(4,False,0,y)\n", - "\n", - " # Setting the controller in a superposition\n", - " allocate_num(1,False,0,controller)\n", - " H(controller)\n", - "\n", - " # Implementing the control logic\n", - " control_logic(a,b,controller,x,y)\n", - "\n", - " \n", - "qmod = create_model(main)" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/8c213254-0a37-4a2c-94b9-c43e52da760e?version=0.40.0\n" - ] - } - ], - "source": [ - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "By executing we can actually see we get what we want:" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'controller': 0.0, 'x': 15.0, 'y': 1.0}\n", - "{'controller': 0.0, 'x': 6.0, 'y': 8.0}\n", - "{'controller': 1.0, 'x': 4.0, 'y': 9.0}\n", - "{'controller': 0.0, 'x': 8.0, 'y': 10.0}\n", - "{'controller': 0.0, 'x': 11.0, 'y': 13.0}\n", - "{'controller': 0.0, 'x': 7.0, 'y': 9.0}\n", - "{'controller': 0.0, 'x': 13.0, 'y': 15.0}\n", - "{'controller': 1.0, 'x': 0.0, 'y': 1.0}\n", - "{'controller': 1.0, 'x': 7.0, 'y': 15.0}\n", - "{'controller': 1.0, 'x': 12.0, 'y': 9.0}\n", - "{'controller': 0.0, 'x': 0.0, 'y': 2.0}\n", - "{'controller': 1.0, 'x': 10.0, 'y': 5.0}\n", - "{'controller': 1.0, 'x': 1.0, 'y': 3.0}\n", - "{'controller': 0.0, 'x': 9.0, 'y': 11.0}\n", - "{'controller': 1.0, 'x': 5.0, 'y': 11.0}\n", - "{'controller': 1.0, 'x': 6.0, 'y': 13.0}\n", - "{'controller': 1.0, 'x': 9.0, 'y': 3.0}\n", - "{'controller': 0.0, 'x': 5.0, 'y': 7.0}\n", - "{'controller': 0.0, 'x': 2.0, 'y': 4.0}\n", - "{'controller': 1.0, 'x': 11.0, 'y': 7.0}\n", - "{'controller': 0.0, 'x': 4.0, 'y': 6.0}\n", - "{'controller': 0.0, 'x': 3.0, 'y': 5.0}\n", - "{'controller': 1.0, 'x': 2.0, 'y': 5.0}\n", - "{'controller': 0.0, 'x': 1.0, 'y': 3.0}\n", - "{'controller': 0.0, 'x': 14.0, 'y': 0.0}\n", - "{'controller': 0.0, 'x': 12.0, 'y': 14.0}\n", - "{'controller': 1.0, 'x': 13.0, 'y': 11.0}\n", - "{'controller': 1.0, 'x': 3.0, 'y': 7.0}\n", - "{'controller': 0.0, 'x': 10.0, 'y': 12.0}\n", - "{'controller': 1.0, 'x': 8.0, 'y': 1.0}\n", - "{'controller': 1.0, 'x': 14.0, 'y': 13.0}\n", - "{'controller': 1.0, 'x': 15.0, 'y': 15.0}\n" - ] - } - ], - "source": [ - "def print_parsed_counts(job):\n", - " results = job.result()\n", - " parsed_counts = results[0].value.parsed_counts\n", - " for parsed_state in parsed_counts: print(parsed_state.state)\n", - "\n", - "job = execute(qprog)\n", - "print_parsed_counts(job)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Of course there is the issue of rounding and overflow - when one tries to represent $2*15+1=31$ with $4$ binary digits that's not possible (because the domain $[0,31]$ of integers is represented by at least 5 bits). See our [documentation](https://docs.classiq.io/latest/user-guide/platform/qmod/python/quantum-expressions/#inplace-arithmetic-operators) for further explanations.\n", - "\n", - "Let's try to use Classiq and optimize the circuit for minimal circuit width:" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Synthesized circuit width: 20, depth: 688\n" - ] - } - ], - "source": [ - "def print_depth_width(quantum_program):\n", - " generated_circuit = QuantumProgram.parse_raw(quantum_program)\n", - " print(f\"Synthesized circuit width: {generated_circuit.data.width}, depth: {generated_circuit.transpiled_circuit.depth}\")\n", - " \n", - "qmod = set_constraints(qmod,Constraints(optimization_parameter='width'))\n", - "qprog = synthesize(qmod)\n", - "print_depth_width(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "And when optimizing for depth:" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Synthesized circuit width: 32, depth: 398\n" - ] - } - ], - "source": [ - "qmod = set_constraints(qmod,Constraints(optimization_parameter='depth'))\n", - "qprog = synthesize(qmod)\n", - "print_depth_width(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Firstly, we can see here a clear demonstration of the power of high-level functional design!** The same algorithm with the same functionality was optimized once for depth and once for width and the result is 2 different circuits with different characteristics that implement the same functionality.\n", - "\n", - "Secondly, is this the best we can do? Obviously the Classiq synthesis engine is optimizing for us the algorithm quite good. But, can we change something with our functionality, with our algorithm to get more efficient circuits? \n", - "\n", - "If we go back to out `inplace_linear_attempt` function, we can see that we initialize a `tmp` variable that requires more qubits and is not used. For such scenarios we have the `within_apply`. This logic implements sort of $UVU^{\\dagger}$ and when temporary variables are outputs of $U$ and used only by $V$ they are uncomputed by $U^{\\dagger}$. Let's see for our example:" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [], - "source": [ - "@qfunc\n", - "def inplace_linear_func(a:CInt,b: CInt, x:QNum, y: QNum):\n", - " tmp = QNum('tmp')\n", - " within_apply(compute= lambda: linear_func(a,b,x,tmp),\n", - " action= lambda: inplace_xor(tmp,y))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "With the new `control_logic`:" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [], - "source": [ - "@qfunc\n", - "def control_logic_2(a: CArray[CInt], b: CArray[CInt], controller:QNum, x: QNum, y: QNum):\n", - " \n", - " repeat( count=a.len, \n", - " iteration=lambda i: control(controller==i, lambda: inplace_linear_func(a[i],b[i],x,y)))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "And when we put all together now:" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [], - "source": [ - "@qfunc\n", - "def main(controller: Output[QNum], x: Output[QNum],y: Output[QNum]):\n", - "\n", - " # Linear polynom parameters\n", - " a = [1,2]\n", - " b = [2,1]\n", - "\n", - " # Initializing x to a superposition in the domain [0,2^4-1]\n", - " allocate_num(4,False,0,x)\n", - " hadamard_transform(x)\n", - " \n", - " #Initialize y\n", - " allocate_num(4,False,0,y)\n", - "\n", - " # Setting the controller in a superposition\n", - " allocate_num(1,False,0,controller)\n", - " H(controller)\n", - "\n", - " # Implementing the control logic\n", - " control_logic_2(a,b,controller,x,y)\n", - "\n", - " \n", - "qmod = create_model(main)" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [], - "source": [ - "qprog = synthesize(qmod)" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/46696929-79f8-43c0-87e9-fdbebd48156f?version=0.40.0\n" - ] - } - ], - "source": [ - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "And now when we optimize for width:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "qmod = set_constraints(qmod,Constraints(optimization_parameter='width'))\n", - "qprog = synthesize(qmod)\n", - "print_depth_width(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "And for depth:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "qmod = set_constraints(qmod,Constraints(optimization_parameter='depth'))\n", - "qprog = synthesize(qmod)\n", - "print_depth_width(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "So using the `within_apply` logic enabled us to reduce the optimal circuit implementation in terms of width from $20$ to $16$ and the optimal circuit depth from $398$ to $203$! " - ] - }, - { - "cell_type": "markdown", - "metadata": { - "jp-MarkdownHeadingCollapsed": true - }, - "source": [ - "## Cheat Sheet" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Initalizations" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "allocate(\n", - " num_qubits: CInt,\n", - " out: Output[QArray[QBit, Literal[\"num_qubits\"]]])\n", - " '''\n", - " x = QArray('x')\n", - " allocate(4,x)\n", - " '''\n", - "\n", - "allocate_num(\n", - " num_qubits: CInt,\n", - " is_signed: QParam[bool],\n", - " fraction_digits: CInt,\n", - " out: Output[QNum])\n", - "'''\n", - "x = QNum('x')\n", - "allocate_num(4,False,4,x)\n", - "'''" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Operations" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "repeat(\n", - " count: CInt,\n", - " iteration: QCallable[CInt],\n", - ")\n", - "'''\n", - "x = QArray\n", - "allocate(4,x)\n", - "repeat(x.len,lambda index: H(x))\n", - "'''\n", - "\n", - "control(\n", - " operand: QCallable,\n", - " ctrl: QArray[QBit],\n", - ") \n", - "'''\n", - "x = QArray('x')\n", - "y = QArray('y')\n", - "x = allocate(4,x)\n", - "y = allocate(4,y)\n", - "repeat(x.len,lambda i: control(lambda: X(y[i]),x[i]))\n", - "'''" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Solutions" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### First Example" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "@qfunc\n", - "def prepare_minus_state(x:QBit):\n", - " X(x)\n", - " H(x)\n", - " \n", - "@qfunc\n", - "def main(x: Output[QBit]):\n", - " allocate(1,x) # Initalize the qubit x\n", - " prepare_minus_state(x)\n", - "\n", - "quantum_model = create_model(main)\n", - "quantum_program = synthesize(quantum_model)\n", - "show(quantum_program)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Uniform Superposition" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "@qfunc\n", - "def create_initial_state(reg: QArray[QBit]):\n", - " apply_to_all(H,reg)\n", - "\n", - "@qfunc\n", - "def main(reg: Output[QArray]): #TODO fill int the correct declaration here, what variables this model shoul output?\n", - " allocate(4,reg)\n", - " create_initial_state(reg)\n", - "\n", - "qprog = synthesize(create_model(main))\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Prepare Bell State" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "@qfunc\n", - "def main(x:Output[QArray]):\n", - " prepare_bell_state(state_num=2, q=x) # psi+\n", - "\n", - "# Or:\n", - "\n", - "@qfunc\n", - "def main(x: Output[QArray[QBit]]):\n", - " prepare_state(probabilities=[0,0.5,0.5,0], bound=0.01, out=x)\n", - "\n", - "model = create_model(main)\n", - "qprog = synthesize(model)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Parallel Addition" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "@qfunc\n", - "def main(res: Output[QNum]) -> None:\n", - " x = QNum(\"x\")\n", - " prepare_int(7,x)\n", - " \n", - " y = QNum(\"y\")\n", - " prepare_state(probabilities=[1/3,0,0,0,1/3,0,0,1/3], bound=0.01, out=y)\n", - " res|=x+y" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Advanced Arithmetics" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "@qfunc\n", - "def main(x:Output[QNum], y: Output[QNum]):\n", - "\n", - " a = 0.5\n", - " b = 1.5\n", - " allocate_num(num_qubits=4,is_signed=False,fraction_digits=4,out=x)\n", - " hadamard_transform(x)\n", - " linear_func(a,b,x,y)\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.8" - }, - "vscode": { - "interpreter": { - "hash": "529b62266d4f537a408698cf820854c65fe877011c7661f0f70aa11c4383fddc" - } - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/community/QClass_2024/Submissions/HW1/Rajana_Rama_Satya_Sai_Durga_Prasad_HW1_QClass2024.ipynb b/community/QClass_2024/Sessions/week1_QClass_workshop_with_sol.ipynb similarity index 71% rename from community/QClass_2024/Submissions/HW1/Rajana_Rama_Satya_Sai_Durga_Prasad_HW1_QClass2024.ipynb rename to community/QClass_2024/Sessions/week1_QClass_workshop_with_sol.ipynb index ea05ee27..febebef3 100644 --- a/community/QClass_2024/Submissions/HW1/Rajana_Rama_Satya_Sai_Durga_Prasad_HW1_QClass2024.ipynb +++ b/community/QClass_2024/Sessions/week1_QClass_workshop_with_sol.ipynb @@ -10,7 +10,7 @@ "\n", "In this workshop, we will learn how to write quantum models using Qmod. We will be using the Python embedding of Qmod, available as part of the Classiq Python SDK. We will learn basic concepts in the Qmod language, such as functions, operators, quantum variables, and quantum types. We will develop useful building blocks and small algorithms.\n", "\n", - "The [QMOD language reference](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/) covers these concepts more systematically and includes more examples.\n", + "The [QMOD language reference](https://docs.classiq.io/latest/reference-manual/platform/qmod/language-reference/) covers these concepts more systematically and includes more examples.\n", "\n", "This workshop consists of step-by-step exercises. It is structured as follows:\n", "\n", @@ -24,7 +24,7 @@ "\n", "Make sure you have a Python version of 3.8 through 3.11 installed. Unfortunately, Classiq is not yet supported with Python 3.12.\n", "\n", - "Install Classiq’s Python SDK by following the instructions on this page: [Getting Started - Classiq](https://docs.classiq.io/latest/getting-started/).\n", + "Install Classiq’s Python SDK by following the instructions on this page: [Getting Started - Classiq](https://docs.classiq.io/latest/classiq_101/registration_installations/).\n", "\n", "### Python Qmod Exercises - General Instructions\n", "\n", @@ -32,7 +32,7 @@ "1. Make sure you define a `main` function that calls functions you create.\n", "2. Use `create_model` by running `qmod = create_model(main)` to construct a representation of your model.\n", "3. You can synthesize the model (using `qprog = synthesize(qmod)`) to obtain an implementation - a quantum program.\n", - "4. You can then visualize the quantum program (`show(qprog)`) or execute it (using `execute(qprog)`. See: [Execution - Classiq](https://docs.classiq.io/latest/user-guide/platform/executor/#full-example)). You can also execute it with the IDE after visualizing the circuit.\n" + "4. You can then visualize the quantum program (`show(qprog)`) or execute it (using `execute(qprog)`. See: [Execution - Classiq](https://docs.classiq.io/latest/reference-manual/platform/executor/). You can also execute it with the IDE after visualizing the circuit.\n" ] }, { @@ -46,7 +46,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -78,28 +78,13 @@ }, { "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "ExecutionJob(id='4247b766-12c5-45b3-9252-f0bd43c07074')" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "from classiq import *\n", "\n", - "# Your code here:\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "#execute(qprog)\n", - "show(qprog)" + "# Your code here:" ] }, { @@ -108,7 +93,7 @@ "source": [ "In Qmod `QBit` is the simplest quantum type, and in this example, `q` is a quantum variable of type `QBit`. Quantum variables abstract away the mapping of quantum objects to qubits in the actual circuit.\n", "\n", - "See also [Quantum Variables](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/quantum-variables/).\n", + "See also [Quantum Variables](https://docs.classiq.io/latest/classiq_101/classiq_concepts/design/quantum_variables_and_functions/).\n", "\n", "We will discuss other quantum types during the workshop.\n" ] @@ -131,37 +116,18 @@ "Create a function that takes two single-qubit (`QBit`) quantum arguments and prepares the bell state on them ([Bell state](https://en.wikipedia.org/wiki/Bell_state)) by applying `H` on one variable and then using it as the control of a `CX` function with the second variable as the target.\n", "Create a main function that uses this function and has two single-qubit outputs, initialize them to the |0> state (using the `allocate` function), and apply your function to them.\n", "\n", - "See also [Functions](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/functions#syntax)\n" + "See also [Functions](https://docs.classiq.io/latest/reference-manual/platform/qmod/library-reference/core-library-functions/)\n" ] }, { "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/b3d8557f-3bec-47e5-8826-c0e83e5cf652?version=0.41.1\n" - ] - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "from classiq import *\n", "\n", "# Your code here:\n", - "@qfunc\n", - "def prepare_bellstate(x:QBit,y:QBit):\n", - " H(x)\n", - " CX(x,y)\n", - "@qfunc\n", - "def main(x:Output[QBit],y:Output[QBit]):\n", - " allocate(1,x)\n", - " allocate(1,y)\n", - " prepare_bellstate(x,y)\n", - " \n", - " \n", "\n", "qmod = create_model(main)\n", "qprog = synthesize(qmod)\n", @@ -178,30 +144,13 @@ }, { "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/322007b5-8557-461d-b6dc-fd571b6336fc?version=0.41.1\n" - ] - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "from classiq import *\n", "\n", "# Your code here:\n", - "@qfunc\n", - "def prepare_randomstate(reg: QArray[QBit]):\n", - " H(reg[0])\n", - " CX(reg[0],reg[1])\n", - " \n", - "@qfunc\n", - "def main(reg: Output[QArray]):\n", - " allocate(2,reg)\n", - " prepare_randomstate(reg)\n", "\n", "qmod = create_model(main)\n", "qprog = synthesize(qmod)\n", @@ -216,35 +165,20 @@ "\n", "Use the built-in `repeat` operator to create your own Hadamard transform function (call it `my_hadamard_transform`). The Hadamard transform function is a function that takes as argument a qubit array of an unspecified size and applies `H` to each of its qubit.\n", "\n", - "See also [Classical repeat](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/classical-control-flow/#classical-repeat).\n", + "See also [Classical repeat](https://docs.classiq.io/latest/reference-manual/platform/qmod/language-reference/statements/classical-control-flow/#classical-repeat).\n", "\n", "Set your main function to have a quantum array output of unspecified size, allocate 10 qubits, and then apply your Hadamard transform function.\n" ] }, { "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/f1969b5f-9fa5-4f39-b7ca-a137dd48f26f?version=0.41.1\n" - ] - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "from classiq import *\n", "\n", "# Your code here:\n", - "@qfunc\n", - "def my_hadamard_transform(reg:QArray[QBit]) -> None:\n", - " repeat(reg.len, lambda i:H(reg[i]))\n", - "@qfunc\n", - "def main(reg: Output[QArray]):\n", - " allocate(10,reg)\n", - " my_hadamard_transform(reg)\n", "\n", "qmod = create_model(main)\n", "qprog = synthesize(qmod)\n", @@ -259,7 +193,7 @@ "The `repeat` operator invokes a statement block multiple times. The statement block is specified using a Python callable, typically a lambda expression. Inside the block you can refer to variables declared in the outer function scope.\n", "This concept is called `quantum variable capture`, equivalent to [capture](https://en.wikipedia.org/wiki/Closure_(computer_programming)) in classical languages.\n", "\n", - "See also [Capturing context variables and parameters](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/operators/#capturing-context-variables-and-parameters)." + "See also [Capturing context variables and parameters](https://docs.classiq.io/latest/reference-manual/platform/qmod/language-reference/operators/#example-2)." ] }, { @@ -273,14 +207,14 @@ "Sometimes, however, power can be simplified, thus saving computational resources.\n", "The most trivial example is a quantum operation expressed as a single explicit unitary matrix (i.e., all n*n matrix terms are given) - raising the operation can be done by raising the matrix to that power via classical programming.\n", "\n", - "See also [Power operator](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/quantum-operators/#syntax).\n", + "See also [Power operator](https://docs.classiq.io/latest/reference-manual/platform/qmod/language-reference/statements/power/).\n", "\n", "Use the following code to generate a 2-qubit (real) unitary matrix:" ] }, { "cell_type": "code", - "execution_count": 15, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -312,7 +246,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -325,25 +259,13 @@ }, { "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/ac9ea0a9-339a-4a35-a6da-c85c670ec950?version=0.41.1\n" - ] - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "from classiq import *\n", "\n", "# Your code here:\n", - "@qfunc\n", - "def main(reg: Output[QArray[QBit]]) -> None:\n", - " allocate(2,reg)\n", - " power(3,lambda: unitary(unitary_matrix,reg))\n", "\n", "qmod = create_model(main)\n", "qprog = synthesize(qmod)\n", @@ -357,7 +279,7 @@ "## Exercise 4 - User-defined Operators\n", "Create a function that applies a given single-qubit operation to all qubits in its quantum argument (Call your function `my_apply_to_all`). Such a function is also called an operator, i.e. a function that one of its arguments is another function (its operand).\n", "\n", - "See also [Operators](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/operators/).\n", + "See also [Operators](https://docs.classiq.io/latest/reference-manual/platform/qmod/language-reference/operators/).\n", "\n", "Follow these guidelines:\n", "1. Your function should declare a quantum argument of type qubit array. It should also declare an argument of a function type with a single qubit argument.\n", @@ -369,38 +291,14 @@ }, { "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/32237109-3955-40c2-bbf6-df4607bec44a?version=0.41.1\n" - ] - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "from classiq import *\n", "\n", "# Your code here:\n", "\n", - "@qfunc\n", - "def my_apply_to_all(operand: QCallable[QBit], reg: QArray[QBit]):\n", - " repeat(reg.len, lambda i:operand(reg[i]))\n", - "\n", - "\n", - "@qfunc\n", - "def my_hadamard_transform(reg:QArray[QBit]) -> None:\n", - " my_apply_to_all(lambda h:H(h),reg)\n", - " \n", - "@qfunc\n", - "def main(reg:Output[QArray[QBit]]):\n", - " allocate(10,reg)\n", - " my_hadamard_transform(reg)\n", - " \n", - "\n", - "\n", "qmod = create_model(main)\n", "qprog = synthesize(qmod)\n", "show(qprog)" @@ -415,36 +313,18 @@ "### Exercise 5a - Control Operator\n", "Use the built-in `control` operator to create a function that receives two single qubit variables and uses one of the variables to control an RY gate with a `pi/2` angle acting on the other variable (without using the `CRY` function).\n", "\n", - "See also [Quantum operators](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/quantum-operators/#syntax).\n" + "See also [Quantum operators](https://docs.classiq.io/latest/classiq_101/classiq_concepts/design/quantum_operations/).\n" ] }, { "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/e35293dd-9aa9-4c15-9aab-31cae4621842?version=0.41.1\n" - ] - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "from classiq import *\n", - "from classiq.qmod.symbolic import *\n", "\n", "# Your code here:\n", - "@qfunc\n", - "def control_ry(ctrl:QBit,tgt:QBit):\n", - " control(ctrl,lambda:RY(pi/2,tgt))\n", - "\n", - "@qfunc\n", - "def main(ctrl:Output[QBit], tgt: Output[QBit]):\n", - " allocate(1,ctrl)\n", - " allocate(1,tgt)\n", - " control_ry(ctrl,tgt)\n", "\n", "qmod = create_model(main)\n", "qprog = synthesize(qmod)\n", @@ -458,11 +338,11 @@ "### Exercise 5b - Control (\"Quantum If\")\n", "The `control` operator is the conditional application of some operation, with the condition being that all control qubits are in the state |1>. This notion is generalized in QMOD to other control states, where the condition is specified as a comparison between a quantum numeric variable and a numeric value, similar to a classical `if` statement. Quantum numeric variables are declared with class `QNum`.\n", "\n", - "See also [Numeric types](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/quantum-types/#syntax).\n", + "See also [Numeric types](https://docs.classiq.io/latest/reference-manual/platform/qmod/language-reference/quantum-types/).\n", "\n", "In QMOD this generalization is available as a native statement - control.\n", "\n", - "See also [control](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/quantum-operators/).\n", + "See also [control](https://docs.classiq.io/latest/reference-manual/platform/qmod/language-reference/operators/).\n", "\n", "1. Declare a `QNum` output argument using `Output[QNum]` and name it `x`.\n", "2. Use the `prepare_int` function to initialize it to `9`. Note that you don't need to specify the `QNum` attributes - size, sign, and fraction digits, as they are inferred at the point of initialization.\n", @@ -472,43 +352,177 @@ }, { "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/dbc85c64-6617-4d21-bd6a-9ae66c495a2e?version=0.41.1\n" - ] - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "from classiq import *\n", "\n", "# Your code here:\n", - "@qfunc\n", - "def main(x:Output[QNum], tgt:Output[QBit]):\n", - " prepare_int(9,x)\n", - " allocate(1,tgt)\n", - " control(x==9, lambda:X(tgt))\n", "\n", "qmod = create_model(main)\n", "qprog = synthesize(qmod)\n", "show(qprog)" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Solutions" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### First Example" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "@qfunc\n", + "def prepare_minus_state(x: QBit):\n", + " X(x)\n", + " H(x)\n", + "\n", + "\n", + "@qfunc\n", + "def main(x: Output[QBit]):\n", + " allocate(1, x) # Initalize the qubit x\n", + " prepare_minus_state(x)\n", + "\n", + "\n", + "quantum_model = create_model(main)\n", + "quantum_program = synthesize(quantum_model)\n", + "show(quantum_program)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Uniform Superposition" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "@qfunc\n", + "def create_initial_state(reg: QArray[QBit]):\n", + " apply_to_all(H, reg)\n", + "\n", + "\n", + "@qfunc\n", + "def main(\n", + " reg: Output[QArray],\n", + "): # TODO fill int the correct declaration here, what variables this model shoul output?\n", + " allocate(4, reg)\n", + " create_initial_state(reg)\n", + "\n", + "\n", + "qprog = synthesize(create_model(main))\n", + "show(qprog)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Prepare Bell State" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "@qfunc\n", + "def main(x: Output[QArray]):\n", + " prepare_bell_state(state_num=2, q=x) # psi+\n", + "\n", + "\n", + "# Or:\n", + "\n", + "\n", + "@qfunc\n", + "def main(x: Output[QArray[QBit]]):\n", + " prepare_state(probabilities=[0, 0.5, 0.5, 0], bound=0.01, out=x)\n", + "\n", + "\n", + "model = create_model(main)\n", + "qprog = synthesize(model)\n", + "show(qprog)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Parallel Addition" + ] + }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "@qfunc\n", + "def main(res: Output[QNum]) -> None:\n", + " x = QNum(\"x\")\n", + " prepare_int(7, x)\n", + "\n", + " y = QNum(\"y\")\n", + " prepare_state(probabilities=[1 / 3, 0, 0, 0, 1 / 3, 0, 0, 1 / 3], bound=0.01, out=y)\n", + " res |= x + y" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Advanced Arithmetics" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "@qfunc\n", + "def linear_func(a: CInt, b: CInt, x: QNum, y: Output[QNum]):\n", + " y |= a * x + b\n", + "\n", + "\n", + "@qfunc\n", + "def main(x: Output[QNum], y: Output[QNum]):\n", + "\n", + " a = 0.5\n", + " b = 1.5\n", + " allocate_num(num_qubits=4, is_signed=False, fraction_digits=4, out=x)\n", + " hadamard_transform(x)\n", + " linear_func(a, b, x, y)\n", + "\n", + "\n", + "qmod = create_model(main)\n", + "qprog = synthesize(qmod)\n", + "show(qprog)" + ] } ], "metadata": { "kernelspec": { - "display_name": "Python 3 (ipykernel)", + "display_name": "Python 3.11.7 ('classiq')", "language": "python", "name": "python3" }, @@ -523,6 +537,11 @@ "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.7" + }, + "vscode": { + "interpreter": { + "hash": "529b62266d4f537a408698cf820854c65fe877011c7661f0f70aa11c4383fddc" + } } }, "nbformat": 4, diff --git a/community/QClass_2024/Sessions/week3_QClass_workshop_with_solution.ipynb b/community/QClass_2024/Sessions/week3_QClass_workshop_with_solution.ipynb deleted file mode 100644 index 1559a2a2..00000000 --- a/community/QClass_2024/Sessions/week3_QClass_workshop_with_solution.ipynb +++ /dev/null @@ -1,919 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "id": "e7682d31-1cf2-4c6d-98b7-75fadfefb6bc", - "metadata": {}, - "source": [ - "# Quantum Software Development Journey: \n", - "# From Theory to Application with Classiq - Part 3" - ] - }, - { - "cell_type": "markdown", - "id": "01dfc0bf-5fdb-4d52-8fb4-168fc930aaff", - "metadata": {}, - "source": [ - "**Welcome to the Classiq Workshop Series for QClass 2024!**\n", - "\n", - "In this series, we will develop the skills needed to participate in quantum software development!\n", - "\n", - "- Week 1: Classiq's Basics & High-Level Functional Design\n", - "- Week 2: Using Git as a Tool for In-Team Collaboration and Open Source Contributions\n", - "- **Week 3: Introduction to Quantum Machine Learning (QML) & VQE**\n", - "- Week 4: QNN and and Advanced Applications\n", - "\n", - "**[New Classiq's documentation](https://docs.classiq.io/latest/)!**\n", - "\n", - "\n", - "\n", - "\n", - "Additional resources you should use are\n", - "- The IDE of the classiq platform at [platform.classiq.io](platform.classiq.io)\n", - "- The [community Slack of Classiq](https://short.classiq.io/join-slack) - Classiq's team will answer any question you have over there, including implementation questions\n", - "- Course's [GitHub repository](https://github.com/Classiq/classiq-library/tree/main/community/QClass_2024)\n", - "\n", - " \n", - "**Good luck!**" - ] - }, - { - "cell_type": "markdown", - "id": "4962a36e-bf41-48a2-9ad0-cbae90f43d98", - "metadata": {}, - "source": [ - "## VQE" - ] - }, - { - "cell_type": "markdown", - "id": "30587afe-3f19-4c1d-9f88-4a9083e3a158", - "metadata": {}, - "source": [ - "\n", - "The Variational Quantum Eigensolver is an algorithm that finds the minimal eigenvalue of a matrix by executing a parametric circuit (also referred to as an ansatz), estimating the expected value of the matrix for the state the circuit creates (from the distribution received by the execution), and using a classical optimizer to select the next set of parameters for the circuit, until reaching convergence (or exceeding a set amount of maximum iterations).\n", - "\n", - "The estimation of the expectation value is done on Pauli based matrices, so any matrix we want to perform this operation on, need to be decomposed into a sum of Pauli terms.\n", - "\n", - "**In this example, we will create a simple VQE algorithm that estimates the minimal eigenvalue of the following 2x2 matrix:**\n", - "\n", - "`[[1, -1], [-1, 0]] = 1/2*I + 1/2*Z - X`" - ] - }, - { - "cell_type": "markdown", - "id": "34dfc66c-b7f1-4ac5-adcb-b0acdbb53fb3", - "metadata": {}, - "source": [ - "### U Gate" - ] - }, - { - "cell_type": "markdown", - "id": "7ab65ac7-73fd-4582-bcf0-0be311e698e5", - "metadata": {}, - "source": [ - "The single-qubit gate applies phase and rotation with three Euler angles.\n", - "\n", - "Matrix representation:\n", - "\n", - "$$\n", - "U(\\gamma,\\phi,\\theta,\\lambda) = e^{i\\gamma}\\begin{pmatrix}\n", - "\\cos(\\frac{\\theta}{2}) & -e^{i\\lambda}\\sin(\\frac{\\theta}{2}) \\\\\n", - "e^{i\\phi}\\sin(\\frac{\\theta}{2}) & e^{i(\\phi+\\lambda)}\\cos(\\frac{\\theta}{2}) \\\\\n", - "\\end{pmatrix}\n", - "$$\n", - "\n", - "Parameters:\n", - "\n", - "- `theta`: `CReal`\n", - "- `phi`: `CReal`\n", - "- `lam`: `CReal`\n", - "- `gam`: `CReal`\n", - "- `target`: `QBit`" - ] - }, - { - "cell_type": "markdown", - "id": "ee7fdf75-a40b-4eb6-95c7-453b66a4aba7", - "metadata": {}, - "source": [ - "### VQE Implementation" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "id": "df12ed0b-0f92-43c0-8a0a-6d36b12474f2", - "metadata": {}, - "outputs": [], - "source": [ - "from typing import List\n", - "\n", - "from classiq import *\n", - "\n", - "HAMILTONIAN = QConstant(\"HAMILTONIAN\", List[PauliTerm], \n", - " [ \n", - " PauliTerm([Pauli.I], 0.5),\n", - " PauliTerm([Pauli.Z], 0.5),\n", - " PauliTerm([Pauli.X], -1)])\n", - "\n", - "\n", - "@qfunc\n", - "def main(q: Output[QBit], angles: CArray[CReal, 3]) -> None:\n", - " allocate(1, q)\n", - " U(angles[0], angles[1], angles[2], 0, q) \n", - "\n", - "\n", - "@cfunc\n", - "def cmain() -> None:\n", - " res = vqe(\n", - " HAMILTONIAN,\n", - " False,\n", - " [],\n", - " optimizer=Optimizer.COBYLA, # Constrained Optimization by Linear Approximation\n", - " max_iteration=1000,\n", - " tolerance=0.001,\n", - " step_size=0,\n", - " skip_compute_variance=False,\n", - " alpha_cvar=1.0,\n", - " )\n", - " save({\"result\": res})\n", - "\n", - "qmod = create_model(main, classical_execution_function=cmain)\n", - "qprog = synthesize(qmod)" - ] - }, - { - "cell_type": "markdown", - "id": "4a973762-c597-4519-89e9-a09b0d4b47b9", - "metadata": {}, - "source": [ - "
\n", - "\n", - "NOTE\n", - "\n", - "\n", - "\n", - "Read more about the supported optimizers:[here](https://docs.classiq.io/latest/reference-manual/built-in-algorithms/ground-state-solving/advanced-usage/solver-customization/)\n", - "
\n" - ] - }, - { - "cell_type": "markdown", - "id": "cb2528fe-9d3e-478e-88f7-c3fbb1761973", - "metadata": {}, - "source": [ - "Executing from the Classiq Platform:" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "id": "5120177b-6737-4922-bae3-d8fef9f6fcf2", - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/c44965b8-fb5a-4797-9aeb-741ef2559093?version=0.41.1\n" - ] - } - ], - "source": [ - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "id": "d6e678ca-0813-4a62-a96a-7b37e61065bd", - "metadata": {}, - "source": [ - "Or directly from the SDK:" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "id": "2ed72afa-d3ab-48f1-8b1c-b1de431cff99", - "metadata": {}, - "outputs": [], - "source": [ - "res = execute(qprog)\n", - "# res.open_in_ide()\n", - "vqe_result = res.result()[0].value" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "id": "9d7fbad5-ee44-45ef-893e-5a7632994daf", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Optimal energy: -0.60498046875\n", - "Optimal parameters: {'angles_0': -4.289061524925964, 'angles_1': -6.274092431830335, 'angles_2': -1.1512443092629974}\n", - "Eigenstate: {'0': (0.5426173548182918+0j), '1': (0.8399800034822258+0j)}\n" - ] - } - ], - "source": [ - "print(f\"Optimal energy: {vqe_result.energy}\")\n", - "print(f\"Optimal parameters: {vqe_result.optimal_parameters}\")\n", - "print(f\"Eigenstate: {vqe_result.eigenstate}\")" - ] - }, - { - "cell_type": "markdown", - "id": "0e5662bb-c2e5-44a6-904a-526f9fc266cd", - "metadata": { - "jp-MarkdownHeadingCollapsed": true - }, - "source": [ - "### Analytical Solution" - ] - }, - { - "cell_type": "markdown", - "id": "a74428eb-ff56-4f7f-8c3f-7d11136394ce", - "metadata": {}, - "source": [ - "- VQE is a **numerical** optimization technique used to find the ground state energy of a quantum system.\n", - "- For simple systems, an **analytical** solution can be achieved by diagonalizing the Hamiltonian matrix.\n", - "\n", - "Diagonalization is possible when the Hamiltonian can be represented as a **finite-dimensional matrix** and the matrix is ״well-behaved״ (e.g., Hermitian and non-singular). \n", - "\n", - "In summary, for small systems or simple Hamiltonians, the eigenvalues and eigenvectors can be found exactly by diagonalizing the matrix. Let's show an example:" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "id": "aaa82b4f-3ae3-4d61-a337-e0485d3c346a", - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "\n", - "H = np.array([[1, -1], [-1, 0]])\n", - "\n", - "E , v = np.linalg.eig(H)\n", - "E_min = min(E)\n", - "\n", - "v_min = np.array(v[:,np.argmin(E)])" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "id": "886fccb5-ce0d-4594-b41f-b5b7a05cef4c", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The minimal energy energy is: -0.6180339887498948\n" - ] - } - ], - "source": [ - "print(\"The minimal energy energy is: \",E_min)" - ] - }, - { - "cell_type": "markdown", - "id": "e2a0f981-bfc5-4944-8c01-db1cc97a95f3", - "metadata": {}, - "source": [ - "**Looks like the VQE estimated the minimum energy well!**\n", - "\n", - "Let's have another small validation, this time for the analytical solution of the eigenvalue equation:" - ] - }, - { - "cell_type": "markdown", - "id": "acdcebda-6a15-4e83-93b1-013c8d4fcf31", - "metadata": {}, - "source": [ - "$$ \\hat{H} V_{min} = E_{min} \\cdot V_{min} \\rightarrow V_{min} = \\frac{\\hat{H} V_{min}}{E_{min}} $$" - ] - }, - { - "cell_type": "markdown", - "id": "39cae87a-5de6-4303-a90a-a3fa31e9f2e7", - "metadata": {}, - "source": [ - "**Let's validate this relation!**" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "id": "6f3107c1-7580-4682-9cdb-ebcb4fc45972", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([0.52573111, 0.85065081])" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "v_min" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "id": "fd646a18-cf0c-46af-918a-5e607e4e494b", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([0.52573111, 0.85065081])" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "(H @ v_min)/E_min " - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "id": "db74fb2c-6f55-4c4b-ad84-d23e97a211c7", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([False, False])" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "v_min == (H @ v_min)/E_min" - ] - }, - { - "cell_type": "markdown", - "id": "8351de9e-fcd2-48f8-a2b3-b7480e93009e", - "metadata": {}, - "source": [ - "**How could it be?**" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "id": "f3dc8319-9360-447c-b115-0fdc98e47cc0", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The eigenvalue equation is validated!\n" - ] - } - ], - "source": [ - "if np.allclose((H @ v_min)/E_min, v_min):\n", - " print(\"The eigenvalue equation is validated!\")\n", - "else:\n", - " print(\"The eigenvalue equation is not validated!\")" - ] - }, - { - "cell_type": "markdown", - "id": "054aa87b-8e2b-4abc-b68b-646321532e85", - "metadata": {}, - "source": [ - "(The \"`array([False, False])`\" was due to rounding errors)" - ] - }, - { - "cell_type": "markdown", - "id": "52d61c0b-a0f9-4f7c-88b6-f4333f1d0c2c", - "metadata": {}, - "source": [ - "## Exercise - Two Qubits VQE" - ] - }, - { - "cell_type": "markdown", - "id": "29e116c2-39f0-4cb4-81da-3828b353bfe6", - "metadata": {}, - "source": [ - "Now we will practice the implementation of a similar case to the last example, but this time for two qubits, following the Hamiltonian:\n", - "\n", - "\n", - "$H = \\frac{1}{2}I \\otimes I + \\frac{1}{2}Z \\otimes Z - X \\otimes X $\n", - "\n", - "Use the last example to implement and execute VQE for this Hamiltonian." - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "id": "4b3d4130-98f6-4c92-8266-5bebb4cfdcc8", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/518bc08d-8db8-4f62-819c-7153a22b7faf?version=0.41.1\n" - ] - } - ], - "source": [ - "HAMILTONIAN = QConstant(\"HAMILTONIAN\", List[PauliTerm], [...]) #TODO: Complete Hamiltonian\n", - "\n", - "\n", - "@qfunc\n", - "def main(...) -> None:\n", - " #TODO: Complete the function according to the instructions, choose simple ansatz.\n", - "\n", - "\n", - "@cfunc\n", - "def cmain() -> None:\n", - " res = vqe(\n", - " HAMILTONIAN,\n", - " False,\n", - " [],\n", - " optimizer=Optimizer.COBYLA,\n", - " max_iteration=1000,\n", - " tolerance=0.001,\n", - " step_size=0,\n", - " skip_compute_variance=False,\n", - " alpha_cvar=1.0,\n", - " )\n", - " save({\"result\": res})\n", - "\n", - "qmod = create_model(main, classical_execution_function=cmain)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "id": "b3ef1dab-4ee6-4f96-8e85-d5a8bbd091aa", - "metadata": {}, - "source": [ - "## H₂ Molecule Problem" - ] - }, - { - "cell_type": "markdown", - "id": "b8ad3059-7e43-4ae9-9b80-4c8c5da916ae", - "metadata": {}, - "source": [ - "Now we will dive into more applicative approche of using VQE with Classiq for modeling molcoules and finding thier ground state and energy.\n", - "\n", - "**Hamiltonian for $H_2$ Molecule**\n", - "\n", - "The physical Hamiltonian for the hydrogen molecule $H_2$ in the [Born-Oppenheimer approximation](https://en.wikipedia.org/wiki/Born%E2%80%93Oppenheimer_approximation) can be expressed as (atomic units):\n", - "\n", - "$$\n", - "\\hat{H} = - \\sum_{i=1}^{2} \\frac{\\nabla_i^2}{2} - \\frac{1}{|\\mathbf{r}_1 - \\mathbf{R}_A|} - \\frac{1}{|\\mathbf{r}_2 - \\mathbf{R}_A|} - \\frac{1}{|\\mathbf{r}_1 - \\mathbf{R}_B|} - \\frac{1}{|\\mathbf{r}_2 - \\mathbf{R}_B|} + \\frac{1}{|\\mathbf{r}_1 - \\mathbf{r}_2|} + \\frac{1}{|\\mathbf{R}_A - \\mathbf{R}_B|}\n", - "$$\n", - "\n", - "Where:\n", - "- $\\mathbf{r}_1$ and $\\mathbf{r}_2$ are the positions of the two electrons.\n", - "- $\\mathbf{R}_A$ and $\\mathbf{R}_B$ are the positions of the two protons (nuclei).\n", - "- The terms represent:\n", - " - The kinetic energy of the electrons: $- \\sum_{i=1}^{2} \\frac{\\nabla_i^2}{2}$\n", - " - The electron-nucleus attractions: $- \\frac{1}{|\\mathbf{r}_1 - \\mathbf{R}_A|} - \\frac{1}{|\\mathbf{r}_2 - \\mathbf{R}_A|} - \\frac{1}{|\\mathbf{r}_1 - \\mathbf{R}_B|} - \\frac{1}{|\\mathbf{r}_2 - \\mathbf{R}_B|}$\n", - " - The electron-electron repulsion: $\\frac{1}{|\\mathbf{r}_1 - \\mathbf{r}_2|}$\n", - " - The nucleus-nucleus repulsion: $\\frac{1}{|\\mathbf{R}_A - \\mathbf{R}_B|}$\n", - " \n", - "**How can we implement such a Hamiltonian on a quantum computer?**\n", - "\n", - "In the first step of this VQE process, we will need to use:\n", - "- **Jordan-Wigner Transformation**: To map the fermionic Hamiltonian to a qubit Hamiltonian.\n", - "- **Hartree-Fock Method**: To provide an initial guess for the wavefunction.\n", - "- **UCC Ansatz**: To construct the parameterized quantum circuit that will be optimized during the VQE process.\n" - ] - }, - { - "cell_type": "markdown", - "id": "9ec42e74-c057-4aff-a3f4-b8f41c97a0f1", - "metadata": { - "jp-MarkdownHeadingCollapsed": true - }, - "source": [ - "### Imports" - ] - }, - { - "cell_type": "code", - "execution_count": 48, - "id": "e8002d74-1dbf-4e9a-9e3c-0fd0a8d3d710", - "metadata": {}, - "outputs": [], - "source": [ - "from classiq import *\n", - "# from classiq import qfunc, create_model, molecule_ucc, synthesize, show, QBit, allocate, cfunc, execute, QConstant\n", - "from classiq.qmod.builtins import MoleculeProblem, Molecule, ChemistryAtom, Position\n", - "from classiq.qmod.builtins.classical_functions import molecule_problem_to_hamiltonian\n", - "from classiq.qmod.builtins.classical_execution_primitives import vqe, molecule_ground_state_solution_post_process, save\n", - "from classiq.interface.generator.expressions.enums.chemistry import Element, FermionMapping \n", - "from classiq.interface.generator.expressions.enums import Optimizer " - ] - }, - { - "cell_type": "markdown", - "id": "f966ab33-bfdd-4f2e-9e63-5cb5751e1797", - "metadata": {}, - "source": [ - "### implementation" - ] - }, - { - "cell_type": "markdown", - "id": "c6cbd8ef-19d3-40d6-97c0-8b2c22f226e3", - "metadata": {}, - "source": [ - "- We will define the `Molecule` structure, as well as the `MoleculeProblem` we are trying to solve.\n", - "\n", - "- **The built-in functions we will use here will generate the Hamiltonian and the parameterized circuit for us.**" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "id": "87f817b3-f03c-47ee-94c5-4ea0feaf6bfb", - "metadata": {}, - "outputs": [], - "source": [ - "molecule_H2 = Molecule(\n", - " spin=1,\n", - " charge=0,\n", - " atoms=[\n", - " ChemistryAtom(element=Element.H, position=Position(x=0.0, y=0.0, z=0)),\n", - " ChemistryAtom(element=Element.H, position=Position(x=0.0, y=0.0, z=0.735)), # Angstrom\n", - " ]\n", - ")\n", - "\n", - "\n", - "chemistry_problem = MoleculeProblem(\n", - " molecule=molecule_H2,\n", - " mapping=FermionMapping.JORDAN_WIGNER, #'BRAVYI_KITAEV'\n", - " z2_symmetries=False, # If `z2_symmetries=False`, 4 qubits need to be allocated in main\n", - " freeze_core=True,\n", - " remove_orbitals=[]\n", - ")\n", - "\n", - "molecule_problem = QConstant(\"molecule_problem\", MoleculeProblem, chemistry_problem)\n", - "\n", - "@qfunc\n", - "def main():\n", - " q = QArray(\"q\")\n", - " allocate(4,q) # allocate 4 qubits if `z2_symmetries=False`, else: allocate 1 qubit\n", - " molecule_hartree_fock(molecule_problem,q)\n", - " molecule_ucc(molecule_problem = molecule_problem,excitations=[1,2],qbv=q)\n", - "\n", - "\n", - "@cfunc\n", - "def cmain():\n", - " ham = molecule_problem_to_hamiltonian(molecule_problem)\n", - " vqe_result = vqe(\n", - " hamiltonian=(ham),\n", - " maximize=False,\n", - " initial_point=[],\n", - " optimizer=Optimizer.COBYLA, \n", - " max_iteration=100,\n", - " tolerance=0.001,\n", - " step_size=0,\n", - " skip_compute_variance=False,\n", - " alpha_cvar=1.0)\n", - " molecule_result = molecule_ground_state_solution_post_process(molecule_problem,vqe_result)\n", - " save({\"vqe_res\": vqe_result, \"ham\": ham, 'molecule_result': molecule_result}) \n" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "id": "25c49b37-cdab-4382-9bd8-1f2ceefe2b72", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/20721c4e-d449-4ee1-8aa4-7497ec8b20a5?version=0.41.1\n" - ] - } - ], - "source": [ - "qmod = create_model(main,classical_execution_function=cmain)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "id": "07067cd2-caec-4a83-9abb-06b12695d97f", - "metadata": {}, - "outputs": [], - "source": [ - "execution = execute(qprog)\n", - "res = execution.result()\n", - "execution.open_in_ide()" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "id": "3eac8218-ef81-4255-af2c-e2e9666c3197", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "list" - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "type(res)" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "id": "297dc43d-d95e-439e-8ec1-0eadf0bfda8c", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3" - ] - }, - "execution_count": 21, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "len(res)" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "id": "37051ac4-817d-4f0e-a112-c31618b4878d", - "metadata": {}, - "outputs": [], - "source": [ - "vqe_result = res[0].value \n", - "hamiltonian = res[1].value\n", - "total_energy = res[2].value['total_energy'] # nuclear_repulsion_energy + vqe_energy\n", - "nuclear_energy = res[2].value['nuclear_repulsion_energy']" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "id": "9efe5a16-4e9e-417e-80ab-7d88d8bf25c5", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Optimal energy: -1.857821819076969 Ha\n", - "Nuclear repulsion energy: 0.7199689944489797 Ha\n", - "Optimal parameters: {'param_0': -3.1874228460829723, 'param_1': 0.013694712771728136, 'param_2': 0.11708980402134109}\n", - "Eigenstate: {'0110': (0.038273277230987154+0j), '1010': (0.08838834764831845+0j), '0101': (0.9953505192895616+0j)}\n" - ] - } - ], - "source": [ - "print(f\"Optimal energy: {vqe_result.energy} Ha\") # vqe_energy WITHOUT nuclear_repulsion_energy\n", - "print(f\"Nuclear repulsion energy: {nuclear_energy} Ha\")\n", - "print(f\"Optimal parameters: {vqe_result.optimal_parameters}\")\n", - "print(f\"Eigenstate: {vqe_result.eigenstate}\")" - ] - }, - { - "cell_type": "code", - "execution_count": 56, - "id": "980c8ab0-88d4-43cf-84b9-7614b4087771", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[{'pauli': [0, 0, 0, 0], 'coefficient': -0.8105479805373275},\n", - " {'pauli': [0, 0, 0, 3], 'coefficient': 0.17218393261915557},\n", - " {'pauli': [0, 0, 3, 0], 'coefficient': -0.2257534922240239},\n", - " {'pauli': [0, 3, 0, 0], 'coefficient': 0.17218393261915554},\n", - " {'pauli': [3, 0, 0, 0], 'coefficient': -0.22575349222402397},\n", - " {'pauli': [0, 0, 3, 3], 'coefficient': 0.12091263261776627},\n", - " {'pauli': [0, 3, 0, 3], 'coefficient': 0.16892753870087907},\n", - " {'pauli': [2, 2, 2, 2], 'coefficient': 0.04523279994605784},\n", - " {'pauli': [1, 1, 2, 2], 'coefficient': 0.04523279994605784},\n", - " {'pauli': [2, 2, 1, 1], 'coefficient': 0.04523279994605784},\n", - " {'pauli': [1, 1, 1, 1], 'coefficient': 0.04523279994605784},\n", - " {'pauli': [3, 0, 0, 3], 'coefficient': 0.16614543256382414},\n", - " {'pauli': [0, 3, 3, 0], 'coefficient': 0.16614543256382414},\n", - " {'pauli': [3, 0, 3, 0], 'coefficient': 0.17464343068300445},\n", - " {'pauli': [3, 3, 0, 0], 'coefficient': 0.12091263261776627}]" - ] - }, - "execution_count": 56, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "hamiltonian # pauli:[0,1,2,3] == [I,X,Y,Z]" - ] - }, - { - "cell_type": "markdown", - "id": "4d868399-b5af-46ca-b2da-c0664ae1a827", - "metadata": {}, - "source": [ - "**Finally, the total energy of the hydrogen molecule is estimated as:**" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "id": "a8b7eba2-3be6-453f-a8f4-bfd3feba4d62", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The total energy is: -1.1378528246279895 Ha\n" - ] - } - ], - "source": [ - "print(f\"The total energy is: {total_energy} Ha\")" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "id": "e1a8f4ef-d837-4c57-9992-a907677b4ae4", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "True" - ] - }, - "execution_count": 27, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "total_energy == vqe_result.energy + nuclear_energy" - ] - }, - { - "cell_type": "markdown", - "id": "0d3d663a-2484-49ba-9400-852d8de141b7", - "metadata": {}, - "source": [ - "what is the value by theory?" - ] - }, - { - "cell_type": "markdown", - "id": "a3f881af-3293-454c-aee0-04d1f300c844", - "metadata": {}, - "source": [ - "**In the third homework assignment, you will compare and validate these results by using 2 qubits Hamiltonian!**" - ] - }, - { - "cell_type": "markdown", - "id": "63ad2936-5d73-4bd4-8f91-c62e4cc20f40", - "metadata": {}, - "source": [ - "## Read More" - ] - }, - { - "cell_type": "markdown", - "id": "ce12c5cd-6382-451a-a547-2f564bac546d", - "metadata": {}, - "source": [ - "\n", - "- [**VQE Method for Molecule Energy Solver**](https://docs.classiq.io/latest/explore/built_in_apps/chemistry/chemistry/#2-constructing-and-synthesizing-a-ground-state-solver)\n", - " - This link provides a detailed demonstration of how to use the `construct_chemistry_model` function, which constructs a VQE model for Molecule eigensolver.\n", - "\n", - "- [**Combinatorial Optimization using QAOA**](https://docs.classiq.io/latest/explore/applications/optimization/electric_grid_optimization/electric_grid_optimization/)\n", - " - This link covers the use of the Quantum Approximate Optimization Algorithm (QAOA) for combinatorial optimization problems, with a specific example on Electric Grid Optimization.\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "id": "0213aef6-bd41-4c0a-97e6-c5df3dfb13ab", - "metadata": {}, - "source": [ - "## Solution - Two Qubits VQE" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "1e12cba4-2e15-46a9-8d2f-852eaa5e135d", - "metadata": {}, - "outputs": [], - "source": [ - "HAMILTONIAN = QConstant(\"HAMILTONIAN\", List[PauliTerm], \n", - " [ \n", - " PauliTerm([Pauli.I, Pauli.I], 0.5),\n", - " PauliTerm([Pauli.Z, Pauli.Z], 0.5),\n", - " PauliTerm([Pauli.X, Pauli.X], -1)\n", - " ])\n", - "\n", - "\n", - "@qfunc\n", - "def main(q: Output[QArray[QBit]], angles: CArray[CReal, 3]) -> None:\n", - " allocate(2, q)\n", - " U(angles[0], angles[1], angles[2], 0, q[0])\n", - " U(angles[0], angles[1], angles[2], 0, q[1])\n", - "\n", - "\n", - "@cfunc\n", - "def cmain() -> None:\n", - " res = vqe(\n", - " HAMILTONIAN,\n", - " False,\n", - " [],\n", - " optimizer=Optimizer.COBYLA,\n", - " max_iteration=1000,\n", - " tolerance=0.001,\n", - " step_size=0,\n", - " skip_compute_variance=False,\n", - " alpha_cvar=1.0,\n", - " )\n", - " save({\"result\": res})\n", - "\n", - "qmod = create_model(main, classical_execution_function=cmain)\n", - "qprog = synthesize(qmod)\n", - "# show(qprog)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.8" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/community/QClass_2024/Submissions/HW1/Adrabi_Abderrahim_HW1_QClass2024.ipynb b/community/QClass_2024/Submissions/HW1/Adrabi_Abderrahim_HW1_QClass2024.ipynb deleted file mode 100644 index e70fb0df..00000000 --- a/community/QClass_2024/Submissions/HW1/Adrabi_Abderrahim_HW1_QClass2024.ipynb +++ /dev/null @@ -1,549 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "id": "view-in-github", - "colab_type": "text" - }, - "source": [ - "\"Open" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "A5UaTY6uX17I" - }, - "source": [ - "# The Qmod Workshop - Introduction\n", - "\n", - "The Classiq platform features a high-level quantum modeling language called Qmod. Qmod is compiled into concrete gate-level implementation using a powerful synthesis engine that optimizes and adapts the implementation to different target hardware/simulation environments.\n", - "\n", - "In this workshop, we will learn how to write quantum models using Qmod. We will be using the Python embedding of Qmod, available as part of the Classiq Python SDK. We will learn basic concepts in the Qmod language, such as functions, operators, quantum variables, and quantum types. We will develop useful building blocks and small algorithms.\n", - "\n", - "The [QMOD language reference](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/) covers these concepts more systematically and includes more examples.\n", - "\n", - "This workshop consists of step-by-step exercises. It is structured as follows:\n", - "\n", - "- Part 1: Language Fundamentals - Exercises 1-5\n", - "- Part 2: Higher-Level Concepts - Exercises 6-10\n", - "- Part 3: Execution Flows - Exercises 11, 12\n", - "\n", - "The introduction and Part 1 are included in this notebook. Part 2 and 3 are each in its own separate notebook. For each exercise you will find the solution to the exercises at the bottom of the same notebook.\n", - "\n", - "### Preparations\n", - "\n", - "Make sure you have a Python version of 3.8 through 3.11 installed. Unfortunately, Classiq is not yet supported with Python 3.12.\n", - "\n", - "Install Classiq’s Python SDK by following the instructions on this page: [Getting Started - Classiq](https://docs.classiq.io/latest/getting-started/).\n", - "\n", - "### Python Qmod Exercises - General Instructions\n", - "\n", - "In order to synthesize and execute your Qmod code, you should:\n", - "1. Make sure you define a `main` function that calls functions you create.\n", - "2. Use `create_model` by running `qmod = create_model(main)` to construct a representation of your model.\n", - "3. You can synthesize the model (using `qprog = synthesize(qmod)`) to obtain an implementation - a quantum program.\n", - "4. You can then visualize the quantum program (`show(qprog)`) or execute it (using `execute(qprog)`. See: [Execution - Classiq](https://docs.classiq.io/latest/user-guide/platform/executor/#full-example)). You can also execute it with the IDE after visualizing the circuit.\n" - ] - }, - { - "cell_type": "code", - "source": [ - "!pip install classiq -q\n" - ], - "metadata": { - "id": "3lOvygcaaxcs" - }, - "execution_count": 1, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "CbyA4CPTX17S" - }, - "source": [ - "### Exercise 0: From Model to Execution\n", - "\n", - "The following model defines a function that applies X and H gates on a single qubit, and subsequently calls it:" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "id": "3hwfKJcwX17T" - }, - "outputs": [], - "source": [ - "from classiq import *\n", - "\n", - "\n", - "# Define a quantum function using the @qfunc decorator\n", - "@qfunc\n", - "def foo(q: QBit) -> None:\n", - " X(target=q)\n", - " H(target=q)\n", - "\n", - "\n", - "# Define a main function\n", - "@qfunc\n", - "def main(res: Output[QBit]) -> None:\n", - " allocate(1, res)\n", - " foo(q=res)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "PQe097xGX17V" - }, - "source": [ - "Create a model from it, and synthesize, visualize, and execute it.\n", - "\n", - "Use the General Instructions above to do so.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "5DB2R-zpX17W", - "outputId": "671c1993-ec71-4132-de4f-025245dcae7c" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stderr", - "text": [ - "/usr/local/lib/python3.10/dist-packages/classiq/_internals/authentication/token_manager.py:96: UserWarning: Device is already registered.\n", - "Generating a new refresh token should only be done if the current refresh token is compromised.\n", - "To do so, set the overwrite parameter to true\n", - " warnings.warn(\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "authenticate()\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "JUz7NVwHX17W" - }, - "source": [ - "In Qmod `QBit` is the simplest quantum type, and in this example, `q` is a quantum variable of type `QBit`. Quantum variables abstract away the mapping of quantum objects to qubits in the actual circuit.\n", - "\n", - "See also [Quantum Variables](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/quantum-variables/).\n", - "\n", - "We will discuss other quantum types during the workshop.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "H6PIPNDYX17Y" - }, - "source": [ - "# The Qmod Workshop - Part 1: Language Fundamentals\n", - "\n", - "Follow exercises 1 through 5 for the first session of the workshop." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "fp87ynDWX17Y" - }, - "source": [ - "## Exercise 1 - Bell Pair\n", - "\n", - "Create a function that takes two single-qubit (`QBit`) quantum arguments and prepares the bell state on them ([Bell state](https://en.wikipedia.org/wiki/Bell_state)) by applying `H` on one variable and then using it as the control of a `CX` function with the second variable as the target.\n", - "Create a main function that uses this function and has two single-qubit outputs, initialize them to the |0> state (using the `allocate` function), and apply your function to them.\n", - "\n", - "See also [Functions](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/functions#syntax)\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "dH9Q2OBYX17Z" - }, - "outputs": [], - "source": [ - "from classiq import *\n", - "\n", - "@qfunc\n", - "def bell_pair(q1: QBit, q2: QBit) -> None:\n", - " H(target=q1)\n", - " CX(control=q1, target=q2)\n", - "\n", - "@qfunc\n", - "def main(q1: Output[QBit], q2: Output[QBit]) -> None:\n", - " allocate(1, q1)\n", - " allocate(1, q2)\n", - " bell_pair(q1, q2)\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "6tmahGgDX17a" - }, - "source": [ - "Use qubit array subscript (the syntax - _variable_ **[** _index-expression_ **]**) to change the function from subsection 1 to receive a single quantum variable, a qubit array (`QArray`) of size 2.\n", - "Change your main function to declare a single output (also an array of size 2).\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "xnpluoDGX17b" - }, - "outputs": [], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def bell_pair(q: QArray[QBit]) -> None:\n", - " H(target=q[0])\n", - " CX(control=q[0], target=q[1])\n", - "\n", - "@qfunc\n", - "def main(q: Output[QArray[QBit]]) -> None:\n", - " allocate(2, q)\n", - " bell_pair(q)\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "SgkMLf_QX17c" - }, - "source": [ - "## Exercise 2 - Repeat\n", - "\n", - "Use the built-in `repeat` operator to create your own Hadamard transform function (call it `my_hadamard_transform`). The Hadamard transform function is a function that takes as argument a qubit array of an unspecified size and applies `H` to each of its qubit.\n", - "\n", - "See also [Classical repeat](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/classical-control-flow/#classical-repeat).\n", - "\n", - "Set your main function to have a quantum array output of unspecified size, allocate 10 qubits, and then apply your Hadamard transform function.\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "5aoM-B_yX17e" - }, - "outputs": [], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "def my_hadamard_transform(qubits: QArray[QBit]) -> None:\n", - " repeat(qubits.len, lambda i: H(target=qubits[i]))\n", - "\n", - "@qfunc\n", - "def main(q: Output[QArray[QBit]]) -> None:\n", - " allocate(10, q)\n", - " my_hadamard_transform(q)\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "N4gV1zb3X17f" - }, - "source": [ - "### Note: Quantum Variable Capture\n", - "The `repeat` operator invokes a statement block multiple times. The statement block is specified using a Python callable, typically a lambda expression. Inside the block you can refer to variables declared in the outer function scope.\n", - "This concept is called `quantum variable capture`, equivalent to [capture](https://en.wikipedia.org/wiki/Closure_(computer_programming)) in classical languages.\n", - "\n", - "See also [Capturing context variables and parameters](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/operators/#capturing-context-variables-and-parameters)." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "wbjYA8l5X17g" - }, - "source": [ - "### Exercise 3 - Power\n", - "Raising a quantum operation to a power appears in many known algorithms, for examples, in Grover search and Quantum Phase Estimation.\n", - "For most operations, it simply means repeating the same circuit multiple times.\n", - "\n", - "Sometimes, however, power can be simplified, thus saving computational resources.\n", - "The most trivial example is a quantum operation expressed as a single explicit unitary matrix (i.e., all n*n matrix terms are given) - raising the operation can be done by raising the matrix to that power via classical programming.\n", - "\n", - "See also [Power operator](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/quantum-operators/#syntax).\n", - "\n", - "Use the following code to generate a 2-qubit (real) unitary matrix:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "DIK2uNZ-X17h" - }, - "outputs": [], - "source": [ - "from typing import List\n", - "\n", - "import numpy as np\n", - "\n", - "from classiq import *\n", - "\n", - "rng = np.random.default_rng(seed=0)\n", - "random_matrix = rng.random((4, 4))\n", - "qr_unitary, _ = np.linalg.qr(random_matrix)\n", - "\n", - "unitary_matrix = QConstant(\"unitary_matrix\", List[List[float]], qr_unitary.tolist())" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "ca-iHEpSX17i" - }, - "source": [ - "In order to reuse some classical value we can define a `QConstant` to store that value.\n", - "\n", - "1. Create a model that applies `unitary_matrix` on a 2 qubit variable.\n", - "2. Create another model that applies `unitary_matrix` raised to power 3 on a 2 qubit variable.\n", - "3. Compare the gate count via the Classiq’s IDE in both cases.\n", - "\n", - "Note - the signature of function `unitary` is:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "v1a_DiE3X17j" - }, - "outputs": [], - "source": [ - "#def unitary(\n", - "# elements: CArray[CArray[CReal]],\n", - "# target: QArray[QBit],\n", - "#) -> None:\n", - "# pass" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "y1IX9X87X17k" - }, - "outputs": [], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def punitary(q: QArray[QBit]) -> None:\n", - " power(3, lambda :unitary(unitary_matrix, q))\n", - "\n", - "@qfunc\n", - "def main(q: Output[QArray[QBit]]) -> None:\n", - " allocate(2, q)\n", - " punitary(q)\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "e5JECuEYX17l" - }, - "source": [ - "## Exercise 4 - User-defined Operators\n", - "Create a function that applies a given single-qubit operation to all qubits in its quantum argument (Call your function `my_apply_to_all`). Such a function is also called an operator, i.e. a function that one of its arguments is another function (its operand).\n", - "\n", - "See also [Operators](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/operators/).\n", - "\n", - "Follow these guidelines:\n", - "1. Your function should declare a quantum argument of type qubit array. It should also declare an argument of a function type with a single qubit argument.\n", - "2. The body should apply the operand to all qubits in the argument.\n", - "\n", - "When you're done, re-implement `my_hadamard_transform` from exercise 2 using this function instead of `repeat`.\n", - "Use the same main function from exercise 2." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "Vm8Nyfe_X17l" - }, - "outputs": [], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def my_apply_to_all(op: QCallable[QBit], q: QArray[QBit]) -> None:\n", - " repeat(q.len, lambda i: op(q[i]))\n", - "\n", - "def my_hadamard_transform(qubits: QArray[QBit]) -> None:\n", - " my_apply_to_all(H, qubits)\n", - "\n", - "@qfunc\n", - "def main(q: Output[QArray[QBit]]) -> None:\n", - " allocate(10, q)\n", - " my_hadamard_transform(q)\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "0JbdST5XX17n" - }, - "source": [ - "# Exercise 5 - Quantum Conditionals\n", - "\n", - "### Exercise 5a - Control Operator\n", - "Use the built-in `control` operator to create a function that receives two single qubit variables and uses one of the variables to control an RY gate with a `pi/2` angle acting on the other variable (without using the `CRY` function).\n", - "\n", - "See also [Quantum operators](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/quantum-operators/#syntax).\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "_pu3mGjSX17n" - }, - "outputs": [], - "source": [ - "from classiq import *\n", - "import numpy as np\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def ry_control(control_bit: QBit, target: QBit) -> None:\n", - " control(control_bit, lambda: RY(np.pi/2, target=target))\n", - "\n", - "@qfunc\n", - "def main(control_bit: Output[QBit], target: Output[QBit]) -> None:\n", - " allocate(1, control_bit)\n", - " allocate(1, target)\n", - " ry_control(control_bit, target)\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "i_eTlLHcX17o" - }, - "source": [ - "### Exercise 5b - Control (\"Quantum If\")\n", - "The `control` operator is the conditional application of some operation, with the condition being that all control qubits are in the state |1>. This notion is generalized in QMOD to other control states, where the condition is specified as a comparison between a quantum numeric variable and a numeric value, similar to a classical `if` statement. Quantum numeric variables are declared with class `QNum`.\n", - "\n", - "See also [Numeric types](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/quantum-types/#syntax).\n", - "\n", - "In QMOD this generalization is available as a native statement - control.\n", - "\n", - "See also [control](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/quantum-operators/).\n", - "\n", - "1. Declare a `QNum` output argument using `Output[QNum]` and name it `x`.\n", - "2. Use the `prepare_int` function to initialize it to `9`. Note that you don't need to specify the `QNum` attributes - size, sign, and fraction digits, as they are inferred at the point of initialization.\n", - "3. Execute the circuit and observe the results.\n", - "4. Declare another output argument of type `QBit` and perform a `control` such that under the condition that `x` is 9, the qubit is flipped. Execute the circuit and observe the results. Repeat for a different condition." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "8aTWDeQ2X17p" - }, - "outputs": [], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def main(x: Output[QNum], q: Output[QBit]) -> None:\n", - " prepare_int(9, x)\n", - " allocate(1, q)\n", - " control(x == 9, lambda: X(q))\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "source": [], - "metadata": { - "id": "OzaHP7gMOQMZ" - }, - "execution_count": null, - "outputs": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.8" - }, - "colab": { - "provenance": [], - "include_colab_link": true - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} \ No newline at end of file diff --git a/community/QClass_2024/Submissions/HW1/Amon_Koike_HW1_QClass2024.ipynb b/community/QClass_2024/Submissions/HW1/Amon_Koike_HW1_QClass2024.ipynb deleted file mode 100644 index 9fb32ec7..00000000 --- a/community/QClass_2024/Submissions/HW1/Amon_Koike_HW1_QClass2024.ipynb +++ /dev/null @@ -1,561 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# The Qmod Workshop - Introduction\n", - "\n", - "The Classiq platform features a high-level quantum modeling language called Qmod. Qmod is compiled into concrete gate-level implementation using a powerful synthesis engine that optimizes and adapts the implementation to different target hardware/simulation environments.\n", - "\n", - "In this workshop, we will learn how to write quantum models using Qmod. We will be using the Python embedding of Qmod, available as part of the Classiq Python SDK. We will learn basic concepts in the Qmod language, such as functions, operators, quantum variables, and quantum types. We will develop useful building blocks and small algorithms.\n", - "\n", - "The [QMOD language reference](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/) covers these concepts more systematically and includes more examples.\n", - "\n", - "This workshop consists of step-by-step exercises. It is structured as follows:\n", - "\n", - "- Part 1: Language Fundamentals - Exercises 1-5\n", - "- Part 2: Higher-Level Concepts - Exercises 6-10\n", - "- Part 3: Execution Flows - Exercises 11, 12\n", - "\n", - "The introduction and Part 1 are included in this notebook. Part 2 and 3 are each in its own separate notebook. For each exercise you will find the solution to the exercises at the bottom of the same notebook.\n", - "\n", - "### Preparations\n", - "\n", - "Make sure you have a Python version of 3.8 through 3.11 installed. Unfortunately, Classiq is not yet supported with Python 3.12.\n", - "\n", - "Install Classiq’s Python SDK by following the instructions on this page: [Getting Started - Classiq](https://docs.classiq.io/latest/getting-started/).\n", - "\n", - "### Python Qmod Exercises - General Instructions\n", - "\n", - "In order to synthesize and execute your Qmod code, you should:\n", - "1. Make sure you define a `main` function that calls functions you create.\n", - "2. Use `create_model` by running `qmod = create_model(main)` to construct a representation of your model.\n", - "3. You can synthesize the model (using `qprog = synthesize(qmod)`) to obtain an implementation - a quantum program.\n", - "4. You can then visualize the quantum program (`show(qprog)`) or execute it (using `execute(qprog)`. See: [Execution - Classiq](https://docs.classiq.io/latest/user-guide/platform/executor/#full-example)). You can also execute it with the IDE after visualizing the circuit.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 0: From Model to Execution\n", - "\n", - "The following model defines a function that applies X and H gates on a single qubit, and subsequently calls it:" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "from classiq import *\n", - "\n", - "\n", - "# Define a quantum function using the @qfunc decorator\n", - "@qfunc\n", - "def foo(q: QBit) -> None:\n", - " X(target=q)\n", - " H(target=q)\n", - "\n", - "\n", - "# Define a main function\n", - "@qfunc\n", - "def main(res: Output[QBit]) -> None:\n", - " allocate(1, res)\n", - " foo(q=res)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Create a model from it, and synthesize, visualize, and execute it.\n", - "\n", - "Use the General Instructions above to do so.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/37637729-76c0-4416-ba08-f31362be6ad1?version=0.42.1\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "quantum_model = create_model(main)\n", - "quantum_program = synthesize(quantum_model)\n", - "show(quantum_program)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In Qmod `QBit` is the simplest quantum type, and in this example, `q` is a quantum variable of type `QBit`. Quantum variables abstract away the mapping of quantum objects to qubits in the actual circuit.\n", - "\n", - "See also [Quantum Variables](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/quantum-variables/).\n", - "\n", - "We will discuss other quantum types during the workshop.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# The Qmod Workshop - Part 1: Language Fundamentals\n", - "\n", - "Follow exercises 1 through 5 for the first session of the workshop." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exercise 1 - Bell Pair\n", - "\n", - "Create a function that takes two single-qubit (`QBit`) quantum arguments and prepares the bell state on them ([Bell state](https://en.wikipedia.org/wiki/Bell_state)) by applying `H` on one variable and then using it as the control of a `CX` function with the second variable as the target.\n", - "Create a main function that uses this function and has two single-qubit outputs, initialize them to the |0> state (using the `allocate` function), and apply your function to them.\n", - "\n", - "See also [Functions](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/functions#syntax)\n" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/872f0108-4b2c-4109-98de-1b20df112537?version=0.42.1\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def create_bell_pair(q0: QBit, q1: QBit):\n", - " H(q0) # Apply the Hadamard gate to q0\n", - " CX(q0, q1) # Apply the CNOT gate with q0 as control and q1 as target\n", - " \n", - "@qfunc\n", - "def main(q0: Output[QBit],q1: Output[QBit]):\n", - " allocate(1, q0) # 量子ビットq0を初期化\n", - " allocate(1, q1) # 量子ビットq1を初期化\n", - " create_bell_pair(q0, q1) # Create the Bell pair using the defined function\n", - " \n", - "\n", - "# メイン関数\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Use qubit array subscript (the syntax - _variable_ **[** _index-expression_ **]**) to change the function from subsection 1 to receive a single quantum variable, a qubit array (`QArray`) of size 2.\n", - "Change your main function to declare a single output (also an array of size 2).\n" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/f027ebbc-ad17-4341-81f7-a3ba9b892af9?version=0.42.1\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "# Bell状態を生成する関数を定義\n", - "@qfunc\n", - "def create_bell_pair(q: QArray[QBit]):\n", - " H(q[0]) # q[0]にアダマールゲートを適用\n", - " CX(q[0], q[1]) # q[0]を制御ビット、q[1]をターゲットビットとしてCNOTゲートを適用\n", - "\n", - "# メイン関数を定義\n", - "@qfunc\n", - "def main(q: Output[QArray]):\n", - " allocate(2,q)\n", - " create_bell_pair(q) # Bell状態を生成\n", - " \n", - " \n", - " \n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exercise 2 - Repeat\n", - "\n", - "Use the built-in `repeat` operator to create your own Hadamard transform function (call it `my_hadamard_transform`). The Hadamard transform function is a function that takes as argument a qubit array of an unspecified size and applies `H` to each of its qubit.\n", - "\n", - "See also [Classical repeat](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/classical-control-flow/#classical-repeat).\n", - "\n", - "Set your main function to have a quantum array output of unspecified size, allocate 10 qubits, and then apply your Hadamard transform function.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/0177805c-2140-4d5e-b99a-a9596942d9c3?version=0.42.1\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "\n", - "@qfunc\n", - "def my_hadamard_transform(qubits: QArray[QBit]):\n", - " repeat(qubits.len, lambda i: H(qubits[i]))\n", - " \n", - "@qfunc\n", - "def main(qubits: Output[QNum]):\n", - " num_qubits = 10\n", - " allocate(num_qubits,qubits)\n", - " my_hadamard_transform(qubits)\n", - " \n", - " \n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Note: Quantum Variable Capture\n", - "The `repeat` operator invokes a statement block multiple times. The statement block is specified using a Python callable, typically a lambda expression. Inside the block you can refer to variables declared in the outer function scope.\n", - "This concept is called `quantum variable capture`, equivalent to [capture](https://en.wikipedia.org/wiki/Closure_(computer_programming)) in classical languages.\n", - "\n", - "See also [Capturing context variables and parameters](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/operators/#capturing-context-variables-and-parameters)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 3 - Power\n", - "Raising a quantum operation to a power appears in many known algorithms, for examples, in Grover search and Quantum Phase Estimation.\n", - "For most operations, it simply means repeating the same circuit multiple times.\n", - "\n", - "Sometimes, however, power can be simplified, thus saving computational resources.\n", - "The most trivial example is a quantum operation expressed as a single explicit unitary matrix (i.e., all n*n matrix terms are given) - raising the operation can be done by raising the matrix to that power via classical programming.\n", - "\n", - "See also [Power operator](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/quantum-operators/#syntax).\n", - "\n", - "Use the following code to generate a 2-qubit (real) unitary matrix:" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "from typing import List\n", - "\n", - "import numpy as np\n", - "\n", - "from classiq import *\n", - "\n", - "rng = np.random.default_rng(seed=0)\n", - "random_matrix = rng.random((4, 4))\n", - "qr_unitary, _ = np.linalg.qr(random_matrix)\n", - "\n", - "unitary_matrix = QConstant(\"unitary_matrix\", List[List[float]], qr_unitary.tolist())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In order to reuse some classical value we can define a `QConstant` to store that value.\n", - "\n", - "1. Create a model that applies `unitary_matrix` on a 2 qubit variable.\n", - "2. Create another model that applies `unitary_matrix` raised to power 3 on a 2 qubit variable.\n", - "3. Compare the gate count via the Classiq’s IDE in both cases.\n", - "\n", - "Note - the signature of function `unitary` is:" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "def unitary(\n", - " elements: CArray[CArray[CReal]],\n", - " target: QArray[QBit],\n", - ") -> None:\n", - " pass" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/f2f26859-1f4f-47e4-a6fa-efd87a784966?version=0.42.1\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "# Your code here:\n", - "# ユニタリ行列の3乗を計算\n", - "unitary_matrix_cubed = np.linalg.matrix_power(qr_unitary, 3)\n", - "unitary_matrix_cubed_constant = QConstant(\"unitary_matrix_cubed\", List[List[float]], unitary_matrix_cubed.tolist())\n", - "\n", - "# モデルを作成する関数の定義\n", - "@qfunc\n", - "def main(qubits0: Output[QNum],qubits1: Output[QNum]):\n", - " num_qubits = 2\n", - " allocate(num_qubits,qubits0) # 2量子ビット変数を定義\n", - " allocate(num_qubits,qubits1) # 2量子ビット変数を定義\n", - " # ユニタリ行列を適用\n", - " unitary(unitary_matrix, qubits0)\n", - "\n", - " unitary(unitary_matrix_cubed_constant, qubits1)\n", - "\n", - " \n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exercise 4 - User-defined Operators\n", - "Create a function that applies a given single-qubit operation to all qubits in its quantum argument (Call your function `my_apply_to_all`). Such a function is also called an operator, i.e. a function that one of its arguments is another function (its operand).\n", - "\n", - "See also [Operators](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/operators/).\n", - "\n", - "Follow these guidelines:\n", - "1. Your function should declare a quantum argument of type qubit array. It should also declare an argument of a function type with a single qubit argument.\n", - "2. The body should apply the operand to all qubits in the argument.\n", - "\n", - "When you're done, re-implement `my_hadamard_transform` from exercise 2 using this function instead of `repeat`.\n", - "Use the same main function from exercise 2." - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/2a08e6f2-8f6d-4e83-9bf0-709d93c87d04?version=0.42.1\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "# Define the function to apply a single-qubit operation to all qubits\n", - "@qfunc\n", - "def my_apply_to_all(qubits: QArray[QBit]):\n", - " apply_to_all(H, qubits)\n", - "\n", - "# Re-implement my_hadamard_transform using my_apply_to_all\n", - "@qfunc\n", - "def my_hadamard_transform(qubits: QArray[QBit]):\n", - " my_apply_to_all(qubits)\n", - "\n", - "@qfunc\n", - "def main(qubits: Output[QNum]):\n", - " num_qubits = 10\n", - " allocate(num_qubits,qubits)\n", - " my_hadamard_transform(qubits)\n", - "\n", - "# Create and synthesize the model\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Exercise 5 - Quantum Conditionals\n", - "\n", - "### Exercise 5a - Control Operator\n", - "Use the built-in `control` operator to create a function that receives two single qubit variables and uses one of the variables to control an RY gate with a `pi/2` angle acting on the other variable (without using the `CRY` function).\n", - "\n", - "See also [Quantum operators](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/quantum-operators/#syntax).\n" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/b481b27f-dff7-45f4-8a36-2c25ba474b8b?version=0.42.1\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "from classiq.qmod.symbolic import pi\n", - "\n", - "\n", - "# メイン関数を定義\n", - "@qfunc\n", - "def main(target: Output[QBit]):\n", - " # 2つのシングルキュービット変数を作成\n", - " num_qubits = 1\n", - " qba = QArray(\"qba\")\n", - " allocate(num_qubits, qba)\n", - " allocate(num_qubits,target) # 2量子ビット変数を定義\n", - "\n", - " # qubits0をコントロールキュービットとして、qubits1にRYゲートを適用\n", - " control(qba, lambda: RY(pi / 2, target))\n", - "\n", - " \n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 5b - Control (\"Quantum If\")\n", - "The `control` operator is the conditional application of some operation, with the condition being that all control qubits are in the state |1>. This notion is generalized in QMOD to other control states, where the condition is specified as a comparison between a quantum numeric variable and a numeric value, similar to a classical `if` statement. Quantum numeric variables are declared with class `QNum`.\n", - "\n", - "See also [Numeric types](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/quantum-types/#syntax).\n", - "\n", - "In QMOD this generalization is available as a native statement - control.\n", - "\n", - "See also [control](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/quantum-operators/).\n", - "\n", - "1. Declare a `QNum` output argument using `Output[QNum]` and name it `x`.\n", - "2. Use the `prepare_int` function to initialize it to `9`. Note that you don't need to specify the `QNum` attributes - size, sign, and fraction digits, as they are inferred at the point of initialization.\n", - "3. Execute the circuit and observe the results.\n", - "4. Declare another output argument of type `QBit` and perform a `control` such that under the condition that `x` is 9, the qubit is flipped. Execute the circuit and observe the results. Repeat for a different condition." - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/ff850d78-941b-43f8-b431-d8ccc3a92b71?version=0.42.1\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def main(x: Output[QNum])-> None:\n", - " # 2つのシングルキュービット変数を作成\n", - " \n", - " prepare_int(9, x)\n", - " \n", - " \n", - " # QBit型の出力変数qを宣言\n", - " qbit = Output[QNum](\"qbit\")\n", - " allocate(1,qbit)\n", - " # xが9である条件の下でqbitを反転させる\n", - " control(ctrl= x == 9, operand=lambda: X(qbit))\n", - " \n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.9" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/community/QClass_2024/Submissions/HW1/Aniekan_Afangideh_HW1_QClass2024.ipynb b/community/QClass_2024/Submissions/HW1/Aniekan_Afangideh_HW1_QClass2024.ipynb deleted file mode 100644 index 48bac6a8..00000000 --- a/community/QClass_2024/Submissions/HW1/Aniekan_Afangideh_HW1_QClass2024.ipynb +++ /dev/null @@ -1,567 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# The Qmod Workshop - Introduction\n", - "\n", - "The Classiq platform features a high-level quantum modeling language called Qmod. Qmod is compiled into concrete gate-level implementation using a powerful synthesis engine that optimizes and adapts the implementation to different target hardware/simulation environments.\n", - "\n", - "In this workshop, we will learn how to write quantum models using Qmod. We will be using the Python embedding of Qmod, available as part of the Classiq Python SDK. We will learn basic concepts in the Qmod language, such as functions, operators, quantum variables, and quantum types. We will develop useful building blocks and small algorithms.\n", - "\n", - "The [QMOD language reference](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/) covers these concepts more systematically and includes more examples.\n", - "\n", - "This workshop consists of step-by-step exercises. It is structured as follows:\n", - "\n", - "- Part 1: Language Fundamentals - Exercises 1-5\n", - "- Part 2: Higher-Level Concepts - Exercises 6-10\n", - "- Part 3: Execution Flows - Exercises 11, 12\n", - "\n", - "The introduction and Part 1 are included in this notebook. Part 2 and 3 are each in its own separate notebook. For each exercise you will find the solution to the exercises at the bottom of the same notebook.\n", - "\n", - "### Preparations\n", - "\n", - "Make sure you have a Python version of 3.8 through 3.11 installed. Unfortunately, Classiq is not yet supported with Python 3.12.\n", - "\n", - "Install Classiq’s Python SDK by following the instructions on this page: [Getting Started - Classiq](https://docs.classiq.io/latest/getting-started/).\n", - "\n", - "### Python Qmod Exercises - General Instructions\n", - "\n", - "In order to synthesize and execute your Qmod code, you should:\n", - "1. Make sure you define a `main` function that calls functions you create.\n", - "2. Use `create_model` by running `qmod = create_model(main)` to construct a representation of your model.\n", - "3. You can synthesize the model (using `qprog = synthesize(qmod)`) to obtain an implementation - a quantum program.\n", - "4. You can then visualize the quantum program (`show(qprog)`) or execute it (using `execute(qprog)`. See: [Execution - Classiq](https://docs.classiq.io/latest/user-guide/platform/executor/#full-example)). You can also execute it with the IDE after visualizing the circuit.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 0: From Model to Execution\n", - "\n", - "The following model defines a function that applies X and H gates on a single qubit, and subsequently calls it:" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "from classiq import *\n", - "\n", - "\n", - "# Define a quantum function using the @qfunc decorator\n", - "@qfunc\n", - "def foo(q: QBit) -> None:\n", - " X(target=q)\n", - " H(target=q)\n", - "\n", - "\n", - "# Define a main function\n", - "@qfunc\n", - "def main(res: Output[QBit]) -> None:\n", - " allocate(1, res)\n", - " foo(q=res)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Create a model from it, and synthesize, visualize, and execute it.\n", - "\n", - "Use the General Instructions above to do so.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/0217ea7a-3f50-4498-b139-ab68ff8a1101?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "quantum_model = create_model(main)\n", - "quantum_program = synthesize(quantum_model)\n", - "show(quantum_program)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In Qmod `QBit` is the simplest quantum type, and in this example, `q` is a quantum variable of type `QBit`. Quantum variables abstract away the mapping of quantum objects to qubits in the actual circuit.\n", - "\n", - "See also [Quantum Variables](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/quantum-variables/).\n", - "\n", - "We will discuss other quantum types during the workshop.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# The Qmod Workshop - Part 1: Language Fundamentals\n", - "\n", - "Follow exercises 1 through 5 for the first session of the workshop." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exercise 1 - Bell Pair\n", - "\n", - "Create a function that takes two single-qubit (`QBit`) quantum arguments and prepares the bell state on them ([Bell state](https://en.wikipedia.org/wiki/Bell_state)) by applying `H` on one variable and then using it as the control of a `CX` function with the second variable as the target.\n", - "Create a main function that uses this function and has two single-qubit outputs, initialize them to the |0> state (using the `allocate` function), and apply your function to them.\n", - "\n", - "See also [Functions](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/functions#syntax)\n" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/f0770ecf-0463-46f4-b97b-3c7326ff1aad?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def my_function(x:QBit, y:QBit):\n", - " H(x)\n", - " CX(x, y)\n", - "\n", - "@qfunc\n", - "def main(x: Output[QBit], y: Output[QBit]):\n", - " allocate(1,x)\n", - " allocate(1,y)\n", - " my_function(x,y)\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Use qubit array subscript (the syntax - _variable_ **[** _index-expression_ **]**) to change the function from subsection 1 to receive a single quantum variable, a qubit array (`QArray`) of size 2.\n", - "Change your main function to declare a single output (also an array of size 2).\n" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/eff4d409-98f8-4608-b2c5-1e84d91d2427?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def my_function(reg: QArray[QBit]):\n", - " H(reg[0])\n", - " CX(reg[0], reg[1])\n", - "\n", - "@qfunc\n", - "def main(reg: Output[QArray]):\n", - " allocate(2,reg)\n", - " my_function(reg)\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exercise 2 - Repeat\n", - "\n", - "Use the built-in `repeat` operator to create your own Hadamard transform function (call it `my_hadamard_transform`). The Hadamard transform function is a function that takes as argument a qubit array of an unspecified size and applies `H` to each of its qubit.\n", - "\n", - "See also [Classical repeat](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/classical-control-flow/#classical-repeat).\n", - "\n", - "Set your main function to have a quantum array output of unspecified size, allocate 10 qubits, and then apply your Hadamard transform function.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/00c3f76a-8570-44d9-ac1d-e8d745c0da98?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def my_hadamard_transform(reg: QArray[QBit]):\n", - " repeat(reg.len, lambda i: H(reg[i]))\n", - "\n", - "@qfunc\n", - "def main(reg: Output[QArray]):\n", - " allocate(10, reg)\n", - " my_hadamard_transform(reg)\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Note: Quantum Variable Capture\n", - "The `repeat` operator invokes a statement block multiple times. The statement block is specified using a Python callable, typically a lambda expression. Inside the block you can refer to variables declared in the outer function scope.\n", - "This concept is called `quantum variable capture`, equivalent to [capture](https://en.wikipedia.org/wiki/Closure_(computer_programming)) in classical languages.\n", - "\n", - "See also [Capturing context variables and parameters](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/operators/#capturing-context-variables-and-parameters)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 3 - Power\n", - "Raising a quantum operation to a power appears in many known algorithms, for examples, in Grover search and Quantum Phase Estimation.\n", - "For most operations, it simply means repeating the same circuit multiple times.\n", - "\n", - "Sometimes, however, power can be simplified, thus saving computational resources.\n", - "The most trivial example is a quantum operation expressed as a single explicit unitary matrix (i.e., all n*n matrix terms are given) - raising the operation can be done by raising the matrix to that power via classical programming.\n", - "\n", - "See also [Power operator](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/quantum-operators/#syntax).\n", - "\n", - "Use the following code to generate a 2-qubit (real) unitary matrix:" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [], - "source": [ - "from typing import List\n", - "\n", - "import numpy as np\n", - "\n", - "from classiq import *\n", - "\n", - "rng = np.random.default_rng(seed=0)\n", - "random_matrix = rng.random((4, 4))\n", - "qr_unitary, _ = np.linalg.qr(random_matrix)\n", - "\n", - "unitary_matrix = QConstant(\"unitary_matrix\", List[List[float]], qr_unitary.tolist())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In order to reuse some classical value we can define a `QConstant` to store that value.\n", - "\n", - "1. Create a model that applies `unitary_matrix` on a 2 qubit variable.\n", - "2. Create another model that applies `unitary_matrix` raised to power 3 on a 2 qubit variable.\n", - "3. Compare the gate count via the Classiq’s IDE in both cases.\n", - "\n", - "Note - the signature of function `unitary` is:" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [], - "source": [ - "def unitary(\n", - " elements: CArray[CArray[CReal]],\n", - " target: QArray[QBit],\n", - ") -> None:\n", - " pass" - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/3b242d63-67db-4482-aec6-a3761f48a70f?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def unitary1(elements: QArray[QBit]):\n", - " apply_to_all(X, elements)\n", - "\n", - "@qfunc\n", - "def main(reg: Output[QArray]):\n", - " allocate(2,reg)\n", - " unitary1(reg)\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)\n", - "\n", - "## Has a gate count of 2" - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/03db2ec5-3f57-48cc-9d61-06184d25a9c8?version=0.41.2\n" - ] - } - ], - "source": [ - "@qfunc\n", - "def main(reg: Output[QArray]):\n", - " allocate(2,reg)\n", - " unitary1(reg)\n", - " unitary1(reg)\n", - " unitary1(reg)\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)\n", - "\n", - "## Has a gate count of 6 " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exercise 4 - User-defined Operators\n", - "Create a function that applies a given single-qubit operation to all qubits in its quantum argument (Call your function `my_apply_to_all`). Such a function is also called an operator, i.e. a function that one of its arguments is another function (its operand).\n", - "\n", - "See also [Operators](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/operators/).\n", - "\n", - "Follow these guidelines:\n", - "1. Your function should declare a quantum argument of type qubit array. It should also declare an argument of a function type with a single qubit argument.\n", - "2. The body should apply the operand to all qubits in the argument.\n", - "\n", - "When you're done, re-implement `my_hadamard_transform` from exercise 2 using this function instead of `repeat`.\n", - "Use the same main function from exercise 2." - ] - }, - { - "cell_type": "code", - "execution_count": 58, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/d7e0654e-273e-4193-ac8a-f274b276e360?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def my_apply_to_all(my_operand: QCallable[QBit], q: QArray[QBit]):\n", - " #apply_to_all(H, q)\n", - " repeat(q.len, lambda i: H(q[i]))\n", - "\n", - "def my_operand(q: QBit):\n", - " H(q)\n", - " \n", - "@qfunc\n", - "def main(reg: Output[QArray]):\n", - " allocate(10, reg)\n", - " my_apply_to_all(my_operand, reg)\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Exercise 5 - Quantum Conditionals\n", - "\n", - "### Exercise 5a - Control Operator\n", - "Use the built-in `control` operator to create a function that receives two single qubit variables and uses one of the variables to control an RY gate with a `pi/2` angle acting on the other variable (without using the `CRY` function).\n", - "\n", - "See also [Quantum operators](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/quantum-operators/#syntax).\n" - ] - }, - { - "cell_type": "code", - "execution_count": 64, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/78ab17bf-8e0f-4a02-b280-b6f237c1cbaf?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "from math import pi\n", - "# Your code here:\n", - "@qfunc\n", - "def my(my_operand: QCallable[CReal, QBit], target: QBit):\n", - " H(target)\n", - " my_operand(pi / 2, target)\n", - " \n", - "def my_operand(angle: CReal, target: QBit) -> None:\n", - " RY(angle, target)\n", - "\n", - "@qfunc\n", - "def main(r:Output[QBit]) -> None:\n", - " #q = QBit(\"q\")\n", - " allocate(1,r)\n", - " my(my_operand, r)\n", - " \n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 5b - Control (\"Quantum If\")\n", - "The `control` operator is the conditional application of some operation, with the condition being that all control qubits are in the state |1>. This notion is generalized in QMOD to other control states, where the condition is specified as a comparison between a quantum numeric variable and a numeric value, similar to a classical `if` statement. Quantum numeric variables are declared with class `QNum`.\n", - "\n", - "See also [Numeric types](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/quantum-types/#syntax).\n", - "\n", - "In QMOD this generalization is available as a native statement - control.\n", - "\n", - "See also [control](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/quantum-operators/).\n", - "\n", - "1. Declare a `QNum` output argument using `Output[QNum]` and name it `x`.\n", - "2. Use the `prepare_int` function to initialize it to `9`. Note that you don't need to specify the `QNum` attributes - size, sign, and fraction digits, as they are inferred at the point of initialization.\n", - "3. Execute the circuit and observe the results.\n", - "4. Declare another output argument of type `QBit` and perform a `control` such that under the condition that `x` is 9, the qubit is flipped. Execute the circuit and observe the results. Repeat for a different condition." - ] - }, - { - "cell_type": "code", - "execution_count": 79, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/36761b29-e064-4ed2-a2e4-8b178d5b9f2c?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def cont(target: QBit):\n", - " #n = QNum('n')\n", - " X(target)\n", - " \n", - "@qfunc\n", - "def main(target: Output[QArray[QBit]], x: Output[QBit]):\n", - " #n = QNum('n')\n", - " allocate(1,x)\n", - " prepare_int(9,target)\n", - " control(ctrl =target, operand=lambda: X(x))\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)\n", - "\n", - "# The extra qubit X still remains a zero" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.9" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/community/QClass_2024/Submissions/HW1/Christopher_vanBommel_HW1_QClass2024.ipynb b/community/QClass_2024/Submissions/HW1/Christopher_vanBommel_HW1_QClass2024.ipynb deleted file mode 100644 index 2610ea98..00000000 --- a/community/QClass_2024/Submissions/HW1/Christopher_vanBommel_HW1_QClass2024.ipynb +++ /dev/null @@ -1,805 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "id": "haTRJlbEXnja" - }, - "source": [ - "# The Qmod Workshop - Introduction\n", - "\n", - "The Classiq platform features a high-level quantum modeling language called Qmod. Qmod is compiled into concrete gate-level implementation using a powerful synthesis engine that optimizes and adapts the implementation to different target hardware/simulation environments.\n", - "\n", - "In this workshop, we will learn how to write quantum models using Qmod. We will be using the Python embedding of Qmod, available as part of the Classiq Python SDK. We will learn basic concepts in the Qmod language, such as functions, operators, quantum variables, and quantum types. We will develop useful building blocks and small algorithms.\n", - "\n", - "The [QMOD language reference](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/) covers these concepts more systematically and includes more examples.\n", - "\n", - "This workshop consists of step-by-step exercises. It is structured as follows:\n", - "\n", - "- Part 1: Language Fundamentals - Exercises 1-5\n", - "- Part 2: Higher-Level Concepts - Exercises 6-10\n", - "- Part 3: Execution Flows - Exercises 11, 12\n", - "\n", - "The introduction and Part 1 are included in this notebook. Part 2 and 3 are each in its own separate notebook. For each exercise you will find the solution to the exercises at the bottom of the same notebook.\n", - "\n", - "### Preparations\n", - "\n", - "Make sure you have a Python version of 3.8 through 3.11 installed. Unfortunately, Classiq is not yet supported with Python 3.12.\n", - "\n", - "Install Classiq’s Python SDK by following the instructions on this page: [Getting Started - Classiq](https://docs.classiq.io/latest/getting-started/).\n", - "\n", - "### Python Qmod Exercises - General Instructions\n", - "\n", - "In order to synthesize and execute your Qmod code, you should:\n", - "1. Make sure you define a `main` function that calls functions you create.\n", - "2. Use `create_model` by running `qmod = create_model(main)` to construct a representation of your model.\n", - "3. You can synthesize the model (using `qprog = synthesize(qmod)`) to obtain an implementation - a quantum program.\n", - "4. You can then visualize the quantum program (`show(qprog)`) or execute it (using `execute(qprog)`. See: [Execution - Classiq](https://docs.classiq.io/latest/user-guide/platform/executor/#full-example)). You can also execute it with the IDE after visualizing the circuit.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "wT46ACRRX9dc", - "outputId": "7c30145b-bc08-4815-9b52-0594a1863d13" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Collecting classiq\n", - " Downloading classiq-0.41.1-py3-none-any.whl (398 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m398.1/398.1 kB\u001b[0m \u001b[31m2.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hCollecting ConfigArgParse<2.0.0,>=1.5.3 (from classiq)\n", - " Downloading ConfigArgParse-1.7-py3-none-any.whl (25 kB)\n", - "Collecting Pyomo<6.6,>=6.5 (from classiq)\n", - " Downloading Pyomo-6.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.7 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m10.7/10.7 MB\u001b[0m \u001b[31m6.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hCollecting black<25.0,>=24.0 (from classiq)\n", - " Downloading black-24.4.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.8 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.8/1.8 MB\u001b[0m \u001b[31m10.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hCollecting httpx<1,>=0.23.0 (from classiq)\n", - " Downloading httpx-0.27.0-py3-none-any.whl (75 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m75.6/75.6 kB\u001b[0m \u001b[31m4.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hRequirement already satisfied: keyring<24.0.0,>=23.5.0 in /usr/lib/python3/dist-packages (from classiq) (23.5.0)\n", - "Requirement already satisfied: matplotlib<4.0.0,>=3.4.3 in /usr/local/lib/python3.10/dist-packages (from classiq) (3.7.1)\n", - "Collecting networkx<3.0.0,>=2.5.1 (from classiq)\n", - " Downloading networkx-2.8.8-py3-none-any.whl (2.0 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.0/2.0 MB\u001b[0m \u001b[31m10.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hRequirement already satisfied: numexpr<3.0.0,>=2.7.3 in /usr/local/lib/python3.10/dist-packages (from classiq) (2.10.0)\n", - "Requirement already satisfied: numpy<2.0.0,>=1.20.1 in /usr/local/lib/python3.10/dist-packages (from classiq) (1.25.2)\n", - "Collecting packaging<23.0,>=22.0 (from classiq)\n", - " Downloading packaging-22.0-py3-none-any.whl (42 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m42.6/42.6 kB\u001b[0m \u001b[31m1.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hRequirement already satisfied: pandas<3.0.0,>=1.4.0 in /usr/local/lib/python3.10/dist-packages (from classiq) (2.0.3)\n", - "Requirement already satisfied: plotly<6.0.0,>=5.7.0 in /usr/local/lib/python3.10/dist-packages (from classiq) (5.15.0)\n", - "Collecting pydantic<2.0.0,>=1.9.1 (from classiq)\n", - " Downloading pydantic-1.10.15-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.1/3.1 MB\u001b[0m \u001b[31m11.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hRequirement already satisfied: scipy<2.0.0,>=1.10.1 in /usr/local/lib/python3.10/dist-packages (from classiq) (1.11.4)\n", - "Collecting sympy<1.11.0,>=1.9.0 (from classiq)\n", - " Downloading sympy-1.10.1-py3-none-any.whl (6.4 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m6.4/6.4 MB\u001b[0m \u001b[31m13.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hRequirement already satisfied: tabulate<1,>=0.8.9 in /usr/local/lib/python3.10/dist-packages (from classiq) (0.9.0)\n", - "Requirement already satisfied: click>=8.0.0 in /usr/local/lib/python3.10/dist-packages (from black<25.0,>=24.0->classiq) (8.1.7)\n", - "Collecting mypy-extensions>=0.4.3 (from black<25.0,>=24.0->classiq)\n", - " Downloading mypy_extensions-1.0.0-py3-none-any.whl (4.7 kB)\n", - "Collecting pathspec>=0.9.0 (from black<25.0,>=24.0->classiq)\n", - " Downloading pathspec-0.12.1-py3-none-any.whl (31 kB)\n", - "Requirement already satisfied: platformdirs>=2 in /usr/local/lib/python3.10/dist-packages (from black<25.0,>=24.0->classiq) (4.2.2)\n", - "Requirement already satisfied: tomli>=1.1.0 in /usr/local/lib/python3.10/dist-packages (from black<25.0,>=24.0->classiq) (2.0.1)\n", - "Requirement already satisfied: typing-extensions>=4.0.1 in /usr/local/lib/python3.10/dist-packages (from black<25.0,>=24.0->classiq) (4.11.0)\n", - "Requirement already satisfied: anyio in /usr/local/lib/python3.10/dist-packages (from httpx<1,>=0.23.0->classiq) (3.7.1)\n", - "Requirement already satisfied: certifi in /usr/local/lib/python3.10/dist-packages (from httpx<1,>=0.23.0->classiq) (2024.2.2)\n", - "Collecting httpcore==1.* (from httpx<1,>=0.23.0->classiq)\n", - " Downloading httpcore-1.0.5-py3-none-any.whl (77 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m77.9/77.9 kB\u001b[0m \u001b[31m4.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hRequirement already satisfied: idna in /usr/local/lib/python3.10/dist-packages (from httpx<1,>=0.23.0->classiq) (3.7)\n", - "Requirement already satisfied: sniffio in /usr/local/lib/python3.10/dist-packages (from httpx<1,>=0.23.0->classiq) (1.3.1)\n", - "Collecting h11<0.15,>=0.13 (from httpcore==1.*->httpx<1,>=0.23.0->classiq)\n", - " Downloading h11-0.14.0-py3-none-any.whl (58 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m58.3/58.3 kB\u001b[0m \u001b[31m5.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hRequirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.4.3->classiq) (1.2.1)\n", - "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.4.3->classiq) (0.12.1)\n", - "Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.4.3->classiq) (4.51.0)\n", - "Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.4.3->classiq) (1.4.5)\n", - "Requirement already satisfied: pillow>=6.2.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.4.3->classiq) (9.4.0)\n", - "Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.4.3->classiq) (3.1.2)\n", - "Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.4.3->classiq) (2.8.2)\n", - "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas<3.0.0,>=1.4.0->classiq) (2023.4)\n", - "Requirement already satisfied: tzdata>=2022.1 in /usr/local/lib/python3.10/dist-packages (from pandas<3.0.0,>=1.4.0->classiq) (2024.1)\n", - "Requirement already satisfied: tenacity>=6.2.0 in /usr/local/lib/python3.10/dist-packages (from plotly<6.0.0,>=5.7.0->classiq) (8.3.0)\n", - "Collecting ply (from Pyomo<6.6,>=6.5->classiq)\n", - " Downloading ply-3.11-py2.py3-none-any.whl (49 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m49.6/49.6 kB\u001b[0m \u001b[31m4.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hRequirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.10/dist-packages (from sympy<1.11.0,>=1.9.0->classiq) (1.3.0)\n", - "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.7->matplotlib<4.0.0,>=3.4.3->classiq) (1.16.0)\n", - "Requirement already satisfied: exceptiongroup in /usr/local/lib/python3.10/dist-packages (from anyio->httpx<1,>=0.23.0->classiq) (1.2.1)\n", - "Installing collected packages: ply, sympy, Pyomo, pydantic, pathspec, packaging, networkx, mypy-extensions, h11, ConfigArgParse, httpcore, black, httpx, classiq\n", - " Attempting uninstall: sympy\n", - " Found existing installation: sympy 1.12\n", - " Uninstalling sympy-1.12:\n", - " Successfully uninstalled sympy-1.12\n", - " Attempting uninstall: pydantic\n", - " Found existing installation: pydantic 2.7.1\n", - " Uninstalling pydantic-2.7.1:\n", - " Successfully uninstalled pydantic-2.7.1\n", - " Attempting uninstall: packaging\n", - " Found existing installation: packaging 24.0\n", - " Uninstalling packaging-24.0:\n", - " Successfully uninstalled packaging-24.0\n", - " Attempting uninstall: networkx\n", - " Found existing installation: networkx 3.3\n", - " Uninstalling networkx-3.3:\n", - " Successfully uninstalled networkx-3.3\n", - "\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n", - "torch 2.3.0+cu121 requires nvidia-cublas-cu12==12.1.3.1; platform_system == \"Linux\" and platform_machine == \"x86_64\", which is not installed.\n", - "torch 2.3.0+cu121 requires nvidia-cuda-cupti-cu12==12.1.105; platform_system == \"Linux\" and platform_machine == \"x86_64\", which is not installed.\n", - "torch 2.3.0+cu121 requires nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == \"Linux\" and platform_machine == \"x86_64\", which is not installed.\n", - "torch 2.3.0+cu121 requires nvidia-cuda-runtime-cu12==12.1.105; platform_system == \"Linux\" and platform_machine == \"x86_64\", which is not installed.\n", - "torch 2.3.0+cu121 requires nvidia-cudnn-cu12==8.9.2.26; platform_system == \"Linux\" and platform_machine == \"x86_64\", which is not installed.\n", - "torch 2.3.0+cu121 requires nvidia-cufft-cu12==11.0.2.54; platform_system == \"Linux\" and platform_machine == \"x86_64\", which is not installed.\n", - "torch 2.3.0+cu121 requires nvidia-curand-cu12==10.3.2.106; platform_system == \"Linux\" and platform_machine == \"x86_64\", which is not installed.\n", - "torch 2.3.0+cu121 requires nvidia-cusolver-cu12==11.4.5.107; platform_system == \"Linux\" and platform_machine == \"x86_64\", which is not installed.\n", - "torch 2.3.0+cu121 requires nvidia-cusparse-cu12==12.1.0.106; platform_system == \"Linux\" and platform_machine == \"x86_64\", which is not installed.\n", - "torch 2.3.0+cu121 requires nvidia-nccl-cu12==2.20.5; platform_system == \"Linux\" and platform_machine == \"x86_64\", which is not installed.\n", - "torch 2.3.0+cu121 requires nvidia-nvtx-cu12==12.1.105; platform_system == \"Linux\" and platform_machine == \"x86_64\", which is not installed.\u001b[0m\u001b[31m\n", - "\u001b[0mSuccessfully installed ConfigArgParse-1.7 Pyomo-6.5.0 black-24.4.2 classiq-0.41.1 h11-0.14.0 httpcore-1.0.5 httpx-0.27.0 mypy-extensions-1.0.0 networkx-2.8.8 packaging-22.0 pathspec-0.12.1 ply-3.11 pydantic-1.10.15 sympy-1.10.1\n", - "Your user code: LLLV-QHKZ\n", - "If a browser doesn't automatically open, please visit this URL from any trusted device: https://auth.classiq.io/activate?user_code=LLLV-QHKZ\n" - ] - } - ], - "source": [ - "!pip install -U classiq\n", - "import classiq\n", - "classiq.authenticate()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "xx6lnn2cXnjf" - }, - "source": [ - "### Exercise 0: From Model to Execution\n", - "\n", - "The following model defines a function that applies X and H gates on a single qubit, and subsequently calls it:" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "id": "4MgbcApjXnjg" - }, - "outputs": [], - "source": [ - "from classiq import *\n", - "\n", - "\n", - "# Define a quantum function using the @qfunc decorator\n", - "@qfunc\n", - "def foo(q: QBit) -> None:\n", - " X(target=q)\n", - " H(target=q)\n", - "\n", - "\n", - "# Define a main function\n", - "@qfunc\n", - "def main(res: Output[QBit]) -> None:\n", - " allocate(1, res)\n", - " foo(q=res)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "alMuna_dXnji" - }, - "source": [ - "Create a model from it, and synthesize, visualize, and execute it.\n", - "\n", - "Use the General Instructions above to do so.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "IQxa0bcYXnji", - "outputId": "a8ef8885-f5cf-49c8-f9a4-9fcdd5bdecf7" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/8d62c44e-718d-4970-834d-e49f70e4d73c?version=0.41.1\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "quantum_model = create_model(main)\n", - "quantum_program = synthesize(quantum_model)\n", - "show(quantum_program)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "iaSDsxK5Xnji" - }, - "source": [ - "In Qmod `QBit` is the simplest quantum type, and in this example, `q` is a quantum variable of type `QBit`. Quantum variables abstract away the mapping of quantum objects to qubits in the actual circuit.\n", - "\n", - "See also [Quantum Variables](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/quantum-variables/).\n", - "\n", - "We will discuss other quantum types during the workshop.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "hL3SqukJXnji" - }, - "source": [ - "# The Qmod Workshop - Part 1: Language Fundamentals\n", - "\n", - "Follow exercises 1 through 5 for the first session of the workshop." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "Tf51uPvyXnjj" - }, - "source": [ - "## Exercise 1 - Bell Pair\n", - "\n", - "Create a function that takes two single-qubit (`QBit`) quantum arguments and prepares the bell state on them ([Bell state](https://en.wikipedia.org/wiki/Bell_state)) by applying `H` on one variable and then using it as the control of a `CX` function with the second variable as the target.\n", - "Create a main function that uses this function and has two single-qubit outputs, initialize them to the |0> state (using the `allocate` function), and apply your function to them.\n", - "\n", - "See also [Functions](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/functions#syntax)\n" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "Ae8tXRP2Xnjj", - "outputId": "7c47f41d-da85-46da-f943-f62fd02e5883" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/b9330836-bf8b-4d95-84ca-33e86871e3cb?version=0.41.1\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def Bell(x: QBit, y: QBit):\n", - " H(x)\n", - " CX(x, y)\n", - "\n", - "@qfunc\n", - "def main(x: Output[QBit], y: Output[QBit]):\n", - " allocate(1, x)\n", - " allocate(1, y)\n", - " Bell(x, y)\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "H6tPltPXXnjj" - }, - "source": [ - "Use qubit array subscript (the syntax - _variable_ **[** _index-expression_ **]**) to change the function from subsection 1 to receive a single quantum variable, a qubit array (`QArray`) of size 2.\n", - "Change your main function to declare a single output (also an array of size 2).\n" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "spi56_ozXnjk", - "outputId": "a34ef716-7696-48b2-f487-302ec2a47a9a" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/427bdb0f-9676-4b34-b49b-231a77bf65fd?version=0.41.1\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def Bell(z: QArray[QBit]):\n", - " H(z[0])\n", - " CX(z[0], z[1])\n", - "\n", - "@qfunc\n", - "def main(z: Output[QArray[QBit]]):\n", - " allocate(2, z)\n", - " Bell(z)\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "bqj7SyQQXnjk" - }, - "source": [ - "## Exercise 2 - Repeat\n", - "\n", - "Use the built-in `repeat` operator to create your own Hadamard transform function (call it `my_hadamard_transform`). The Hadamard transform function is a function that takes as argument a qubit array of an unspecified size and applies `H` to each of its qubit.\n", - "\n", - "See also [Classical repeat](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/classical-control-flow/#classical-repeat).\n", - "\n", - "Set your main function to have a quantum array output of unspecified size, allocate 10 qubits, and then apply your Hadamard transform function.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "kFHSHCRAXnjk", - "outputId": "0eb23721-87d6-46b2-a496-ea244daa3da5" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/67ee8258-2081-498b-977c-01009209ec9d?version=0.41.1\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def my_hadamard_transform(x: QArray[QBit]):\n", - " repeat(x.len, lambda i: H(x[i]))\n", - "\n", - "@qfunc\n", - "def main(x: Output[QArray[QBit]]):\n", - " allocate(10, x)\n", - " my_hadamard_transform(x)\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "udXSlG-NXnjl" - }, - "source": [ - "### Note: Quantum Variable Capture\n", - "The `repeat` operator invokes a statement block multiple times. The statement block is specified using a Python callable, typically a lambda expression. Inside the block you can refer to variables declared in the outer function scope.\n", - "This concept is called `quantum variable capture`, equivalent to [capture](https://en.wikipedia.org/wiki/Closure_(computer_programming)) in classical languages.\n", - "\n", - "See also [Capturing context variables and parameters](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/operators/#capturing-context-variables-and-parameters)." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "cVHxdVp2Xnjl" - }, - "source": [ - "### Exercise 3 - Power\n", - "Raising a quantum operation to a power appears in many known algorithms, for examples, in Grover search and Quantum Phase Estimation.\n", - "For most operations, it simply means repeating the same circuit multiple times.\n", - "\n", - "Sometimes, however, power can be simplified, thus saving computational resources.\n", - "The most trivial example is a quantum operation expressed as a single explicit unitary matrix (i.e., all n*n matrix terms are given) - raising the operation can be done by raising the matrix to that power via classical programming.\n", - "\n", - "See also [Power operator](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/quantum-operators/#syntax).\n", - "\n", - "Use the following code to generate a 2-qubit (real) unitary matrix:" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "id": "UUVK2pMQXnjl" - }, - "outputs": [], - "source": [ - "from typing import List\n", - "\n", - "import numpy as np\n", - "\n", - "from classiq import *\n", - "\n", - "rng = np.random.default_rng(seed=0)\n", - "random_matrix = rng.random((4, 4))\n", - "qr_unitary, _ = np.linalg.qr(random_matrix)\n", - "\n", - "unitary_matrix = QConstant(\"unitary_matrix\", List[List[float]], qr_unitary.tolist())" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "m1fL4VdZXnjl" - }, - "source": [ - "In order to reuse some classical value we can define a `QConstant` to store that value.\n", - "\n", - "1. Create a model that applies `unitary_matrix` on a 2 qubit variable.\n", - "2. Create another model that applies `unitary_matrix` raised to power 3 on a 2 qubit variable.\n", - "3. Compare the gate count via the Classiq’s IDE in both cases.\n", - "\n", - "Note - the signature of function `unitary` is:" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "id": "Q0JakyBAXnjl" - }, - "outputs": [], - "source": [ - "def unitary(\n", - " elements: CArray[CArray[CReal]],\n", - " target: QArray[QBit],\n", - ") -> None:\n", - " pass" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/67a8427a-8109-4ea1-b79e-cf0fd11e0893?version=0.41.1\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "@qfunc\n", - "def main(x: Output[QArray[QBit]]):\n", - " allocate(2, x)\n", - " unitary(unitary_matrix, x)\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "L-SoXalTXnjl", - "outputId": "1a399db3-589d-40f5-bb4f-023edad372d1" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/2fd1b0ca-b88b-41a5-9f25-cd98c3985d05?version=0.41.1\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "@qfunc\n", - "def main(x: Output[QArray[QBit]]):\n", - " allocate(2, x)\n", - " power(3, lambda: unitary(elements=unitary_matrix, target=x))\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "bkDaXbGSXnjm" - }, - "source": [ - "## Exercise 4 - User-defined Operators\n", - "Create a function that applies a given single-qubit operation to all qubits in its quantum argument (Call your function `my_apply_to_all`). Such a function is also called an operator, i.e. a function that one of its arguments is another function (its operand).\n", - "\n", - "See also [Operators](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/operators/).\n", - "\n", - "Follow these guidelines:\n", - "1. Your function should declare a quantum argument of type qubit array. It should also declare an argument of a function type with a single qubit argument.\n", - "2. The body should apply the operand to all qubits in the argument.\n", - "\n", - "When you're done, re-implement `my_hadamard_transform` from exercise 2 using this function instead of `repeat`.\n", - "Use the same main function from exercise 2." - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "6-XOgBK4Xnjm", - "outputId": "833d12db-d9c3-4fea-88dd-6c2fa169cb9b" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/64fbda62-141f-4f37-9f61-4e40e65953db?version=0.41.1\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def my_apply_to_all(q: QArray[QBit], gate: QCallable[QBit]):\n", - " repeat(q.len, lambda i: gate(q[i]))\n", - "\n", - "@qfunc\n", - "def main(q: Output[QArray[QBit]]):\n", - " allocate(10, q)\n", - " my_apply_to_all(q, H)\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "Pv0EFjDDXnjm" - }, - "source": [ - "# Exercise 5 - Quantum Conditionals\n", - "\n", - "### Exercise 5a - Control Operator\n", - "Use the built-in `control` operator to create a function that receives two single qubit variables and uses one of the variables to control an RY gate with a `pi/2` angle acting on the other variable (without using the `CRY` function).\n", - "\n", - "See also [Quantum operators](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/quantum-operators/#syntax).\n" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "2JBmYyw1Xnjm", - "outputId": "145a176f-baf1-42bf-e769-44c87cf2a1db" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/827bf4ef-67c7-47e0-af8e-210b26750b9f?version=0.41.1\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def my_CRY(x: QBit, y: QBit):\n", - " control(x, lambda: RY(np.pi/2, y))\n", - "\n", - "@qfunc\n", - "def main(x: Output[QBit], y: Output[QBit]):\n", - " allocate(1, x)\n", - " allocate(1, y)\n", - " my_CRY(x, y)\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "NmrOf6m3Xnjm" - }, - "source": [ - "### Exercise 5b - Control (\"Quantum If\")\n", - "The `control` operator is the conditional application of some operation, with the condition being that all control qubits are in the state |1>. This notion is generalized in QMOD to other control states, where the condition is specified as a comparison between a quantum numeric variable and a numeric value, similar to a classical `if` statement. Quantum numeric variables are declared with class `QNum`.\n", - "\n", - "See also [Numeric types](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/quantum-types/#syntax).\n", - "\n", - "In QMOD this generalization is available as a native statement - control.\n", - "\n", - "See also [control](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/quantum-operators/).\n", - "\n", - "1. Declare a `QNum` output argument using `Output[QNum]` and name it `x`.\n", - "2. Use the `prepare_int` function to initialize it to `9`. Note that you don't need to specify the `QNum` attributes - size, sign, and fraction digits, as they are inferred at the point of initialization.\n", - "3. Execute the circuit and observe the results.\n", - "4. Declare another output argument of type `QBit` and perform a `control` such that under the condition that `x` is 9, the qubit is flipped. Execute the circuit and observe the results. Repeat for a different condition." - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/bf34b793-e556-4392-a264-501908e54a76?version=0.41.1\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def main(x: Output[QNum]):\n", - " prepare_int(9, x)\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/fc015ca6-0c52-4940-9b28-6a7c1ada3bc4?version=0.41.1\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def main(x: Output[QNum], y: Output[QBit]):\n", - " prepare_int(9, x)\n", - " allocate(1, y)\n", - " control (x == 9, lambda: X(y))\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "mFH2c5mSXnjn", - "outputId": "5705f261-c2c4-439c-e7de-c7b8e178c270" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/92e55dfb-f4ae-4399-81be-19183860918f?version=0.41.1\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def main(x: Output[QNum], y: Output[QBit]):\n", - " prepare_int(9, x)\n", - " allocate(1, y)\n", - " control (x == 8, lambda: X(y))\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "colab": { - "provenance": [] - }, - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.3" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} diff --git a/community/QClass_2024/Submissions/HW1/Christos_Koromilas_HW1_QClass2024.ipynb b/community/QClass_2024/Submissions/HW1/Christos_Koromilas_HW1_QClass2024.ipynb deleted file mode 100644 index e2913c39..00000000 --- a/community/QClass_2024/Submissions/HW1/Christos_Koromilas_HW1_QClass2024.ipynb +++ /dev/null @@ -1,566 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# The Qmod Workshop - Introduction\n", - "\n", - "The Classiq platform features a high-level quantum modeling language called Qmod. Qmod is compiled into concrete gate-level implementation using a powerful synthesis engine that optimizes and adapts the implementation to different target hardware/simulation environments.\n", - "\n", - "In this workshop, we will learn how to write quantum models using Qmod. We will be using the Python embedding of Qmod, available as part of the Classiq Python SDK. We will learn basic concepts in the Qmod language, such as functions, operators, quantum variables, and quantum types. We will develop useful building blocks and small algorithms.\n", - "\n", - "The [QMOD language reference](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/) covers these concepts more systematically and includes more examples.\n", - "\n", - "This workshop consists of step-by-step exercises. It is structured as follows:\n", - "\n", - "- Part 1: Language Fundamentals - Exercises 1-5\n", - "- Part 2: Higher-Level Concepts - Exercises 6-10\n", - "- Part 3: Execution Flows - Exercises 11, 12\n", - "\n", - "The introduction and Part 1 are included in this notebook. Part 2 and 3 are each in its own separate notebook. For each exercise you will find the solution to the exercises at the bottom of the same notebook.\n", - "\n", - "### Preparations\n", - "\n", - "Make sure you have a Python version of 3.8 through 3.11 installed. Unfortunately, Classiq is not yet supported with Python 3.12.\n", - "\n", - "Install Classiq’s Python SDK by following the instructions on this page: [Getting Started - Classiq](https://docs.classiq.io/latest/getting-started/).\n", - "\n", - "### Python Qmod Exercises - General Instructions\n", - "\n", - "In order to synthesize and execute your Qmod code, you should:\n", - "1. Make sure you define a `main` function that calls functions you create.\n", - "2. Use `create_model` by running `qmod = create_model(main)` to construct a representation of your model.\n", - "3. You can synthesize the model (using `qprog = synthesize(qmod)`) to obtain an implementation - a quantum program.\n", - "4. You can then visualize the quantum program (`show(qprog)`) or execute it (using `execute(qprog)`. See: [Execution - Classiq](https://docs.classiq.io/latest/user-guide/platform/executor/#full-example)). You can also execute it with the IDE after visualizing the circuit.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 0: From Model to Execution\n", - "\n", - "The following model defines a function that applies X and H gates on a single qubit, and subsequently calls it:" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n", - "dwave-cloud-client 0.11.4 requires pydantic<3,>=2, but you have pydantic 1.10.16 which is incompatible.\n", - "poetry 1.8.3 requires keyring<25.0.0,>=24.0.0, but you have keyring 23.13.1 which is incompatible.\n", - "poetry 1.8.3 requires packaging>=23.1, but you have packaging 22.0 which is incompatible.\n" - ] - } - ], - "source": [ - "!pip install -U -q classiq" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Your user code: LMFG-TPCJ\n", - "If a browser doesn't automatically open, please visit this URL from any trusted device: https://auth.classiq.io/activate?user_code=LMFG-TPCJ\n" - ] - } - ], - "source": [ - "import classiq\n", - "classiq.authenticate()" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "from classiq import *\n", - "\n", - "\n", - "# Define a quantum function using the @qfunc decorator\n", - "@qfunc\n", - "def foo(q: QBit) -> None:\n", - " X(target=q)\n", - " H(target=q)\n", - "\n", - "\n", - "# Define a main function\n", - "@qfunc\n", - "def main(res: Output[QBit]) -> None:\n", - " allocate(1, res)\n", - " foo(q=res)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Create a model from it, and synthesize, visualize, and execute it.\n", - "\n", - "Use the General Instructions above to do so.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/7e889e54-69b5-4ee1-9572-7b13e0343234?version=0.42.1\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "quantum_model = create_model(main)\n", - "quantum_program = synthesize(quantum_model)\n", - "show(quantum_program)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In Qmod `QBit` is the simplest quantum type, and in this example, `q` is a quantum variable of type `QBit`. Quantum variables abstract away the mapping of quantum objects to qubits in the actual circuit.\n", - "\n", - "See also [Quantum Variables](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/quantum-variables/).\n", - "\n", - "We will discuss other quantum types during the workshop.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# The Qmod Workshop - Part 1: Language Fundamentals\n", - "\n", - "Follow exercises 1 through 5 for the first session of the workshop." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exercise 1 - Bell Pair\n", - "\n", - "Create a function that takes two single-qubit (`QBit`) quantum arguments and prepares the bell state on them ([Bell state](https://en.wikipedia.org/wiki/Bell_state)) by applying `H` on one variable and then using it as the control of a `CX` function with the second variable as the target.\n", - "Create a main function that uses this function and has two single-qubit outputs, initialize them to the |0> state (using the `allocate` function), and apply your function to them.\n", - "\n", - "See also [Functions](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/functions#syntax)\n" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/eb04c776-477b-45ba-8ba1-ee5c996e7965?version=0.42.1\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "\n", - "@qfunc\n", - "def create_bell_pair(q1: QBit, q2: QBit) -> None:\n", - " H(target=q1)\n", - " CX(control=q1, target=q2)\n", - "@qfunc\n", - "def main(res1: Output[QBit], res2: Output[QBit]) -> None:\n", - " allocate(1, res1) \n", - " allocate(1, res2) \n", - " create_bell_pair(q1=res1, q2=res2)\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Use qubit array subscript (the syntax - _variable_ **[** _index-expression_ **]**) to change the function from subsection 1 to receive a single quantum variable, a qubit array (`QArray`) of size 2.\n", - "Change your main function to declare a single output (also an array of size 2).\n" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/5f7efea8-6c98-47db-98b3-05e067722517?version=0.42.1\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "\n", - "@qfunc\n", - "def create_bell_pair(qubits: QArray) -> None:\n", - " H(target=qubits[0])\n", - " CX(control=qubits[0], target=qubits[1])\n", - "\n", - "@qfunc\n", - "def main(res: Output[QArray]) -> None:\n", - " allocate(2, res) # Properly allocating qubits\n", - " create_bell_pair(qubits=res)\n", - " return res\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exercise 2 - Repeat\n", - "\n", - "Use the built-in `repeat` operator to create your own Hadamard transform function (call it `my_hadamard_transform`). The Hadamard transform function is a function that takes as argument a qubit array of an unspecified size and applies `H` to each of its qubit.\n", - "\n", - "See also [Classical repeat](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/classical-control-flow/#classical-repeat).\n", - "\n", - "Set your main function to have a quantum array output of unspecified size, allocate 10 qubits, and then apply your Hadamard transform function.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/3be67af9-6bb3-4314-8686-e2e6dfe4df27?version=0.42.1\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "\n", - "@qfunc\n", - "def my_hadamard_transform(q: QArray[QBit]) -> None:\n", - " repeat(q.len, lambda i: H(q[i]))\n", - "\n", - "\n", - "@qfunc\n", - "def main(q: Output[QArray[QBit]]) -> None:\n", - " allocate(10, q)\n", - " my_hadamard_transform(q)\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Note: Quantum Variable Capture\n", - "The `repeat` operator invokes a statement block multiple times. The statement block is specified using a Python callable, typically a lambda expression. Inside the block you can refer to variables declared in the outer function scope.\n", - "This concept is called `quantum variable capture`, equivalent to [capture](https://en.wikipedia.org/wiki/Closure_(computer_programming)) in classical languages.\n", - "\n", - "See also [Capturing context variables and parameters](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/operators/#capturing-context-variables-and-parameters)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 3 - Power\n", - "Raising a quantum operation to a power appears in many known algorithms, for examples, in Grover search and Quantum Phase Estimation.\n", - "For most operations, it simply means repeating the same circuit multiple times.\n", - "\n", - "Sometimes, however, power can be simplified, thus saving computational resources.\n", - "The most trivial example is a quantum operation expressed as a single explicit unitary matrix (i.e., all n*n matrix terms are given) - raising the operation can be done by raising the matrix to that power via classical programming.\n", - "\n", - "See also [Power operator](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/quantum-operators/#syntax).\n", - "\n", - "Use the following code to generate a 2-qubit (real) unitary matrix:" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "from typing import List\n", - "\n", - "import numpy as np\n", - "\n", - "from classiq import *\n", - "\n", - "rng = np.random.default_rng(seed=0)\n", - "random_matrix = rng.random((4, 4))\n", - "qr_unitary, _ = np.linalg.qr(random_matrix)\n", - "\n", - "unitary_matrix = QConstant(\"unitary_matrix\", List[List[float]], qr_unitary.tolist())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In order to reuse some classical value we can define a `QConstant` to store that value.\n", - "\n", - "1. Create a model that applies `unitary_matrix` on a 2 qubit variable.\n", - "2. Create another model that applies `unitary_matrix` raised to power 3 on a 2 qubit variable.\n", - "3. Compare the gate count via the Classiq’s IDE in both cases.\n", - "\n", - "Note - the signature of function `unitary` is:" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "def unitary(\n", - " elements: CArray[CArray[CReal]],\n", - " target: QArray[QBit],\n", - ") -> None:\n", - " pass" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/0036f036-0ede-44f5-aa3f-6b876d08467a?version=0.42.1\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "\n", - "@qfunc\n", - "def main(q: Output[QArray[QBit]]) -> None:\n", - " allocate(2, q)\n", - " power(3, lambda: unitary(unitary_matrix, q))\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exercise 4 - User-defined Operators\n", - "Create a function that applies a given single-qubit operation to all qubits in its quantum argument (Call your function `my_apply_to_all`). Such a function is also called an operator, i.e. a function that one of its arguments is another function (its operand).\n", - "\n", - "See also [Operators](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/operators/).\n", - "\n", - "Follow these guidelines:\n", - "1. Your function should declare a quantum argument of type qubit array. It should also declare an argument of a function type with a single qubit argument.\n", - "2. The body should apply the operand to all qubits in the argument.\n", - "\n", - "When you're done, re-implement `my_hadamard_transform` from exercise 2 using this function instead of `repeat`.\n", - "Use the same main function from exercise 2." - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/ba045335-2706-4ee2-80df-8886f1cf67b4?version=0.42.1\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "\n", - "@qfunc\n", - "def my_apply_to_all(operand: QCallable[QBit], q: QArray[QBit]) -> None:\n", - " repeat(q.len, lambda i: operand(q[i]))\n", - "\n", - "\n", - "@qfunc\n", - "def my_hadamard_transform(q: QArray[QBit]) -> None:\n", - " my_apply_to_all(lambda t: H(t), q)\n", - "\n", - "\n", - "@qfunc\n", - "def main(q: Output[QArray[QBit]]) -> None:\n", - " allocate(10, q)\n", - " my_hadamard_transform(q)\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Exercise 5 - Quantum Conditionals\n", - "\n", - "### Exercise 5a - Control Operator\n", - "Use the built-in `control` operator to create a function that receives two single qubit variables and uses one of the variables to control an RY gate with a `pi/2` angle acting on the other variable (without using the `CRY` function).\n", - "\n", - "See also [Quantum operators](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/quantum-operators/#syntax).\n" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/43018914-1bb0-4c33-b819-538d648255f6?version=0.42.1\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "from classiq.qmod.symbolic import pi\n", - "\n", - "# Your code here:\n", - "\n", - "@qfunc\n", - "def my_controlled_ry(control_bit: QBit, target: QBit) -> None:\n", - " control(control_bit, lambda: RY(pi / 2, target))\n", - "\n", - "\n", - "@qfunc\n", - "def main(control_bit: Output[QBit], target: Output[QBit]) -> None:\n", - " allocate(1, control_bit)\n", - " allocate(1, target)\n", - " my_controlled_ry(control_bit, target)\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 5b - Control (\"Quantum If\")\n", - "The `control` operator is the conditional application of some operation, with the condition being that all control qubits are in the state |1>. This notion is generalized in QMOD to other control states, where the condition is specified as a comparison between a quantum numeric variable and a numeric value, similar to a classical `if` statement. Quantum numeric variables are declared with class `QNum`.\n", - "\n", - "See also [Numeric types](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/quantum-types/#syntax).\n", - "\n", - "In QMOD this generalization is available as a native statement - control.\n", - "\n", - "See also [control](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/quantum-operators/).\n", - "\n", - "1. Declare a `QNum` output argument using `Output[QNum]` and name it `x`.\n", - "2. Use the `prepare_int` function to initialize it to `9`. Note that you don't need to specify the `QNum` attributes - size, sign, and fraction digits, as they are inferred at the point of initialization.\n", - "3. Execute the circuit and observe the results.\n", - "4. Declare another output argument of type `QBit` and perform a `control` such that under the condition that `x` is 9, the qubit is flipped. Execute the circuit and observe the results. Repeat for a different condition." - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/2682e185-f4bf-4ff7-a21a-37ddca29e45e?version=0.42.1\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "\n", - "@qfunc\n", - "def main(x: Output[QNum], target: Output[QBit]) -> None:\n", - " prepare_int(9, x)\n", - " allocate(1, target)\n", - " control(x == 9, lambda: X(target))\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.9" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/community/QClass_2024/Submissions/HW1/Claudia_Zendejas-Morales_HW1_QClass2024.ipynb b/community/QClass_2024/Submissions/HW1/Claudia_Zendejas-Morales_HW1_QClass2024.ipynb deleted file mode 100644 index 823fe701..00000000 --- a/community/QClass_2024/Submissions/HW1/Claudia_Zendejas-Morales_HW1_QClass2024.ipynb +++ /dev/null @@ -1,823 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# The Qmod Workshop - Introduction\n", - "\n", - "The Classiq platform features a high-level quantum modeling language called Qmod. Qmod is compiled into concrete gate-level implementation using a powerful synthesis engine that optimizes and adapts the implementation to different target hardware/simulation environments.\n", - "\n", - "In this workshop, we will learn how to write quantum models using Qmod. We will be using the Python embedding of Qmod, available as part of the Classiq Python SDK. We will learn basic concepts in the Qmod language, such as functions, operators, quantum variables, and quantum types. We will develop useful building blocks and small algorithms.\n", - "\n", - "The [QMOD language reference](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/) covers these concepts more systematically and includes more examples.\n", - "\n", - "This workshop consists of step-by-step exercises. It is structured as follows:\n", - "\n", - "- Part 1: Language Fundamentals - Exercises 1-5\n", - "- Part 2: Higher-Level Concepts - Exercises 6-10\n", - "- Part 3: Execution Flows - Exercises 11, 12\n", - "\n", - "The introduction and Part 1 are included in this notebook. Part 2 and 3 are each in its own separate notebook. For each exercise you will find the solution to the exercises at the bottom of the same notebook.\n", - "\n", - "### Preparations\n", - "\n", - "Make sure you have a Python version of 3.8 through 3.11 installed. Unfortunately, Classiq is not yet supported with Python 3.12.\n", - "\n", - "Install Classiq’s Python SDK by following the instructions on this page: [Getting Started - Classiq](https://docs.classiq.io/latest/getting-started/).\n", - "\n", - "### Python Qmod Exercises - General Instructions\n", - "\n", - "In order to synthesize and execute your Qmod code, you should:\n", - "1. Make sure you define a `main` function that calls functions you create.\n", - "2. Use `create_model` by running `qmod = create_model(main)` to construct a representation of your model.\n", - "3. You can synthesize the model (using `qprog = synthesize(qmod)`) to obtain an implementation - a quantum program.\n", - "4. You can then visualize the quantum program (`show(qprog)`) or execute it (using `execute(qprog)`. See: [Execution - Classiq](https://docs.classiq.io/latest/user-guide/platform/executor/#full-example)). You can also execute it with the IDE after visualizing the circuit.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 0: From Model to Execution\n", - "\n", - "The following model defines a function that applies X and H gates on a single qubit, and subsequently calls it:" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "from classiq import *\n", - "\n", - "\n", - "# Define a quantum function using the @qfunc decorator\n", - "@qfunc\n", - "def foo(q: QBit) -> None:\n", - " X(target=q)\n", - " H(target=q)\n", - "\n", - "\n", - "# Define a main function\n", - "@qfunc\n", - "def main(res: Output[QBit]) -> None:\n", - " allocate(1, res)\n", - " foo(q=res)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Create a model from it, and synthesize, visualize, and execute it.\n", - "\n", - "Use the General Instructions above to do so.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "\n", - "quantum_model = create_model(main)\n", - "quantum_program = synthesize(quantum_model)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/ce259560-876c-40a5-8974-f7add71592d7?version=0.41.2\n" - ] - } - ], - "source": [ - "show(quantum_program) # let's see the quantum program in the online IDE" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[{'res': 0.0}: 1029, {'res': 1.0}: 1019]\n" - ] - } - ], - "source": [ - "job = execute(quantum_program) # let's execute the quantum program\n", - "\n", - "# job.open_in_ide() # to view in IDE\n", - "\n", - "results = job.result()\n", - "parsed_counts = results[0].value.parsed_counts\n", - "print(parsed_counts) # we see the result state ('res') and how many counts for each one (in front fo the state)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In Qmod `QBit` is the simplest quantum type, and in this example, `q` is a quantum variable of type `QBit`. Quantum variables abstract away the mapping of quantum objects to qubits in the actual circuit.\n", - "\n", - "See also [Quantum Variables](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/quantum-variables/).\n", - "\n", - "We will discuss other quantum types during the workshop.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# The Qmod Workshop - Part 1: Language Fundamentals\n", - "\n", - "Follow exercises 1 through 5 for the first session of the workshop." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exercise 1 - Bell Pair\n", - "\n", - "Create a function that takes two single-qubit (`QBit`) quantum arguments and prepares the bell state on them ([Bell state](https://en.wikipedia.org/wiki/Bell_state)) by applying `H` on one variable and then using it as the control of a `CX` function with the second variable as the target.\n", - "Create a main function that uses this function and has two single-qubit outputs, initialize them to the |0> state (using the `allocate` function), and apply your function to them.\n", - "\n", - "See also [Functions](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/functions#syntax)\n" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/87a1d782-0826-4337-b59a-4ef7616cf3fc?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "\n", - "@qfunc\n", - "def prepare_my_bell_state(x:QBit, y:QBit) -> None:\n", - " H(x)\n", - " CX(x, y)\n", - "\n", - "@qfunc\n", - "def main(x: Output[QBit], y: Output[QBit]) -> None:\n", - " allocate(1, x)\n", - " allocate(1, y)\n", - " prepare_my_bell_state(x, y)\n", - "\n", - "\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[{'x': 0.0, 'y': 0.0}: 1042, {'x': 1.0, 'y': 1.0}: 1006]\n" - ] - } - ], - "source": [ - "job = execute(qprog)\n", - "results = job.result()\n", - "parsed_counts = results[0].value.parsed_counts\n", - "print(parsed_counts) # we can see that we obtained the states '00' and '11' with half the probability for each one" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Use qubit array subscript (the syntax - _variable_ **[** _index-expression_ **]**) to change the function from subsection 1 to receive a single quantum variable, a qubit array (`QArray`) of size 2.\n", - "Change your main function to declare a single output (also an array of size 2).\n" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/f0a77a16-a5ba-4e0e-941a-d0d2171efcfd?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "\n", - "@qfunc\n", - "def prepare_my_bell_state_2(reg: QArray[QBit]) -> None:\n", - " H(reg[0])\n", - " CX(reg[0], reg[1])\n", - "\n", - "@qfunc\n", - "def main(reg: Output[QArray]) -> None:\n", - " allocate(2, reg)\n", - " prepare_my_bell_state_2(reg)\n", - "\n", - "\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[{'reg': 3.0}: 1047, {'reg': 0.0}: 1001]\n" - ] - } - ], - "source": [ - "job = execute(qprog)\n", - "results = job.result()\n", - "parsed_counts = results[0].value.parsed_counts\n", - "print(parsed_counts) # we can see that we obtained the states '00' (=0) and '11' (=3) with half the probability for each one" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exercise 2 - Repeat\n", - "\n", - "Use the built-in `repeat` operator to create your own Hadamard transform function (call it `my_hadamard_transform`). The Hadamard transform function is a function that takes as argument a qubit array of an unspecified size and applies `H` to each of its qubit.\n", - "\n", - "See also [Classical repeat](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/classical-control-flow/#classical-repeat).\n", - "\n", - "Set your main function to have a quantum array output of unspecified size, allocate 10 qubits, and then apply your Hadamard transform function.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/120d57a5-c745-4e4b-828e-165606094fbd?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "\n", - "@qfunc\n", - "def my_hadamard_transform(reg: QArray[QBit]) -> None:\n", - " repeat(reg.len, lambda i: H(reg[i]))\n", - "\n", - "@qfunc\n", - "def main(reg: Output[QArray]) -> None: \n", - " allocate(10, reg)\n", - " my_hadamard_transform(reg)\n", - "\n", - "\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[1, 2, 3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 38, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 79, 80, 81, 82, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 109, 110, 111, 112, 114, 115, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 153, 154, 155, 157, 158, 159, 160, 161, 162, 163, 165, 166, 167, 169, 170, 171, 172, 173, 174, 175, 176, 177, 179, 180, 182, 183, 184, 185, 186, 188, 189, 190, 191, 192, 194, 195, 196, 197, 198, 200, 201, 203, 204, 205, 206, 207, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 221, 222, 223, 224, 225, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 250, 251, 252, 253, 254, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 271, 272, 273, 274, 276, 277, 278, 279, 280, 281, 282, 283, 284, 286, 287, 289, 290, 291, 292, 293, 294, 295, 296, 297, 299, 300, 301, 302, 303, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 318, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 336, 337, 338, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 353, 354, 355, 356, 357, 358, 360, 361, 362, 363, 364, 365, 366, 367, 370, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 383, 384, 385, 386, 387, 388, 389, 390, 391, 393, 395, 399, 400, 402, 403, 404, 405, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 426, 428, 429, 430, 431, 432, 434, 435, 436, 437, 438, 439, 440, 443, 444, 445, 446, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 487, 489, 490, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 504, 506, 507, 510, 511, 512, 513, 514, 516, 517, 518, 519, 520, 522, 524, 525, 526, 527, 529, 530, 531, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 604, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 626, 627, 628, 629, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 652, 653, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 671, 673, 674, 675, 677, 678, 679, 683, 684, 686, 687, 688, 689, 691, 692, 693, 694, 695, 696, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 718, 720, 721, 722, 723, 724, 725, 726, 727, 728, 730, 731, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 744, 745, 746, 747, 748, 749, 751, 753, 754, 755, 756, 757, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 778, 779, 780, 781, 782, 783, 784, 786, 787, 788, 790, 791, 793, 795, 797, 799, 800, 802, 803, 804, 805, 806, 807, 808, 809, 811, 812, 813, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 850, 851, 852, 853, 854, 855, 856, 857, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 874, 875, 876, 877, 879, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 890, 891, 893, 894, 895, 896, 897, 899, 900, 901, 902, 904, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 917, 918, 919, 920, 921, 922, 924, 925, 926, 927, 928, 929, 930, 931, 932, 933, 934, 935, 936, 937, 941, 942, 943, 944, 945, 946, 947, 948, 949, 950, 951, 952, 954, 955, 956, 957, 958, 959, 961, 962, 963, 964, 965, 966, 967, 968, 969, 970, 971, 973, 974, 976, 977, 979, 980, 981, 982, 983, 984, 985, 987, 990, 991, 992, 993, 994, 995, 996, 997, 998, 999, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009, 1010, 1011, 1012, 1013, 1014, 1016, 1017, 1018, 1020, 1021, 1022, 1023]\n" - ] - } - ], - "source": [ - "job = execute(qprog)\n", - "results = job.result()\n", - "parsed_counts = results[0].value.parsed_counts\n", - "\n", - "sorted_states = [int(sampled_state.state['reg']) for sampled_state in parsed_counts]\n", - "sorted_states.sort()\n", - "print(sorted_states) # we can see all the possible states for 10 qubits (from 0 to 2^{10} - 1 = 1023)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Note: Quantum Variable Capture\n", - "The `repeat` operator invokes a statement block multiple times. The statement block is specified using a Python callable, typically a lambda expression. Inside the block you can refer to variables declared in the outer function scope.\n", - "This concept is called `quantum variable capture`, equivalent to [capture](https://en.wikipedia.org/wiki/Closure_(computer_programming)) in classical languages.\n", - "\n", - "See also [Capturing context variables and parameters](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/operators/#capturing-context-variables-and-parameters)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 3 - Power\n", - "Raising a quantum operation to a power appears in many known algorithms, for examples, in Grover search and Quantum Phase Estimation.\n", - "For most operations, it simply means repeating the same circuit multiple times.\n", - "\n", - "Sometimes, however, power can be simplified, thus saving computational resources.\n", - "The most trivial example is a quantum operation expressed as a single explicit unitary matrix (i.e., all n*n matrix terms are given) - raising the operation can be done by raising the matrix to that power via classical programming.\n", - "\n", - "See also [Power operator](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/quantum-operators/#syntax).\n", - "\n", - "Use the following code to generate a 2-qubit (real) unitary matrix:" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "from typing import List\n", - "\n", - "import numpy as np\n", - "\n", - "from classiq import *\n", - "\n", - "rng = np.random.default_rng(seed=0)\n", - "random_matrix = rng.random((4, 4))\n", - "qr_unitary, _ = np.linalg.qr(random_matrix)\n", - "\n", - "unitary_matrix = QConstant(\"unitary_matrix\", List[List[float]], qr_unitary.tolist())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In order to reuse some classical value we can define a `QConstant` to store that value.\n", - "\n", - "1. Create a model that applies `unitary_matrix` on a 2 qubit variable.\n", - "2. Create another model that applies `unitary_matrix` raised to power 3 on a 2 qubit variable.\n", - "3. Compare the gate count via the Classiq’s IDE in both cases.\n", - "\n", - "Note - the signature of function `unitary` is:" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "```python\n", - "def unitary(\n", - " elements: CArray[CArray[CReal]],\n", - " target: QArray[QBit],\n", - ") -> None:\n", - " pass\n", - "```" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "\n", - "@qfunc\n", - "def apply_unitary_matrix(reg: QArray[QBit], exponent: CInt) -> None:\n", - " power(exponent, lambda: unitary(unitary_matrix, reg))\n" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/878c7001-8a90-4de1-a940-59365437e376?version=0.41.2\n" - ] - } - ], - "source": [ - "# Your code here:\n", - "\n", - "@qfunc\n", - "def main(reg: Output[QArray]) -> None: # apply the unitary matrix once\n", - " allocate(2, reg)\n", - " apply_unitary_matrix(reg, 1)\n", - "\n", - "\n", - "\n", - "\n", - "qmod1 = create_model(main)\n", - "qprog1 = synthesize(qmod1)\n", - "show(qprog1)\n", - "\n", - "# from the IDE:\n", - "# Program info\n", - "# Depth: 7\n", - "# Width: 2\n", - "# Gate count\n", - "# U : 8\n", - "# CX : 3" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/ca21082c-49a9-4536-831e-54281264dad3?version=0.41.2\n" - ] - } - ], - "source": [ - "# Your code here:\n", - "\n", - "@qfunc\n", - "def main(reg: Output[QArray]) -> None: # apply the unitary matrix thrice\n", - " allocate(2, reg)\n", - " apply_unitary_matrix(reg, 3)\n", - "\n", - "\n", - "\n", - "qmod3 = create_model(main)\n", - "qprog3 = synthesize(qmod3)\n", - "show(qprog3)\n", - "\n", - "# from the IDE:\n", - "# Program info\n", - "# Depth: 7\n", - "# Width: 2\n", - "# Gate count\n", - "# U : 8\n", - "# CX : 3" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exercise 4 - User-defined Operators\n", - "Create a function that applies a given single-qubit operation to all qubits in its quantum argument (Call your function `my_apply_to_all`). Such a function is also called an operator, i.e. a function that one of its arguments is another function (its operand).\n", - "\n", - "See also [Operators](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/operators/).\n", - "\n", - "Follow these guidelines:\n", - "1. Your function should declare a quantum argument of type qubit array. It should also declare an argument of a function type with a single qubit argument.\n", - "2. The body should apply the operand to all qubits in the argument.\n", - "\n", - "When you're done, re-implement `my_hadamard_transform` from exercise 2 using this function instead of `repeat`.\n", - "Use the same main function from exercise 2." - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/6bceb651-fc52-49e7-86d4-eee1f284bef4?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "\n", - "\n", - "@qfunc\n", - "def my_apply_to_all(my_operand: QCallable[QBit], reg: QArray[QBit]) -> None:\n", - " # apply_to_all(gate_operand=my_operand, target=reg) # this is another option\n", - " repeat(reg.len, lambda i: my_operand(reg[i]))\n", - "\n", - "@qfunc\n", - "def my_hadamard_transform(reg: QArray[QBit]) -> None:\n", - " my_apply_to_all(H, reg)\n", - "\n", - "@qfunc\n", - "def main(reg: Output[QArray]) -> None: \n", - " allocate(10, reg)\n", - " my_hadamard_transform(reg)\n", - "\n", - " \n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 23, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 65, 67, 68, 69, 70, 71, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 143, 144, 145, 146, 147, 149, 150, 151, 152, 154, 155, 156, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 170, 171, 172, 174, 175, 176, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 199, 200, 201, 202, 203, 204, 206, 207, 208, 210, 211, 212, 213, 214, 215, 217, 218, 219, 220, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 253, 254, 255, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 268, 269, 270, 271, 272, 273, 274, 275, 277, 278, 279, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 304, 305, 306, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 319, 320, 322, 323, 324, 326, 328, 329, 330, 331, 332, 334, 335, 336, 337, 338, 339, 341, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 365, 367, 369, 370, 371, 372, 373, 374, 375, 376, 378, 379, 380, 381, 382, 383, 384, 385, 386, 388, 389, 391, 392, 393, 395, 397, 398, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 427, 429, 430, 431, 433, 434, 435, 436, 438, 441, 442, 443, 444, 445, 447, 448, 449, 450, 451, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 570, 572, 574, 575, 576, 577, 578, 579, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 604, 605, 606, 607, 608, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 627, 628, 629, 631, 632, 633, 634, 635, 636, 637, 638, 639, 641, 642, 643, 645, 646, 648, 649, 650, 651, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 672, 673, 674, 676, 677, 678, 679, 680, 681, 682, 683, 685, 686, 687, 688, 689, 690, 691, 692, 693, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 709, 710, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 727, 728, 729, 730, 732, 733, 734, 736, 737, 738, 740, 742, 743, 745, 746, 747, 750, 753, 754, 755, 756, 757, 759, 761, 762, 763, 764, 765, 766, 768, 769, 770, 771, 772, 774, 775, 776, 777, 778, 779, 781, 782, 783, 784, 785, 786, 787, 788, 789, 791, 792, 793, 795, 796, 797, 799, 800, 801, 803, 805, 807, 808, 809, 810, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 860, 861, 862, 863, 864, 865, 867, 868, 869, 870, 871, 872, 873, 874, 875, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 891, 892, 893, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 904, 905, 906, 908, 909, 910, 911, 912, 913, 915, 916, 917, 918, 919, 920, 921, 922, 923, 924, 925, 926, 927, 928, 929, 930, 931, 932, 933, 934, 936, 937, 938, 939, 941, 942, 943, 944, 945, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 956, 957, 958, 959, 960, 961, 962, 963, 964, 965, 966, 968, 969, 970, 971, 972, 973, 974, 975, 976, 977, 978, 979, 981, 982, 983, 984, 985, 986, 987, 988, 989, 990, 991, 992, 993, 994, 995, 996, 998, 999, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009, 1010, 1012, 1013, 1014, 1016, 1017, 1018, 1019, 1020, 1021, 1022, 1023]\n" - ] - } - ], - "source": [ - "job = execute(qprog)\n", - "results = job.result()\n", - "parsed_counts = results[0].value.parsed_counts\n", - "\n", - "sorted_states = [int(sampled_state.state['reg']) for sampled_state in parsed_counts]\n", - "sorted_states.sort()\n", - "print(sorted_states) # we can see all the possible states for 10 qubits (from 0 to 2^{10} - 1 = 1023)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Exercise 5 - Quantum Conditionals\n", - "\n", - "### Exercise 5a - Control Operator\n", - "Use the built-in `control` operator to create a function that receives two single qubit variables and uses one of the variables to control an RY gate with a `pi/2` angle acting on the other variable (without using the `CRY` function).\n", - "\n", - "See also [Quantum operators](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/quantum-operators/#syntax).\n" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/88b602ea-79f9-4e44-8323-b47712e662c4?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "\n", - "from math import pi\n", - "\n", - "@qfunc\n", - "def my_cotrolled_ry(x:QBit, y:QBit) -> None:\n", - " control(x, lambda: RY(pi/2, y))\n", - "\n", - "@qfunc\n", - "def main(x: Output[QBit], y: Output[QBit]) -> None:\n", - " allocate(1, x)\n", - " allocate(1, y)\n", - " X(x) # so that the implemented Controlled-RY does apply RY to 'y'\n", - " my_cotrolled_ry(x, y)\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[{'x': 1.0, 'y': 1.0}: 1047, {'x': 1.0, 'y': 0.0}: 1001]\n" - ] - } - ], - "source": [ - "job = execute(qprog) # let's execute the quantum program\n", - "results = job.result()\n", - "parsed_counts = results[0].value.parsed_counts\n", - "print(parsed_counts) # we can see that we obtained the states '10' and '11' with half the probability for each one\n", - " # 'x' is always 1 because we apply the X gate and 'y' is in superposition (0 and 1)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 5b - Control (\"Quantum If\")\n", - "The `control` operator is the conditional application of some operation, with the condition being that all control qubits are in the state |1>. This notion is generalized in QMOD to other control states, where the condition is specified as a comparison between a quantum numeric variable and a numeric value, similar to a classical `if` statement. Quantum numeric variables are declared with class `QNum`.\n", - "\n", - "See also [Numeric types](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/quantum-types/#syntax).\n", - "\n", - "In QMOD this generalization is available as a native statement - control.\n", - "\n", - "See also [control](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/quantum-operators/).\n", - "\n", - "1. Declare a `QNum` output argument using `Output[QNum]` and name it `x`.\n", - "2. Use the `prepare_int` function to initialize it to `9`. Note that you don't need to specify the `QNum` attributes - size, sign, and fraction digits, as they are inferred at the point of initialization.\n", - "3. Execute the circuit and observe the results.\n", - "4. Declare another output argument of type `QBit` and perform a `control` such that under the condition that `x` is 9, the qubit is flipped. Execute the circuit and observe the results. Repeat for a different condition." - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/c89d8573-cf97-4546-8871-0c4a8d584699?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "\n", - "@qfunc\n", - "def main(x:Output[QNum]):\n", - " prepare_int(9, x)\n", - "\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[{'x': 9.0}: 2048]\n" - ] - } - ], - "source": [ - "job = execute(qprog) # let's execute the quantum program\n", - "results = job.result()\n", - "parsed_counts = results[0].value.parsed_counts\n", - "print(parsed_counts) # we observe the prepared state: 9 (=1001) with all probability" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/cc68c0cf-a56f-4d03-91db-0955166d76ff?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "\n", - "@qfunc\n", - "def my_controlled_x(x: QNum, target: QBit) -> None:\n", - " control(x == 9, lambda: X(target))\n", - "\n", - "@qfunc\n", - "def main(x:Output[QNum], res: Output[QBit]):\n", - " allocate(1, res)\n", - " prepare_int(9, x)\n", - " my_controlled_x(x, res)\n", - "\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[{'x': 9.0, 'res': 1.0}: 2048]\n" - ] - } - ], - "source": [ - "job = execute(qprog) # let's execute the quantum program\n", - "results = job.result()\n", - "parsed_counts = results[0].value.parsed_counts\n", - "print(parsed_counts) # we observe the prepared state: 9 (=1001) and the state 1 for 'res' with all probability\n", - " # in this way we see the state: 25 (=11001), in the histogram when running in the IDE" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.9" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/community/QClass_2024/Submissions/HW1/Csaba_Szilard_Racz-HW1_QClass2024.ipynb b/community/QClass_2024/Submissions/HW1/Csaba_Szilard_Racz-HW1_QClass2024.ipynb deleted file mode 100644 index 6a84a6dd..00000000 --- a/community/QClass_2024/Submissions/HW1/Csaba_Szilard_Racz-HW1_QClass2024.ipynb +++ /dev/null @@ -1,564 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# The Qmod Workshop - Introduction\n", - "\n", - "The Classiq platform features a high-level quantum modeling language called Qmod. Qmod is compiled into concrete gate-level implementation using a powerful synthesis engine that optimizes and adapts the implementation to different target hardware/simulation environments.\n", - "\n", - "In this workshop, we will learn how to write quantum models using Qmod. We will be using the Python embedding of Qmod, available as part of the Classiq Python SDK. We will learn basic concepts in the Qmod language, such as functions, operators, quantum variables, and quantum types. We will develop useful building blocks and small algorithms.\n", - "\n", - "The [QMOD language reference](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/) covers these concepts more systematically and includes more examples.\n", - "\n", - "This workshop consists of step-by-step exercises. It is structured as follows:\n", - "\n", - "- Part 1: Language Fundamentals - Exercises 1-5\n", - "- Part 2: Higher-Level Concepts - Exercises 6-10\n", - "- Part 3: Execution Flows - Exercises 11, 12\n", - "\n", - "The introduction and Part 1 are included in this notebook. Part 2 and 3 are each in its own separate notebook. For each exercise you will find the solution to the exercises at the bottom of the same notebook.\n", - "\n", - "### Preparations\n", - "\n", - "Make sure you have a Python version of 3.8 through 3.11 installed. Unfortunately, Classiq is not yet supported with Python 3.12.\n", - "\n", - "Install Classiq’s Python SDK by following the instructions on this page: [Getting Started - Classiq](https://docs.classiq.io/latest/getting-started/).\n", - "\n", - "### Python Qmod Exercises - General Instructions\n", - "\n", - "In order to synthesize and execute your Qmod code, you should:\n", - "1. Make sure you define a `main` function that calls functions you create.\n", - "2. Use `create_model` by running `qmod = create_model(main)` to construct a representation of your model.\n", - "3. You can synthesize the model (using `qprog = synthesize(qmod)`) to obtain an implementation - a quantum program.\n", - "4. You can then visualize the quantum program (`show(qprog)`) or execute it (using `execute(qprog)`. See: [Execution - Classiq](https://docs.classiq.io/latest/user-guide/platform/executor/#full-example)). You can also execute it with the IDE after visualizing the circuit.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 0: From Model to Execution\n", - "\n", - "The following model defines a function that applies X and H gates on a single qubit, and subsequently calls it:" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "from classiq import *" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "# Define a quantum function using the @qfunc decorator\n", - "@qfunc\n", - "def foo(q: QBit) -> None:\n", - " X(target=q)\n", - " H(target=q)\n", - "\n", - "\n", - "# Define a main function\n", - "@qfunc\n", - "def main(res: Output[QBit]) -> None:\n", - " allocate(1, res)\n", - " foo(q=res)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Create a model from it, and synthesize, visualize, and execute it.\n", - "\n", - "Use the General Instructions above to do so.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/dfd770a9-b159-45e2-8d24-5673803e9467?version=0.41.1\n" - ] - } - ], - "source": [ - "# Your code here:\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In Qmod `QBit` is the simplest quantum type, and in this example, `q` is a quantum variable of type `QBit`. Quantum variables abstract away the mapping of quantum objects to qubits in the actual circuit.\n", - "\n", - "See also [Quantum Variables](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/quantum-variables/).\n", - "\n", - "We will discuss other quantum types during the workshop.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# The Qmod Workshop - Part 1: Language Fundamentals\n", - "\n", - "Follow exercises 1 through 5 for the first session of the workshop." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exercise 1 - Bell Pair\n", - "\n", - "Create a function that takes two single-qubit (`QBit`) quantum arguments and prepares the bell state on them ([Bell state](https://en.wikipedia.org/wiki/Bell_state)) by applying `H` on one variable and then using it as the control of a `CX` function with the second variable as the target.\n", - "Create a main function that uses this function and has two single-qubit outputs, initialize them to the |0> state (using the `allocate` function), and apply your function to them.\n", - "\n", - "See also [Functions](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/functions#syntax)\n" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/3a346585-0a1e-4239-b4f7-991a015970b5?version=0.41.1\n" - ] - } - ], - "source": [ - "# from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def bellPair(q1: QBit, q2: QBit) -> None:\n", - " H(q1)\n", - " CX(q1,q2)\n", - " \n", - "@qfunc\n", - "def main(res1: Output[QBit], res2: Output[QBit]) -> None:\n", - " allocate(1, res1)\n", - " allocate(1, res2)\n", - " bellPair(res1,res2)\n", - " \n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Use qubit array subscript (the syntax - _variable_ **[** _index-expression_ **]**) to change the function from subsection 1 to receive a single quantum variable, a qubit array (`QArray`) of size 2.\n", - "Change your main function to declare a single output (also an array of size 2).\n" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/70cee114-6a35-465a-bd6c-fa5c26b1d07a?version=0.41.1\n" - ] - } - ], - "source": [ - "# from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def bellPair(qbits: QArray[QBit]) -> None:\n", - " H(qbits[0])\n", - " CX(qbits[0],qbits[1])\n", - " \n", - "@qfunc\n", - "def main(res: Output[QArray[QBit]]) -> None:\n", - " allocate(2, res)\n", - " bellPair(res)\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exercise 2 - Repeat\n", - "\n", - "Use the built-in `repeat` operator to create your own Hadamard transform function (call it `my_hadamard_transform`). The Hadamard transform function is a function that takes as argument a qubit array of an unspecified size and applies `H` to each of its qubit.\n", - "\n", - "See also [Classical repeat](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/classical-control-flow/#classical-repeat).\n", - "\n", - "Set your main function to have a quantum array output of unspecified size, allocate 10 qubits, and then apply your Hadamard transform function.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/5da238f8-285a-4cd3-bcc9-5e414f203c71?version=0.41.1\n" - ] - } - ], - "source": [ - "# from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def my_hadamard_transform(qbits: QArray[QBit]) -> None:\n", - " repeat(qbits.len,iteration= lambda i: H(qbits[i])) # repeats qbits.len times the function of applying Hadamard on current element of QArray\n", - "\n", - "@qfunc\n", - "def main(res: Output[QArray[QBit]]) -> None:\n", - " allocate(10,res)\n", - " my_hadamard_transform(res)\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Note: Quantum Variable Capture\n", - "The `repeat` operator invokes a statement block multiple times. The statement block is specified using a Python callable, typically a lambda expression. Inside the block you can refer to variables declared in the outer function scope.\n", - "This concept is called `quantum variable capture`, equivalent to [capture](https://en.wikipedia.org/wiki/Closure_(computer_programming)) in classical languages.\n", - "\n", - "See also [Capturing context variables and parameters](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/operators/#capturing-context-variables-and-parameters)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 3 - Power\n", - "Raising a quantum operation to a power appears in many known algorithms, for examples, in Grover search and Quantum Phase Estimation.\n", - "For most operations, it simply means repeating the same circuit multiple times.\n", - "\n", - "Sometimes, however, power can be simplified, thus saving computational resources.\n", - "The most trivial example is a quantum operation expressed as a single explicit unitary matrix (i.e., all n*n matrix terms are given) - raising the operation can be done by raising the matrix to that power via classical programming.\n", - "\n", - "See also [Power operator](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/quantum-operators/#syntax).\n", - "\n", - "Use the following code to generate a 2-qubit (real) unitary matrix:" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "from typing import List\n", - "\n", - "import numpy as np\n", - "\n", - "# from classiq import *\n", - "\n", - "rng = np.random.default_rng(seed=0)\n", - "random_matrix = rng.random((4, 4))\n", - "qr_unitary, _ = np.linalg.qr(random_matrix)\n", - "\n", - "unitary_matrix = QConstant(\"unitary_matrix\", List[List[float]], qr_unitary.tolist())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In order to reuse some classical value we can define a `QConstant` to store that value.\n", - "\n", - "1. Create a model that applies `unitary_matrix` on a 2 qubit variable.\n", - "2. Create another model that applies `unitary_matrix` raised to power 3 on a 2 qubit variable.\n", - "3. Compare the gate count via the Classiq’s IDE in both cases.\n", - "\n", - "Note - the signature of function `unitary` is:" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "def unitary(\n", - " elements: CArray[CArray[CReal]],\n", - " target: QArray[QBit],\n", - ") -> None:\n", - " pass" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/4857b4a4-d79f-43d1-b2c3-ea91bca45895?version=0.41.1\n" - ] - } - ], - "source": [ - "# from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def model(qbits: QArray[QBit]) -> None: # elements: CArray[CArray[CReal]], \n", - " unitary(unitary_matrix,qbits)\n", - " \n", - "@qfunc\n", - "def main(res: Output[QArray[QBit]]) -> None:\n", - " allocate(2,res)\n", - " model(res)\n", - " \n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/a02d4d96-6e18-44fc-a700-ec280528d331?version=0.41.1\n" - ] - } - ], - "source": [ - "@qfunc\n", - "def powerModel(qbits: QArray[QBit]) -> None:\n", - " power(3, lambda: unitary(unitary_matrix,qbits))\n", - " \n", - "@qfunc\n", - "def main(res: Output[QArray[QBit]]) -> None:\n", - " allocate(2,res)\n", - " powerModel(res)\n", - " \n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exercise 4 - User-defined Operators\n", - "Create a function that applies a given single-qubit operation to all qubits in its quantum argument (Call your function `my_apply_to_all`). Such a function is also called an operator, i.e. a function that one of its arguments is another function (its operand).\n", - "\n", - "See also [Operators](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/operators/).\n", - "\n", - "Follow these guidelines:\n", - "1. Your function should declare a quantum argument of type qubit array. It should also declare an argument of a function type with a single qubit argument.\n", - "2. The body should apply the operand to all qubits in the argument.\n", - "\n", - "When you're done, re-implement `my_hadamard_transform` from exercise 2 using this function instead of `repeat`.\n", - "Use the same main function from exercise 2." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/b2e79d9f-8325-45f3-a218-6091f647418f?version=0.41.1\n" - ] - } - ], - "source": [ - "# from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def my_apply_to_all(qbits: QArray[QBit], operand: QCallable[QBit]) -> None:\n", - " repeat(count=qbits.len, iteration= lambda i: operand(qbits[i]))\n", - "\n", - "@qfunc # function from exercise 2\n", - "def my_hadamard_transform(qbits: QArray[QBit]) -> None:\n", - " my_apply_to_all(qbits, H)\n", - "\n", - "\n", - "@qfunc\n", - "def main(res: Output[QArray[QBit]]) -> None:\n", - " allocate(10,res)\n", - " my_hadamard_transform(res)\n", - " \n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Exercise 5 - Quantum Conditionals\n", - "\n", - "### Exercise 5a - Control Operator\n", - "Use the built-in `control` operator to create a function that receives two single qubit variables and uses one of the variables to control an RY gate with a `pi/2` angle acting on the other variable (without using the `CRY` function).\n", - "\n", - "See also [Quantum operators](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/quantum-operators/#syntax).\n" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/0250d2c2-c44d-4892-8a35-73512bd8f25c?version=0.41.1\n" - ] - } - ], - "source": [ - "# from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def quatnumConditions(q1: QBit, q2: QBit) -> None:\n", - " control(q1, lambda: RY(np.pi/2, q2))\n", - " \n", - "@qfunc\n", - "def main(q1: Output[QBit], q2: Output[QBit]) -> None:\n", - " allocate(1,q1)\n", - " allocate(1,q2)\n", - " # more interesting if we were to put the control qubit in superposition first with:\n", - " # H(q1)\n", - " quatnumConditions(q1,q2)\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 5b - Control (\"Quantum If\")\n", - "The `control` operator is the conditional application of some operation, with the condition being that all control qubits are in the state |1>. This notion is generalized in QMOD to other control states, where the condition is specified as a comparison between a quantum numeric variable and a numeric value, similar to a classical `if` statement. Quantum numeric variables are declared with class `QNum`.\n", - "\n", - "See also [Numeric types](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/quantum-types/#syntax).\n", - "\n", - "In QMOD this generalization is available as a native statement - control.\n", - "\n", - "See also [control](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/quantum-operators/).\n", - "\n", - "1. Declare a `QNum` output argument using `Output[QNum]` and name it `x`.\n", - "2. Use the `prepare_int` function to initialize it to `9`. Note that you don't need to specify the `QNum` attributes - size, sign, and fraction digits, as they are inferred at the point of initialization.\n", - "3. Execute the circuit and observe the results.\n", - "4. Declare another output argument of type `QBit` and perform a `control` such that under the condition that `x` is 9, the qubit is flipped. Execute the circuit and observe the results. Repeat for a different condition." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/773aea25-dfd0-437e-bb9e-1df7aba1d6d7?version=0.41.1\n" - ] - } - ], - "source": [ - "# from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def main(x: Output[QNum], q: Output[QBit]) -> None:\n", - " prepare_int(9, x)\n", - " allocate(1,q)\n", - " control(x == 9, lambda: X(q))\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.3" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/community/QClass_2024/Submissions/HW1/HW1_QClass2024 - Bill Wisotsky.ipynb b/community/QClass_2024/Submissions/HW1/HW1_QClass2024 - Bill Wisotsky.ipynb deleted file mode 100644 index b06177c4..00000000 --- a/community/QClass_2024/Submissions/HW1/HW1_QClass2024 - Bill Wisotsky.ipynb +++ /dev/null @@ -1,575 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# The Qmod Workshop - Introduction\n", - "\n", - "The Classiq platform features a high-level quantum modeling language called Qmod. Qmod is compiled into concrete gate-level implementation using a powerful synthesis engine that optimizes and adapts the implementation to different target hardware/simulation environments.\n", - "\n", - "In this workshop, we will learn how to write quantum models using Qmod. We will be using the Python embedding of Qmod, available as part of the Classiq Python SDK. We will learn basic concepts in the Qmod language, such as functions, operators, quantum variables, and quantum types. We will develop useful building blocks and small algorithms.\n", - "\n", - "The [QMOD language reference](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/) covers these concepts more systematically and includes more examples.\n", - "\n", - "This workshop consists of step-by-step exercises. It is structured as follows:\n", - "\n", - "- Part 1: Language Fundamentals - Exercises 1-5\n", - "- Part 2: Higher-Level Concepts - Exercises 6-10\n", - "- Part 3: Execution Flows - Exercises 11, 12\n", - "\n", - "The introduction and Part 1 are included in this notebook. Part 2 and 3 are each in its own separate notebook. For each exercise you will find the solution to the exercises at the bottom of the same notebook.\n", - "\n", - "### Preparations\n", - "\n", - "Make sure you have a Python version of 3.8 through 3.11 installed. Unfortunately, Classiq is not yet supported with Python 3.12.\n", - "\n", - "Install Classiq’s Python SDK by following the instructions on this page: [Getting Started - Classiq](https://docs.classiq.io/latest/getting-started/).\n", - "\n", - "### Python Qmod Exercises - General Instructions\n", - "\n", - "In order to synthesize and execute your Qmod code, you should:\n", - "1. Make sure you define a `main` function that calls functions you create.\n", - "2. Use `create_model` by running `qmod = create_model(main)` to construct a representation of your model.\n", - "3. You can synthesize the model (using `qprog = synthesize(qmod)`) to obtain an implementation - a quantum program.\n", - "4. You can then visualize the quantum program (`show(qprog)`) or execute it (using `execute(qprog)`. See: [Execution - Classiq](https://docs.classiq.io/latest/user-guide/platform/executor/#full-example)). You can also execute it with the IDE after visualizing the circuit.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 0: From Model to Execution\n", - "\n", - "The following model defines a function that applies X and H gates on a single qubit, and subsequently calls it:" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "from classiq import *\n", - "\n", - "\n", - "# Define a quantum function using the @qfunc decorator\n", - "@qfunc\n", - "def foo(q: QBit) -> None:\n", - " X(target=q)\n", - " H(target=q)\n", - "\n", - "\n", - "# Define a main function\n", - "@qfunc\n", - "def main(res: Output[QBit]) -> None:\n", - " allocate(1, res)\n", - " foo(q=res)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Create a model from it, and synthesize, visualize, and execute it.\n", - "\n", - "Use the General Instructions above to do so.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/f24744e0-219d-4c19-b109-ba738fee34ee?version=0.40.0\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In Qmod `QBit` is the simplest quantum type, and in this example, `q` is a quantum variable of type `QBit`. Quantum variables abstract away the mapping of quantum objects to qubits in the actual circuit.\n", - "\n", - "See also [Quantum Variables](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/quantum-variables/).\n", - "\n", - "We will discuss other quantum types during the workshop.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# The Qmod Workshop - Part 1: Language Fundamentals\n", - "\n", - "Follow exercises 1 through 5 for the first session of the workshop." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exercise 1 - Bell Pair\n", - "\n", - "Create a function that takes two single-qubit (`QBit`) quantum arguments and prepares the bell state on them ([Bell state](https://en.wikipedia.org/wiki/Bell_state)) by applying `H` on one variable and then using it as the control of a `CX` function with the second variable as the target.\n", - "Create a main function that uses this function and has two single-qubit outputs, initialize them to the |0> state (using the `allocate` function), and apply your function to them.\n", - "\n", - "See also [Functions](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/functions#syntax)\n" - ] - }, - { - "cell_type": "code", - "execution_count": 188, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/78a771e0-8c31-4975-8f5b-ff83cfa632ed?version=0.40.0\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "@qfunc\n", - "def main():\n", - " q0 = QBit(\"q0\")\n", - " q1 = QBit(\"q1\")\n", - " allocate(1,q0)\n", - " allocate(1,q1)\n", - " H(q0)\n", - " CX(q0,q1)\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Use qubit array subscript (the syntax - _variable_ **[** _index-expression_ **]**) to change the function from subsection 1 to receive a single quantum variable, a qubit array (`QArray`) of size 2.\n", - "Change your main function to declare a single output (also an array of size 2).\n" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/87d38342-edba-491d-a03f-c809aa0a60c8?version=0.40.0\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "@qfunc\n", - "def bell_state(q:QArray[QBit]):\n", - " H(q[0])\n", - " CX(q[0],q[1])\n", - "\n", - "@qfunc\n", - "def main(q: Output[QArray]):\n", - " allocate(2,q)\n", - " bell_state(q)\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exercise 2 - Repeat\n", - "\n", - "Use the built-in `repeat` operator to create your own Hadamard transform function (call it `my_hadamard_transform`). The Hadamard transform function is a function that takes as argument a qubit array of an unspecified size and applies `H` to each of its qubit.\n", - "\n", - "See also [Classical repeat](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/classical-control-flow/#classical-repeat).\n", - "\n", - "Set your main function to have a quantum array output of unspecified size, allocate 10 qubits, and then apply your Hadamard transform function.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/6b31c4ea-fea8-47e9-adbf-e1ee03ccf3ee?version=0.40.0\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "@qfunc\n", - "def my_hadamard_transform(q: QArray[QBit]) -> None:\n", - " repeat(q.len,lambda i: H(q[i]))\n", - "\n", - "@qfunc\n", - "def main(reg: Output[QArray]):\n", - " allocate(10,reg)\n", - " my_hadamard_transform(reg)\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Note: Quantum Variable Capture\n", - "The `repeat` operator invokes a statement block multiple times. The statement block is specified using a Python callable, typically a lambda expression. Inside the block you can refer to variables declared in the outer function scope.\n", - "This concept is called `quantum variable capture`, equivalent to [capture](https://en.wikipedia.org/wiki/Closure_(computer_programming)) in classical languages.\n", - "\n", - "See also [Capturing context variables and parameters](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/operators/#capturing-context-variables-and-parameters)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 3 - Power\n", - "Raising a quantum operation to a power appears in many known algorithms, for examples, in Grover search and Quantum Phase Estimation.\n", - "For most operations, it simply means repeating the same circuit multiple times.\n", - "\n", - "Sometimes, however, power can be simplified, thus saving computational resources.\n", - "The most trivial example is a quantum operation expressed as a single explicit unitary matrix (i.e., all n*n matrix terms are given) - raising the operation can be done by raising the matrix to that power via classical programming.\n", - "\n", - "See also [Power operator](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/quantum-operators/#syntax).\n", - "\n", - "Use the following code to generate a 2-qubit (real) unitary matrix:" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": {}, - "outputs": [], - "source": [ - "from typing import List\n", - "\n", - "import numpy as np\n", - "\n", - "from classiq import *\n", - "\n", - "rng = np.random.default_rng(seed=0)\n", - "random_matrix = rng.random((4, 4))\n", - "qr_unitary, _ = np.linalg.qr(random_matrix)\n", - "\n", - "unitary_matrix = QConstant(\"unitary_matrix\", List[List[float]], qr_unitary.tolist())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In order to reuse some classical value we can define a `QConstant` to store that value.\n", - "\n", - "1. Create a model that applies `unitary_matrix` on a 2 qubit variable.\n", - "2. Create another model that applies `unitary_matrix` raised to power 3 on a 2 qubit variable.\n", - "3. Compare the gate count via the Classiq’s IDE in both cases.\n", - "\n", - "Note - the signature of function `unitary` is:" - ] - }, - { - "cell_type": "code", - "execution_count": 90, - "metadata": {}, - "outputs": [], - "source": [ - "def unitary(\n", - " elements: CArray[CArray[CReal]],\n", - " target: QArray[QBit],\n", - ") -> None:\n", - " elements*target\n", - "\n", - "def print_depth_width(quantum_program):\n", - " generated_circuit = QuantumProgram.parse_raw(quantum_program)\n", - " print(f\"Synthesized circuit width: {generated_circuit.data.width}, depth: {generated_circuit.transpiled_circuit.depth}\")" - ] - }, - { - "cell_type": "code", - "execution_count": 91, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Synthesized circuit width: 2, depth: 7\n" - ] - } - ], - "source": [ - "#### Application of the Unitary Matrix\n", - "\n", - "from classiq import *\n", - "\n", - "@qfunc\n", - "def main(x: Output[QArray[QBit]]):\n", - " allocate(2, x)\n", - " unitary(unitary_matrix, x)\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "#show(qprog)\n", - "print_depth_width(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": 78, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/514069a2-ee68-494f-ab67-e32058eed3aa?version=0.40.0\n", - "Synthesized circuit width: 2, depth: 7\n" - ] - } - ], - "source": [ - "#### Application of the Unitary Matrix^3\n", - "\n", - "@qfunc\n", - "def main(x: Output[QArray[QBit]]):\n", - " allocate(2, x)\n", - " power(3,lambda: unitary(unitary_matrix, x))\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)\n", - "print_depth_width(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exercise 4 - User-defined Operators\n", - "Create a function that applies a given single-qubit operation to all qubits in its quantum argument (Call your function `my_apply_to_all`). Such a function is also called an operator, i.e. a function that one of its arguments is another function (its operand).\n", - "\n", - "See also [Operators](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/operators/).\n", - "\n", - "Follow these guidelines:\n", - "1. Your function should declare a quantum argument of type qubit array. It should also declare an argument of a function type with a single qubit argument.\n", - "2. The body should apply the operand to all qubits in the argument.\n", - "\n", - "When you're done, re-implement `my_hadamard_transform` from exercise 2 using this function instead of `repeat`.\n", - "Use the same main function from exercise 2." - ] - }, - { - "cell_type": "code", - "execution_count": 195, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/c5fd2696-40ce-4aef-9b90-77869802636a?version=0.40.0\n" - ] - } - ], - "source": [ - "from classiq import CReal, H, QBit, QCallable, RX, allocate, qfunc\n", - "n=10\n", - "\n", - "@qfunc\n", - "#def my_operator(my_operand: QCallable[QBit], q: QBit) -> None:\n", - "def my_apply_to_all(q:QArray[QBit]) -> None:\n", - " my_operand(q)\n", - "\n", - "\n", - "def my_operand(target: QArray[QBit]) -> None:\n", - " apply_to_all(H,target)\n", - "\n", - "@qfunc\n", - "def main(reg: Output[QArray]):\n", - " allocate(n,reg)\n", - " my_apply_to_all(reg)\n", - " \n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Exercise 5 - Quantum Conditionals\n", - "\n", - "### Exercise 5a - Control Operator\n", - "Use the built-in `control` operator to create a function that receives two single qubit variables and uses one of the variables to control an RY gate with a `pi/2` angle acting on the other variable (without using the `CRY` function).\n", - "\n", - "See also [Quantum operators](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/quantum-operators/#syntax).\n" - ] - }, - { - "cell_type": "code", - "execution_count": 198, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/2b209de3-92c0-4230-ab98-a33e70201418?version=0.40.0\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "@qfunc\n", - "def cry(x: QBit, target: QBit) -> None:\n", - " control(x, lambda: RY(pi/2, target))\n", - "@qfunc\n", - "def main():\n", - " q0=QBit(\"q0\")\n", - " q1=QBit(\"q1\")\n", - " allocate(1,q0)\n", - " allocate(1,q1)\n", - " cry(q0,q1)\n", - " \n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 5b - Control (\"Quantum If\")\n", - "The `control` operator is the conditional application of some operation, with the condition being that all control qubits are in the state |1>. This notion is generalized in QMOD to other control states, where the condition is specified as a comparison between a quantum numeric variable and a numeric value, similar to a classical `if` statement. Quantum numeric variables are declared with class `QNum`.\n", - "\n", - "See also [Numeric types](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/quantum-types/#syntax).\n", - "\n", - "In QMOD this generalization is available as a native statement - control.\n", - "\n", - "See also [control](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/quantum-operators/).\n", - "\n", - "1. Declare a `QNum` output argument using `Output[QNum]` and name it `x`.\n", - "2. Use the `prepare_int` function to initialize it to `9`. Note that you don't need to specify the `QNum` attributes - size, sign, and fraction digits, as they are inferred at the point of initialization.\n", - "3. Execute the circuit and observe the results.\n", - "4. Declare another output argument of type `QBit` and perform a `control` such that under the condition that `x` is 9, the qubit is flipped. Execute the circuit and observe the results. Repeat for a different condition." - ] - }, - { - "cell_type": "code", - "execution_count": 217, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/88577703-7093-49c5-af32-93d47c2a651d?version=0.40.0\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def main(x: Output[QNum]):\n", - " prepare_int(9,x)\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": 218, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/097577db-61d8-4988-b327-9a99b51ba7d6?version=0.40.0\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def main(x: Output[QNum], y:Output[QBit]):\n", - " prepare_int(9,x)\n", - " allocate(1,y)\n", - " control((x==9), lambda: X(y))\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.18" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/community/QClass_2024/Submissions/HW1/Jose_Alejandro_Garcia_Gonzalez_HW1_QClass2024.ipynb b/community/QClass_2024/Submissions/HW1/Jose_Alejandro_Garcia_Gonzalez_HW1_QClass2024.ipynb deleted file mode 100644 index d2d46a84..00000000 --- a/community/QClass_2024/Submissions/HW1/Jose_Alejandro_Garcia_Gonzalez_HW1_QClass2024.ipynb +++ /dev/null @@ -1,590 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# The Qmod Workshop - Introduction\n", - "\n", - "The Classiq platform features a high-level quantum modeling language called Qmod. Qmod is compiled into concrete gate-level implementation using a powerful synthesis engine that optimizes and adapts the implementation to different target hardware/simulation environments.\n", - "\n", - "In this workshop, we will learn how to write quantum models using Qmod. We will be using the Python embedding of Qmod, available as part of the Classiq Python SDK. We will learn basic concepts in the Qmod language, such as functions, operators, quantum variables, and quantum types. We will develop useful building blocks and small algorithms.\n", - "\n", - "The [QMOD language reference](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/) covers these concepts more systematically and includes more examples.\n", - "\n", - "This workshop consists of step-by-step exercises. It is structured as follows:\n", - "\n", - "- Part 1: Language Fundamentals - Exercises 1-5\n", - "- Part 2: Higher-Level Concepts - Exercises 6-10\n", - "- Part 3: Execution Flows - Exercises 11, 12\n", - "\n", - "The introduction and Part 1 are included in this notebook. Part 2 and 3 are each in its own separate notebook. For each exercise you will find the solution to the exercises at the bottom of the same notebook.\n", - "\n", - "### Preparations\n", - "\n", - "Make sure you have a Python version of 3.8 through 3.11 installed. Unfortunately, Classiq is not yet supported with Python 3.12.\n", - "\n", - "Install Classiq’s Python SDK by following the instructions on this page: [Getting Started - Classiq](https://docs.classiq.io/latest/getting-started/).\n", - "\n", - "### Python Qmod Exercises - General Instructions\n", - "\n", - "In order to synthesize and execute your Qmod code, you should:\n", - "1. Make sure you define a `main` function that calls functions you create.\n", - "2. Use `create_model` by running `qmod = create_model(main)` to construct a representation of your model.\n", - "3. You can synthesize the model (using `qprog = synthesize(qmod)`) to obtain an implementation - a quantum program.\n", - "4. You can then visualize the quantum program (`show(qprog)`) or execute it (using `execute(qprog)`. See: [Execution - Classiq](https://docs.classiq.io/latest/user-guide/platform/executor/#full-example)). You can also execute it with the IDE after visualizing the circuit.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 0: From Model to Execution\n", - "\n", - "The following model defines a function that applies X and H gates on a single qubit, and subsequently calls it:" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "from classiq import *\n", - "\n", - "\n", - "# Define a quantum function using the @qfunc decorator\n", - "@qfunc\n", - "def foo(q: QBit) -> None:\n", - " X(target=q)\n", - " H(target=q)\n", - "\n", - "\n", - "# Define a main function\n", - "@qfunc\n", - "def main(res: Output[QBit]) -> None:\n", - " allocate(1, res)\n", - " foo(q=res)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Create a model from it, and synthesize, visualize, and execute it.\n", - "\n", - "Use the General Instructions above to do so.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/5a487576-7c0a-4f44-b873-3a7a156cdd44?version=0.41.0\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "# Your code here:\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "job = execute(qprog)\n", - "job.open_in_ide()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In Qmod `QBit` is the simplest quantum type, and in this example, `q` is a quantum variable of type `QBit`. Quantum variables abstract away the mapping of quantum objects to qubits in the actual circuit.\n", - "\n", - "See also [Quantum Variables](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/quantum-variables/).\n", - "\n", - "We will discuss other quantum types during the workshop.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# The Qmod Workshop - Part 1: Language Fundamentals\n", - "\n", - "Follow exercises 1 through 5 for the first session of the workshop." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exercise 1 - Bell Pair\n", - "\n", - "Create a function that takes two single-qubit (`QBit`) quantum arguments and prepares the bell state on them ([Bell state](https://en.wikipedia.org/wiki/Bell_state)) by applying `H` on one variable and then using it as the control of a `CX` function with the second variable as the target.\n", - "Create a main function that uses this function and has two single-qubit outputs, initialize them to the |0> state (using the `allocate` function), and apply your function to them.\n", - "\n", - "See also [Functions](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/functions#syntax)\n" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/aaced20c-b55d-4e92-bc28-b5e17a142160?version=0.41.0\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "\n", - "@qfunc\n", - "def prepare_bell_pair(x:QBit, y:QBit):\n", - " H(x)\n", - " CX(x,y)\n", - "\n", - "@qfunc\n", - "def main(x: Output[QBit], y: Output[QBit]):\n", - " allocate(1,x)\n", - " allocate(1,y)\n", - " prepare_bell_pair(x,y)\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Use qubit array subscript (the syntax - _variable_ **[** _index-expression_ **]**) to change the function from subsection 1 to receive a single quantum variable, a qubit array (`QArray`) of size 2.\n", - "Change your main function to declare a single output (also an array of size 2).\n" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/404d5c2d-d765-424e-99c7-ea93efc0246d?version=0.41.0\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "\n", - "@qfunc\n", - "def prepare_bell_pair(x:QArray[QBit]):\n", - " H(x[0])\n", - " CX(x[0],x[1])\n", - "\n", - "@qfunc\n", - "def main(res: Output[QArray[QBit]]):\n", - " allocate(2,res)\n", - " prepare_bell_pair(res)\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exercise 2 - Repeat\n", - "\n", - "Use the built-in `repeat` operator to create your own Hadamard transform function (call it `my_hadamard_transform`). The Hadamard transform function is a function that takes as argument a qubit array of an unspecified size and applies `H` to each of its qubit.\n", - "\n", - "See also [Classical repeat](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/classical-control-flow/#classical-repeat).\n", - "\n", - "Set your main function to have a quantum array output of unspecified size, allocate 10 qubits, and then apply your Hadamard transform function.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/c4a255cb-bb61-4fe9-9743-13327299e82c?version=0.41.0\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "\n", - "@qfunc\n", - "def my_hadamard_transform(x:QArray[QBit]):\n", - " repeat(x.len, lambda i: H(x[i]))\n", - "\n", - "@qfunc\n", - "def main(res: Output[QArray]): \n", - " allocate(10,res)\n", - " my_hadamard_transform(res)\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Note: Quantum Variable Capture\n", - "The `repeat` operator invokes a statement block multiple times. The statement block is specified using a Python callable, typically a lambda expression. Inside the block you can refer to variables declared in the outer function scope.\n", - "This concept is called `quantum variable capture`, equivalent to [capture](https://en.wikipedia.org/wiki/Closure_(computer_programming)) in classical languages.\n", - "\n", - "See also [Capturing context variables and parameters](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/operators/#capturing-context-variables-and-parameters)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 3 - Power\n", - "Raising a quantum operation to a power appears in many known algorithms, for examples, in Grover search and Quantum Phase Estimation.\n", - "For most operations, it simply means repeating the same circuit multiple times.\n", - "\n", - "Sometimes, however, power can be simplified, thus saving computational resources.\n", - "The most trivial example is a quantum operation expressed as a single explicit unitary matrix (i.e., all n*n matrix terms are given) - raising the operation can be done by raising the matrix to that power via classical programming.\n", - "\n", - "See also [Power operator](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/quantum-operators/#syntax).\n", - "\n", - "Use the following code to generate a 2-qubit (real) unitary matrix:" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "from typing import List\n", - "\n", - "import numpy as np\n", - "\n", - "from classiq import *\n", - "\n", - "rng = np.random.default_rng(seed=0)\n", - "random_matrix = rng.random((4, 4))\n", - "qr_unitary, _ = np.linalg.qr(random_matrix)\n", - "\n", - "unitary_matrix = QConstant(\"unitary_matrix\", List[List[float]], qr_unitary.tolist())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In order to reuse some classical value we can define a `QConstant` to store that value.\n", - "\n", - "1. Create a model that applies `unitary_matrix` on a 2 qubit variable.\n", - "2. Create another model that applies `unitary_matrix` raised to power 3 on a 2 qubit variable.\n", - "3. Compare the gate count via the Classiq’s IDE in both cases.\n", - "\n", - "Note - the signature of function `unitary` is:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def unitary(\n", - " elements: CArray[CArray[CReal]],\n", - " target: QArray[QBit],\n", - ") -> None:\n", - " pass" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/b23cd114-8fd1-4f28-aa19-747a92e315f3?version=0.41.0\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "\n", - "@qfunc\n", - "def main(x: Output[QArray[QBit]]):\n", - " allocate(2, x)\n", - " unitary(unitary_matrix, x)\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/821fb878-0eb2-4706-8fd6-28985930efcf?version=0.41.0\n" - ] - } - ], - "source": [ - "@qfunc\n", - "def matrix(x:QArray[QBit]):\n", - " unitary(unitary_matrix, x)\n", - "\n", - "@qfunc\n", - "def main(x: Output[QArray[QBit]]):\n", - " allocate(2, x)\n", - " power(3, lambda: matrix(x))\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exercise 4 - User-defined Operators\n", - "Create a function that applies a given single-qubit operation to all qubits in its quantum argument (Call your function `my_apply_to_all`). Such a function is also called an operator, i.e. a function that one of its arguments is another function (its operand).\n", - "\n", - "See also [Operators](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/operators/).\n", - "\n", - "Follow these guidelines:\n", - "1. Your function should declare a quantum argument of type qubit array. It should also declare an argument of a function type with a single qubit argument.\n", - "2. The body should apply the operand to all qubits in the argument.\n", - "\n", - "When you're done, re-implement `my_hadamard_transform` from exercise 2 using this function instead of `repeat`.\n", - "Use the same main function from exercise 2." - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/8bb0d37f-e026-44b5-a11a-b6038e37071b?version=0.41.0\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "\n", - "@qfunc\n", - "def my_apply_to_all(my_operand: QCallable[QBit], q: QArray[QBit]):\n", - " repeat(q.len, lambda i: my_operand(q[i]))\n", - "\n", - "@qfunc\n", - "def my_hadamard_transform(x:QArray[QBit]):\n", - " my_apply_to_all(H,x)\n", - "\n", - "@qfunc\n", - "def main(res: Output[QArray]): \n", - " allocate(10,res)\n", - " my_hadamard_transform(res)\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Exercise 5 - Quantum Conditionals\n", - "\n", - "### Exercise 5a - Control Operator\n", - "Use the built-in `control` operator to create a function that receives two single qubit variables and uses one of the variables to control an RY gate with a `pi/2` angle acting on the other variable (without using the `CRY` function).\n", - "\n", - "See also [Quantum operators](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/quantum-operators/#syntax).\n" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/a256e659-d2c5-4581-bbbc-b0d3cc198067?version=0.41.0\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "from classiq.qmod.symbolic import pi\n", - "\n", - "# Your code here:\n", - "\n", - "@qfunc\n", - "def Manual_Control(target: QBit, cont: QBit):\n", - " control(cont, lambda: RY(pi/2, target))\n", - "\n", - "@qfunc\n", - "def main(x: Output[QBit], y: Output[QBit]):\n", - " allocate(1, x)\n", - " H(x)\n", - " allocate(1, y)\n", - " Manual_Control(y,x)\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 5b - Control (\"Quantum If\")\n", - "The `control` operator is the conditional application of some operation, with the condition being that all control qubits are in the state |1>. This notion is generalized in QMOD to other control states, where the condition is specified as a comparison between a quantum numeric variable and a numeric value, similar to a classical `if` statement. Quantum numeric variables are declared with class `QNum`.\n", - "\n", - "See also [Numeric types](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/quantum-types/#syntax).\n", - "\n", - "In QMOD this generalization is available as a native statement - control.\n", - "\n", - "See also [control](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/quantum-operators/).\n", - "\n", - "1. Declare a `QNum` output argument using `Output[QNum]` and name it `x`.\n", - "2. Use the `prepare_int` function to initialize it to `9`. Note that you don't need to specify the `QNum` attributes - size, sign, and fraction digits, as they are inferred at the point of initialization.\n", - "3. Execute the circuit and observe the results.\n", - "4. Declare another output argument of type `QBit` and perform a `control` such that under the condition that `x` is 9, the qubit is flipped. Execute the circuit and observe the results. Repeat for a different condition." - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/b4f5a4f6-54cb-40a3-ae7f-21da56c16d6c?version=0.41.0\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "\n", - "@qfunc\n", - "def main(x: Output[QNum]):\n", - " prepare_int(9, x)\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/f882b4a1-6862-4486-bf8d-4b53fa38a418?version=0.41.0\n" - ] - } - ], - "source": [ - "@qfunc\n", - "def main(x: Output[QNum], target: Output[QBit]):\n", - " prepare_int(9, x)\n", - " allocate(1,target)\n", - " control(x == 6, lambda: X(target))\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.9" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/community/QClass_2024/Submissions/HW1/Mah_Noor_HW1_QClass2024.ipynb b/community/QClass_2024/Submissions/HW1/Mah_Noor_HW1_QClass2024.ipynb deleted file mode 100644 index eba77cb1..00000000 --- a/community/QClass_2024/Submissions/HW1/Mah_Noor_HW1_QClass2024.ipynb +++ /dev/null @@ -1,571 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# The Qmod Workshop - Introduction\n", - "\n", - "The Classiq platform features a high-level quantum modeling language called Qmod. Qmod is compiled into concrete gate-level implementation using a powerful synthesis engine that optimizes and adapts the implementation to different target hardware/simulation environments.\n", - "\n", - "In this workshop, we will learn how to write quantum models using Qmod. We will be using the Python embedding of Qmod, available as part of the Classiq Python SDK. We will learn basic concepts in the Qmod language, such as functions, operators, quantum variables, and quantum types. We will develop useful building blocks and small algorithms.\n", - "\n", - "The [QMOD language reference](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/) covers these concepts more systematically and includes more examples.\n", - "\n", - "This workshop consists of step-by-step exercises. It is structured as follows:\n", - "\n", - "- Part 1: Language Fundamentals - Exercises 1-5\n", - "- Part 2: Higher-Level Concepts - Exercises 6-10\n", - "- Part 3: Execution Flows - Exercises 11, 12\n", - "\n", - "The introduction and Part 1 are included in this notebook. Part 2 and 3 are each in its own separate notebook. For each exercise you will find the solution to the exercises at the bottom of the same notebook.\n", - "\n", - "### Preparations\n", - "\n", - "Make sure you have a Python version of 3.8 through 3.11 installed. Unfortunately, Classiq is not yet supported with Python 3.12.\n", - "\n", - "Install Classiq’s Python SDK by following the instructions on this page: [Getting Started - Classiq](https://docs.classiq.io/latest/getting-started/).\n", - "\n", - "### Python Qmod Exercises - General Instructions\n", - "\n", - "In order to synthesize and execute your Qmod code, you should:\n", - "1. Make sure you define a `main` function that calls functions you create.\n", - "2. Use `create_model` by running `qmod = create_model(main)` to construct a representation of your model.\n", - "3. You can synthesize the model (using `qprog = synthesize(qmod)`) to obtain an implementation - a quantum program.\n", - "4. You can then visualize the quantum program (`show(qprog)`) or execute it (using `execute(qprog)`. See: [Execution - Classiq](https://docs.classiq.io/latest/user-guide/platform/executor/#full-example)). You can also execute it with the IDE after visualizing the circuit.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 0: From Model to Execution\n", - "\n", - "The following model defines a function that applies X and H gates on a single qubit, and subsequently calls it:" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "from classiq import *\n", - "\n", - "\n", - "# Define a quantum function using the @qfunc decorator\n", - "@qfunc\n", - "def foo(q: QBit) -> None:\n", - " X(target=q)\n", - " H(target=q)\n", - "\n", - "\n", - "# Define a main function\n", - "@qfunc\n", - "def main(res: Output[QBit]) -> None:\n", - " allocate(1, res)\n", - " foo(q=res)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Create a model from it, and synthesize, visualize, and execute it.\n", - "\n", - "Use the General Instructions above to do so.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In Qmod `QBit` is the simplest quantum type, and in this example, `q` is a quantum variable of type `QBit`. Quantum variables abstract away the mapping of quantum objects to qubits in the actual circuit.\n", - "\n", - "See also [Quantum Variables](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/quantum-variables/).\n", - "\n", - "We will discuss other quantum types during the workshop.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# The Qmod Workshop - Part 1: Language Fundamentals\n", - "\n", - "Follow exercises 1 through 5 for the first session of the workshop." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exercise 1 - Bell Pair\n", - "\n", - "Create a function that takes two single-qubit (`QBit`) quantum arguments and prepares the bell state on them ([Bell state](https://en.wikipedia.org/wiki/Bell_state)) by applying `H` on one variable and then using it as the control of a `CX` function with the second variable as the target.\n", - "Create a main function that uses this function and has two single-qubit outputs, initialize them to the |0> state (using the `allocate` function), and apply your function to them.\n", - "\n", - "See also [Functions](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/functions#syntax)\n" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/32935030-c97f-4809-ab01-6b14820439da?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "def bell_state_using_two_variables(x:QBit, y:QBit):\n", - " H(x)\n", - " CX(x,y)\n", - "@qfunc\n", - "def main(a:Output[QBit], b:Output[QBit]):\n", - " allocate(1,a)\n", - " allocate(1,b)\n", - " bell_state_using_two_variables(a,b)\n", - " \n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Use qubit array subscript (the syntax - _variable_ **[** _index-expression_ **]**) to change the function from subsection 1 to receive a single quantum variable, a qubit array (`QArray`) of size 2.\n", - "Change your main function to declare a single output (also an array of size 2).\n" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/6b66b6b1-c5c9-41f0-812b-e1d24fc1f9b9?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "def bell_state_using_one_variable(x: QArray[QBit]):\n", - " H(x[0])\n", - " CX(x[0],x[1])\n", - "@qfunc\n", - "def main(reg:Output[QArray]):\n", - " allocate(2,reg)\n", - " bell_state_using_one_variable(reg)\n", - " \n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exercise 2 - Repeat\n", - "\n", - "Use the built-in `repeat` operator to create your own Hadamard transform function (call it `my_hadamard_transform`). The Hadamard transform function is a function that takes as argument a qubit array of an unspecified size and applies `H` to each of its qubit.\n", - "\n", - "See also [Classical repeat](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/classical-control-flow/#classical-repeat).\n", - "\n", - "Set your main function to have a quantum array output of unspecified size, allocate 10 qubits, and then apply your Hadamard transform function.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "def my_hadamard_transform(x: QArray[QBit]):\n", - " repeat( x.len, lambda i:H(x[i]))\n", - " " - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "@qfunc\n", - "def main(reg: Output[QArray]):\n", - " allocate(10,reg)\n", - " my_hadamard_transform(reg)" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/7d7805d8-0d35-4e25-aa9b-acdcd080e8a5?version=0.41.2\n" - ] - } - ], - "source": [ - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Note: Quantum Variable Capture\n", - "The `repeat` operator invokes a statement block multiple times. The statement block is specified using a Python callable, typically a lambda expression. Inside the block you can refer to variables declared in the outer function scope.\n", - "This concept is called `quantum variable capture`, equivalent to [capture](https://en.wikipedia.org/wiki/Closure_(computer_programming)) in classical languages.\n", - "\n", - "See also [Capturing context variables and parameters](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/operators/#capturing-context-variables-and-parameters)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 3 - Power\n", - "Raising a quantum operation to a power appears in many known algorithms, for examples, in Grover search and Quantum Phase Estimation.\n", - "For most operations, it simply means repeating the same circuit multiple times.\n", - "\n", - "Sometimes, however, power can be simplified, thus saving computational resources.\n", - "The most trivial example is a quantum operation expressed as a single explicit unitary matrix (i.e., all n*n matrix terms are given) - raising the operation can be done by raising the matrix to that power via classical programming.\n", - "\n", - "See also [Power operator](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/quantum-operators/#syntax).\n", - "\n", - "Use the following code to generate a 2-qubit (real) unitary matrix:" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "from typing import List\n", - "\n", - "import numpy as np\n", - "\n", - "from classiq import *\n", - "\n", - "rng = np.random.default_rng(seed=0)\n", - "random_matrix = rng.random((4, 4))\n", - "qr_unitary, _ = np.linalg.qr(random_matrix)\n", - "\n", - "unitary_matrix = QConstant(\"unitary_matrix\", List[List[float]], qr_unitary.tolist())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In order to reuse some classical value we can define a `QConstant` to store that value.\n", - "\n", - "1. Create a model that applies `unitary_matrix` on a 2 qubit variable.\n", - "2. Create another model that applies `unitary_matrix` raised to power 3 on a 2 qubit variable.\n", - "3. Compare the gate count via the Classiq’s IDE in both cases.\n", - "\n", - "Note - the signature of function `unitary` is:" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "def unitary(\n", - " elements: CArray[CArray[CReal]],\n", - " target: QArray[QBit],\n", - ") -> None:\n", - " pass" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/7229744e-e24c-499a-9743-b7ccacdd8cc6?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def main(x: Output[QArray[QBit]]):\n", - " allocate(2, x)\n", - " unitary(unitary_matrix, x)\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/4f0acd0a-938a-4083-804c-4c82b691e27e?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def main(x: Output[QArray[QBit]]):\n", - " allocate(2, x)\n", - " power(3, lambda:unitary(unitary_matrix, x))\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exercise 4 - User-defined Operators\n", - "Create a function that applies a given single-qubit operation to all qubits in its quantum argument (Call your function `my_apply_to_all`). Such a function is also called an operator, i.e. a function that one of its arguments is another function (its operand).\n", - "\n", - "See also [Operators](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/operators/).\n", - "\n", - "Follow these guidelines:\n", - "1. Your function should declare a quantum argument of type qubit array. It should also declare an argument of a function type with a single qubit argument.\n", - "2. The body should apply the operand to all qubits in the argument.\n", - "\n", - "When you're done, re-implement `my_hadamard_transform` from exercise 2 using this function instead of `repeat`.\n", - "Use the same main function from exercise 2." - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/33ee242d-e09e-4b2b-8047-7e601df209e5?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "def my_apply_to_all(reg:QArray[QBit], operand: QCallable[QBit] ):\n", - " apply_to_all(operand,reg)\n", - "\n", - "def my_hadamard_transform(y: QArray[QBit]):\n", - " my_apply_to_all(y,H)\n", - "\n", - "@qfunc\n", - "def main(x: Output[QArray]):\n", - " allocate(10,x)\n", - " my_hadamard_transform(x)\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Exercise 5 - Quantum Conditionals\n", - "\n", - "### Exercise 5a - Control Operator\n", - "Use the built-in `control` operator to create a function that receives two single qubit variables and uses one of the variables to control an RY gate with a `pi/2` angle acting on the other variable (without using the `CRY` function).\n", - "\n", - "See also [Quantum operators](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/quantum-operators/#syntax).\n" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "from numpy import pi" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "def control_gate(x:QBit, y:QBit):\n", - " control(x, lambda: RY(pi / 2, y))" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [], - "source": [ - "@qfunc\n", - "def main(res: Output[QBit])-> None:\n", - " x = QBit(\"x\")\n", - " allocate(1, x)\n", - " allocate(1, res)\n", - " control_gate(x,res)\n" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/f146d8b4-d587-4ee1-b10c-b037007c33df?version=0.41.2\n" - ] - } - ], - "source": [ - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 5b - Control (\"Quantum If\")\n", - "The `control` operator is the conditional application of some operation, with the condition being that all control qubits are in the state |1>. This notion is generalized in QMOD to other control states, where the condition is specified as a comparison between a quantum numeric variable and a numeric value, similar to a classical `if` statement. Quantum numeric variables are declared with class `QNum`.\n", - "\n", - "See also [Numeric types](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/quantum-types/#syntax).\n", - "\n", - "In QMOD this generalization is available as a native statement - control.\n", - "\n", - "See also [control](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/quantum-operators/).\n", - "\n", - "1. Declare a `QNum` output argument using `Output[QNum]` and name it `x`.\n", - "2. Use the `prepare_int` function to initialize it to `9`. Note that you don't need to specify the `QNum` attributes - size, sign, and fraction digits, as they are inferred at the point of initialization.\n", - "3. Execute the circuit and observe the results.\n", - "4. Declare another output argument of type `QBit` and perform a `control` such that under the condition that `x` is 9, the qubit is flipped. Execute the circuit and observe the results. Repeat for a different condition." - ] - }, - { - "cell_type": "code", - "execution_count": 53, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/07f84c53-db38-49c3-b14e-7804aebb6970?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def main(x:Output[QNum], res:Output[QBit])-> None:\n", - "# allocate_num(4,False, 0, x)\n", - " allocate(1,res)\n", - " prepare_int(9, x)\n", - "\n", - " control(x==9, lambda : X(res))\n", - " \n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.18" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/community/QClass_2024/Submissions/HW1/Noah_Nzeki_William_HW1_QClass2024.ipynb b/community/QClass_2024/Submissions/HW1/Noah_Nzeki_William_HW1_QClass2024.ipynb deleted file mode 100755 index 77d83a26..00000000 --- a/community/QClass_2024/Submissions/HW1/Noah_Nzeki_William_HW1_QClass2024.ipynb +++ /dev/null @@ -1,544 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# The Qmod Workshop - Introduction\n", - "\n", - "The Classiq platform features a high-level quantum modeling language called Qmod. Qmod is compiled into concrete gate-level implementation using a powerful synthesis engine that optimizes and adapts the implementation to different target hardware/simulation environments.\n", - "\n", - "In this workshop, we will learn how to write quantum models using Qmod. We will be using the Python embedding of Qmod, available as part of the Classiq Python SDK. We will learn basic concepts in the Qmod language, such as functions, operators, quantum variables, and quantum types. We will develop useful building blocks and small algorithms.\n", - "\n", - "The [QMOD language reference](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/) covers these concepts more systematically and includes more examples.\n", - "\n", - "This workshop consists of step-by-step exercises. It is structured as follows:\n", - "\n", - "- Part 1: Language Fundamentals - Exercises 1-5\n", - "- Part 2: Higher-Level Concepts - Exercises 6-10\n", - "- Part 3: Execution Flows - Exercises 11, 12\n", - "\n", - "The introduction and Part 1 are included in this notebook. Part 2 and 3 are each in its own separate notebook. For each exercise you will find the solution to the exercises at the bottom of the same notebook.\n", - "\n", - "### Preparations\n", - "\n", - "Make sure you have a Python version of 3.8 through 3.11 installed. Unfortunately, Classiq is not yet supported with Python 3.12.\n", - "\n", - "Install Classiq’s Python SDK by following the instructions on this page: [Getting Started - Classiq](https://docs.classiq.io/latest/getting-started/).\n", - "\n", - "### Python Qmod Exercises - General Instructions\n", - "\n", - "In order to synthesize and execute your Qmod code, you should:\n", - "1. Make sure you define a `main` function that calls functions you create.\n", - "2. Use `create_model` by running `qmod = create_model(main)` to construct a representation of your model.\n", - "3. You can synthesize the model (using `qprog = synthesize(qmod)`) to obtain an implementation - a quantum program.\n", - "4. You can then visualize the quantum program (`show(qprog)`) or execute it (using `execute(qprog)`. See: [Execution - Classiq](https://docs.classiq.io/latest/user-guide/platform/executor/#full-example)). You can also execute it with the IDE after visualizing the circuit.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 0: From Model to Execution\n", - "\n", - "The following model defines a function that applies X and H gates on a single qubit, and subsequently calls it:" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "from classiq import *\n", - "\n", - "\n", - "# Define a quantum function using the @qfunc decorator\n", - "@qfunc\n", - "def foo(q: QBit) -> None:\n", - " X(target=q)\n", - " H(target=q)\n", - "\n", - "\n", - "# Define a main function\n", - "@qfunc\n", - "def main(res: Output[QBit]) -> None:\n", - " allocate(1, res)\n", - " foo(q=res)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Create a model from it, and synthesize, visualize, and execute it.\n", - "\n", - "Use the General Instructions above to do so.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/f3d7a8a9-b4e5-415b-907b-7545339467c6?version=0.41.1\n", - "Opening in existing browser session.\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here: \n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)\n", - "#result = execute(qprog).result()\n", - "#print(result)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In Qmod `QBit` is the simplest quantum type, and in this example, `q` is a quantum variable of type `QBit`. Quantum variables abstract away the mapping of quantum objects to qubits in the actual circuit.\n", - "\n", - "See also [Quantum Variables](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/quantum-variables/).\n", - "\n", - "We will discuss other quantum types during the workshop.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# The Qmod Workshop - Part 1: Language Fundamentals\n", - "\n", - "Follow exercises 1 through 5 for the first session of the workshop." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exercise 1 - Bell Pair\n", - "\n", - "Create a function that takes two single-qubit (`QBit`) quantum arguments and prepares the bell state on them ([Bell state](https://en.wikipedia.org/wiki/Bell_state)) by applying `H` on one variable and then using it as the control of a `CX` function with the second variable as the target.\n", - "Create a main function that uses this function and has two single-qubit outputs, initialize them to the |0> state (using the `allocate` function), and apply your function to them.\n", - "\n", - "See also [Functions](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/functions#syntax)\n" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/4ebd2a6c-14e3-4b14-8628-13534e35c36b?version=0.41.1\n", - "Opening in existing browser session.\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def prep_bell_state(q1: QBit, q2: QBit) -> None:\n", - " H(q1)\n", - " CX(q1, q2)\n", - " \n", - "@qfunc\n", - "def main(res1: Output[QBit], res2: Output[QBit]) -> None:\n", - " allocate(1, res1)\n", - " allocate(1, res2)\n", - " prep_bell_state(res1, res2)\n", - "#\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Use qubit array subscript (the syntax - _variable_ **[** _index-expression_ **]**) to change the function from subsection 1 to receive a single quantum variable, a qubit array (`QArray`) of size 2.\n", - "Change your main function to declare a single output (also an array of size 2).\n" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/7056fa8c-c9bd-450c-84ea-0e7b866bd8fe?version=0.41.1\n", - "Opening in existing browser session.\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def prep_bell_state(qubits: QArray[QBit, 2]) -> None:\n", - " H(qubits[1])\n", - " CX(qubits[1], qubits[0])\n", - "\n", - "@qfunc\n", - "def main(res: Output[QArray[QBit, 2]]) -> None:\n", - " allocate(2, res) \n", - " prep_bell_state(res)\n", - "\n", - "\n", - "model = create_model(main)\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exercise 2 - Repeat\n", - "\n", - "Use the built-in `repeat` operator to create your own Hadamard transform function (call it `my_hadamard_transform`). The Hadamard transform function is a function that takes as argument a qubit array of an unspecified size and applies `H` to each of its qubit.\n", - "\n", - "See also [Classical repeat](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/classical-control-flow/#classical-repeat).\n", - "\n", - "Set your main function to have a quantum array output of unspecified size, allocate 10 qubits, and then apply your Hadamard transform function.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/e0286555-126e-4c74-a26b-130744f21789?version=0.41.1\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def my_hadamard_transform(q: QArray[QBit]) -> None:\n", - " repeat(q.len, lambda i: H(q[i]))\n", - "\n", - "@qfunc\n", - "def main(reg: Output[QArray]): \n", - " allocate(10,reg)\n", - " my_hadamard_transform(reg)\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Note: Quantum Variable Capture\n", - "The `repeat` operator invokes a statement block multiple times. The statement block is specified using a Python callable, typically a lambda expression. Inside the block you can refer to variables declared in the outer function scope.\n", - "This concept is called `quantum variable capture`, equivalent to [capture](https://en.wikipedia.org/wiki/Closure_(computer_programming)) in classical languages.\n", - "\n", - "See also [Capturing context variables and parameters](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/operators/#capturing-context-variables-and-parameters)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 3 - Power\n", - "Raising a quantum operation to a power appears in many known algorithms, for examples, in Grover search and Quantum Phase Estimation.\n", - "For most operations, it simply means repeating the same circuit multiple times.\n", - "\n", - "Sometimes, however, power can be simplified, thus saving computational resources.\n", - "The most trivial example is a quantum operation expressed as a single explicit unitary matrix (i.e., all n*n matrix terms are given) - raising the operation can be done by raising the matrix to that power via classical programming.\n", - "\n", - "See also [Power operator](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/quantum-operators/#syntax).\n", - "\n", - "Use the following code to generate a 2-qubit (real) unitary matrix:" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "from typing import List\n", - "\n", - "import numpy as np\n", - "\n", - "from classiq import *\n", - "\n", - "rng = np.random.default_rng(seed=0)\n", - "random_matrix = rng.random((4, 4))\n", - "qr_unitary, _ = np.linalg.qr(random_matrix)\n", - "\n", - "unitary_matrix = QConstant(\"unitary_matrix\", List[List[float]], qr_unitary.tolist())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In order to reuse some classical value we can define a `QConstant` to store that value.\n", - "\n", - "1. Create a model that applies `unitary_matrix` on a 2 qubit variable.\n", - "2. Create another model that applies `unitary_matrix` raised to power 3 on a 2 qubit variable.\n", - "3. Compare the gate count via the Classiq’s IDE in both cases.\n", - "\n", - "Note - the signature of function `unitary` is:" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "def unitary(\n", - " elements: CArray[CArray[CReal]],\n", - " target: QArray[QBit],\n", - ") -> None:\n", - " pass" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/772b8449-7fe3-4534-be64-a90c15ab314b?version=0.41.1\n", - "Opening in existing browser session.\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "\n", - "@qfunc\n", - "def main(qubit: Output[QArray[QBit]]) -> None:\n", - " allocate(2, qubit)\n", - " power(3, lambda: unitary(unitary_matrix, qubit))\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exercise 4 - User-defined Operators\n", - "Create a function that applies a given single-qubit operation to all qubits in its quantum argument (Call your function `my_apply_to_all`). Such a function is also called an operator, i.e. a function that one of its arguments is another function (its operand).\n", - "\n", - "See also [Operators](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/operators/).\n", - "\n", - "Follow these guidelines:\n", - "1. Your function should declare a quantum argument of type qubit array. It should also declare an argument of a function type with a single qubit argument.\n", - "2. The body should apply the operand to all qubits in the argument.\n", - "\n", - "When you're done, re-implement `my_hadamard_transform` from exercise 2 using this function instead of `repeat`.\n", - "Use the same main function from exercise 2." - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/f6020437-edac-4498-b445-426471d80b88?version=0.41.1\n", - "Opening in existing browser session.\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def my_apply_to_all(my_operand: QCallable[QBit], qubit: QArray[QBit]) -> None:\n", - " repeat(qubit.len, lambda i: my_operand(qubit[i]))\n", - " \n", - "@qfunc\n", - "def my_hadamard_transform(qubit: QArray[QBit]) -> None:\n", - " my_apply_to_all(lambda t: H(t), qubit)\n", - "\n", - "@qfunc\n", - "def main(qubit: Output[QArray[QBit]]) -> None:\n", - " allocate(10, qubit)\n", - " my_hadamard_transform(qubit)\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Exercise 5 - Quantum Conditionals\n", - "\n", - "### Exercise 5a - Control Operator\n", - "Use the built-in `control` operator to create a function that receives two single qubit variables and uses one of the variables to control an RY gate with a `pi/2` angle acting on the other variable (without using the `CRY` function).\n", - "\n", - "See also [Quantum operators](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/quantum-operators/#syntax).\n" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/8b0e59eb-c207-4a24-bd01-0808bdcf0d29?version=0.41.1\n", - "Opening in existing browser session.\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "from classiq.qmod.symbolic import pi\n", - "\n", - "@qfunc\n", - "def controlled_ry_gate(control_bit: QBit, target: QBit) -> None:\n", - " control(control_bit, lambda: RY(pi / 2, target))\n", - "\n", - "@qfunc\n", - "def main(control_bit: Output[QBit], target: Output[QBit]) -> None:\n", - " allocate(1, control_bit)\n", - " allocate(1, target)\n", - " controlled_ry_gate(control_bit, target)\n", - " \n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 5b - Control (\"Quantum If\")\n", - "The `control` operator is the conditional application of some operation, with the condition being that all control qubits are in the state |1>. This notion is generalized in QMOD to other control states, where the condition is specified as a comparison between a quantum numeric variable and a numeric value, similar to a classical `if` statement. Quantum numeric variables are declared with class `QNum`.\n", - "\n", - "See also [Numeric types](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/quantum-types/#syntax).\n", - "\n", - "In QMOD this generalization is available as a native statement - control.\n", - "\n", - "See also [control](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/quantum-operators/).\n", - "\n", - "1. Declare a `QNum` output argument using `Output[QNum]` and name it `x`.\n", - "2. Use the `prepare_int` function to initialize it to `9`. Note that you don't need to specify the `QNum` attributes - size, sign, and fraction digits, as they are inferred at the point of initialization.\n", - "3. Execute the circuit and observe the results.\n", - "4. Declare another output argument of type `QBit` and perform a `control` such that under the condition that `x` is 9, the qubit is flipped. Execute the circuit and observe the results. Repeat for a different condition." - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/756325a0-8671-49de-a68a-a63b97d159e2?version=0.41.1\n", - "Opening in existing browser session.\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def main(x: Output[QNum], target: Output[QBit]) -> None:\n", - " prepare_int(9, x)\n", - " allocate(1, target)\n", - " control(x == 9, lambda: X(target))\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.12" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/community/QClass_2024/Submissions/HW1/Otmane_ainelkitane_HW1_QClass2024.ipynb b/community/QClass_2024/Submissions/HW1/Otmane_ainelkitane_HW1_QClass2024.ipynb deleted file mode 100644 index 1ba28caa..00000000 --- a/community/QClass_2024/Submissions/HW1/Otmane_ainelkitane_HW1_QClass2024.ipynb +++ /dev/null @@ -1,650 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "id": "LX9Nj4MW7988" - }, - "source": [ - "# The Qmod Workshop - Introduction\n", - "\n", - "The Classiq platform features a high-level quantum modeling language called Qmod. Qmod is compiled into concrete gate-level implementation using a powerful synthesis engine that optimizes and adapts the implementation to different target hardware/simulation environments.\n", - "\n", - "In this workshop, we will learn how to write quantum models using Qmod. We will be using the Python embedding of Qmod, available as part of the Classiq Python SDK. We will learn basic concepts in the Qmod language, such as functions, operators, quantum variables, and quantum types. We will develop useful building blocks and small algorithms.\n", - "\n", - "The [QMOD language reference](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/) covers these concepts more systematically and includes more examples.\n", - "\n", - "This workshop consists of step-by-step exercises. It is structured as follows:\n", - "\n", - "- Part 1: Language Fundamentals - Exercises 1-5\n", - "- Part 2: Higher-Level Concepts - Exercises 6-10\n", - "- Part 3: Execution Flows - Exercises 11, 12\n", - "\n", - "The introduction and Part 1 are included in this notebook. Part 2 and 3 are each in its own separate notebook. For each exercise you will find the solution to the exercises at the bottom of the same notebook.\n", - "\n", - "### Preparations\n", - "\n", - "Make sure you have a Python version of 3.8 through 3.11 installed. Unfortunately, Classiq is not yet supported with Python 3.12.\n", - "\n", - "Install Classiq’s Python SDK by following the instructions on this page: [Getting Started - Classiq](https://docs.classiq.io/latest/getting-started/).\n", - "\n", - "### Python Qmod Exercises - General Instructions\n", - "\n", - "In order to synthesize and execute your Qmod code, you should:\n", - "1. Make sure you define a `main` function that calls functions you create.\n", - "2. Use `create_model` by running `qmod = create_model(main)` to construct a representation of your model.\n", - "3. You can synthesize the model (using `qprog = synthesize(qmod)`) to obtain an implementation - a quantum program.\n", - "4. You can then visualize the quantum program (`show(qprog)`) or execute it (using `execute(qprog)`. See: [Execution - Classiq](https://docs.classiq.io/latest/user-guide/platform/executor/#full-example)). You can also execute it with the IDE after visualizing the circuit.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "wiUgAF6b799A" - }, - "source": [ - "### Exercise 0: From Model to Execution\n", - "\n", - "The following model defines a function that applies X and H gates on a single qubit, and subsequently calls it:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "collapsed": true, - "id": "rVXqqX_29sJl", - "outputId": "bbb97ef1-d1c8-4fb8-e261-cdf2835b4933" - }, - "outputs": [], - "source": [ - "!pip install Classiq -U" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": { - "id": "aW7zH-kF_E7I" - }, - "outputs": [], - "source": [ - "import classiq\n", - "classiq.authenticate()" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": { - "id": "PZqYYahm799B" - }, - "outputs": [], - "source": [ - "from classiq import *\n", - "\n", - "\n", - "# Define a quantum function using the @qfunc decorator\n", - "@qfunc\n", - "def foo(q: QBit) -> None:\n", - " X(target=q)\n", - " H(target=q)\n", - "\n", - "\n", - "# Define a main function\n", - "@qfunc\n", - "def main(res: Output[QBit]) -> None:\n", - " allocate(1, res)\n", - " foo(q=res)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "JcaIP1z4799D" - }, - "source": [ - "Create a model from it, and synthesize, visualize, and execute it.\n", - "\n", - "Use the General Instructions above to do so.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "Ddd9pkX4799D", - "outputId": "1a7f0313-8e94-448d-bb70-e9d687bd9213" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/a7f8d3ed-b5a9-4ea8-bb51-8e3ce0d91a45?version=0.41.1\n" - ] - } - ], - "source": [ - "#from classiq import *\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "kXLBnCL7799D" - }, - "source": [ - "In Qmod `QBit` is the simplest quantum type, and in this example, `q` is a quantum variable of type `QBit`. Quantum variables abstract away the mapping of quantum objects to qubits in the actual circuit.\n", - "\n", - "See also [Quantum Variables](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/quantum-variables/).\n", - "\n", - "We will discuss other quantum types during the workshop.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "lfR9qo6w799E" - }, - "source": [ - "# The Qmod Workshop - Part 1: Language Fundamentals\n", - "\n", - "Follow exercises 1 through 5 for the first session of the workshop." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "rtn2t2Ss799E" - }, - "source": [ - "## Exercise 1 - Bell Pair\n", - "\n", - "Create a function that takes two single-qubit (`QBit`) quantum arguments and prepares the bell state on them ([Bell state](https://en.wikipedia.org/wiki/Bell_state)) by applying `H` on one variable and then using it as the control of a `CX` function with the second variable as the target.\n", - "Create a main function that uses this function and has two single-qubit outputs, initialize them to the |0> state (using the `allocate` function), and apply your function to them.\n", - "\n", - "See also [Functions](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/functions#syntax)\n" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": { - "id": "PCKbZcmz799E" - }, - "outputs": [], - "source": [ - "#from classiq import *\n", - "\n", - "@qfunc\n", - "def Bell_state(reg: QArray[QBit]) -> None:\n", - " H(reg[0])\n", - " CX(reg[0], reg[1])\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "KftDIAch799F" - }, - "source": [ - "Use qubit array subscript (the syntax - _variable_ **[** _index-expression_ **]**) to change the function from subsection 1 to receive a single quantum variable, a qubit array (`QArray`) of size 2.\n", - "Change your main function to declare a single output (also an array of size 2).\n" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "2sSaN_rb799G", - "outputId": "e487b48b-1962-4b30-dda9-b4628319a6b0" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/b41d29b4-6c0f-4755-8fe4-eeef655d90c8?version=0.41.1\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "\n", - "\n", - "@qfunc\n", - "def main(reg: Output[QArray]) -> None:\n", - " allocate(2, reg)\n", - " Bell_state(reg)\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "9MZU1trw799G" - }, - "source": [ - "## Exercise 2 - Repeat\n", - "\n", - "Use the built-in `repeat` operator to create your own Hadamard transform function (call it `my_hadamard_transform`). The Hadamard transform function is a function that takes as argument a qubit array of an unspecified size and applies `H` to each of its qubit.\n", - "\n", - "See also [Classical repeat](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/classical-control-flow/#classical-repeat).\n", - "\n", - "Set your main function to have a quantum array output of unspecified size, allocate 10 qubits, and then apply your Hadamard transform function.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "7oWqiQZc799H", - "outputId": "7dd0102f-2dbd-42a0-d113-d4eb6a95b63d" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/98f614f3-51d8-448e-ac3c-8255a03e1101?version=0.41.1\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "@qfunc\n", - "def my_hadamard_transform(q: QArray[QBit]) -> None:\n", - " repeat(q.len, lambda i: H(q[i]))\n", - "\n", - "@qfunc\n", - "def main(reg: Output[QArray]):\n", - " allocate(10,reg)\n", - " my_hadamard_transform(reg)\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "EIP8M24s799I" - }, - "source": [ - "### Note: Quantum Variable Capture\n", - "The `repeat` operator invokes a statement block multiple times. The statement block is specified using a Python callable, typically a lambda expression. Inside the block you can refer to variables declared in the outer function scope.\n", - "This concept is called `quantum variable capture`, equivalent to [capture](https://en.wikipedia.org/wiki/Closure_(computer_programming)) in classical languages.\n", - "\n", - "See also [Capturing context variables and parameters](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/operators/#capturing-context-variables-and-parameters)." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "EInvZN2C799I" - }, - "source": [ - "### Exercise 3 - Power\n", - "Raising a quantum operation to a power appears in many known algorithms, for examples, in Grover search and Quantum Phase Estimation.\n", - "For most operations, it simply means repeating the same circuit multiple times.\n", - "\n", - "Sometimes, however, power can be simplified, thus saving computational resources.\n", - "The most trivial example is a quantum operation expressed as a single explicit unitary matrix (i.e., all n*n matrix terms are given) - raising the operation can be done by raising the matrix to that power via classical programming.\n", - "\n", - "See also [Power operator](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/quantum-operators/#syntax).\n", - "\n", - "Use the following code to generate a 2-qubit (real) unitary matrix:" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": { - "id": "KQ0U7_-X799I" - }, - "outputs": [], - "source": [ - "from typing import List\n", - "\n", - "import numpy as np\n", - "\n", - "from classiq import *\n", - "\n", - "rng = np.random.default_rng(seed=0)\n", - "random_matrix = rng.random((4, 4))\n", - "qr_unitary, _ = np.linalg.qr(random_matrix)\n", - "\n", - "unitary_matrix = QConstant(\"unitary_matrix\", List[List[float]], qr_unitary.tolist())" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "kDFpeA9U799I" - }, - "source": [ - "In order to reuse some classical value we can define a `QConstant` to store that value.\n", - "\n", - "1. Create a model that applies `unitary_matrix` on a 2 qubit variable.\n", - "2. Create another model that applies `unitary_matrix` raised to power 3 on a 2 qubit variable.\n", - "3. Compare the gate count via the Classiq’s IDE in both cases.\n", - "\n", - "Note - the signature of function `unitary` is:" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": { - "id": "ylzmS1JQ799J" - }, - "outputs": [], - "source": [ - "def unitary(\n", - " elements: CArray[CArray[CReal]],\n", - " target: QArray[QBit],\n", - ") -> None:\n", - " pass" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "CVqGyIsG799J", - "outputId": "8b802983-240d-4b79-879a-0b6757b4ded0" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/e1876e2a-9375-4304-bec6-0a3e8d3fea6c?version=0.41.1\n" - ] - } - ], - "source": [ - "#1. Create a model that applies unitary_matrix on a 2 qubit variable.\n", - "from classiq import *\n", - "\n", - "@qfunc\n", - "def main(reg: Output[QArray]) -> None:\n", - " allocate(2, reg)\n", - " unitary(unitary_matrix,reg)\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)\n", - "# Depth: 7\n", - "# Width: 2\n" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "0vIfSXmZTGeZ", - "outputId": "044d433c-5fe9-47c5-ff5e-fec3af4c022f" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/c8f3f1f4-e6b2-4db0-bc76-666c8734e47a?version=0.41.1\n" - ] - } - ], - "source": [ - "#2. Create another model that applies unitary_matrix raised to power 3 on a 2 qubit variable.\n", - "from classiq import *\n", - "\n", - "@qfunc\n", - "def main(reg: Output[QArray]) -> None:\n", - " allocate(2, reg)\n", - " power(3, lambda :unitary(unitary_matrix,reg))\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)\n", - "#Depth: 7\n", - "#Width: 2" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "dtwwMQIZUXXs" - }, - "outputs": [], - "source": [ - "# 3. Compare the gate count via the Classiq’s IDE in both cases.\n", - "# in both cases we had the same Depth and width" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "XGGNdn2m799J" - }, - "source": [ - "## Exercise 4 - User-defined Operators\n", - "Create a function that applies a given single-qubit operation to all qubits in its quantum argument (Call your function `my_apply_to_all`). Such a function is also called an operator, i.e. a function that one of its arguments is another function (its operand).\n", - "\n", - "See also [Operators](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/operators/).\n", - "\n", - "Follow these guidelines:\n", - "1. Your function should declare a quantum argument of type qubit array. It should also declare an argument of a function type with a single qubit argument.\n", - "2. The body should apply the operand to all qubits in the argument.\n", - "\n", - "When you're done, re-implement `my_hadamard_transform` from exercise 2 using this function instead of `repeat`.\n", - "Use the same main function from exercise 2." - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "Fujf8Kj8799J", - "outputId": "2b25d971-01f2-4c38-889b-fde6dd75e69e" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/dce195a0-6bd2-44f9-a684-031290c29da5?version=0.41.1\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "@qfunc\n", - "def my_apply_to_all(reg: QArray[QBit], my_operand: QCallable[QBit]) -> None:\n", - " repeat(reg.len, lambda i: my_operand(reg[i]))\n", - "\n", - "\n", - "@qfunc\n", - "def main(reg: Output[QArray[QBit]]) -> None:\n", - " allocate(3, reg)\n", - " my_apply_to_all(reg, lambda q: X(q))\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "wRgnSqNn799J" - }, - "source": [ - "# Exercise 5 - Quantum Conditionals\n", - "\n", - "### Exercise 5a - Control Operator\n", - "Use the built-in `control` operator to create a function that receives two single qubit variables and uses one of the variables to control an RY gate with a `pi/2` angle acting on the other variable (without using the `CRY` function).\n", - "\n", - "See also [Quantum operators](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/quantum-operators/#syntax).\n" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "yF2EPzzW799K", - "outputId": "6be03fe4-0450-45ad-df63-1ce0775b1bc9" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/3949fcd7-7692-4c9e-a652-4d35b95b66cc?version=0.41.1\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "from sympy import pi\n", - "@qfunc\n", - "def my_control(ctr: QBit, target: QBit) -> None:\n", - " control(ctr, lambda: RY(pi/2, target))\n", - "\n", - "@qfunc\n", - "def main(qreg: Output[QArray[QBit]]) -> None:\n", - " allocate(2, qreg)\n", - " #X(qreg[0])\n", - " my_control(qreg[0], qreg[1])\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "LXja3yoA799K" - }, - "source": [ - "\n", - "\n", - "```\n", - "# This is formatted as code\n", - "```\n", - "\n", - "### Exercise 5b - Control (\"Quantum If\")\n", - "The `control` operator is the conditional application of some operation, with the condition being that all control qubits are in the state |1>. This notion is generalized in QMOD to other control states, where the condition is specified as a comparison between a quantum numeric variable and a numeric value, similar to a classical `if` statement. Quantum numeric variables are declared with class `QNum`.\n", - "\n", - "See also [Numeric types](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/quantum-types/#syntax).\n", - "\n", - "In QMOD this generalization is available as a native statement - control.\n", - "\n", - "See also [control](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/quantum-operators/).\n", - "\n", - "1. Declare a `QNum` output argument using `Output[QNum]` and name it `x`.\n", - "2. Use the `prepare_int` function to initialize it to `9`. Note that you don't need to specify the `QNum` attributes - size, sign, and fraction digits, as they are inferred at the point of initialization.\n", - "3. Execute the circuit and observe the results.\n", - "4. Declare another output argument of type `QBit` and perform a `control` such that under the condition that `x` is 9, the qubit is flipped. Execute the circuit and observe the results. Repeat for a different condition." - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "AdiivlfV799K", - "outputId": "6324e711-60bb-457c-dee2-37f072b2625d" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/5492ad49-897e-4dc8-aa7b-4d02792f66ca?version=0.41.1\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "@qfunc\n", - "def main(x: Output[QNum], y: Output[QBit]) -> None:\n", - " prepare_int(9, x)\n", - " allocate(1, y)\n", - " control(x == 9, lambda: X(y))\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - } - ], - "metadata": { - "colab": { - "provenance": [] - }, - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.9" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} diff --git a/community/QClass_2024/Submissions/HW1/Priyabrata_Bag_HW1_QClass2024.ipynb b/community/QClass_2024/Submissions/HW1/Priyabrata_Bag_HW1_QClass2024.ipynb deleted file mode 100644 index 478e177c..00000000 --- a/community/QClass_2024/Submissions/HW1/Priyabrata_Bag_HW1_QClass2024.ipynb +++ /dev/null @@ -1,562 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# The Qmod Workshop - Introduction\n", - "\n", - "The Classiq platform features a high-level quantum modeling language called Qmod. Qmod is compiled into concrete gate-level implementation using a powerful synthesis engine that optimizes and adapts the implementation to different target hardware/simulation environments.\n", - "\n", - "In this workshop, we will learn how to write quantum models using Qmod. We will be using the Python embedding of Qmod, available as part of the Classiq Python SDK. We will learn basic concepts in the Qmod language, such as functions, operators, quantum variables, and quantum types. We will develop useful building blocks and small algorithms.\n", - "\n", - "The [QMOD language reference](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/) covers these concepts more systematically and includes more examples.\n", - "\n", - "This workshop consists of step-by-step exercises. It is structured as follows:\n", - "\n", - "- Part 1: Language Fundamentals - Exercises 1-5\n", - "- Part 2: Higher-Level Concepts - Exercises 6-10\n", - "- Part 3: Execution Flows - Exercises 11, 12\n", - "\n", - "The introduction and Part 1 are included in this notebook. Part 2 and 3 are each in its own separate notebook. For each exercise you will find the solution to the exercises at the bottom of the same notebook.\n", - "\n", - "### Preparations\n", - "\n", - "Make sure you have a Python version of 3.8 through 3.11 installed. Unfortunately, Classiq is not yet supported with Python 3.12.\n", - "\n", - "Install Classiq’s Python SDK by following the instructions on this page: [Getting Started - Classiq](https://docs.classiq.io/latest/getting-started/).\n", - "\n", - "### Python Qmod Exercises - General Instructions\n", - "\n", - "In order to synthesize and execute your Qmod code, you should:\n", - "1. Make sure you define a `main` function that calls functions you create.\n", - "2. Use `create_model` by running `qmod = create_model(main)` to construct a representation of your model.\n", - "3. You can synthesize the model (using `qprog = synthesize(qmod)`) to obtain an implementation - a quantum program.\n", - "4. You can then visualize the quantum program (`show(qprog)`) or execute it (using `execute(qprog)`. See: [Execution - Classiq](https://docs.classiq.io/latest/user-guide/platform/executor/#full-example)). You can also execute it with the IDE after visualizing the circuit.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 0: From Model to Execution\n", - "\n", - "The following model defines a function that applies X and H gates on a single qubit, and subsequently calls it:" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "from classiq import *\n", - "\n", - "\n", - "# Define a quantum function using the @qfunc decorator\n", - "@qfunc\n", - "def foo(q: QBit) -> None:\n", - " X(target=q)\n", - " H(target=q)\n", - "\n", - "\n", - "# Define a main function\n", - "@qfunc\n", - "def main(res: Output[QBit]) -> None:\n", - " allocate(1, res)\n", - " foo(q=res)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Create a model from it, and synthesize, visualize, and execute it.\n", - "\n", - "Use the General Instructions above to do so.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/8b83c81a-452e-440a-b786-a190f8046682?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "\n", - "show(qprog)\n", - "# execute(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In Qmod `QBit` is the simplest quantum type, and in this example, `q` is a quantum variable of type `QBit`. Quantum variables abstract away the mapping of quantum objects to qubits in the actual circuit.\n", - "\n", - "See also [Quantum Variables](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/quantum-variables/).\n", - "\n", - "We will discuss other quantum types during the workshop.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# The Qmod Workshop - Part 1: Language Fundamentals\n", - "\n", - "Follow exercises 1 through 5 for the first session of the workshop." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exercise 1 - Bell Pair\n", - "\n", - "Create a function that takes two single-qubit (`QBit`) quantum arguments and prepares the bell state on them ([Bell state](https://en.wikipedia.org/wiki/Bell_state)) by applying `H` on one variable and then using it as the control of a `CX` function with the second variable as the target.\n", - "Create a main function that uses this function and has two single-qubit outputs, initialize them to the |0> state (using the `allocate` function), and apply your function to them.\n", - "\n", - "See also [Functions](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/functions#syntax)\n" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/e2453fe4-e445-481e-9947-9c087505063d?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def Bell_state(p: QBit, q: QBit) -> None:\n", - " H(p)\n", - " CX(p, q)\n", - "\n", - "@qfunc\n", - "def main(p: Output[QBit], q: Output[QBit]) -> None:\n", - " allocate(1, p)\n", - " allocate(1, q)\n", - " Bell_state(p, q)\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Use qubit array subscript (the syntax - _variable_ **[** _index-expression_ **]**) to change the function from subsection 1 to receive a single quantum variable, a qubit array (`QArray`) of size 2.\n", - "Change your main function to declare a single output (also an array of size 2).\n" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/5e5ac9ab-db0d-4f9d-8fda-acc5c007131a?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def Bell_state(q: QArray[QBit]) -> None:\n", - " H(q[0])\n", - " CX(q[0], q[1])\n", - "\n", - "@qfunc\n", - "def main(reg: Output[QArray]) -> None:\n", - " allocate(2, reg)\n", - " Bell_state(q = reg)\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exercise 2 - Repeat\n", - "\n", - "Use the built-in `repeat` operator to create your own Hadamard transform function (call it `my_hadamard_transform`). The Hadamard transform function is a function that takes as argument a qubit array of an unspecified size and applies `H` to each of its qubit.\n", - "\n", - "See also [Classical repeat](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/classical-control-flow/#classical-repeat).\n", - "\n", - "Set your main function to have a quantum array output of unspecified size, allocate 10 qubits, and then apply your Hadamard transform function.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/1e0fc549-4a19-4938-9e51-05e53a235e43?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def my_hadamard_transform(q: QArray[QBit]) -> None:\n", - " repeat(q.len, lambda i: H(q[i]))\n", - "\n", - "@qfunc\n", - "def main(reg: Output[QArray]) -> None:\n", - " allocate(10, reg)\n", - " my_hadamard_transform(q = reg)\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Note: Quantum Variable Capture\n", - "The `repeat` operator invokes a statement block multiple times. The statement block is specified using a Python callable, typically a lambda expression. Inside the block you can refer to variables declared in the outer function scope.\n", - "This concept is called `quantum variable capture`, equivalent to [capture](https://en.wikipedia.org/wiki/Closure_(computer_programming)) in classical languages.\n", - "\n", - "See also [Capturing context variables and parameters](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/operators/#capturing-context-variables-and-parameters)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 3 - Power\n", - "Raising a quantum operation to a power appears in many known algorithms, for examples, in Grover search and Quantum Phase Estimation.\n", - "For most operations, it simply means repeating the same circuit multiple times.\n", - "\n", - "Sometimes, however, power can be simplified, thus saving computational resources.\n", - "The most trivial example is a quantum operation expressed as a single explicit unitary matrix (i.e., all n*n matrix terms are given) - raising the operation can be done by raising the matrix to that power via classical programming.\n", - "\n", - "See also [Power operator](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/quantum-operators/#syntax).\n", - "\n", - "Use the following code to generate a 2-qubit (real) unitary matrix:" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "from typing import List\n", - "\n", - "import numpy as np\n", - "\n", - "from classiq import *\n", - "\n", - "rng = np.random.default_rng(seed=0)\n", - "random_matrix = rng.random((4, 4))\n", - "qr_unitary, _ = np.linalg.qr(random_matrix)\n", - "\n", - "unitary_matrix = QConstant(\"unitary_matrix\", List[List[float]], qr_unitary.tolist())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In order to reuse some classical value we can define a `QConstant` to store that value.\n", - "\n", - "1. Create a model that applies `unitary_matrix` on a 2 qubit variable.\n", - "2. Create another model that applies `unitary_matrix` raised to power 3 on a 2 qubit variable.\n", - "3. Compare the gate count via the Classiq’s IDE in both cases.\n", - "\n", - "Note - the signature of function `unitary` is:" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "def unitary(\n", - " elements: CArray[CArray[CReal]],\n", - " target: QArray[QBit],\n", - ") -> None:\n", - " pass" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/1c68c502-70a1-4cba-abc1-335e98155a5f?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def main(reg: Output[QArray[QBit]]):\n", - " allocate(2, reg)\n", - " unitary(unitary_matrix, reg)\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/f5ced877-edcd-4f75-8b2a-cdc14441d419?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def main(reg: Output[QArray[QBit]]):\n", - " allocate(2, reg)\n", - " power(3, lambda: unitary(unitary_matrix, reg))\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exercise 4 - User-defined Operators\n", - "Create a function that applies a given single-qubit operation to all qubits in its quantum argument (Call your function `my_apply_to_all`). Such a function is also called an operator, i.e. a function that one of its arguments is another function (its operand).\n", - "\n", - "See also [Operators](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/operators/).\n", - "\n", - "Follow these guidelines:\n", - "1. Your function should declare a quantum argument of type qubit array. It should also declare an argument of a function type with a single qubit argument.\n", - "2. The body should apply the operand to all qubits in the argument.\n", - "\n", - "When you're done, re-implement `my_hadamard_transform` from exercise 2 using this function instead of `repeat`.\n", - "Use the same main function from exercise 2." - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/24bc22ab-e819-41bc-ba1b-57132867239e?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def my_apply_to_all(q: QArray[QBit], my_operand: QCallable[QBit]):\n", - " # apply_to_all(gate_operand = my_operand, target = q)\n", - " repeat(q.len, lambda i: my_operand(q[i]))\n", - "\n", - "\n", - "@qfunc\n", - "def my_hadamard_transform(q: QArray[QBit]):\n", - " my_apply_to_all(q = q, my_operand = H)\n", - "\n", - "\n", - "@qfunc\n", - "def main(reg: Output[QArray]):\n", - " allocate(10, reg)\n", - " my_hadamard_transform(q = reg)\n", - "\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Exercise 5 - Quantum Conditionals\n", - "\n", - "### Exercise 5a - Control Operator\n", - "Use the built-in `control` operator to create a function that receives two single qubit variables and uses one of the variables to control an RY gate with a `pi/2` angle acting on the other variable (without using the `CRY` function).\n", - "\n", - "See also [Quantum operators](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/quantum-operators/#syntax).\n" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/0397b3bc-1ab9-400a-8bab-f514b51a935b?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def my_cry(cqb: QBit, tqb: QBit):\n", - " control(cqb, lambda: RY(symbolic.pi/2, tqb))\n", - "\n", - "@qfunc\n", - "def main(cqb: Output[QBit], tqb: Output[QBit]):\n", - " allocate(1, cqb)\n", - " allocate(1, tqb)\n", - " my_cry(cqb = cqb, tqb = tqb)\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 5b - Control (\"Quantum If\")\n", - "The `control` operator is the conditional application of some operation, with the condition being that all control qubits are in the state |1>. This notion is generalized in QMOD to other control states, where the condition is specified as a comparison between a quantum numeric variable and a numeric value, similar to a classical `if` statement. Quantum numeric variables are declared with class `QNum`.\n", - "\n", - "See also [Numeric types](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/quantum-types/#syntax).\n", - "\n", - "In QMOD this generalization is available as a native statement - control.\n", - "\n", - "See also [control](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/quantum-operators/).\n", - "\n", - "1. Declare a `QNum` output argument using `Output[QNum]` and name it `x`.\n", - "2. Use the `prepare_int` function to initialize it to `9`. Note that you don't need to specify the `QNum` attributes - size, sign, and fraction digits, as they are inferred at the point of initialization.\n", - "3. Execute the circuit and observe the results.\n", - "4. Declare another output argument of type `QBit` and perform a `control` such that under the condition that `x` is 9, the qubit is flipped. Execute the circuit and observe the results. Repeat for a different condition." - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/9b1285c3-f2a1-4da1-9010-1a7b28223659?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def main(x: Output[QNum], target: Output[QBit]):\n", - " prepare_int(9, x)\n", - " allocate(1, target)\n", - " control(x == 9, lambda: X(target))\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.9" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/community/QClass_2024/Submissions/HW1/Razeen_Ud_Din_HW1_QClass2024.ipynb b/community/QClass_2024/Submissions/HW1/Razeen_Ud_Din_HW1_QClass2024.ipynb deleted file mode 100644 index 6ecd0add..00000000 --- a/community/QClass_2024/Submissions/HW1/Razeen_Ud_Din_HW1_QClass2024.ipynb +++ /dev/null @@ -1,875 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "id": "DKf6e1_ZUIAA" - }, - "source": [ - "# The Qmod Workshop - Introduction\n", - "\n", - "The Classiq platform features a high-level quantum modeling language called Qmod. Qmod is compiled into concrete gate-level implementation using a powerful synthesis engine that optimizes and adapts the implementation to different target hardware/simulation environments.\n", - "\n", - "In this workshop, we will learn how to write quantum models using Qmod. We will be using the Python embedding of Qmod, available as part of the Classiq Python SDK. We will learn basic concepts in the Qmod language, such as functions, operators, quantum variables, and quantum types. We will develop useful building blocks and small algorithms.\n", - "\n", - "The [QMOD language reference](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/) covers these concepts more systematically and includes more examples.\n", - "\n", - "This workshop consists of step-by-step exercises. It is structured as follows:\n", - "\n", - "- Part 1: Language Fundamentals - Exercises 1-5\n", - "- Part 2: Higher-Level Concepts - Exercises 6-10\n", - "- Part 3: Execution Flows - Exercises 11, 12\n", - "\n", - "The introduction and Part 1 are included in this notebook. Part 2 and 3 are each in its own separate notebook. For each exercise you will find the solution to the exercises at the bottom of the same notebook.\n", - "\n", - "### Preparations\n", - "\n", - "Make sure you have a Python version of 3.8 through 3.11 installed. Unfortunately, Classiq is not yet supported with Python 3.12.\n", - "\n", - "Install Classiq’s Python SDK by following the instructions on this page: [Getting Started - Classiq](https://docs.classiq.io/latest/getting-started/).\n", - "\n", - "### Python Qmod Exercises - General Instructions\n", - "\n", - "In order to synthesize and execute your Qmod code, you should:\n", - "1. Make sure you define a `main` function that calls functions you create.\n", - "2. Use `create_model` by running `qmod = create_model(main)` to construct a representation of your model.\n", - "3. You can synthesize the model (using `qprog = synthesize(qmod)`) to obtain an implementation - a quantum program.\n", - "4. You can then visualize the quantum program (`show(qprog)`) or execute it (using `execute(qprog)`. See: [Execution - Classiq](https://docs.classiq.io/latest/user-guide/platform/executor/#full-example)). You can also execute it with the IDE after visualizing the circuit.\n" - ] - }, - { - "cell_type": "markdown", - "source": [ - "#Doing Preparation" - ], - "metadata": { - "id": "7gEFb8v0XzOz" - } - }, - { - "cell_type": "code", - "source": [ - "# Installing Classiq\n", - "!pip install -U classiq" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "collapsed": true, - "id": "pSMVUYAhXoel", - "outputId": "53331c66-6cd2-4650-d6d9-fc22e1caf509" - }, - "execution_count": 1, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Collecting classiq\n", - " Downloading classiq-0.41.1-py3-none-any.whl (398 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m398.1/398.1 kB\u001b[0m \u001b[31m5.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hCollecting ConfigArgParse<2.0.0,>=1.5.3 (from classiq)\n", - " Downloading ConfigArgParse-1.7-py3-none-any.whl (25 kB)\n", - "Collecting Pyomo<6.6,>=6.5 (from classiq)\n", - " Downloading Pyomo-6.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.7 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m10.7/10.7 MB\u001b[0m \u001b[31m4.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hCollecting black<25.0,>=24.0 (from classiq)\n", - " Downloading black-24.4.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.8 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.8/1.8 MB\u001b[0m \u001b[31m47.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hCollecting httpx<1,>=0.23.0 (from classiq)\n", - " Downloading httpx-0.27.0-py3-none-any.whl (75 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m75.6/75.6 kB\u001b[0m \u001b[31m7.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hRequirement already satisfied: keyring<24.0.0,>=23.5.0 in /usr/lib/python3/dist-packages (from classiq) (23.5.0)\n", - "Requirement already satisfied: matplotlib<4.0.0,>=3.4.3 in /usr/local/lib/python3.10/dist-packages (from classiq) (3.7.1)\n", - "Collecting networkx<3.0.0,>=2.5.1 (from classiq)\n", - " Downloading networkx-2.8.8-py3-none-any.whl (2.0 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.0/2.0 MB\u001b[0m \u001b[31m54.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hRequirement already satisfied: numexpr<3.0.0,>=2.7.3 in /usr/local/lib/python3.10/dist-packages (from classiq) (2.10.0)\n", - "Requirement already satisfied: numpy<2.0.0,>=1.20.1 in /usr/local/lib/python3.10/dist-packages (from classiq) (1.25.2)\n", - "Collecting packaging<23.0,>=22.0 (from classiq)\n", - " Downloading packaging-22.0-py3-none-any.whl (42 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m42.6/42.6 kB\u001b[0m \u001b[31m2.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hRequirement already satisfied: pandas<3.0.0,>=1.4.0 in /usr/local/lib/python3.10/dist-packages (from classiq) (2.0.3)\n", - "Requirement already satisfied: plotly<6.0.0,>=5.7.0 in /usr/local/lib/python3.10/dist-packages (from classiq) (5.15.0)\n", - "Collecting pydantic<2.0.0,>=1.9.1 (from classiq)\n", - " Downloading pydantic-1.10.15-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.1/3.1 MB\u001b[0m \u001b[31m49.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hRequirement already satisfied: scipy<2.0.0,>=1.10.1 in /usr/local/lib/python3.10/dist-packages (from classiq) (1.11.4)\n", - "Collecting sympy<1.11.0,>=1.9.0 (from classiq)\n", - " Downloading sympy-1.10.1-py3-none-any.whl (6.4 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m6.4/6.4 MB\u001b[0m \u001b[31m64.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hRequirement already satisfied: tabulate<1,>=0.8.9 in /usr/local/lib/python3.10/dist-packages (from classiq) (0.9.0)\n", - "Requirement already satisfied: click>=8.0.0 in /usr/local/lib/python3.10/dist-packages (from black<25.0,>=24.0->classiq) (8.1.7)\n", - "Collecting mypy-extensions>=0.4.3 (from black<25.0,>=24.0->classiq)\n", - " Downloading mypy_extensions-1.0.0-py3-none-any.whl (4.7 kB)\n", - "Collecting pathspec>=0.9.0 (from black<25.0,>=24.0->classiq)\n", - " Downloading pathspec-0.12.1-py3-none-any.whl (31 kB)\n", - "Requirement already satisfied: platformdirs>=2 in /usr/local/lib/python3.10/dist-packages (from black<25.0,>=24.0->classiq) (4.2.1)\n", - "Requirement already satisfied: tomli>=1.1.0 in /usr/local/lib/python3.10/dist-packages (from black<25.0,>=24.0->classiq) (2.0.1)\n", - "Requirement already satisfied: typing-extensions>=4.0.1 in /usr/local/lib/python3.10/dist-packages (from black<25.0,>=24.0->classiq) (4.11.0)\n", - "Requirement already satisfied: anyio in /usr/local/lib/python3.10/dist-packages (from httpx<1,>=0.23.0->classiq) (3.7.1)\n", - "Requirement already satisfied: certifi in /usr/local/lib/python3.10/dist-packages (from httpx<1,>=0.23.0->classiq) (2024.2.2)\n", - "Collecting httpcore==1.* (from httpx<1,>=0.23.0->classiq)\n", - " Downloading httpcore-1.0.5-py3-none-any.whl (77 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m77.9/77.9 kB\u001b[0m \u001b[31m8.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hRequirement already satisfied: idna in /usr/local/lib/python3.10/dist-packages (from httpx<1,>=0.23.0->classiq) (3.7)\n", - "Requirement already satisfied: sniffio in /usr/local/lib/python3.10/dist-packages (from httpx<1,>=0.23.0->classiq) (1.3.1)\n", - "Collecting h11<0.15,>=0.13 (from httpcore==1.*->httpx<1,>=0.23.0->classiq)\n", - " Downloading h11-0.14.0-py3-none-any.whl (58 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m58.3/58.3 kB\u001b[0m \u001b[31m6.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hRequirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.4.3->classiq) (1.2.1)\n", - "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.4.3->classiq) (0.12.1)\n", - "Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.4.3->classiq) (4.51.0)\n", - "Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.4.3->classiq) (1.4.5)\n", - "Requirement already satisfied: pillow>=6.2.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.4.3->classiq) (9.4.0)\n", - "Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.4.3->classiq) (3.1.2)\n", - "Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.4.3->classiq) (2.8.2)\n", - "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas<3.0.0,>=1.4.0->classiq) (2023.4)\n", - "Requirement already satisfied: tzdata>=2022.1 in /usr/local/lib/python3.10/dist-packages (from pandas<3.0.0,>=1.4.0->classiq) (2024.1)\n", - "Requirement already satisfied: tenacity>=6.2.0 in /usr/local/lib/python3.10/dist-packages (from plotly<6.0.0,>=5.7.0->classiq) (8.3.0)\n", - "Collecting ply (from Pyomo<6.6,>=6.5->classiq)\n", - " Downloading ply-3.11-py2.py3-none-any.whl (49 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m49.6/49.6 kB\u001b[0m \u001b[31m5.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hRequirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.10/dist-packages (from sympy<1.11.0,>=1.9.0->classiq) (1.3.0)\n", - "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.7->matplotlib<4.0.0,>=3.4.3->classiq) (1.16.0)\n", - "Requirement already satisfied: exceptiongroup in /usr/local/lib/python3.10/dist-packages (from anyio->httpx<1,>=0.23.0->classiq) (1.2.1)\n", - "Installing collected packages: ply, sympy, Pyomo, pydantic, pathspec, packaging, networkx, mypy-extensions, h11, ConfigArgParse, httpcore, black, httpx, classiq\n", - " Attempting uninstall: sympy\n", - " Found existing installation: sympy 1.12\n", - " Uninstalling sympy-1.12:\n", - " Successfully uninstalled sympy-1.12\n", - " Attempting uninstall: pydantic\n", - " Found existing installation: pydantic 2.7.1\n", - " Uninstalling pydantic-2.7.1:\n", - " Successfully uninstalled pydantic-2.7.1\n", - " Attempting uninstall: packaging\n", - " Found existing installation: packaging 24.0\n", - " Uninstalling packaging-24.0:\n", - " Successfully uninstalled packaging-24.0\n", - " Attempting uninstall: networkx\n", - " Found existing installation: networkx 3.3\n", - " Uninstalling networkx-3.3:\n", - " Successfully uninstalled networkx-3.3\n", - "\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n", - "torch 2.2.1+cu121 requires nvidia-cublas-cu12==12.1.3.1; platform_system == \"Linux\" and platform_machine == \"x86_64\", which is not installed.\n", - "torch 2.2.1+cu121 requires nvidia-cuda-cupti-cu12==12.1.105; platform_system == \"Linux\" and platform_machine == \"x86_64\", which is not installed.\n", - "torch 2.2.1+cu121 requires nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == \"Linux\" and platform_machine == \"x86_64\", which is not installed.\n", - "torch 2.2.1+cu121 requires nvidia-cuda-runtime-cu12==12.1.105; platform_system == \"Linux\" and platform_machine == \"x86_64\", which is not installed.\n", - "torch 2.2.1+cu121 requires nvidia-cudnn-cu12==8.9.2.26; platform_system == \"Linux\" and platform_machine == \"x86_64\", which is not installed.\n", - "torch 2.2.1+cu121 requires nvidia-cufft-cu12==11.0.2.54; platform_system == \"Linux\" and platform_machine == \"x86_64\", which is not installed.\n", - "torch 2.2.1+cu121 requires nvidia-curand-cu12==10.3.2.106; platform_system == \"Linux\" and platform_machine == \"x86_64\", which is not installed.\n", - "torch 2.2.1+cu121 requires nvidia-cusolver-cu12==11.4.5.107; platform_system == \"Linux\" and platform_machine == \"x86_64\", which is not installed.\n", - "torch 2.2.1+cu121 requires nvidia-cusparse-cu12==12.1.0.106; platform_system == \"Linux\" and platform_machine == \"x86_64\", which is not installed.\n", - "torch 2.2.1+cu121 requires nvidia-nccl-cu12==2.19.3; platform_system == \"Linux\" and platform_machine == \"x86_64\", which is not installed.\n", - "torch 2.2.1+cu121 requires nvidia-nvtx-cu12==12.1.105; platform_system == \"Linux\" and platform_machine == \"x86_64\", which is not installed.\u001b[0m\u001b[31m\n", - "\u001b[0mSuccessfully installed ConfigArgParse-1.7 Pyomo-6.5.0 black-24.4.2 classiq-0.41.1 h11-0.14.0 httpcore-1.0.5 httpx-0.27.0 mypy-extensions-1.0.0 networkx-2.8.8 packaging-22.0 pathspec-0.12.1 ply-3.11 pydantic-1.10.15 sympy-1.10.1\n" - ] - } - ] - }, - { - "cell_type": "code", - "source": [ - "# Authentication\n", - "import classiq\n", - "classiq.authenticate()" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "collapsed": true, - "id": "K_fsJpP6YJEQ", - "outputId": "31f3c6bf-2894-47e0-dae9-450e3fdc3b98" - }, - "execution_count": 2, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Your user code: VWSR-RZCM\n", - "If a browser doesn't automatically open, please visit this URL from any trusted device: https://auth.classiq.io/activate?user_code=VWSR-RZCM\n" - ] - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "iS9-C0N0UIAN" - }, - "source": [ - "### Exercise 0: From Model to Execution\n", - "\n", - "The following model defines a function that applies X and H gates on a single qubit, and subsequently calls it:" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "id": "uCj4T3_5UIAO" - }, - "outputs": [], - "source": [ - "from classiq import *\n", - "\n", - "\n", - "# Define a quantum function using the @qfunc decorator\n", - "@qfunc\n", - "def foo(q: QBit) -> None:\n", - " X(target=q)\n", - " H(target=q)\n", - "\n", - "\n", - "# Define a main function\n", - "@qfunc\n", - "def main(res: Output[QBit]) -> None:\n", - " allocate(1, res)\n", - " foo(q=res)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "l425FkQFUIAP" - }, - "source": [ - "Create a model from it, and synthesize, visualize, and execute it.\n", - "\n", - "Use the General Instructions above to do so.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "id": "r63ehZ7jUIAP" - }, - "outputs": [], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "\n", - "qmod = create_model(main) #create model\n", - "qprog = synthesize(qmod) # synthesize\n", - "\n", - "# Your code here:" - ] - }, - { - "cell_type": "code", - "source": [ - "#Showing qprog\n", - "show(qprog)" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "IjP1y42PZIwG", - "outputId": "5177236d-aab2-4375-ac76-b1fd5df8b9bd" - }, - "execution_count": 5, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Opening: https://platform.classiq.io/circuit/27ea28a3-48ca-47d7-9f71-6437eddde65a?version=0.41.1\n" - ] - } - ] - }, - { - "cell_type": "code", - "source": [ - "#Executing qprog\n", - "execute(qprog)" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "1APokD46ZH07", - "outputId": "bb1f540c-3c7f-46c0-91e5-3658c8d6c925" - }, - "execution_count": 6, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "ExecutionJob(id='1d2e83bd-ca33-46fd-881f-616c53b727c2')" - ] - }, - "metadata": {}, - "execution_count": 6 - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "Ji-gPBDWUIAQ" - }, - "source": [ - "In Qmod `QBit` is the simplest quantum type, and in this example, `q` is a quantum variable of type `QBit`. Quantum variables abstract away the mapping of quantum objects to qubits in the actual circuit.\n", - "\n", - "See also [Quantum Variables](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/quantum-variables/).\n", - "\n", - "We will discuss other quantum types during the workshop.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "UxsyXx51UIAQ" - }, - "source": [ - "# The Qmod Workshop - Part 1: Language Fundamentals\n", - "\n", - "Follow exercises 1 through 5 for the first session of the workshop." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "ZdXAtO--UIAQ" - }, - "source": [ - "## Exercise 1 - Bell Pair\n", - "\n", - "Create a function that takes two single-qubit (`QBit`) quantum arguments and prepares the bell state on them ([Bell state](https://en.wikipedia.org/wiki/Bell_state)) by applying `H` on one variable and then using it as the control of a `CX` function with the second variable as the target.\n", - "Create a main function that uses this function and has two single-qubit outputs, initialize them to the |0> state (using the `allocate` function), and apply your function to them.\n", - "\n", - "See also [Functions](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/functions#syntax)\n" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "NE2JvAUGUIAQ", - "outputId": "416cb601-1e28-46d4-fd77-aea6309dcccb" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Opening: https://platform.classiq.io/circuit/467482a8-a688-4181-b128-a43468199000?version=0.41.1\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "\n", - "@qfunc\n", - "def Bell_state(q1:QBit,q2:QBit) -> None:\n", - " H(target=q1)\n", - " CX(control=q1,target=q2)\n", - "\n", - "@qfunc\n", - "def main(res1: Output[QBit], res2: Output[QBit]) -> None:\n", - " allocate(1,res1)\n", - " allocate(1,res2)\n", - " Bell_state(q1=res1,q2=res2)\n", - "\n", - "# Your code here:\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "95gq6bMpUIAQ" - }, - "source": [ - "Use qubit array subscript (the syntax - _variable_ **[** _index-expression_ **]**) to change the function from subsection 1 to receive a single quantum variable, a qubit array (`QArray`) of size 2.\n", - "Change your main function to declare a single output (also an array of size 2).\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "qBlWalvsUIAR" - }, - "outputs": [], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "\n", - "@qfunc\n", - "def Bell_state(q1:QBit,q2:QBit) -> None:\n", - " H(target=q1)\n", - " CX(control=q1,target=q2)\n", - "\n", - "@qfunc\n", - "def main(res: Output[QArray]) -> None:\n", - " allocate(2,res)\n", - " Bell_state(q1=res[0],q2=res[1])\n", - "\n", - "# Your code here:\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "H_ny1mJjUIAR" - }, - "source": [ - "## Exercise 2 - Repeat\n", - "\n", - "Use the built-in `repeat` operator to create your own Hadamard transform function (call it `my_hadamard_transform`). The Hadamard transform function is a function that takes as argument a qubit array of an unspecified size and applies `H` to each of its qubit.\n", - "\n", - "See also [Classical repeat](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/classical-control-flow/#classical-repeat).\n", - "\n", - "Set your main function to have a quantum array output of unspecified size, allocate 10 qubits, and then apply your Hadamard transform function.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "tUWSk1BrUIAR", - "outputId": "523856c3-80cb-4c9c-ba8d-310465cb035a" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Opening: https://platform.classiq.io/circuit/e91bf80b-36d7-4a42-9e07-97eb7d9623d2?version=0.41.1\n" - ] - } - ], - "source": [ - "from contextlib import redirect_stdout\n", - "from classiq import *\n", - "\n", - "# Your code here:\n", - "\n", - "@qfunc\n", - "def my_hadamard_transform(q:QArray[QBit]) -> None:\n", - " repeat(count=q.len, iteration=lambda i: H(q[i]))\n", - "\n", - "@qfunc\n", - "def main(res: Output[QArray]) -> None:\n", - " allocate(10,res)\n", - " my_hadamard_transform(res)\n", - "\n", - "# Your code here:\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "b3UwtxUDUIAS" - }, - "source": [ - "### Note: Quantum Variable Capture\n", - "The `repeat` operator invokes a statement block multiple times. The statement block is specified using a Python callable, typically a lambda expression. Inside the block you can refer to variables declared in the outer function scope.\n", - "This concept is called `quantum variable capture`, equivalent to [capture](https://en.wikipedia.org/wiki/Closure_(computer_programming)) in classical languages.\n", - "\n", - "See also [Capturing context variables and parameters](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/operators/#capturing-context-variables-and-parameters)." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "2HnRD0j8UIAS" - }, - "source": [ - "### Exercise 3 - Power\n", - "Raising a quantum operation to a power appears in many known algorithms, for examples, in Grover search and Quantum Phase Estimation.\n", - "For most operations, it simply means repeating the same circuit multiple times.\n", - "\n", - "Sometimes, however, power can be simplified, thus saving computational resources.\n", - "The most trivial example is a quantum operation expressed as a single explicit unitary matrix (i.e., all n*n matrix terms are given) - raising the operation can be done by raising the matrix to that power via classical programming.\n", - "\n", - "See also [Power operator](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/quantum-operators/#syntax).\n", - "\n", - "Use the following code to generate a 2-qubit (real) unitary matrix:" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "id": "lzr_tHedUIAS" - }, - "outputs": [], - "source": [ - "from typing import List\n", - "\n", - "import numpy as np\n", - "\n", - "from classiq import *\n", - "\n", - "rng = np.random.default_rng(seed=0)\n", - "random_matrix = rng.random((4, 4))\n", - "qr_unitary, _ = np.linalg.qr(random_matrix)\n", - "\n", - "unitary_matrix = QConstant(\"unitary_matrix\", List[List[float]], qr_unitary.tolist())" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "qPY8ukKnUIAS" - }, - "source": [ - "In order to reuse some classical value we can define a `QConstant` to store that value.\n", - "\n", - "1. Create a model that applies `unitary_matrix` on a 2 qubit variable.\n", - "2. Create another model that applies `unitary_matrix` raised to power 3 on a 2 qubit variable.\n", - "3. Compare the gate count via the Classiq’s IDE in both cases.\n", - "\n", - "Note - the signature of function `unitary` is:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "ty9AiSUrUIAT" - }, - "outputs": [], - "source": [ - "def unitary(\n", - " elements: CArray[CArray[CReal]],\n", - " target: QArray[QBit],\n", - ") -> None:\n", - " pass" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "df3xBcwFUIAT", - "outputId": "a2f0e894-c76e-47f7-df66-9b8b8b37f0cb" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Opening: https://platform.classiq.io/circuit/9c4221de-c4cf-49d1-8572-1153af9a1761?version=0.41.1\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "\n", - "@qfunc\n", - "def main(res: Output[QArray])-> None:\n", - " allocate(2,res)\n", - " unitary(unitary_matrix,res)\n", - "\n", - "# Your code here:\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "\n", - "@qfunc\n", - "def main(res: Output[QArray])-> None:\n", - " allocate(2,res)\n", - " power(3, lambda: unitary(unitary_matrix,res))\n", - "\n", - "# Your code here:\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "DsCfdAC6wxAM", - "outputId": "2f73a5c9-aaa1-4064-8dd9-6e62a6e3c599" - }, - "execution_count": 25, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Opening: https://platform.classiq.io/circuit/a735ee5a-a67d-4bb4-8c15-89d78ec6dad4?version=0.41.1\n" - ] - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "e47tQi4dUIAT" - }, - "source": [ - "## Exercise 4 - User-defined Operators\n", - "Create a function that applies a given single-qubit operation to all qubits in its quantum argument (Call your function `my_apply_to_all`). Such a function is also called an operator, i.e. a function that one of its arguments is another function (its operand).\n", - "\n", - "See also [Operators](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/operators/).\n", - "\n", - "Follow these guidelines:\n", - "1. Your function should declare a quantum argument of type qubit array. It should also declare an argument of a function type with a single qubit argument.\n", - "2. The body should apply the operand to all qubits in the argument.\n", - "\n", - "When you're done, re-implement `my_hadamard_transform` from exercise 2 using this function instead of `repeat`.\n", - "Use the same main function from exercise 2." - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "7XYXkHZdUIAT", - "outputId": "57aaf2a4-bc8a-4359-bb1f-0f32e40bcc7a" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Opening: https://platform.classiq.io/circuit/dc6b610a-8e92-419f-84f8-712f92632741?version=0.41.1\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "\n", - "@qfunc\n", - "def my_apply_to_all(my_operand: QCallable[QArray], q: QArray[QBit]) -> None:\n", - " repeat(count=q.len, iteration=lambda i: my_operand(q[i]))\n", - "\n", - "\n", - "@qfunc\n", - "def my_hadamard_transform(q:QArray[QBit]) -> None:\n", - " my_apply_to_all(lambda target:H(target), q)\n", - "\n", - "\n", - "@qfunc\n", - "def main(res: Output[QArray[QBit]]) -> None:\n", - " allocate(10,res)\n", - " my_hadamard_transform(res)\n", - "\n", - "# Your code here:\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "PE0uAVlLUIAU" - }, - "source": [ - "# Exercise 5 - Quantum Conditionals\n", - "\n", - "### Exercise 5a - Control Operator\n", - "Use the built-in `control` operator to create a function that receives two single qubit variables and uses one of the variables to control an RY gate with a `pi/2` angle acting on the other variable (without using the `CRY` function).\n", - "\n", - "See also [Quantum operators](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/quantum-operators/#syntax).\n" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "5l4wbdnnUIAU", - "outputId": "ab24e9cb-a67e-4479-bfac-39d6c40de874" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Opening: https://platform.classiq.io/circuit/de67872d-0653-45b3-86b8-6c3d1a28b39d?version=0.41.1\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "from classiq.qmod.symbolic import pi\n", - "\n", - "# Your code here:\n", - "\n", - "@qfunc\n", - "def my_control(q1:QBit,q2:QBit)->None:\n", - " control(ctrl=q1, operand = lambda : RY(pi/2,q2))\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "CEW8jLigUIAU" - }, - "source": [ - "### Exercise 5b - Control (\"Quantum If\")\n", - "The `control` operator is the conditional application of some operation, with the condition being that all control qubits are in the state |1>. This notion is generalized in QMOD to other control states, where the condition is specified as a comparison between a quantum numeric variable and a numeric value, similar to a classical `if` statement. Quantum numeric variables are declared with class `QNum`.\n", - "\n", - "See also [Numeric types](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/quantum-types/#syntax).\n", - "\n", - "In QMOD this generalization is available as a native statement - control.\n", - "\n", - "See also [control](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/quantum-operators/).\n", - "\n", - "1. Declare a `QNum` output argument using `Output[QNum]` and name it `x`.\n", - "2. Use the `prepare_int` function to initialize it to `9`. Note that you don't need to specify the `QNum` attributes - size, sign, and fraction digits, as they are inferred at the point of initialization.\n", - "3. Execute the circuit and observe the results.\n", - "4. Declare another output argument of type `QBit` and perform a `control` such that under the condition that `x` is 9, the qubit is flipped. Execute the circuit and observe the results. Repeat for a different condition." - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "PyVSkOLAUIAU", - "outputId": "c34263f4-aadb-4ef9-a645-95eeff3c3c67" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Opening: https://platform.classiq.io/circuit/779990c7-be0d-4ece-aba3-4ca0dbff8fe3?version=0.41.1\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "\n", - "@qfunc\n", - "def main(x:Output[QNum])-> None:\n", - " prepare_int(9,x)\n", - "\n", - "# Your code here:\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "\n", - "@qfunc\n", - "def main(x:Output[QNum],q:Output[QBit])-> None:\n", - " allocate(1,q)\n", - " prepare_int(9,x)\n", - " control(x==9, operand = lambda : X(q))\n", - "\n", - "# Your code here:\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "J7-kLb3xHDAl", - "outputId": "43927942-86ac-42e8-9796-cf83a7167af9" - }, - "execution_count": 43, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Opening: https://platform.classiq.io/circuit/faaef311-6cfd-4e78-af48-e0428a984d5b?version=0.41.1\n" - ] - } - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.8" - }, - "colab": { - "provenance": [] - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} \ No newline at end of file diff --git a/community/QClass_2024/Submissions/HW1/Samyak_Jain_HW1_QClass2024.ipynb b/community/QClass_2024/Submissions/HW1/Samyak_Jain_HW1_QClass2024.ipynb deleted file mode 100644 index 687cb0d9..00000000 --- a/community/QClass_2024/Submissions/HW1/Samyak_Jain_HW1_QClass2024.ipynb +++ /dev/null @@ -1,527 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# The Qmod Workshop - Introduction\n", - "\n", - "The Classiq platform features a high-level quantum modeling language called Qmod. Qmod is compiled into concrete gate-level implementation using a powerful synthesis engine that optimizes and adapts the implementation to different target hardware/simulation environments.\n", - "\n", - "In this workshop, we will learn how to write quantum models using Qmod. We will be using the Python embedding of Qmod, available as part of the Classiq Python SDK. We will learn basic concepts in the Qmod language, such as functions, operators, quantum variables, and quantum types. We will develop useful building blocks and small algorithms.\n", - "\n", - "The [QMOD language reference](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/) covers these concepts more systematically and includes more examples.\n", - "\n", - "This workshop consists of step-by-step exercises. It is structured as follows:\n", - "\n", - "- Part 1: Language Fundamentals - Exercises 1-5\n", - "- Part 2: Higher-Level Concepts - Exercises 6-10\n", - "- Part 3: Execution Flows - Exercises 11, 12\n", - "\n", - "The introduction and Part 1 are included in this notebook. Part 2 and 3 are each in its own separate notebook. For each exercise you will find the solution to the exercises at the bottom of the same notebook.\n", - "\n", - "### Preparations\n", - "\n", - "Make sure you have a Python version of 3.8 through 3.11 installed. Unfortunately, Classiq is not yet supported with Python 3.12.\n", - "\n", - "Install Classiq’s Python SDK by following the instructions on this page: [Getting Started - Classiq](https://docs.classiq.io/latest/getting-started/).\n", - "\n", - "### Python Qmod Exercises - General Instructions\n", - "\n", - "In order to synthesize and execute your Qmod code, you should:\n", - "1. Make sure you define a `main` function that calls functions you create.\n", - "2. Use `create_model` by running `qmod = create_model(main)` to construct a representation of your model.\n", - "3. You can synthesize the model (using `qprog = synthesize(qmod)`) to obtain an implementation - a quantum program.\n", - "4. You can then visualize the quantum program (`show(qprog)`) or execute it (using `execute(qprog)`. See: [Execution - Classiq](https://docs.classiq.io/latest/user-guide/platform/executor/#full-example)). You can also execute it with the IDE after visualizing the circuit.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 0: From Model to Execution\n", - "\n", - "The following model defines a function that applies X and H gates on a single qubit, and subsequently calls it:" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [], - "source": [ - "from classiq import *\n", - "\n", - "\n", - "# Define a quantum function using the @qfunc decorator\n", - "@qfunc\n", - "def foo(q: QBit) -> None:\n", - " X(target=q)\n", - " H(target=q)\n", - "\n", - "\n", - "# Define a main function\n", - "@qfunc\n", - "def main(res: Output[QBit]) -> None:\n", - " allocate(1, res)\n", - " foo(q=res)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Create a model from it, and synthesize, visualize, and execute it.\n", - "\n", - "Use the General Instructions above to do so.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/bf64f009-67b7-4a7f-93bb-7dcdf17c2908?version=0.42.0\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "model=create_model(main)\n", - "qprog=synthesize(model)\n", - "\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In Qmod `QBit` is the simplest quantum type, and in this example, `q` is a quantum variable of type `QBit`. Quantum variables abstract away the mapping of quantum objects to qubits in the actual circuit.\n", - "\n", - "See also [Quantum Variables](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/quantum-variables/).\n", - "\n", - "We will discuss other quantum types during the workshop.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# The Qmod Workshop - Part 1: Language Fundamentals\n", - "\n", - "Follow exercises 1 through 5 for the first session of the workshop." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exercise 1 - Bell Pair\n", - "\n", - "Create a function that takes two single-qubit (`QBit`) quantum arguments and prepares the bell state on them ([Bell state](https://en.wikipedia.org/wiki/Bell_state)) by applying `H` on one variable and then using it as the control of a `CX` function with the second variable as the target.\n", - "Create a main function that uses this function and has two single-qubit outputs, initialize them to the |0> state (using the `allocate` function), and apply your function to them.\n", - "\n", - "See also [Functions](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/functions#syntax)\n" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/ad94e3ed-f9b9-40da-81c8-f62248a5ff51?version=0.42.0\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "@qfunc\n", - "\n", - "def main():\n", - " q1=QBit(\"q0\")\n", - " q2=QBit(\"q1\")\n", - " allocate(1,q1)\n", - " allocate(1,q2)\n", - " H(q1)\n", - " CX(q1,q2)\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Use qubit array subscript (the syntax - _variable_ **[** _index-expression_ **]**) to change the function from subsection 1 to receive a single quantum variable, a qubit array (`QArray`) of size 2.\n", - "Change your main function to declare a single output (also an array of size 2).\n" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/c0257d64-72af-4bce-af93-2dc95dae475a?version=0.42.0\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "@qfunc\n", - "def my_bell_state(q:QArray[QBit]):\n", - " H(q[0])\n", - " CX(q[0],q[1])\n", - "\n", - "@qfunc\n", - "def main(q: Output[QArray]):\n", - " allocate(2,q)\n", - " my_bell_state(q)\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exercise 2 - Repeat\n", - "\n", - "Use the built-in `repeat` operator to create your own Hadamard transform function (call it `my_hadamard_transform`). The Hadamard transform function is a function that takes as argument a qubit array of an unspecified size and applies `H` to each of its qubit.\n", - "\n", - "See also [Classical repeat](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/classical-control-flow/#classical-repeat).\n", - "\n", - "Set your main function to have a quantum array output of unspecified size, allocate 10 qubits, and then apply your Hadamard transform function.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/1edf9c76-900d-4f89-9d86-90269333024f?version=0.42.0\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "@qfunc\n", - "def my_hadamard_transform(q: QArray[QBit]) -> None:\n", - " repeat(q.len,lambda i: H(q[i]))\n", - "\n", - "@qfunc\n", - "def main(reg: Output[QArray]):\n", - " allocate(10,reg)\n", - " my_hadamard_transform(reg)\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Note: Quantum Variable Capture\n", - "The `repeat` operator invokes a statement block multiple times. The statement block is specified using a Python callable, typically a lambda expression. Inside the block you can refer to variables declared in the outer function scope.\n", - "This concept is called `quantum variable capture`, equivalent to [capture](https://en.wikipedia.org/wiki/Closure_(computer_programming)) in classical languages.\n", - "\n", - "See also [Capturing context variables and parameters](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/operators/#capturing-context-variables-and-parameters)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 3 - Power\n", - "Raising a quantum operation to a power appears in many known algorithms, for examples, in Grover search and Quantum Phase Estimation.\n", - "For most operations, it simply means repeating the same circuit multiple times.\n", - "\n", - "Sometimes, however, power can be simplified, thus saving computational resources.\n", - "The most trivial example is a quantum operation expressed as a single explicit unitary matrix (i.e., all n*n matrix terms are given) - raising the operation can be done by raising the matrix to that power via classical programming.\n", - "\n", - "See also [Power operator](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/quantum-operators/#syntax).\n", - "\n", - "Use the following code to generate a 2-qubit (real) unitary matrix:" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [], - "source": [ - "from typing import List\n", - "\n", - "import numpy as np\n", - "\n", - "from classiq import *\n", - "\n", - "rng = np.random.default_rng(seed=0)\n", - "random_matrix = rng.random((4, 4))\n", - "qr_unitary, _ = np.linalg.qr(random_matrix)\n", - "\n", - "unitary_matrix = QConstant(\"unitary_matrix\", List[List[float]], qr_unitary.tolist())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In order to reuse some classical value we can define a `QConstant` to store that value.\n", - "\n", - "1. Create a model that applies `unitary_matrix` on a 2 qubit variable.\n", - "2. Create another model that applies `unitary_matrix` raised to power 3 on a 2 qubit variable.\n", - "3. Compare the gate count via the Classiq’s IDE in both cases.\n", - "\n", - "Note - the signature of function `unitary` is:" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [], - "source": [ - "def unitary(\n", - " elements: CArray[CArray[CReal]],\n", - " target: QArray[QBit],\n", - ") -> None:\n", - " element*target\n", - "def depth(quantum_program):\n", - " circuit_generated = QuantumProgram.parse_raw(quantum_program)\n", - " print(f\"circuit width of the synthesized: {circuit_generated.data.width}, depth: {circuit_generated.transpiled_circuit.depth}\")" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/ed856a60-4b2b-4ba6-b1bc-ff24f98f3a77?version=0.42.0\n", - "circuit width of the synthesized: 2, depth: 7\n", - "Opening: https://platform.classiq.io/circuit/58a66e46-30e0-4977-825f-286f1b514646?version=0.42.0\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "@qfunc\n", - "def main(q: Output[QArray[QBit]]):\n", - " allocate(2,q)\n", - " unitary(unitary_matrix, q)\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)\n", - "depth(qprog)\n", - "\n", - "# %%\n", - "from classiq import *\n", - "\n", - "@qfunc\n", - "def main(q: Output[QArray[QBit]]):\n", - " allocate(2,q)\n", - " power(3, lambda: unitary(unitary_matrix, q))\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exercise 4 - User-defined Operators\n", - "Create a function that applies a given single-qubit operation to all qubits in its quantum argument (Call your function `my_apply_to_all`). Such a function is also called an operator, i.e. a function that one of its arguments is another function (its operand).\n", - "\n", - "See also [Operators](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/operators/).\n", - "\n", - "Follow these guidelines:\n", - "1. Your function should declare a quantum argument of type qubit array. It should also declare an argument of a function type with a single qubit argument.\n", - "2. The body should apply the operand to all qubits in the argument.\n", - "\n", - "When you're done, re-implement `my_hadamard_transform` from exercise 2 using this function instead of `repeat`.\n", - "Use the same main function from exercise 2." - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/383e3f18-d717-4783-93fe-7b80dc69975b?version=0.42.0\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "n = 10\n", - "\n", - "@qfunc\n", - "def my_apply_to_all(q:QArray[QBit]) -> None:\n", - " operand(q)\n", - "\n", - "@qfunc\n", - "def operand(target_q: QArray[QBit]) -> None:\n", - " apply_to_all(H, target_q)\n", - "\n", - "@qfunc\n", - "def main(output_q: Output[QArray]):\n", - " allocate(n, output_q)\n", - " my_apply_to_all(output_q)\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Exercise 5 - Quantum Conditionals\n", - "\n", - "### Exercise 5a - Control Operator\n", - "Use the built-in `control` operator to create a function that receives two single qubit variables and uses one of the variables to control an RY gate with a `pi/2` angle acting on the other variable (without using the `CRY` function).\n", - "\n", - "See also [Quantum operators](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/quantum-operators/#syntax).\n" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/1377617e-f288-4a91-beb3-2bd94f2e4f8e?version=0.42.0\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "@qfunc\n", - "def cry(x: QBit, target: QBit) -> None:\n", - " control(x, lambda: RY(np.pi/2, target))\n", - "@qfunc\n", - "def main():\n", - " q0=QBit(\"q0\")\n", - " q1=QBit(\"q1\")\n", - " allocate(1,q0)\n", - " allocate(1,q1)\n", - " cry(q0,q1)\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 5b - Control (\"Quantum If\")\n", - "The `control` operator is the conditional application of some operation, with the condition being that all control qubits are in the state |1>. This notion is generalized in QMOD to other control states, where the condition is specified as a comparison between a quantum numeric variable and a numeric value, similar to a classical `if` statement. Quantum numeric variables are declared with class `QNum`.\n", - "\n", - "See also [Numeric types](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/quantum-types/#syntax).\n", - "\n", - "In QMOD this generalization is available as a native statement - control.\n", - "\n", - "See also [control](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/quantum-operators/).\n", - "\n", - "1. Declare a `QNum` output argument using `Output[QNum]` and name it `x`.\n", - "2. Use the `prepare_int` function to initialize it to `9`. Note that you don't need to specify the `QNum` attributes - size, sign, and fraction digits, as they are inferred at the point of initialization.\n", - "3. Execute the circuit and observe the results.\n", - "4. Declare another output argument of type `QBit` and perform a `control` such that under the condition that `x` is 9, the qubit is flipped. Execute the circuit and observe the results. Repeat for a different condition." - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/e755f46b-8887-43f7-8190-c78ccc23c11d?version=0.42.0\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "@qfunc\n", - "def main(x: Output[QNum], y:Output[QBit]):\n", - " prepare_int(9,x)\n", - " allocate(1,y)\n", - " control((x==9), lambda: X(y))\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.9" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/community/QClass_2024/Submissions/HW1/Yasir_Mansour_HW1_QClass2024.ipynb b/community/QClass_2024/Submissions/HW1/Yasir_Mansour_HW1_QClass2024.ipynb deleted file mode 100644 index d464ea5d..00000000 --- a/community/QClass_2024/Submissions/HW1/Yasir_Mansour_HW1_QClass2024.ipynb +++ /dev/null @@ -1,616 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "id": "XtC66r2Y5_eT", - "tags": [] - }, - "source": [ - "# The Qmod Workshop - Introduction\n", - "\n", - "The Classiq platform features a high-level quantum modeling language called Qmod. Qmod is compiled into concrete gate-level implementation using a powerful synthesis engine that optimizes and adapts the implementation to different target hardware/simulation environments.\n", - "\n", - "In this workshop, we will learn how to write quantum models using Qmod. We will be using the Python embedding of Qmod, available as part of the Classiq Python SDK. We will learn basic concepts in the Qmod language, such as functions, operators, quantum variables, and quantum types. We will develop useful building blocks and small algorithms.\n", - "\n", - "The QMOD language reference(docs.classiq.io/latest/user-guide/platform/qmod/language-reference/) covers these concepts more systematically and includes more examples.\n", - "\n", - "This workshop consists of step-by-step exercises. It is structured as follows:\n", - "\n", - "- Part 1: Language Fundamentals - Exercises 1-5\n", - "- Part 2: Higher-Level Concepts - Exercises 6-10\n", - "- Part 3: Execution Flows - Exercises 11, 12\n", - "\n", - "The introduction and Part 1 are included in this notebook. Part 2 and 3 are each in its own separate notebook. For each exercise you will find the solution to the exercises at the bottom of the same notebook.\n", - "\n", - "### Preparations\n", - "\n", - "Make sure you have a Python version of 3.8 through 3.11 installed. Unfortunately, Classiq is not yet supported with Python 3.12.\n", - "\n", - "Install Classiq’s Python SDK by following the instructions on this page: Getting Started - Classiq(docs.classiq.io/latest/getting-started/).\n", - "\n", - "### Python Qmod Exercises - General Instructions\n", - "\n", - "In order to synthesize and execute your Qmod code, you should:\n", - "1. Make sure you define a `main` function that calls functions you create.\n", - "2. Use `create_model` by running `qmod = create_model(main)` to construct a representation of your model.\n", - "3. You can synthesize the model (using `qprog = synthesize(qmod)`) to obtain an implementation - a quantum program.\n", - "4. You can then visualize the quantum program (`show(qprog)`) or execute it (using `execute(qprog)`. See: Execution - Classiq(docs.classiq.io/latest/user-guide/platform/executor/#full-example)). You can also execute it with the IDE after visualizing the circuit.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "RatBmdhm5_e2" - }, - "source": [ - "### Exercise 0: From Model to Execution\n", - "\n", - "The following model defines a function that applies X and H gates on a single qubit, and subsequently calls it:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 0 - }, - "id": "156317w1BFqw", - "outputId": "2bf3654e-05de-4dd1-f7cb-08c9b1d49011", - "tags": [] - }, - "outputs": [], - "source": [ - "!pip install -U -q classiq" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 0 - }, - "id": "EaDN5EkVC58C", - "outputId": "c2446774-718c-4d7c-eb0b-e8e1f676d27d", - "tags": [] - }, - "outputs": [], - "source": [ - "import classiq\n", - "classiq.authenticate()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "DpF2vKUh5_e7", - "tags": [] - }, - "outputs": [], - "source": [ - "from classiq import *\n", - "\n", - "\n", - "# Define a quantum function using the @qfunc decorator\n", - "@qfunc\n", - "def qfn(q: QBit) -> None:\n", - " X(target=q)\n", - " H(target=q)\n", - "\n", - "\n", - "# Define a main function\n", - "@qfunc\n", - "def main(res: Output[QBit]) -> None:\n", - " allocate(1, res)\n", - " qfn(q=res)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "NXh4E69A5_fC" - }, - "source": [ - "Create a model from it, and synthesize, visualize, and execute it.\n", - "\n", - "Use the General Instructions above to do so.\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 0 - }, - "id": "UB612BIP5_fE", - "outputId": "6658d861-fccb-4acb-8bf2-1b52dee5b6c4", - "tags": [] - }, - "outputs": [], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)\n", - "execute(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "s3CXWd3V5_fF" - }, - "source": [ - "In Qmod `QBit` is the simplest quantum type, and in this example, `q` is a quantum variable of type `QBit`. Quantum variables abstract away the mapping of quantum objects to qubits in the actual circuit.\n", - "\n", - "See also Quantum Variables(docs.classiq.io/latest/user-guide/platform/qmod/language-reference/quantum-variables/).\n", - "\n", - "We will discuss other quantum types during the workshop.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "wtQE208K5_fH" - }, - "source": [ - "# The Qmod Workshop - Part 1: Language Fundamentals\n", - "\n", - "Follow exercises 1 through 5 for the first session of the workshop." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "8jM3lrC15_fI" - }, - "source": [ - "## Exercise 1 - Bell Pair\n", - "\n", - "Create a function that takes two single-qubit (`QBit`) quantum arguments and prepares the bell state on them (Bell state(en.wikipedia.org/wiki/Bell_state)) by applying `H` on one variable and then using it as the control of a `CX` function with the second variable as the target.\n", - "Create a main function that uses this function and has two single-qubit outputs, initialize them to the |0> state (using the `allocate` function), and apply your function to them.\n", - "\n", - "See also Functions(docs.classiq.io/latest/user-guide/platform/qmod/language-reference/functions#syntax)\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 0 - }, - "id": "fNOTP83I5_fJ", - "outputId": "4c0a03a2-6f67-4c15-957e-261b56f1ad91", - "tags": [] - }, - "outputs": [], - "source": [ - "from classiq import *\n", - "# Define a quantum function using the @qfunc decorator\n", - "@qfunc\n", - "def bell(q1: QBit, q2: QBit) -> None:\n", - " H(target=q1)\n", - " CX(control=q1,target=q2)\n", - "\n", - "# Define a main function\n", - "@qfunc\n", - "def main(res1: Output[QBit], res2: Output[QBit]) -> None:\n", - " allocate(1, res1)\n", - " allocate(1, res2)\n", - " bell(q1=res1,q2=res2)\n", - "\n", - "# Your code here:\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)\n", - "execute(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "AY_kkbyi5_fM" - }, - "source": [ - "Use qubit array subscript (the syntax - _variable_ **[** _index-expression_ **]**) to change the function from subsection 1 to receive a single quantum variable, a qubit array (`QArray`) of size 2.\n", - "Change your main function to declare a single output (also an array of size 2).\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 0 - }, - "id": "Y-c9r6OT5_fO", - "outputId": "8a2a41c7-bcee-4765-8906-4b7026bf3b71", - "tags": [] - }, - "outputs": [], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "# Define a quantum function using the @qfunc decorator\n", - "@qfunc\n", - "def bell(q: QArray) -> None:\n", - " H(target=q[0])\n", - " CX(control=q[0],target=q[1])\n", - "\n", - "# Define a main function\n", - "@qfunc\n", - "def main(res: Output[QArray]) -> None:\n", - " allocate(2, res)\n", - " bell(res)\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)\n", - "execute(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "SoXeCLcX5_fQ" - }, - "source": [ - "## Exercise 2 - Repeat\n", - "\n", - "Use the built-in `repeat` operator to create your own Hadamard transform function (call it `my_hadamard_transform`). The Hadamard transform function is a function that takes as argument a qubit array of an unspecified size and applies `H` to each of its qubit.\n", - "\n", - "See also Classical repeat(docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/classical-control-flow/#classical-repeat).\n", - "\n", - "Set your main function to have a quantum array output of unspecified size, allocate 10 qubits, and then apply your Hadamard transform function.\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 0 - }, - "id": "vFrcPTqi5_fS", - "outputId": "48c6573f-ba4d-4c47-b65f-dd2204818e8e", - "tags": [] - }, - "outputs": [], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def my_hadamard(q: QArray) -> None:\n", - " repeat(count=q.len, iteration=lambda i: H(target=q[i]))\n", - "\n", - "# Define a main function\n", - "@qfunc\n", - "def main(res: Output[QArray]) -> None:\n", - " allocate(10, res)\n", - " my_hadamard(res)\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)\n", - "execute(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "98liCUg15_fT" - }, - "source": [ - "### Note: Quantum Variable Capture\n", - "The `repeat` operator invokes a statement block multiple times. The statement block is specified using a Python callable, typically a lambda expression. Inside the block you can refer to variables declared in the outer function scope.\n", - "This concept is called `quantum variable capture`, equivalent to capture(en.wikipedia.org/wiki/Closure_(computer_programming)) in classical languages.\n", - "\n", - "See also Capturing context variables and parameters(docs.classiq.io/latest/user-guide/platform/qmod/language-reference/operators/#capturing-context-variables-and-parameters)." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "fonXAiHP5_fU" - }, - "source": [ - "### Exercise 3 - Power\n", - "Raising a quantum operation to a power appears in many known algorithms, for examples, in Grover search and Quantum Phase Estimation.\n", - "For most operations, it simply means repeating the same circuit multiple times.\n", - "\n", - "Sometimes, however, power can be simplified, thus saving computational resources.\n", - "The most trivial example is a quantum operation expressed as a single explicit unitary matrix (i.e., all n*n matrix terms are given) - raising the operation can be done by raising the matrix to that power via classical programming.\n", - "\n", - "See also Power operator(docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/quantum-operators/#syntax).\n", - "\n", - "Use the following code to generate a 2-qubit (real) unitary matrix:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "tD_aBHoU5_fW", - "tags": [] - }, - "outputs": [], - "source": [ - "from typing import List\n", - "\n", - "import numpy as np\n", - "\n", - "from classiq import *\n", - "\n", - "rng = np.random.default_rng(seed=0)\n", - "random_matrix = rng.random((4, 4))\n", - "qr_unitary, _ = np.linalg.qr(random_matrix)\n", - "\n", - "unitary_matrix = QConstant(\"unitary_matrix\", List[List[float]], qr_unitary.tolist())" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "yRWVHm1O5_fY" - }, - "source": [ - "In order to reuse some classical value we can define a `QConstant` to store that value.\n", - "\n", - "1. Create a model that applies `unitary_matrix` on a 2 qubit variable.\n", - "2. Create another model that applies `unitary_matrix` raised to power 3 on a 2 qubit variable.\n", - "3. Compare the gate count via the Classiq’s IDE in both cases.\n", - "\n", - "Note - the signature of function `unitary` is:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "bTtPgsj75_fZ", - "tags": [] - }, - "outputs": [], - "source": [ - "def unitary(\n", - " elements: CArray[CArray[CReal]],\n", - " target: QArray[QBit],\n", - ") -> None:\n", - " pass" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 0 - }, - "id": "6Js8fNbl5_fa", - "outputId": "4d13cc20-3b3f-45b8-93fb-b353ab8cbea0", - "tags": [] - }, - "outputs": [], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "rng = np.random.default_rng(seed=0)\n", - "random_matrix = rng.random((4, 4))\n", - "qr_unitary, _ = np.linalg.qr(random_matrix)\n", - "\n", - "unitary_matrix = QConstant(\"unitary_matrix\", List[List[float]], qr_unitary.tolist())\n", - "\n", - "\n", - "@qfunc\n", - "def main(q: Output[QArray[QBit]]) -> None:\n", - " allocate(2, q)\n", - " power(3, lambda: unitary(unitary_matrix, q))\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)\n", - "execute(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "P-jP3v9O5_fb" - }, - "source": [ - "## Exercise 4 - User-defined Operators\n", - "Create a function that applies a given single-qubit operation to all qubits in its quantum argument (Call your function `my_apply_to_all`). Such a function is also called an operator, i.e. a function that one of its arguments is another function (its operand).\n", - "\n", - "See also Operators(docs.classiq.io/latest/user-guide/platform/qmod/language-reference/operators/).\n", - "\n", - "Follow these guidelines:\n", - "1. Your function should declare a quantum argument of type qubit array. It should also declare an argument of a function type with a single qubit argument.\n", - "2. The body should apply the operand to all qubits in the argument.\n", - "\n", - "When you're done, re-implement `my_hadamard_transform` from exercise 2 using this function instead of `repeat`.\n", - "Use the same main function from exercise 2." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 0 - }, - "id": "vvMbP91D5_fc", - "outputId": "18fca5c9-3b26-4683-98c7-c17f27de698a", - "tags": [] - }, - "outputs": [], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "\n", - "@qfunc\n", - "def my_apply_to_all(operand: QCallable[QBit], q: QArray[QBit]) -> None:\n", - " repeat(q.len, lambda i: operand(q[i]))\n", - "\n", - "@qfunc\n", - "def my_hadamard(q: QArray[QBit]) -> None:\n", - " my_apply_to_all(lambda t: H(t), q)\n", - "\n", - "# Define a main function\n", - "@qfunc\n", - "def main(q: Output[QArray[QBit]]) -> None:\n", - " allocate(10, q)\n", - " my_hadamard(q)\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)\n", - "execute(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "gh690ZGT5_fe" - }, - "source": [ - "# Exercise 5 - Quantum Conditionals\n", - "\n", - "### Exercise 5a - Control Operator\n", - "Use the built-in `control` operator to create a function that receives two single qubit variables and uses one of the variables to control an RY gate with a `pi/2` angle acting on the other variable (without using the `CRY` function).\n", - "\n", - "See also Quantum operators(docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/quantum-operators/#syntax).\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 0 - }, - "id": "00trO6SJ5_ff", - "outputId": "b022f930-40a5-436c-b3af-0a4e4e5d21d7", - "tags": [] - }, - "outputs": [], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "from classiq.qmod.symbolic import pi\n", - "\n", - "\n", - "@qfunc\n", - "def my_controlled_ry(control_bit: QBit, target: QBit) -> None:\n", - " control(control_bit, lambda: RY(pi / 2, target))\n", - "\n", - "\n", - "@qfunc\n", - "def main(control_bit: Output[QBit], target: Output[QBit]) -> None:\n", - " allocate(1, control_bit)\n", - " allocate(1, target)\n", - " my_controlled_ry(control_bit, target)\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)\n", - "execute(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "GJ9y7jlY5_fh" - }, - "source": [ - "### Exercise 5b - Control (\"Quantum If\")\n", - "The `control` operator is the conditional application of some operation, with the condition being that all control qubits are in the state |1>. This notion is generalized in QMOD to other control states, where the condition is specified as a comparison between a quantum numeric variable and a numeric value, similar to a classical `if` statement. Quantum numeric variables are declared with class `QNum`.\n", - "\n", - "See also Numeric types(docs.classiq.io/latest/user-guide/platform/qmod/language-reference/quantum-types/#syntax).\n", - "\n", - "In QMOD this generalization is available as a native statement - control.\n", - "\n", - "See also control(docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/quantum-operators/).\n", - "\n", - "1. Declare a `QNum` output argument using `Output[QNum]` and name it `x`.\n", - "2. Use the `prepare_int` function to initialize it to `9`. Note that you don't need to specify the `QNum` attributes - size, sign, and fraction digits, as they are inferred at the point of initialization.\n", - "3. Execute the circuit and observe the results.\n", - "4. Declare another output argument of type `QBit` and perform a `control` such that under the condition that `x` is 9, the qubit is flipped. Execute the circuit and observe the results. Repeat for a different condition." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "IohNdRCA5_fi", - "outputId": "c3d53156-d530-48b8-e31b-80990b06e66d", - "tags": [] - }, - "outputs": [], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def main(x: Output[QNum], target: Output[QBit]) -> None:\n", - " prepare_int(9, x)\n", - " allocate(1, target)\n", - " control(x == 9, lambda: X(target))\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - } - ], - "metadata": { - "colab": { - "provenance": [] - }, - "kernelspec": { - "display_name": "Python 3 [Default]", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.9" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/community/QClass_2024/Submissions/HW1/Yue(Leslie)_Xu_HW1_QClass2024.ipynb b/community/QClass_2024/Submissions/HW1/Yue(Leslie)_Xu_HW1_QClass2024.ipynb deleted file mode 100644 index a058a318..00000000 --- a/community/QClass_2024/Submissions/HW1/Yue(Leslie)_Xu_HW1_QClass2024.ipynb +++ /dev/null @@ -1,596 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# The Qmod Workshop - Introduction\n", - "\n", - "The Classiq platform features a high-level quantum modeling language called Qmod. Qmod is compiled into concrete gate-level implementation using a powerful synthesis engine that optimizes and adapts the implementation to different target hardware/simulation environments.\n", - "\n", - "In this workshop, we will learn how to write quantum models using Qmod. We will be using the Python embedding of Qmod, available as part of the Classiq Python SDK. We will learn basic concepts in the Qmod language, such as functions, operators, quantum variables, and quantum types. We will develop useful building blocks and small algorithms.\n", - "\n", - "The [QMOD language reference](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/) covers these concepts more systematically and includes more examples.\n", - "\n", - "This workshop consists of step-by-step exercises. It is structured as follows:\n", - "\n", - "- Part 1: Language Fundamentals - Exercises 1-5\n", - "- Part 2: Higher-Level Concepts - Exercises 6-10\n", - "- Part 3: Execution Flows - Exercises 11, 12\n", - "\n", - "The introduction and Part 1 are included in this notebook. Part 2 and 3 are each in its own separate notebook. For each exercise you will find the solution to the exercises at the bottom of the same notebook.\n", - "\n", - "### Preparations\n", - "\n", - "Make sure you have a Python version of 3.8 through 3.11 installed. Unfortunately, Classiq is not yet supported with Python 3.12.\n", - "\n", - "Install Classiq’s Python SDK by following the instructions on this page: [Getting Started - Classiq](https://docs.classiq.io/latest/getting-started/).\n", - "\n", - "### Python Qmod Exercises - General Instructions\n", - "\n", - "In order to synthesize and execute your Qmod code, you should:\n", - "1. Make sure you define a `main` function that calls functions you create.\n", - "2. Use `create_model` by running `qmod = create_model(main)` to construct a representation of your model.\n", - "3. You can synthesize the model (using `qprog = synthesize(qmod)`) to obtain an implementation - a quantum program.\n", - "4. You can then visualize the quantum program (`show(qprog)`) or execute it (using `execute(qprog)`. See: [Execution - Classiq](https://docs.classiq.io/latest/user-guide/platform/executor/#full-example)). You can also execute it with the IDE after visualizing the circuit.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 0: From Model to Execution\n", - "\n", - "The following model defines a function that applies X and H gates on a single qubit, and subsequently calls it:" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "import classiq" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "from classiq import *\n", - "\n", - "\n", - "# Define a quantum function using the @qfunc decorator\n", - "@qfunc\n", - "def foo(q: QBit) -> None:\n", - " X(target=q)\n", - " H(target=q)\n", - "\n", - "\n", - "# Define a main function\n", - "@qfunc\n", - "def main(res: Output[QBit]) -> None:\n", - " allocate(1, res)\n", - " foo(q=res)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Create a model from it, and synthesize, visualize, and execute it.\n", - "\n", - "Use the General Instructions above to do so.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/1cee8a34-ac97-482b-8eb4-515ef4eaf1cc?version=0.41.1\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "quantum_model = create_model(main)\n", - "quantum_program = synthesize(quantum_model)\n", - "\n", - "show(quantum_program)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In Qmod `QBit` is the simplest quantum type, and in this example, `q` is a quantum variable of type `QBit`. Quantum variables abstract away the mapping of quantum objects to qubits in the actual circuit.\n", - "\n", - "See also [Quantum Variables](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/quantum-variables/).\n", - "\n", - "We will discuss other quantum types during the workshop.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# The Qmod Workshop - Part 1: Language Fundamentals\n", - "\n", - "Follow exercises 1 through 5 for the first session of the workshop." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exercise 1 - Bell Pair\n", - "\n", - "Create a function that takes two single-qubit (`QBit`) quantum arguments and prepares the bell state on them ([Bell state](https://en.wikipedia.org/wiki/Bell_state)) by applying `H` on one variable and then using it as the control of a `CX` function with the second variable as the target.\n", - "Create a main function that uses this function and has two single-qubit outputs, initialize them to the |0> state (using the `allocate` function), and apply your function to them.\n", - "\n", - "See also [Functions](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/functions#syntax)\n" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/49c63ffe-0823-4fc5-be6e-8824c1612be4?version=0.41.1\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def create_bell_state(q0:QBit,q1:QBit)-> None:\n", - " H(q0)\n", - " CX(control=q0,target=q1)\n", - "\n", - "@qfunc\n", - "def main(qubit0:Output[QBit],qubit1:Output[QBit]) -> None:\n", - " allocate(1, qubit0)\n", - " allocate(1, qubit1)\n", - " create_bell_state(qubit1,qubit0)\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "\n", - "show(qprog)\n" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/c7d4fb03-3c5e-4a0f-bae3-80a2d4abc76f?version=0.41.1\n" - ] - } - ], - "source": [ - "@qfunc\n", - "def create_bell_state(reg:QArray[QBit,2])-> None:\n", - " H(reg[0])\n", - " CX(control=reg[0],target=reg[1])\n", - "\n", - "@qfunc\n", - "def main(res: Output[QArray[QBit,2]]) -> None:\n", - " allocate(2, res)\n", - " create_bell_state(reg=res)\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Use qubit array subscript (the syntax - _variable_ **[** _index-expression_ **]**) to change the function from subsection 1 to receive a single quantum variable, a qubit array (`QArray`) of size 2.\n", - "Change your main function to declare a single output (also an array of size 2).\n" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/8ad28de1-8d6f-4b5e-a407-ebe0a06e2c46?version=0.41.1\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "\n", - "@qfunc\n", - "def main(x: Output[QArray[QBit]]):\n", - " prepare_state(probabilities=[0.5,0,0,0.5], bound=0.01, out=x)\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exercise 2 - Repeat\n", - "\n", - "Use the built-in `repeat` operator to create your own Hadamard transform function (call it `my_hadamard_transform`). The Hadamard transform function is a function that takes as argument a qubit array of an unspecified size and applies `H` to each of its qubit.\n", - "\n", - "See also [Classical repeat](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/classical-control-flow/#classical-repeat).\n", - "\n", - "Set your main function to have a quantum array output of unspecified size, allocate 10 qubits, and then apply your Hadamard transform function.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/8b0d6333-e3fc-4935-923c-e760a5a8b3dd?version=0.41.1\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "\n", - "@qfunc\n", - "def Hadamard_transform_function(q: QArray[QBit]) -> None:\n", - " repeat(q.len, lambda i: H(q[i]))\n", - "\n", - "@qfunc\n", - "def main(reg: Output[QArray]):\n", - " allocate(10,reg)\n", - " Hadamard_transform_function(reg)\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Note: Quantum Variable Capture\n", - "The `repeat` operator invokes a statement block multiple times. The statement block is specified using a Python callable, typically a lambda expression. Inside the block you can refer to variables declared in the outer function scope.\n", - "This concept is called `quantum variable capture`, equivalent to [capture](https://en.wikipedia.org/wiki/Closure_(computer_programming)) in classical languages.\n", - "\n", - "See also [Capturing context variables and parameters](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/operators/#capturing-context-variables-and-parameters)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 3 - Power\n", - "Raising a quantum operation to a power appears in many known algorithms, for examples, in Grover search and Quantum Phase Estimation.\n", - "For most operations, it simply means repeating the same circuit multiple times.\n", - "\n", - "Sometimes, however, power can be simplified, thus saving computational resources.\n", - "The most trivial example is a quantum operation expressed as a single explicit unitary matrix (i.e., all n*n matrix terms are given) - raising the operation can be done by raising the matrix to that power via classical programming.\n", - "\n", - "See also [Power operator](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/quantum-operators/#syntax).\n", - "\n", - "Use the following code to generate a 2-qubit (real) unitary matrix:" - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": {}, - "outputs": [], - "source": [ - "from typing import List\n", - "\n", - "import numpy as np\n", - "\n", - "from classiq import *\n", - "\n", - "rng = np.random.default_rng(seed=0)\n", - "random_matrix = rng.random((4, 4))\n", - "qr_unitary, _ = np.linalg.qr(random_matrix)\n", - "\n", - "unitary_matrix = QConstant(\"unitary_matrix\", List[List[float]], qr_unitary.tolist())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In order to reuse some classical value we can define a `QConstant` to store that value.\n", - "\n", - "1. Create a model that applies `unitary_matrix` on a 2 qubit variable.\n", - "2. Create another model that applies `unitary_matrix` raised to power 3 on a 2 qubit variable.\n", - "3. Compare the gate count via the Classiq’s IDE in both cases.\n", - "\n", - "Note - the signature of function `unitary` is:" - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": {}, - "outputs": [], - "source": [ - "def unitary(\n", - " elements: CArray[CArray[CReal]],\n", - " target: QArray[QBit],\n", - ") -> None:\n", - " pass" - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/027e01e3-5744-426d-bc8a-bc94cd128368?version=0.41.1\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def main(q: Output[QArray]):\n", - " allocate(2, q)\n", - " unitary(unitary_matrix, q)\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/551669bd-c8de-4679-b48e-50a217ff8214?version=0.41.1\n" - ] - } - ], - "source": [ - "@qfunc\n", - "def main(q: Output[QArray]):\n", - " allocate(2, q)\n", - " # unitary(unitary_matrix**3, q)\n", - " power(3, lambda: unitary(unitary_matrix, q))\n", - " \n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "The gate count for both cases are identical..." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exercise 4 - User-defined Operators\n", - "Create a function that applies a given single-qubit operation to all qubits in its quantum argument (Call your function `my_apply_to_all`). Such a function is also called an operator, i.e. a function that one of its arguments is another function (its operand).\n", - "\n", - "See also [Operators](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/operators/).\n", - "\n", - "Follow these guidelines:\n", - "1. Your function should declare a quantum argument of type qubit array. It should also declare an argument of a function type with a single qubit argument.\n", - "2. The body should apply the operand to all qubits in the argument.\n", - "\n", - "When you're done, re-implement `my_hadamard_transform` from exercise 2 using this function instead of `repeat`.\n", - "Use the same main function from exercise 2." - ] - }, - { - "cell_type": "code", - "execution_count": 46, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/d241576d-2987-4b64-bcda-aa8980e8a48a?version=0.41.1\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def my_apply_to_all(operand: QCallable[QBit], q: QArray[QBit]) -> None:\n", - " repeat(q.len, lambda i: operand(q[i]))\n", - "\n", - "\n", - "@qfunc\n", - "def my_hadamard_transform(q: QArray[QBit]) -> None:\n", - " my_apply_to_all(lambda t: H(t), q)\n", - "\n", - "\n", - "@qfunc\n", - "def main(reg: Output[QArray]):\n", - " allocate(10,reg)\n", - " my_hadamard_transform(reg)\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Exercise 5 - Quantum Conditionals\n", - "\n", - "### Exercise 5a - Control Operator\n", - "Use the built-in `control` operator to create a function that receives two single qubit variables and uses one of the variables to control an RY gate with a `pi/2` angle acting on the other variable (without using the `CRY` function).\n", - "\n", - "See also [Quantum operators](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/quantum-operators/#syntax).\n" - ] - }, - { - "cell_type": "code", - "execution_count": 53, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/ce06fe93-bdf5-42ae-8cc6-ccbd7fb6fa5f?version=0.41.1\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "import numpy\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def C_Ry(control_QBit: QBit, target: QBit) -> None:\n", - " control(control_QBit, lambda: RY(np.pi/2, target))\n", - "\n", - "@qfunc\n", - "def main(control_QBit: Output[QBit], target: Output[QBit]) -> None:\n", - " allocate(1,control_QBit)\n", - " allocate(1,target)\n", - " C_Ry(control_QBit,target)\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 5b - Control (\"Quantum If\")\n", - "The `control` operator is the conditional application of some operation, with the condition being that all control qubits are in the state |1>. This notion is generalized in QMOD to other control states, where the condition is specified as a comparison between a quantum numeric variable and a numeric value, similar to a classical `if` statement. Quantum numeric variables are declared with class `QNum`.\n", - "\n", - "See also [Numeric types](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/quantum-types/#syntax).\n", - "\n", - "In QMOD this generalization is available as a native statement - control.\n", - "\n", - "See also [control](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/quantum-operators/).\n", - "\n", - "1. Declare a `QNum` output argument using `Output[QNum]` and name it `x`.\n", - "2. Use the `prepare_int` function to initialize it to `9`. Note that you don't need to specify the `QNum` attributes - size, sign, and fraction digits, as they are inferred at the point of initialization.\n", - "3. Execute the circuit and observe the results.\n", - "4. Declare another output argument of type `QBit` and perform a `control` such that under the condition that `x` is 9, the qubit is flipped. Execute the circuit and observe the results. Repeat for a different condition." - ] - }, - { - "cell_type": "code", - "execution_count": 55, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/5945fbc7-0643-4fe7-b104-2a75c59d7168?version=0.41.1\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def main(x: Output[QNum],q:Output[QBit]):\n", - " prepare_int(9, x)\n", - " allocate(1,q)\n", - " control(x==9,lambda: X(q))\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.9" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/community/QClass_2024/Submissions/HW1/bogachan_arslan-HW1_QClass2024.ipynb b/community/QClass_2024/Submissions/HW1/bogachan_arslan-HW1_QClass2024.ipynb deleted file mode 100644 index 12246d76..00000000 --- a/community/QClass_2024/Submissions/HW1/bogachan_arslan-HW1_QClass2024.ipynb +++ /dev/null @@ -1,648 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# The Qmod Workshop - Introduction\n", - "\n", - "The Classiq platform features a high-level quantum modeling language called Qmod. Qmod is compiled into concrete gate-level implementation using a powerful synthesis engine that optimizes and adapts the implementation to different target hardware/simulation environments.\n", - "\n", - "In this workshop, we will learn how to write quantum models using Qmod. We will be using the Python embedding of Qmod, available as part of the Classiq Python SDK. We will learn basic concepts in the Qmod language, such as functions, operators, quantum variables, and quantum types. We will develop useful building blocks and small algorithms.\n", - "\n", - "The [QMOD language reference](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/) covers these concepts more systematically and includes more examples.\n", - "\n", - "This workshop consists of step-by-step exercises. It is structured as follows:\n", - "\n", - "- Part 1: Language Fundamentals - Exercises 1-5\n", - "- Part 2: Higher-Level Concepts - Exercises 6-10\n", - "- Part 3: Execution Flows - Exercises 11, 12\n", - "\n", - "The introduction and Part 1 are included in this notebook. Part 2 and 3 are each in its own separate notebook. For each exercise you will find the solution to the exercises at the bottom of the same notebook.\n", - "\n", - "### Preparations\n", - "\n", - "Make sure you have a Python version of 3.8 through 3.11 installed. Unfortunately, Classiq is not yet supported with Python 3.12.\n", - "\n", - "Install Classiq’s Python SDK by following the instructions on this page: [Getting Started - Classiq](https://docs.classiq.io/latest/getting-started/).\n", - "\n", - "### Python Qmod Exercises - General Instructions\n", - "\n", - "In order to synthesize and execute your Qmod code, you should:\n", - "1. Make sure you define a `main` function that calls functions you create.\n", - "2. Use `create_model` by running `qmod = create_model(main)` to construct a representation of your model.\n", - "3. You can synthesize the model (using `qprog = synthesize(qmod)`) to obtain an implementation - a quantum program.\n", - "4. You can then visualize the quantum program (`show(qprog)`) or execute it (using `execute(qprog)`. See: [Execution - Classiq](https://docs.classiq.io/latest/user-guide/platform/executor/#full-example)). You can also execute it with the IDE after visualizing the circuit.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 0: From Model to Execution\n", - "\n", - "The following model defines a function that applies X and H gates on a single qubit, and subsequently calls it:" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "ExecuteTime": { - "end_time": "2024-05-25T11:39:01.817661Z", - "start_time": "2024-05-25T11:38:50.988114Z" - } - }, - "outputs": [], - "source": [ - "from classiq import *\n", - "\n", - "\n", - "# Define a quantum function using the @qfunc decorator\n", - "@qfunc\n", - "def foo(q: QBit) -> None:\n", - " X(target=q)\n", - " H(target=q)\n", - "\n", - "\n", - "# Define a main function\n", - "@qfunc\n", - "def main(res: Output[QBit]) -> None:\n", - " allocate(1, res)\n", - " foo(q=res)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Create a model from it, and synthesize, visualize, and execute it.\n", - "\n", - "Use the General Instructions above to do so.\n" - ] - }, - { - "cell_type": "code", - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/39024066-9bdb-489e-a665-680c62496521?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ], - "metadata": { - "collapsed": false, - "ExecuteTime": { - "end_time": "2024-05-23T22:55:17.157290Z", - "start_time": "2024-05-23T22:55:11.291099Z" - } - }, - "execution_count": 3 - }, - { - "cell_type": "code", - "outputs": [], - "source": [ - "job = execute(qprog)" - ], - "metadata": { - "collapsed": false, - "ExecuteTime": { - "end_time": "2024-05-23T22:55:26.725205Z", - "start_time": "2024-05-23T22:55:24.939847Z" - } - }, - "execution_count": 5 - }, - { - "cell_type": "code", - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'res': 0.0}\n", - "{'res': 1.0}\n" - ] - } - ], - "source": [ - "def print_parsed_counts(job):\n", - " results = job.result()\n", - " parsed_counts = results[0].value.parsed_counts\n", - " for parsed_state in parsed_counts: print(parsed_state.state)\n", - " \n", - "print_parsed_counts(job)" - ], - "metadata": { - "collapsed": false, - "ExecuteTime": { - "end_time": "2024-05-23T22:55:29.311139Z", - "start_time": "2024-05-23T22:55:27.819933Z" - } - }, - "execution_count": 6 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In Qmod `QBit` is the simplest quantum type, and in this example, `q` is a quantum variable of type `QBit`. Quantum variables abstract away the mapping of quantum objects to qubits in the actual circuit.\n", - "\n", - "See also [Quantum Variables](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/quantum-variables/).\n", - "\n", - "We will discuss other quantum types during the workshop.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# The Qmod Workshop - Part 1: Language Fundamentals\n", - "\n", - "Follow exercises 1 through 5 for the first session of the workshop." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exercise 1 - Bell Pair\n", - "\n", - "Create a function that takes two single-qubit (`QBit`) quantum arguments and prepares the bell state on them ([Bell state](https://en.wikipedia.org/wiki/Bell_state)) by applying `H` on one variable and then using it as the control of a `CX` function with the second variable as the target.\n", - "Create a main function that uses this function and has two single-qubit outputs, initialize them to the |0> state (using the `allocate` function), and apply your function to them.\n", - "\n", - "See also [Functions](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/functions#syntax)\n" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "ExecuteTime": { - "end_time": "2024-05-23T23:02:41.433382Z", - "start_time": "2024-05-23T23:02:36.907429Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/0d413ae1-0115-45da-84f8-2db0808e758b?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def prepare_bell_pair(q1: QBit, q2: QBit):\n", - " H(q1)\n", - " CX(q1,q2)\n", - " \n", - "@qfunc\n", - "def main(q1: Output[QBit], q2: Output[QBit]):\n", - " allocate(1, q1)\n", - " allocate(1, q2)\n", - " prepare_bell_pair(q1, q2)\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Use qubit array subscript (the syntax - _variable_ **[** _index-expression_ **]**) to change the function from subsection 1 to receive a single quantum variable, a qubit array (`QArray`) of size 2.\n", - "Change your main function to declare a single output (also an array of size 2).\n" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "ExecuteTime": { - "end_time": "2024-05-23T23:04:23.367303Z", - "start_time": "2024-05-23T23:04:19.700134Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/ec6113d1-459e-4ee5-afa8-f242f4afcf10?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def prepare_bell_pair_from_array(q: QArray[QBit]):\n", - " H(q[0])\n", - " CX(q[0],q[1])\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exercise 2 - Repeat\n", - "\n", - "Use the built-in `repeat` operator to create your own Hadamard transform function (call it `my_hadamard_transform`). The Hadamard transform function is a function that takes as argument a qubit array of an unspecified size and applies `H` to each of its qubit.\n", - "\n", - "See also [Classical repeat](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/classical-control-flow/#classical-repeat).\n", - "\n", - "Set your main function to have a quantum array output of unspecified size, allocate 10 qubits, and then apply your Hadamard transform function.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "ExecuteTime": { - "end_time": "2024-05-23T23:07:15.376743Z", - "start_time": "2024-05-23T23:07:11.675863Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/448239b0-18e3-4102-a80d-38a8d319071c?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def my_hadamard_transform(q: QArray[QBit]):\n", - " repeat(q.len, lambda i: H(q[i]))\n", - "\n", - "@qfunc\n", - "def main(x: Output[QArray[QBit]]):\n", - " allocate(10, x)\n", - " my_hadamard_transform(x)\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Note: Quantum Variable Capture\n", - "The `repeat` operator invokes a statement block multiple times. The statement block is specified using a Python callable, typically a lambda expression. Inside the block you can refer to variables declared in the outer function scope.\n", - "This concept is called `quantum variable capture`, equivalent to [capture](https://en.wikipedia.org/wiki/Closure_(computer_programming)) in classical languages.\n", - "\n", - "See also [Capturing context variables and parameters](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/operators/#capturing-context-variables-and-parameters)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 3 - Power\n", - "Raising a quantum operation to a power appears in many known algorithms, for examples, in Grover search and Quantum Phase Estimation.\n", - "For most operations, it simply means repeating the same circuit multiple times.\n", - "\n", - "Sometimes, however, power can be simplified, thus saving computational resources.\n", - "The most trivial example is a quantum operation expressed as a single explicit unitary matrix (i.e., all n*n matrix terms are given) - raising the operation can be done by raising the matrix to that power via classical programming.\n", - "\n", - "See also [Power operator](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/quantum-operators/#syntax).\n", - "\n", - "Use the following code to generate a 2-qubit (real) unitary matrix:" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "ExecuteTime": { - "end_time": "2024-05-25T12:21:19.223456Z", - "start_time": "2024-05-25T12:21:19.202293Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "unitary_matrix\n" - ] - } - ], - "source": [ - "from typing import List\n", - "\n", - "import numpy as np\n", - "\n", - "from classiq import *\n", - "\n", - "rng = np.random.default_rng(seed=0)\n", - "random_matrix = rng.random((4, 4))\n", - "qr_unitary, _ = np.linalg.qr(random_matrix)\n", - "\n", - "unitary_matrix = QConstant(\"unitary_matrix\", List[List[float]], qr_unitary.tolist())\n", - "print(unitary_matrix)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In order to reuse some classical value we can define a `QConstant` to store that value.\n", - "\n", - "1. Create a model that applies `unitary_matrix` on a 2 qubit variable.\n", - "2. Create another model that applies `unitary_matrix` raised to power 3 on a 2 qubit variable.\n", - "3. Compare the gate count via the Classiq’s IDE in both cases.\n", - "\n", - "Note - the signature of function `unitary` is:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def unitary(\n", - " elements: CArray[CArray[CReal]],\n", - " target: QArray[QBit],\n", - ") -> None:\n", - " pass" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "ExecuteTime": { - "end_time": "2024-05-25T12:27:11.227515Z", - "start_time": "2024-05-25T12:27:01.271328Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/a506852e-1a62-4726-bd93-e394ea1e404f?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def apply_unitary(q: QArray[QBit]):\n", - " unitary(unitary_matrix, q)\n", - " \n", - "@qfunc\n", - "def apply_unitary_power3(q: QArray[QBit]):\n", - " power(3, lambda: apply_unitary(q))\n", - " \n", - "@qfunc\n", - "def main(q: Output[QArray[QBit]]):\n", - " allocate(2, q)\n", - " apply_unitary(q)\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/ecbe5b9b-41fb-4c78-8e71-96a32104c3da?version=0.41.2\n" - ] - } - ], - "source": [ - "@qfunc\n", - "def main(q: Output[QArray[QBit]]):\n", - " allocate(2, q)\n", - " apply_unitary_power3(q)\n", - " \n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ], - "metadata": { - "collapsed": false, - "ExecuteTime": { - "end_time": "2024-05-25T12:27:24.668041Z", - "start_time": "2024-05-25T12:27:20.889459Z" - } - }, - "execution_count": 7 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exercise 4 - User-defined Operators\n", - "Create a function that applies a given single-qubit operation to all qubits in its quantum argument (Call your function `my_apply_to_all`). Such a function is also called an operator, i.e. a function that one of its arguments is another function (its operand).\n", - "\n", - "See also [Operators](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/operators/).\n", - "\n", - "Follow these guidelines:\n", - "1. Your function should declare a quantum argument of type qubit array. It should also declare an argument of a function type with a single qubit argument.\n", - "2. The body should apply the operand to all qubits in the argument.\n", - "\n", - "When you're done, re-implement `my_hadamard_transform` from exercise 2 using this function instead of `repeat`.\n", - "Use the same main function from exercise 2." - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "ExecuteTime": { - "end_time": "2024-05-25T12:47:55.601431Z", - "start_time": "2024-05-25T12:47:51.614390Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/34de8e2c-e56d-4bd2-8d8c-a7497349f00a?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def my_apply_to_all(q: QArray[QBit], op: QCallable[QBit]):\n", - " repeat(q.len, lambda i: op(q[i]))\n", - " \n", - "@qfunc\n", - "def my_hadamard_transform(q: QArray[QBit]):\n", - " my_apply_to_all(q, lambda i: H(i))\n", - "\n", - "@qfunc\n", - "def main(x: Output[QArray[QBit]]):\n", - " allocate(10, x)\n", - " my_hadamard_transform(x)\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Exercise 5 - Quantum Conditionals\n", - "\n", - "### Exercise 5a - Control Operator\n", - "Use the built-in `control` operator to create a function that receives two single qubit variables and uses one of the variables to control an RY gate with a `pi/2` angle acting on the other variable (without using the `CRY` function).\n", - "\n", - "See also [Quantum operators](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/quantum-operators/#syntax).\n" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": { - "ExecuteTime": { - "end_time": "2024-05-25T12:54:10.188974Z", - "start_time": "2024-05-25T12:54:06.492070Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/35569097-265b-4d9c-ac94-00fd16c8d2e9?version=0.41.2\n" - ] - } - ], - "source": [ - "import math\n", - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def main(q1: Output[QBit], q2: Output[QBit]):\n", - " allocate(1, q1)\n", - " allocate(1, q2)\n", - " control(q1, lambda: RY(math.pi/2, q2))\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 5b - Control (\"Quantum If\")\n", - "The `control` operator is the conditional application of some operation, with the condition being that all control qubits are in the state |1>. This notion is generalized in QMOD to other control states, where the condition is specified as a comparison between a quantum numeric variable and a numeric value, similar to a classical `if` statement. Quantum numeric variables are declared with class `QNum`.\n", - "\n", - "See also [Numeric types](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/quantum-types/#syntax).\n", - "\n", - "In QMOD this generalization is available as a native statement - control.\n", - "\n", - "See also [control](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/quantum-operators/).\n", - "\n", - "1. Declare a `QNum` output argument using `Output[QNum]` and name it `x`.\n", - "2. Use the `prepare_int` function to initialize it to `9`. Note that you don't need to specify the `QNum` attributes - size, sign, and fraction digits, as they are inferred at the point of initialization.\n", - "3. Execute the circuit and observe the results.\n", - "4. Declare another output argument of type `QBit` and perform a `control` such that under the condition that `x` is 9, the qubit is flipped. Execute the circuit and observe the results. Repeat for a different condition." - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "ExecuteTime": { - "end_time": "2024-05-25T12:59:47.390348Z", - "start_time": "2024-05-25T12:59:43.704796Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/c8958143-bd4a-4ea2-8056-4f6b4d319de5?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc \n", - "def main(x: Output[QNum], q: Output[QBit]):\n", - " prepare_int(9, x)\n", - " allocate(1, q)\n", - " control(x == 9, lambda: X(q))\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.7" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/community/QClass_2024/Submissions/HW1/index.md b/community/QClass_2024/Submissions/HW1/index.md index 3680c4e2..c86bcb5b 100644 --- a/community/QClass_2024/Submissions/HW1/index.md +++ b/community/QClass_2024/Submissions/HW1/index.md @@ -1,7 +1,9 @@ # Submitting HW1 ## Submission: Rules & Instructions + To keep track of submissions, we kindly ask you to: + 1. Complete `HW1_QClass2024.ipynb`. 2. Rename the files to include your full name, for example: `Nadav_Ben-Ami_HW1_QClass2024.ipynb`. 3. Navigate to your local clone of the `classiq-library`. @@ -14,7 +16,7 @@ To keep track of submissions, we kindly ask you to: **Please ensure you follow these steps carefully to properly submit your assignment!** ## Support + If you need help or have questions, feel free to reach out in our Slack channel! ## Enjoy your learning journey at QClass 2024! - diff --git a/community/QClass_2024/Submissions/HW2/ANIEKAN_AFANGIDEH_HW2_QClass2024.ipynb b/community/QClass_2024/Submissions/HW2/ANIEKAN_AFANGIDEH_HW2_QClass2024.ipynb deleted file mode 100644 index f529908f..00000000 --- a/community/QClass_2024/Submissions/HW2/ANIEKAN_AFANGIDEH_HW2_QClass2024.ipynb +++ /dev/null @@ -1,825 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# The Qmod Workshop - Part 2: Higher-Level Concepts\n", - "\n", - "This is the second part of the Qmod workshop, covering exercises 6 through 10. Make sure to go through Part 1 before continuing with this notebook." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "from classiq import *" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 6 - Exponentiation and Pauli Operators\n", - "\n", - "The Qmod language supports different classical types: scalars, arrays, and structs. Structs are objects with member variables, or fields.\n", - "\n", - "See also [Classical Types](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/classical-types/#structs).\n", - "\n", - "The builtin struct type `PauliTerm` is defined as follows:" - ] - }, - { - "cell_type": "code", - "execution_count": 138, - "metadata": {}, - "outputs": [], - "source": [ - "@struct\n", - "class PauliTerm:\n", - " pauli: CArray[Pauli]\n", - " coefficient: CReal" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Note that `Pauli` is an enum for all the Pauli matrices (I, X, Y, Z).\n", - "\n", - "Pauli based hamiltonian can be represented as a list of `PauliTerm`s. A Pauli operator defined this way is the argument to a hamiltonian evolution functions.\n", - "\n", - "In this exercise we will use the Suzuki-Trotter function to find the evolution of `H=0.5XZXX + 0.25YIZI + 0.3 XIZY` (captured as a literal value for the pauli-operator), with the evolution coefficient being 3, the order being 2, and use 4 repetitions.\n", - "\n", - "The declaration of the `suzuki_trotter` function is:" - ] - }, - { - "cell_type": "code", - "execution_count": 141, - "metadata": {}, - "outputs": [], - "source": [ - "@qfunc(external=True)\n", - "def suzuki_trotter(\n", - " pauli_operator: CArray[PauliTerm],\n", - " evolution_coefficient: CReal,\n", - " order: CInt,\n", - " repetitions: CInt,\n", - " qbv: QArray[QBit],\n", - ") -> None:\n", - " pass\n", - " " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Fill in the missing parts of the following code in order to complete this exercise:" - ] - }, - { - "cell_type": "code", - "execution_count": 142, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/de4a5f91-3abf-4e71-8a52-81128cd3db9c?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "\n", - "@qfunc\n", - "def main(q: Output[QArray[QBit]]) -> None:\n", - " allocate(4, q)\n", - " suzuki_trotter(\n", - " [ PauliTerm(pauli=[Pauli.X, Pauli.Z, Pauli.X, Pauli.X], coefficient=0.5),\n", - " PauliTerm(pauli=[Pauli.Y, Pauli.I, Pauli.Z, Pauli.I], coefficient=0.25),\n", - " PauliTerm(pauli=[Pauli.X, Pauli.I, Pauli.Z, Pauli.Y], coefficient=0.3)\n", - " ],\n", - " evolution_coefficient=3,\n", - " repetitions=4,\n", - " order=2,\n", - " qbv=q,\n", - " )\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 7 - Basic Arithmetics\n", - "\n", - "#### Exercise 7a\n", - "In this exercise we will use quantum numeric variables and calculate expressions over them.\n", - "\n", - "See details on the syntax of numeric types under [Quantum types](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/quantum-types/#syntax).\n", - "See more on quantum expressions under [Numeric assignment](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/numeric-assignment/)\n", - "\n", - "Create the following quantum programs:\n", - "1. Initialize variables `x=2`, `y=7` and computes `res = x + y`.\n", - "2. Initialize variables `x=2`, `y=7` and computes `res = x * y`.\n", - "3. Initialize variables `x=2`, `y=7`, `z=1` and computes `res = x * y - z`.\n", - "\n", - "Guidance:\n", - "* Use the operator `|=` to perform out-of-place assignment of arithmetic expression.\n", - "* To initialize the variables, use the function `prepare_int`.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 143, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/9c51893c-6451-41e4-a1b9-224f63b798e1?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def main(res: Output[QNum]):\n", - " x = QNum('x')\n", - " y = QNum('y')\n", - "\n", - " prepare_int(2,x)\n", - " prepare_int(7,y)\n", - "\n", - " res |= x + y\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": 144, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/32a9636b-cfa4-4eb0-80da-8658ab9cd574?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def main(res: Output[QNum]):\n", - " x = QNum('x')\n", - " y = QNum('y')\n", - "\n", - " prepare_int(2,x)\n", - " prepare_int(7,y)\n", - "\n", - " res |= x * y\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": 145, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/14b1cbc2-c90a-4d89-a151-3be386fcdfb5?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def main(res: Output[QNum]):\n", - " x = QNum('x')\n", - " y = QNum('y')\n", - " z = QNum('z')\n", - "\n", - " prepare_int(2,x)\n", - " prepare_int(7,y)\n", - " prepare_int(1,z)\n", - "\n", - " res |= x + y - z\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Exercise 7b\n", - "Declare `x` to be a 2-qubit variable and `y` to be 3-qubit variable.\n", - "\n", - "We will perform an addition of two superposition states: `x` is an equal superposition of `0` and `2`, and `y` is an equal superposition of `1`, `2`, `3`, and `6`.\n", - "\n", - "1. Use `prepare_state` to initialize `x` and `y`. Note that `prepare_state` works with probabilities, not amplitudes.\n", - " The declaration of the `prepare_state` function is:\n", - " ```\n", - " @qfunc(external=True)\n", - " def prepare_state(\n", - " probabilities: CArray[CReal],\n", - " bound: CReal,\n", - " out: Output[QArray[QBit]],\n", - " ) -> None:\n", - " pass\n", - " ```\n", - " (Set the bound to 0 in your code)\n", - "2. Compute `res = x + y`. Execute the resulting circuit. What did you get?" - ] - }, - { - "cell_type": "code", - "execution_count": 146, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[{'meas': 0.0}: 1027, {'meas': 1.0}: 1021]" - ] - }, - "execution_count": 146, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def main():\n", - " x = QBit('x')\n", - " prepare_state(probabilities=[1/2,1/2],bound= 0, out=x)\n", - " #y = QBit('y')\n", - " #prepare_state(probabilities=[1/2,1/2],bound= 0, out=y)\n", - " \n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "job = execute(qprog)\n", - "results = job.result()\n", - "parsed_counts = results[0].value.parsed_counts\n", - "parsed_counts" - ] - }, - { - "cell_type": "code", - "execution_count": 147, - "metadata": {}, - "outputs": [], - "source": [ - "## The x_variable measures state 0 more (corresponding to number 0)" - ] - }, - { - "cell_type": "code", - "execution_count": 148, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[{'meas': 0.0}: 558,\n", - " {'meas': 1.0}: 527,\n", - " {'meas': 3.0}: 499,\n", - " {'meas': 2.0}: 464]" - ] - }, - "execution_count": 148, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "@qfunc\n", - "def main():\n", - " y = QArray('y')\n", - " prepare_state(probabilities=[1/4,1/4,1/4,1/4],bound= 0, out=y)\n", - " \n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "job = execute(qprog)\n", - "results = job.result()\n", - "parsed_counts = results[0].value.parsed_counts\n", - "parsed_counts" - ] - }, - { - "cell_type": "code", - "execution_count": 149, - "metadata": {}, - "outputs": [], - "source": [ - "## The y_variable measures state 0 more (corresponding to number 6)" - ] - }, - { - "cell_type": "code", - "execution_count": 150, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/4163a826-2945-4422-b84f-92bc85a2b5d2?version=0.41.2\n" - ] - } - ], - "source": [ - "@qfunc\n", - "def main(res: Output[QNum]):\n", - " x = QNum('x')\n", - " y = QNum('y')\n", - "\n", - " prepare_int(1,x) #(subtract the 1 later)\n", - " prepare_int(6,y)\n", - "\n", - " res |= x -1 + y \n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Exercise 8 - Within-Apply\n", - "\n", - "The within-apply statement applies the pattern `U_dagger V U` that appears frequently in quantum computing.\n", - "It allows you to compute some function `V` within the context of another function `U`, and afterward uncompute `U` in order to release auxiliary qubits storing intermediate results.\n", - "\n", - "See also [Within Apply](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/within-apply/).\n", - "\n", - "#### Exercise 8a\n", - "\n", - "In this exercise, we will use within-apply to compute an arithmetic expression in steps.\n", - "\n", - "Use the `within_apply` operation to calculate `res = x + y + z` from a two-variable addition building block with the following steps:\n", - "1. Add `x` and `y`\n", - "2. Add the result to `z`\n", - "3. Uncompute the result of the first operation\n", - "\n", - "For simplicity, initialize the registers to simple integers: `x=3`, `y=5`, `z=2`.\n", - "\n", - "Hints:\n", - "\n", - "* Use a temporary variable.\n", - "* Wrap the arithmetic operation in a function.\n", - "\n", - "Execute the circuit and make sure you obtain the expected result." - ] - }, - { - "cell_type": "code", - "execution_count": 348, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/1400508e-7789-4852-817b-faa408bc022f?version=0.41.2\n", - "Synthesized circuit width: 16 depth: 100\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def linear_func(x:QNum, y:QNum, res: Output[QNum]):\n", - " res |= x + y\n", - "\n", - "\n", - "@qfunc\n", - "def main(res: Output[QNum]):\n", - " x = QNum('x')\n", - " y = QNum('y')\n", - " z = QNum('z')\n", - " prepare_int(3, x)\n", - " prepare_int(5, y)\n", - " prepare_int(2, z)\n", - "\n", - " tmp = QNum('tmp')\n", - " within_apply(compute= lambda: linear_func(x, y, tmp),\n", - " action= lambda: linear_func(tmp, z, res))\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)\n", - "\n", - "def print_depth_width(quantum_program):\n", - " generated_circuit = QuantumProgram.parse_raw(quantum_program)\n", - " print(\"Synthesized circuit width:\", generated_circuit.data.width, \"depth:\", generated_circuit.transpiled_circuit.depth)\n", - "print_depth_width(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Exercise 8b\n", - "\n", - "Why should we use `within-apply` and not just write three concatenated functions?\n", - "To understand the motivation, we will create another arithmetic circuit.\n", - "This time, however, we will also set Classiq’s synthesis engine to optimize on the circuit’s number of qubits, i.e., its width.\n", - "\n", - "Setting constraints can be done via the `set_constraints` operation - see [here](https://docs.classiq.io/latest/user-guide/platform/synthesis/constraints/).\n", - "\n", - "Perform the operation `res = w + x + y + z`, where w is initialized to 4 and the rest as before:\n", - "\n", - "1. Add `x` and `y` (as part of the `within_apply` operation)\n", - "2. Add the result to `z` (as part of the within_apply operation)\n", - "3. Uncompute the result of the first operation (as part of the `within_apply` operation)\n", - "4. Add the result of the second operation to `w`. There’s no need to perform another uncomputation, as this brings our calculation to an end.\n", - "\n", - "Create the model, optimize on the circuit’s width, and run the circuit. Can you identify where qubits have been released and reused?" - ] - }, - { - "cell_type": "code", - "execution_count": 286, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/0f9a35d1-2b36-41ba-8d90-56feb9809735?version=0.41.2\n", - "Opening: https://platform.classiq.io/circuit/d62abc28-a6a1-4a6f-a9a4-ae9317340228?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def main(res: Output[QNum]):\n", - " x = QNum('x')\n", - " y = QNum('y')\n", - " z = QNum('z')\n", - " w = QNum('w')\n", - "\n", - " prepare_int(3,x)\n", - " prepare_int(5,y)\n", - " prepare_int(2,z)\n", - " prepare_int(4,w)\n", - "\n", - " a = x + y \n", - " b = a + z\n", - " res |= b + w\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Bonus: Use a Single Arithmetic Expression\n", - "\n", - "What happens when we don't manually decompose this expression?\n", - "\n", - "Use Classiq’s arithmetic engine to calculate `res |= x + y + z + w` and optimize for width.\n", - "Look at the resulting quantum program - can you identify the computation and uncomputation blocks? What else did you notice?" - ] - }, - { - "cell_type": "code", - "execution_count": 296, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/4e054d02-afe2-4e4a-b59b-ddcc18e1ec7c?version=0.41.2\n", - "Opening: https://platform.classiq.io/circuit/2b2d18b9-134f-45c7-829d-8a11399d3248?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def main(res: Output[QNum]):\n", - " x = QNum('x')\n", - " y = QNum('y')\n", - " z = QNum('z')\n", - " w = QNum('w')\n", - "\n", - " prepare_int(3,x)\n", - " prepare_int(5,y)\n", - " prepare_int(2,z)\n", - " prepare_int(4,w)\n", - "\n", - " res |= x + y + z + w\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 9 - In-place Arithmetics\n", - "\n", - "For the following exercise we will use numeric quantum variables that represent fixed-point reals.\n", - "\n", - "Arithmetic expressions can be calculated in-place into a target variable, without allocating new qubits to store the result. This is done using the in-place-xor operator.\n", - "\n", - "See also [Numeric assignment](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/numeric-assignment/#semantics).\n", - "\n", - "In-place assignment is often used to nest arithmetic expressions under quantum operators. Note that out-of-place assignment requires its left-value variable to be un-initialized, and therefore cannot be used under an operator if the variable is declared outside its scope. Applying operators to arithmetic expressions is required in many algorithms. One example is the piecewise evaluation of mathematical functions - calculating different expressions over `x` depending on the subdomain where `x` falls.\n", - "\n", - "For this exercise, replace the missing parts in the code snippet below to evaluate the result of:\n", - "\n", - "$$\n", - "f(x) = \\begin{cases}\n", - " 2x + 1 & \\text{ if } 0 \\leq x < 0.5 \\\\\n", - " x + 0.5 & \\text{ if } 0.5 \\leq x < 1\n", - " \\end{cases}\n", - "$$\n", - "\n", - "Notes:\n", - "- We cannot use `x` directly as the control variable in a `constrol` operator, because it also occurs in the nested scope. to determine if `x` is in the lower or higher half of the domain we duplicate the most significant bit onto a separate variable called `label`.\n", - "- In Python assignment operators cannot be used in lambda expressions, so the computation of the function needs to be factored out to a named Python function (but not necessarily a Qmod function).\n" - ] - }, - { - "cell_type": "code", - "execution_count": 297, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/d1c97569-898d-4e52-8269-6a586d1fce40?version=0.41.2\n" - ] - } - ], - "source": [ - "\n", - "from classiq import *\n", - "\n", - "\n", - "def linear_func(a: float, b: float, x: QNum, res: QNum) -> None:\n", - " res ^= a * x + b\n", - "\n", - "\n", - "@qfunc\n", - "def dup_msb(qba: QArray[QBit], msb: QBit) -> None:\n", - " CX(qba[qba.len - 1], msb)\n", - "\n", - "\n", - "@qfunc\n", - "def main(x: Output[QNum[3, False, 3]], res: Output[QNum[5, False, 3]]) -> None:\n", - " allocate(5, res)\n", - " allocate(3, x)\n", - " hadamard_transform(x)\n", - "\n", - " label = QArray(\"label\")\n", - " allocate(1, label)\n", - "\n", - " dup_msb(x, label)\n", - " control(label, lambda: linear_func(1.0, 0.5, x, res)) # 0.5 <= x < 1.0\n", - " X(label)\n", - " control(label, lambda: linear_func(2.0, 1.0, x, res)) # 0.0 <= x < 0.5\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 10 - State-preparation Algorithm using Quantum-if\n", - "\n", - "#### Binding\n", - "The `bind` operation allows to convert smoothly between different quantum types and split or slice bits when necessary. Here’s an example:" - ] - }, - { - "cell_type": "code", - "execution_count": 298, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/d0c9e9b9-f518-44ec-bed9-7f46b091ae2e?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "\n", - "\n", - "from classiq import *\n", - "from math import pi\n", - "\n", - "\n", - "@qfunc\n", - "def main(res: Output[QArray[QBit]]) -> None:\n", - " x: QArray[QBit] = QArray(\"x\")\n", - " allocate(3, x)\n", - " hadamard_transform(x)\n", - "\n", - " lsb = QBit(\"lsb\")\n", - " msb = QNum(\"msb\", 2, False, 0)\n", - " bind(x, [lsb, msb])\n", - "\n", - " control(msb == 1, lambda: RY(pi / 3, lsb)) # msb==1 <==> bit1 bit2 == 01 (binary of decimal 1)\n", - "\n", - " bind([lsb, msb], res)\n", - "\n", - "model = create_model(main)\n", - "qprog = synthesize(model)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The first `bind` operation splits the 3-qubit register `x` into the 2-qubit and single-qubit registers `lsb` and `msb`, respectively.\n", - "\n", - "After the `bind` operation:\n", - "1. The registers `lsb` and `msb` can be operated on as separated registers.\n", - "2. The register`x` is consumed and can no longer be used.\n", - "\n", - "The second `bind` operation concatenates the registers to the output register `res`.\n", - "\n", - "For this exercise, fill in the missing code parts in the above snippet and use the `control` statement to manually generate the following lovely 3-qubit probability distribution: `[1/8, 1/8, 1/8, -sqrt(3)/16, 1/8 + sqrt(3)/16, 1/8, 1/8, 1/8, 1/8]`.\n", - "\n", - "The following series of gates generate it:\n", - "\n", - "Perform the Hadamard transform on all three qubits.\n", - "\n", - "Apply a rotation on the LSB (least-significant bit) conditioned by the MSB being |0> and the second to last MSB being |1>. How would you write this condition using a QNum?\n", - "\n", - "The following series of gates generate it:\n", - "1. Perform the Hadamard transform on all three qubits.\n", - "2. Apply a `pi/3` rotation on the LSB (least-significant bit) conditioned by the MSB being |0> and the second to last MSB being |1>. How would you write this condition using a QNum?\n", - "\n", - "If you want to validate your results without looking at the full solution, compare them to running using Classiq’s built-in `prepare_state` function.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 346, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/fe65e99e-1ed0-4216-8141-9b6c88fd51e1?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "from classiq.qmod.symbolic import sqrt\n", - "\n", - "prob_list= [\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " -sqrt(3) / 16,\n", - " 1 / 8 + sqrt(3) / 16,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " ]\n", - "\n", - "@qfunc\n", - "def pre_prepared_state(q: QArray[QBit]) -> None:\n", - " prepare_state(\n", - " [\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " -sqrt(3) / 16,\n", - " 1 / 8 + sqrt(3) / 16,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " ],\n", - " 0.0,\n", - " q,\n", - " )\n", - "\n", - "\n", - "@qfunc\n", - "def main(res: Output[QArray[QBit]]):\n", - " x = QArray(\"x\")\n", - " allocate(3, x)\n", - " #pre_prepared_state(x)\n", - " hadamard_transform(x)\n", - " \n", - " lsb = QBit(\"lsb\")\n", - " msb = QNum(\"msb\", 2, False, 0)\n", - " bind(x, [lsb, msb])\n", - " \n", - " control(msb == 0, lambda: RY(pi / 3, lsb)) \n", - " control(msb == 1, lambda: RY(pi / 3, lsb)) \n", - " bind([lsb, msb], res)\n", - " \n", - "\n", - "model = create_model(main)\n", - "qprog = synthesize(model)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.9" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/community/QClass_2024/Submissions/HW2/Adrabi_Abderrahim_HW2_QClass2024.ipynb b/community/QClass_2024/Submissions/HW2/Adrabi_Abderrahim_HW2_QClass2024.ipynb deleted file mode 100644 index eb9e71a9..00000000 --- a/community/QClass_2024/Submissions/HW2/Adrabi_Abderrahim_HW2_QClass2024.ipynb +++ /dev/null @@ -1,814 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "id": "view-in-github", - "colab_type": "text" - }, - "source": [ - "\"Open" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "-HZI6UGEYetH" - }, - "source": [ - "# The Qmod Workshop - Part 2: Higher-Level Concepts\n", - "\n", - "This is the second part of the Qmod workshop, covering exercises 6 through 10. Make sure to go through Part 1 before continuing with this notebook." - ] - }, - { - "cell_type": "code", - "execution_count": 57, - "metadata": { - "id": "zGT4LpS6YhfY" - }, - "outputs": [], - "source": [ - "!pip install classiq -q" - ] - }, - { - "cell_type": "code", - "execution_count": 58, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "f5-jS5YpYetK", - "outputId": "6e393d77-2936-4068-a790-18138bf35c8d" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stderr", - "text": [ - "/usr/local/lib/python3.10/dist-packages/classiq/_internals/authentication/token_manager.py:96: UserWarning: Device is already registered.\n", - "Generating a new refresh token should only be done if the current refresh token is compromised.\n", - "To do so, set the overwrite parameter to true\n", - " warnings.warn(\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "authenticate()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "7leKb-8cYetL" - }, - "source": [ - "### Exercise 6 - Exponentiation and Pauli Operators\n", - "\n", - "The Qmod language supports different classical types: scalars, arrays, and structs. Structs are objects with member variables, or fields.\n", - "\n", - "See also [Classical Types](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/classical-types/#structs).\n", - "\n", - "The builtin struct type `PauliTerm` is defined as follows:" - ] - }, - { - "cell_type": "code", - "execution_count": 59, - "metadata": { - "id": "GH9Yl2WdYetM" - }, - "outputs": [], - "source": [ - "@struct\n", - "class PauliTerm:\n", - " pauli: CArray[Pauli]\n", - " coefficient: CReal" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "sFdc72CIYetN" - }, - "source": [ - "Note that `Pauli` is an enum for all the Pauli matrices (I, X, Y, Z).\n", - "\n", - "Pauli based hamiltonian can be represented as a list of `PauliTerm`s. A Pauli operator defined this way is the argument to a hamiltonian evolution functions.\n", - "\n", - "In this exercise we will use the Suzuki-Trotter function to find the evolution of `H=0.5XZXX + 0.25YIZI + 0.3 XIZY` (captured as a literal value for the pauli-operator), with the evolution coefficient being 3, the order being 2, and use 4 repetitions.\n", - "\n", - "The declaration of the `suzuki_trotter` function is:" - ] - }, - { - "cell_type": "code", - "execution_count": 60, - "metadata": { - "id": "SbGquPtWYetN" - }, - "outputs": [], - "source": [ - "@qfunc(external=True)\n", - "def suzuki_trotter(\n", - " pauli_operator: CArray[PauliTerm],\n", - " evolution_coefficient: CReal,\n", - " order: CInt,\n", - " repetitions: CInt,\n", - " qbv: QArray[QBit],\n", - ") -> None:\n", - " pass" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "V3_R791YYetO" - }, - "source": [ - "Fill in the missing parts of the following code in order to complete this exercise:" - ] - }, - { - "cell_type": "code", - "execution_count": 61, - "metadata": { - "id": "uliJIXP9YetO", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "8e642ff3-95ad-4fb2-9619-fd60535d7dfc" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Opening: https://platform.classiq.io/circuit/f397363a-c1fd-4e08-a07b-d716545a3241?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "H = [\n", - " PauliTerm(pauli=[Pauli.X, Pauli.Z, Pauli.X, Pauli.X], coefficient=0.5),\n", - " PauliTerm(pauli=[Pauli.Y, Pauli.I, Pauli.Z, Pauli.I], coefficient=0.25),\n", - " PauliTerm(pauli=[Pauli.X, Pauli.I , Pauli.Z, Pauli.Y], coefficient=0.3),\n", - "]\n", - "\n", - "@qfunc\n", - "def main(q: Output[QArray[QBit]]) -> None:\n", - " allocate(4, q)\n", - " suzuki_trotter(\n", - " H,\n", - " evolution_coefficient=3,\n", - " repetitions=4,\n", - " order=2,\n", - " qbv=q,\n", - " )\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "O3eJO0QTYetP" - }, - "source": [ - "### Exercise 7 - Basic Arithmetics\n", - "\n", - "#### Exercise 7a\n", - "In this exercise we will use quantum numeric variables and calculate expressions over them.\n", - "\n", - "See details on the syntax of numeric types under [Quantum types](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/quantum-types/#syntax).\n", - "See more on quantum expressions under [Numeric assignment](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/numeric-assignment/)\n", - "\n", - "Create the following quantum programs:\n", - "1. Initialize variables `x=2`, `y=7` and computes `res = x + y`.\n", - "2. Initialize variables `x=2`, `y=7` and computes `res = x * y`.\n", - "3. Initialize variables `x=2`, `y=7`, `z=1` and computes `res = x * y - z`.\n", - "\n", - "Guidance:\n", - "* Use the operator `|=` to perform out-of-place assignment of arithmetic expression.\n", - "* To initialize the variables, use the function `prepare_int`.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 62, - "metadata": { - "id": "K9ryGECTYetP", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "33b77ee6-ad32-4507-c821-36358638b65a" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Opening: https://platform.classiq.io/circuit/e3ddd293-1e5b-4ec7-8760-bfd8a134b056?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def main(a: Output[QNum], b: Output[QNum], c: Output[QNum]) -> None:\n", - " x = QNum(\"x\")\n", - " y = QNum(\"y\")\n", - " z = QNum(\"z\")\n", - "\n", - " prepare_int(2, x)\n", - " prepare_int(7, y)\n", - " prepare_int(1, z)\n", - "\n", - " a |= x + y\n", - " b |= x * y\n", - " c |= b - z\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "2aCl16IMYetQ" - }, - "source": [ - "#### Exercise 7b\n", - "Declare `x` to be a 2-qubit variable and `y` to be 3-qubit variable.\n", - "\n", - "We will perform an addition of two superposition states: `x` is an equal superposition of `0` and `2`, and `y` is an equal superposition of `1`, `2`, `3`, and `6`.\n", - "\n", - "1. Use `prepare_state` to initialize `x` and `y`. Note that `prepare_state` works with probabilities, not amplitudes.\n", - " The declaration of the `prepare_state` function is:\n", - " ```\n", - " @qfunc(external=True)\n", - " def prepare_state(\n", - " probabilities: CArray[CReal],\n", - " bound: CReal,\n", - " out: Output[QArray[QBit]],\n", - " ) -> None:\n", - " pass\n", - " ```\n", - " (Set the bound to 0 in your code)\n", - "2. Compute `res = x + y`. Execute the resulting circuit. What did you get?" - ] - }, - { - "cell_type": "code", - "execution_count": 63, - "metadata": { - "id": "ghOkzh01YetR", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "d620e606-a011-4257-80e7-b4d363f4edb4" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Opening: https://platform.classiq.io/circuit/61d2ccfe-e7e9-47f9-86bc-f8caff48ed7f?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def main(res: Output[QNum]) -> None:\n", - " x = QNum(\"x\")\n", - " y = QNum(\"y\")\n", - "\n", - " prepare_state([1/2, 0, 1/2, 0], 0, x)\n", - " prepare_state([0, 1/4, 1/4, 1/4, 0, 1/4, 0, 0], 0, y)\n", - "\n", - " res |= x + y\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "40wgXn0DYetR" - }, - "source": [ - "### Exercise 8 - Within-Apply\n", - "\n", - "The within-apply statement applies the pattern `U_dagger V U` that appears frequently in quantum computing.\n", - "It allows you to compute some function `V` within the context of another function `U`, and afterward uncompute `U` in order to release auxiliary qubits storing intermediate results.\n", - "\n", - "See also [Within Apply](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/within-apply/).\n", - "\n", - "#### Exercise 8a\n", - "\n", - "In this exercise, we will use within-apply to compute an arithmetic expression in steps.\n", - "\n", - "Use the `within_apply` operation to calculate `res = x + y + z` from a two-variable addition building block with the following steps:\n", - "1. Add `x` and `y`\n", - "2. Add the result to `z`\n", - "3. Uncompute the result of the first operation\n", - "\n", - "For simplicity, initialize the registers to simple integers: `x=3`, `y=5`, `z=2`.\n", - "\n", - "Hints:\n", - "\n", - "* Use a temporary variable.\n", - "* Wrap the arithmetic operation in a function.\n", - "\n", - "Execute the circuit and make sure you obtain the expected result." - ] - }, - { - "cell_type": "code", - "execution_count": 64, - "metadata": { - "id": "w4BGmyPkYetS", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "94c9298c-5752-4818-d409-9eafef8214b0" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Opening: https://platform.classiq.io/circuit/2b4d8f13-4cef-4f90-8bd9-048e1ab51b3e?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "\n", - "@qfunc\n", - "def add(x: QNum, y: QNum, o: Output[QNum]) -> None:\n", - " o |= x + y\n", - "\n", - "\n", - "@qfunc\n", - "def subroutine(x: QNum, y: QNum, z: QNum, res: Output[QNum]) -> None:\n", - " aux = QNum(\"aux\", 4, False, 0)\n", - "\n", - " within_apply(compute=lambda: add(x, y, aux), action= lambda: add(z, aux, res))\n", - "\n", - " # free(aux)\n", - " # Handle 'aux' was errored with \"Trying to access handle 'aux' as input but it is in incorrect state\"\n", - "\n", - "@qfunc\n", - "def main(res: Output[QNum]) -> None:\n", - " x = QNum(\"x\")\n", - " y = QNum(\"y\")\n", - " z = QNum(\"z\")\n", - "\n", - " prepare_int(3, x)\n", - " prepare_int(5, y)\n", - " prepare_int(2, z)\n", - "\n", - " subroutine(x, y, z, res)\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "Fv18Hp2KYetS" - }, - "source": [ - "#### Exercise 8b\n", - "\n", - "Why should we use `within-apply` and not just write three concatenated functions?\n", - "To understand the motivation, we will create another arithmetic circuit.\n", - "This time, however, we will also set Classiq’s synthesis engine to optimize on the circuit’s number of qubits, i.e., its width.\n", - "\n", - "Setting constraints can be done via the `set_constraints` operation - see [here](https://docs.classiq.io/latest/user-guide/platform/synthesis/constraints/).\n", - "\n", - "Perform the operation `res = w + x + y + z`, where w is initialized to 4 and the rest as before:\n", - "\n", - "1. Add `x` and `y` (as part of the `within_apply` operation)\n", - "2. Add the result to `z` (as part of the within_apply operation)\n", - "3. Uncompute the result of the first operation (as part of the `within_apply` operation)\n", - "4. Add the result of the second operation to `w`. There’s no need to perform another uncomputation, as this brings our calculation to an end.\n", - "\n", - "Create the model, optimize on the circuit’s width, and run the circuit. Can you identify where qubits have been released and reused?" - ] - }, - { - "cell_type": "code", - "execution_count": 65, - "metadata": { - "id": "7jPQYLVSYetT", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "1492d4ce-80df-4aee-f6ac-6615fb7f2bf4" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Opening: https://platform.classiq.io/circuit/8949ee26-4773-4c28-bcfd-5cba8c6bd1ed?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def add(x: QNum, y: QNum, o: Output[QNum]) -> None:\n", - " o |= x + y\n", - "\n", - "@qfunc\n", - "def main(res: Output[QNum]):\n", - " w = QNum('w')\n", - " x = QNum('x')\n", - " y = QNum('y')\n", - " z = QNum('z')\n", - " prepare_int(4, w)\n", - " prepare_int(3, x)\n", - " prepare_int(5, y)\n", - " prepare_int(2, z)\n", - "\n", - "\n", - " tmp1 = QNum('tmp1')\n", - " tmp2 = QNum('tmp2')\n", - " within_apply(compute= lambda: add(x, y, tmp1), action= lambda: add(tmp1, z, tmp2))\n", - " res |= w + tmp2\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "T7KckzcPYetT" - }, - "source": [ - "#### Bonus: Use a Single Arithmetic Expression\n", - "\n", - "What happens when we don't manually decompose this expression?\n", - "\n", - "Use Classiq’s arithmetic engine to calculate `res |= x + y + z + w` and optimize for width.\n", - "Look at the resulting quantum program - can you identify the computation and uncomputation blocks? What else did you notice?" - ] - }, - { - "cell_type": "code", - "execution_count": 66, - "metadata": { - "id": "qFvqTTHOYetU", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "7dc4c20e-91d1-424e-f983-439bb2bdbfff" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Opening: https://platform.classiq.io/circuit/104c5460-bf6f-4d46-a704-9f628d8fa389?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def main(res: Output[QNum]):\n", - " w = QNum('w')\n", - " x = QNum('x')\n", - " y = QNum('y')\n", - " z = QNum('z')\n", - " prepare_int(4, w)\n", - " prepare_int(3, x)\n", - " prepare_int(5, y)\n", - " prepare_int(2, z)\n", - "\n", - " res |= x + y + z + w\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "q8gu9QKNYetU" - }, - "source": [ - "### Exercise 9 - In-place Arithmetics\n", - "\n", - "For the following exercise we will use numeric quantum variables that represent fixed-point reals.\n", - "\n", - "Arithmetic expressions can be calculated in-place into a target variable, without allocating new qubits to store the result. This is done using the in-place-xor operator.\n", - "\n", - "See also [Numeric assignment](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/numeric-assignment/#semantics).\n", - "\n", - "In-place assignment is often used to nest arithmetic expressions under quantum operators. Note that out-of-place assignment requires its left-value variable to be un-initialized, and therefore cannot be used under an operator if the variable is declared outside its scope. Applying operators to arithmetic expressions is required in many algorithms. One example is the piecewise evaluation of mathematical functions - calculating different expressions over `x` depending on the subdomain where `x` falls.\n", - "\n", - "For this exercise, replace the missing parts in the code snippet below to evaluate the result of:\n", - "\n", - "$$\n", - "f(x) = \\begin{cases}\n", - " 2x + 1 & \\text{ if } 0 \\leq x < 0.5 \\\\\n", - " x + 0.5 & \\text{ if } 0.5 \\leq x < 1\n", - " \\end{cases}\n", - "$$\n", - "\n", - "Notes:\n", - "- We cannot use `x` directly as the control variable in a `constrol` operator, because it also occurs in the nested scope. to determine if `x` is in the lower or higher half of the domain we duplicate the most significant bit onto a separate variable called `label`.\n", - "- In Python assignment operators cannot be used in lambda expressions, so the computation of the function needs to be factored out to a named Python function (but not necessarily a Qmod function).\n" - ] - }, - { - "cell_type": "code", - "execution_count": 67, - "metadata": { - "id": "j4QuAKfiYetU", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "d629304e-85f3-4cc4-c8fe-0ddd480d6bad" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Opening: https://platform.classiq.io/circuit/f8f3efc4-fa1d-47df-becc-55c3232d14e0?version=0.41.2\n" - ] - } - ], - "source": [ - "\n", - "from classiq import *\n", - "\n", - "\n", - "def linear_func(a: float, b: float, x: QNum, res: QNum) -> None:\n", - " res ^= a * x + b\n", - "\n", - "\n", - "@qfunc\n", - "def dup_msb(qba: QArray[QBit], msb: QBit) -> None:\n", - " CX(qba[qba.len - 1], msb)\n", - "\n", - "\n", - "@qfunc\n", - "def main(x: Output[QNum[3, False, 3]], res: Output[QNum[5, False, 3]]) -> None:\n", - " allocate(5, res)\n", - " allocate(3, x)\n", - " hadamard_transform(x)\n", - "\n", - " label = QArray(\"label\")\n", - " allocate(1, label)\n", - "\n", - " dup_msb(x, label)\n", - " control(label, lambda: linear_func(1.0, 0.5, x, res)) # 0.5 <= x < 1.0\n", - " X(label)\n", - " control(label, lambda: linear_func(2.0, 1.0, x, res)) # 0.0 <= x < 0.5\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "CoX8uSksYetV" - }, - "source": [ - "### Exercise 10 - State-preparation Algorithm using Quantum-if\n", - "\n", - "#### Binding\n", - "The `bind` operation allows to convert smoothly between different quantum types and split or slice bits when necessary. Here’s an example:" - ] - }, - { - "cell_type": "code", - "execution_count": 68, - "metadata": { - "id": "Z_o1EZUUYetV", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "15359aae-4c57-4bb1-be0d-409f31493b52" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Opening: https://platform.classiq.io/circuit/0dbea396-66ef-437f-b8aa-febb381af49b?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "\n", - "\n", - "from classiq import *\n", - "from math import pi\n", - "\n", - "\n", - "@qfunc\n", - "def main(res: Output[QArray[QBit]]) -> None:\n", - " x: QArray[QBit] = QArray(\"x\")\n", - " allocate(3, x)\n", - " hadamard_transform(x)\n", - "\n", - " lsb = QBit(\"lsb\")\n", - " msb = QNum(\"msb\", 2, False, 0)\n", - " bind(x, [lsb, msb])\n", - "\n", - " control(msb == 1, lambda: RY(pi / 3, lsb)) # msb==1 <==> bit1 bit2 == 01 (binary of decimal 1)\n", - "\n", - " bind([lsb, msb], res)\n", - "\n", - "model = create_model(main)\n", - "qprog = synthesize(model)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "hpjIVPUIYetW" - }, - "source": [ - "The first `bind` operation splits the 3-qubit register `x` into the 2-qubit and single-qubit registers `lsb` and `msb`, respectively.\n", - "\n", - "After the `bind` operation:\n", - "1. The registers `lsb` and `msb` can be operated on as separated registers.\n", - "2. The register`x` is consumed and can no longer be used.\n", - "\n", - "The second `bind` operation concatenates the registers to the output register `res`.\n", - "\n", - "For this exercise, fill in the missing code parts in the above snippet and use the `control` statement to manually generate the following lovely 3-qubit probability distribution: `[1/8, 1/8, 1/8, -sqrt(3)/16, 1/8 + sqrt(3)/16, 1/8, 1/8, 1/8, 1/8]`.\n", - "\n", - "The following series of gates generate it:\n", - "\n", - "Perform the Hadamard transform on all three qubits.\n", - "\n", - "Apply a rotation on the LSB (least-significant bit) conditioned by the MSB being |0> and the second to last MSB being |1>. How would you write this condition using a QNum?\n", - "\n", - "The following series of gates generate it:\n", - "1. Perform the Hadamard transform on all three qubits.\n", - "2. Apply a `pi/3` rotation on the LSB (least-significant bit) conditioned by the MSB being |0> and the second to last MSB being |1>. How would you write this condition using a QNum?\n", - "\n", - "If you want to validate your results without looking at the full solution, compare them to running using Classiq’s built-in `prepare_state` function.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 69, - "metadata": { - "id": "bzhCjAG7YetW", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "1b5979d7-aa97-4867-a06a-cb298e79a607" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Opening: https://platform.classiq.io/circuit/b8493ae0-c887-41d5-a6b6-a5832023d539?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "from classiq.qmod.symbolic import sqrt\n", - "\n", - "prob_list= [\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " -sqrt(3) / 16,\n", - " 1 / 8 + sqrt(3) / 16,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " ]\n", - "@qfunc\n", - "def pre_prepared_state(q: QArray[QBit]) -> None:\n", - " prepare_state(\n", - " [\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " -sqrt(3) / 16,\n", - " 1 / 8 + sqrt(3) / 16,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " ],\n", - " 0.0,\n", - " q,\n", - " )\n", - "\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def main(res: Output[QArray[QBit]]) -> None:\n", - " #1\n", - " x : QArray[QBit] = QArray(\"x\")\n", - " allocate(3, x)\n", - " hadamard_transform(x)\n", - "\n", - " #2\n", - " lsb = QBit(\"lsb\")\n", - " msb = QNum(\"msb\", 2, False, 0)\n", - " bind(x, [lsb, msb])\n", - " control(msb == 1, lambda: RY(pi / 3, lsb)) # msb==1 <==> bit1 bit2 == 01 (binary of decimal 1)\n", - "\n", - " bind([lsb, msb], res)\n", - "\n", - "model = create_model(main)\n", - "qprog = synthesize(model)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "source": [ - "?prepare_state" - ], - "metadata": { - "id": "iznlXjz3N_QK" - }, - "execution_count": 70, - "outputs": [] - }, - { - "cell_type": "code", - "source": [], - "metadata": { - "id": "2sIZhb1QO8dK" - }, - "execution_count": 70, - "outputs": [] - } - ], - "metadata": { - "colab": { - "provenance": [], - "include_colab_link": true - }, - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.8" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} \ No newline at end of file diff --git a/community/QClass_2024/Submissions/HW2/Amon_Koike_HW2_QClass2024.ipynb b/community/QClass_2024/Submissions/HW2/Amon_Koike_HW2_QClass2024.ipynb deleted file mode 100644 index 2812ec20..00000000 --- a/community/QClass_2024/Submissions/HW2/Amon_Koike_HW2_QClass2024.ipynb +++ /dev/null @@ -1,828 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# The Qmod Workshop - Part 2: Higher-Level Concepts\n", - "\n", - "This is the second part of the Qmod workshop, covering exercises 6 through 10. Make sure to go through Part 1 before continuing with this notebook." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "from classiq import *" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 6 - Exponentiation and Pauli Operators\n", - "\n", - "The Qmod language supports different classical types: scalars, arrays, and structs. Structs are objects with member variables, or fields.\n", - "\n", - "See also [Classical Types](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/classical-types/#structs).\n", - "\n", - "The builtin struct type `PauliTerm` is defined as follows:" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "@struct\n", - "class PauliTerm:\n", - " pauli: CArray[Pauli]\n", - " coefficient: CReal" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Note that `Pauli` is an enum for all the Pauli matrices (I, X, Y, Z).\n", - "\n", - "Pauli based hamiltonian can be represented as a list of `PauliTerm`s. A Pauli operator defined this way is the argument to a hamiltonian evolution functions.\n", - "\n", - "In this exercise we will use the Suzuki-Trotter function to find the evolution of `H=0.5XZXX + 0.25YIZI + 0.3 XIZY` (captured as a literal value for the pauli-operator), with the evolution coefficient being 3, the order being 2, and use 4 repetitions.\n", - "\n", - "The declaration of the `suzuki_trotter` function is:" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "@qfunc(external=True)\n", - "def suzuki_trotter(\n", - " pauli_operator: CArray[PauliTerm],\n", - " evolution_coefficient: CReal,\n", - " order: CInt,\n", - " repetitions: CInt,\n", - " qbv: QArray[QBit],\n", - ") -> None:\n", - " pass" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Fill in the missing parts of the following code in order to complete this exercise:" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/b621fbea-15e6-4329-b2fe-9f3e8f6076e5?version=0.42.0\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# パウリ演算子のリストを定義\n", - "pauli_operators = [\n", - " PauliTerm(pauli=[Pauli.X, Pauli.Z, Pauli.X, Pauli.X], coefficient=0.5),\n", - " PauliTerm(pauli=[Pauli.Y, Pauli.I, Pauli.Z, Pauli.I], coefficient=0.25),\n", - " PauliTerm(pauli=[Pauli.X, Pauli.I, Pauli.Z, Pauli.Y], coefficient=0.3)\n", - "]\n", - "\n", - "@qfunc\n", - "def main(q: Output[QArray[QBit]]) -> None:\n", - " allocate(4, q)\n", - " suzuki_trotter(\n", - " pauli_operator=pauli_operators,\n", - " evolution_coefficient=3,\n", - " repetitions=4,\n", - " order=2,\n", - " qbv=q,\n", - " )\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 7 - Basic Arithmetics\n", - "\n", - "#### Exercise 7a\n", - "In this exercise we will use quantum numeric variables and calculate expressions over them.\n", - "\n", - "See details on the syntax of numeric types under [Quantum types](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/quantum-types/#syntax).\n", - "See more on quantum expressions under [Numeric assignment](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/numeric-assignment/)\n", - "\n", - "Create the following quantum programs:\n", - "1. Initialize variables `x=2`, `y=7` and computes `res = x + y`.\n", - "2. Initialize variables `x=2`, `y=7` and computes `res = x * y`.\n", - "3. Initialize variables `x=2`, `y=7`, `z=1` and computes `res = x * y - z`.\n", - "\n", - "Guidance:\n", - "* Use the operator `|=` to perform out-of-place assignment of arithmetic expression.\n", - "* To initialize the variables, use the function `prepare_int`.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/a347dd79-0b6d-4138-852d-3463a9e85caf?version=0.42.0\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "\n", - "@qfunc\n", - "def main(res: Output[QNum]) -> None:\n", - "\n", - " x = QNum(\"x\") #TODO complete the declarations of x,y\n", - " prepare_int(2, x)\n", - " y = QNum(\"y\")\n", - " prepare_int(7, y)\n", - " \n", - " \n", - " \n", - " res|=x+y\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/dda069ad-b296-4baa-90ef-2856ad1b2924?version=0.42.0\n" - ] - } - ], - "source": [ - "@qfunc\n", - "def main(res: Output[QNum]) -> None:\n", - "\n", - " x = QNum(\"x\") #TODO complete the declarations of x,y\n", - " prepare_int(2, x)\n", - " y = QNum(\"y\")\n", - " prepare_int(7, y)\n", - " \n", - " \n", - " \n", - " res|=x*y\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/b73b42d2-03a3-42fe-9497-4b677ea831bd?version=0.42.0\n" - ] - } - ], - "source": [ - "@qfunc\n", - "def main(res: Output[QNum]) -> None:\n", - "\n", - " x = QNum(\"x\") #TODO complete the declarations of x,y\n", - " prepare_int(2, x)\n", - " y = QNum(\"y\")\n", - " prepare_int(7, y)\n", - " z = QNum(\"z\")\n", - " prepare_int(1, z)\n", - " \n", - " \n", - " res|=x*y-z\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Exercise 7b\n", - "Declare `x` to be a 2-qubit variable and `y` to be 3-qubit variable.\n", - "\n", - "We will perform an addition of two superposition states: `x` is an equal superposition of `0` and `2`, and `y` is an equal superposition of `1`, `2`, `3`, and `6`.\n", - "\n", - "1. Use `prepare_state` to initialize `x` and `y`. Note that `prepare_state` works with probabilities, not amplitudes.\n", - " The declaration of the `prepare_state` function is:\n", - " ```\n", - " @qfunc(external=True)\n", - " def prepare_state(\n", - " probabilities: CArray[CReal],\n", - " bound: CReal,\n", - " out: Output[QArray[QBit]],\n", - " ) -> None:\n", - " pass\n", - " ```\n", - " (Set the bound to 0 in your code)\n", - "2. Compute `res = x + y`. Execute the resulting circuit. What did you get?" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/343ba65a-262d-4392-bc95-93e17cfe8684?version=0.42.0\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc(external=True)\n", - "def prepare_state(\n", - " probabilities: CArray[CReal],\n", - " bound: CReal,\n", - " out: Output[QArray[QBit]],\n", - ") -> None:\n", - " pass\n", - "\n", - "@qfunc\n", - "def main(res: Output[QNum]) -> None:\n", - " # 2量子ビット変数 x の宣言と初期化\n", - " x = QNum(\"x\")\n", - " prepare_state(probabilities=[0.5, 0, 0.5, 0], bound=0, out=x)\n", - " \n", - " # 3量子ビット変数 y の宣言と初期化\n", - " y = QNum(\"y\")\n", - " prepare_state(probabilities=[0, 1/4, 1/4, 1/4, 0, 0, 1/4, 0], bound=0, out=y)\n", - " \n", - " # 足し算の実行\n", - " res |= x + y\n", - " \n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 8 - Within-Apply\n", - "\n", - "The within-apply statement applies the pattern `U_dagger V U` that appears frequently in quantum computing.\n", - "It allows you to compute some function `V` within the context of another function `U`, and afterward uncompute `U` in order to release auxiliary qubits storing intermediate results.\n", - "\n", - "See also [Within Apply](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/within-apply/).\n", - "\n", - "#### Exercise 8a\n", - "\n", - "In this exercise, we will use within-apply to compute an arithmetic expression in steps.\n", - "\n", - "Use the `within_apply` operation to calculate `res = x + y + z` from a two-variable addition building block with the following steps:\n", - "1. Add `x` and `y`\n", - "2. Add the result to `z`\n", - "3. Uncompute the result of the first operation\n", - "\n", - "For simplicity, initialize the registers to simple integers: `x=3`, `y=5`, `z=2`.\n", - "\n", - "Hints:\n", - "\n", - "* Use a temporary variable.\n", - "* Wrap the arithmetic operation in a function.\n", - "\n", - "Execute the circuit and make sure you obtain the expected result." - ] - }, - { - "cell_type": "code", - "execution_count": 50, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Synthesized circuit width: 16, depth: 100\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def add_xy(x: QNum, y: QNum, res: Output[QNum]) -> None:\n", - " res |= x + y\n", - "\n", - "@qfunc\n", - "def add_temp_z(temp: QNum, z: QNum, res: Output[QNum]) -> None:\n", - " res |= temp + z\n", - "\n", - "@qfunc\n", - "def uncompute_xy(x: QNum, y: QNum, temp: Output[QNum]) -> None:\n", - " temp |= x + y\n", - "\n", - "@qfunc\n", - "def main(res: Output[QNum]) -> None:\n", - " x = QNum(\"x\")\n", - " y = QNum(\"y\")\n", - " z = QNum(\"z\")\n", - " \n", - " prepare_int(3, x)\n", - " prepare_int(5, y)\n", - " prepare_int(2, z)\n", - " \n", - " temp = QNum(\"temp\")\n", - "\n", - " # within_applyを使用して加算操作を定義\n", - " within_apply(\n", - " compute = lambda: add_xy(x, y, temp), # U\n", - " action = lambda:add_temp_z(temp, z, res) # V\n", - " )\n", - "\n", - " # Uncompute the first operation\n", - " within_apply(\n", - " compute = lambda :uncompute_xy(x, y, temp), # U\n", - " action = lambda: None # V\n", - " )\n", - " \n", - " \n", - " \n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "#show(qprog)\n", - "\n", - "def print_depth_width(quantum_program):\n", - " generated_circuit = QuantumProgram.parse_raw(quantum_program)\n", - " print(f\"Synthesized circuit width: {generated_circuit.data.width}, depth: {generated_circuit.transpiled_circuit.depth}\")\n", - "print_depth_width(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Exercise 8b\n", - "\n", - "Why should we use `within-apply` and not just write three concatenated functions?\n", - "To understand the motivation, we will create another arithmetic circuit.\n", - "This time, however, we will also set Classiq’s synthesis engine to optimize on the circuit’s number of qubits, i.e., its width.\n", - "\n", - "Setting constraints can be done via the `set_constraints` operation - see [here](https://docs.classiq.io/latest/user-guide/platform/synthesis/constraints/).\n", - "\n", - "Perform the operation `res = w + x + y + z`, where w is initialized to 4 and the rest as before:\n", - "\n", - "1. Add `x` and `y` (as part of the `within_apply` operation)\n", - "2. Add the result to `z` (as part of the within_apply operation)\n", - "3. Uncompute the result of the first operation (as part of the `within_apply` operation)\n", - "4. Add the result of the second operation to `w`. There’s no need to perform another uncomputation, as this brings our calculation to an end.\n", - "\n", - "Create the model, optimize on the circuit’s width, and run the circuit. Can you identify where qubits have been released and reused?" - ] - }, - { - "cell_type": "code", - "execution_count": 53, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/5e4a8495-6140-42d5-8f7e-19e6c0b7c774?version=0.42.0\n", - "{'res': 14.0}\n", - "Synthesized circuit width: 16, depth: 165\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def add_xy(x: QNum, y: QNum, temp: Output[QNum]) -> None:\n", - " temp |= x + y\n", - "\n", - "@qfunc\n", - "def add_temp_z(temp: QNum, z: QNum, res: Output[QNum]) -> None:\n", - " res |= temp + z\n", - "\n", - "@qfunc\n", - "def uncompute_xy(x: QNum, y: QNum, temp: Output[QNum]) -> None:\n", - " temp |= x + y\n", - " \n", - "@qfunc\n", - "def main(res: Output[QNum]) -> None:\n", - " w = QNum(\"w\")\n", - " x = QNum(\"x\")\n", - " y = QNum(\"y\")\n", - " z = QNum(\"z\")\n", - " \n", - " prepare_int(4, w)\n", - " prepare_int(3, x)\n", - " prepare_int(5, y)\n", - " prepare_int(2, z)\n", - " \n", - " temp = QNum(\"temp\")\n", - " temp_result = QNum(\"temp_result\")\n", - "\n", - " within_apply(\n", - " compute = lambda: add_xy(x, y, temp),\n", - " action = lambda: add_temp_z(temp, z, temp_result)\n", - " )\n", - "\n", - " # Uncompute the first operation\n", - " within_apply(\n", - " compute = lambda: uncompute_xy(x, y, temp),\n", - " action = lambda: None\n", - " )\n", - " \n", - " # 最終結果に w を加算\n", - " res |= w + temp_result\n", - " \n", - "qmod = create_model(main)\n", - "qmod = set_constraints(qmod,Constraints(optimization_parameter='width'))\n", - "qprog = synthesize(qmod)\n", - "show(qprog)\n", - "\n", - "def print_parsed_counts(job):\n", - " results = job.result()\n", - " parsed_counts = results[0].value.parsed_counts\n", - " for parsed_state in parsed_counts: print(parsed_state.state)\n", - "\n", - "job = execute(qprog)\n", - "print_parsed_counts(job)\n", - "\n", - "def print_depth_width(quantum_program):\n", - " generated_circuit = QuantumProgram.parse_raw(quantum_program)\n", - " print(f\"Synthesized circuit width: {generated_circuit.data.width}, depth: {generated_circuit.transpiled_circuit.depth}\")\n", - "print_depth_width(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Bonus: Use a Single Arithmetic Expression\n", - "\n", - "What happens when we don't manually decompose this expression?\n", - "\n", - "Use Classiq’s arithmetic engine to calculate `res |= x + y + z + w` and optimize for width.\n", - "Look at the resulting quantum program - can you identify the computation and uncomputation blocks? What else did you notice?" - ] - }, - { - "cell_type": "code", - "execution_count": 54, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/3690200f-3162-43ec-b105-b23b9ba09060?version=0.42.0\n", - "{'res': 14.0}\n", - "Synthesized circuit width: 12, depth: 155\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def main(res: Output[QNum]) -> None:\n", - " w = QNum(\"w\")\n", - " x = QNum(\"x\")\n", - " y = QNum(\"y\")\n", - " z = QNum(\"z\")\n", - " \n", - " prepare_int(4, w)\n", - " prepare_int(3, x)\n", - " prepare_int(5, y)\n", - " prepare_int(2, z)\n", - " \n", - " # 単一の算術式を使用して結果を計算\n", - " res |= x + y + z + w\n", - " \n", - "qmod = create_model(main)\n", - "qmod = set_constraints(qmod,Constraints(optimization_parameter='width'))\n", - "qprog = synthesize(qmod)\n", - "show(qprog)\n", - "\n", - "def print_parsed_counts(job):\n", - " results = job.result()\n", - " parsed_counts = results[0].value.parsed_counts\n", - " for parsed_state in parsed_counts: print(parsed_state.state)\n", - "\n", - "job = execute(qprog)\n", - "print_parsed_counts(job)\n", - "\n", - "def print_depth_width(quantum_program):\n", - " generated_circuit = QuantumProgram.parse_raw(quantum_program)\n", - " print(f\"Synthesized circuit width: {generated_circuit.data.width}, depth: {generated_circuit.transpiled_circuit.depth}\")\n", - "print_depth_width(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 9 - In-place Arithmetics\n", - "\n", - "For the following exercise we will use numeric quantum variables that represent fixed-point reals.\n", - "\n", - "Arithmetic expressions can be calculated in-place into a target variable, without allocating new qubits to store the result. This is done using the in-place-xor operator.\n", - "\n", - "See also [Numeric assignment](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/numeric-assignment/#semantics).\n", - "\n", - "In-place assignment is often used to nest arithmetic expressions under quantum operators. Note that out-of-place assignment requires its left-value variable to be un-initialized, and therefore cannot be used under an operator if the variable is declared outside its scope. Applying operators to arithmetic expressions is required in many algorithms. One example is the piecewise evaluation of mathematical functions - calculating different expressions over `x` depending on the subdomain where `x` falls.\n", - "\n", - "For this exercise, replace the missing parts in the code snippet below to evaluate the result of:\n", - "\n", - "$$\n", - "f(x) = \\begin{cases}\n", - " 2x + 1 & \\text{ if } 0 \\leq x < 0.5 \\\\\n", - " x + 0.5 & \\text{ if } 0.5 \\leq x < 1\n", - " \\end{cases}\n", - "$$\n", - "\n", - "Notes:\n", - "- We cannot use `x` directly as the control variable in a `constrol` operator, because it also occurs in the nested scope. to determine if `x` is in the lower or higher half of the domain we duplicate the most significant bit onto a separate variable called `label`.\n", - "- In Python assignment operators cannot be used in lambda expressions, so the computation of the function needs to be factored out to a named Python function (but not necessarily a Qmod function).\n" - ] - }, - { - "cell_type": "code", - "execution_count": 116, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Synthesized circuit width: 28, depth: 108\n" - ] - } - ], - "source": [ - "\n", - "from classiq import *\n", - "\n", - "\n", - "@qfunc\n", - "def linear_func(a: CReal, b: CReal, x: QNum, res: QNum) -> None:\n", - " res ^= a * x + b\n", - "\n", - "@qfunc\n", - "def dup_msb(qba: QArray[QBit], msb: QBit) -> None:\n", - " CX(qba[qba.len - 1], msb)\n", - "\n", - "@qfunc\n", - "def main(x: Output[QNum[3, False, 3]], res: Output[QNum[5, False, 3]]) -> None:\n", - " allocate(3, x)\n", - " allocate(5, res)\n", - " hadamard_transform(x)\n", - "\n", - " label = QArray(\"label\")\n", - " allocate(1, label)\n", - "\n", - " dup_msb(x, label)\n", - "\n", - " # 一時変数としてtemp_resを使用して計算\n", - " temp_res = QNum(\"temp_res\")\n", - " allocate(5, temp_res)\n", - " \n", - " control(label, lambda: linear_func(1.0, 0.5, x, temp_res)) # 0.5 <= x < 1.0\n", - " X(label)\n", - " control(label, lambda: linear_func(2.0, 1.0, x, temp_res)) # 0.0 <= x < 0.5\n", - "\n", - " # 最終結果をresにコピー\n", - " res ^= temp_res\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)\n", - "def print_depth_width(quantum_program):\n", - " generated_circuit = QuantumProgram.parse_raw(quantum_program)\n", - " print(f\"Synthesized circuit width: {generated_circuit.data.width}, depth: {generated_circuit.transpiled_circuit.depth}\")\n", - "print_depth_width(qprog)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 10 - State-preparation Algorithm using Quantum-if\n", - "\n", - "#### Binding\n", - "The `bind` operation allows to convert smoothly between different quantum types and split or slice bits when necessary. Here’s an example:" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/68b2615d-9d5a-4236-851e-0a711051deaf?version=0.42.0\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "\n", - "\n", - "from math import pi\n", - "\n", - "\n", - "@qfunc\n", - "def main(res: Output[QArray[QBit]]) -> None:\n", - " x: QArray[QBit] = QArray(\"x\")\n", - " allocate(3, x)\n", - " hadamard_transform(x)\n", - "\n", - " lsb = QBit(\"lsb\")\n", - " msb = QNum(\"msb\", 2, False, 0)\n", - " bind(x, [lsb, msb])\n", - "\n", - " control(msb == 1, lambda: RY(pi / 3, lsb)) # msb==1 <==> bit1 bit2 == 01 (binary of decimal 1)\n", - "\n", - " bind([lsb, msb], res)\n", - "\n", - "model = create_model(main)\n", - "qprog = synthesize(model)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The first `bind` operation splits the 3-qubit register `x` into the 2-qubit and single-qubit registers `lsb` and `msb`, respectively.\n", - "\n", - "After the `bind` operation:\n", - "1. The registers `lsb` and `msb` can be operated on as separated registers.\n", - "2. The register`x` is consumed and can no longer be used.\n", - "\n", - "The second `bind` operation concatenates the registers to the output register `res`.\n", - "\n", - "For this exercise, fill in the missing code parts in the above snippet and use the `control` statement to manually generate the following lovely 3-qubit probability distribution: `[1/8, 1/8, 1/8, -sqrt(3)/16, 1/8 + sqrt(3)/16, 1/8, 1/8, 1/8, 1/8]`.\n", - "\n", - "The following series of gates generate it:\n", - "\n", - "Perform the Hadamard transform on all three qubits.\n", - "\n", - "Apply a rotation on the LSB (least-significant bit) conditioned by the MSB being |0> and the second to last MSB being |1>. How would you write this condition using a QNum?\n", - "\n", - "The following series of gates generate it:\n", - "1. Perform the Hadamard transform on all three qubits.\n", - "2. Apply a `pi/3` rotation on the LSB (least-significant bit) conditioned by the MSB being |0> and the second to last MSB being |1>. How would you write this condition using a QNum?\n", - "\n", - "If you want to validate your results without looking at the full solution, compare them to running using Classiq’s built-in `prepare_state` function.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/13e2adfc-2b98-437f-9934-c1177d3e249a?version=0.42.0\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "from classiq.qmod.symbolic import sqrt\n", - "from math import pi\n", - "\n", - "prob_list= [\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8-sqrt(3) / 16,\n", - " 1 / 8 + sqrt(3) / 16,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8\n", - " ]\n", - "# 事前に準備された状態を設定する関数\n", - "@qfunc\n", - "def pre_prepared_state( q: Output[QArray[QBit]]) -> None:\n", - " prepare_state(\n", - " probabilities=prob_list,\n", - " bound=0.0,\n", - " out=q\n", - " )\n", - "\n", - "\n", - "\n", - "# Your code here:\n", - "# メイン関数\n", - "@qfunc\n", - "def main(res: Output[QArray[QBit]]) -> None:\n", - " x = QArray(\"x\")\n", - " \n", - " pre_prepared_state(x) # 事前に準備された状態を使用\n", - " \n", - " lsb = QBit(\"lsb\")\n", - " msb = QNum(\"msb\", 2, False, 0)\n", - " bind(x, [lsb, msb]) # xをlsbとmsbに分割\n", - "\n", - " # msbが|01>のとき、lsbにRY(pi/3)を適用\n", - " control(msb == 1, lambda: RY(pi / 3, lsb))\n", - "\n", - " # 最後に結果をresにバインド\n", - " bind([lsb, msb], res)\n", - "\n", - "# モデルの作成とプログラムの合成\n", - "model = create_model(main)\n", - "qprog = synthesize(model)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.9" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/community/QClass_2024/Submissions/HW2/Christopher_vanBommel_HW2_QClass2024.ipynb b/community/QClass_2024/Submissions/HW2/Christopher_vanBommel_HW2_QClass2024.ipynb deleted file mode 100644 index e4f8c642..00000000 --- a/community/QClass_2024/Submissions/HW2/Christopher_vanBommel_HW2_QClass2024.ipynb +++ /dev/null @@ -1,858 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# The Qmod Workshop - Part 2: Higher-Level Concepts\n", - "\n", - "This is the second part of the Qmod workshop, covering exercises 6 through 10. Make sure to go through Part 1 before continuing with this notebook." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Collecting classiq\n", - " Downloading classiq-0.41.1-py3-none-any.whl (398 kB)\n", - " 0.0/398.1 kB ? eta -:--:--\n", - " ----------- 122.9/398.1 kB 3.6 MB/s eta 0:00:01\n", - " -------------------------------------- 398.1/398.1 kB 5.0 MB/s eta 0:00:00\n", - "Collecting ConfigArgParse<2.0.0,>=1.5.3 (from classiq)\n", - " Downloading ConfigArgParse-1.7-py3-none-any.whl (25 kB)\n", - "Collecting Pyomo<6.6,>=6.5 (from classiq)\n", - " Downloading Pyomo-6.5.0-cp311-cp311-win_amd64.whl (4.0 MB)\n", - " 0.0/4.0 MB ? eta -:--:--\n", - " --- 0.4/4.0 MB 10.9 MB/s eta 0:00:01\n", - " ------- 0.7/4.0 MB 11.2 MB/s eta 0:00:01\n", - " ---------- 1.1/4.0 MB 9.6 MB/s eta 0:00:01\n", - " ------------- 1.4/4.0 MB 9.9 MB/s eta 0:00:01\n", - " ----------------- 1.8/4.0 MB 10.2 MB/s eta 0:00:01\n", - " --------------------- 2.1/4.0 MB 9.7 MB/s eta 0:00:01\n", - " ------------------------ 2.5/4.0 MB 9.9 MB/s eta 0:00:01\n", - " ---------------------------- 2.9/4.0 MB 9.6 MB/s eta 0:00:01\n", - " -------------------------------- 3.2/4.0 MB 9.8 MB/s eta 0:00:01\n", - " ----------------------------------- 3.6/4.0 MB 9.6 MB/s eta 0:00:01\n", - " ------------------------------------- 3.8/4.0 MB 9.6 MB/s eta 0:00:01\n", - " --------------------------------------- 4.0/4.0 MB 9.2 MB/s eta 0:00:01\n", - " ---------------------------------------- 4.0/4.0 MB 8.6 MB/s eta 0:00:00\n", - "Collecting black<25.0,>=24.0 (from classiq)\n", - " Downloading black-24.4.2-cp311-cp311-win_amd64.whl (1.4 MB)\n", - " 0.0/1.4 MB ? eta -:--:--\n", - " --------- 0.3/1.4 MB 10.6 MB/s eta 0:00:01\n", - " ------------------- 0.7/1.4 MB 10.9 MB/s eta 0:00:01\n", - " ---------------------------- 1.0/1.4 MB 9.2 MB/s eta 0:00:01\n", - " -------------------------------------- 1.4/1.4 MB 9.6 MB/s eta 0:00:01\n", - " ---------------------------------------- 1.4/1.4 MB 9.0 MB/s eta 0:00:00\n", - "Collecting httpx<1,>=0.23.0 (from classiq)\n", - " Downloading httpx-0.27.0-py3-none-any.whl (75 kB)\n", - " 0.0/75.6 kB ? eta -:--:--\n", - " ---------------------------------------- 75.6/75.6 kB 4.1 MB/s eta 0:00:00\n", - "Requirement already satisfied: keyring<24.0.0,>=23.5.0 in c:\\users\\c_van\\anaconda3\\lib\\site-packages (from classiq) (23.13.1)\n", - "Requirement already satisfied: matplotlib<4.0.0,>=3.4.3 in c:\\users\\c_van\\anaconda3\\lib\\site-packages (from classiq) (3.7.1)\n", - "Requirement already satisfied: networkx<3.0.0,>=2.5.1 in c:\\users\\c_van\\anaconda3\\lib\\site-packages (from classiq) (2.8.4)\n", - "Requirement already satisfied: numexpr<3.0.0,>=2.7.3 in c:\\users\\c_van\\anaconda3\\lib\\site-packages (from classiq) (2.8.4)\n", - "Requirement already satisfied: numpy<2.0.0,>=1.20.1 in c:\\users\\c_van\\anaconda3\\lib\\site-packages (from classiq) (1.24.3)\n", - "Collecting packaging<23.0,>=22.0 (from classiq)\n", - " Downloading packaging-22.0-py3-none-any.whl (42 kB)\n", - " 0.0/42.6 kB ? eta -:--:--\n", - " ---------------------------------------- 42.6/42.6 kB 2.0 MB/s eta 0:00:00\n", - "Requirement already satisfied: pandas<3.0.0,>=1.4.0 in c:\\users\\c_van\\anaconda3\\lib\\site-packages (from classiq) (1.5.3)\n", - "Requirement already satisfied: plotly<6.0.0,>=5.7.0 in c:\\users\\c_van\\anaconda3\\lib\\site-packages (from classiq) (5.9.0)\n", - "Collecting pydantic<2.0.0,>=1.9.1 (from classiq)\n", - " Downloading pydantic-1.10.15-cp311-cp311-win_amd64.whl (2.1 MB)\n", - " 0.0/2.1 MB ? eta -:--:--\n", - " ------ 0.4/2.1 MB 11.2 MB/s eta 0:00:01\n", - " ------------ 0.7/2.1 MB 8.7 MB/s eta 0:00:01\n", - " -------------------- 1.1/2.1 MB 9.9 MB/s eta 0:00:01\n", - " -------------------------- 1.4/2.1 MB 8.9 MB/s eta 0:00:01\n", - " --------------------------------- 1.8/2.1 MB 9.4 MB/s eta 0:00:01\n", - " --------------------------------------- 2.1/2.1 MB 9.6 MB/s eta 0:00:01\n", - " ---------------------------------------- 2.1/2.1 MB 9.0 MB/s eta 0:00:00\n", - "Requirement already satisfied: scipy<2.0.0,>=1.10.1 in c:\\users\\c_van\\anaconda3\\lib\\site-packages (from classiq) (1.10.1)\n", - "Collecting sympy<1.11.0,>=1.9.0 (from classiq)\n", - " Downloading sympy-1.10.1-py3-none-any.whl (6.4 MB)\n", - " 0.0/6.4 MB ? eta -:--:--\n", - " -- 0.3/6.4 MB 10.2 MB/s eta 0:00:01\n", - " ---- 0.7/6.4 MB 10.4 MB/s eta 0:00:01\n", - " ------ 1.0/6.4 MB 9.3 MB/s eta 0:00:01\n", - " -------- 1.4/6.4 MB 9.6 MB/s eta 0:00:01\n", - " ---------- 1.7/6.4 MB 9.9 MB/s eta 0:00:01\n", - " ------------ 2.0/6.4 MB 9.3 MB/s eta 0:00:01\n", - " --------------- 2.4/6.4 MB 9.6 MB/s eta 0:00:01\n", - " ----------------- 2.8/6.4 MB 9.3 MB/s eta 0:00:01\n", - " ------------------- 3.1/6.4 MB 9.5 MB/s eta 0:00:01\n", - " --------------------- 3.5/6.4 MB 9.3 MB/s eta 0:00:01\n", - " ------------------------ 3.9/6.4 MB 9.3 MB/s eta 0:00:01\n", - " -------------------------- 4.3/6.4 MB 9.5 MB/s eta 0:00:01\n", - " ----------------------------- 4.7/6.4 MB 9.4 MB/s eta 0:00:01\n", - " ------------------------------- 5.1/6.4 MB 9.5 MB/s eta 0:00:01\n", - " ---------------------------------- 5.5/6.4 MB 9.5 MB/s eta 0:00:01\n", - " ------------------------------------ 5.9/6.4 MB 9.4 MB/s eta 0:00:01\n", - " --------------------------------------- 6.3/6.4 MB 9.5 MB/s eta 0:00:01\n", - " --------------------------------------- 6.4/6.4 MB 9.5 MB/s eta 0:00:01\n", - " ---------------------------------------- 6.4/6.4 MB 8.9 MB/s eta 0:00:00\n", - "Requirement already satisfied: tabulate<1,>=0.8.9 in c:\\users\\c_van\\anaconda3\\lib\\site-packages (from classiq) (0.8.10)\n", - "Requirement already satisfied: click>=8.0.0 in c:\\users\\c_van\\anaconda3\\lib\\site-packages (from black<25.0,>=24.0->classiq) (8.0.4)\n", - "Requirement already satisfied: mypy-extensions>=0.4.3 in c:\\users\\c_van\\anaconda3\\lib\\site-packages (from black<25.0,>=24.0->classiq) (0.4.3)\n", - "Requirement already satisfied: pathspec>=0.9.0 in c:\\users\\c_van\\anaconda3\\lib\\site-packages (from black<25.0,>=24.0->classiq) (0.10.3)\n", - "Requirement already satisfied: platformdirs>=2 in c:\\users\\c_van\\anaconda3\\lib\\site-packages (from black<25.0,>=24.0->classiq) (2.5.2)\n", - "Requirement already satisfied: anyio in c:\\users\\c_van\\anaconda3\\lib\\site-packages (from httpx<1,>=0.23.0->classiq) (3.5.0)\n", - "Requirement already satisfied: certifi in c:\\users\\c_van\\anaconda3\\lib\\site-packages (from httpx<1,>=0.23.0->classiq) (2023.5.7)\n", - "Collecting httpcore==1.* (from httpx<1,>=0.23.0->classiq)\n", - " Downloading httpcore-1.0.5-py3-none-any.whl (77 kB)\n", - " 0.0/77.9 kB ? eta -:--:--\n", - " ---------------------------------------- 77.9/77.9 kB ? eta 0:00:00\n", - "Requirement already satisfied: idna in c:\\users\\c_van\\anaconda3\\lib\\site-packages (from httpx<1,>=0.23.0->classiq) (3.4)\n", - "Requirement already satisfied: sniffio in c:\\users\\c_van\\anaconda3\\lib\\site-packages (from httpx<1,>=0.23.0->classiq) (1.2.0)\n", - "Collecting h11<0.15,>=0.13 (from httpcore==1.*->httpx<1,>=0.23.0->classiq)\n", - " Using cached h11-0.14.0-py3-none-any.whl (58 kB)\n", - "Requirement already satisfied: jaraco.classes in c:\\users\\c_van\\anaconda3\\lib\\site-packages (from keyring<24.0.0,>=23.5.0->classiq) (3.2.1)\n", - "Requirement already satisfied: importlib-metadata>=4.11.4 in c:\\users\\c_van\\anaconda3\\lib\\site-packages (from keyring<24.0.0,>=23.5.0->classiq) (6.0.0)\n", - "Requirement already satisfied: pywin32-ctypes>=0.2.0 in c:\\users\\c_van\\anaconda3\\lib\\site-packages (from keyring<24.0.0,>=23.5.0->classiq) (0.2.0)\n", - "Requirement already satisfied: contourpy>=1.0.1 in c:\\users\\c_van\\anaconda3\\lib\\site-packages (from matplotlib<4.0.0,>=3.4.3->classiq) (1.0.5)\n", - "Requirement already satisfied: cycler>=0.10 in c:\\users\\c_van\\anaconda3\\lib\\site-packages (from matplotlib<4.0.0,>=3.4.3->classiq) (0.11.0)\n", - "Requirement already satisfied: fonttools>=4.22.0 in c:\\users\\c_van\\anaconda3\\lib\\site-packages (from matplotlib<4.0.0,>=3.4.3->classiq) (4.25.0)\n", - "Requirement already satisfied: kiwisolver>=1.0.1 in c:\\users\\c_van\\anaconda3\\lib\\site-packages (from matplotlib<4.0.0,>=3.4.3->classiq) (1.4.4)\n", - "Requirement already satisfied: pillow>=6.2.0 in c:\\users\\c_van\\anaconda3\\lib\\site-packages (from matplotlib<4.0.0,>=3.4.3->classiq) (9.4.0)\n", - "Requirement already satisfied: pyparsing>=2.3.1 in c:\\users\\c_van\\anaconda3\\lib\\site-packages (from matplotlib<4.0.0,>=3.4.3->classiq) (3.0.9)\n", - "Requirement already satisfied: python-dateutil>=2.7 in c:\\users\\c_van\\anaconda3\\lib\\site-packages (from matplotlib<4.0.0,>=3.4.3->classiq) (2.8.2)\n", - "Requirement already satisfied: pytz>=2020.1 in c:\\users\\c_van\\anaconda3\\lib\\site-packages (from pandas<3.0.0,>=1.4.0->classiq) (2022.7)\n", - "Requirement already satisfied: tenacity>=6.2.0 in c:\\users\\c_van\\anaconda3\\lib\\site-packages (from plotly<6.0.0,>=5.7.0->classiq) (8.2.2)\n", - "Requirement already satisfied: typing-extensions>=4.2.0 in c:\\users\\c_van\\anaconda3\\lib\\site-packages (from pydantic<2.0.0,>=1.9.1->classiq) (4.6.3)\n", - "Requirement already satisfied: ply in c:\\users\\c_van\\anaconda3\\lib\\site-packages (from Pyomo<6.6,>=6.5->classiq) (3.11)\n", - "Requirement already satisfied: mpmath>=0.19 in c:\\users\\c_van\\anaconda3\\lib\\site-packages (from sympy<1.11.0,>=1.9.0->classiq) (1.2.1)\n", - "Requirement already satisfied: colorama in c:\\users\\c_van\\anaconda3\\lib\\site-packages (from click>=8.0.0->black<25.0,>=24.0->classiq) (0.4.6)\n", - "Requirement already satisfied: zipp>=0.5 in c:\\users\\c_van\\anaconda3\\lib\\site-packages (from importlib-metadata>=4.11.4->keyring<24.0.0,>=23.5.0->classiq) (3.11.0)\n", - "Requirement already satisfied: six>=1.5 in c:\\users\\c_van\\anaconda3\\lib\\site-packages (from python-dateutil>=2.7->matplotlib<4.0.0,>=3.4.3->classiq) (1.16.0)\n", - "Requirement already satisfied: more-itertools in c:\\users\\c_van\\anaconda3\\lib\\site-packages (from jaraco.classes->keyring<24.0.0,>=23.5.0->classiq) (8.12.0)\n", - "Installing collected packages: sympy, Pyomo, pydantic, packaging, h11, ConfigArgParse, httpcore, black, httpx, classiq\n", - " Attempting uninstall: sympy\n", - " Found existing installation: sympy 1.11.1\n", - " Uninstalling sympy-1.11.1:\n", - " Successfully uninstalled sympy-1.11.1\n", - " Attempting uninstall: packaging\n", - " Found existing installation: packaging 23.0\n", - " Uninstalling packaging-23.0:\n", - " Successfully uninstalled packaging-23.0\n", - " Attempting uninstall: black\n", - " Found existing installation: black 0.0\n", - " Uninstalling black-0.0:\n", - " Successfully uninstalled black-0.0\n", - "Successfully installed ConfigArgParse-1.7 Pyomo-6.5.0 black-24.4.2 classiq-0.41.1 h11-0.14.0 httpcore-1.0.5 httpx-0.27.0 packaging-22.0 pydantic-1.10.15 sympy-1.10.1\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n", - "tables 3.8.0 requires blosc2~=2.0.0, which is not installed.\n", - "tables 3.8.0 requires cython>=0.29.21, which is not installed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Your user code: KFZF-VMRD\n", - "If a browser doesn't automatically open, please visit this URL from any trusted device: https://auth.classiq.io/activate?user_code=KFZF-VMRD\n" - ] - } - ], - "source": [ - "!pip install -U classiq\n", - "import classiq\n", - "classiq.authenticate()" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "from classiq import *" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 6 - Exponentiation and Pauli Operators\n", - "\n", - "The Qmod language supports different classical types: scalars, arrays, and structs. Structs are objects with member variables, or fields.\n", - "\n", - "See also [Classical Types](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/classical-types/#structs).\n", - "\n", - "The builtin struct type `PauliTerm` is defined as follows:" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "@struct\n", - "class PauliTerm:\n", - " pauli: CArray[Pauli]\n", - " coefficient: CReal" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Note that `Pauli` is an enum for all the Pauli matrices (I, X, Y, Z).\n", - "\n", - "Pauli based hamiltonian can be represented as a list of `PauliTerm`s. A Pauli operator defined this way is the argument to a hamiltonian evolution functions.\n", - "\n", - "In this exercise we will use the Suzuki-Trotter function to find the evolution of `H=0.5XZXX + 0.25YIZI + 0.3 XIZY` (captured as a literal value for the pauli-operator), with the evolution coefficient being 3, the order being 2, and use 4 repetitions.\n", - "\n", - "The declaration of the `suzuki_trotter` function is:" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "@qfunc(external=True)\n", - "def suzuki_trotter(\n", - " pauli_operator: CArray[PauliTerm],\n", - " evolution_coefficient: CReal,\n", - " order: CInt,\n", - " repetitions: CInt,\n", - " qbv: QArray[QBit],\n", - ") -> None:\n", - " pass" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Fill in the missing parts of the following code in order to complete this exercise:" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/d753d2b0-5d8c-4723-9c09-0d21ebe103d9?version=0.41.1\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "\n", - "@qfunc\n", - "def main(q: Output[QArray[QBit]]) -> None:\n", - " allocate(4, q)\n", - " suzuki_trotter(\n", - " [\n", - " PauliTerm(pauli=[Pauli.X, Pauli.Z, Pauli.X, Pauli.X], coefficient=0.5),\n", - " PauliTerm(pauli=[Pauli.Y, Pauli.I, Pauli.Z, Pauli.I], coefficient=0.25),\n", - " PauliTerm(pauli=[Pauli.X, Pauli.I, Pauli.Z, Pauli.Y], coefficient=0.3),\n", - " ],\n", - " evolution_coefficient=3,\n", - " repetitions=4,\n", - " order=2,\n", - " qbv=q,\n", - " )\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 7 - Basic Arithmetics\n", - "\n", - "#### Exercise 7a\n", - "In this exercise we will use quantum numeric variables and calculate expressions over them.\n", - "\n", - "See details on the syntax of numeric types under [Quantum types](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/quantum-types/#syntax).\n", - "See more on quantum expressions under [Numeric assignment](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/numeric-assignment/)\n", - "\n", - "Create the following quantum programs:\n", - "1. Initialize variables `x=2`, `y=7` and computes `res = x + y`.\n", - "2. Initialize variables `x=2`, `y=7` and computes `res = x * y`.\n", - "3. Initialize variables `x=2`, `y=7`, `z=1` and computes `res = x * y - z`.\n", - "\n", - "Guidance:\n", - "* Use the operator `|=` to perform out-of-place assignment of arithmetic expression.\n", - "* To initialize the variables, use the function `prepare_int`.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/8eb3a413-6924-4a89-978b-bffe9e55d2d9?version=0.41.1\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def main(x: Output[QNum], y: Output[QNum], res: Output[QNum]):\n", - " prepare_int(2, x)\n", - " prepare_int(7, y)\n", - " res |= x + y\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/f20136b0-79cb-45be-b767-06ea75364387?version=0.41.1\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def main(x: Output[QNum], y: Output[QNum], res: Output[QNum]):\n", - " prepare_int(2, x)\n", - " prepare_int(7, y)\n", - " res |= x * y\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/76d9212c-dd0f-4d1c-bec9-3f31f17eb626?version=0.41.1\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def main(x: Output[QNum], y: Output[QNum], z: Output[QNum], res: Output[QNum]):\n", - " prepare_int(2, x)\n", - " prepare_int(7, y)\n", - " prepare_int(1, z)\n", - " res |= x * y - z\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Exercise 7b\n", - "Declare `x` to be a 2-qubit variable and `y` to be 3-qubit variable.\n", - "\n", - "We will perform an addition of two superposition states: `x` is an equal superposition of `0` and `2`, and `y` is an equal superposition of `1`, `2`, `3`, and `6`.\n", - "\n", - "1. Use `prepare_state` to initialize `x` and `y`. Note that `prepare_state` works with probabilities, not amplitudes.\n", - " The declaration of the `prepare_state` function is:\n", - " ```\n", - " @qfunc(external=True)\n", - " def prepare_state(\n", - " probabilities: CArray[CReal],\n", - " bound: CReal,\n", - " out: Output[QArray[QBit]],\n", - " ) -> None:\n", - " pass\n", - " ```\n", - " (Set the bound to 0 in your code)\n", - "2. Compute `res = x + y`. Execute the resulting circuit. What did you get?" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/4b8fd3e0-79ee-456e-b4bc-4b547961abea?version=0.41.1\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def main(x: Output[QNum], y: Output[QNum], res: Output[QNum]):\n", - " prepare_state([0.5, 0, 0.5, 0], 0, x)\n", - " prepare_state([0, 0.25, 0.25, 0.25, 0, 0, 0.25, 0], 0, y)\n", - " res |= x + y\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 8 - Within-Apply\n", - "\n", - "The within-apply statement applies the pattern `U_dagger V U` that appears frequently in quantum computing.\n", - "It allows you to compute some function `V` within the context of another function `U`, and afterward uncompute `U` in order to release auxiliary qubits storing intermediate results.\n", - "\n", - "See also [Within Apply](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/within-apply/).\n", - "\n", - "#### Exercise 8a\n", - "\n", - "In this exercise, we will use within-apply to compute an arithmetic expression in steps.\n", - "\n", - "Use the `within_apply` operation to calculate `res = x + y + z` from a two-variable addition building block with the following steps:\n", - "1. Add `x` and `y`\n", - "2. Add the result to `z`\n", - "3. Uncompute the result of the first operation\n", - "\n", - "For simplicity, initialize the registers to simple integers: `x=3`, `y=5`, `z=2`.\n", - "\n", - "Hints:\n", - "\n", - "* Use a temporary variable.\n", - "* Wrap the arithmetic operation in a function.\n", - "\n", - "Execute the circuit and make sure you obtain the expected result." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/c0fe48c5-3f3a-4dc2-9786-b1b6d023b3b9?version=0.41.1\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def add(x: QNum, y: QNum, res: Output[QNum]):\n", - " res |= x + y\n", - "\n", - "@qfunc\n", - "def main(x: Output[QNum], y: Output[QNum], z: Output[QNum], res: Output[QNum]):\n", - " prepare_int(3, x)\n", - " prepare_int(5, y)\n", - " prepare_int(2, z)\n", - " tmp = QNum(\"tmp\")\n", - " within_apply(compute=lambda: add(x, y, tmp), action=lambda: add(tmp, z, res))\n", - " \n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Exercise 8b\n", - "\n", - "Why should we use `within-apply` and not just write three concatenated functions?\n", - "To understand the motivation, we will create another arithmetic circuit.\n", - "This time, however, we will also set Classiq’s synthesis engine to optimize on the circuit’s number of qubits, i.e., its width.\n", - "\n", - "Setting constraints can be done via the `set_constraints` operation - see [here](https://docs.classiq.io/latest/user-guide/platform/synthesis/constraints/).\n", - "\n", - "Perform the operation `res = w + x + y + z`, where w is initialized to 4 and the rest as before:\n", - "\n", - "1. Add `x` and `y` (as part of the `within_apply` operation)\n", - "2. Add the result to `z` (as part of the within_apply operation)\n", - "3. Uncompute the result of the first operation (as part of the `within_apply` operation)\n", - "4. Add the result of the second operation to `w`. There’s no need to perform another uncomputation, as this brings our calculation to an end.\n", - "\n", - "Create the model, optimize on the circuit’s width, and run the circuit. Can you identify where qubits have been released and reused?" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/f6a20b2e-aba3-45fc-a6e2-8a3a730bf956?version=0.41.1\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def add(x: QNum, y: QNum, res: Output[QNum]):\n", - " res |= x + y\n", - "\n", - "@qfunc\n", - "def main(w: Output[QNum], x: Output[QNum], y: Output[QNum], z: Output[QNum], res: Output[QNum], final: Output[QNum]):\n", - " prepare_int(4, w)\n", - " prepare_int(3, x)\n", - " prepare_int(5, y)\n", - " prepare_int(2, z)\n", - " tmp = QNum(\"tmp\")\n", - " within_apply(compute=lambda: add(x, y, tmp), action=lambda: add(tmp, z, res))\n", - " add(w, res, final)\n", - "\n", - "qmod = create_model(main)\n", - "qmod = set_constraints(qmod,Constraints(optimization_parameter='width'))\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Bonus: Use a Single Arithmetic Expression\n", - "\n", - "What happens when we don't manually decompose this expression?\n", - "\n", - "Use Classiq’s arithmetic engine to calculate `res |= x + y + z + w` and optimize for width.\n", - "Look at the resulting quantum program - can you identify the computation and uncomputation blocks? What else did you notice?" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/aa480ddc-d0ac-4fee-b220-e969232b9184?version=0.41.1\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def main(w: Output[QNum], x: Output[QNum], y: Output[QNum], z: Output[QNum], res: Output[QNum]):\n", - " prepare_int(4, w)\n", - " prepare_int(3, x)\n", - " prepare_int(5, y)\n", - " prepare_int(2, z)\n", - " res |= x + y + z + w\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 9 - In-place Arithmetics\n", - "\n", - "For the following exercise we will use numeric quantum variables that represent fixed-point reals.\n", - "\n", - "Arithmetic expressions can be calculated in-place into a target variable, without allocating new qubits to store the result. This is done using the in-place-xor operator.\n", - "\n", - "See also [Numeric assignment](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/numeric-assignment/#semantics).\n", - "\n", - "In-place assignment is often used to nest arithmetic expressions under quantum operators. Note that out-of-place assignment requires its left-value variable to be un-initialized, and therefore cannot be used under an operator if the variable is declared outside its scope. Applying operators to arithmetic expressions is required in many algorithms. One example is the piecewise evaluation of mathematical functions - calculating different expressions over `x` depending on the subdomain where `x` falls.\n", - "\n", - "For this exercise, replace the missing parts in the code snippet below to evaluate the result of:\n", - "\n", - "$$\n", - "f(x) = \\begin{cases}\n", - " 2x + 1 & \\text{ if } 0 \\leq x < 0.5 \\\\\n", - " x + 0.5 & \\text{ if } 0.5 \\leq x < 1\n", - " \\end{cases}\n", - "$$\n", - "\n", - "Notes:\n", - "- We cannot use `x` directly as the control variable in a `constrol` operator, because it also occurs in the nested scope. to determine if `x` is in the lower or higher half of the domain we duplicate the most significant bit onto a separate variable called `label`.\n", - "- In Python assignment operators cannot be used in lambda expressions, so the computation of the function needs to be factored out to a named Python function (but not necessarily a Qmod function).\n" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/db0c0d14-3b8a-4f28-8b23-878853b41a40?version=0.41.1\n" - ] - } - ], - "source": [ - "\n", - "from classiq import *\n", - "\n", - "\n", - "def linear_func(a: float, b: float, x: QNum, res: QNum) -> None:\n", - " res ^= a * x + b\n", - "\n", - "\n", - "@qfunc\n", - "def dup_msb(qba: QArray[QBit], msb: QBit) -> None:\n", - " CX(qba[qba.len - 1], msb)\n", - "\n", - "\n", - "@qfunc\n", - "def main(x: Output[QNum[3, False, 3]], res: Output[QNum[5, False, 3]]) -> None:\n", - " allocate(5, res)\n", - " allocate(3, x)\n", - " hadamard_transform(x)\n", - "\n", - " label = QArray(\"label\")\n", - " allocate(1, label)\n", - "\n", - " dup_msb(x, label)\n", - " control(label, lambda: linear_func(1.0, 0.5, x, res)) # 0.5 <= x < 1.0\n", - " X(label)\n", - " control(label, lambda: linear_func(2.0, 1.0, x, res)) # 0.0 <= x < 0.5\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 10 - State-preparation Algorithm using Quantum-if\n", - "\n", - "#### Binding\n", - "The `bind` operation allows to convert smoothly between different quantum types and split or slice bits when necessary. Here’s an example:" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/d7d88f80-0117-44db-b269-10717ad1db5f?version=0.41.1\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "\n", - "\n", - "from classiq import *\n", - "from math import pi\n", - "\n", - "\n", - "@qfunc\n", - "def main(res: Output[QArray[QBit]]) -> None:\n", - " x: QArray[QBit] = QArray(\"x\")\n", - " allocate(3, x)\n", - " hadamard_transform(x)\n", - "\n", - " lsb = QBit(\"lsb\")\n", - " msb = QNum(\"msb\", 2, False, 0)\n", - " bind(x, [lsb, msb])\n", - "\n", - " control(msb == 1, lambda: RY(pi / 3, lsb)) # msb==1 <==> bit1 bit2 == 01 (binary of decimal 1)\n", - "\n", - " bind([lsb, msb], res)\n", - "\n", - "model = create_model(main)\n", - "qprog = synthesize(model)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The first `bind` operation splits the 3-qubit register `x` into the 2-qubit and single-qubit registers `lsb` and `msb`, respectively.\n", - "\n", - "After the `bind` operation:\n", - "1. The registers `lsb` and `msb` can be operated on as separated registers.\n", - "2. The register`x` is consumed and can no longer be used.\n", - "\n", - "The second `bind` operation concatenates the registers to the output register `res`.\n", - "\n", - "For this exercise, fill in the missing code parts in the above snippet and use the `control` statement to manually generate the following lovely 3-qubit probability distribution: `[1/8, 1/8, 1/8, -sqrt(3)/16, 1/8 + sqrt(3)/16, 1/8, 1/8, 1/8, 1/8]`.\n", - "\n", - "The following series of gates generate it:\n", - "\n", - "Perform the Hadamard transform on all three qubits.\n", - "\n", - "Apply a rotation on the LSB (least-significant bit) conditioned by the MSB being |0> and the second to last MSB being |1>. How would you write this condition using a QNum?\n", - "\n", - "The following series of gates generate it:\n", - "1. Perform the Hadamard transform on all three qubits.\n", - "2. Apply a `pi/3` rotation on the LSB (least-significant bit) conditioned by the MSB being |0> and the second to last MSB being |1>. How would you write this condition using a QNum?\n", - "\n", - "If you want to validate your results without looking at the full solution, compare them to running using Classiq’s built-in `prepare_state` function.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/cdcdc779-038d-4d8e-a9e0-b172b27fb443?version=0.41.1\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "from classiq.qmod.symbolic import sqrt\n", - "\n", - "prob_list= [\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " -sqrt(3) / 16,\n", - " 1 / 8 + sqrt(3) / 16,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " ]\n", - "@qfunc\n", - "def pre_prepared_state(q: QArray[QBit]) -> None:\n", - " prepare_state(\n", - " [\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " -sqrt(3) / 16,\n", - " 1 / 8 + sqrt(3) / 16,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " ],\n", - " 0.0,\n", - " q,\n", - " )\n", - "\n", - "\n", - "# Your code here:\n", - "\n", - "@qfunc\n", - "def main(res: Output[QArray[QBit]]) -> None:\n", - " x: QArray[QBit] = QArray(\"x\")\n", - " allocate(3, x)\n", - " hadamard_transform(x)\n", - "\n", - " lsb = QBit(\"lsb\")\n", - " msb = QNum(\"msb\", 2, False, 0)\n", - " bind(x, [lsb, msb])\n", - "\n", - " control(msb == 1, lambda: RY(pi / 3, lsb)) # msb==1 <==> bit1 bit2 == 01 (binary of decimal 1)\n", - "\n", - " bind([lsb, msb], res)\n", - "\n", - "model = create_model(main)\n", - "qprog = synthesize(model)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.3" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/community/QClass_2024/Submissions/HW2/Christos_Koromilas_HW2_QClass2024.ipynb b/community/QClass_2024/Submissions/HW2/Christos_Koromilas_HW2_QClass2024.ipynb deleted file mode 100644 index 5b5872bd..00000000 --- a/community/QClass_2024/Submissions/HW2/Christos_Koromilas_HW2_QClass2024.ipynb +++ /dev/null @@ -1 +0,0 @@ -{"cells":[{"cell_type":"markdown","metadata":{"id":"pRhwRioySQnF"},"source":["# The Qmod Workshop - Part 2: Higher-Level Concepts\n","\n","This is the second part of the Qmod workshop, covering exercises 6 through 10. Make sure to go through Part 1 before continuing with this notebook."]},{"cell_type":"code","execution_count":1,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"GLj0bU36SQnM","executionInfo":{"status":"ok","timestamp":1716292802746,"user_tz":-120,"elapsed":360371,"user":{"displayName":"Christos Koromilas","userId":"17599903479737751299"}},"outputId":"549b1b77-e63a-4440-845f-48b97b4192e1"},"outputs":[{"output_type":"stream","name":"stdout","text":["\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m398.1/398.1 kB\u001b[0m \u001b[31m4.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m10.7/10.7 MB\u001b[0m \u001b[31m53.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.8/1.8 MB\u001b[0m \u001b[31m61.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m75.6/75.6 kB\u001b[0m \u001b[31m6.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.0/2.0 MB\u001b[0m \u001b[31m32.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m42.6/42.6 kB\u001b[0m \u001b[31m2.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.1/3.1 MB\u001b[0m \u001b[31m25.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m6.4/6.4 MB\u001b[0m \u001b[31m26.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m77.9/77.9 kB\u001b[0m \u001b[31m2.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m58.3/58.3 kB\u001b[0m \u001b[31m4.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m49.6/49.6 kB\u001b[0m \u001b[31m4.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[?25h\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n","torch 2.2.1+cu121 requires nvidia-cublas-cu12==12.1.3.1; platform_system == \"Linux\" and platform_machine == \"x86_64\", which is not installed.\n","torch 2.2.1+cu121 requires nvidia-cuda-cupti-cu12==12.1.105; platform_system == \"Linux\" and platform_machine == \"x86_64\", which is not installed.\n","torch 2.2.1+cu121 requires nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == \"Linux\" and platform_machine == \"x86_64\", which is not installed.\n","torch 2.2.1+cu121 requires nvidia-cuda-runtime-cu12==12.1.105; platform_system == \"Linux\" and platform_machine == \"x86_64\", which is not installed.\n","torch 2.2.1+cu121 requires nvidia-cudnn-cu12==8.9.2.26; platform_system == \"Linux\" and platform_machine == \"x86_64\", which is not installed.\n","torch 2.2.1+cu121 requires nvidia-cufft-cu12==11.0.2.54; platform_system == \"Linux\" and platform_machine == \"x86_64\", which is not installed.\n","torch 2.2.1+cu121 requires nvidia-curand-cu12==10.3.2.106; platform_system == \"Linux\" and platform_machine == \"x86_64\", which is not installed.\n","torch 2.2.1+cu121 requires nvidia-cusolver-cu12==11.4.5.107; platform_system == \"Linux\" and platform_machine == \"x86_64\", which is not installed.\n","torch 2.2.1+cu121 requires nvidia-cusparse-cu12==12.1.0.106; platform_system == \"Linux\" and platform_machine == \"x86_64\", which is not installed.\n","torch 2.2.1+cu121 requires nvidia-nccl-cu12==2.19.3; platform_system == \"Linux\" and platform_machine == \"x86_64\", which is not installed.\n","torch 2.2.1+cu121 requires nvidia-nvtx-cu12==12.1.105; platform_system == \"Linux\" and platform_machine == \"x86_64\", which is not installed.\u001b[0m\u001b[31m\n","\u001b[0mYour user code: TWSL-HMWS\n","If a browser doesn't automatically open, please visit this URL from any trusted device: https://auth.classiq.io/activate?user_code=TWSL-HMWS\n"]}],"source":["# !pip install -U -q classiq\n","import classiq\n","classiq.authenticate()\n","from classiq import *"]},{"cell_type":"markdown","metadata":{"id":"NmYpu0bISQnO"},"source":["### Exercise 6 - Exponentiation and Pauli Operators\n","\n","The Qmod language supports different classical types: scalars, arrays, and structs. Structs are objects with member variables, or fields.\n","\n","See also [Classical Types](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/classical-types/#structs).\n","\n","The builtin struct type `PauliTerm` is defined as follows:"]},{"cell_type":"code","execution_count":2,"metadata":{"id":"kMCQ7-JJSQnP","executionInfo":{"status":"ok","timestamp":1716292802748,"user_tz":-120,"elapsed":16,"user":{"displayName":"Christos Koromilas","userId":"17599903479737751299"}}},"outputs":[],"source":["@struct\n","class PauliTerm:\n"," pauli: CArray[Pauli]\n"," coefficient: CReal"]},{"cell_type":"markdown","metadata":{"id":"nhXyS0BqSQnQ"},"source":["Note that `Pauli` is an enum for all the Pauli matrices (I, X, Y, Z).\n","\n","Pauli based hamiltonian can be represented as a list of `PauliTerm`s. A Pauli operator defined this way is the argument to a hamiltonian evolution functions.\n","\n","In this exercise we will use the Suzuki-Trotter function to find the evolution of `H=0.5XZXX + 0.25YIZI + 0.3 XIZY` (captured as a literal value for the pauli-operator), with the evolution coefficient being 3, the order being 2, and use 4 repetitions.\n","\n","The declaration of the `suzuki_trotter` function is:"]},{"cell_type":"code","execution_count":3,"metadata":{"id":"c_KMRXzeSQnR","executionInfo":{"status":"ok","timestamp":1716292803671,"user_tz":-120,"elapsed":8,"user":{"displayName":"Christos Koromilas","userId":"17599903479737751299"}}},"outputs":[],"source":["@qfunc(external=True)\n","def suzuki_trotter(\n"," pauli_operator: CArray[PauliTerm],\n"," evolution_coefficient: CReal,\n"," order: CInt,\n"," repetitions: CInt,\n"," qbv: QArray[QBit],\n",") -> None:\n"," pass"]},{"cell_type":"markdown","metadata":{"id":"cv-CU-B9SQnS"},"source":["Fill in the missing parts of the following code in order to complete this exercise:"]},{"cell_type":"code","execution_count":4,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"WckQ7Oq0SQnS","executionInfo":{"status":"ok","timestamp":1716292805670,"user_tz":-120,"elapsed":2006,"user":{"displayName":"Christos Koromilas","userId":"17599903479737751299"}},"outputId":"2b7d404e-1e29-48aa-db32-6e4379eb831b"},"outputs":[{"output_type":"stream","name":"stdout","text":["Opening: https://platform.classiq.io/circuit/d61d5f62-6c25-4219-96ee-ef327a2f3c0c?version=0.41.1\n"]}],"source":["from classiq import *\n","\n","hamiltonian = [ # H=0.5XZXX + 0.25YIZI + 0.3 XIZY\n"," PauliTerm(pauli=[Pauli.X,Pauli.Z,Pauli.X,Pauli.X], coefficient=0.5),\n"," PauliTerm(pauli=[Pauli.Y,Pauli.I,Pauli.Z,Pauli.I], coefficient=0.25),\n"," PauliTerm(pauli=[Pauli.X,Pauli.I,Pauli.Z,Pauli.Y], coefficient=0.3)\n","]\n","\n","@qfunc\n","def main(q: Output[QArray[QBit]]) -> None:\n"," allocate(4, q)\n"," suzuki_trotter(\n"," pauli_operator=hamiltonian,\n"," evolution_coefficient=3,\n"," repetitions=4,\n"," order=2,\n"," qbv=q,\n"," )\n","\n","\n","qmod = create_model(main)\n","qprog = synthesize(qmod)\n","show(qprog)"]},{"cell_type":"markdown","metadata":{"id":"TQzTBkgASQnU"},"source":["### Exercise 7 - Basic Arithmetics\n","\n","#### Exercise 7a\n","In this exercise we will use quantum numeric variables and calculate expressions over them.\n","\n","See details on the syntax of numeric types under [Quantum types](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/quantum-types/#syntax).\n","See more on quantum expressions under [Numeric assignment](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/numeric-assignment/)\n","\n","Create the following quantum programs:\n","1. Initialize variables `x=2`, `y=7` and computes `res = x + y`.\n","2. Initialize variables `x=2`, `y=7` and computes `res = x * y`.\n","3. Initialize variables `x=2`, `y=7`, `z=1` and computes `res = x * y - z`.\n","\n","Guidance:\n","* Use the operator `|=` to perform out-of-place assignment of arithmetic expression.\n","* To initialize the variables, use the function `prepare_int`.\n"]},{"cell_type":"code","execution_count":5,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"7-FzMGPpSQnU","executionInfo":{"status":"ok","timestamp":1716292807389,"user_tz":-120,"elapsed":1725,"user":{"displayName":"Christos Koromilas","userId":"17599903479737751299"}},"outputId":"17c85ffd-1113-4cfc-96ff-19791f3d34e4"},"outputs":[{"output_type":"stream","name":"stdout","text":["Opening: https://platform.classiq.io/circuit/b3fbca92-cdfc-4c4e-a1db-7534401ed93e?version=0.41.1\n"]}],"source":["from classiq import *\n","\n","@qfunc\n","def main(res: Output[QNum]) -> None:\n"," x = QNum(\"x\")\n"," y = QNum(\"y\")\n","\n"," prepare_int(2, x)\n"," prepare_int(7, y)\n","\n"," res |= (x + y)\n","\n","qmod = create_model(main)\n","qprog = synthesize(qmod)\n","show(qprog)"]},{"cell_type":"code","source":["from classiq import *\n","\n","@qfunc\n","def main(res: Output[QNum]) -> None:\n"," x = QNum(\"x\")\n"," y = QNum(\"y\")\n","\n"," prepare_int(2, x)\n"," prepare_int(7, y)\n","\n"," res |= (x * y)\n","\n","qmod = create_model(main)\n","qprog = synthesize(qmod)\n","show(qprog)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"kgPeDpdghiou","executionInfo":{"status":"ok","timestamp":1716292809195,"user_tz":-120,"elapsed":1811,"user":{"displayName":"Christos Koromilas","userId":"17599903479737751299"}},"outputId":"3208ad2f-9f0a-4094-9934-e3eda9ef0f8b"},"execution_count":6,"outputs":[{"output_type":"stream","name":"stdout","text":["Opening: https://platform.classiq.io/circuit/78f7ed02-4bb2-4e9f-b825-754067ee215d?version=0.41.1\n"]}]},{"cell_type":"code","source":["from classiq import *\n","\n","@qfunc\n","def main(res: Output[QNum]) -> None:\n"," x = QNum(\"x\")\n"," y = QNum(\"y\")\n"," z = QNum(\"z\")\n","\n"," prepare_int(2, x)\n"," prepare_int(7, y)\n"," prepare_int(1, z)\n","\n"," res |= (x*y)-z\n","\n","qmod = create_model(main)\n","qprog = synthesize(qmod)\n","show(qprog)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"U1kY0avdhifF","executionInfo":{"status":"ok","timestamp":1716292812370,"user_tz":-120,"elapsed":3178,"user":{"displayName":"Christos Koromilas","userId":"17599903479737751299"}},"outputId":"3e48e23b-7c3f-43b0-921a-e2e58e18c415"},"execution_count":7,"outputs":[{"output_type":"stream","name":"stdout","text":["Opening: https://platform.classiq.io/circuit/d588e184-2de0-493b-a96b-692a64691e7a?version=0.41.1\n"]}]},{"cell_type":"markdown","metadata":{"id":"eybV-CldSQnV"},"source":["#### Exercise 7b\n","Declare `x` to be a 2-qubit variable and `y` to be 3-qubit variable.\n","\n","We will perform an addition of two superposition states: `x` is an equal superposition of `0` and `2`, and `y` is an equal superposition of `1`, `2`, `3`, and `6`.\n","\n","1. Use `prepare_state` to initialize `x` and `y`. Note that `prepare_state` works with probabilities, not amplitudes.\n"," The declaration of the `prepare_state` function is:\n"," ```\n"," @qfunc(external=True)\n"," def prepare_state(\n"," probabilities: CArray[CReal],\n"," bound: CReal,\n"," out: Output[QArray[QBit]],\n"," ) -> None:\n"," pass\n"," ```\n"," (Set the bound to 0 in your code)\n","2. Compute `res = x + y`. Execute the resulting circuit. What did you get?"]},{"cell_type":"code","execution_count":8,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"bBLPkBZFSQnW","executionInfo":{"status":"ok","timestamp":1716292813910,"user_tz":-120,"elapsed":1546,"user":{"displayName":"Christos Koromilas","userId":"17599903479737751299"}},"outputId":"4b40b6e2-66a8-4e82-fba8-beb84044fe8c"},"outputs":[{"output_type":"stream","name":"stdout","text":["Opening: https://platform.classiq.io/circuit/27925701-9c9d-40a5-8152-6e442d6d4c80?version=0.41.1\n"]}],"source":["from classiq import *\n","\n","@qfunc\n","def main(res: Output[QNum]) -> None:\n"," x = QNum(\"x\")\n"," y = QNum(\"y\")\n"," prepare_state([0.5, 0, 0.5, 0], 0, x)\n"," prepare_state([0, 0.25, 0.25, 0.25, 0, 0, 0.25, 0], 0, y)\n"," res |= x + y\n","\n","\n","qmod = create_model(main)\n","qprog = synthesize(qmod)\n","show(qprog)"]},{"cell_type":"markdown","metadata":{"id":"1q0kOUEjSQnW"},"source":["### Exercise 8 - Within-Apply\n","\n","The within-apply statement applies the pattern `U_dagger V U` that appears frequently in quantum computing.\n","It allows you to compute some function `V` within the context of another function `U`, and afterward uncompute `U` in order to release auxiliary qubits storing intermediate results.\n","\n","See also [Within Apply](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/within-apply/).\n","\n","#### Exercise 8a\n","\n","In this exercise, we will use within-apply to compute an arithmetic expression in steps.\n","\n","Use the `within_apply` operation to calculate `res = x + y + z` from a two-variable addition building block with the following steps:\n","1. Add `x` and `y`\n","2. Add the result to `z`\n","3. Uncompute the result of the first operation\n","\n","For simplicity, initialize the registers to simple integers: `x=3`, `y=5`, `z=2`.\n","\n","Hints:\n","\n","* Use a temporary variable.\n","* Wrap the arithmetic operation in a function.\n","\n","Execute the circuit and make sure you obtain the expected result."]},{"cell_type":"code","execution_count":12,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"jkR1Z8O2SQnW","executionInfo":{"status":"ok","timestamp":1716293132600,"user_tz":-120,"elapsed":3394,"user":{"displayName":"Christos Koromilas","userId":"17599903479737751299"}},"outputId":"538d1055-678e-4d78-af10-f85bf09c14ac"},"outputs":[{"output_type":"stream","name":"stdout","text":["Opening: https://platform.classiq.io/circuit/fa9393e9-95c7-4c8b-923c-7e62289e6aea?version=0.41.1\n"]}],"source":["from classiq import *\n","\n","@qfunc\n","def adding_numbers(a: QNum, b:QNum, result: Output[QNum]):\n"," result |= a + b\n","\n","@qfunc\n","def main(res: Output[QNum]):\n"," x = QNum(\"x\")\n"," y = QNum(\"y\")\n"," z = QNum(\"z\")\n","\n"," prepare_int(3, x)\n"," prepare_int(5, y)\n"," prepare_int(2, z)\n","\n"," aux = QNum(\"aux\")\n","\n"," within_apply(\n"," compute=lambda: adding_numbers(x, y, aux),\n"," action=lambda: adding_numbers(aux, z, res)\n"," )\n"," # free(aux) I tried but didnt work\n","\n","qmod = create_model(main)\n","qprog = synthesize(qmod)\n","show(qprog)"]},{"cell_type":"markdown","metadata":{"id":"n_sfzBAiSQnX"},"source":["#### Exercise 8b\n","\n","Why should we use `within-apply` and not just write three concatenated functions?\n","To understand the motivation, we will create another arithmetic circuit.\n","This time, however, we will also set Classiq’s synthesis engine to optimize on the circuit’s number of qubits, i.e., its width.\n","\n","Setting constraints can be done via the `set_constraints` operation - see [here](https://docs.classiq.io/latest/user-guide/platform/synthesis/constraints/).\n","\n","Perform the operation `res = w + x + y + z`, where w is initialized to 4 and the rest as before:\n","\n","1. Add `x` and `y` (as part of the `within_apply` operation)\n","2. Add the result to `z` (as part of the within_apply operation)\n","3. Uncompute the result of the first operation (as part of the `within_apply` operation)\n","4. Add the result of the second operation to `w`. There’s no need to perform another uncomputation, as this brings our calculation to an end.\n","\n","Create the model, optimize on the circuit’s width, and run the circuit. Can you identify where qubits have been released and reused?"]},{"cell_type":"code","execution_count":14,"metadata":{"id":"AbOi47s_SQnX","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1716293179881,"user_tz":-120,"elapsed":2685,"user":{"displayName":"Christos Koromilas","userId":"17599903479737751299"}},"outputId":"10d7886d-d2a2-4fc2-8a70-e8aa08292d19"},"outputs":[{"output_type":"stream","name":"stdout","text":["Opening: https://platform.classiq.io/circuit/a858e3eb-a93b-4b25-97ae-a9263935fe1e?version=0.41.1\n"]}],"source":["from classiq import *\n","\n","constraints = Constraints(optimization_parameter='width')\n","\n","@qfunc\n","def main(res: Output[QNum]):\n"," x = QNum(\"x\")\n"," y = QNum(\"y\")\n"," z = QNum(\"z\")\n"," w = QNum(\"w\")\n","\n"," aux = QNum(\"aux\")\n"," aux2 = QNum(\"aux2\")\n","\n"," prepare_int(3, x)\n"," prepare_int(5, y)\n"," prepare_int(2, z)\n"," prepare_int(4, w)\n","\n"," within_apply(\n"," compute=lambda: adding_numbers(x, y, aux),\n"," action=lambda: adding_numbers(aux, z, aux2)\n"," )\n","\n"," adding_numbers(aux2, w, res)\n","\n","qmod = create_model(main)\n","qmod = set_constraints(qmod, constraints)\n","qprog = synthesize(qmod)\n","show(qprog)"]},{"cell_type":"markdown","metadata":{"id":"Qi8ScaQtSQnY"},"source":["#### Bonus: Use a Single Arithmetic Expression\n","\n","What happens when we don't manually decompose this expression?\n","\n","Use Classiq’s arithmetic engine to calculate `res |= x + y + z + w` and optimize for width.\n","Look at the resulting quantum program - can you identify the computation and uncomputation blocks? What else did you notice?"]},{"cell_type":"code","execution_count":15,"metadata":{"id":"kDGhJjv9SQnY","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1716293445039,"user_tz":-120,"elapsed":2991,"user":{"displayName":"Christos Koromilas","userId":"17599903479737751299"}},"outputId":"94a734b7-9a84-4ebb-de94-5e62bfbaca21"},"outputs":[{"output_type":"stream","name":"stdout","text":["Opening: https://platform.classiq.io/circuit/dc4194ae-e6b1-4d3d-a5a1-e9e27c44790c?version=0.41.1\n"]}],"source":["from classiq import *\n","\n","@qfunc\n","def main(res: Output[QNum]):\n"," x = QNum(\"x\")\n"," y = QNum(\"y\")\n"," z = QNum(\"z\")\n"," w = QNum(\"w\")\n","\n"," prepare_int(3, x)\n"," prepare_int(5, y)\n"," prepare_int(2, z)\n"," prepare_int(4, w)\n","\n"," res |= x + y + z + w\n","\n","qmod = create_model(main)\n","qmod = set_constraints(qmod, constraints)\n","qprog = synthesize(qmod)\n","show(qprog)"]},{"cell_type":"markdown","metadata":{"id":"Da1T1oP-SQnZ"},"source":["### Exercise 9 - In-place Arithmetics\n","\n","For the following exercise we will use numeric quantum variables that represent fixed-point reals.\n","\n","Arithmetic expressions can be calculated in-place into a target variable, without allocating new qubits to store the result. This is done using the in-place-xor operator.\n","\n","See also [Numeric assignment](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/numeric-assignment/#semantics).\n","\n","In-place assignment is often used to nest arithmetic expressions under quantum operators. Note that out-of-place assignment requires its left-value variable to be un-initialized, and therefore cannot be used under an operator if the variable is declared outside its scope. Applying operators to arithmetic expressions is required in many algorithms. One example is the piecewise evaluation of mathematical functions - calculating different expressions over `x` depending on the subdomain where `x` falls.\n","\n","For this exercise, replace the missing parts in the code snippet below to evaluate the result of:\n","\n","$$\n","f(x) = \\begin{cases}\n"," 2x + 1 & \\text{ if } 0 \\leq x < 0.5 \\\\\n"," x + 0.5 & \\text{ if } 0.5 \\leq x < 1\n"," \\end{cases}\n","$$\n","\n","Notes:\n","- We cannot use `x` directly as the control variable in a `constrol` operator, because it also occurs in the nested scope. to determine if `x` is in the lower or higher half of the domain we duplicate the most significant bit onto a separate variable called `label`.\n","- In Python assignment operators cannot be used in lambda expressions, so the computation of the function needs to be factored out to a named Python function (but not necessarily a Qmod function).\n"]},{"cell_type":"code","execution_count":16,"metadata":{"id":"8rXUBuPmSQnZ","outputId":"fbe9860f-c219-40e0-c1bb-878ebb13e3e1","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1716293474838,"user_tz":-120,"elapsed":9232,"user":{"displayName":"Christos Koromilas","userId":"17599903479737751299"}}},"outputs":[{"output_type":"stream","name":"stdout","text":["Opening: https://platform.classiq.io/circuit/9c6df385-d9cf-4399-9dfb-4f0d65d19fcb?version=0.41.1\n"]}],"source":["\n","from classiq import *\n","\n","\n","def linear_func(a: float, b: float, x: QNum, res: QNum) -> None:\n"," res ^= a * x + b\n","\n","\n","@qfunc\n","def dup_msb(qba: QArray[QBit], msb: QBit) -> None:\n"," CX(qba[qba.len - 1], msb)\n","\n","\n","@qfunc\n","def main(x: Output[QNum[3, False, 3]], res: Output[QNum[5, False, 3]]) -> None:\n"," allocate(5, res)\n"," allocate(3, x)\n"," hadamard_transform(x)\n","\n"," label = QArray(\"label\")\n"," allocate(1, label)\n","\n"," dup_msb(x, label)\n"," control(label, lambda: linear_func(1.0, 0.5, x, res)) # 0.5 <= x < 1.0\n"," X(label)\n"," control(label, lambda: linear_func(2.0, 1.0, x, res)) # 0.0 <= x < 0.5\n","\n","\n","qmod = create_model(main)\n","qprog = synthesize(qmod)\n","show(qprog)"]},{"cell_type":"markdown","metadata":{"id":"OHHQaXBISQna"},"source":["### Exercise 10 - State-preparation Algorithm using Quantum-if\n","\n","#### Binding\n","The `bind` operation allows to convert smoothly between different quantum types and split or slice bits when necessary. Here’s an example:"]},{"cell_type":"code","execution_count":17,"metadata":{"id":"_bWJeuemSQna","outputId":"3a58c384-9b51-477b-bfc0-cf1d010a316e","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1716293738291,"user_tz":-120,"elapsed":10089,"user":{"displayName":"Christos Koromilas","userId":"17599903479737751299"}}},"outputs":[{"output_type":"stream","name":"stdout","text":["Opening: https://platform.classiq.io/circuit/8d37bca3-915a-47bb-bf84-de3dd17d77fe?version=0.41.1\n"]}],"source":["from classiq import *\n","\n","\n","\n","from classiq import *\n","from math import pi\n","\n","\n","@qfunc\n","def main(res: Output[QArray[QBit]]) -> None:\n"," x: QArray[QBit] = QArray(\"x\")\n"," allocate(3, x)\n"," hadamard_transform(x)\n","\n"," lsb = QBit(\"lsb\")\n"," msb = QNum(\"msb\", 2, False, 0)\n"," bind(x, [lsb, msb])\n","\n"," control(msb == 1, lambda: RY(pi / 3, lsb)) # msb==1 <==> bit1 bit2 == 01 (binary of decimal 1)\n","\n"," bind([lsb, msb], res)\n","\n","model = create_model(main)\n","qprog = synthesize(model)\n","show(qprog)"]},{"cell_type":"markdown","metadata":{"id":"7mGBC5S_SQnb"},"source":["The first `bind` operation splits the 3-qubit register `x` into the 2-qubit and single-qubit registers `lsb` and `msb`, respectively.\n","\n","After the `bind` operation:\n","1. The registers `lsb` and `msb` can be operated on as separated registers.\n","2. The register`x` is consumed and can no longer be used.\n","\n","The second `bind` operation concatenates the registers to the output register `res`.\n","\n","For this exercise, fill in the missing code parts in the above snippet and use the `control` statement to manually generate the following lovely 3-qubit probability distribution: `[1/8, 1/8, 1/8, -sqrt(3)/16, 1/8 + sqrt(3)/16, 1/8, 1/8, 1/8, 1/8]`.\n","\n","The following series of gates generate it:\n","\n","Perform the Hadamard transform on all three qubits.\n","\n","Apply a rotation on the LSB (least-significant bit) conditioned by the MSB being |0> and the second to last MSB being |1>. How would you write this condition using a QNum?\n","\n","The following series of gates generate it:\n","1. Perform the Hadamard transform on all three qubits.\n","2. Apply a `pi/3` rotation on the LSB (least-significant bit) conditioned by the MSB being |0> and the second to last MSB being |1>. How would you write this condition using a QNum?\n","\n","If you want to validate your results without looking at the full solution, compare them to running using Classiq’s built-in `prepare_state` function.\n"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"DKOuI5WRSQnb"},"outputs":[],"source":["from classiq import *\n","from classiq.qmod.symbolic import sqrt\n","\n","prob_list= [\n"," 1 / 8,\n"," 1 / 8,\n"," 1 / 8,\n"," -sqrt(3) / 16,\n"," 1 / 8 + sqrt(3) / 16,\n"," 1 / 8,\n"," 1 / 8,\n"," 1 / 8,\n"," 1 / 8,\n"," ]\n","@qfunc\n","def pre_prepared_state(q: QArray[QBit]) -> None:\n"," prepare_state(\n"," [\n"," 1 / 8,\n"," 1 / 8,\n"," 1 / 8,\n"," -sqrt(3) / 16,\n"," 1 / 8 + sqrt(3) / 16,\n"," 1 / 8,\n"," 1 / 8,\n"," 1 / 8,\n"," 1 / 8,\n"," ],\n"," 0.0,\n"," q,\n"," )\n","\n","\n","@qfunc\n","def main(x: Output[QArray[QBit]]):\n"," prepare_state(\n"," prob_list,\n"," 0.0,\n"," x,\n"," )\n","\n","qmod = create_model(main)\n","# write_qmod(qmod, \"prepare_state\")\n","qprog = synthesize(qmod)\n","show(qprog)"]},{"cell_type":"code","source":["@qfunc\n","def main(res: Output[QArray[QBit]]) -> None:\n"," x: QArray[QBit] = QArray(\"x\")\n"," allocate(3, x)\n"," hadamard_transform(x)\n","\n"," lsb = QBit(\"lsb\")\n"," msb = QNum(\"msb\", 2, False, 0)\n"," bind(x, [lsb, msb])\n","\n"," control(msb == 2, lambda: RY(pi / 3, lsb))\n","\n"," bind([lsb, msb], res)\n","\n","model = create_model(main)\n","qprog = synthesize(model)\n","show(qprog)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"Lw0TewdMIOCO","executionInfo":{"status":"ok","timestamp":1716294598186,"user_tz":-120,"elapsed":10249,"user":{"displayName":"Christos Koromilas","userId":"17599903479737751299"}},"outputId":"29040fa1-f84f-4919-9fe9-bd670ac40a92"},"execution_count":22,"outputs":[{"output_type":"stream","name":"stdout","text":["Opening: https://platform.classiq.io/circuit/418454d8-5633-4b29-aa4a-d5865555d2e3?version=0.41.1\n"]}]}],"metadata":{"kernelspec":{"display_name":"Python 3 (ipykernel)","language":"python","name":"python3"},"language_info":{"codemirror_mode":{"name":"ipython","version":3},"file_extension":".py","mimetype":"text/x-python","name":"python","nbconvert_exporter":"python","pygments_lexer":"ipython3","version":"3.11.8"},"colab":{"provenance":[]}},"nbformat":4,"nbformat_minor":0} \ No newline at end of file diff --git a/community/QClass_2024/Submissions/HW2/Claudia_Zendejas-Morales_HW2_QClass2024.ipynb b/community/QClass_2024/Submissions/HW2/Claudia_Zendejas-Morales_HW2_QClass2024.ipynb deleted file mode 100644 index 1bc3ab8c..00000000 --- a/community/QClass_2024/Submissions/HW2/Claudia_Zendejas-Morales_HW2_QClass2024.ipynb +++ /dev/null @@ -1,983 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# The Qmod Workshop - Part 2: Higher-Level Concepts\n", - "\n", - "This is the second part of the Qmod workshop, covering exercises 6 through 10. Make sure to go through Part 1 before continuing with this notebook." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "from classiq import *" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 6 - Exponentiation and Pauli Operators\n", - "\n", - "The Qmod language supports different classical types: scalars, arrays, and structs. Structs are objects with member variables, or fields.\n", - "\n", - "See also [Classical Types](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/classical-types/#structs).\n", - "\n", - "The builtin struct type `PauliTerm` is defined as follows:" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "@struct\n", - "class PauliTerm:\n", - " pauli: CArray[Pauli]\n", - " coefficient: CReal" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Note that `Pauli` is an enum for all the Pauli matrices (I, X, Y, Z).\n", - "\n", - "Pauli based hamiltonian can be represented as a list of `PauliTerm`s. A Pauli operator defined this way is the argument to a hamiltonian evolution functions.\n", - "\n", - "In this exercise we will use the Suzuki-Trotter function to find the evolution of `H=0.5XZXX + 0.25YIZI + 0.3 XIZY` (captured as a literal value for the pauli-operator), with the evolution coefficient being 3, the order being 2, and use 4 repetitions.\n", - "\n", - "The declaration of the `suzuki_trotter` function is:" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "```python\n", - "@qfunc(external=True)\n", - "def suzuki_trotter(\n", - " pauli_operator: CArray[PauliTerm],\n", - " evolution_coefficient: CReal,\n", - " order: CInt,\n", - " repetitions: CInt,\n", - " qbv: QArray[QBit],\n", - ") -> None:\n", - " pass\n", - "```" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Fill in the missing parts of the following code in order to complete this exercise:" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/45c2b80d-6dce-4cf4-b56e-316c98d6fff5?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "\n", - "@qfunc\n", - "def main(q: Output[QArray[QBit]]) -> None:\n", - " allocate(4, q)\n", - " suzuki_trotter(\n", - " [\n", - " PauliTerm(pauli=[Pauli.X, Pauli.Z, Pauli.X, Pauli.X], coefficient=0.5),\n", - " PauliTerm(pauli=[Pauli.Y, Pauli.I, Pauli.Z, Pauli.I], coefficient=0.25),\n", - " PauliTerm(pauli=[Pauli.X, Pauli.I, Pauli.Z, Pauli.Y], coefficient=0.3),\n", - " ],\n", - " evolution_coefficient=3,\n", - " repetitions=4,\n", - " order=2,\n", - " qbv=q,\n", - " )\n", - "\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 7 - Basic Arithmetics\n", - "\n", - "#### Exercise 7a\n", - "In this exercise we will use quantum numeric variables and calculate expressions over them.\n", - "\n", - "See details on the syntax of numeric types under [Quantum types](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/quantum-types/#syntax).\n", - "See more on quantum expressions under [Numeric assignment](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/numeric-assignment/)\n", - "\n", - "Create the following quantum programs:\n", - "1. Initialize variables `x=2`, `y=7` and computes `res = x + y`.\n", - "2. Initialize variables `x=2`, `y=7` and computes `res = x * y`.\n", - "3. Initialize variables `x=2`, `y=7`, `z=1` and computes `res = x * y - z`.\n", - "\n", - "Guidance:\n", - "* Use the operator `|=` to perform out-of-place assignment of arithmetic expression.\n", - "* To initialize the variables, use the function `prepare_int`.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/aa29bf7c-d3f4-47d6-97cb-b18edb9ae7a6?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "\n", - "@qfunc\n", - "def main(res: Output[QNum]) -> None: # x + y\n", - " x = QNum(\"x\")\n", - " y = QNum(\"y\")\n", - " prepare_int(2, x)\n", - " prepare_int(7, y)\n", - " res |= x + y\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[{'res': 9.0}: 2048]\n" - ] - } - ], - "source": [ - "job = execute(qprog) # let's execute the quantum program\n", - "results = job.result()\n", - "parsed_counts = results[0].value.parsed_counts\n", - "print(parsed_counts) # we see the result state ('res') = 9 = 2 + 7 with all probability" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/94e88df8-f6bd-4936-a8ff-f7235f286840?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "\n", - "@qfunc\n", - "def main(res: Output[QNum]) -> None: # x * y\n", - " x = QNum(\"x\")\n", - " y = QNum(\"y\")\n", - " prepare_int(2, x)\n", - " prepare_int(7, y)\n", - " res |= x * y\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[{'res': 14.0}: 2048]\n" - ] - } - ], - "source": [ - "job = execute(qprog) # let's execute the quantum program\n", - "results = job.result()\n", - "parsed_counts = results[0].value.parsed_counts\n", - "print(parsed_counts) # we see the result state ('res') = 14 = 2 * 7 with all probability" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/caf6fde5-8587-4467-975f-854ef08e7111?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "\n", - "@qfunc\n", - "def main(res: Output[QNum]) -> None: # x * y - z\n", - " x = QNum(\"x\")\n", - " y = QNum(\"y\")\n", - " z = QNum(\"z\")\n", - " prepare_int(2, x)\n", - " prepare_int(7, y)\n", - " prepare_int(1, z)\n", - " res |= x * y - z\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[{'res': 13.0}: 2048]\n" - ] - } - ], - "source": [ - "job = execute(qprog) # let's execute the quantum program\n", - "results = job.result()\n", - "parsed_counts = results[0].value.parsed_counts\n", - "print(parsed_counts) # we see the result state ('res') = 13 = 2 * 7 - 1 with all probability" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Exercise 7b\n", - "Declare `x` to be a 2-qubit variable and `y` to be 3-qubit variable.\n", - "\n", - "We will perform an addition of two superposition states: `x` is an equal superposition of `0` and `2`, and `y` is an equal superposition of `1`, `2`, `3`, and `6`.\n", - "\n", - "1. Use `prepare_state` to initialize `x` and `y`. Note that `prepare_state` works with probabilities, not amplitudes.\n", - " The declaration of the `prepare_state` function is:\n", - " ```python\n", - " @qfunc(external=True)\n", - " def prepare_state(\n", - " probabilities: CArray[CReal],\n", - " bound: CReal,\n", - " out: Output[QArray[QBit]],\n", - " ) -> None:\n", - " pass\n", - " ```\n", - " (Set the bound to 0 in your code)\n", - "2. Compute `res = x + y`. Execute the resulting circuit. What did you get?" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/cb930019-dd37-483c-902d-6054fdaf6636?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "\n", - "@qfunc\n", - "def main(res: Output[QNum]) -> None: # x + y\n", - " x = QNum(\"x\")\n", - " y = QNum(\"y\")\n", - " prepare_state(probabilities=[1/2, 0, 1/2, 0], bound=0.0, out=x)\n", - " prepare_state(probabilities=[0, 1/4, 1/4, 1/4, 0, 0, 1/4, 0], bound=0.0, out=y)\n", - " res |= x + y\n", - "\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[{'res': 3.0}: 491, {'res': 5.0}: 266, {'res': 8.0}: 265, {'res': 1.0}: 259, {'res': 4.0}: 257, {'res': 2.0}: 256, {'res': 6.0}: 254]\n" - ] - } - ], - "source": [ - "job = execute(qprog) # let's execute the quantum program\n", - "results = job.result()\n", - "parsed_counts = results[0].value.parsed_counts\n", - "print(parsed_counts) # we see all the possible results\n", - " # x + y = res\n", - " # ------------\n", - " # 0 + 1 = 1\n", - " # 0 + 2 = 2\n", - " # 0 + 3 = 3 <- probability of 3 is double (it is obtained with two different combinations: 'x' & 'y')\n", - " # 0 + 6 = 6\n", - " # 2 + 1 = 3 <- probability of 3 is double (it is obtained with two different combinations: 'x' & 'y')\n", - " # 2 + 2 = 4\n", - " # 2 + 3 = 5\n", - " # 2 + 6 = 8" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 8 - Within-Apply\n", - "\n", - "The within-apply statement applies the pattern `U_dagger V U` that appears frequently in quantum computing.\n", - "It allows you to compute some function `V` within the context of another function `U`, and afterward uncompute `U` in order to release auxiliary qubits storing intermediate results.\n", - "\n", - "See also [Within Apply](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/within-apply/).\n", - "\n", - "#### Exercise 8a\n", - "\n", - "In this exercise, we will use within-apply to compute an arithmetic expression in steps.\n", - "\n", - "Use the `within_apply` operation to calculate `res = x + y + z` from a two-variable addition building block with the following steps:\n", - "1. Add `x` and `y`\n", - "2. Add the result to `z`\n", - "3. Uncompute the result of the first operation\n", - "\n", - "For simplicity, initialize the registers to simple integers: `x=3`, `y=5`, `z=2`.\n", - "\n", - "Hints:\n", - "\n", - "* Use a temporary variable.\n", - "* Wrap the arithmetic operation in a function.\n", - "\n", - "Execute the circuit and make sure you obtain the expected result." - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/5eccff06-e236-42e4-9dc4-a8ea6829f81d?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "\n", - "@qfunc\n", - "def my_sum(a:QNum, b:QNum, r:Output[QNum]) -> None:\n", - " r |= a + b\n", - "\n", - "@qfunc\n", - "def main(res: Output[QNum]) -> None: # x + y + z\n", - " x = QNum(\"x\")\n", - " y = QNum(\"y\")\n", - " z = QNum(\"z\")\n", - " prepare_int(3, x)\n", - " prepare_int(5, y)\n", - " prepare_int(2, z)\n", - "\n", - " temp = QNum(\"temp\")\n", - " \n", - " within_apply(lambda: my_sum(x, y, temp), lambda: my_sum(temp, z, res))\n", - "\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[{'res': 10.0}: 2048]\n" - ] - } - ], - "source": [ - "job = execute(qprog) # let's execute the quantum program\n", - "results = job.result()\n", - "parsed_counts = results[0].value.parsed_counts\n", - "print(parsed_counts) # we the expected result: 10 = 3 + 5 + 2" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Exercise 8b\n", - "\n", - "Why should we use `within-apply` and not just write three concatenated functions?\n", - "To understand the motivation, we will create another arithmetic circuit.\n", - "This time, however, we will also set Classiq’s synthesis engine to optimize on the circuit’s number of qubits, i.e., its width.\n", - "\n", - "Setting constraints can be done via the `set_constraints` operation - see [here](https://docs.classiq.io/latest/user-guide/platform/synthesis/constraints/).\n", - "\n", - "Perform the operation `res = w + x + y + z`, where w is initialized to 4 and the rest as before:\n", - "\n", - "1. Add `x` and `y` (as part of the `within_apply` operation)\n", - "2. Add the result to `z` (as part of the within_apply operation)\n", - "3. Uncompute the result of the first operation (as part of the `within_apply` operation)\n", - "4. Add the result of the second operation to `w`. There’s no need to perform another uncomputation, as this brings our calculation to an end.\n", - "\n", - "Create the model, optimize on the circuit’s width, and run the circuit. Can you identify where qubits have been released and reused?" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/5f1bcddf-c669-4eb2-a7af-25a861640eef?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "\n", - "@qfunc\n", - "def main(res: Output[QNum]) -> None: # x + y + z + w\n", - " x = QNum(\"x\")\n", - " y = QNum(\"y\")\n", - " z = QNum(\"z\")\n", - " w = QNum(\"w\")\n", - " prepare_int(3, x)\n", - " prepare_int(5, y)\n", - " prepare_int(2, z)\n", - " prepare_int(4, w)\n", - "\n", - " temp1 = QNum(\"temp1\")\n", - " temp2 = QNum(\"temp2\")\n", - " \n", - " within_apply(lambda: my_sum(x, y, temp1), lambda: my_sum(temp1, z, temp2))\n", - "\n", - " my_sum(temp2, w, res)\n", - "\n", - "\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)\n", - "\n", - "# With no constrains:\n", - "# Program info\n", - "# Depth: 75\n", - "# Width: 25\n", - "# Gate count\n", - "# X : 6" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/ccedc9e2-774f-4db6-b7dc-b02271a78bde?version=0.41.2\n" - ] - } - ], - "source": [ - "qmod = create_model(main)\n", - "qmod_constraints = set_constraints(qmod, Constraints(optimization_parameter=\"width\"))\n", - "qprog = synthesize(qmod_constraints)\n", - "show(qprog)\n", - "\n", - "# With constrains:\n", - "# Program info\n", - "# Depth: 97\n", - "# Width: 21 <- better value\n", - "# Gate count\n", - "# X : 6" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[{'res': 14.0}: 2048]\n" - ] - } - ], - "source": [ - "job = execute(qprog) # let's execute the quantum program\n", - "results = job.result()\n", - "parsed_counts = results[0].value.parsed_counts\n", - "print(parsed_counts) # we the expected result: 14 = 3 + 5 + 2 + 4" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Bonus: Use a Single Arithmetic Expression\n", - "\n", - "What happens when we don't manually decompose this expression?\n", - "\n", - "Use Classiq’s arithmetic engine to calculate `res |= x + y + z + w` and optimize for width.\n", - "Look at the resulting quantum program - can you identify the computation and uncomputation blocks? What else did you notice?" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/f8c76932-f0b8-4a2f-bce6-03ce92a211dd?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "\n", - "@qfunc\n", - "def main(res: Output[QNum]) -> None: # x + y + z + w\n", - " x = QNum(\"x\")\n", - " y = QNum(\"y\")\n", - " z = QNum(\"z\")\n", - " w = QNum(\"w\")\n", - " prepare_int(3, x)\n", - " prepare_int(5, y)\n", - " prepare_int(2, z)\n", - " prepare_int(4, w)\n", - "\n", - " res |= x + y + z + w\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)\n", - "\n", - "# With no constrains:\n", - "# Program info\n", - "# Depth: 67 <- this is better than when 'within_apply' was used\n", - "# Width: 12\n", - "# Gate count\n", - "# X : 6" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/cb6097a9-0b34-4016-a964-ea34489c9b5a?version=0.41.2\n" - ] - } - ], - "source": [ - "qmod = create_model(main)\n", - "qmod_constraints = set_constraints(qmod, Constraints(optimization_parameter=\"width\"))\n", - "qprog = synthesize(qmod_constraints)\n", - "show(qprog)\n", - "\n", - "# With constrains:\n", - "# Program info\n", - "# Depth: 67 <- this is better than when 'within_apply' was used\n", - "# Width: 12 <- value didn't change\n", - "# Gate count\n", - "# X : 6" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[{'res': 14.0}: 2048]\n" - ] - } - ], - "source": [ - "job = execute(qprog) # let's execute the quantum program\n", - "results = job.result()\n", - "parsed_counts = results[0].value.parsed_counts\n", - "print(parsed_counts) # we the expected result: 14 = 3 + 5 + 2 + 4" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 9 - In-place Arithmetics\n", - "\n", - "For the following exercise we will use numeric quantum variables that represent fixed-point reals.\n", - "\n", - "Arithmetic expressions can be calculated in-place into a target variable, without allocating new qubits to store the result. This is done using the in-place-xor operator.\n", - "\n", - "See also [Numeric assignment](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/numeric-assignment/#semantics).\n", - "\n", - "In-place assignment is often used to nest arithmetic expressions under quantum operators. Note that out-of-place assignment requires its left-value variable to be un-initialized, and therefore cannot be used under an operator if the variable is declared outside its scope. Applying operators to arithmetic expressions is required in many algorithms. One example is the piecewise evaluation of mathematical functions - calculating different expressions over `x` depending on the subdomain where `x` falls.\n", - "\n", - "For this exercise, replace the missing parts in the code snippet below to evaluate the result of:\n", - "\n", - "$$\n", - "f(x) = \\begin{cases}\n", - " 2x + 1 & \\text{ if } 0 \\leq x < 0.5 \\\\\n", - " x + 0.5 & \\text{ if } 0.5 \\leq x < 1\n", - " \\end{cases}\n", - "$$\n", - "\n", - "Notes:\n", - "- We cannot use `x` directly as the control variable in a `control` operator, because it also occurs in the nested scope. to determine if `x` is in the lower or higher half of the domain we duplicate the most significant bit onto a separate variable called `label`.\n", - "- In Python assignment operators cannot be used in lambda expressions, so the computation of the function needs to be factored out to a named Python function (but not necessarily a Qmod function).\n" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/62d857a5-c0c1-440a-8ac4-872376712ba1?version=0.41.2\n" - ] - } - ], - "source": [ - "\n", - "from classiq import *\n", - "\n", - "\n", - "def linear_func(a: float, b: float, x: QNum, res: QNum) -> None:\n", - " res ^= a * x + b\n", - "\n", - "\n", - "@qfunc\n", - "def dup_msb(qba: QArray[QBit], msb: QBit) -> None:\n", - " CX(qba[qba.len - 1], msb)\n", - "\n", - "\n", - "@qfunc\n", - "def main(x: Output[QNum[3, False, 3]], res: Output[QNum[5, False, 3]]) -> None:\n", - " allocate(5, res)\n", - " allocate(3, x)\n", - " hadamard_transform(x)\n", - "\n", - " label = QArray(\"label\")\n", - " allocate(1, label)\n", - "\n", - " dup_msb(x, label)\n", - " control(label, lambda: linear_func(1.0, 0.5, x, res)) # 0.5 <= x < 1.0\n", - " X(label)\n", - " control(label, lambda: linear_func(2.0, 1.0, x, res)) # 0.0 <= x < 0.5\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[{'x': 0.375, 'res': 1.75}: 278, {'x': 0.25, 'res': 1.5}: 265, {'x': 0.0, 'res': 1.0}: 261, {'x': 0.125, 'res': 1.25}: 253, {'x': 0.875, 'res': 1.375}: 253, {'x': 0.75, 'res': 1.25}: 250, {'x': 0.5, 'res': 1.0}: 244, {'x': 0.625, 'res': 1.125}: 244]\n" - ] - } - ], - "source": [ - "job = execute(qprog) # let's execute the quantum program\n", - "results = job.result()\n", - "parsed_counts = results[0].value.parsed_counts\n", - "print(parsed_counts) # we see all the possible results\n", - " # 2x + 1 0 <= x < 0.5\n", - " # x + 0.5 0.5 <= x < 1\n", - " # examples: x op res\n", - " # 0.375 : 2x + 1 = 1.75\n", - " # 0.75 : x + 0.5 = 1.25" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 10 - State-preparation Algorithm using Quantum-if\n", - "\n", - "#### Binding\n", - "The `bind` operation allows to convert smoothly between different quantum types and split or slice bits when necessary. Here’s an example:" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/184f1913-9ff2-44b8-9321-2cb267b86171?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "from math import pi\n", - "\n", - "\n", - "@qfunc\n", - "def main(res: Output[QArray[QBit]]) -> None:\n", - " x: QArray[QBit] = QArray(\"x\")\n", - " allocate(3, x)\n", - " hadamard_transform(x)\n", - "\n", - " lsb = QBit(\"lsb\")\n", - " msb = QNum(\"msb\", 2, False, 0)\n", - " bind(x, [lsb, msb])\n", - "\n", - " control(msb == 1, lambda: RY(pi / 3, lsb)) # msb==1 <==> bit1 bit2 == 01 (binary of decimal 1)\n", - "\n", - " bind([lsb, msb], res)\n", - "\n", - "model = create_model(main)\n", - "qprog = synthesize(model)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The first `bind` operation splits the 3-qubit register `x` into the 2-qubit and single-qubit registers `lsb` and `msb`, respectively.\n", - "\n", - "After the `bind` operation:\n", - "1. The registers `lsb` and `msb` can be operated on as separated registers.\n", - "2. The register`x` is consumed and can no longer be used.\n", - "\n", - "The second `bind` operation concatenates the registers to the output register `res`.\n", - "\n", - "For this exercise, fill in the missing code parts in the above snippet and use the `control` statement to manually generate the following lovely 3-qubit probability distribution: `[1/8, 1/8, 1/8, -sqrt(3)/16, 1/8 + sqrt(3)/16, 1/8, 1/8, 1/8, 1/8]`.\n", - "\n", - "The following series of gates generate it:\n", - "\n", - "Perform the Hadamard transform on all three qubits.\n", - "\n", - "Apply a rotation on the LSB (least-significant bit) conditioned by the MSB being |0> and the second to last MSB being |1>. How would you write this condition using a QNum?\n", - "\n", - "The following series of gates generate it:\n", - "1. Perform the Hadamard transform on all three qubits.\n", - "2. Apply a `pi/3` rotation on the LSB (least-significant bit) conditioned by the MSB being |0> and the second to last MSB being |1>. How would you write this condition using a QNum?\n", - "\n", - "If you want to validate your results without looking at the full solution, compare them to running using Classiq’s built-in `prepare_state` function.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/c087d349-bde7-4f9c-95c1-12d7bc62a21d?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "from classiq.qmod.symbolic import sqrt\n", - "\n", - "prob_list= [\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8 - sqrt(3) / 16, # <- updated\n", - " 1 / 8 + sqrt(3) / 16,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8\n", - " ]\n", - "@qfunc\n", - "def pre_prepared_state(q: QArray[QBit]) -> None:\n", - " prepare_state(\n", - " [\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8 - sqrt(3) / 16, # <- updated\n", - " 1 / 8 + sqrt(3) / 16,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8\n", - " ],\n", - " 0.0,\n", - " q,\n", - " )\n", - "\n", - "\n", - "# Your code here:\n", - "\n", - "@qfunc\n", - "def main(res: Output[QArray[QBit]]) -> None:\n", - " x = QArray(\"x\")\n", - " allocate(3, x)\n", - " hadamard_transform(x)\n", - "\n", - " lsb = QBit(\"lsb\")\n", - " msb = QNum(\"msb\", 2, False, 0)\n", - " bind(x, [lsb, msb])\n", - " control(msb == 1, lambda: RY(pi / 3, lsb)) # msb==1 <==> bit1 bit2 == 01 (binary of decimal 1)\n", - "\n", - " bind([lsb, msb], res)\n", - "\n", - "\n", - "model = create_model(main)\n", - "qprog = synthesize(model)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[{'res': 3.0}: 515, {'res': 1.0}: 278, {'res': 6.0}: 253, {'res': 7.0}: 248, {'res': 4.0}: 247, {'res': 0.0}: 239, {'res': 5.0}: 236, {'res': 2.0}: 32]\n" - ] - } - ], - "source": [ - "job = execute(qprog) # let's execute the quantum program\n", - "results = job.result()\n", - "parsed_counts = results[0].value.parsed_counts\n", - "print(parsed_counts) # we see all the possible results" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.9" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/community/QClass_2024/Submissions/HW2/Csaba_Szilard_Racz-HW2_QClass2024.ipynb b/community/QClass_2024/Submissions/HW2/Csaba_Szilard_Racz-HW2_QClass2024.ipynb deleted file mode 100644 index a6b1b72a..00000000 --- a/community/QClass_2024/Submissions/HW2/Csaba_Szilard_Racz-HW2_QClass2024.ipynb +++ /dev/null @@ -1,678 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# The Qmod Workshop - Part 2: Higher-Level Concepts\n", - "\n", - "This is the second part of the Qmod workshop, covering exercises 6 through 10. Make sure to go through Part 1 before continuing with this notebook." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "from classiq import *" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 6 - Exponentiation and Pauli Operators\n", - "\n", - "The Qmod language supports different classical types: scalars, arrays, and structs. Structs are objects with member variables, or fields.\n", - "\n", - "See also [Classical Types](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/classical-types/#structs).\n", - "\n", - "The builtin struct type `PauliTerm` is defined as follows:" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "@struct\n", - "class PauliTerm:\n", - " pauli: CArray[Pauli]\n", - " coefficient: CReal" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Note that `Pauli` is an enum for all the Pauli matrices (I, X, Y, Z).\n", - "\n", - "Pauli based hamiltonian can be represented as a list of `PauliTerm`s. A Pauli operator defined this way is the argument to a hamiltonian evolution functions.\n", - "\n", - "In this exercise we will use the Suzuki-Trotter function to find the evolution of `H=0.5XZXX + 0.25YIZI + 0.3 XIZY` (captured as a literal value for the pauli-operator), with the evolution coefficient being 3, the order being 2, and use 4 repetitions.\n", - "\n", - "The declaration of the `suzuki_trotter` function is:" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "@qfunc(external=True)\n", - "def suzuki_trotter(\n", - " pauli_operator: CArray[PauliTerm],\n", - " evolution_coefficient: CReal,\n", - " order: CInt,\n", - " repetitions: CInt,\n", - " qbv: QArray[QBit],\n", - ") -> None:\n", - " pass" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Fill in the missing parts of the following code in order to complete this exercise:" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/96b440ec-602c-4cc1-8760-7330cef566bc?version=0.41.2\n" - ] - } - ], - "source": [ - "# from classiq import *\n", - "\n", - "\n", - "@qfunc\n", - "def main(q: Output[QArray[QBit]]) -> None:\n", - " allocate(4, q)\n", - " \n", - " Pt1 = PauliTerm(pauli=[Pauli.X,Pauli.Z,Pauli.X,Pauli.X], coefficient=0.5)\n", - " Pt2 = PauliTerm(pauli=[Pauli.Y,Pauli.I,Pauli.Z,Pauli.I], coefficient=0.25)\n", - " Pt3 = PauliTerm(pauli=[Pauli.X,Pauli.I,Pauli.Z,Pauli.Y], coefficient=0.3)\n", - " suzuki_trotter(\n", - " pauli_operator = [Pt1,Pt2,Pt3],\n", - " evolution_coefficient=3,\n", - " order=2,\n", - " repetitions=4,\n", - " qbv=q,\n", - " )\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 7 - Basic Arithmetics\n", - "\n", - "#### Exercise 7a\n", - "In this exercise we will use quantum numeric variables and calculate expressions over them.\n", - "\n", - "See details on the syntax of numeric types under [Quantum types](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/quantum-types/#syntax).\n", - "See more on quantum expressions under [Numeric assignment](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/numeric-assignment/)\n", - "\n", - "Create the following quantum programs:\n", - "1. Initialize variables `x=2`, `y=7` and computes `res = x + y`.\n", - "2. Initialize variables `x=2`, `y=7` and computes `res = x * y`.\n", - "3. Initialize variables `x=2`, `y=7`, `z=1` and computes `res = x * y - z`.\n", - "\n", - "Guidance:\n", - "* Use the operator `|=` to perform out-of-place assignment of arithmetic expression.\n", - "* To initialize the variables, use the function `prepare_int`.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/2227b52d-fa68-4880-b6e0-6303cee46776?version=0.41.2\n" - ] - } - ], - "source": [ - "# from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def main(res: Output[QNum]) -> None:\n", - " x = QNum(\"x\")\n", - " y = QNum(\"y\")\n", - " z = QNum(\"z\")\n", - " \n", - " prepare_int(2, x)\n", - " prepare_int(7, y)\n", - " prepare_int(1, z)\n", - " \n", - " res |= x * y - z\n", - " \n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Exercise 7b\n", - "Declare `x` to be a 2-qubit variable and `y` to be 3-qubit variable.\n", - "\n", - "We will perform an addition of two superposition states: `x` is an equal superposition of `0` and `2`, and `y` is an equal superposition of `1`, `2`, `3`, and `6`.\n", - "\n", - "1. Use `prepare_state` to initialize `x` and `y`. Note that `prepare_state` works with probabilities, not amplitudes.\n", - " The declaration of the `prepare_state` function is:\n", - " ```\n", - " @qfunc(external=True)\n", - " def prepare_state(\n", - " probabilities: CArray[CReal],\n", - " bound: CReal,\n", - " out: Output[QArray[QBit]],\n", - " ) -> None:\n", - " pass\n", - " ```\n", - " (Set the bound to 0 in your code)\n", - "2. Compute `res = x + y`. Execute the resulting circuit. What did you get?" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/689d50a4-01af-444a-827f-6556e16ff621?version=0.41.2\n" - ] - } - ], - "source": [ - "# from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def main(res: Output[QNum]) -> None:\n", - " x = QNum(\"x\")\n", - " y = QNum(\"y\")\n", - " \n", - " prepare_state(\n", - " probabilities = [0.5, 0, 0.5, 0], # 0,1,2,3\n", - " bound = 0,\n", - " out = x\n", - " )\n", - " \n", - " prepare_state(\n", - " probabilities = [0, 0.25, 0.25, 0.25, 0, 0, 0.25, 0], # 0,1,2,3,4,5,6,7\n", - " bound = 0,\n", - " out = y\n", - " )\n", - " \n", - " res |= x + y\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 8 - Within-Apply\n", - "\n", - "The within-apply statement applies the pattern `U_dagger V U` that appears frequently in quantum computing.\n", - "It allows you to compute some function `V` within the context of another function `U`, and afterward uncompute `U` in order to release auxiliary qubits storing intermediate results.\n", - "\n", - "See also [Within Apply](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/within-apply/).\n", - "\n", - "#### Exercise 8a\n", - "\n", - "In this exercise, we will use within-apply to compute an arithmetic expression in steps.\n", - "\n", - "Use the `within_apply` operation to calculate `res = x + y + z` from a two-variable addition building block with the following steps:\n", - "1. Add `x` and `y`\n", - "2. Add the result to `z`\n", - "3. Uncompute the result of the first operation\n", - "\n", - "For simplicity, initialize the registers to simple integers: `x=3`, `y=5`, `z=2`.\n", - "\n", - "Hints:\n", - "\n", - "* Use a temporary variable.\n", - "* Wrap the arithmetic operation in a function.\n", - "\n", - "Execute the circuit and make sure you obtain the expected result." - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/eeebf166-c8a7-4ac5-b968-c89f7c7a4cd0?version=0.41.2\n" - ] - } - ], - "source": [ - "# from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def prep_plus(out: Output[QNum], x: QNum, y: QNum) -> None:\n", - " out |= x + y\n", - " \n", - "@qfunc\n", - "def main(res: Output[QNum]) -> None:\n", - " x = QNum(\"x\")\n", - " y = QNum(\"y\")\n", - " z = QNum(\"z\")\n", - " \n", - " prepare_int(3, x)\n", - " prepare_int(5, y)\n", - " prepare_int(2, z)\n", - " \n", - " out = QNum(\"out\")\n", - " within_apply(lambda: prep_plus(out, x, y), lambda: prep_plus(res, out, z))\n", - " \n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Exercise 8b\n", - "\n", - "Why should we use `within-apply` and not just write three concatenated functions?\n", - "To understand the motivation, we will create another arithmetic circuit.\n", - "This time, however, we will also set Classiq’s synthesis engine to optimize on the circuit’s number of qubits, i.e., its width.\n", - "\n", - "Setting constraints can be done via the `set_constraints` operation - see [here](https://docs.classiq.io/latest/user-guide/platform/synthesis/constraints/).\n", - "\n", - "Perform the operation `res = w + x + y + z`, where w is initialized to 4 and the rest as before:\n", - "\n", - "1. Add `x` and `y` (as part of the `within_apply` operation)\n", - "2. Add the result to `z` (as part of the within_apply operation)\n", - "3. Uncompute the result of the first operation (as part of the `within_apply` operation)\n", - "4. Add the result of the second operation to `w`. There’s no need to perform another uncomputation, as this brings our calculation to an end.\n", - "\n", - "Create the model, optimize on the circuit’s width, and run the circuit. Can you identify where qubits have been released and reused?" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/998eb506-6007-4d44-80a6-2283efc0dfc1?version=0.41.2\n" - ] - } - ], - "source": [ - "# from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def prep_plus(out: Output[QNum], x: QNum, y: QNum) -> None:\n", - " out |= x + y\n", - " \n", - "@qfunc\n", - "def main(res: Output[QNum]) -> None:\n", - " x = QNum(\"x\")\n", - " y = QNum(\"y\")\n", - " z = QNum(\"z\")\n", - " w = QNum(\"w\")\n", - " \n", - " \n", - " prepare_int(3, x)\n", - " prepare_int(5, y)\n", - " prepare_int(2, z)\n", - " prepare_int(4, w)\n", - " \n", - " out = QNum(\"out\")\n", - " sub = QNum(\"sub\")\n", - " within_apply(lambda: prep_plus(out, x, y), lambda: prep_plus(sub, out, z))\n", - " # within_apply(lambda: prepare_int(4, w), lambda: prep_plus(res,res,w))\n", - " res |= sub + w\n", - " \n", - "\n", - "qmod = create_model(main)\n", - "# adding constraint\n", - "qmod = set_constraints(qmod, Constraints(optimization_parameter=\"width\"))\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Bonus: Use a Single Arithmetic Expression\n", - "\n", - "What happens when we don't manually decompose this expression?\n", - "\n", - "Use Classiq’s arithmetic engine to calculate `res |= x + y + z + w` and optimize for width.\n", - "Look at the resulting quantum program - can you identify the computation and uncomputation blocks? What else did you notice?" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/f9e86827-8bde-4112-a24a-dda68a2e4c3c?version=0.41.2\n" - ] - } - ], - "source": [ - "# from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def main(res: Output[QNum]) -> None:\n", - " x = QNum(\"x\")\n", - " y = QNum(\"y\")\n", - " z = QNum(\"z\")\n", - " w = QNum(\"w\")\n", - " \n", - " prepare_int(3, x)\n", - " prepare_int(5, y)\n", - " prepare_int(2, z)\n", - " prepare_int(4, w)\n", - " \n", - " res |= x+y+z+w\n", - "\n", - "qmod = create_model(main)\n", - "qmod = set_constraints(qmod, Constraints(optimization_parameter=\"width\"))\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 9 - In-place Arithmetics\n", - "\n", - "For the following exercise we will use numeric quantum variables that represent fixed-point reals.\n", - "\n", - "Arithmetic expressions can be calculated in-place into a target variable, without allocating new qubits to store the result. This is done using the in-place-xor operator.\n", - "\n", - "See also [Numeric assignment](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/numeric-assignment/#semantics).\n", - "\n", - "In-place assignment is often used to nest arithmetic expressions under quantum operators. Note that out-of-place assignment requires its left-value variable to be un-initialized, and therefore cannot be used under an operator if the variable is declared outside its scope. Applying operators to arithmetic expressions is required in many algorithms. One example is the piecewise evaluation of mathematical functions - calculating different expressions over `x` depending on the subdomain where `x` falls.\n", - "\n", - "For this exercise, replace the missing parts in the code snippet below to evaluate the result of:\n", - "\n", - "$$\n", - "f(x) = \\begin{cases}\n", - " 2x + 1 & \\text{ if } 0 \\leq x < 0.5 \\\\\n", - " x + 0.5 & \\text{ if } 0.5 \\leq x < 1\n", - " \\end{cases}\n", - "$$\n", - "\n", - "Notes:\n", - "- We cannot use `x` directly as the control variable in a `constrol` operator, because it also occurs in the nested scope. to determine if `x` is in the lower or higher half of the domain we duplicate the most significant bit onto a separate variable called `label`.\n", - "- In Python assignment operators cannot be used in lambda expressions, so the computation of the function needs to be factored out to a named Python function (but not necessarily a Qmod function).\n" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/087a3c3d-6a79-4c3f-b675-1a9bbcb54624?version=0.41.2\n" - ] - } - ], - "source": [ - "# from classiq import *\n", - "\n", - "\n", - "def linear_func(a: float, b: float, x: QNum, res: QNum) -> None:\n", - " res ^= a * x + b\n", - "\n", - "\n", - "@qfunc\n", - "def dup_msb(qba: QArray[QBit], msb: QBit) -> None:\n", - " CX(qba[qba.len - 1], msb)\n", - "\n", - "\n", - "@qfunc\n", - "def main(x: Output[QNum[3, False, 3]], res: Output[QNum[5, False, 3]]) -> None:\n", - " allocate(5, res)\n", - " allocate(3, x)\n", - " hadamard_transform(x)\n", - "\n", - " label = QArray(\"label\")\n", - " allocate(1, label)\n", - "\n", - " dup_msb(x, label)\n", - " control(label, lambda: linear_func(1.0, 0.5, x, res)) # 0.5 <= x < 1.0\n", - " X(label)\n", - " control(label, lambda: linear_func(2.0, 1.0, x, res)) # 0.0 <= x < 0.5\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 10 - State-preparation Algorithm using Quantum-if\n", - "\n", - "#### Binding\n", - "The `bind` operation allows to convert smoothly between different quantum types and split or slice bits when necessary. Here’s an example:" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/3ece7430-c3a6-4dc5-b468-6b7507c80da3?version=0.41.2\n" - ] - } - ], - "source": [ - "# from classiq import *\n", - "from math import pi\n", - "\n", - "\n", - "@qfunc\n", - "def main(res: Output[QArray[QBit]]) -> None:\n", - " x: QArray[QBit] = QArray(\"x\")\n", - " allocate(3, x)\n", - " hadamard_transform(x)\n", - "\n", - " lsb = QBit(\"lsb\")\n", - " msb = QNum(\"msb\", 2, False, 0)\n", - " bind(x, [lsb, msb])\n", - "\n", - " control(msb == 1, lambda: RY(pi / 3, lsb)) # msb==1 <==> bit1 bit2 == 01 (binary of decimal 1)\n", - "\n", - " bind([lsb, msb], res)\n", - "\n", - "model = create_model(main)\n", - "qprog = synthesize(model)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The first `bind` operation splits the 3-qubit register `x` into the 2-qubit and single-qubit registers `lsb` and `msb`, respectively.\n", - "\n", - "After the `bind` operation:\n", - "1. The registers `lsb` and `msb` can be operated on as separated registers.\n", - "2. The register`x` is consumed and can no longer be used.\n", - "\n", - "The second `bind` operation concatenates the registers to the output register `res`.\n", - "\n", - "For this exercise, fill in the missing code parts in the above snippet and use the `control` statement to manually generate the following lovely 3-qubit probability distribution: `[1/8, 1/8, 1/8, -sqrt(3)/16, 1/8 + sqrt(3)/16, 1/8, 1/8, 1/8, 1/8]`.\n", - "\n", - "The following series of gates generate it:\n", - "\n", - "Perform the Hadamard transform on all three qubits.\n", - "\n", - "Apply a rotation on the LSB (least-significant bit) conditioned by the MSB being |0> and the second to last MSB being |1>. How would you write this condition using a QNum?\n", - "\n", - "The following series of gates generate it:\n", - "1. Perform the Hadamard transform on all three qubits.\n", - "2. Apply a `pi/3` rotation on the LSB (least-significant bit) conditioned by the MSB being |0> and the second to last MSB being |1>. How would you write this condition using a QNum?\n", - "\n", - "If you want to validate your results without looking at the full solution, compare them to running using Classiq’s built-in `prepare_state` function.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/819fb49c-c4ae-43d1-a521-9d32fb0a5b69?version=0.41.2\n" - ] - } - ], - "source": [ - "# from classiq import *\n", - "from classiq.qmod.symbolic import sqrt\n", - "\n", - "prob_list= [\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " -sqrt(3) / 16,\n", - " 1 / 8 + sqrt(3) / 16,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " ]\n", - "\n", - "@qfunc\n", - "def pre_prepared_state(q: QArray[QBit]) -> None:\n", - " prepare_state(\n", - " [\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " -sqrt(3) / 16,\n", - " 1 / 8 + sqrt(3) / 16,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " ],\n", - " 0.0,\n", - " q,\n", - " )\n", - "\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def main(res: Output[QArray[QBit]]) -> None:\n", - " x: QArray[QBit] = QArray(\"x\")\n", - " allocate(3, x)\n", - " hadamard_transform(x)\n", - "\n", - " lsb = QBit(\"lsb\")\n", - " msb = QNum(\"msb\", 2, False, 0)\n", - " bind(x, [lsb, msb])\n", - "\n", - " # applying rotation on the Least Significant Bit\n", - " control(msb == 1, lambda: RY(pi / 3, lsb))\n", - "\n", - " bind([lsb, msb], res)\n", - "\n", - "model = create_model(main)\n", - "qprog = synthesize(model)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.3" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/community/QClass_2024/Submissions/HW2/HW2_QClass2024 - Bill Wisotsky.ipynb b/community/QClass_2024/Submissions/HW2/HW2_QClass2024 - Bill Wisotsky.ipynb deleted file mode 100644 index 596324c5..00000000 --- a/community/QClass_2024/Submissions/HW2/HW2_QClass2024 - Bill Wisotsky.ipynb +++ /dev/null @@ -1,734 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# The Qmod Workshop - Part 2: Higher-Level Concepts\n", - "\n", - "This is the second part of the Qmod workshop, covering exercises 6 through 10. Make sure to go through Part 1 before continuing with this notebook." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "from classiq import *" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 6 - Exponentiation and Pauli Operators\n", - "\n", - "The Qmod language supports different classical types: scalars, arrays, and structs. Structs are objects with member variables, or fields.\n", - "\n", - "See also [Classical Types](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/classical-types/#structs).\n", - "\n", - "The builtin struct type `PauliTerm` is defined as follows:" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "@struct\n", - "class PauliTerm:\n", - " pauli: CArray[Pauli]\n", - " coefficient: CReal" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Note that `Pauli` is an enum for all the Pauli matrices (I, X, Y, Z).\n", - "\n", - "Pauli based hamiltonian can be represented as a list of `PauliTerm`s. A Pauli operator defined this way is the argument to a hamiltonian evolution functions.\n", - "\n", - "In this exercise we will use the Suzuki-Trotter function to find the evolution of `H=0.5XZXX + 0.25YIZI + 0.3 XIZY` (captured as a literal value for the pauli-operator), with the evolution coefficient being 3, the order being 2, and use 4 repetitions.\n", - "\n", - "The declaration of the `suzuki_trotter` function is:" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "@qfunc(external=True)\n", - "def suzuki_trotter(\n", - " pauli_operator: CArray[PauliTerm],\n", - " evolution_coefficient: CReal,\n", - " order: CInt,\n", - " repetitions: CInt,\n", - " qbv: QArray[QBit],\n", - ") -> None:\n", - " pass" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Fill in the missing parts of the following code in order to complete this exercise:" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "ename": "PasswordSetError", - "evalue": "Can't store password on keychain: (-25244, 'Unknown Error')", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mClassiqExpiredTokenError\u001b[0m Traceback (most recent call last)", - "File \u001b[0;32m~/opt/anaconda3/envs/Classiq/lib/python3.9/site-packages/classiq/_internals/client.py:114\u001b[0m, in \u001b[0;36mtry_again_on_failure..wrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 113\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 114\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;01mawait\u001b[39;00m func(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[1;32m 115\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m ClassiqExpiredTokenError:\n", - "File \u001b[0;32m~/opt/anaconda3/envs/Classiq/lib/python3.9/site-packages/classiq/_internals/jobs.py:103\u001b[0m, in \u001b[0;36mJobPoller._request\u001b[0;34m(self, http_method, url, body)\u001b[0m\n\u001b[1;32m 100\u001b[0m response \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mawait\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_async_client\u001b[38;5;241m.\u001b[39mrequest(\n\u001b[1;32m 101\u001b[0m method\u001b[38;5;241m=\u001b[39mhttp_method, url\u001b[38;5;241m=\u001b[39murl, json\u001b[38;5;241m=\u001b[39mbody, headers\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_additional_headers\n\u001b[1;32m 102\u001b[0m )\n\u001b[0;32m--> 103\u001b[0m \u001b[43mclient\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mhandle_response\u001b[49m\u001b[43m(\u001b[49m\u001b[43mresponse\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 104\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m response\n", - "File \u001b[0;32m~/opt/anaconda3/envs/Classiq/lib/python3.9/site-packages/classiq/_internals/client.py:190\u001b[0m, in \u001b[0;36mClient.handle_response\u001b[0;34m(self, response)\u001b[0m\n\u001b[1;32m 189\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m response\u001b[38;5;241m.\u001b[39mis_error:\n\u001b[0;32m--> 190\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_handle_error\u001b[49m\u001b[43m(\u001b[49m\u001b[43mresponse\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 191\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_handle_success(response)\n", - "File \u001b[0;32m~/opt/anaconda3/envs/Classiq/lib/python3.9/site-packages/classiq/_internals/client.py:201\u001b[0m, in \u001b[0;36mClient._handle_error\u001b[0;34m(response)\u001b[0m\n\u001b[1;32m 200\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m expired:\n\u001b[0;32m--> 201\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m ClassiqExpiredTokenError(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mExpired token\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 203\u001b[0m message \u001b[38;5;241m=\u001b[39m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCall to API failed with code \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mresponse\u001b[38;5;241m.\u001b[39mstatus_code\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n", - "\u001b[0;31mClassiqExpiredTokenError\u001b[0m: Expired token\nIf you need further assistance, please reach out on our Community Slack channel at: https://short.classiq.io/join-slack\nIf the error persists feel free to open a ticket at: https://short.classiq.io/support", - "\nDuring handling of the above exception, another exception occurred:\n", - "\u001b[0;31mError\u001b[0m Traceback (most recent call last)", - "File \u001b[0;32m~/opt/anaconda3/envs/Classiq/lib/python3.9/site-packages/keyring/backends/macOS/__init__.py:40\u001b[0m, in \u001b[0;36mKeyring.set_password\u001b[0;34m(self, service, username, password)\u001b[0m\n\u001b[1;32m 39\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m---> 40\u001b[0m \u001b[43mapi\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mset_generic_password\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mkeychain\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mservice\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43musername\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mpassword\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 41\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m api\u001b[38;5;241m.\u001b[39mKeychainDenied \u001b[38;5;28;01mas\u001b[39;00m e:\n", - "File \u001b[0;32m~/opt/anaconda3/envs/Classiq/lib/python3.9/site-packages/keyring/backends/macOS/api.py:152\u001b[0m, in \u001b[0;36mset_generic_password\u001b[0;34m(name, service, username, password)\u001b[0m\n\u001b[1;32m 151\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m contextlib\u001b[38;5;241m.\u001b[39msuppress(NotFound):\n\u001b[0;32m--> 152\u001b[0m \u001b[43mdelete_generic_password\u001b[49m\u001b[43m(\u001b[49m\u001b[43mname\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mservice\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43musername\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 154\u001b[0m q \u001b[38;5;241m=\u001b[39m create_query(\n\u001b[1;32m 155\u001b[0m kSecClass\u001b[38;5;241m=\u001b[39mk_(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mkSecClassGenericPassword\u001b[39m\u001b[38;5;124m'\u001b[39m),\n\u001b[1;32m 156\u001b[0m kSecAttrService\u001b[38;5;241m=\u001b[39mservice,\n\u001b[1;32m 157\u001b[0m kSecAttrAccount\u001b[38;5;241m=\u001b[39musername,\n\u001b[1;32m 158\u001b[0m kSecValueData\u001b[38;5;241m=\u001b[39mpassword,\n\u001b[1;32m 159\u001b[0m )\n", - "File \u001b[0;32m~/opt/anaconda3/envs/Classiq/lib/python3.9/site-packages/keyring/backends/macOS/api.py:173\u001b[0m, in \u001b[0;36mdelete_generic_password\u001b[0;34m(name, service, username)\u001b[0m\n\u001b[1;32m 172\u001b[0m status \u001b[38;5;241m=\u001b[39m SecItemDelete(q)\n\u001b[0;32m--> 173\u001b[0m \u001b[43mError\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mraise_for_status\u001b[49m\u001b[43m(\u001b[49m\u001b[43mstatus\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m~/opt/anaconda3/envs/Classiq/lib/python3.9/site-packages/keyring/backends/macOS/api.py:115\u001b[0m, in \u001b[0;36mError.raise_for_status\u001b[0;34m(cls, status)\u001b[0m\n\u001b[1;32m 110\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m SecAuthFailure(\n\u001b[1;32m 111\u001b[0m status,\n\u001b[1;32m 112\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mSecurity Auth Failure: make sure \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 113\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mpython is signed with codesign util\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[1;32m 114\u001b[0m )\n\u001b[0;32m--> 115\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;28mcls\u001b[39m(status, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mUnknown Error\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n", - "\u001b[0;31mError\u001b[0m: (-25244, 'Unknown Error')", - "\nDuring handling of the above exception, another exception occurred:\n", - "\u001b[0;31mPasswordSetError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[4], line 21\u001b[0m\n\u001b[1;32m 7\u001b[0m suzuki_trotter(\n\u001b[1;32m 8\u001b[0m [\n\u001b[1;32m 9\u001b[0m PauliTerm(pauli\u001b[38;5;241m=\u001b[39m[Pauli\u001b[38;5;241m.\u001b[39mX, Pauli\u001b[38;5;241m.\u001b[39mZ, Pauli\u001b[38;5;241m.\u001b[39mX, Pauli\u001b[38;5;241m.\u001b[39mX], coefficient\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m.5\u001b[39m),\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 16\u001b[0m qbv\u001b[38;5;241m=\u001b[39mq,\n\u001b[1;32m 17\u001b[0m )\n\u001b[1;32m 20\u001b[0m qmod \u001b[38;5;241m=\u001b[39m create_model(main)\n\u001b[0;32m---> 21\u001b[0m qprog \u001b[38;5;241m=\u001b[39m \u001b[43msynthesize\u001b[49m\u001b[43m(\u001b[49m\u001b[43mqmod\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 22\u001b[0m show(qprog)\n", - "File \u001b[0;32m~/opt/anaconda3/envs/Classiq/lib/python3.9/site-packages/classiq/_internals/async_utils.py:45\u001b[0m, in \u001b[0;36msyncify_function..async_wrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 43\u001b[0m \u001b[38;5;129m@functools\u001b[39m\u001b[38;5;241m.\u001b[39mwraps(async_func)\n\u001b[1;32m 44\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21masync_wrapper\u001b[39m(\u001b[38;5;241m*\u001b[39margs: Any, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs: Any) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m T:\n\u001b[0;32m---> 45\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mrun\u001b[49m\u001b[43m(\u001b[49m\u001b[43masync_func\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m~/opt/anaconda3/envs/Classiq/lib/python3.9/site-packages/classiq/_internals/async_utils.py:39\u001b[0m, in \u001b[0;36mrun\u001b[0;34m(coro)\u001b[0m\n\u001b[1;32m 34\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mrun\u001b[39m(coro: Awaitable[T]) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m T:\n\u001b[1;32m 35\u001b[0m \u001b[38;5;66;03m# Use this function instead of asyncio.run, since it ALWAYS\u001b[39;00m\n\u001b[1;32m 36\u001b[0m \u001b[38;5;66;03m# creates a new event loop and clears the thread event loop.\u001b[39;00m\n\u001b[1;32m 37\u001b[0m \u001b[38;5;66;03m# Never use asyncio.run in library code.\u001b[39;00m\n\u001b[1;32m 38\u001b[0m loop \u001b[38;5;241m=\u001b[39m get_event_loop()\n\u001b[0;32m---> 39\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mloop\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrun_until_complete\u001b[49m\u001b[43m(\u001b[49m\u001b[43mcoro\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m~/opt/anaconda3/envs/Classiq/lib/python3.9/site-packages/nest_asyncio.py:90\u001b[0m, in \u001b[0;36m_patch_loop..run_until_complete\u001b[0;34m(self, future)\u001b[0m\n\u001b[1;32m 87\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m f\u001b[38;5;241m.\u001b[39mdone():\n\u001b[1;32m 88\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mRuntimeError\u001b[39;00m(\n\u001b[1;32m 89\u001b[0m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mEvent loop stopped before Future completed.\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[0;32m---> 90\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mf\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mresult\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m~/opt/anaconda3/envs/Classiq/lib/python3.9/asyncio/futures.py:201\u001b[0m, in \u001b[0;36mFuture.result\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 199\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m__log_traceback \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mFalse\u001b[39;00m\n\u001b[1;32m 200\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_exception \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m--> 201\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_exception\n\u001b[1;32m 202\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_result\n", - "File \u001b[0;32m~/opt/anaconda3/envs/Classiq/lib/python3.9/asyncio/tasks.py:256\u001b[0m, in \u001b[0;36mTask.__step\u001b[0;34m(***failed resolving arguments***)\u001b[0m\n\u001b[1;32m 252\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 253\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m exc \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 254\u001b[0m \u001b[38;5;66;03m# We use the `send` method directly, because coroutines\u001b[39;00m\n\u001b[1;32m 255\u001b[0m \u001b[38;5;66;03m# don't have `__iter__` and `__next__` methods.\u001b[39;00m\n\u001b[0;32m--> 256\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[43mcoro\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msend\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m)\u001b[49m\n\u001b[1;32m 257\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 258\u001b[0m result \u001b[38;5;241m=\u001b[39m coro\u001b[38;5;241m.\u001b[39mthrow(exc)\n", - "File \u001b[0;32m~/opt/anaconda3/envs/Classiq/lib/python3.9/site-packages/classiq/synthesis.py:20\u001b[0m, in \u001b[0;36msynthesize_async\u001b[0;34m(serialized_model)\u001b[0m\n\u001b[1;32m 16\u001b[0m \u001b[38;5;28;01masync\u001b[39;00m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21msynthesize_async\u001b[39m(\n\u001b[1;32m 17\u001b[0m serialized_model: SerializedModel,\n\u001b[1;32m 18\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m SerializedQuantumProgram:\n\u001b[1;32m 19\u001b[0m model \u001b[38;5;241m=\u001b[39m pydantic\u001b[38;5;241m.\u001b[39mparse_raw_as(Model, serialized_model)\n\u001b[0;32m---> 20\u001b[0m quantum_program \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mawait\u001b[39;00m ApiWrapper\u001b[38;5;241m.\u001b[39mcall_generation_task(model)\n\u001b[1;32m 21\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m SerializedQuantumProgram(quantum_program\u001b[38;5;241m.\u001b[39mjson(indent\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m2\u001b[39m))\n", - "File \u001b[0;32m~/opt/anaconda3/envs/Classiq/lib/python3.9/site-packages/classiq/_internals/api_wrapper.py:107\u001b[0m, in \u001b[0;36mApiWrapper.call_generation_task\u001b[0;34m(cls, model)\u001b[0m\n\u001b[1;32m 102\u001b[0m \u001b[38;5;129m@classmethod\u001b[39m\n\u001b[1;32m 103\u001b[0m \u001b[38;5;28;01masync\u001b[39;00m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mcall_generation_task\u001b[39m(\n\u001b[1;32m 104\u001b[0m \u001b[38;5;28mcls\u001b[39m, model: Model\n\u001b[1;32m 105\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m generator_result\u001b[38;5;241m.\u001b[39mQuantumProgram:\n\u001b[1;32m 106\u001b[0m poller \u001b[38;5;241m=\u001b[39m JobPoller(base_url\u001b[38;5;241m=\u001b[39mroutes\u001b[38;5;241m.\u001b[39mTASKS_GENERATE_FULL_PATH)\n\u001b[0;32m--> 107\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mawait\u001b[39;00m poller\u001b[38;5;241m.\u001b[39mrun_pydantic(model, timeout_sec\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m)\n\u001b[1;32m 108\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m _parse_job_response(result, generator_result\u001b[38;5;241m.\u001b[39mQuantumProgram)\n", - "File \u001b[0;32m~/opt/anaconda3/envs/Classiq/lib/python3.9/site-packages/classiq/_internals/jobs.py:180\u001b[0m, in \u001b[0;36mJobPoller.run_pydantic\u001b[0;34m(self, model, timeout_sec)\u001b[0m\n\u001b[1;32m 173\u001b[0m \u001b[38;5;28;01masync\u001b[39;00m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mrun_pydantic\u001b[39m(\n\u001b[1;32m 174\u001b[0m \u001b[38;5;28mself\u001b[39m, model: pydantic\u001b[38;5;241m.\u001b[39mBaseModel, timeout_sec: Optional[\u001b[38;5;28mfloat\u001b[39m]\n\u001b[1;32m 175\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m GeneralJobDescription:\n\u001b[1;32m 176\u001b[0m \u001b[38;5;66;03m# TODO: we can't use model.dict() - it doesn't serialize complex class.\u001b[39;00m\n\u001b[1;32m 177\u001b[0m \u001b[38;5;66;03m# This was added because JSON serializer doesn't serialize complex type, and pydantic does.\u001b[39;00m\n\u001b[1;32m 178\u001b[0m \u001b[38;5;66;03m# We should add support for smarter json serialization.\u001b[39;00m\n\u001b[1;32m 179\u001b[0m body \u001b[38;5;241m=\u001b[39m json\u001b[38;5;241m.\u001b[39mloads(model\u001b[38;5;241m.\u001b[39mjson())\n\u001b[0;32m--> 180\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;01mawait\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mrun(body, timeout_sec)\n", - "File \u001b[0;32m~/opt/anaconda3/envs/Classiq/lib/python3.9/site-packages/classiq/_internals/jobs.py:163\u001b[0m, in \u001b[0;36mJobPoller.run\u001b[0;34m(self, body, timeout_sec)\u001b[0m\n\u001b[1;32m 159\u001b[0m \u001b[38;5;28;01masync\u001b[39;00m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mrun\u001b[39m(\n\u001b[1;32m 160\u001b[0m \u001b[38;5;28mself\u001b[39m, body: Dict, timeout_sec: Optional[\u001b[38;5;28mfloat\u001b[39m]\n\u001b[1;32m 161\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m GeneralJobDescription:\n\u001b[1;32m 162\u001b[0m \u001b[38;5;28;01masync\u001b[39;00m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_async_client:\n\u001b[0;32m--> 163\u001b[0m submit_response \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mawait\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_submit(body\u001b[38;5;241m=\u001b[39mbody)\n\u001b[1;32m 164\u001b[0m job_id \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_parse_job_id_response(response\u001b[38;5;241m=\u001b[39msubmit_response)\n\u001b[1;32m 165\u001b[0m poll_url \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_make_poll_url(job_id\u001b[38;5;241m=\u001b[39mjob_id)\n", - "File \u001b[0;32m~/opt/anaconda3/envs/Classiq/lib/python3.9/site-packages/classiq/_internals/jobs.py:107\u001b[0m, in \u001b[0;36mJobPoller._submit\u001b[0;34m(self, body)\u001b[0m\n\u001b[1;32m 106\u001b[0m \u001b[38;5;28;01masync\u001b[39;00m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_submit\u001b[39m(\u001b[38;5;28mself\u001b[39m, body: Dict) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m httpx\u001b[38;5;241m.\u001b[39mResponse:\n\u001b[0;32m--> 107\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;01mawait\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_request(http_method\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mPOST\u001b[39m\u001b[38;5;124m\"\u001b[39m, url\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_base_url, body\u001b[38;5;241m=\u001b[39mbody)\n", - "File \u001b[0;32m~/opt/anaconda3/envs/Classiq/lib/python3.9/site-packages/classiq/_internals/client.py:125\u001b[0m, in \u001b[0;36mtry_again_on_failure..wrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 123\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m i \u001b[38;5;241m==\u001b[39m _RETRY_COUNT \u001b[38;5;241m-\u001b[39m \u001b[38;5;241m1\u001b[39m:\n\u001b[1;32m 124\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m\n\u001b[0;32m--> 125\u001b[0m \u001b[38;5;28;01mawait\u001b[39;00m client()\u001b[38;5;241m.\u001b[39mupdate_expired_access_token()\n\u001b[1;32m 126\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m httpx\u001b[38;5;241m.\u001b[39mRemoteProtocolError:\n\u001b[1;32m 127\u001b[0m _logger\u001b[38;5;241m.\u001b[39minfo(\n\u001b[1;32m 128\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mExperienced a httpx connection error, retrying to connect...\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 129\u001b[0m )\n", - "File \u001b[0;32m~/opt/anaconda3/envs/Classiq/lib/python3.9/site-packages/classiq/_internals/client.py:272\u001b[0m, in \u001b[0;36mClient.update_expired_access_token\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 271\u001b[0m \u001b[38;5;28;01masync\u001b[39;00m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mupdate_expired_access_token\u001b[39m(\u001b[38;5;28mself\u001b[39m) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m--> 272\u001b[0m \u001b[38;5;28;01mawait\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_token_manager\u001b[38;5;241m.\u001b[39mupdate_expired_access_token()\n", - "File \u001b[0;32m~/opt/anaconda3/envs/Classiq/lib/python3.9/site-packages/classiq/_internals/authentication/token_manager.py:75\u001b[0m, in \u001b[0;36mTokenManager.update_expired_access_token\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 73\u001b[0m \u001b[38;5;28;01masync\u001b[39;00m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mupdate_expired_access_token\u001b[39m(\u001b[38;5;28mself\u001b[39m) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 74\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_refresh_token \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m---> 75\u001b[0m \u001b[38;5;28;01mawait\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_refresh()\n\u001b[1;32m 76\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m\n\u001b[1;32m 77\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_clear_tokens()\n", - "File \u001b[0;32m~/opt/anaconda3/envs/Classiq/lib/python3.9/site-packages/classiq/_internals/authentication/token_manager.py:71\u001b[0m, in \u001b[0;36mTokenManager._refresh\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 69\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_refresh_token \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m 70\u001b[0m tokens \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mawait\u001b[39;00m Auth0()\u001b[38;5;241m.\u001b[39mrefresh_access_token(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_refresh_token)\n\u001b[0;32m---> 71\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_save_tokens\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtokens\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m~/opt/anaconda3/envs/Classiq/lib/python3.9/site-packages/classiq/_internals/authentication/token_manager.py:110\u001b[0m, in \u001b[0;36mTokenManager._save_tokens\u001b[0;34m(self, tokens, force_override_refresh_token)\u001b[0m\n\u001b[1;32m 108\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_lock:\n\u001b[1;32m 109\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_access_token \u001b[38;5;241m=\u001b[39m tokens\u001b[38;5;241m.\u001b[39maccess_token\n\u001b[0;32m--> 110\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_password_manager\u001b[38;5;241m.\u001b[39maccess_token \u001b[38;5;241m=\u001b[39m tokens\u001b[38;5;241m.\u001b[39maccess_token\n\u001b[1;32m 111\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m tokens\u001b[38;5;241m.\u001b[39mrefresh_token \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mor\u001b[39;00m force_override_refresh_token:\n\u001b[1;32m 112\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_refresh_token \u001b[38;5;241m=\u001b[39m tokens\u001b[38;5;241m.\u001b[39mrefresh_token\n", - "File \u001b[0;32m~/opt/anaconda3/envs/Classiq/lib/python3.9/site-packages/classiq/_internals/authentication/password_manager.py:38\u001b[0m, in \u001b[0;36mPasswordManager.access_token\u001b[0;34m(self, access_token)\u001b[0m\n\u001b[1;32m 36\u001b[0m \u001b[38;5;129m@access_token\u001b[39m\u001b[38;5;241m.\u001b[39msetter\n\u001b[1;32m 37\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21maccess_token\u001b[39m(\u001b[38;5;28mself\u001b[39m, access_token: Optional[\u001b[38;5;28mstr\u001b[39m]) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m---> 38\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_set\u001b[49m\u001b[43m(\u001b[49m\u001b[43mkey\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_settings\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mACCESS_TOKEN_KEY\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mvalue\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43maccess_token\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m~/opt/anaconda3/envs/Classiq/lib/python3.9/site-packages/classiq/_internals/authentication/password_manager.py:74\u001b[0m, in \u001b[0;36mKeyringPasswordManager._set\u001b[0;34m(self, key, value)\u001b[0m\n\u001b[1;32m 72\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_clear(key)\n\u001b[1;32m 73\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m\n\u001b[0;32m---> 74\u001b[0m \u001b[43mkeyring\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mset_password\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 75\u001b[0m \u001b[43m \u001b[49m\u001b[43mservice_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_SERVICE_NAME\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 76\u001b[0m \u001b[43m \u001b[49m\u001b[43musername\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mkey\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 77\u001b[0m \u001b[43m \u001b[49m\u001b[43mpassword\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mvalue\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 78\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m~/opt/anaconda3/envs/Classiq/lib/python3.9/site-packages/keyring/core.py:60\u001b[0m, in \u001b[0;36mset_password\u001b[0;34m(service_name, username, password)\u001b[0m\n\u001b[1;32m 58\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mset_password\u001b[39m(service_name: \u001b[38;5;28mstr\u001b[39m, username: \u001b[38;5;28mstr\u001b[39m, password: \u001b[38;5;28mstr\u001b[39m) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 59\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"Set password for the user in the specified service.\"\"\"\u001b[39;00m\n\u001b[0;32m---> 60\u001b[0m \u001b[43mget_keyring\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mset_password\u001b[49m\u001b[43m(\u001b[49m\u001b[43mservice_name\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43musername\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mpassword\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m~/opt/anaconda3/envs/Classiq/lib/python3.9/site-packages/keyring/backends/macOS/__init__.py:44\u001b[0m, in \u001b[0;36mKeyring.set_password\u001b[0;34m(self, service, username, password)\u001b[0m\n\u001b[1;32m 42\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m KeyringLocked(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCan\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mt store password on keychain: \u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m{}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;241m.\u001b[39mformat(e))\n\u001b[1;32m 43\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m api\u001b[38;5;241m.\u001b[39mError \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[0;32m---> 44\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m PasswordSetError(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCan\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mt store password on keychain: \u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m{}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;241m.\u001b[39mformat(e))\n", - "\u001b[0;31mPasswordSetError\u001b[0m: Can't store password on keychain: (-25244, 'Unknown Error')" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "\n", - "@qfunc\n", - "def main(q: Output[QArray[QBit]]) -> None:\n", - " allocate(4, q)\n", - " suzuki_trotter(\n", - " [\n", - " PauliTerm(pauli=[Pauli.X, Pauli.Z, Pauli.X, Pauli.X], coefficient=.5),\n", - " PauliTerm(pauli=[Pauli.Y, Pauli.I, Pauli.Z, Pauli.I], coefficient=.25),\n", - " PauliTerm(pauli=[Pauli.X, Pauli.I, Pauli.Z, Pauli.Y], coefficient=.3)\n", - " ],\n", - " evolution_coefficient=3,\n", - " repetitions=4,\n", - " order=2,\n", - " qbv=q,\n", - " )\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 7 - Basic Arithmetics\n", - "\n", - "#### Exercise 7a\n", - "In this exercise we will use quantum numeric variables and calculate expressions over them.\n", - "\n", - "See details on the syntax of numeric types under [Quantum types](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/quantum-types/#syntax).\n", - "See more on quantum expressions under [Numeric assignment](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/numeric-assignment/)\n", - "\n", - "Create the following quantum programs:\n", - "1. Initialize variables `x=2`, `y=7` and computes `res = x + y`.\n", - "2. Initialize variables `x=2`, `y=7` and computes `res = x * y`.\n", - "3. Initialize variables `x=2`, `y=7`, `z=1` and computes `res = x * y - z`.\n", - "\n", - "Guidance:\n", - "* Use the operator `|=` to perform out-of-place assignment of arithmetic expression.\n", - "* To initialize the variables, use the function `prepare_int`.\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from classiq import *\n", - "\n", - "@qfunc\n", - "def main(res: Output[QNum]):\n", - " x = QNum(\"x\")\n", - " y = QNum(\"y\")\n", - " prepare_int(2,x)\n", - " prepare_int(7,y)\n", - " res |= x + y\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from classiq import *\n", - "\n", - "@qfunc\n", - "def main(res: Output[QNum]):\n", - " x = QNum(\"x\")\n", - " y = QNum(\"y\")\n", - " prepare_int(2,x)\n", - " prepare_int(7,y)\n", - " res |= x * y \n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from classiq import *\n", - "\n", - "@qfunc\n", - "def main(res: Output[QNum]):\n", - " x = QNum(\"x\")\n", - " y = QNum(\"y\")\n", - " z = QNum(\"z\")\n", - " prepare_int(2,x)\n", - " prepare_int(7,y)\n", - " prepare_int(1,z)\n", - " res |= x * y -z\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Exercise 7b\n", - "Declare `x` to be a 2-qubit variable and `y` to be 3-qubit variable.\n", - "\n", - "We will perform an addition of two superposition states: `x` is an equal superposition of `0` and `2`, and `y` is an equal superposition of `1`, `2`, `3`, and `6`.\n", - "\n", - "1. Use `prepare_state` to initialize `x` and `y`. Note that `prepare_state` works with probabilities, not amplitudes.\n", - " The declaration of the `prepare_state` function is:\n", - " ```\n", - " @qfunc(external=True)\n", - " def prepare_state(\n", - " probabilities: CArray[CReal],\n", - " bound: CReal,\n", - " out: Output[QArray[QBit]],\n", - " ) -> None:\n", - " pass\n", - " ```\n", - " (Set the bound to 0 in your code)\n", - "2. Compute `res = x + y`. Execute the resulting circuit. What did you get?" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "@qfunc\n", - "def main(res: Output[QNum]) -> None:\n", - " x = QNum(\"x\")\n", - " y = QNum(\"y\")\n", - " #allocate(2,x)\n", - " #allocate(3,y)\n", - " \n", - " prepare_state(probabilities=[0,1/4,1/4,1/4,0,0,1/4,0], bound=0, out=y)\n", - " prepare_state(probabilities=[1/2,0,1/2,0,0,0,0,0], bound=0, out=x)\n", - " \n", - " res|=x+y\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 8 - Within-Apply\n", - "\n", - "The within-apply statement applies the pattern `U_dagger V U` that appears frequently in quantum computing.\n", - "It allows you to compute some function `V` within the context of another function `U`, and afterward uncompute `U` in order to release auxiliary qubits storing intermediate results.\n", - "\n", - "See also [Within Apply](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/within-apply/).\n", - "\n", - "#### Exercise 8a\n", - "\n", - "In this exercise, we will use within-apply to compute an arithmetic expression in steps.\n", - "\n", - "Use the `within_apply` operation to calculate `res = x + y + z` from a two-variable addition building block with the following steps:\n", - "1. Add `x` and `y`\n", - "2. Add the result to `z`\n", - "3. Uncompute the result of the first operation\n", - "\n", - "For simplicity, initialize the registers to simple integers: `x=3`, `y=5`, `z=2`.\n", - "\n", - "Hints:\n", - "\n", - "* Use a temporary variable.\n", - "* Wrap the arithmetic operation in a function.\n", - "\n", - "Execute the circuit and make sure you obtain the expected result." - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "ename": "AttributeError", - "evalue": "'int' object has no attribute 'get_handle_binding'", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[11], line 22\u001b[0m\n\u001b[1;32m 19\u001b[0m z\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m2\u001b[39m\n\u001b[1;32m 20\u001b[0m within_apply(\u001b[38;5;28;01mlambda\u001b[39;00m: inplace_linear_attempt_a(x,y), \u001b[38;5;28;01mlambda\u001b[39;00m: linear_func_a(z,res))\n\u001b[0;32m---> 22\u001b[0m qmod \u001b[38;5;241m=\u001b[39m \u001b[43mcreate_model\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmain\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 23\u001b[0m qprog \u001b[38;5;241m=\u001b[39m synthesize(qmod)\n\u001b[1;32m 24\u001b[0m show(qprog)\n", - "File \u001b[0;32m~/opt/anaconda3/envs/Classiq/lib/python3.9/site-packages/classiq/qmod/quantum_function.py:43\u001b[0m, in \u001b[0;36mcreate_model\u001b[0;34m(entry_point, constraints, execution_preferences, preferences, classical_execution_function)\u001b[0m\n\u001b[1;32m 39\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m entry_point\u001b[38;5;241m.\u001b[39mfunc_decl\u001b[38;5;241m.\u001b[39mname \u001b[38;5;241m!=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmain\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[1;32m 40\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m ClassiqError(\n\u001b[1;32m 41\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mThe entry point function must be named \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mmain\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m, got \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mentry_point\u001b[38;5;241m.\u001b[39mfunc_decl\u001b[38;5;241m.\u001b[39mname\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 42\u001b[0m )\n\u001b[0;32m---> 43\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mentry_point\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcreate_model\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 44\u001b[0m \u001b[43m \u001b[49m\u001b[43mconstraints\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mexecution_preferences\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mpreferences\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mclassical_execution_function\u001b[49m\n\u001b[1;32m 45\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241m.\u001b[39mget_model()\n", - "File \u001b[0;32m~/opt/anaconda3/envs/Classiq/lib/python3.9/site-packages/classiq/qmod/quantum_function.py:78\u001b[0m, in \u001b[0;36mQFunc.create_model\u001b[0;34m(self, constraints, execution_preferences, preferences, classical_execution_function)\u001b[0m\n\u001b[1;32m 76\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_qmodule\u001b[38;5;241m.\u001b[39mconstants \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mdict\u001b[39m()\n\u001b[1;32m 77\u001b[0m QConstant\u001b[38;5;241m.\u001b[39mset_current_model(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_qmodule)\n\u001b[0;32m---> 78\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_add_native_func_def\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 79\u001b[0m model_extra_settings: List[Tuple[\u001b[38;5;28mstr\u001b[39m, Any]] \u001b[38;5;241m=\u001b[39m [\n\u001b[1;32m 80\u001b[0m (\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mconstraints\u001b[39m\u001b[38;5;124m\"\u001b[39m, constraints),\n\u001b[1;32m 81\u001b[0m (\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mexecution_preferences\u001b[39m\u001b[38;5;124m\"\u001b[39m, execution_preferences),\n\u001b[1;32m 82\u001b[0m (\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mpreferences\u001b[39m\u001b[38;5;124m\"\u001b[39m, preferences),\n\u001b[1;32m 83\u001b[0m ]\n\u001b[1;32m 84\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m classical_execution_function \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n", - "File \u001b[0;32m~/opt/anaconda3/envs/Classiq/lib/python3.9/site-packages/classiq/qmod/quantum_function.py:99\u001b[0m, in \u001b[0;36mQFunc._add_native_func_def\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 97\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfunc_decl\u001b[38;5;241m.\u001b[39mname \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_qmodule\u001b[38;5;241m.\u001b[39mnative_defs:\n\u001b[1;32m 98\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m\n\u001b[0;32m---> 99\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mexpand\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 100\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_qmodule\u001b[38;5;241m.\u001b[39mnative_defs[\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfunc_decl\u001b[38;5;241m.\u001b[39mname] \u001b[38;5;241m=\u001b[39m NativeFunctionDefinition(\n\u001b[1;32m 101\u001b[0m \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39m{\u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfunc_decl\u001b[38;5;241m.\u001b[39mdict(), \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39m{\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mbody\u001b[39m\u001b[38;5;124m\"\u001b[39m: \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mbody}}\n\u001b[1;32m 102\u001b[0m )\n", - "File \u001b[0;32m~/opt/anaconda3/envs/Classiq/lib/python3.9/site-packages/classiq/qmod/quantum_expandable.py:86\u001b[0m, in \u001b[0;36mQExpandable.expand\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 84\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m QExpandable\u001b[38;5;241m.\u001b[39mSTACK:\n\u001b[1;32m 85\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mself\u001b[39m:\n\u001b[0;32m---> 86\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_py_callable\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_get_positional_args\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n", - "Cell \u001b[0;32mIn[11], line 20\u001b[0m, in \u001b[0;36mmain\u001b[0;34m(temp, res)\u001b[0m\n\u001b[1;32m 18\u001b[0m y\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m5\u001b[39m\n\u001b[1;32m 19\u001b[0m z\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m2\u001b[39m\n\u001b[0;32m---> 20\u001b[0m \u001b[43mwithin_apply\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43;01mlambda\u001b[39;49;00m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43minplace_linear_attempt_a\u001b[49m\u001b[43m(\u001b[49m\u001b[43mx\u001b[49m\u001b[43m,\u001b[49m\u001b[43my\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mlambda\u001b[39;49;00m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mlinear_func_a\u001b[49m\u001b[43m(\u001b[49m\u001b[43mz\u001b[49m\u001b[43m,\u001b[49m\u001b[43mres\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m~/opt/anaconda3/envs/Classiq/lib/python3.9/site-packages/classiq/qmod/builtins/operations.py:149\u001b[0m, in \u001b[0;36mwithin_apply\u001b[0;34m(compute, action)\u001b[0m\n\u001b[1;32m 144\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m QCallable\u001b[38;5;241m.\u001b[39mCURRENT_EXPANDABLE \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m 145\u001b[0m source_ref \u001b[38;5;241m=\u001b[39m get_source_ref(sys\u001b[38;5;241m.\u001b[39m_getframe(\u001b[38;5;241m1\u001b[39m))\n\u001b[1;32m 146\u001b[0m QCallable\u001b[38;5;241m.\u001b[39mCURRENT_EXPANDABLE\u001b[38;5;241m.\u001b[39mappend_statement_to_body(\n\u001b[1;32m 147\u001b[0m WithinApply(\n\u001b[1;32m 148\u001b[0m compute\u001b[38;5;241m=\u001b[39m_operand_to_body(compute),\n\u001b[0;32m--> 149\u001b[0m action\u001b[38;5;241m=\u001b[39m\u001b[43m_operand_to_body\u001b[49m\u001b[43m(\u001b[49m\u001b[43maction\u001b[49m\u001b[43m)\u001b[49m,\n\u001b[1;32m 150\u001b[0m source_ref\u001b[38;5;241m=\u001b[39msource_ref,\n\u001b[1;32m 151\u001b[0m )\n\u001b[1;32m 152\u001b[0m )\n", - "File \u001b[0;32m~/opt/anaconda3/envs/Classiq/lib/python3.9/site-packages/classiq/qmod/builtins/operations.py:254\u001b[0m, in \u001b[0;36m_operand_to_body\u001b[0;34m(callable_)\u001b[0m\n\u001b[1;32m 253\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_operand_to_body\u001b[39m(callable_: Union[QCallable, Callable[[], \u001b[38;5;28;01mNone\u001b[39;00m]]) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m StatementBlock:\n\u001b[0;32m--> 254\u001b[0m to_operand \u001b[38;5;241m=\u001b[39m \u001b[43mprepare_arg\u001b[49m\u001b[43m(\u001b[49m\u001b[43mQuantumOperandDeclaration\u001b[49m\u001b[43m(\u001b[49m\u001b[43mname\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcallable_\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 255\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(to_operand, \u001b[38;5;28mstr\u001b[39m):\n\u001b[1;32m 256\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m [QuantumFunctionCall(function\u001b[38;5;241m=\u001b[39mto_operand)]\n", - "File \u001b[0;32m~/opt/anaconda3/envs/Classiq/lib/python3.9/site-packages/classiq/qmod/quantum_expandable.py:230\u001b[0m, in \u001b[0;36mprepare_arg\u001b[0;34m(arg_decl, val)\u001b[0m\n\u001b[1;32m 227\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(val, QExpandable):\n\u001b[1;32m 228\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m val\u001b[38;5;241m.\u001b[39mfunc_decl\u001b[38;5;241m.\u001b[39mname\n\u001b[0;32m--> 230\u001b[0m \u001b[43mval\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mexpand\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 231\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m QuantumLambdaFunction(\n\u001b[1;32m 232\u001b[0m rename_params\u001b[38;5;241m=\u001b[39mval\u001b[38;5;241m.\u001b[39minfer_rename_params(), body\u001b[38;5;241m=\u001b[39mval\u001b[38;5;241m.\u001b[39mbody\n\u001b[1;32m 233\u001b[0m )\n", - "File \u001b[0;32m~/opt/anaconda3/envs/Classiq/lib/python3.9/site-packages/classiq/qmod/quantum_expandable.py:86\u001b[0m, in \u001b[0;36mQExpandable.expand\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 84\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m QExpandable\u001b[38;5;241m.\u001b[39mSTACK:\n\u001b[1;32m 85\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mself\u001b[39m:\n\u001b[0;32m---> 86\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_py_callable\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_get_positional_args\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n", - "Cell \u001b[0;32mIn[11], line 20\u001b[0m, in \u001b[0;36mmain..\u001b[0;34m()\u001b[0m\n\u001b[1;32m 18\u001b[0m y\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m5\u001b[39m\n\u001b[1;32m 19\u001b[0m z\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m2\u001b[39m\n\u001b[0;32m---> 20\u001b[0m within_apply(\u001b[38;5;28;01mlambda\u001b[39;00m: inplace_linear_attempt_a(x,y), \u001b[38;5;28;01mlambda\u001b[39;00m: \u001b[43mlinear_func_a\u001b[49m\u001b[43m(\u001b[49m\u001b[43mz\u001b[49m\u001b[43m,\u001b[49m\u001b[43mres\u001b[49m\u001b[43m)\u001b[49m)\n", - "File \u001b[0;32m~/opt/anaconda3/envs/Classiq/lib/python3.9/site-packages/classiq/qmod/quantum_function.py:64\u001b[0m, in \u001b[0;36mQFunc.__call__\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 63\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m__call__\u001b[39m(\u001b[38;5;28mself\u001b[39m, \u001b[38;5;241m*\u001b[39margs: Any, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs: Any) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m---> 64\u001b[0m \u001b[38;5;28;43msuper\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[38;5;21;43m__call__\u001b[39;49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 65\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_add_native_func_def()\n", - "File \u001b[0;32m~/opt/anaconda3/envs/Classiq/lib/python3.9/site-packages/classiq/qmod/quantum_callable.py:50\u001b[0m, in \u001b[0;36mQCallable.__call__\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 47\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m QCallable\u001b[38;5;241m.\u001b[39mCURRENT_EXPANDABLE \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m 48\u001b[0m source_ref \u001b[38;5;241m=\u001b[39m get_source_ref(sys\u001b[38;5;241m.\u001b[39m_getframe(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mFRAME_DEPTH))\n\u001b[1;32m 49\u001b[0m QCallable\u001b[38;5;241m.\u001b[39mCURRENT_EXPANDABLE\u001b[38;5;241m.\u001b[39mappend_statement_to_body(\n\u001b[0;32m---> 50\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcreate_quantum_function_call\u001b[49m\u001b[43m(\u001b[49m\u001b[43msource_ref\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 51\u001b[0m )\n\u001b[1;32m 52\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m\n", - "File \u001b[0;32m~/opt/anaconda3/envs/Classiq/lib/python3.9/site-packages/classiq/qmod/quantum_expandable.py:116\u001b[0m, in \u001b[0;36mQExpandable.create_quantum_function_call\u001b[0;34m(self, source_ref_, *args, **kwargs)\u001b[0m\n\u001b[1;32m 113\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mcreate_quantum_function_call\u001b[39m(\n\u001b[1;32m 114\u001b[0m \u001b[38;5;28mself\u001b[39m, source_ref_: SourceReference, \u001b[38;5;241m*\u001b[39margs: Any, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs: Any\n\u001b[1;32m 115\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m QuantumFunctionCall:\n\u001b[0;32m--> 116\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_create_quantum_function_call\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 117\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfunc_decl\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43msource_ref_\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\n\u001b[1;32m 118\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m~/opt/anaconda3/envs/Classiq/lib/python3.9/site-packages/classiq/qmod/quantum_expandable.py:292\u001b[0m, in \u001b[0;36m_create_quantum_function_call\u001b[0;34m(decl_, index_, source_ref_, *args, **kwargs)\u001b[0m\n\u001b[1;32m 290\u001b[0m arg_decls \u001b[38;5;241m=\u001b[39m decl_\u001b[38;5;241m.\u001b[39mget_positional_arg_decls()\n\u001b[1;32m 291\u001b[0m arg_list \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mlist\u001b[39m(args)\n\u001b[0;32m--> 292\u001b[0m prepared_args \u001b[38;5;241m=\u001b[39m \u001b[43m_prepare_args\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdecl_\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43marg_list\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 294\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m kwargs:\n\u001b[1;32m 295\u001b[0m bad_kwarg \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mnext\u001b[39m(\u001b[38;5;28miter\u001b[39m(kwargs))\n", - "File \u001b[0;32m~/opt/anaconda3/envs/Classiq/lib/python3.9/site-packages/classiq/qmod/quantum_expandable.py:278\u001b[0m, in \u001b[0;36m_prepare_args\u001b[0;34m(decl, arg_list, kwargs)\u001b[0m\n\u001b[1;32m 276\u001b[0m error_message \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m _get_operand_hint(decl, arg_decl)\n\u001b[1;32m 277\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m ClassiqValueError(error_message)\n\u001b[0;32m--> 278\u001b[0m result\u001b[38;5;241m.\u001b[39mappend(\u001b[43mprepare_arg\u001b[49m\u001b[43m(\u001b[49m\u001b[43marg_decl\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43marg\u001b[49m\u001b[43m)\u001b[49m)\n\u001b[1;32m 280\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m result\n", - "File \u001b[0;32m~/opt/anaconda3/envs/Classiq/lib/python3.9/site-packages/classiq/qmod/quantum_expandable.py:214\u001b[0m, in \u001b[0;36mprepare_arg\u001b[0;34m(arg_decl, val)\u001b[0m\n\u001b[1;32m 212\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m Expression(expr\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mstr\u001b[39m(val))\n\u001b[1;32m 213\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(arg_decl, PortDeclaration):\n\u001b[0;32m--> 214\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mval\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_handle_binding\u001b[49m()\n\u001b[1;32m 215\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 216\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(val, \u001b[38;5;28mlist\u001b[39m):\n", - "\u001b[0;31mAttributeError\u001b[0m: 'int' object has no attribute 'get_handle_binding'" - ] - } - ], - "source": [ - "@qfunc\n", - "def inplace_linear_attempt_a(x:CInt,y:CInt) -> None:\n", - " temp = QNum(\"tmp\")\n", - " temp |= x + y\n", - " \n", - " \n", - "\n", - "@qfunc\n", - "def linear_func_a(temp: QNum, z: CInt, res: Output[QNum]):\n", - " res |= temp +z\n", - "\n", - "@qfunc\n", - "def main(temp: Output[QNum],res: Output[QNum] ) -> None:\n", - " #x = QNum(\"x\")\n", - " #y = QNum(\"y\")\n", - " #z = QNum(\"z\")\n", - " x=3\n", - " y=5\n", - " z=2\n", - " within_apply(lambda: inplace_linear_attempt_a(x,y), lambda: linear_func_a(z,res))\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [ - { - "ename": "ClassiqValueError", - "evalue": "'linear_add_s1' is missing required argument for 'y'\nIf you need further assistance, please reach out on our Community Slack channel at: https://short.classiq.io/join-slack\nIf the error persists feel free to open a ticket at: https://short.classiq.io/support", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mClassiqValueError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[25], line 21\u001b[0m\n\u001b[1;32m 18\u001b[0m within_apply(\u001b[38;5;28;01mlambda\u001b[39;00m: linear_add_s1(x,y,z), \u001b[38;5;28;01mlambda\u001b[39;00m: linear_add_s1(z))\n\u001b[1;32m 19\u001b[0m \u001b[38;5;66;03m#within\u001b[39;00m\n\u001b[0;32m---> 21\u001b[0m qmod \u001b[38;5;241m=\u001b[39m \u001b[43mcreate_model\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmain\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 22\u001b[0m qprog \u001b[38;5;241m=\u001b[39m synthesize(qmod)\n\u001b[1;32m 23\u001b[0m show(qprog)\n", - "File \u001b[0;32m~/opt/anaconda3/envs/Classiq/lib/python3.9/site-packages/classiq/qmod/quantum_function.py:44\u001b[0m, in \u001b[0;36mcreate_model\u001b[0;34m(entry_point, constraints, execution_preferences, preferences, classical_execution_function)\u001b[0m\n\u001b[1;32m 40\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m entry_point\u001b[38;5;241m.\u001b[39mfunc_decl\u001b[38;5;241m.\u001b[39mname \u001b[38;5;241m!=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmain\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[1;32m 41\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m ClassiqError(\n\u001b[1;32m 42\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mThe entry point function must be named \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mmain\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m, got \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mentry_point\u001b[38;5;241m.\u001b[39mfunc_decl\u001b[38;5;241m.\u001b[39mname\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 43\u001b[0m )\n\u001b[0;32m---> 44\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mentry_point\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcreate_model\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 45\u001b[0m \u001b[43m \u001b[49m\u001b[43mconstraints\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mexecution_preferences\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mpreferences\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mclassical_execution_function\u001b[49m\n\u001b[1;32m 46\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241m.\u001b[39mget_model()\n", - "File \u001b[0;32m~/opt/anaconda3/envs/Classiq/lib/python3.9/site-packages/classiq/qmod/quantum_function.py:89\u001b[0m, in \u001b[0;36mQFunc.create_model\u001b[0;34m(self, constraints, execution_preferences, preferences, classical_execution_function)\u001b[0m\n\u001b[1;32m 87\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_qmodule\u001b[38;5;241m.\u001b[39mconstants \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mdict\u001b[39m()\n\u001b[1;32m 88\u001b[0m QConstant\u001b[38;5;241m.\u001b[39mset_current_model(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_qmodule)\n\u001b[0;32m---> 89\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_add_native_func_def\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 90\u001b[0m model_extra_settings: List[Tuple[\u001b[38;5;28mstr\u001b[39m, Any]] \u001b[38;5;241m=\u001b[39m [\n\u001b[1;32m 91\u001b[0m (\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mconstraints\u001b[39m\u001b[38;5;124m\"\u001b[39m, constraints),\n\u001b[1;32m 92\u001b[0m (\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mexecution_preferences\u001b[39m\u001b[38;5;124m\"\u001b[39m, execution_preferences),\n\u001b[1;32m 93\u001b[0m (\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mpreferences\u001b[39m\u001b[38;5;124m\"\u001b[39m, preferences),\n\u001b[1;32m 94\u001b[0m ]\n\u001b[1;32m 95\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m classical_execution_function \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n", - "File \u001b[0;32m~/opt/anaconda3/envs/Classiq/lib/python3.9/site-packages/classiq/qmod/quantum_function.py:110\u001b[0m, in \u001b[0;36mQFunc._add_native_func_def\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 108\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfunc_decl\u001b[38;5;241m.\u001b[39mname \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_qmodule\u001b[38;5;241m.\u001b[39mnative_defs:\n\u001b[1;32m 109\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m\n\u001b[0;32m--> 110\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mexpand\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 111\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_qmodule\u001b[38;5;241m.\u001b[39mnative_defs[\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfunc_decl\u001b[38;5;241m.\u001b[39mname] \u001b[38;5;241m=\u001b[39m NativeFunctionDefinition(\n\u001b[1;32m 112\u001b[0m \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfunc_decl\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__dict__\u001b[39m, body\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mbody\n\u001b[1;32m 113\u001b[0m )\n", - "File \u001b[0;32m~/opt/anaconda3/envs/Classiq/lib/python3.9/site-packages/classiq/qmod/quantum_expandable.py:85\u001b[0m, in \u001b[0;36mQExpandable.expand\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 83\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mexpand\u001b[39m(\u001b[38;5;28mself\u001b[39m) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 84\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mself\u001b[39m:\n\u001b[0;32m---> 85\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_py_callable\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_get_positional_args\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n", - "Cell \u001b[0;32mIn[25], line 18\u001b[0m, in \u001b[0;36mmain\u001b[0;34m(res)\u001b[0m\n\u001b[1;32m 16\u001b[0m prepare_int(\u001b[38;5;241m5\u001b[39m,y)\n\u001b[1;32m 17\u001b[0m prepare_int(\u001b[38;5;241m2\u001b[39m,z)\n\u001b[0;32m---> 18\u001b[0m \u001b[43mwithin_apply\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43;01mlambda\u001b[39;49;00m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mlinear_add_s1\u001b[49m\u001b[43m(\u001b[49m\u001b[43mx\u001b[49m\u001b[43m,\u001b[49m\u001b[43my\u001b[49m\u001b[43m,\u001b[49m\u001b[43mz\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mlambda\u001b[39;49;00m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mlinear_add_s1\u001b[49m\u001b[43m(\u001b[49m\u001b[43mz\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m~/opt/anaconda3/envs/Classiq/lib/python3.9/site-packages/classiq/qmod/builtins/operations.py:182\u001b[0m, in \u001b[0;36mwithin_apply\u001b[0;34m(compute, action)\u001b[0m\n\u001b[1;32m 177\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m QCallable\u001b[38;5;241m.\u001b[39mCURRENT_EXPANDABLE \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m 178\u001b[0m source_ref \u001b[38;5;241m=\u001b[39m get_source_ref(sys\u001b[38;5;241m.\u001b[39m_getframe(\u001b[38;5;241m1\u001b[39m))\n\u001b[1;32m 179\u001b[0m QCallable\u001b[38;5;241m.\u001b[39mCURRENT_EXPANDABLE\u001b[38;5;241m.\u001b[39mappend_statement_to_body(\n\u001b[1;32m 180\u001b[0m WithinApply(\n\u001b[1;32m 181\u001b[0m compute\u001b[38;5;241m=\u001b[39m_operand_to_body(compute),\n\u001b[0;32m--> 182\u001b[0m action\u001b[38;5;241m=\u001b[39m\u001b[43m_operand_to_body\u001b[49m\u001b[43m(\u001b[49m\u001b[43maction\u001b[49m\u001b[43m)\u001b[49m,\n\u001b[1;32m 183\u001b[0m source_ref\u001b[38;5;241m=\u001b[39msource_ref,\n\u001b[1;32m 184\u001b[0m )\n\u001b[1;32m 185\u001b[0m )\n", - "File \u001b[0;32m~/opt/anaconda3/envs/Classiq/lib/python3.9/site-packages/classiq/qmod/builtins/operations.py:284\u001b[0m, in \u001b[0;36m_operand_to_body\u001b[0;34m(callable_)\u001b[0m\n\u001b[1;32m 283\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_operand_to_body\u001b[39m(callable_: Union[QCallable, Callable[[], \u001b[38;5;28;01mNone\u001b[39;00m]]) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m StatementBlock:\n\u001b[0;32m--> 284\u001b[0m to_operand \u001b[38;5;241m=\u001b[39m \u001b[43mprepare_arg\u001b[49m\u001b[43m(\u001b[49m\u001b[43mQuantumOperandDeclaration\u001b[49m\u001b[43m(\u001b[49m\u001b[43mname\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcallable_\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 285\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(to_operand, \u001b[38;5;28mstr\u001b[39m):\n\u001b[1;32m 286\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m [QuantumFunctionCall(function\u001b[38;5;241m=\u001b[39mto_operand)]\n", - "File \u001b[0;32m~/opt/anaconda3/envs/Classiq/lib/python3.9/site-packages/classiq/qmod/quantum_expandable.py:229\u001b[0m, in \u001b[0;36mprepare_arg\u001b[0;34m(arg_decl, val)\u001b[0m\n\u001b[1;32m 226\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(val, QExpandable):\n\u001b[1;32m 227\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m val\u001b[38;5;241m.\u001b[39mfunc_decl\u001b[38;5;241m.\u001b[39mname\n\u001b[0;32m--> 229\u001b[0m \u001b[43mval\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mexpand\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 230\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m QuantumLambdaFunction(\n\u001b[1;32m 231\u001b[0m rename_params\u001b[38;5;241m=\u001b[39mval\u001b[38;5;241m.\u001b[39minfer_rename_params(), body\u001b[38;5;241m=\u001b[39mval\u001b[38;5;241m.\u001b[39mbody\n\u001b[1;32m 232\u001b[0m )\n", - "File \u001b[0;32m~/opt/anaconda3/envs/Classiq/lib/python3.9/site-packages/classiq/qmod/quantum_expandable.py:85\u001b[0m, in \u001b[0;36mQExpandable.expand\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 83\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mexpand\u001b[39m(\u001b[38;5;28mself\u001b[39m) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 84\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mself\u001b[39m:\n\u001b[0;32m---> 85\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_py_callable\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_get_positional_args\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n", - "Cell \u001b[0;32mIn[25], line 18\u001b[0m, in \u001b[0;36mmain..\u001b[0;34m()\u001b[0m\n\u001b[1;32m 16\u001b[0m prepare_int(\u001b[38;5;241m5\u001b[39m,y)\n\u001b[1;32m 17\u001b[0m prepare_int(\u001b[38;5;241m2\u001b[39m,z)\n\u001b[0;32m---> 18\u001b[0m within_apply(\u001b[38;5;28;01mlambda\u001b[39;00m: linear_add_s1(x,y,z), \u001b[38;5;28;01mlambda\u001b[39;00m: \u001b[43mlinear_add_s1\u001b[49m\u001b[43m(\u001b[49m\u001b[43mz\u001b[49m\u001b[43m)\u001b[49m)\n", - "File \u001b[0;32m~/opt/anaconda3/envs/Classiq/lib/python3.9/site-packages/classiq/qmod/quantum_function.py:75\u001b[0m, in \u001b[0;36mQFunc.__call__\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 74\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m__call__\u001b[39m(\u001b[38;5;28mself\u001b[39m, \u001b[38;5;241m*\u001b[39margs: Any, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs: Any) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m---> 75\u001b[0m \u001b[38;5;28;43msuper\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[38;5;21;43m__call__\u001b[39;49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 76\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_add_native_func_def()\n", - "File \u001b[0;32m~/opt/anaconda3/envs/Classiq/lib/python3.9/site-packages/classiq/qmod/quantum_callable.py:49\u001b[0m, in \u001b[0;36mQCallable.__call__\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 46\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m QCallable\u001b[38;5;241m.\u001b[39mCURRENT_EXPANDABLE \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m 47\u001b[0m source_ref \u001b[38;5;241m=\u001b[39m get_source_ref(sys\u001b[38;5;241m.\u001b[39m_getframe(\u001b[38;5;241m1\u001b[39m))\n\u001b[1;32m 48\u001b[0m QCallable\u001b[38;5;241m.\u001b[39mCURRENT_EXPANDABLE\u001b[38;5;241m.\u001b[39mappend_statement_to_body(\n\u001b[0;32m---> 49\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcreate_quantum_function_call\u001b[49m\u001b[43m(\u001b[49m\u001b[43msource_ref\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 50\u001b[0m )\n\u001b[1;32m 51\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m\n", - "File \u001b[0;32m~/opt/anaconda3/envs/Classiq/lib/python3.9/site-packages/classiq/qmod/quantum_expandable.py:115\u001b[0m, in \u001b[0;36mQExpandable.create_quantum_function_call\u001b[0;34m(self, source_ref_, *args, **kwargs)\u001b[0m\n\u001b[1;32m 112\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mcreate_quantum_function_call\u001b[39m(\n\u001b[1;32m 113\u001b[0m \u001b[38;5;28mself\u001b[39m, source_ref_: SourceReference, \u001b[38;5;241m*\u001b[39margs: Any, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs: Any\n\u001b[1;32m 114\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m QuantumFunctionCall:\n\u001b[0;32m--> 115\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_create_quantum_function_call\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 116\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfunc_decl\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43msource_ref_\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\n\u001b[1;32m 117\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m~/opt/anaconda3/envs/Classiq/lib/python3.9/site-packages/classiq/qmod/quantum_expandable.py:291\u001b[0m, in \u001b[0;36m_create_quantum_function_call\u001b[0;34m(decl_, index_, source_ref_, *args, **kwargs)\u001b[0m\n\u001b[1;32m 289\u001b[0m arg_decls \u001b[38;5;241m=\u001b[39m decl_\u001b[38;5;241m.\u001b[39mget_positional_arg_decls()\n\u001b[1;32m 290\u001b[0m arg_list \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mlist\u001b[39m(args)\n\u001b[0;32m--> 291\u001b[0m prepared_args \u001b[38;5;241m=\u001b[39m \u001b[43m_prepare_args\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdecl_\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43marg_list\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 293\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m kwargs:\n\u001b[1;32m 294\u001b[0m bad_kwarg \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mnext\u001b[39m(\u001b[38;5;28miter\u001b[39m(kwargs))\n", - "File \u001b[0;32m~/opt/anaconda3/envs/Classiq/lib/python3.9/site-packages/classiq/qmod/quantum_expandable.py:276\u001b[0m, in \u001b[0;36m_prepare_args\u001b[0;34m(decl, arg_list, kwargs)\u001b[0m\n\u001b[1;32m 274\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(arg_decl, QuantumOperandDeclaration):\n\u001b[1;32m 275\u001b[0m error_message \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m _get_operand_hint(decl, arg_decl)\n\u001b[0;32m--> 276\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m ClassiqValueError(error_message)\n\u001b[1;32m 277\u001b[0m result\u001b[38;5;241m.\u001b[39mappend(prepare_arg(arg_decl, arg))\n\u001b[1;32m 279\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m result\n", - "\u001b[0;31mClassiqValueError\u001b[0m: 'linear_add_s1' is missing required argument for 'y'\nIf you need further assistance, please reach out on our Community Slack channel at: https://short.classiq.io/join-slack\nIf the error persists feel free to open a ticket at: https://short.classiq.io/support" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "@qfunc\n", - "def linear_add_s1(x:CInt, y:CInt, z:CInt) -> None:\n", - " temp = QNum(\"temp\")\n", - " res = QNum(\"res\")\n", - " temp |= x + y\n", - " res |= temp +z\n", - " \n", - "@qfunc\n", - "def main(res: Output[QNum]):\n", - " x = QNum(\"x\")\n", - " y = QNum(\"y\")\n", - " z = QNum(\"z\")\n", - " prepare_int(3,x)\n", - " prepare_int(5,y)\n", - " prepare_int(2,z)\n", - " within_apply(lambda: linear_add_s1(x,y,z), lambda: linear_add_s1(z))\n", - " #within\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Exercise 8b\n", - "\n", - "Why should we use `within-apply` and not just write three concatenated functions?\n", - "To understand the motivation, we will create another arithmetic circuit.\n", - "This time, however, we will also set Classiq’s synthesis engine to optimize on the circuit’s number of qubits, i.e., its width.\n", - "\n", - "Setting constraints can be done via the `set_constraints` operation - see [here](https://docs.classiq.io/latest/user-guide/platform/synthesis/constraints/).\n", - "\n", - "Perform the operation `res = w + x + y + z`, where w is initialized to 4 and the rest as before:\n", - "\n", - "1. Add `x` and `y` (as part of the `within_apply` operation)\n", - "2. Add the result to `z` (as part of the within_apply operation)\n", - "3. Uncompute the result of the first operation (as part of the `within_apply` operation)\n", - "4. Add the result of the second operation to `w`. There’s no need to perform another uncomputation, as this brings our calculation to an end.\n", - "\n", - "Create the model, optimize on the circuit’s width, and run the circuit. Can you identify where qubits have been released and reused?" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Bonus: Use a Single Arithmetic Expression\n", - "\n", - "What happens when we don't manually decompose this expression?\n", - "\n", - "Use Classiq’s arithmetic engine to calculate `res |= x + y + z + w` and optimize for width.\n", - "Look at the resulting quantum program - can you identify the computation and uncomputation blocks? What else did you notice?" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 9 - In-place Arithmetics\n", - "\n", - "For the following exercise we will use numeric quantum variables that represent fixed-point reals.\n", - "\n", - "Arithmetic expressions can be calculated in-place into a target variable, without allocating new qubits to store the result. This is done using the in-place-xor operator.\n", - "\n", - "See also [Numeric assignment](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/numeric-assignment/#semantics).\n", - "\n", - "In-place assignment is often used to nest arithmetic expressions under quantum operators. Note that out-of-place assignment requires its left-value variable to be un-initialized, and therefore cannot be used under an operator if the variable is declared outside its scope. Applying operators to arithmetic expressions is required in many algorithms. One example is the piecewise evaluation of mathematical functions - calculating different expressions over `x` depending on the subdomain where `x` falls.\n", - "\n", - "For this exercise, replace the missing parts in the code snippet below to evaluate the result of:\n", - "\n", - "$$\n", - "f(x) = \\begin{cases}\n", - " 2x + 1 & \\text{ if } 0 \\leq x < 0.5 \\\\\n", - " x + 0.5 & \\text{ if } 0.5 \\leq x < 1\n", - " \\end{cases}\n", - "$$\n", - "\n", - "Notes:\n", - "- We cannot use `x` directly as the control variable in a `constrol` operator, because it also occurs in the nested scope. to determine if `x` is in the lower or higher half of the domain we duplicate the most significant bit onto a separate variable called `label`.\n", - "- In Python assignment operators cannot be used in lambda expressions, so the computation of the function needs to be factored out to a named Python function (but not necessarily a Qmod function).\n" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [ - { - "ename": "TypeError", - "evalue": "object of type 'int' has no len()", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[26], line 28\u001b[0m\n\u001b[1;32m 24\u001b[0m X(label)\n\u001b[1;32m 25\u001b[0m control(label, \u001b[38;5;28;01mlambda\u001b[39;00m: linear_func(\u001b[38;5;241m2.0\u001b[39m, \u001b[38;5;241m1.0\u001b[39m, x, res)) \u001b[38;5;66;03m# 0.0 <= x < 0.5\u001b[39;00m\n\u001b[0;32m---> 28\u001b[0m qmod \u001b[38;5;241m=\u001b[39m \u001b[43mcreate_model\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmain\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 29\u001b[0m qprog \u001b[38;5;241m=\u001b[39m synthesize(qmod)\n\u001b[1;32m 30\u001b[0m show(qprog)\n", - "File \u001b[0;32m~/opt/anaconda3/envs/Classiq/lib/python3.9/site-packages/classiq/qmod/quantum_function.py:40\u001b[0m, in \u001b[0;36mcreate_model\u001b[0;34m(entry_point, constraints, execution_preferences, preferences, classical_execution_function)\u001b[0m\n\u001b[1;32m 33\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mcreate_model\u001b[39m(\n\u001b[1;32m 34\u001b[0m entry_point: \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mQFunc\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[1;32m 35\u001b[0m constraints: Optional[Constraints] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 38\u001b[0m classical_execution_function: Optional[CFunc] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m 39\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m SerializedModel:\n\u001b[0;32m---> 40\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[43mentry_point\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfunc_decl\u001b[49m\u001b[38;5;241m.\u001b[39mname \u001b[38;5;241m!=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmain\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[1;32m 41\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m ClassiqError(\n\u001b[1;32m 42\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mThe entry point function must be named \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mmain\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m, got \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mentry_point\u001b[38;5;241m.\u001b[39mfunc_decl\u001b[38;5;241m.\u001b[39mname\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 43\u001b[0m )\n\u001b[1;32m 44\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m entry_point\u001b[38;5;241m.\u001b[39mcreate_model(\n\u001b[1;32m 45\u001b[0m constraints, execution_preferences, preferences, classical_execution_function\n\u001b[1;32m 46\u001b[0m )\u001b[38;5;241m.\u001b[39mget_model()\n", - "File \u001b[0;32m~/opt/anaconda3/envs/Classiq/lib/python3.9/site-packages/classiq/qmod/quantum_function.py:71\u001b[0m, in \u001b[0;36mQFunc.func_decl\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 67\u001b[0m \u001b[38;5;129m@property\u001b[39m\n\u001b[1;32m 68\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mfunc_decl\u001b[39m(\u001b[38;5;28mself\u001b[39m) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m QuantumFunctionDeclaration:\n\u001b[1;32m 69\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_qmodule\u001b[38;5;241m.\u001b[39mnative_defs\u001b[38;5;241m.\u001b[39mget(\n\u001b[1;32m 70\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_py_callable\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m,\n\u001b[0;32m---> 71\u001b[0m \u001b[43minfer_func_decl\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_py_callable\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mqmodule\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_qmodule\u001b[49m\u001b[43m)\u001b[49m,\n\u001b[1;32m 72\u001b[0m )\n", - "File \u001b[0;32m~/opt/anaconda3/envs/Classiq/lib/python3.9/site-packages/classiq/qmod/declaration_inferrer.py:160\u001b[0m, in \u001b[0;36minfer_func_decl\u001b[0;34m(py_func, qmodule)\u001b[0m\n\u001b[1;32m 155\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21minfer_func_decl\u001b[39m(\n\u001b[1;32m 156\u001b[0m py_func: Callable, qmodule: ModelStateContainer\n\u001b[1;32m 157\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m QuantumFunctionDeclaration:\n\u001b[1;32m 158\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m QuantumFunctionDeclaration(\n\u001b[1;32m 159\u001b[0m name\u001b[38;5;241m=\u001b[39munmangle_keyword(py_func\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m),\n\u001b[0;32m--> 160\u001b[0m positional_arg_declarations\u001b[38;5;241m=\u001b[39m\u001b[43m_extract_positional_args\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 161\u001b[0m \u001b[43m \u001b[49m\u001b[43mpy_func\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[38;5;18;43m__annotations__\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mqmodule\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mqmodule\u001b[49m\n\u001b[1;32m 162\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m,\n\u001b[1;32m 163\u001b[0m )\n", - "File \u001b[0;32m~/opt/anaconda3/envs/Classiq/lib/python3.9/site-packages/classiq/qmod/declaration_inferrer.py:146\u001b[0m, in \u001b[0;36m_extract_positional_args\u001b[0;34m(args, qmodule)\u001b[0m\n\u001b[1;32m 144\u001b[0m result\u001b[38;5;241m.\u001b[39mappend(_extract_param_decl(name, py_type, qmodule\u001b[38;5;241m=\u001b[39mqmodule))\n\u001b[1;32m 145\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m QVar\u001b[38;5;241m.\u001b[39mfrom_type_hint(py_type) \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m--> 146\u001b[0m result\u001b[38;5;241m.\u001b[39mappend(\u001b[43m_extract_port_decl\u001b[49m\u001b[43m(\u001b[49m\u001b[43mname\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mpy_type\u001b[49m\u001b[43m)\u001b[49m)\n\u001b[1;32m 147\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 148\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m (get_origin(py_type) \u001b[38;5;129;01mor\u001b[39;00m py_type) \u001b[38;5;129;01mis\u001b[39;00m QCallable \u001b[38;5;129;01mor\u001b[39;00m (\n\u001b[1;32m 149\u001b[0m get_origin(py_type) \u001b[38;5;129;01mor\u001b[39;00m py_type\n\u001b[1;32m 150\u001b[0m ) \u001b[38;5;129;01mis\u001b[39;00m QCallableList\n", - "File \u001b[0;32m~/opt/anaconda3/envs/Classiq/lib/python3.9/site-packages/classiq/qmod/declaration_inferrer.py:111\u001b[0m, in \u001b[0;36m_extract_port_decl\u001b[0;34m(name, py_type)\u001b[0m\n\u001b[1;32m 106\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(py_type, _AnnotatedAlias):\n\u001b[1;32m 107\u001b[0m py_type \u001b[38;5;241m=\u001b[39m py_type\u001b[38;5;241m.\u001b[39m__args__[\u001b[38;5;241m0\u001b[39m]\n\u001b[1;32m 108\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m PortDeclaration(\n\u001b[1;32m 109\u001b[0m name\u001b[38;5;241m=\u001b[39mname,\n\u001b[1;32m 110\u001b[0m direction\u001b[38;5;241m=\u001b[39mdirection,\n\u001b[0;32m--> 111\u001b[0m quantum_type\u001b[38;5;241m=\u001b[39m\u001b[43mqtype\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mto_qmod_quantum_type\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpy_type\u001b[49m\u001b[43m)\u001b[49m,\n\u001b[1;32m 112\u001b[0m )\n", - "File \u001b[0;32m~/opt/anaconda3/envs/Classiq/lib/python3.9/site-packages/classiq/qmod/qmod_variable.py:256\u001b[0m, in \u001b[0;36mQNum.to_qmod_quantum_type\u001b[0;34m(cls, type_hint)\u001b[0m\n\u001b[1;32m 254\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mcls\u001b[39m\u001b[38;5;241m.\u001b[39mQMOD_TYPE()\n\u001b[1;32m 255\u001b[0m type_args \u001b[38;5;241m=\u001b[39m type_args[\u001b[38;5;241m0\u001b[39m]\n\u001b[0;32m--> 256\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28;43mlen\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mtype_args\u001b[49m\u001b[43m)\u001b[49m \u001b[38;5;241m!=\u001b[39m \u001b[38;5;241m3\u001b[39m:\n\u001b[1;32m 257\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m ClassiqValueError(\n\u001b[1;32m 258\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mQNum receives three type arguments: QNum[size: int | CInt, \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 259\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mis_signed: bool | CBool, fraction_digits: int | CInt]\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 260\u001b[0m )\n\u001b[1;32m 261\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mcls\u001b[39m\u001b[38;5;241m.\u001b[39mQMOD_TYPE(\n\u001b[1;32m 262\u001b[0m size\u001b[38;5;241m=\u001b[39mExpression(expr\u001b[38;5;241m=\u001b[39mget_type_hint_expr(type_args[\u001b[38;5;241m0\u001b[39m])),\n\u001b[1;32m 263\u001b[0m is_signed\u001b[38;5;241m=\u001b[39mExpression(expr\u001b[38;5;241m=\u001b[39mget_type_hint_expr(type_args[\u001b[38;5;241m1\u001b[39m])),\n\u001b[1;32m 264\u001b[0m fraction_digits\u001b[38;5;241m=\u001b[39mExpression(expr\u001b[38;5;241m=\u001b[39mget_type_hint_expr(type_args[\u001b[38;5;241m2\u001b[39m])),\n\u001b[1;32m 265\u001b[0m )\n", - "\u001b[0;31mTypeError\u001b[0m: object of type 'int' has no len()" - ] - } - ], - "source": [ - "\n", - "from classiq import *\n", - "\n", - "\n", - "def linear_func(a: float, b: float, x: QNum, res: QNum) -> None:\n", - " res ^= a * x + b\n", - "\n", - "\n", - "@qfunc\n", - "def dup_msb(qba: QArray[QBit], msb: QBit) -> None:\n", - " CX(qba[qba.len - 1], msb)\n", - "\n", - "\n", - "@qfunc\n", - "def main(x: Output[QNum[3, False, 3]], res: Output[QNum[5, False, 3]]) -> None:\n", - " allocate(5, res)\n", - " allocate(3, x)\n", - " hadamard_transform(x)\n", - "\n", - " label = QArray(\"label\")\n", - " allocate(1, label)\n", - "\n", - " dup_msb(x, label)\n", - " control(label, lambda: linear_func(1.0, 0.5, x, res)) # 0.5 <= x < 1.0\n", - " X(label)\n", - " control(label, lambda: linear_func(2.0, 1.0, x, res)) # 0.0 <= x < 0.5\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 10 - State-preparation Algorithm using Quantum-if\n", - "\n", - "#### Binding\n", - "The `bind` operation allows to convert smoothly between different quantum types and split or slice bits when necessary. Here’s an example:" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/303cab63-53d9-4088-ab6c-63ca4022558d?version=0.40.0\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "\n", - "\n", - "from classiq import *\n", - "from math import pi\n", - "\n", - "\n", - "@qfunc\n", - "def main(res: Output[QArray[QBit]]) -> None:\n", - " x: QArray[QBit] = QArray(\"x\")\n", - " allocate(3, x)\n", - " hadamard_transform(x)\n", - "\n", - " lsb = QBit(\"lsb\")\n", - " msb = QNum(\"msb\", 2, False, 0)\n", - " bind(x, [lsb, msb])\n", - "\n", - " control(msb == 1, lambda: RY(pi / 3, lsb)) # msb==1 <==> bit1 bit2 == 01 (binary of decimal 1)\n", - "\n", - " bind([lsb, msb], res)\n", - "\n", - "model = create_model(main)\n", - "qprog = synthesize(model)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The first `bind` operation splits the 3-qubit register `x` into the 2-qubit and single-qubit registers `lsb` and `msb`, respectively.\n", - "\n", - "After the `bind` operation:\n", - "1. The registers `lsb` and `msb` can be operated on as separated registers.\n", - "2. The register`x` is consumed and can no longer be used.\n", - "\n", - "The second `bind` operation concatenates the registers to the output register `res`.\n", - "\n", - "For this exercise, fill in the missing code parts in the above snippet and use the `control` statement to manually generate the following lovely 3-qubit probability distribution: `[1/8, 1/8, 1/8, -sqrt(3)/16, 1/8 + sqrt(3)/16, 1/8, 1/8, 1/8, 1/8]`.\n", - "\n", - "The following series of gates generate it:\n", - "\n", - "Perform the Hadamard transform on all three qubits.\n", - "\n", - "Apply a rotation on the LSB (least-significant bit) conditioned by the MSB being |0> and the second to last MSB being |1>. How would you write this condition using a QNum?\n", - "\n", - "The following series of gates generate it:\n", - "1. Perform the Hadamard transform on all three qubits.\n", - "2. Apply a `pi/3` rotation on the LSB (least-significant bit) conditioned by the MSB being |0> and the second to last MSB being |1>. How would you write this condition using a QNum?\n", - "\n", - "If you want to validate your results without looking at the full solution, compare them to running using Classiq’s built-in `prepare_state` function.\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from classiq import *\n", - "from classiq.qmod.symbolic import sqrt\n", - "\n", - "prob_list= [\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " -sqrt(3) / 16,\n", - " 1 / 8 + sqrt(3) / 16,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " ]\n", - "@qfunc\n", - "def pre_prepared_state(q: QArray[QBit]) -> None:\n", - " prepare_state(\n", - " [\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " -sqrt(3) / 16,\n", - " 1 / 8 + sqrt(3) / 16,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " ],\n", - " 0.0,\n", - " q,\n", - " )\n", - "\n", - "\n", - "# Your code here:" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.18" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/community/QClass_2024/Submissions/HW2/Noah_Nzeki_William_HW2_QClass2024.ipynb b/community/QClass_2024/Submissions/HW2/Noah_Nzeki_William_HW2_QClass2024.ipynb deleted file mode 100755 index c016b0bc..00000000 --- a/community/QClass_2024/Submissions/HW2/Noah_Nzeki_William_HW2_QClass2024.ipynb +++ /dev/null @@ -1,781 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# The Qmod Workshop - Part 2: Higher-Level Concepts\n", - "\n", - "This is the second part of the Qmod workshop, covering exercises 6 through 10. Make sure to go through Part 1 before continuing with this notebook." - ] - }, - { - "cell_type": "code", - "execution_count": 67, - "metadata": {}, - "outputs": [], - "source": [ - "from classiq import *" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 6 - Exponentiation and Pauli Operators\n", - "\n", - "The Qmod language supports different classical types: scalars, arrays, and structs. Structs are objects with member variables, or fields.\n", - "\n", - "See also [Classical Types](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/classical-types/#structs).\n", - "\n", - "The builtin struct type `PauliTerm` is defined as follows:" - ] - }, - { - "cell_type": "code", - "execution_count": 68, - "metadata": {}, - "outputs": [], - "source": [ - "@struct\n", - "class PauliTerm:\n", - " pauli: CArray[Pauli]\n", - " coefficient: CReal" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Note that `Pauli` is an enum for all the Pauli matrices (I, X, Y, Z).\n", - "\n", - "Pauli based hamiltonian can be represented as a list of `PauliTerm`s. A Pauli operator defined this way is the argument to a hamiltonian evolution functions.\n", - "\n", - "In this exercise we will use the Suzuki-Trotter function to find the evolution of `H=0.5XZXX + 0.25YIZI + 0.3 XIZY` (captured as a literal value for the pauli-operator), with the evolution coefficient being 3, the order being 2, and use 4 repetitions.\n", - "\n", - "The declaration of the `suzuki_trotter` function is:" - ] - }, - { - "cell_type": "code", - "execution_count": 69, - "metadata": {}, - "outputs": [], - "source": [ - "@qfunc(external=True)\n", - "def suzuki_trotter(\n", - " pauli_operator: CArray[PauliTerm],\n", - " evolution_coefficient: CReal,\n", - " order: CInt,\n", - " repetitions: CInt,\n", - " qbv: QArray[QBit],\n", - ") -> None:\n", - " pass" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Fill in the missing parts of the following code in order to complete this exercise:" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/946ff782-cf9a-4021-b5b8-50f8aa846fbf?version=0.41.2\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "[0526/215345.162702:ERROR:file_io_posix.cc(153)] open /home/noah/.config/BraveSoftware/Brave-Browser/Crash Reports/pending/1de95ac3-f687-4fe5-bee0-5fd5e91b4c38.lock: File exists (17)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening in existing browser session.\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "@qfunc\n", - "def main(q: Output[QArray[QBit]]) -> None: \n", - " allocate(4, q) \n", - " suzuki_trotter( \n", - " \n", - " [ \n", - " PauliTerm(pauli=[Pauli.X, Pauli.Z, Pauli.X, Pauli.X], coefficient=0.5), \n", - " PauliTerm(pauli=[Pauli.Y, Pauli.I, Pauli.Z, Pauli.I], coefficient=0.25), \n", - " PauliTerm(pauli=[Pauli.X, Pauli.I, Pauli.Z, Pauli.Y], coefficient=0.3), \n", - " ], \n", - " \n", - " evolution_coefficient=3, \n", - " repetitions=4, \n", - " order=2, \n", - " qbv=q, \n", - " )\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 7 - Basic Arithmetics\n", - "\n", - "#### Exercise 7a\n", - "In this exercise we will use quantum numeric variables and calculate expressions over them.\n", - "\n", - "See details on the syntax of numeric types under [Quantum types](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/quantum-types/#syntax).\n", - "See more on quantum expressions under [Numeric assignment](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/numeric-assignment/)\n", - "\n", - "Create the following quantum programs:\n", - "1. Initialize variables `x=2`, `y=7` and computes `res = x + y`.\n", - "2. Initialize variables `x=2`, `y=7` and computes `res = x * y`.\n", - "3. Initialize variables `x=2`, `y=7`, `z=1` and computes `res = x * y - z`.\n", - "\n", - "Guidance:\n", - "* Use the operator `|=` to perform out-of-place assignment of arithmetic expression.\n", - "* To initialize the variables, use the function `prepare_int`.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 71, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/2e9c6e49-3ad0-4635-81b6-423947b61d44?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "\n", - "@qfunc\n", - "def main(x: Output[QNum], y: Output[QNum], res: Output[QNum]) -> None:\n", - " prepare_int(2, x)\n", - " prepare_int(7, y)\n", - " res |= x + y\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from classiq import *\n", - "# Your code here:\n", - "@qfunc\n", - "def main(x: Output[QNum], y: Output[QNum], res: Output[QNum]) -> None: \n", - " prepare_int(2, x) \n", - " prepare_int(7, y) \n", - " res |= x * y\n", - " \n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog) " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "\n", - "@qfunc\n", - "def main(x: Output[QNum], y: Output[QNum], z: Output[QNum], res: Output[QNum]) -> None:\n", - " prepare_int(2, x)\n", - " prepare_int(7, y)\n", - " prepare_int(1, z)\n", - " res |= (x * y) - z\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Exercise 7b\n", - "Declare `x` to be a 2-qubit variable and `y` to be 3-qubit variable.\n", - "\n", - "We will perform an addition of two superposition states: `x` is an equal superposition of `0` and `2`, and `y` is an equal superposition of `1`, `2`, `3`, and `6`.\n", - "\n", - "1. Use `prepare_state` to initialize `x` and `y`. Note that `prepare_state` works with probabilities, not amplitudes.\n", - " The declaration of the `prepare_state` function is:\n", - " ```\n", - " @qfunc(external=True)\n", - " def prepare_state(\n", - " probabilities: CArray[CReal],\n", - " bound: CReal,\n", - " out: Output[QArray[QBit]],\n", - " ) -> None:\n", - " pass\n", - " ```\n", - " (Set the bound to 0 in your code)\n", - "2. Compute `res = x + y`. Execute the resulting circuit. What did you get?" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "ename": "TypeError", - "evalue": "unsupported operand type(s) for +: 'QArray' and 'QArray'", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[36], line 46\u001b[0m\n\u001b[1;32m 41\u001b[0m res\u001b[38;5;241m|\u001b[39m\u001b[38;5;241m=\u001b[39m x \u001b[38;5;241m+\u001b[39m y\n\u001b[1;32m 42\u001b[0m \u001b[38;5;66;03m#add(x, y, res)\u001b[39;00m\n\u001b[1;32m 43\u001b[0m \n\u001b[1;32m 44\u001b[0m \u001b[38;5;66;03m#return res\u001b[39;00m\n\u001b[0;32m---> 46\u001b[0m model \u001b[38;5;241m=\u001b[39m \u001b[43mcreate_model\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmain\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 47\u001b[0m qprog \u001b[38;5;241m=\u001b[39m synthesize(model)\n\u001b[1;32m 48\u001b[0m show(qprog)\n", - "File \u001b[0;32m~/.local/lib/python3.10/site-packages/classiq/qmod/quantum_function.py:43\u001b[0m, in \u001b[0;36mcreate_model\u001b[0;34m(entry_point, constraints, execution_preferences, preferences, classical_execution_function)\u001b[0m\n\u001b[1;32m 39\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m entry_point\u001b[38;5;241m.\u001b[39mfunc_decl\u001b[38;5;241m.\u001b[39mname \u001b[38;5;241m!=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmain\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[1;32m 40\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m ClassiqError(\n\u001b[1;32m 41\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mThe entry point function must be named \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mmain\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m, got \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mentry_point\u001b[38;5;241m.\u001b[39mfunc_decl\u001b[38;5;241m.\u001b[39mname\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 42\u001b[0m )\n\u001b[0;32m---> 43\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mentry_point\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcreate_model\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 44\u001b[0m \u001b[43m \u001b[49m\u001b[43mconstraints\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mexecution_preferences\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mpreferences\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mclassical_execution_function\u001b[49m\n\u001b[1;32m 45\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241m.\u001b[39mget_model()\n", - "File \u001b[0;32m~/.local/lib/python3.10/site-packages/classiq/qmod/quantum_function.py:78\u001b[0m, in \u001b[0;36mQFunc.create_model\u001b[0;34m(self, constraints, execution_preferences, preferences, classical_execution_function)\u001b[0m\n\u001b[1;32m 76\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_qmodule\u001b[38;5;241m.\u001b[39mconstants \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mdict\u001b[39m()\n\u001b[1;32m 77\u001b[0m QConstant\u001b[38;5;241m.\u001b[39mset_current_model(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_qmodule)\n\u001b[0;32m---> 78\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_add_native_func_def\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 79\u001b[0m model_extra_settings: List[Tuple[\u001b[38;5;28mstr\u001b[39m, Any]] \u001b[38;5;241m=\u001b[39m [\n\u001b[1;32m 80\u001b[0m (\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mconstraints\u001b[39m\u001b[38;5;124m\"\u001b[39m, constraints),\n\u001b[1;32m 81\u001b[0m (\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mexecution_preferences\u001b[39m\u001b[38;5;124m\"\u001b[39m, execution_preferences),\n\u001b[1;32m 82\u001b[0m (\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mpreferences\u001b[39m\u001b[38;5;124m\"\u001b[39m, preferences),\n\u001b[1;32m 83\u001b[0m ]\n\u001b[1;32m 84\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m classical_execution_function \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n", - "File \u001b[0;32m~/.local/lib/python3.10/site-packages/classiq/qmod/quantum_function.py:99\u001b[0m, in \u001b[0;36mQFunc._add_native_func_def\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 97\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfunc_decl\u001b[38;5;241m.\u001b[39mname \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_qmodule\u001b[38;5;241m.\u001b[39mnative_defs:\n\u001b[1;32m 98\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m\n\u001b[0;32m---> 99\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mexpand\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 100\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_qmodule\u001b[38;5;241m.\u001b[39mnative_defs[\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfunc_decl\u001b[38;5;241m.\u001b[39mname] \u001b[38;5;241m=\u001b[39m NativeFunctionDefinition(\n\u001b[1;32m 101\u001b[0m \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39m{\u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfunc_decl\u001b[38;5;241m.\u001b[39mdict(), \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39m{\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mbody\u001b[39m\u001b[38;5;124m\"\u001b[39m: \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mbody}}\n\u001b[1;32m 102\u001b[0m )\n", - "File \u001b[0;32m~/.local/lib/python3.10/site-packages/classiq/qmod/quantum_expandable.py:86\u001b[0m, in \u001b[0;36mQExpandable.expand\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 84\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m QExpandable\u001b[38;5;241m.\u001b[39mSTACK:\n\u001b[1;32m 85\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mself\u001b[39m:\n\u001b[0;32m---> 86\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_py_callable\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_get_positional_args\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n", - "Cell \u001b[0;32mIn[36], line 41\u001b[0m, in \u001b[0;36mmain\u001b[0;34m(res)\u001b[0m\n\u001b[1;32m 37\u001b[0m prepare_state(prob_x, \u001b[38;5;241m0.0\u001b[39m, x) \n\u001b[1;32m 39\u001b[0m prepare_state(prob_y, \u001b[38;5;241m0.0\u001b[39m, y) \n\u001b[0;32m---> 41\u001b[0m res\u001b[38;5;241m|\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[43mx\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m+\u001b[39;49m\u001b[43m \u001b[49m\u001b[43my\u001b[49m\n", - "\u001b[0;31mTypeError\u001b[0m: unsupported operand type(s) for +: 'QArray' and 'QArray'" - ] - } - ], - "source": [ - "from classiq import *\n", - "from classiq.qmod.symbolic import sqrt\n", - "\n", - "\n", - "@qfunc(external=True)\n", - "def prepare_state(\n", - " probabilities: CArray[CReal],\n", - " bound: CReal,\n", - " out: Output[QArray[QBit]],\n", - ") -> None:\n", - " pass\n", - "\n", - "#@qfunc\n", - "#def add(x1: Output[QArray], y1: Output[QArray], res1: Output[QArray]):\n", - "# res1 = []\n", - "# for i in x1:\n", - "# for j in y1:\n", - "# res1.append(i + j)\n", - "# return res1\n", - "\n", - "prob_x = [0.5, 0.0, 0.5, 0.0] \n", - "prob_y = [0.0, 0.25, 0.25, 0.25, 0.0, 0.0, 0.25, 0.0] \n", - "\n", - "@qfunc\n", - "def main(res: Output[QArray]) -> None:\n", - " \n", - " #x = (QNum, False,0,\"x\") \n", - " x = QArray(\"x\")\n", - " #x: QArray[QBit] = QArray(\"x\")\n", - " # allocate(2, x)\n", - " #x: QArray[QBit] = QArray(\"x\")\n", - "\n", - " \n", - " #y = (QNum, False,0,\"y\")\n", - " y = QArray(\"y\")\n", - " #y: QArray[QBit] = QArray(\"y\")\n", - "\n", - " allocate(2, x)\n", - " allocate(3, y)\n", - " \n", - " prepare_state(prob_x, 0.0, x) \n", - " \n", - " prepare_state(prob_y, 0.0, y) \n", - "\n", - " #res|= x + y\n", - " #add(x, y, res)\n", - " \n", - " #return res\n", - "\n", - "model = create_model(main)\n", - "qprog = synthesize(model)\n", - "show(qprog)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 8 - Within-Apply\n", - "\n", - "The within-apply statement applies the pattern `U_dagger V U` that appears frequently in quantum computing.\n", - "It allows you to compute some function `V` within the context of another function `U`, and afterward uncompute `U` in order to release auxiliary qubits storing intermediate results.\n", - "\n", - "See also [Within Apply](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/within-apply/).\n", - "\n", - "#### Exercise 8a\n", - "\n", - "In this exercise, we will use within-apply to compute an arithmetic expression in steps.\n", - "\n", - "Use the `within_apply` operation to calculate `res = x + y + z` from a two-variable addition building block with the following steps:\n", - "1. Add `x` and `y`\n", - "2. Add the result to `z`\n", - "3. Uncompute the result of the first operation\n", - "\n", - "For simplicity, initialize the registers to simple integers: `x=3`, `y=5`, `z=2`.\n", - "\n", - "Hints:\n", - "\n", - "* Use a temporary variable.\n", - "* Wrap the arithmetic operation in a function.\n", - "\n", - "Execute the circuit and make sure you obtain the expected result." - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/97d691e6-72da-486a-9996-f222c3e2b2b0?version=0.41.2\n", - "Synthesized circuit width: 16, depth: 100\n", - "Opening in existing browser session.\n" - ] - } - ], - "source": [ - "from classiq import * \n", - "# Your code here:\n", - "@qfunc\n", - "def linear_func(x:QNum, y:QNum, res: Output[QNum]):\n", - " res |= x + y\n", - "\n", - "@qfunc\n", - "def main(res: Output[QNum]):\n", - " x = QNum('x')\n", - " y = QNum('y')\n", - " z = QNum('z') \n", - " prepare_int(3, x) \n", - " prepare_int(5, y) \n", - " prepare_int(2, z) \n", - " \n", - " res1 = QNum('res1')\n", - "\n", - " within_apply(compute= lambda: linear_func(x, y, res1), \n", - " #action= lambda: inplace_xor(res1,z)) \n", - " action= lambda: linear_func(res1,z,res)) \n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)\n", - "\n", - "def print_depth_width(quantum_program): \n", - " generated_circuit = QuantumProgram.parse_raw(quantum_program) \n", - " print(f\"Synthesized circuit width: {generated_circuit.data.width}, depth: {generated_circuit.transpiled_circuit.depth}\")\n", - "print_depth_width(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Exercise 8b\n", - "\n", - "Why should we use `within-apply` and not just write three concatenated functions?\n", - "To understand the motivation, we will create another arithmetic circuit.\n", - "This time, however, we will also set Classiq’s synthesis engine to optimize on the circuit’s number of qubits, i.e., its width.\n", - "\n", - "Setting constraints can be done via the `set_constraints` operation - see [here](https://docs.classiq.io/latest/user-guide/platform/synthesis/constraints/).\n", - "\n", - "Perform the operation `res = w + x + y + z`, where w is initialized to 4 and the rest as before:\n", - "\n", - "1. Add `x` and `y` (as part of the `within_apply` operation)\n", - "2. Add the result to `z` (as part of the within_apply operation)\n", - "3. Uncompute the result of the first operation (as part of the `within_apply` operation)\n", - "4. Add the result of the second operation to `w`. There’s no need to perform another uncomputation, as this brings our calculation to an end.\n", - "\n", - "Create the model, optimize on the circuit’s width, and run the circuit. Can you identify where qubits have been released and reused?" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/a983d0b8-ebd3-4496-9a4c-90af7ad5f361?version=0.41.2\n", - "Opening in existing browser session.\n", - "{'res': 14.0}\n", - "Synthesized circuit width: 16, depth: 165\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def linear_func(x:QNum, y:QNum, res: Output[QNum]):\n", - " res |= x + y\n", - "\n", - "\n", - "@qfunc\n", - "def main(res: Output[QNum]):\n", - " w = QNum('w')\n", - " x = QNum('x')\n", - " y = QNum('y')\n", - " z = QNum('z')\n", - " prepare_int(4, w)\n", - " prepare_int(3, x)\n", - " prepare_int(5, y)\n", - " prepare_int(2, z)\n", - "\n", - "\n", - " \n", - " res1 = QNum('res1')\n", - " res2 = QNum('res2')\n", - " within_apply(compute= lambda: linear_func(x, y, res1),\n", - " action= lambda: linear_func(res1, z, res2))\n", - "\n", - "\n", - " res |= w + res2\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qmod = set_constraints(qmod,Constraints(optimization_parameter='width'))\n", - "qprog = synthesize(qmod)\n", - "show(qprog)\n", - "\n", - "\n", - "def print_parsed_counts(job):\n", - " results = job.result()\n", - " parsed_counts = results[0].value.parsed_counts\n", - " for parsed_state in parsed_counts: print(parsed_state.state)\n", - "\n", - "\n", - "job = execute(qprog)\n", - "print_parsed_counts(job)\n", - "\n", - "\n", - "def print_depth_width(quantum_program):\n", - " generated_circuit = QuantumProgram.parse_raw(quantum_program)\n", - " print(f\"Synthesized circuit width: {generated_circuit.data.width}, depth: {generated_circuit.transpiled_circuit.depth}\")\n", - "print_depth_width(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Bonus: Use a Single Arithmetic Expression\n", - "\n", - "What happens when we don't manually decompose this expression?\n", - "\n", - "Use Classiq’s arithmetic engine to calculate `res |= x + y + z + w` and optimize for width.\n", - "Look at the resulting quantum program - can you identify the computation and uncomputation blocks? What else did you notice?" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def main(res: Output[QNum]):\n", - " w = QNum('w')\n", - " x = QNum('x')\n", - " y = QNum('y')\n", - " z = QNum('z')\n", - " prepare_int(4, w)\n", - " prepare_int(3, x)\n", - " prepare_int(5, y)\n", - " prepare_int(2, z)\n", - "\n", - " res |= x + y + z + w\n", - "\n", - "qmod = create_model(main)\n", - "qmod = set_constraints(qmod,Constraints(optimization_parameter='width'))\n", - "qprog = synthesize(qmod)\n", - "show(qprog)\n", - "\n", - "def print_parsed_counts(job):\n", - " results = job.result()\n", - " parsed_counts = results[0].value.parsed_counts\n", - " for parsed_state in parsed_counts: print(parsed_state.state)\n", - "\n", - "job = execute(qprog)\n", - "print_parsed_counts(job)\n", - "\n", - "def print_depth_width(quantum_program):\n", - " generated_circuit = QuantumProgram.parse_raw(quantum_program)\n", - " print(f\"Synthesized circuit width: {generated_circuit.data.width}, depth: {generated_circuit.transpiled_circuit.depth}\")\n", - "print_depth_width(qprog)\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 9 - In-place Arithmetics\n", - "\n", - "For the following exercise we will use numeric quantum variables that represent fixed-point reals.\n", - "\n", - "Arithmetic expressions can be calculated in-place into a target variable, without allocating new qubits to store the result. This is done using the in-place-xor operator.\n", - "\n", - "See also [Numeric assignment](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/numeric-assignment/#semantics).\n", - "\n", - "In-place assignment is often used to nest arithmetic expressions under quantum operators. Note that out-of-place assignment requires its left-value variable to be un-initialized, and therefore cannot be used under an operator if the variable is declared outside its scope. Applying operators to arithmetic expressions is required in many algorithms. One example is the piecewise evaluation of mathematical functions - calculating different expressions over `x` depending on the subdomain where `x` falls.\n", - "\n", - "For this exercise, replace the missing parts in the code snippet below to evaluate the result of:\n", - "\n", - "$$\n", - "f(x) = \\begin{cases}\n", - " 2x + 1 & \\text{ if } 0 \\leq x < 0.5 \\\\\n", - " x + 0.5 & \\text{ if } 0.5 \\leq x < 1\n", - " \\end{cases}\n", - "$$\n", - "\n", - "Notes:\n", - "- We cannot use `x` directly as the control variable in a `constrol` operator, because it also occurs in the nested scope. to determine if `x` is in the lower or higher half of the domain we duplicate the most significant bit onto a separate variable called `label`.\n", - "- In Python assignment operators cannot be used in lambda expressions, so the computation of the function needs to be factored out to a named Python function (but not necessarily a Qmod function).\n" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/820a33c8-8d74-40f1-910d-bc58a9036ae0?version=0.40.0\n" - ] - } - ], - "source": [ - "\n", - "from classiq import *\n", - "\n", - "\n", - "def linear_func(a: float, b: float, x: QNum, res: QNum) -> None:\n", - " res ^= a * x + b\n", - "\n", - "\n", - "@qfunc\n", - "def dup_msb(qba: QArray[QBit], msb: QBit) -> None:\n", - " CX(qba[qba.len - 1], msb)\n", - "\n", - "\n", - "@qfunc\n", - "def main(x: Output[QNum[3, False, 3]], res: Output[QNum[5, False, 3]]) -> None:\n", - " allocate(5, res)\n", - " allocate(3, x)\n", - " hadamard_transform(x)\n", - "\n", - " label = QArray(\"label\")\n", - " allocate(1, label)\n", - "\n", - " dup_msb(x, label)\n", - " control(label, lambda: linear_func(1.0, 0.5, x, res)) # 0.5 <= x < 1.0\n", - " X(label)\n", - " control(label, lambda: linear_func(2.0, 1.0, x, res)) # 0.0 <= x < 0.5\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 10 - State-preparation Algorithm using Quantum-if\n", - "\n", - "#### Binding\n", - "The `bind` operation allows to convert smoothly between different quantum types and split or slice bits when necessary. Here’s an example:" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/d73b0ff9-bbc6-45d8-8dd8-6b8704e3b4b4?version=0.41.2\n", - "Opening in existing browser session.\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "\n", - "\n", - "from classiq import *\n", - "from math import pi\n", - "\n", - "\n", - "@qfunc\n", - "def main(res: Output[QArray[QBit]]) -> None:\n", - " x: QArray[QBit] = QArray(\"x\")\n", - " allocate(3, x)\n", - " hadamard_transform(x)\n", - "\n", - " lsb = QBit(\"lsb\")\n", - " msb = QNum(\"msb\", 2, False, 0)\n", - " bind(x, [lsb, msb])\n", - "\n", - " control(msb == 1, lambda: RY(pi / 3, lsb)) # msb==1 <==> bit1 bit2 == 01 (binary of decimal 1)\n", - "\n", - " bind([lsb, msb], res)\n", - "\n", - "model = create_model(main)\n", - "qprog = synthesize(model)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The first `bind` operation splits the 3-qubit register `x` into the 2-qubit and single-qubit registers `lsb` and `msb`, respectively.\n", - "\n", - "After the `bind` operation:\n", - "1. The registers `lsb` and `msb` can be operated on as separated registers.\n", - "2. The register`x` is consumed and can no longer be used.\n", - "\n", - "The second `bind` operation concatenates the registers to the output register `res`.\n", - "\n", - "For this exercise, fill in the missing code parts in the above snippet and use the `control` statement to manually generate the following lovely 3-qubit probability distribution: `[1/8, 1/8, 1/8, -sqrt(3)/16, 1/8 + sqrt(3)/16, 1/8, 1/8, 1/8, 1/8]`.\n", - "\n", - "The following series of gates generate it:\n", - "\n", - "Perform the Hadamard transform on all three qubits.\n", - "\n", - "Apply a rotation on the LSB (least-significant bit) conditioned by the MSB being |0> and the second to last MSB being |1>. How would you write this condition using a QNum?\n", - "\n", - "The following series of gates generate it:\n", - "1. Perform the Hadamard transform on all three qubits.\n", - "2. Apply a `pi/3` rotation on the LSB (least-significant bit) conditioned by the MSB being |0> and the second to last MSB being |1>. How would you write this condition using a QNum?\n", - "\n", - "If you want to validate your results without looking at the full solution, compare them to running using Classiq’s built-in `prepare_state` function.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/93ba2b8f-8a93-4ee6-9602-b7261094baab?version=0.41.2\n", - "Opening in existing browser session.\n" - ] - } - ], - "source": [ - "from classiq import *from classiq.qmod.symbolic import sqrtfrom math import piprob_list= [ 1 / 8, 1 / 8, 1 / 8-sqrt(3) / 16, 1 / 8 + sqrt(3) / 16, 1 / 8, 1 / 8, 1 / 8, 1 / 8, ]@qfuncdef pre_prepared_state(q: QArray) -> None: prepare_state( [ 1 / 8, 1 / 8, 1 / 8-sqrt(3) / 16, 1 / 8 + sqrt(3) / 16, 1 / 8, 1 / 8, 1 / 8, 1 / 8, ], 0.0, q, )@qfuncdef main(validate_res: Output[QArray]) -> None: prepare_state(prob_list,0,validate_res) model = create_model(main)qprog = synthesize(model)show(qprog)#========================" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening in existing browser session.\n", - "Opening: https://platform.classiq.io/circuit/23bac3ff-480f-4622-bfe6-00940d44c4f5?version=0.41.2\n", - "Opening in existing browser session.\n" - ] - } - ], - "source": [ - "from classiq import *from classiq.qmod.symbolic import sqrtfrom math import pi@qfuncdef main(res: Output[QArray[QBit]]) -> None: x: QArray[QBit] = QArray(\"x\") allocate(3, x) hadamard_transform(x) lsb = QBit(\"lsb\") msb = QNum(\"msb\", 2, False, 0) bind(x, [lsb, msb]) condition = (msb == 1) # (msb == 2) control(condition, lambda: RY(pi / 3, lsb)) bind([lsb, msb], res)model = create_model(main)qprog = synthesize(model)show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.12" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/community/QClass_2024/Submissions/HW2/Otmane_ainelkitane_HW2_QClass2024.ipynb b/community/QClass_2024/Submissions/HW2/Otmane_ainelkitane_HW2_QClass2024.ipynb deleted file mode 100644 index 5e38de38..00000000 --- a/community/QClass_2024/Submissions/HW2/Otmane_ainelkitane_HW2_QClass2024.ipynb +++ /dev/null @@ -1,891 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "id": "imduW-SQtOk3" - }, - "source": [ - "# The Qmod Workshop - Part 2: Higher-Level Concepts\n", - "\n", - "This is the second part of the Qmod workshop, covering exercises 6 through 10. Make sure to go through Part 1 before continuing with this notebook." - ] - }, - { - "cell_type": "code", - "source": [ - "!pip install -q Classiq -U" - ], - "metadata": { - "id": "ksc8X3m-taCi", - "collapsed": true - }, - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "source": [ - "import classiq\n", - "classiq.authenticate()" - ], - "metadata": { - "id": "1KBSbB9Mt8QJ", - "collapsed": true - }, - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "id": "NQdAHnfItOk8" - }, - "outputs": [], - "source": [ - "from classiq import *" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "DESOvCuxtOk9" - }, - "source": [ - "### Exercise 6 - Exponentiation and Pauli Operators\n", - "\n", - "The Qmod language supports different classical types: scalars, arrays, and structs. Structs are objects with member variables, or fields.\n", - "\n", - "See also [Classical Types](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/classical-types/#structs).\n", - "\n", - "The builtin struct type `PauliTerm` is defined as follows:" - ] - }, - { - "cell_type": "code", - "execution_count": 59, - "metadata": { - "id": "-Pjd0uDjtOk-" - }, - "outputs": [], - "source": [ - "@struct\n", - "class PauliTerm:\n", - " pauli: CArray[Pauli]\n", - " coefficient: CReal" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "DaJq2DowtOk-" - }, - "source": [ - "Note that `Pauli` is an enum for all the Pauli matrices (I, X, Y, Z).\n", - "\n", - "Pauli based hamiltonian can be represented as a list of `PauliTerm`s. A Pauli operator defined this way is the argument to a hamiltonian evolution functions.\n", - "\n", - "In this exercise we will use the Suzuki-Trotter function to find the evolution of `H=0.5XZXX + 0.25YIZI + 0.3 XIZY` (captured as a literal value for the pauli-operator), with the evolution coefficient being 3, the order being 2, and use 4 repetitions.\n", - "\n", - "The declaration of the `suzuki_trotter` function is:" - ] - }, - { - "cell_type": "code", - "execution_count": 60, - "metadata": { - "id": "S--dmztutOk_" - }, - "outputs": [], - "source": [ - "@qfunc(external=True)\n", - "def suzuki_trotter(\n", - " pauli_operator: CArray[PauliTerm],\n", - " evolution_coefficient: CReal,\n", - " order: CInt,\n", - " repetitions: CInt,\n", - " qbv: QArray[QBit],\n", - ") -> None:\n", - " pass" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "pCyWGBFwtOk_" - }, - "source": [ - "Fill in the missing parts of the following code in order to complete this exercise:" - ] - }, - { - "cell_type": "code", - "execution_count": 61, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "KLrQLKW9tOlA", - "outputId": "269fab4f-40e6-44e4-fc39-2bd2719c540a" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Opening: https://platform.classiq.io/circuit/9b2f6f62-9b9a-47d4-9c80-4bb9eea4f36d?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "\n", - "@qfunc\n", - "def main(q: Output[QArray[QBit]]) -> None:\n", - " allocate(4, q)\n", - " suzuki_trotter(\n", - " [ PauliTerm(pauli=[Pauli.X, Pauli.Z, Pauli.X, Pauli.X], coefficient=0.5),\n", - " PauliTerm(pauli=[Pauli.Y, Pauli.I, Pauli.Z, Pauli.I], coefficient=0.25),\n", - " PauliTerm(pauli=[Pauli.X, Pauli.I, Pauli.Z, Pauli.Y], coefficient=0.3)\n", - " ],\n", - " evolution_coefficient=3,\n", - " repetitions=4,\n", - " order=2,\n", - " qbv=q,\n", - " )\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "GAOxjxHwtOlA" - }, - "source": [ - "### Exercise 7 - Basic Arithmetics\n", - "\n", - "#### Exercise 7a\n", - "In this exercise we will use quantum numeric variables and calculate expressions over them.\n", - "\n", - "See details on the syntax of numeric types under [Quantum types](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/quantum-types/#syntax).\n", - "See more on quantum expressions under [Numeric assignment](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/numeric-assignment/)\n", - "\n", - "Create the following quantum programs:\n", - "1. Initialize variables `x=2`, `y=7` and computes `res = x + y`.\n", - "2. Initialize variables `x=2`, `y=7` and computes `res = x * y`.\n", - "3. Initialize variables `x=2`, `y=7`, `z=1` and computes `res = x * y - z`.\n", - "\n", - "Guidance:\n", - "* Use the operator `|=` to perform out-of-place assignment of arithmetic expression.\n", - "* To initialize the variables, use the function `prepare_int`.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 62, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "LEnJN9oqtOlB", - "outputId": "f1c33b87-9631-4773-96c0-5a360929e193" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Opening: https://platform.classiq.io/circuit/99dd77a9-a738-42dc-bf30-556d559377e4?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "@qfunc\n", - "def main(res: Output[QNum]) -> None:\n", - " x = QNum('x')\n", - " prepare_int(2, x)\n", - " y = QNum('y')\n", - " prepare_int(7, y)\n", - "\n", - " #1. Initialize variables x=2, y=7 and computes res = x + y.\n", - " res |= x+y\n", - "\n", - " #2. Initialize variables x=2, y=7 and computes res = x * y.\n", - " # res |= x*y\n", - "\n", - " #3. Initialize variables x=2, y=7, z=1 and computes res = x * y - z\n", - " # res |= x*y-z\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "5rNeEIQVtOlB" - }, - "source": [ - "#### Exercise 7b\n", - "Declare `x` to be a 2-qubit variable and `y` to be 3-qubit variable.\n", - "\n", - "We will perform an addition of two superposition states: `x` is an equal superposition of `0` and `2`, and `y` is an equal superposition of `1`, `2`, `3`, and `6`.\n", - "\n", - "1. Use `prepare_state` to initialize `x` and `y`. Note that `prepare_state` works with probabilities, not amplitudes.\n", - " The declaration of the `prepare_state` function is:\n", - " ```\n", - " @qfunc(external=True)\n", - " def prepare_state(\n", - " probabilities: CArray[CReal],\n", - " bound: CReal,\n", - " out: Output[QArray[QBit]],\n", - " ) -> None:\n", - " pass\n", - " ```\n", - " (Set the bound to 0 in your code)\n", - "2. Compute `res = x + y`. Execute the resulting circuit. What did you get?" - ] - }, - { - "cell_type": "code", - "execution_count": 64, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "EncRsH-mtOlB", - "outputId": "7686bc6d-8325-4037-a757-a293ff81f62e" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Opening: https://platform.classiq.io/circuit/6c198e8d-ea40-4032-94e2-69c8449b5e96?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "@qfunc\n", - "def main(res: Output[QNum]) -> None:\n", - " x = QNum('x')\n", - " y = QNum('y')\n", - "\n", - " prepare_state(probabilities=[0.5,0,0.5,0], bound=0.01, out=x)\n", - " prepare_state(probabilities=[0,1/4,1/4,1/4,0,0,1/4,0], bound=0.01, out=y)\n", - "\n", - " res |= x+y\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "VcU1kBm4tOlC" - }, - "source": [ - "### Exercise 8 - Within-Apply\n", - "\n", - "The within-apply statement applies the pattern `U_dagger V U` that appears frequently in quantum computing.\n", - "It allows you to compute some function `V` within the context of another function `U`, and afterward uncompute `U` in order to release auxiliary qubits storing intermediate results.\n", - "\n", - "See also [Within Apply](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/within-apply/).\n", - "\n", - "#### Exercise 8a\n", - "\n", - "In this exercise, we will use within-apply to compute an arithmetic expression in steps.\n", - "\n", - "Use the `within_apply` operation to calculate `res = x + y + z` from a two-variable addition building block with the following steps:\n", - "1. Add `x` and `y`\n", - "2. Add the result to `z`\n", - "3. Uncompute the result of the first operation\n", - "\n", - "For simplicity, initialize the registers to simple integers: `x=3`, `y=5`, `z=2`.\n", - "\n", - "Hints:\n", - "\n", - "* Use a temporary variable.\n", - "* Wrap the arithmetic operation in a function.\n", - "\n", - "Execute the circuit and make sure you obtain the expected result." - ] - }, - { - "cell_type": "code", - "execution_count": 67, - "metadata": { - "id": "JVLoMCuWtOlC", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "4050a82a-e7f8-4ff1-fae5-379df2127d5a" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Opening: https://platform.classiq.io/circuit/28c69eee-98a2-47e8-ad3d-1470d6246a4d?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "@qfunc\n", - "def my_add_two(a: QNum, b:QNum, res:Output[QNum]) -> None:\n", - " res |= a+b\n", - "\n", - "@qfunc\n", - "def my_adder(a: QNum, b:QNum, c:QNum, res:Output[QNum]):\n", - " tmp = QNum('tmp')\n", - " within_apply(lambda : my_add_two(a,b,tmp), lambda :my_add_two(tmp,c, res))\n", - "\n", - "@qfunc\n", - "def main(res: Output[QNum]) -> None:\n", - " x, y, z = QNum('x'), QNum('y'), QNum('z')\n", - " prepare_int(3,x), prepare_int(5,y), prepare_int(2,z)\n", - "\n", - " my_adder(x,y,z,res)\n", - "\n", - "qmod = create_model(main)\n", - "#qprog_with_constraints = set_constraints(qmod, Constraints(optimization_parameter=\"width\"))\n", - "qprog = synthesize(qmod)\n", - "show(qprog)\n", - "\n", - "\n", - "# Depth: 65\n", - "# Width: 16" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "-m0WKdCbtOlC" - }, - "source": [ - "#### Exercise 8b\n", - "\n", - "Why should we use `within-apply` and not just write three concatenated functions?\n", - "To understand the motivation, we will create another arithmetic circuit.\n", - "This time, however, we will also set Classiq’s synthesis engine to optimize on the circuit’s number of qubits, i.e., its width.\n", - "\n", - "Setting constraints can be done via the `set_constraints` operation - see [here](https://docs.classiq.io/latest/user-guide/platform/synthesis/constraints/).\n", - "\n", - "Perform the operation `res = w + x + y + z`, where w is initialized to 4 and the rest as before:\n", - "\n", - "1. Add `x` and `y` (as part of the `within_apply` operation)\n", - "2. Add the result to `z` (as part of the within_apply operation)\n", - "3. Uncompute the result of the first operation (as part of the `within_apply` operation)\n", - "4. Add the result of the second operation to `w`. There’s no need to perform another uncomputation, as this brings our calculation to an end.\n", - "\n", - "Create the model, optimize on the circuit’s width, and run the circuit. Can you identify where qubits have been released and reused?" - ] - }, - { - "cell_type": "code", - "execution_count": 69, - "metadata": { - "id": "0EwSOXhLtOlD", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "b8d0e892-a68f-40dc-e320-6ad6d31951e6" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Opening: https://platform.classiq.io/circuit/55299895-1b7a-4dff-b847-a7e594076344?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "\n", - "@qfunc\n", - "def main(res: Output[QNum]) -> None:\n", - " x, y, z, w = QNum('x'), QNum('y'), QNum('z'), QNum('w')\n", - " prepare_int(3,x) , prepare_int(5,y), prepare_int(2,z), prepare_int(4,w)\n", - " tmp1 = QNum('tmp1')\n", - " my_adder(x,y,z,tmp1)\n", - " my_add_two(tmp1,w,res)\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog_with_constraints = set_constraints(qmod, Constraints(optimization_parameter=\"width\"))\n", - "qprog = synthesize(qprog_with_constraints)\n", - "show(qprog)\n", - "\n", - "# Depth: 97\n", - "# Width: 21" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "HSMf4U8ptOlD" - }, - "source": [ - "#### Bonus: Use a Single Arithmetic Expression\n", - "\n", - "What happens when we don't manually decompose this expression?\n", - "\n", - "Use Classiq’s arithmetic engine to calculate `res |= x + y + z + w` and optimize for width.\n", - "Look at the resulting quantum program - can you identify the computation and uncomputation blocks? What else did you notice?" - ] - }, - { - "cell_type": "code", - "execution_count": 70, - "metadata": { - "id": "jP9iD-qstOlD", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "90f1cecf-e0ec-46cb-8f5b-e2800c6bb139" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Opening: https://platform.classiq.io/circuit/179fdc1e-9ada-4bac-8292-7a246e70f023?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "@qfunc\n", - "def main(res: Output[QNum]) -> None:\n", - " x, y, z, w = QNum('x'), QNum('y'), QNum('z'), QNum('w')\n", - " prepare_int(3,x)\n", - " prepare_int(5,y)\n", - " prepare_int(2,z)\n", - " prepare_int(4,w)\n", - "\n", - " res |= x+y+z+w\n", - "\n", - "qmod = create_model(main)\n", - "qprog_with_constraints = set_constraints(qmod, Constraints(optimization_parameter=\"width\"))\n", - "qprog = synthesize(qprog_with_constraints)\n", - "show(qprog)\n", - "\n", - "# Depth: 67\n", - "# Width: 12" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "XcqaODbxtOlE" - }, - "source": [ - "### Exercise 9 - In-place Arithmetics\n", - "\n", - "For the following exercise we will use numeric quantum variables that represent fixed-point reals.\n", - "\n", - "Arithmetic expressions can be calculated in-place into a target variable, without allocating new qubits to store the result. This is done using the in-place-xor operator.\n", - "\n", - "See also [Numeric assignment](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/numeric-assignment/#semantics).\n", - "\n", - "In-place assignment is often used to nest arithmetic expressions under quantum operators. Note that out-of-place assignment requires its left-value variable to be un-initialized, and therefore cannot be used under an operator if the variable is declared outside its scope. Applying operators to arithmetic expressions is required in many algorithms. One example is the piecewise evaluation of mathematical functions - calculating different expressions over `x` depending on the subdomain where `x` falls.\n", - "\n", - "For this exercise, replace the missing parts in the code snippet below to evaluate the result of:\n", - "\n", - "$$\n", - "f(x) = \\begin{cases}\n", - " 2x + 1 & \\text{ if } 0 \\leq x < 0.5 \\\\\n", - " x + 0.5 & \\text{ if } 0.5 \\leq x < 1\n", - " \\end{cases}\n", - "$$\n", - "\n", - "Notes:\n", - "- We cannot use `x` directly as the control variable in a `constrol` operator, because it also occurs in the nested scope. to determine if `x` is in the lower or higher half of the domain we duplicate the most significant bit onto a separate variable called `label`.\n", - "- In Python assignment operators cannot be used in lambda expressions, so the computation of the function needs to be factored out to a named Python function (but not necessarily a Qmod function).\n" - ] - }, - { - "cell_type": "code", - "execution_count": 71, - "metadata": { - "id": "VkxjMFsCtOlE", - "outputId": "3a3f6e3a-b7a6-46cf-d6e8-6abe6ea450d3", - "colab": { - "base_uri": "https://localhost:8080/" - } - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Opening: https://platform.classiq.io/circuit/26f2d5dc-3152-422b-8ec4-e392feba9a7c?version=0.41.2\n" - ] - } - ], - "source": [ - "\n", - "from classiq import *\n", - "\n", - "\n", - "def linear_func(a: float, b: float, x: QNum, res: QNum) -> None:\n", - " res ^= a * x + b\n", - "\n", - "\n", - "@qfunc\n", - "def dup_msb(qba: QArray[QBit], msb: QBit) -> None:\n", - " CX(qba[qba.len - 1], msb)\n", - "\n", - "\n", - "@qfunc\n", - "def main(x: Output[QNum[3, False, 3]], res: Output[QNum[5, False, 3]]) -> None:\n", - " allocate(5, res)\n", - " allocate(3, x)\n", - " hadamard_transform(x)\n", - "\n", - " label = QBit(\"label\")\n", - " allocate(1, label)\n", - "\n", - " dup_msb(x, label)\n", - " control(label, lambda: linear_func(1.0, 0.5, x, res)) # 0.5 <= x < 1.0\n", - " X(label)\n", - " control(label, lambda: linear_func(2.0, 1.0, x, res)) # 0.0 <= x < 0.5\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "9GbmiIYHtOlE" - }, - "source": [ - "### Exercise 10 - State-preparation Algorithm using Quantum-if\n", - "\n", - "#### Binding\n", - "The `bind` operation allows to convert smoothly between different quantum types and split or slice bits when necessary. Here’s an example:" - ] - }, - { - "cell_type": "code", - "execution_count": 72, - "metadata": { - "id": "AyyS1z4HtOlE", - "outputId": "c51b3f58-b6df-466b-c97b-3b5b2524576e", - "colab": { - "base_uri": "https://localhost:8080/" - } - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Opening: https://platform.classiq.io/circuit/dec84951-50f2-46d1-a9ab-b1456a4f718c?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "\n", - "\n", - "from classiq import *\n", - "from math import pi\n", - "\n", - "\n", - "@qfunc\n", - "def main(res: Output[QArray[QBit]]) -> None:\n", - " x: QArray[QBit] = QArray(\"x\")\n", - " allocate(3, x)\n", - " hadamard_transform(x)\n", - "\n", - " lsb = QBit(\"lsb\")\n", - " msb = QNum(\"msb\", 2, False, 0)\n", - " bind(x, [lsb, msb])\n", - "\n", - " control(msb == 1, lambda: RY(pi / 3, lsb)) # msb==1 <==> bit1 bit2 == 01 (binary of decimal 1)\n", - "\n", - " bind([lsb, msb], res)\n", - "\n", - "model = create_model(main)\n", - "qprog = synthesize(model)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "uPIUoUZTtOlE" - }, - "source": [ - "The first `bind` operation splits the 3-qubit register `x` into the 2-qubit and single-qubit registers `lsb` and `msb`, respectively.\n", - "\n", - "After the `bind` operation:\n", - "1. The registers `lsb` and `msb` can be operated on as separated registers.\n", - "2. The register`x` is consumed and can no longer be used.\n", - "\n", - "The second `bind` operation concatenates the registers to the output register `res`.\n", - "\n", - "For this exercise, fill in the missing code parts in the above snippet and use the `control` statement to manually generate the following lovely 3-qubit probability distribution: `[1/8, 1/8, 1/8 -sqrt(3)/16, 1/8 + sqrt(3)/16, 1/8, 1/8, 1/8, 1/8]`.\n", - "\n", - "The following series of gates generate it:\n", - "\n", - "Perform the Hadamard transform on all three qubits.\n", - "\n", - "Apply a rotation on the LSB (least-significant bit) conditioned by the MSB being |0> and the second to last MSB being |1>. How would you write this condition using a QNum?\n", - "\n", - "The following series of gates generate it:\n", - "1. Perform the Hadamard transform on all three qubits.\n", - "2. Apply a `pi/3` rotation on the LSB (least-significant bit) conditioned by the MSB being |0> and the second to last MSB being |1>. How would you write this condition using a QNum?\n", - "\n", - "If you want to validate your results without looking at the full solution, compare them to running using Classiq’s built-in `prepare_state` function.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 73, - "metadata": { - "id": "smLm2XzvtOlF", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "237504a4-9fe5-4e3d-83a0-d844ab258017" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Opening: https://platform.classiq.io/circuit/b523045c-7081-4d6a-b6cd-592f6702394b?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "from classiq.qmod.symbolic import sqrt\n", - "from math import pi\n", - "prob_list= [\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8-sqrt(3) / 16,\n", - " 1 / 8 + sqrt(3) / 16,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8\n", - " ]\n", - "@qfunc\n", - "def pre_prepared_state(q: QArray[QBit]) -> None:\n", - " prepare_state(\n", - " [\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8-sqrt(3) / 16,\n", - " 1 / 8 + sqrt(3) / 16,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " ],\n", - " 0.0,\n", - " q,\n", - " )\n", - "\n", - "\n", - "@qfunc\n", - "def main(res: Output[QArray[QBit]]) -> None:\n", - "\n", - " x: QArray[QBit] = QArray(\"x\")\n", - " allocate(3, x)\n", - " hadamard_transform(x)\n", - "\n", - " lsb = QBit(\"lsb\")\n", - " msb = QNum(\"msb\", 2, False, 0)\n", - " bind(x, [lsb, msb])\n", - " control(msb == 1, lambda: RY(pi / 3, lsb))\n", - "\n", - " bind([lsb, msb], res)\n", - "\n", - "\n", - "\n", - "model = create_model(main)\n", - "qprog = synthesize(model)\n", - "show(qprog)\n", - "job = execute(qprog)\n" - ] - }, - { - "cell_type": "code", - "source": [ - "import matplotlib.pyplot as plt\n", - "\n", - "job = execute(qprog)\n", - "results = job.result()\n", - "parsed_counts = results[0].value.parsed_counts\n", - "# Ploting a bar chart to see\n", - "# total shots uesed\n", - "shots = sum([sampled_state.shots for sampled_state in parsed_counts])\n", - "histo =dict([(sampled_state.state['res'], round(sampled_state.shots/shots,2)) for sampled_state in parsed_counts])\n", - "\n", - "values = list(histo.keys())\n", - "prob = list(histo.values())\n", - "plt.bar(values, prob, color ='dodgerblue',\n", - " width = 0.4)\n", - "\n", - "plt.xlabel(\"Values\")\n", - "plt.ylabel(\"Probability\")\n", - "\n", - "plt.show()\n", - "\n", - "# We notice clearly that both 2(010) & 3(011) have diffrent probabilities, as these the only cases where MSB = 1(01)" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 449 - }, - "collapsed": true, - "id": "6WCsWqyWcu06", - "outputId": "ab5ccf1a-deac-449b-f8c2-c4ad27ae6e25" - }, - "execution_count": 74, - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": [ - "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAGwCAYAAABB4NqyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAoQ0lEQVR4nO3df1TVdZ7H8dcFAlQUNJQfhoA/Sh0VFZLRdGyK08XKldU1JBsRWa0Wypasho6Jrc1gah10dHWtEevsmlZTzs7sDI6RaDNhpmamZknjCKngjxQUV1C4+0fHO3NXdPhxL1/g83ycc8/Al+/93vdnrPE53++Xe20Oh8MhAAAAg3hZPQAAAEBrI4AAAIBxCCAAAGAcAggAABiHAAIAAMYhgAAAgHEIIAAAYBwfqwdoi+rr63XixAl17dpVNpvN6nEAAEAjOBwOXbhwQeHh4fLyuvk5HgKoASdOnFBERITVYwAAgGYoKyvTbbfddtN9CKAGdO3aVdL3/wV269bN4mkAAEBjVFVVKSIiwvn3+M0QQA24dtmrW7duBBAAAO1MY25f4SZoAABgHAIIAAAYhwACAADGIYAAAIBxCCAAAGAcAggAABiHAAIAAMYhgAAAgHEIIAAAYBwCCAAAGIcAAgAAxiGAAACAcQggAABgHAIIAAAYhwACAADG8bF6AAAdQ+Ryz7/Gsbmefw0AZuAMEAAAMA4BBAAAjEMAAQAA4xBAAADAOAQQAAAwDgEEAACMQwABAADjEEAAAMA4BBAAADAOAQQAAIxDAAEAAOMQQAAAwDgEEAAAMA4BBAAAjEMAAQAA4xBAAADAOAQQAAAwDgEEAACMQwABAADjEEAAAMA4BBAAADAOAQQAAIxDAAEAAOMQQAAAwDgEEAAAMA4BBAAAjEMAAQAA4xBAAADAOAQQAAAwDgEEAACMQwABAADjEEAAAMA4BBAAADAOAQQAAIxDAAEAAOMQQAAAwDgEEAAAMA4BBAAAjEMAAQAA4xBAAADAOAQQAAAwTpsIoFWrVikqKkr+/v6Kj4/Xrl27brjva6+9pnHjxql79+7q3r27EhISrtvf4XBowYIFCgsLU6dOnZSQkKAjR454ehkAAKCdsDyANm3apKysLOXk5Gjv3r2KiYmR3W7XqVOnGty/qKhIKSkp2rZtm4qLixUREaH77rtPx48fd+6zZMkSrVixQmvWrNEnn3yiLl26yG636/Lly621LAAA0IbZHA6Hw8oB4uPjdeedd2rlypWSpPr6ekVEROiJJ57QT3/607/7/Lq6OnXv3l0rV67UjBkz5HA4FB4erqefflrz5s2TJFVWViokJETr16/XtGnT/u4xq6qqFBgYqMrKSnXr1q1lCwQMEbnc869xbK7nXwNA+9WUv78tPQNUW1urPXv2KCEhwbnNy8tLCQkJKi4ubtQxLl26pCtXrqhHjx6SpKNHj6q8vNzlmIGBgYqPj7/hMWtqalRVVeXyAAAAHZelAXTmzBnV1dUpJCTEZXtISIjKy8sbdYznnntO4eHhzuC59rymHDM3N1eBgYHOR0RERFOXAgAA2hHL7wFqicWLF2vjxo16//335e/v3+zjZGdnq7Ky0vkoKytz45QAAKCt8bHyxYODg+Xt7a2KigqX7RUVFQoNDb3pc5ctW6bFixfrgw8+0LBhw5zbrz2voqJCYWFhLsccPnx4g8fy8/OTn59fM1cBAADaG0vPAPn6+io2NlaFhYXObfX19SosLNTo0aNv+LwlS5Zo0aJFKigoUFxcnMvPoqOjFRoa6nLMqqoqffLJJzc9JgAAMIelZ4AkKSsrS6mpqYqLi9OoUaOUl5en6upqpaWlSZJmzJih3r17Kzc3V5L08ssva8GCBdqwYYOioqKc9/UEBAQoICBANptNTz31lF566SUNGDBA0dHReuGFFxQeHq6kpCSrlgkAANoQywMoOTlZp0+f1oIFC1ReXq7hw4eroKDAeRNzaWmpvLz+eqJq9erVqq2t1T/90z+5HCcnJ0cLFy6UJD377LOqrq7WnDlzdP78eY0dO1YFBQUtuk8IAAB0HJa/D1BbxPsAAU3H+wABsFq7eR8gAAAAKxBAAADAOAQQAAAwDgEEAACMQwABAADjEEAAAMA4BBAAADAOAQQAAIxDAAEAAOMQQAAAwDgEEAAAMA4BBAAAjEMAAQAA4xBAAADAOAQQAAAwDgEEAACMQwABAADjEEAAAMA4BBAAADAOAQQAAIxDAAEAAOMQQAAAwDgEEAAAMA4BBAAAjEMAAQAA4xBAAADAOAQQAAAwDgEEAACMQwABAADjEEAAAMA4BBAAADAOAQQAAIxDAAEAAOMQQAAAwDgEEAAAMA4BBAAAjEMAAQAA4xBAAADAOAQQAAAwDgEEAACMQwABAADjEEAAAMA4BBAAADAOAQQAAIxDAAEAAOMQQAAAwDgEEAAAMA4BBAAAjEMAAQAA4xBAAADAOAQQAAAwDgEEAACMQwABAADjEEAAAMA4BBAAADAOAQQAAIxDAAEAAOMQQAAAwDgEEAAAMA4BBAAAjEMAAQAA4xBAAADAOAQQAAAwDgEEAACMQwABAADjEEAAAMA4lgfQqlWrFBUVJX9/f8XHx2vXrl033PfgwYOaMmWKoqKiZLPZlJeXd90+CxculM1mc3kMHDjQgysAAADtjaUBtGnTJmVlZSknJ0d79+5VTEyM7Ha7Tp061eD+ly5dUt++fbV48WKFhobe8Lg/+MEPdPLkSefjj3/8o6eWAAAA2iFLA+jVV1/V7NmzlZaWpsGDB2vNmjXq3Lmz1q1b1+D+d955p5YuXapp06bJz8/vhsf18fFRaGio8xEcHHzTOWpqalRVVeXyAAAAHZdlAVRbW6s9e/YoISHhr8N4eSkhIUHFxcUtOvaRI0cUHh6uvn37avr06SotLb3p/rm5uQoMDHQ+IiIiWvT6AACgbbMsgM6cOaO6ujqFhIS4bA8JCVF5eXmzjxsfH6/169eroKBAq1ev1tGjRzVu3DhduHDhhs/Jzs5WZWWl81FWVtbs1wcAAG2fj9UDuNuECROcXw8bNkzx8fGKjIzU22+/rfT09Aaf4+fnd9NLagAAoGOx7AxQcHCwvL29VVFR4bK9oqLipjc4N1VQUJBuv/12lZSUuO2YAACgfbMsgHx9fRUbG6vCwkLntvr6ehUWFmr06NFue52LFy/qm2++UVhYmNuOCQAA2jdLL4FlZWUpNTVVcXFxGjVqlPLy8lRdXa20tDRJ0owZM9S7d2/l5uZK+v7G6UOHDjm/Pn78uPbt26eAgAD1799fkjRv3jxNnDhRkZGROnHihHJycuTt7a2UlBRrFgkAANocSwMoOTlZp0+f1oIFC1ReXq7hw4eroKDAeWN0aWmpvLz+epLqxIkTGjFihPP7ZcuWadmyZRo/fryKiookSd9++61SUlJ09uxZ9ezZU2PHjtXOnTvVs2fPVl0bAABou2wOh8Nh9RBtTVVVlQIDA1VZWalu3bpZPQ7QLkQu9/xrHJvr+dcA0H415e9vyz8KAwAAoLURQAAAwDgEEAAAMA4BBAAAjNOsANq2bZu75wAAAGg1zQqgxMRE9evXTy+99BKfmwUAANqdZgXQ8ePHlZmZqXfffVd9+/aV3W7X22+/rdraWnfPBwAA4HYtfh+gvXv3Kj8/X2+99ZYk6eGHH1Z6erpiYmLcMqAVeB8goOl4HyAz8OeMtqxV3wdo5MiRys7OVmZmpi5evKh169YpNjZW48aN08GDB1t6eAAAALdrdgBduXJF7777ru6//35FRkZqy5YtWrlypSoqKlRSUqLIyEhNnTrVnbMCAAC4RbM+C+yJJ57QW2+9JYfDoZ/85CdasmSJhgwZ4vx5ly5dtGzZMoWHh7ttUAAAAHdpVgAdOnRIv/jFLzR58mT5+fk1uE9wcDC/Lg8AANqkZl0Cy8nJ0dSpU6+Ln6tXr2rHjh2SJB8fH40fP77lEwIAALhZswLoxz/+sb777rvrtldWVurHP/5xi4cCAADwpGYFkMPhkM1mu2772bNn1aVLlxYPBQAA4ElNugdo8uTJkiSbzaaZM2e6XAKrq6vT/v37NWbMGPdOCAAA4GZNCqDAwEBJ358B6tq1qzp16uT8ma+vr374wx9q9uzZ7p0QAADAzZoUQPn5+ZKkqKgozZs3j8tdAACgXWrWr8Hn5OS4ew4AAIBW0+gAGjlypAoLC9W9e3eNGDGiwZugr9m7d69bhgMAAPCERgfQpEmTnDc9JyUleWoeAAAAj2t0AP3tZS8ugQEAgPasxZ8GDwAA0N40+gxQ9+7db3rfz99q6F2i8VeRyz17/GNzPXt8AEDHZsLfU40OoLy8PA+OAQAA0HoaHUCpqamenAMAAKDVNDqAqqqq1K1bN+fXN3NtPwAAgLaoSfcAnTx5Ur169VJQUFCD9wNd+5DUuro6tw4JAADgTo0OoA8//FA9evSQJG3bts1jAwEAAHhaowNo/PjxDX4NAADQ3jTrs8Ak6dy5c/rlL3+pL7/8UpI0ePBgpaWlOc8SAQAAtFXNeiPEHTt2KCoqSitWrNC5c+d07tw5rVixQtHR0dqxY4e7ZwQAAHCrZp0BysjIUHJyslavXi1vb29JUl1dnf7lX/5FGRkZ+uKLL9w6JAAAgDs16wxQSUmJnn76aWf8SJK3t7eysrJUUlLituEAAAA8oVkBNHLkSOe9P3/ryy+/VExMTIuHAgAA8KRGXwLbv3+/8+snn3xSc+fOVUlJiX74wx9Kknbu3KlVq1Zp8eLF7p8SAADAjRodQMOHD5fNZpPD4XBue/bZZ6/b7+GHH1ZycrJ7pgMAAPCARgfQ0aNHPTkHAABAq2l0AEVGRnpyDnRwkcs9e/xjcz17fKAhnv7nWuKf7baAP+eOqdlvhChJhw4dUmlpqWpra122/8M//EOLhgIAAPCkZgXQn//8Z/3jP/6jvvjiC5f7gq59QCofhgoAANqyZv0a/Ny5cxUdHa1Tp06pc+fOOnjwoHbs2KG4uDgVFRW5eUQAAAD3atYZoOLiYn344YcKDg6Wl5eXvLy8NHbsWOXm5urJJ5/UZ5995u45AQAA3KZZZ4Dq6urUtWtXSVJwcLBOnDgh6fsbpb/66iv3TQcAAOABzToDNGTIEH3++eeKjo5WfHy8lixZIl9fX61du1Z9+/Z194wAAABu1awAmj9/vqqrqyVJ//Zv/6YHH3xQ48aN06233qpNmza5dUAAAAB3a1YA2e1259f9+/fX4cOH9d1336l79+7O3wQDAABoq1r0PkCSVFZWJkmKiIho8TAAAACtoVk3QV+9elUvvPCCAgMDFRUVpaioKAUGBmr+/Pm6cuWKu2cEAABwq2adAXriiSf03nvvacmSJRo9erSk7381fuHChTp79qxWr17t1iEBAADcqVkBtGHDBm3cuFETJkxwbhs2bJgiIiKUkpJCAAEAgDatWZfA/Pz8FBUVdd326Oho+fr6tnQmAAAAj2pWAGVmZmrRokWqqalxbqupqdHPfvYzZWZmum04AAAAT2j0JbDJkye7fP/BBx/otttuU0xMjCTp888/V21tre699173TggAAOBmjQ6gwMBAl++nTJni8j2/Bg8AANqLRgdQfn6+J+cAAABoNS16I8TTp087P/z0jjvuUM+ePd0yFAAAgCc16ybo6upqzZo1S2FhYfrRj36kH/3oRwoPD1d6erouXbrk7hkBAADcqlkBlJWVpe3bt+s3v/mNzp8/r/Pnz+vXv/61tm/frqefftrdMwIAALhVsy6B/epXv9K7776ru+++27nt/vvvV6dOnfTQQw/xRogAAKBNa9YZoEuXLikkJOS67b169eISGAAAaPOaFUCjR49WTk6OLl++7Nz2v//7v3rxxRednw0GAADQVjXrElheXp4SExOveyNEf39/bdmyxa0DAgAAuFuzAmjo0KE6cuSI/uu//kuHDx+WJKWkpGj69Onq1KmTWwcEAABwtyYH0JUrVzRw4ED99re/1ezZsz0xEwAAgEc1+R6gW265xeXen5ZatWqVoqKi5O/vr/j4eO3ateuG+x48eFBTpkxRVFSUbDab8vLyWnxMAABgnmbdBJ2RkaGXX35ZV69ebdGLb9q0SVlZWcrJydHevXsVExMju92uU6dONbj/pUuX1LdvXy1evFihoaFuOSYAADBPswLo008/1Xvvvac+ffrIbrdr8uTJLo/GevXVVzV79mylpaVp8ODBWrNmjTp37qx169Y1uP+dd96ppUuXatq0afLz83PLMQEAgHmadRN0UFDQdZ8G31S1tbXas2ePsrOzndu8vLyUkJCg4uLiVj1mTU2NampqnN9XVVU16/UBAED70KQAqq+v19KlS/X111+rtrZW99xzjxYuXNis3/w6c+aM6urqrntDxZCQEOdvlrXWMXNzc/Xiiy826zUBAED706RLYD/72c/0/PPPKyAgQL1799aKFSuUkZHhqdlaTXZ2tiorK52PsrIyq0cCAAAe1KQzQG+++ab+/d//XY8++qgk6YMPPtADDzyg119/XV5eTbudKDg4WN7e3qqoqHDZXlFRccMbnD11TD8/vxveUwQAADqeJlVLaWmp7r//fuf3CQkJstlsOnHiRJNf2NfXV7GxsSosLHRuq6+vV2FhYbM/TsMTxwQAAB1Pk84AXb16Vf7+/i7bbrnlFl25cqVZL56VlaXU1FTFxcVp1KhRysvLU3V1tdLS0iRJM2bMUO/evZWbmyvp+5ucDx065Pz6+PHj2rdvnwICAtS/f/9GHRMAAKBJAeRwODRz5kyXy0WXL1/WY489pi5duji3vffee406XnJysk6fPq0FCxaovLxcw4cPV0FBgfMm5tLSUpdLaydOnNCIESOc3y9btkzLli3T+PHjVVRU1KhjAgAANCmAUlNTr9v2yCOPtGiAzMxMZWZmNviza1FzTVRUlBwOR4uOCQAA0KQAys/P99QcAAAAraZZ7wQNAADQnhFAAADAOAQQAAAwDgEEAACMQwABAADjEEAAAMA4BBAAADAOAQQAAIxDAAEAAOMQQAAAwDgEEAAAMA4BBAAAjEMAAQAA4xBAAADAOAQQAAAwDgEEAACMQwABAADjEEAAAMA4BBAAADAOAQQAAIxDAAEAAOMQQAAAwDgEEAAAMA4BBAAAjEMAAQAA4xBAAADAOAQQAAAwDgEEAACMQwABAADjEEAAAMA4BBAAADAOAQQAAIxDAAEAAOMQQAAAwDgEEAAAMA4BBAAAjEMAAQAA4xBAAADAOAQQAAAwDgEEAACMQwABAADjEEAAAMA4BBAAADAOAQQAAIxDAAEAAOMQQAAAwDgEEAAAMA4BBAAAjEMAAQAA4xBAAADAOAQQAAAwDgEEAACMQwABAADjEEAAAMA4BBAAADAOAQQAAIxDAAEAAOMQQAAAwDgEEAAAMA4BBAAAjEMAAQAA4xBAAADAOAQQAAAwDgEEAACMQwABAADjtIkAWrVqlaKiouTv76/4+Hjt2rXrpvu/8847GjhwoPz9/TV06FD97ne/c/n5zJkzZbPZXB6JiYmeXAIAAGhHLA+gTZs2KSsrSzk5Odq7d69iYmJkt9t16tSpBvf/+OOPlZKSovT0dH322WdKSkpSUlKSDhw44LJfYmKiTp486Xy89dZbrbEcAADQDlgeQK+++qpmz56ttLQ0DR48WGvWrFHnzp21bt26Bvdfvny5EhMT9cwzz2jQoEFatGiRRo4cqZUrV7rs5+fnp9DQUOeje/fuN5yhpqZGVVVVLg8AANBxWRpAtbW12rNnjxISEpzbvLy8lJCQoOLi4gafU1xc7LK/JNnt9uv2LyoqUq9evXTHHXfo8ccf19mzZ284R25urgIDA52PiIiIFqwKAAC0dZYG0JkzZ1RXV6eQkBCX7SEhISovL2/wOeXl5X93/8TERL355psqLCzUyy+/rO3bt2vChAmqq6tr8JjZ2dmqrKx0PsrKylq4MgAA0Jb5WD2AJ0ybNs359dChQzVs2DD169dPRUVFuvfee6/b38/PT35+fq05IgAAsJClZ4CCg4Pl7e2tiooKl+0VFRUKDQ1t8DmhoaFN2l+S+vbtq+DgYJWUlLR8aAAA0O5ZGkC+vr6KjY1VYWGhc1t9fb0KCws1evToBp8zevRol/0laevWrTfcX5K+/fZbnT17VmFhYe4ZHAAAtGuW/xZYVlaWXnvtNb3xxhv68ssv9fjjj6u6ulppaWmSpBkzZig7O9u5/9y5c1VQUKBXXnlFhw8f1sKFC7V7925lZmZKki5evKhnnnlGO3fu1F/+8hcVFhZq0qRJ6t+/v+x2uyVrBAAAbYvl9wAlJyfr9OnTWrBggcrLyzV8+HAVFBQ4b3QuLS2Vl9dfO23MmDHasGGD5s+fr+eff14DBgzQ5s2bNWTIEEmSt7e39u/frzfeeEPnz59XeHi47rvvPi1atIj7fAAAgKQ2EECSlJmZ6TyD8/8VFRVdt23q1KmaOnVqg/t36tRJW7Zsced4AACgg7H8EhgAAEBrI4AAAIBxCCAAAGAcAggAABiHAAIAAMYhgAAAgHEIIAAAYBwCCAAAGIcAAgAAxiGAAACAcQggAABgHAIIAAAYhwACAADGIYAAAIBxCCAAAGAcAggAABiHAAIAAMYhgAAAgHEIIAAAYBwCCAAAGIcAAgAAxiGAAACAcQggAABgHAIIAAAYhwACAADGIYAAAIBxCCAAAGAcAggAABiHAAIAAMYhgAAAgHEIIAAAYBwCCAAAGIcAAgAAxiGAAACAcQggAABgHAIIAAAYhwACAADGIYAAAIBxfKweAOiIIpd7/jWOzfX8awBAR8UZIAAAYBwCCAAAGIcAAgAAxiGAAACAcQggAABgHAIIAAAYhwACAADGIYAAAIBxCCAAAGAcAggAABiHAAIAAMYhgAAAgHEIIAAAYBwCCAAAGIcAAgAAxiGAAACAcQggAABgHAIIAAAYhwACAADGIYAAAIBxCCAAAGAcAggAABiHAAIAAMYhgAAAgHEIIAAAYBwCCAAAGKdNBNCqVasUFRUlf39/xcfHa9euXTfd/5133tHAgQPl7++voUOH6ne/+53Lzx0OhxYsWKCwsDB16tRJCQkJOnLkiCeXAAAA2hHLA2jTpk3KyspSTk6O9u7dq5iYGNntdp06darB/T/++GOlpKQoPT1dn332mZKSkpSUlKQDBw4491myZIlWrFihNWvW6JNPPlGXLl1kt9t1+fLl1loWAABowywPoFdffVWzZ89WWlqaBg8erDVr1qhz585at25dg/svX75ciYmJeuaZZzRo0CAtWrRII0eO1MqVKyV9f/YnLy9P8+fP16RJkzRs2DC9+eabOnHihDZv3tyKKwMAAG2Vj5UvXltbqz179ig7O9u5zcvLSwkJCSouLm7wOcXFxcrKynLZZrfbnXFz9OhRlZeXKyEhwfnzwMBAxcfHq7i4WNOmTbvumDU1NaqpqXF+X1lZKUmqqqpq9tpupt7DJ6I8NHaLmLZmT69XYs1tAWv2DNZsvfb6v9nX/t52OBx/d19LA+jMmTOqq6tTSEiIy/aQkBAdPny4weeUl5c3uH95ebnz59e23Wif/y83N1cvvvjiddsjIiIat5A2JvCnVk/Q+lizGVizGVhzx+fp9V64cEGBgYE33cfSAGorsrOzXc4q1dfX67vvvtOtt94qm81m4WTf12xERITKysrUrVs3S2dpLayZNXdEpq1XYs2sufU5HA5duHBB4eHhf3dfSwMoODhY3t7eqqiocNleUVGh0NDQBp8TGhp60/2v/WdFRYXCwsJc9hk+fHiDx/Tz85Ofn5/LtqCgoKYsxeO6detm+T9YrY01m8G0NZu2Xok1m6KtrPnvnfm5xtKboH19fRUbG6vCwkLntvr6ehUWFmr06NENPmf06NEu+0vS1q1bnftHR0crNDTUZZ+qqip98sknNzwmAAAwi+WXwLKyspSamqq4uDiNGjVKeXl5qq6uVlpamiRpxowZ6t27t3JzcyVJc+fO1fjx4/XKK6/ogQce0MaNG7V7926tXbtWkmSz2fTUU0/ppZde0oABAxQdHa0XXnhB4eHhSkpKsmqZAACgDbE8gJKTk3X69GktWLBA5eXlGj58uAoKCpw3MZeWlsrL668nqsaMGaMNGzZo/vz5ev755zVgwABt3rxZQ4YMce7z7LPPqrq6WnPmzNH58+c1duxYFRQUyN/fv9XX11J+fn7Kycm57hJdR8aazWDamk1br8SaTdFe12xzNOZ3xQAAADoQy98IEQAAoLURQAAAwDgEEAAAMA4BBAAAjEMAtWGrVq1SVFSU/P39FR8fr127dlk9kkft2LFDEydOVHh4uGw2W4f/8Nrc3Fzdeeed6tq1q3r16qWkpCR99dVXVo/lUatXr9awYcOcb5g2evRo/f73v7d6rFa1ePFi59t1dFQLFy6UzWZzeQwcONDqsTzu+PHjeuSRR3TrrbeqU6dOGjp0qHbv3m31WB4TFRV13Z+zzWZTRkaG1aM1CgHURm3atElZWVnKycnR3r17FRMTI7vdrlOnTlk9msdUV1crJiZGq1atsnqUVrF9+3ZlZGRo586d2rp1q65cuaL77rtP1dXVVo/mMbfddpsWL16sPXv2aPfu3brnnns0adIkHTx40OrRWsWnn36q//iP/9CwYcOsHsXjfvCDH+jkyZPOxx//+EerR/Koc+fO6a677tItt9yi3//+9zp06JBeeeUVde/e3erRPObTTz91+TPeunWrJGnq1KkWT9ZIDrRJo0aNcmRkZDi/r6urc4SHhztyc3MtnKr1SHK8//77Vo/Rqk6dOuWQ5Ni+fbvVo7Sq7t27O15//XWrx/C4CxcuOAYMGODYunWrY/z48Y65c+daPZLH5OTkOGJiYqweo1U999xzjrFjx1o9hqXmzp3r6Nevn6O+vt7qURqFM0BtUG1trfbs2aOEhATnNi8vLyUkJKi4uNjCyeBJlZWVkqQePXpYPEnrqKur08aNG1VdXW3Ex9RkZGTogQcecPn3uiM7cuSIwsPD1bdvX02fPl2lpaVWj+RR//3f/624uDhNnTpVvXr10ogRI/Taa69ZPVarqa2t1X/+539q1qxZln+IeGMRQG3QmTNnVFdX53w37GtCQkJUXl5u0VTwpPr6ej311FO66667XN7VvCP64osvFBAQID8/Pz322GN6//33NXjwYKvH8qiNGzdq7969zo/06eji4+O1fv16FRQUaPXq1Tp69KjGjRunCxcuWD2ax/z5z3/W6tWrNWDAAG3ZskWPP/64nnzySb3xxhtWj9YqNm/erPPnz2vmzJlWj9Joln8UBoDvzw4cOHCgw98nIUl33HGH9u3bp8rKSr377rtKTU3V9u3bO2wElZWVae7cudq6dWu7/Die5pgwYYLz62HDhik+Pl6RkZF6++23lZ6ebuFknlNfX6+4uDj9/Oc/lySNGDFCBw4c0Jo1a5SammrxdJ73y1/+UhMmTFB4eLjVozQaZ4DaoODgYHl7e6uiosJle0VFhUJDQy2aCp6SmZmp3/72t9q2bZtuu+02q8fxOF9fX/Xv31+xsbHKzc1VTEyMli9fbvVYHrNnzx6dOnVKI0eOlI+Pj3x8fLR9+3atWLFCPj4+qqurs3pEjwsKCtLtt9+ukpISq0fxmLCwsOsiftCgQR3+0p8kHTt2TB988IH++Z//2epRmoQAaoN8fX0VGxurwsJC57b6+noVFhYaca+EKRwOhzIzM/X+++/rww8/VHR0tNUjWaK+vl41NTVWj+Ex9957r7744gvt27fP+YiLi9P06dO1b98+eXt7Wz2ix128eFHffPONwsLCrB7FY+66667r3sbi66+/VmRkpEUTtZ78/Hz16tVLDzzwgNWjNAmXwNqorKwspaamKi4uTqNGjVJeXp6qq6uVlpZm9Wgec/HiRZf/h3j06FHt27dPPXr0UJ8+fSyczDMyMjK0YcMG/frXv1bXrl2d93cFBgaqU6dOFk/nGdnZ2ZowYYL69OmjCxcuaMOGDSoqKtKWLVusHs1junbtet19XV26dNGtt97aYe/3mjdvniZOnKjIyEidOHFCOTk58vb2VkpKitWjecy//uu/asyYMfr5z3+uhx56SLt27dLatWu1du1aq0fzqPr6euXn5ys1NVU+Pu0sKaz+NTTc2C9+8QtHnz59HL6+vo5Ro0Y5du7cafVIHrVt2zaHpOseqampVo/mEQ2tVZIjPz/f6tE8ZtasWY7IyEiHr6+vo2fPno57773X8Yc//MHqsVpdR/81+OTkZEdYWJjD19fX0bt3b0dycrKjpKTE6rE87je/+Y1jyJAhDj8/P8fAgQMda9eutXokj9uyZYtDkuOrr76yepQmszkcDoc16QUAAGAN7gECAADGIYAAAIBxCCAAAGAcAggAABiHAAIAAMYhgAAAgHEIIAAAYBwCCAAAGIcAAtCh3X333XrqqaesHgNAG0MAAWizJk6cqMTExAZ/9tFHH8lms2n//v2tPBWAjoAAAtBmpaena+vWrfr222+v+1l+fr7i4uI0bNgwCyYD0N4RQADarAcffFA9e/bU+vXrXbZfvHhR77zzjpKSkpSSkqLevXurc+fOGjp0qN56662bHtNms2nz5s0u24KCglxeo6ysTA899JCCgoLUo0cPTZo0SX/5y1+cPy8qKtKoUaPUpUsXBQUF6a677tKxY8dauFoArYkAAtBm+fj4aMaMGVq/fr3+9nOb33nnHdXV1emRRx5RbGys/ud//kcHDhzQnDlz9JOf/ES7du1q9mteuXJFdrtdXbt21UcffaQ//elPCggIUGJiompra3X16lUlJSVp/Pjx2r9/v4qLizVnzhzZbDZ3LBlAK/GxegAAuJlZs2Zp6dKl2r59u+6++25J31/+mjJliiIjIzVv3jznvk888YS2bNmit99+W6NGjWrW623atEn19fV6/fXXnVGTn5+voKAgFRUVKS4uTpWVlXrwwQfVr18/SdKgQYNatkgArY4zQADatIEDB2rMmDFat26dJKmkpEQfffSR0tPTVVdXp0WLFmno0KHq0aOHAgICtGXLFpWWljb79T7//HOVlJSoa9euCggIUEBAgHr06KHLly/rm2++UY8ePTRz5kzZ7XZNnDhRy5cv18mTJ921XACthAAC0Oalp6frV7/6lS5cuKD8/Hz169dP48eP19KlS7V8+XI999xz2rZtm/bt2ye73a7a2tobHstms7lcTpO+v+x1zcWLFxUbG6t9+/a5PL7++ms9/PDDkr4/I1RcXKwxY8Zo06ZNuv3227Vz507PLB6ARxBAANq8hx56SF5eXtqwYYPefPNNzZo1SzabTX/60580adIkPfLII4qJiVHfvn319ddf3/RYPXv2dDljc+TIEV26dMn5/ciRI3XkyBH16tVL/fv3d3kEBgY69xsxYoSys7P18ccfa8iQIdqwYYP7Fw7AYwggAG1eQECAkpOTlZ2drZMnT2rmzJmSpAEDBmjr1q36+OOP9eWXX+rRRx9VRUXFTY91zz33aOXKlfrss8+0e/duPfbYY7rlllucP58+fbqCg4M1adIkffTRRzp69KiKior05JNP6ttvv9XRo0eVnZ2t4uJiHTt2TH/4wx905MgR7gMC2hkCCEC7kJ6ernPnzslutys8PFySNH/+fI0cOVJ2u1133323QkNDlZSUdNPjvPLKK4qIiNC4ceP08MMPa968eercubPz5507d9aOHTvUp08fTZ48WYMGDVJ6erouX76sbt26qXPnzjp8+LCmTJmi22+/XXPmzFFGRoYeffRRTy4fgJvZHP//YjgAAEAHxxkgAABgHAIIAAAYhwACAADGIYAAAIBxCCAAAGAcAggAABiHAAIAAMYhgAAAgHEIIAAAYBwCCAAAGIcAAgAAxvk/fOlEHMaRmb4AAAAASUVORK5CYII=\n" - }, - "metadata": {} - } - ] - }, - { - "cell_type": "code", - "source": [ - "# verifying the results\n", - "@qfunc\n", - "def main(y: Output[QNum]) -> None:\n", - " prepare_state(prob_list,0.0,y)\n", - "\n", - "model2 = create_model(main)\n", - "qprog2 = synthesize(model2)\n", - "show(qprog2)\n", - "\n", - "" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "r5mFbwU9d76-", - "outputId": "3b85e8f8-2cd7-4196-f2f6-65883a4f8553" - }, - "execution_count": 75, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Opening: https://platform.classiq.io/circuit/fddc8354-cc2c-4afc-badf-126cd268f47c?version=0.41.2\n" - ] - } - ] - }, - { - "cell_type": "code", - "source": [ - "job = execute(qprog2)\n", - "results = job.result()\n", - "parsed_counts = results[0].value.parsed_counts\n", - "# Ploting a bar chart to see\n", - "# total shots uesed\n", - "shots = sum([sampled_state.shots for sampled_state in parsed_counts])\n", - "histo =dict([(sampled_state.state['y'], round(sampled_state.shots/shots,2)) for sampled_state in parsed_counts])\n", - "\n", - "values = list(histo.keys())\n", - "prob = list(histo.values())\n", - "plt.bar(values, prob, color ='dodgerblue',\n", - " width = 0.4)\n", - "\n", - "plt.xlabel(\"Values\")\n", - "plt.ylabel(\"Probability\")\n", - "\n", - "plt.show()\n", - "\n", - "# We notice clearly that both 2(010) & 3(011) have diffrent probabilties, as these the only cases where MSB = 1(01)" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 449 - }, - "id": "xcvNmvmMrMcC", - "outputId": "d661366e-5faa-48d1-b651-e2c7e3a4d32e" - }, - "execution_count": 76, - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": [ - "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAGwCAYAAABB4NqyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAoY0lEQVR4nO3df1jV9d3H8dcBAlQUNZQfhuDP1KmokEzT2Yqro5WTW29Ds4nIrdUgaWQ1ukzstg1T60Knt97W1Lp2m1Yrd2/3hjMSbQs1NTM1S5oTE8EfKSjegsK5/+jybOcWHRzO4Qt8no/rOtfgy/d8v+/P2sZz3/PlHJvD4XAIAADAID5WDwAAANDUCCAAAGAcAggAABiHAAIAAMYhgAAAgHEIIAAAYBwCCAAAGMfP6gGao9raWpWUlKh9+/ay2WxWjwMAAOrB4XDo4sWLioiIkI/Pra/xEEB1KCkpUWRkpNVjAAAAN5w4cUJ33HHHLfchgOrQvn17Sd/9G9ihQweLpwEAAPVRUVGhyMhI5+/xWyGA6nD9Za8OHToQQAAAtDD1uX2Fm6ABAIBxCCAAAGAcAggAABiHAAIAAMYhgAAAgHEIIAAAYBwCCAAAGIcAAgAAxiGAAACAcQggAABgHAIIAAAYhwACAADGIYAAAIBxCCAAAGAcAggAABjHz+oBALQOUcu8f47jGd4/BwAzcAUIAAAYhwACAADGIYAAAIBxCCAAAGAcAggAABiHAAIAAMYhgAAAgHEIIAAAYBwCCAAAGIcAAgAAxiGAAACAcQggAABgHAIIAAAYhwACAADGIYAAAIBxCCAAAGAcAggAABiHAAIAAMYhgAAAgHEIIAAAYBwCCAAAGIcAAgAAxiGAAACAcQggAABgHAIIAAAYhwACAADGIYAAAIBxCCAAAGAcAggAABiHAAIAAMYhgAAAgHEIIAAAYBwCCAAAGIcAAgAAxiGAAACAcQggAABgHAIIAAAYhwACAADGIYAAAIBxCCAAAGAcAggAABinWQTQypUrFR0drcDAQMXHx2v37t033fe1117T6NGj1alTJ3Xq1EkJCQk37O9wODR//nyFh4erTZs2SkhI0NGjR729DAAA0EJYHkCbNm1SZmamsrOztW/fPsXExMhut+v06dN17l9QUKCpU6dq27ZtKiwsVGRkpO6//36dPHnSuc/ixYu1fPlyrV69Wrt27VK7du1kt9t15cqVploWAABoxmwOh8Nh5QDx8fG66667tGLFCklSbW2tIiMj9eSTT+pnP/vZP31+TU2NOnXqpBUrVmj69OlyOByKiIjQ008/rblz50qSysvLFRoaqvXr12vKlCn/9JgVFRUKDg5WeXm5OnTo0LgFAoaIWub9cxzP8P45ALRcDfn9bekVoOrqau3du1cJCQnObT4+PkpISFBhYWG9jnH58mVdvXpVnTt3liQdO3ZMpaWlLscMDg5WfHz8TY9ZVVWliooKlwcAAGi9LA2gs2fPqqamRqGhoS7bQ0NDVVpaWq9jPPfcc4qIiHAGz/XnNeSYOTk5Cg4Odj4iIyMbuhQAANCCWH4PUGMsWrRIGzdu1Pvvv6/AwEC3j5OVlaXy8nLn48SJEx6cEgAANDd+Vp48JCREvr6+Kisrc9leVlamsLCwWz536dKlWrRokT744AMNHjzYuf3688rKyhQeHu5yzCFDhtR5rICAAAUEBLi5CgAA0NJYegXI399fsbGxys/Pd26rra1Vfn6+RowYcdPnLV68WAsXLlReXp7i4uJcftajRw+FhYW5HLOiokK7du265TEBAIA5LL0CJEmZmZlKTk5WXFychg8frtzcXFVWViolJUWSNH36dHXr1k05OTmSpJdfflnz58/Xhg0bFB0d7byvJygoSEFBQbLZbHrqqaf00ksvqU+fPurRo4deeOEFRUREKDEx0aplAgCAZsTyAEpKStKZM2c0f/58lZaWasiQIcrLy3PexFxcXCwfn79fqFq1apWqq6v1r//6ry7Hyc7O1oIFCyRJzz77rCorKzV79mxduHBBo0aNUl5eXqPuEwIAAK2H5e8D1BzxPkBAw/E+QACs1mLeBwgAAMAKBBAAADAOAQQAAIxDAAEAAOMQQAAAwDgEEAAAMA4BBAAAjEMAAQAA4xBAAADAOAQQAAAwDgEEAACMQwABAADjEEAAAMA4BBAAADAOAQQAAIxDAAEAAOMQQAAAwDgEEAAAMA4BBAAAjEMAAQAA4xBAAADAOAQQAAAwDgEEAACMQwABAADjEEAAAMA4BBAAADAOAQQAAIxDAAEAAOMQQAAAwDgEEAAAMA4BBAAAjEMAAQAA4xBAAADAOAQQAAAwDgEEAACMQwABAADjEEAAAMA4BBAAADAOAQQAAIxDAAEAAOMQQAAAwDgEEAAAMA4BBAAAjEMAAQAA4xBAAADAOAQQAAAwDgEEAACMQwABAADjEEAAAMA4BBAAADAOAQQAAIxDAAEAAOMQQAAAwDgEEAAAMA4BBAAAjEMAAQAA4xBAAADAOAQQAAAwDgEEAACMQwABAADjEEAAAMA4BBAAADAOAQQAAIxDAAEAAOMQQAAAwDgEEAAAMI7lAbRy5UpFR0crMDBQ8fHx2r179033PXTokCZNmqTo6GjZbDbl5ubesM+CBQtks9lcHv369fPiCgAAQEtjaQBt2rRJmZmZys7O1r59+xQTEyO73a7Tp0/Xuf/ly5fVs2dPLVq0SGFhYTc97ve+9z2dOnXK+fjzn//srSUAAIAWyNIAevXVVzVr1iylpKRowIABWr16tdq2bau1a9fWuf9dd92lJUuWaMqUKQoICLjpcf38/BQWFuZ8hISE3HKOqqoqVVRUuDwAAEDrZVkAVVdXa+/evUpISPj7MD4+SkhIUGFhYaOOffToUUVERKhnz56aNm2aiouLb7l/Tk6OgoODnY/IyMhGnR8AADRvlgXQ2bNnVVNTo9DQUJftoaGhKi0tdfu48fHxWr9+vfLy8rRq1SodO3ZMo0eP1sWLF2/6nKysLJWXlzsfJ06ccPv8AACg+fOzegBPGzdunPPrwYMHKz4+XlFRUXr77beVmppa53MCAgJu+ZIaAABoXSy7AhQSEiJfX1+VlZW5bC8rK7vlDc4N1bFjR/Xt21dFRUUeOyYAAGjZLAsgf39/xcbGKj8/37mttrZW+fn5GjFihMfOc+nSJX399dcKDw/32DEBAEDLZulLYJmZmUpOTlZcXJyGDx+u3NxcVVZWKiUlRZI0ffp0devWTTk5OZK+u3H68OHDzq9Pnjyp/fv3KygoSL1795YkzZ07V+PHj1dUVJRKSkqUnZ0tX19fTZ061ZpFAgCAZsfSAEpKStKZM2c0f/58lZaWasiQIcrLy3PeGF1cXCwfn79fpCopKdHQoUOd3y9dulRLly7VmDFjVFBQIEn65ptvNHXqVJ07d05dunTRqFGjtHPnTnXp0qVJ1wYAAJovm8PhcFg9RHNTUVGh4OBglZeXq0OHDlaPA7QIUcu8f47jGd4/B4CWqyG/vy3/KAwAAICmRgABAADjEEAAAMA4BBAAADCOWwG0bds2T88BAADQZNwKoLFjx6pXr1566aWX+NwsAADQ4rgVQCdPnlR6erreffdd9ezZU3a7XW+//baqq6s9PR8AAIDHuRVAISEh+ulPf6r9+/dr165d6tu3r37yk58oIiJCc+bM0WeffebpOQEAADym0TdBDxs2TFlZWUpPT9elS5e0du1axcbGavTo0Tp06JAnZgQAAPAotwPo6tWrevfdd/XAAw8oKipKW7Zs0YoVK1RWVqaioiJFRUVp8uTJnpwVAADAI9z6LLAnn3xSb731lhwOh3784x9r8eLFGjhwoPPn7dq109KlSxUREeGxQQEAADzFrQA6fPiwfvnLX2rixIkKCAioc5+QkBD+XB4AADRLbr0Elp2drcmTJ98QP9euXdOOHTskSX5+fhozZkzjJwQAAPAwtwLohz/8ob799tsbtpeXl+uHP/xho4cCAADwJrcCyOFwyGaz3bD93LlzateuXaOHAgAA8KYG3QM0ceJESZLNZtOMGTNcXgKrqanRgQMHNHLkSM9OCAAA4GENCqDg4GBJ310Bat++vdq0aeP8mb+/v77//e9r1qxZnp0QAADAwxoUQOvWrZMkRUdHa+7cubzcBQAAWiS3/gw+Ozvb03MAAAA0mXoH0LBhw5Sfn69OnTpp6NChdd4Efd2+ffs8MhwAAIA31DuAJkyY4LzpOTEx0VvzAAAAeJ3N4XA4rB6iuamoqFBwcLDKy8vVoUMHq8cBWoSoZd4/x/EM758DQMvVkN/fjf40eAAAgJam3i+BderU6Zb3/fyjut4lGmbz9tUBrgwATcPEK32s2fOaw3rrHUC5ubleHAMAAKDp1DuAkpOTvTkHAABAk6l3AFVUVDhvKKqoqLjlvtw4DAAAmrMG3QN06tQpde3aVR07dqzzfqDrH5JaU1Pj0SEBAAA8qd4B9OGHH6pz586SpG3btnltIAAAAG+rdwCNGTOmzq8BAABaGrc+C0ySzp8/r1/96lf64osvJEkDBgxQSkqK8yoRAABAc+XWGyHu2LFD0dHRWr58uc6fP6/z589r+fLl6tGjh3bs2OHpGQEAADzKrStAaWlpSkpK0qpVq+Tr6ytJqqmp0U9+8hOlpaXp888/9+iQAAAAnuTWFaCioiI9/fTTzviRJF9fX2VmZqqoqMhjwwEAAHiDWwE0bNgw570//+iLL75QTExMo4cCAADwpnq/BHbgwAHn13PmzFFGRoaKior0/e9/X5K0c+dOrVy5UosWLfL8lAAAAB5U7wAaMmSIbDabHA6Hc9uzzz57w36PPPKIkpKSPDMdAACAF9Q7gI4dO+bNOQAAAJpMvQMoKirKm3MAQIsTtcz75zie4f1zACZy+40QJenw4cMqLi5WdXW1y/Yf/ehHjRoKAADAm9wKoL/+9a/6l3/5F33++ecu9wVd/4BUPgwVAAA0Z279GXxGRoZ69Oih06dPq23btjp06JB27NihuLg4FRQUeHhEAAAAz3LrClBhYaE+/PBDhYSEyMfHRz4+Pho1apRycnI0Z84cffrpp56eEwAAwGPcugJUU1Oj9u3bS5JCQkJUUlIi6bsbpb/88kvPTQcAAOAFbl0BGjhwoD777DP16NFD8fHxWrx4sfz9/bVmzRr17NnT0zMCAAB4lFsBNG/ePFVWVkqS/v3f/10PPfSQRo8erdtvv12bNm3y6IAAAACe5lYA2e1259e9e/fWkSNH9O2336pTp07OvwQDAABorhr1PkCSdOLECUlSZGRko4cBAABoCm7dBH3t2jW98MILCg4OVnR0tKKjoxUcHKx58+bp6tWrnp4RAADAo9y6AvTkk0/qvffe0+LFizVixAhJ3/1p/IIFC3Tu3DmtWrXKo0MCAAB4klsBtGHDBm3cuFHjxo1zbhs8eLAiIyM1depUAggAADRrbr0EFhAQoOjo6Bu29+jRQ/7+/o2dCQAAwKvcCqD09HQtXLhQVVVVzm1VVVX6+c9/rvT0dI8NBwAA4A31fgls4sSJLt9/8MEHuuOOOxQTEyNJ+uyzz1RdXa377rvPsxO2QlHLvHv84xnePT4AAC1dvQMoODjY5ftJkya5fM+fwQMAgJai3gG0bt06b84BAADQZBr1RohnzpxxfvjpnXfeqS5dunhkKAAAAG9y6yboyspKzZw5U+Hh4frBD36gH/zgB4qIiFBqaqouX77s6RkBAAA8yq0AyszM1Pbt2/W73/1OFy5c0IULF/Tb3/5W27dv19NPP+3pGQEAADzKrZfAfvOb3+jdd9/VPffc49z2wAMPqE2bNnr44Yd5I0QAANCsuXUF6PLlywoNDb1he9euXXkJDAAANHtuBdCIESOUnZ2tK1euOLf97//+r1588UXnZ4MBAAA0V269BJabm6uxY8fe8EaIgYGB2rJli0cHBAAA8DS3AmjQoEE6evSo/uu//ktHjhyRJE2dOlXTpk1TmzZtPDogAACApzU4gK5evap+/frp97//vWbNmuWNmQAAALyqwfcA3XbbbS73/jTWypUrFR0drcDAQMXHx2v37t033ffQoUOaNGmSoqOjZbPZlJub2+hjAgAA87h1E3RaWppefvllXbt2rVEn37RpkzIzM5Wdna19+/YpJiZGdrtdp0+frnP/y5cvq2fPnlq0aJHCwsI8ckwAAGAetwLok08+0Xvvvafu3bvLbrdr4sSJLo/6evXVVzVr1iylpKRowIABWr16tdq2bau1a9fWuf9dd92lJUuWaMqUKQoICPDIMQEAgHncugm6Y8eON3wafENVV1dr7969ysrKcm7z8fFRQkKCCgsLm/SYVVVVqqqqcn5fUVHh1vkBAEDL0KAAqq2t1ZIlS/TVV1+purpa9957rxYsWODWX36dPXtWNTU1N7yhYmhoqPMvy5rqmDk5OXrxxRfdOicAAGh5GvQS2M9//nM9//zzCgoKUrdu3bR8+XKlpaV5a7Ymk5WVpfLycufjxIkTVo8EAAC8qEFXgN588039x3/8hx577DFJ0gcffKAHH3xQr7/+unx8GnY7UUhIiHx9fVVWVuayvays7KY3OHvrmAEBATe9pwgAALQ+DaqW4uJiPfDAA87vExISZLPZVFJS0uAT+/v7KzY2Vvn5+c5ttbW1ys/Pd/vjNLxxTAAA0Po06ArQtWvXFBgY6LLttttu09WrV906eWZmppKTkxUXF6fhw4crNzdXlZWVSklJkSRNnz5d3bp1U05OjqTvbnI+fPiw8+uTJ09q//79CgoKUu/evet1TAAAgAYFkMPh0IwZM1xeLrpy5Yoef/xxtWvXzrntvffeq9fxkpKSdObMGc2fP1+lpaUaMmSI8vLynDcxFxcXu7y0VlJSoqFDhzq/X7p0qZYuXaoxY8aooKCgXscEAABoUAAlJyffsO3RRx9t1ADp6elKT0+v82fXo+a66OhoORyORh0TAACgQQG0bt06b80BAADQZNx6J2gAAICWjAACAADGIYAAAIBxCCAAAGAcAggAABiHAAIAAMYhgAAAgHEIIAAAYBwCCAAAGIcAAgAAxiGAAACAcQggAABgHAIIAAAYhwACAADGIYAAAIBxCCAAAGAcAggAABiHAAIAAMYhgAAAgHEIIAAAYBwCCAAAGIcAAgAAxiGAAACAcQggAABgHAIIAAAYhwACAADGIYAAAIBxCCAAAGAcAggAABiHAAIAAMYhgAAAgHEIIAAAYBwCCAAAGIcAAgAAxiGAAACAcQggAABgHAIIAAAYhwACAADGIYAAAIBxCCAAAGAcAggAABiHAAIAAMYhgAAAgHEIIAAAYBwCCAAAGIcAAgAAxiGAAACAcQggAABgHAIIAAAYhwACAADGIYAAAIBxCCAAAGAcAggAABiHAAIAAMYhgAAAgHEIIAAAYBwCCAAAGIcAAgAAxiGAAACAcQggAABgHAIIAAAYhwACAADGIYAAAIBxCCAAAGAcAggAABinWQTQypUrFR0drcDAQMXHx2v37t233P+dd95Rv379FBgYqEGDBukPf/iDy89nzJghm83m8hg7dqw3lwAAAFoQywNo06ZNyszMVHZ2tvbt26eYmBjZ7XadPn26zv0//vhjTZ06Vampqfr000+VmJioxMREHTx40GW/sWPH6tSpU87HW2+91RTLAQAALYDlAfTqq69q1qxZSklJ0YABA7R69Wq1bdtWa9eurXP/ZcuWaezYsXrmmWfUv39/LVy4UMOGDdOKFStc9gsICFBYWJjz0alTp5vOUFVVpYqKCpcHAABovSwNoOrqau3du1cJCQnObT4+PkpISFBhYWGdzyksLHTZX5LsdvsN+xcUFKhr166688479cQTT+jcuXM3nSMnJ0fBwcHOR2RkZCNWBQAAmjtLA+js2bOqqalRaGioy/bQ0FCVlpbW+ZzS0tJ/uv/YsWP15ptvKj8/Xy+//LK2b9+ucePGqaamps5jZmVlqby83Pk4ceJEI1cGAACaMz+rB/CGKVOmOL8eNGiQBg8erF69eqmgoED33XffDfsHBAQoICCgKUcEAAAWsvQKUEhIiHx9fVVWVuayvaysTGFhYXU+JywsrEH7S1LPnj0VEhKioqKixg8NAABaPEsDyN/fX7GxscrPz3duq62tVX5+vkaMGFHnc0aMGOGyvyRt3br1pvtL0jfffKNz584pPDzcM4MDAIAWzfK/AsvMzNRrr72mN954Q1988YWeeOIJVVZWKiUlRZI0ffp0ZWVlOffPyMhQXl6eXnnlFR05ckQLFizQnj17lJ6eLkm6dOmSnnnmGe3cuVN/+9vflJ+frwkTJqh3796y2+2WrBEAADQvlt8DlJSUpDNnzmj+/PkqLS3VkCFDlJeX57zRubi4WD4+f++0kSNHasOGDZo3b56ef/559enTR5s3b9bAgQMlSb6+vjpw4IDeeOMNXbhwQREREbr//vu1cOFC7vMBAACSmkEASVJ6errzCs7/V1BQcMO2yZMna/LkyXXu36ZNG23ZssWT4wEAgFbG8pfAAAAAmhoBBAAAjEMAAQAA4xBAAADAOAQQAAAwDgEEAACMQwABAADjEEAAAMA4BBAAADAOAQQAAIxDAAEAAOMQQAAAwDgEEAAAMA4BBAAAjEMAAQAA4xBAAADAOAQQAAAwDgEEAACMQwABAADjEEAAAMA4BBAAADAOAQQAAIxDAAEAAOMQQAAAwDgEEAAAMA4BBAAAjEMAAQAA4xBAAADAOAQQAAAwDgEEAACMQwABAADjEEAAAMA4BBAAADAOAQQAAIxDAAEAAOMQQAAAwDgEEAAAMA4BBAAAjEMAAQAA4xBAAADAOAQQAAAwDgEEAACMQwABAADjEEAAAMA4BBAAADAOAQQAAIxDAAEAAOMQQAAAwDgEEAAAMA4BBAAAjEMAAQAA4xBAAADAOAQQAAAwjp/VAwCtUdQy75/jeIb3zwEArRVXgAAAgHEIIAAAYBwCCAAAGIcAAgAAxiGAAACAcQggAABgHAIIAAAYhwACAADGIYAAAIBxCCAAAGAcAggAABinWQTQypUrFR0drcDAQMXHx2v37t233P+dd95Rv379FBgYqEGDBukPf/iDy88dDofmz5+v8PBwtWnTRgkJCTp69Kg3lwAAAFoQywNo06ZNyszMVHZ2tvbt26eYmBjZ7XadPn26zv0//vhjTZ06Vampqfr000+VmJioxMREHTx40LnP4sWLtXz5cq1evVq7du1Su3btZLfbdeXKlaZaFgAAaMYsD6BXX31Vs2bNUkpKigYMGKDVq1erbdu2Wrt2bZ37L1u2TGPHjtUzzzyj/v37a+HChRo2bJhWrFgh6burP7m5uZo3b54mTJigwYMH680331RJSYk2b97chCsDAADNlZ+VJ6+urtbevXuVlZXl3Obj46OEhAQVFhbW+ZzCwkJlZma6bLPb7c64OXbsmEpLS5WQkOD8eXBwsOLj41VYWKgpU6bccMyqqipVVVU5vy8vL5ckVVRUuL22W6n18oUoL43dKKat2dvrlVhzc8CavYM1W6+l/m/29d/bDofjn+5raQCdPXtWNTU1Cg0NddkeGhqqI0eO1Pmc0tLSOvcvLS11/vz6tpvt8//l5OToxRdfvGF7ZGRk/RbSzAT/zOoJmh5rNgNrNgNrbv28vd6LFy8qODj4lvtYGkDNRVZWlstVpdraWn377be6/fbbZbPZLJzsu5qNjIzUiRMn1KFDB0tnaSqsmTW3RqatV2LNrLnpORwOXbx4UREREf90X0sDKCQkRL6+viorK3PZXlZWprCwsDqfExYWdsv9r/9rWVmZwsPDXfYZMmRInccMCAhQQECAy7aOHTs2ZCle16FDB8v/g9XUWLMZTFuzaeuVWLMpmsua/9mVn+ssvQna399fsbGxys/Pd26rra1Vfn6+RowYUedzRowY4bK/JG3dutW5f48ePRQWFuayT0VFhXbt2nXTYwIAALNY/hJYZmamkpOTFRcXp+HDhys3N1eVlZVKSUmRJE2fPl3dunVTTk6OJCkjI0NjxozRK6+8ogcffFAbN27Unj17tGbNGkmSzWbTU089pZdeekl9+vRRjx499MILLygiIkKJiYlWLRMAADQjlgdQUlKSzpw5o/nz56u0tFRDhgxRXl6e8ybm4uJi+fj8/ULVyJEjtWHDBs2bN0/PP/+8+vTpo82bN2vgwIHOfZ599llVVlZq9uzZunDhgkaNGqW8vDwFBgY2+foaKyAgQNnZ2Te8RNeasWYzmLZm09YrsWZTtNQ12xz1+VsxAACAVsTyN0IEAABoagQQAAAwDgEEAACMQwABAADjEEDN2MqVKxUdHa3AwEDFx8dr9+7dVo/kVTt27ND48eMVEREhm83W6j+8NicnR3fddZfat2+vrl27KjExUV9++aXVY3nVqlWrNHjwYOcbpo0YMUJ//OMfrR6rSS1atMj5dh2t1YIFC2Sz2Vwe/fr1s3osrzt58qQeffRR3X777WrTpo0GDRqkPXv2WD2W10RHR9/wz9lmsyktLc3q0eqFAGqmNm3apMzMTGVnZ2vfvn2KiYmR3W7X6dOnrR7NayorKxUTE6OVK1daPUqT2L59u9LS0rRz505t3bpVV69e1f3336/KykqrR/OaO+64Q4sWLdLevXu1Z88e3XvvvZowYYIOHTpk9WhN4pNPPtF//ud/avDgwVaP4nXf+973dOrUKefjz3/+s9UjedX58+d1991367bbbtMf//hHHT58WK+88oo6depk9Whe88knn7j8M966daskafLkyRZPVk8ONEvDhw93pKWlOb+vqalxREREOHJyciycqulIcrz//vtWj9GkTp8+7ZDk2L59u9WjNKlOnTo5Xn/9davH8LqLFy86+vTp49i6datjzJgxjoyMDKtH8prs7GxHTEyM1WM0qeeee84xatQoq8ewVEZGhqNXr16O2tpaq0epF64ANUPV1dXau3evEhISnNt8fHyUkJCgwsJCCyeDN5WXl0uSOnfubPEkTaOmpkYbN25UZWWlER9Tk5aWpgcffNDlv9et2dGjRxUREaGePXtq2rRpKi4utnokr/rv//5vxcXFafLkyeratauGDh2q1157zeqxmkx1dbV+/etfa+bMmZZ/iHh9EUDN0NmzZ1VTU+N8N+zrQkNDVVpaatFU8Kba2lo99dRTuvvuu13e1bw1+vzzzxUUFKSAgAA9/vjjev/99zVgwACrx/KqjRs3at++fc6P9Gnt4uPjtX79euXl5WnVqlU6duyYRo8erYsXL1o9mtf89a9/1apVq9SnTx9t2bJFTzzxhObMmaM33njD6tGaxObNm3XhwgXNmDHD6lHqzfKPwgDw3dWBgwcPtvr7JCTpzjvv1P79+1VeXq53331XycnJ2r59e6uNoBMnTigjI0Nbt25tkR/H445x48Y5vx48eLDi4+MVFRWlt99+W6mpqRZO5j21tbWKi4vTL37xC0nS0KFDdfDgQa1evVrJyckWT+d9v/rVrzRu3DhFRERYPUq9cQWoGQoJCZGvr6/KyspctpeVlSksLMyiqeAt6enp+v3vf69t27bpjjvusHocr/P391fv3r0VGxurnJwcxcTEaNmyZVaP5TV79+7V6dOnNWzYMPn5+cnPz0/bt2/X8uXL5efnp5qaGqtH9LqOHTuqb9++KioqsnoUrwkPD78h4vv379/qX/qTpOPHj+uDDz7Qv/3bv1k9SoMQQM2Qv7+/YmNjlZ+f79xWW1ur/Px8I+6VMIXD4VB6erref/99ffjhh+rRo4fVI1mitrZWVVVVVo/hNffdd58+//xz7d+/3/mIi4vTtGnTtH//fvn6+lo9otddunRJX3/9tcLDw60exWvuvvvuG97G4quvvlJUVJRFEzWddevWqWvXrnrwwQetHqVBeAmsmcrMzFRycrLi4uI0fPhw5ebmqrKyUikpKVaP5jWXLl1y+X+Ix44d0/79+9W5c2d1797dwsm8Iy0tTRs2bNBvf/tbtW/f3nl/V3BwsNq0aWPxdN6RlZWlcePGqXv37rp48aI2bNiggoICbdmyxerRvKZ9+/Y33NfVrl073X777a32fq+5c+dq/PjxioqKUklJibKzs+Xr66upU6daPZrX/PSnP9XIkSP1i1/8Qg8//LB2796tNWvWaM2aNVaP5lW1tbVat26dkpOT5efXwpLC6j9Dw8398pe/dHTv3t3h7+/vGD58uGPnzp1Wj+RV27Ztc0i64ZGcnGz1aF5R11olOdatW2f1aF4zc+ZMR1RUlMPf39/RpUsXx3333ef405/+ZPVYTa61/xl8UlKSIzw83OHv7+/o1q2bIykpyVFUVGT1WF73u9/9zjFw4EBHQECAo1+/fo41a9ZYPZLXbdmyxSHJ8eWXX1o9SoPZHA6Hw5r0AgAAsAb3AAEAAOMQQAAAwDgEEAAAMA4BBAAAjEMAAQAA4xBAAADAOAQQAAAwDgEEAACMQwABaNXuuecePfXUU1aPAaCZIYAANFvjx4/X2LFj6/zZRx99JJvNpgMHDjTxVABaAwIIQLOVmpqqrVu36ptvvrnhZ+vWrVNcXJwGDx5swWQAWjoCCECz9dBDD6lLly5av369y/ZLly7pnXfeUWJioqZOnapu3bqpbdu2GjRokN56661bHtNms2nz5s0u2zp27OhyjhMnTujhhx9Wx44d1blzZ02YMEF/+9vfnD8vKCjQ8OHD1a5dO3Xs2FF33323jh8/3sjVAmhKBBCAZsvPz0/Tp0/X+vXr9Y+f2/zOO++opqZGjz76qGJjY/U///M/OnjwoGbPnq0f//jH2r17t9vnvHr1qux2u9q3b6+PPvpIf/nLXxQUFKSxY8equrpa165dU2JiosaMGaMDBw6osLBQs2fPls1m88SSATQRP6sHAIBbmTlzppYsWaLt27frnnvukfTdy1+TJk1SVFSU5s6d69z3ySef1JYtW/T2229r+PDhbp1v06ZNqq2t1euvv+6MmnXr1qljx44qKChQXFycysvL9dBDD6lXr16SpP79+zdukQCaHFeAADRr/fr108iRI7V27VpJUlFRkT766COlpqaqpqZGCxcu1KBBg9S5c2cFBQVpy5YtKi4udvt8n332mYqKitS+fXsFBQUpKChInTt31pUrV/T111+rc+fOmjFjhux2u8aPH69ly5bp1KlTnlougCZCAAFo9lJTU/Wb3/xGFy9e1Lp169SrVy+NGTNGS5Ys0bJly/Tcc89p27Zt2r9/v+x2u6qrq296LJvN5vJymvTdy17XXbp0SbGxsdq/f7/L46uvvtIjjzwi6bsrQoWFhRo5cqQ2bdqkvn37aufOnd5ZPACvIIAANHsPP/ywfHx8tGHDBr355puaOXOmbDab/vKXv2jChAl69NFHFRMTo549e+qrr7665bG6dOnicsXm6NGjunz5svP7YcOG6ejRo+ratat69+7t8ggODnbuN3ToUGVlZenjjz/WwIEDtWHDBs8vHIDXEEAAmr2goCAlJSUpKytLp06d0owZMyRJffr00datW/Xxxx/riy++0GOPPaaysrJbHuvee+/VihUr9Omnn2rPnj16/PHHddtttzl/Pm3aNIWEhGjChAn66KOPdOzYMRUUFGjOnDn65ptvdOzYMWVlZamwsFDHjx/Xn/70Jx09epT7gIAWhgAC0CKkpqbq/PnzstvtioiIkCTNmzdPw4YNk91u1z333KOwsDAlJibe8jivvPKKIiMjNXr0aD3yyCOaO3eu2rZt6/x527ZttWPHDnXv3l0TJ05U//79lZqaqitXrqhDhw5q27atjhw5okmTJqlv376aPXu20tLS9Nhjj3lz+QA8zOb4/y+GAwAAtHJcAQIAAMYhgAAAgHEIIAAAYBwCCAAAGIcAAgAAxiGAAACAcQggAABgHAIIAAAYhwACAADGIYAAAIBxCCAAAGCc/wPTRkQ1XhLS0gAAAABJRU5ErkJggg==\n" - }, - "metadata": {} - } - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.7" - }, - "colab": { - "provenance": [] - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} \ No newline at end of file diff --git a/community/QClass_2024/Submissions/HW2/Priyabrata_Bag_HW2_QClass2024.ipynb b/community/QClass_2024/Submissions/HW2/Priyabrata_Bag_HW2_QClass2024.ipynb deleted file mode 100644 index 48f7fe3c..00000000 --- a/community/QClass_2024/Submissions/HW2/Priyabrata_Bag_HW2_QClass2024.ipynb +++ /dev/null @@ -1,705 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# The Qmod Workshop - Part 2: Higher-Level Concepts\n", - "\n", - "This is the second part of the Qmod workshop, covering exercises 6 through 10. Make sure to go through Part 1 before continuing with this notebook." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "from classiq import *" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 6 - Exponentiation and Pauli Operators\n", - "\n", - "The Qmod language supports different classical types: scalars, arrays, and structs. Structs are objects with member variables, or fields.\n", - "\n", - "See also [Classical Types](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/classical-types/#structs).\n", - "\n", - "The builtin struct type `PauliTerm` is defined as follows:" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "@struct\n", - "class PauliTerm:\n", - " pauli: CArray[Pauli]\n", - " coefficient: CReal" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Note that `Pauli` is an enum for all the Pauli matrices (I, X, Y, Z).\n", - "\n", - "Pauli based hamiltonian can be represented as a list of `PauliTerm`s. A Pauli operator defined this way is the argument to a hamiltonian evolution functions.\n", - "\n", - "In this exercise we will use the Suzuki-Trotter function to find the evolution of `H=0.5XZXX + 0.25YIZI + 0.3 XIZY` (captured as a literal value for the pauli-operator), with the evolution coefficient being 3, the order being 2, and use 4 repetitions.\n", - "\n", - "The declaration of the `suzuki_trotter` function is:" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "@qfunc(external=True)\n", - "def suzuki_trotter(\n", - " pauli_operator: CArray[PauliTerm],\n", - " evolution_coefficient: CReal,\n", - " order: CInt,\n", - " repetitions: CInt,\n", - " qbv: QArray[QBit],\n", - ") -> None:\n", - " pass" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Fill in the missing parts of the following code in order to complete this exercise:" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/89144896-1454-482f-8985-05845d44b7fc?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "\n", - "@qfunc\n", - "def main(q: Output[QArray[QBit]]) -> None:\n", - " allocate(4, q)\n", - " suzuki_trotter(\n", - " pauli_operator=[PauliTerm(pauli=[Pauli.X, Pauli.Z, Pauli.X, Pauli.X], coefficient=0.5),\n", - " PauliTerm(pauli=[Pauli.Y, Pauli.I, Pauli.Z, Pauli.I], coefficient=0.25),\n", - " PauliTerm(pauli=[Pauli.X, Pauli.I, Pauli.Z, Pauli.Y], coefficient=0.3)],\n", - " evolution_coefficient=3,\n", - " repetitions=4,\n", - " order=2,\n", - " qbv=q,\n", - " )\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 7 - Basic Arithmetics\n", - "\n", - "#### Exercise 7a\n", - "In this exercise we will use quantum numeric variables and calculate expressions over them.\n", - "\n", - "See details on the syntax of numeric types under [Quantum types](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/quantum-types/#syntax).\n", - "See more on quantum expressions under [Numeric assignment](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/numeric-assignment/)\n", - "\n", - "Create the following quantum programs:\n", - "1. Initialize variables `x=2`, `y=7` and computes `res = x + y`.\n", - "2. Initialize variables `x=2`, `y=7` and computes `res = x * y`.\n", - "3. Initialize variables `x=2`, `y=7`, `z=1` and computes `res = x * y - z`.\n", - "\n", - "Guidance:\n", - "* Use the operator `|=` to perform out-of-place assignment of arithmetic expression.\n", - "* To initialize the variables, use the function `prepare_int`.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/840709ad-cd68-42e5-af15-0ae101c220c0?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "# @qfunc\n", - "# def main(x: Output[QNum], y: Output[QNum], res: Output[QNum]):\n", - "# prepare_int(2, x)\n", - "# prepare_int(7, y)\n", - "# res |= x + y\n", - "\n", - "\n", - "# @qfunc\n", - "# def main(x: Output[QNum], y: Output[QNum], res: Output[QNum]):\n", - "# prepare_int(2, x)\n", - "# prepare_int(7, y)\n", - "# res |= x * y\n", - "\n", - "\n", - "@qfunc\n", - "def main(x: Output[QNum], y: Output[QNum], z: Output[QNum], res: Output[QNum]):\n", - " prepare_int(2, x)\n", - " prepare_int(7, y)\n", - " prepare_int(1, z)\n", - " res |= x * y - z\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Exercise 7b\n", - "Declare `x` to be a 2-qubit variable and `y` to be 3-qubit variable.\n", - "\n", - "We will perform an addition of two superposition states: `x` is an equal superposition of `0` and `2`, and `y` is an equal superposition of `1`, `2`, `3`, and `6`.\n", - "\n", - "1. Use `prepare_state` to initialize `x` and `y`. Note that `prepare_state` works with probabilities, not amplitudes.\n", - " The declaration of the `prepare_state` function is:\n", - " ```\n", - " @qfunc(external=True)\n", - " def prepare_state(\n", - " probabilities: CArray[CReal],\n", - " bound: CReal,\n", - " out: Output[QArray[QBit]],\n", - " ) -> None:\n", - " pass\n", - " ```\n", - " (Set the bound to 0 in your code)\n", - "2. Compute `res = x + y`. Execute the resulting circuit. What did you get?" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/cad13e3b-359f-48e5-8cc5-4a89a639d809?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def main(x: Output[QNum[2, False, 0]], y: Output[QNum[3, False, 0]], res: Output[QNum]):\n", - " # allocate_num(num_qubits=2,is_signed=False,fraction_digits=0,out=x)\n", - " # allocate_num(num_qubits=3,is_signed=False,fraction_digits=0,out=y)\n", - " prepare_state(probabilities=[1/2, 0, 1/2, 0], bound=0, out=x)\n", - " prepare_state(probabilities=[0, 1/4, 1/4, 1/4, 0, 0, 1/4, 0], bound=0, out=y)\n", - " res |= x + y\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 8 - Within-Apply\n", - "\n", - "The within-apply statement applies the pattern `U_dagger V U` that appears frequently in quantum computing.\n", - "It allows you to compute some function `V` within the context of another function `U`, and afterward uncompute `U` in order to release auxiliary qubits storing intermediate results.\n", - "\n", - "See also [Within Apply](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/within-apply/).\n", - "\n", - "#### Exercise 8a\n", - "\n", - "In this exercise, we will use within-apply to compute an arithmetic expression in steps.\n", - "\n", - "Use the `within_apply` operation to calculate `res = x + y + z` from a two-variable addition building block with the following steps:\n", - "1. Add `x` and `y`\n", - "2. Add the result to `z`\n", - "3. Uncompute the result of the first operation\n", - "\n", - "For simplicity, initialize the registers to simple integers: `x=3`, `y=5`, `z=2`.\n", - "\n", - "Hints:\n", - "\n", - "* Use a temporary variable.\n", - "* Wrap the arithmetic operation in a function.\n", - "\n", - "Execute the circuit and make sure you obtain the expected result." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/ff20131e-6826-4503-86ca-8ec2a7864b35?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def addition(a: QNum, b: QNum, add: Output[QNum]):\n", - " add |= a + b\n", - "\n", - "\n", - "@qfunc\n", - "def main(x: Output[QNum], y: Output[QNum], z: Output[QNum], res: Output[QNum]):\n", - " prepare_int(3, x)\n", - " prepare_int(5, y)\n", - " prepare_int(2, z)\n", - " tmp = QNum('tmp')\n", - " \n", - " within_apply(compute= lambda: addition(x,y,tmp), action= lambda: addition(tmp,z,res))\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Exercise 8b\n", - "\n", - "Why should we use `within-apply` and not just write three concatenated functions?\n", - "To understand the motivation, we will create another arithmetic circuit.\n", - "This time, however, we will also set Classiq’s synthesis engine to optimize on the circuit’s number of qubits, i.e., its width.\n", - "\n", - "Setting constraints can be done via the `set_constraints` operation - see [here](https://docs.classiq.io/latest/user-guide/platform/synthesis/constraints/).\n", - "\n", - "Perform the operation `res = w + x + y + z`, where w is initialized to 4 and the rest as before:\n", - "\n", - "1. Add `x` and `y` (as part of the `within_apply` operation)\n", - "2. Add the result to `z` (as part of the within_apply operation)\n", - "3. Uncompute the result of the first operation (as part of the `within_apply` operation)\n", - "4. Add the result of the second operation to `w`. There’s no need to perform another uncomputation, as this brings our calculation to an end.\n", - "\n", - "Create the model, optimize on the circuit’s width, and run the circuit. Can you identify where qubits have been released and reused?" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/54328ccb-81c6-4a13-a884-285f58138344?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def addition(a: QNum, b: QNum, add: Output[QNum]):\n", - " add |= a + b\n", - "\n", - "\n", - "@qfunc\n", - "def main(x: Output[QNum], y: Output[QNum], z: Output[QNum], w: Output[QNum], res: Output[QNum]):\n", - " prepare_int(3, x)\n", - " prepare_int(5, y)\n", - " prepare_int(2, z)\n", - " prepare_int(4, w)\n", - " tmp = QNum('tmp')\n", - " sumxyz = QNum('sumxyz')\n", - " \n", - " within_apply(compute= lambda: addition(x,y,tmp), action= lambda: addition(tmp,z,sumxyz))\n", - " res |= sumxyz + w\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/800056c0-14dd-4b2f-86ce-5e61d558ec5b?version=0.41.2\n" - ] - } - ], - "source": [ - "qmod = set_constraints(qmod, Constraints(optimization_parameter='width'))\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Bonus: Use a Single Arithmetic Expression\n", - "\n", - "What happens when we don't manually decompose this expression?\n", - "\n", - "Use Classiq’s arithmetic engine to calculate `res |= x + y + z + w` and optimize for width.\n", - "Look at the resulting quantum program - can you identify the computation and uncomputation blocks? What else did you notice?" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/a734214a-a8ed-4cb3-987a-1c89ca418360?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def main(x: Output[QNum], y: Output[QNum], z: Output[QNum], w: Output[QNum], res: Output[QNum]):\n", - " prepare_int(3, x)\n", - " prepare_int(5, y)\n", - " prepare_int(2, z)\n", - " prepare_int(4, w)\n", - " \n", - " res |= x + y + z + w\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/2739f41b-ae73-46c7-a266-fdae868b9b43?version=0.41.2\n" - ] - } - ], - "source": [ - "qmod = set_constraints(qmod, Constraints(optimization_parameter='width'))\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 9 - In-place Arithmetics\n", - "\n", - "For the following exercise we will use numeric quantum variables that represent fixed-point reals.\n", - "\n", - "Arithmetic expressions can be calculated in-place into a target variable, without allocating new qubits to store the result. This is done using the in-place-xor operator.\n", - "\n", - "See also [Numeric assignment](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/numeric-assignment/#semantics).\n", - "\n", - "In-place assignment is often used to nest arithmetic expressions under quantum operators. Note that out-of-place assignment requires its left-value variable to be un-initialized, and therefore cannot be used under an operator if the variable is declared outside its scope. Applying operators to arithmetic expressions is required in many algorithms. One example is the piecewise evaluation of mathematical functions - calculating different expressions over `x` depending on the subdomain where `x` falls.\n", - "\n", - "For this exercise, replace the missing parts in the code snippet below to evaluate the result of:\n", - "\n", - "$$\n", - "f(x) = \\begin{cases}\n", - " 2x + 1 & \\text{ if } 0 \\leq x < 0.5 \\\\\n", - " x + 0.5 & \\text{ if } 0.5 \\leq x < 1\n", - " \\end{cases}\n", - "$$\n", - "\n", - "Notes:\n", - "- We cannot use `x` directly as the control variable in a `constrol` operator, because it also occurs in the nested scope. to determine if `x` is in the lower or higher half of the domain we duplicate the most significant bit onto a separate variable called `label`.\n", - "- In Python assignment operators cannot be used in lambda expressions, so the computation of the function needs to be factored out to a named Python function (but not necessarily a Qmod function).\n" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/5fe2877a-a5e5-4983-acba-1c9d6cb1d381?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "\n", - "def linear_func(a: float, b: float, x: QNum, res: QNum) -> None:\n", - " res ^= a * x + b\n", - "\n", - "# @qfunc\n", - "# def linear_func(a: CReal, b: CReal, x: QNum, res: Output[QNum]):\n", - "# res |= a * x + b\n", - "\n", - "@qfunc\n", - "def inplace_linear_func(a: CReal, b: CReal, x: QNum, res: QNum):\n", - " tmp = QNum('tmp')\n", - " allocate_num(num_qubits=5,is_signed=False,fraction_digits=3,out=tmp)\n", - " within_apply(compute= lambda: linear_func(a, b, x, tmp), action= lambda: inplace_xor(tmp, res))\n", - "\n", - "\n", - "@qfunc\n", - "def dup_msb(qba: QArray[QBit], msb: QBit) -> None:\n", - " CX(qba[qba.len - 1], msb)\n", - "\n", - "\n", - "@qfunc\n", - "def main(x: Output[QNum[3, False, 3]], res: Output[QNum[5, False, 3]]) -> None:\n", - " allocate(5, res)\n", - " allocate(3, x)\n", - " hadamard_transform(x)\n", - "\n", - " label = QArray(\"label\")\n", - " allocate(1, label)\n", - "\n", - " dup_msb(x, label)\n", - " control(label, lambda: inplace_linear_func(1.0, 0.5, x, res)) # 0.5 <= x < 1.0\n", - " X(label)\n", - " control(label, lambda: inplace_linear_func(2.0, 1.0, x, res)) # 0.0 <= x < 0.5\n", - "\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 10 - State-preparation Algorithm using Quantum-if\n", - "\n", - "#### Binding\n", - "The `bind` operation allows to convert smoothly between different quantum types and split or slice bits when necessary. Here’s an example:" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/246b2b1c-bd49-4849-a5f0-fc5979cae7d3?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "from math import pi\n", - "\n", - "\n", - "@qfunc\n", - "def main(res: Output[QArray[QBit]]) -> None:\n", - " x: QArray[QBit] = QArray(\"x\")\n", - " allocate(3, x)\n", - " hadamard_transform(x)\n", - "\n", - " lsb = QBit(\"lsb\")\n", - " msb = QNum(\"msb\", 2, False, 0)\n", - " bind(x, [lsb, msb])\n", - "\n", - " control(msb == 1, lambda: RY(pi / 3, lsb)) # msb==1 <==> bit1 bit2 == 01 (binary of decimal 1)\n", - "\n", - " bind([lsb, msb], res)\n", - "\n", - "model = create_model(main)\n", - "qprog = synthesize(model)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The first `bind` operation splits the 3-qubit register `x` into the 2-qubit and single-qubit registers `lsb` and `msb`, respectively.\n", - "\n", - "After the `bind` operation:\n", - "1. The registers `lsb` and `msb` can be operated on as separated registers.\n", - "2. The register`x` is consumed and can no longer be used.\n", - "\n", - "The second `bind` operation concatenates the registers to the output register `res`.\n", - "\n", - "For this exercise, fill in the missing code parts in the above snippet and use the `control` statement to manually generate the following lovely 3-qubit probability distribution: `[1/8, 1/8, 1/8, -sqrt(3)/16, 1/8 + sqrt(3)/16, 1/8, 1/8, 1/8, 1/8]`.\n", - "\n", - "The following series of gates generate it:\n", - "\n", - "Perform the Hadamard transform on all three qubits.\n", - "\n", - "Apply a rotation on the LSB (least-significant bit) conditioned by the MSB being |0> and the second to last MSB being |1>. How would you write this condition using a QNum?\n", - "\n", - "The following series of gates generate it:\n", - "1. Perform the Hadamard transform on all three qubits.\n", - "2. Apply a `pi/3` rotation on the LSB (least-significant bit) conditioned by the MSB being |0> and the second to last MSB being |1>. How would you write this condition using a QNum?\n", - "\n", - "If you want to validate your results without looking at the full solution, compare them to running using Classiq’s built-in `prepare_state` function.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/907625f6-c374-46ed-8039-71c8deeab08e?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "from classiq.qmod.symbolic import sqrt\n", - "\n", - "prob_list= [\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " -sqrt(3) / 16,\n", - " 1 / 8 + sqrt(3) / 16,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " ]\n", - "@qfunc\n", - "def pre_prepared_state(q: QArray[QBit]) -> None:\n", - " prepare_state(\n", - " [\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " -sqrt(3) / 16,\n", - " 1 / 8 + sqrt(3) / 16,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " ],\n", - " 0.0,\n", - " q,\n", - " )\n", - "\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def main(res: Output[QArray[QBit]]) -> None:\n", - " x: QArray[QBit] = QArray(\"x\")\n", - " allocate(3, x)\n", - " hadamard_transform(x)\n", - "\n", - " lsb = QBit(\"lsb\")\n", - " msb = QNum(\"msb\", 2, False, 0)\n", - " bind(x, [lsb, msb])\n", - "\n", - " control(msb == 2, lambda: RY(symbolic.pi / 3, lsb))\n", - "\n", - " bind([lsb, msb], res)\n", - "\n", - "model = create_model(main)\n", - "qprog = synthesize(model)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.9" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/community/QClass_2024/Submissions/HW2/Rajana_Rama_Satya_Sai_Durga_Prasad_HW2_QClass2024.ipynb b/community/QClass_2024/Submissions/HW2/Rajana_Rama_Satya_Sai_Durga_Prasad_HW2_QClass2024.ipynb deleted file mode 100644 index df3b7469..00000000 --- a/community/QClass_2024/Submissions/HW2/Rajana_Rama_Satya_Sai_Durga_Prasad_HW2_QClass2024.ipynb +++ /dev/null @@ -1,692 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# The Qmod Workshop - Part 2: Higher-Level Concepts\n", - "\n", - "This is the second part of the Qmod workshop, covering exercises 6 through 10. Make sure to go through Part 1 before continuing with this notebook." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "from classiq import *" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 6 - Exponentiation and Pauli Operators\n", - "\n", - "The Qmod language supports different classical types: scalars, arrays, and structs. Structs are objects with member variables, or fields.\n", - "\n", - "See also [Classical Types](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/classical-types/#structs).\n", - "\n", - "The builtin struct type `PauliTerm` is defined as follows:" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "@struct\n", - "class PauliTerm:\n", - " pauli: CArray[Pauli]\n", - " coefficient: CReal" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Note that `Pauli` is an enum for all the Pauli matrices (I, X, Y, Z).\n", - "\n", - "Pauli based hamiltonian can be represented as a list of `PauliTerm`s. A Pauli operator defined this way is the argument to a hamiltonian evolution functions.\n", - "\n", - "In this exercise we will use the Suzuki-Trotter function to find the evolution of `H=0.5XZXX + 0.25YIZI + 0.3 XIZY` (captured as a literal value for the pauli-operator), with the evolution coefficient being 3, the order being 2, and use 4 repetitions.\n", - "\n", - "The declaration of the `suzuki_trotter` function is:" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "@qfunc(external=True)\n", - "def suzuki_trotter(\n", - " pauli_operator: CArray[PauliTerm],\n", - " evolution_coefficient: CReal,\n", - " order: CInt,\n", - " repetitions: CInt,\n", - " qbv: QArray[QBit],\n", - ") -> None:\n", - " pass" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Fill in the missing parts of the following code in order to complete this exercise:" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/c31a02ed-6501-4ed8-b1a0-3a559eacc899?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "\n", - "@qfunc\n", - "def main(q: Output[QArray[QBit]]) -> None:\n", - " allocate(4, q)\n", - " suzuki_trotter(\n", - " [\n", - " PauliTerm(pauli=[Pauli.X, Pauli.Z, Pauli.X, Pauli.X], coefficient=0.5),\n", - " PauliTerm(pauli=[Pauli.Y, Pauli.I, Pauli.Z, Pauli.I], coefficient=0.25),\n", - " PauliTerm(pauli=[Pauli.X, Pauli.I, Pauli.Z, Pauli.Y], coefficient=0.3)\n", - " ],\n", - " evolution_coefficient=3,\n", - " repetitions=4,\n", - " order=2,\n", - " qbv=q,\n", - " )\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 7 - Basic Arithmetics\n", - "\n", - "#### Exercise 7a\n", - "In this exercise we will use quantum numeric variables and calculate expressions over them.\n", - "\n", - "See details on the syntax of numeric types under [Quantum types](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/quantum-types/#syntax).\n", - "See more on quantum expressions under [Numeric assignment](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/numeric-assignment/)\n", - "\n", - "Create the following quantum programs:\n", - "1. Initialize variables `x=2`, `y=7` and computes `res = x + y`.\n", - "2. Initialize variables `x=2`, `y=7` and computes `res = x * y`.\n", - "3. Initialize variables `x=2`, `y=7`, `z=1` and computes `res = x * y - z`.\n", - "\n", - "Guidance:\n", - "* Use the operator `|=` to perform out-of-place assignment of arithmetic expression.\n", - "* To initialize the variables, use the function `prepare_int`.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/6bead2a5-e0b5-4ca9-b594-c203073f37c7?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def addition(res: Output[QNum]):\n", - " x = QNum(\"x\") \n", - " prepare_int(2,x)\n", - " y = QNum(\"y\")\n", - " prepare_int(7,y)\n", - " res|=x+y\n", - " \n", - "@qfunc\n", - "def multiply(res: Output[QNum]):\n", - " x = QNum(\"x\") \n", - " prepare_int(2,x)\n", - " y = QNum(\"y\")\n", - " prepare_int(7,y)\n", - " res|=x*y\n", - "\n", - "@qfunc\n", - "def mixed_op(res: Output[QNum]):\n", - " x = QNum(\"x\") \n", - " prepare_int(2,x)\n", - " y = QNum(\"y\")\n", - " prepare_int(7,y)\n", - " z = QNum(\"z\")\n", - " prepare_int(1,z)\n", - " res|=x*y-z\n", - " \n", - "@qfunc\n", - "def main(res: Output[QNum]):\n", - " #addition(res)\n", - " multiply(res)\n", - " #mixed_op(res)\n", - " \n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Exercise 7b\n", - "Declare `x` to be a 2-qubit variable and `y` to be 3-qubit variable.\n", - "\n", - "We will perform an addition of two superposition states: `x` is an equal superposition of `0` and `2`, and `y` is an equal superposition of `1`, `2`, `3`, and `6`.\n", - "\n", - "1. Use `prepare_state` to initialize `x` and `y`. Note that `prepare_state` works with probabilities, not amplitudes.\n", - " The declaration of the `prepare_state` function is:\n", - " ```\n", - " @qfunc(external=True)\n", - " def prepare_state(\n", - " probabilities: CArray[CReal],\n", - " bound: CReal,\n", - " out: Output[QArray[QBit]],\n", - " ) -> None:\n", - " pass\n", - " ```\n", - " (Set the bound to 0 in your code)\n", - "2. Compute `res = x + y`. Execute the resulting circuit. What did you get?" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/d5b5f2ce-4fc4-489c-9bc2-54599be2a3f0?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc(external=True)\n", - "def prepare_state(\n", - " probabilities: CArray[CReal],\n", - " bound: CReal,\n", - " out: Output[QArray[QBit]],\n", - ") -> None:\n", - " pass\n", - "#x: Output[QArray[QBit]],y: Output[QArray[QBit]],\n", - "@qfunc\n", - "def main(res: Output[QNum]):\n", - " x = QNum(\"x\")\n", - " prepare_state(probabilities=[0.5, 0, 0.5, 0], bound=0, out=x)\n", - " y = QNum(\"y\") \n", - " prepare_state(probabilities=[0, 0.25, 0.25, 0.25, 0, 0, 0.25,0], bound=0, out=y)\n", - " \n", - " res|= x+y\n", - " \n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 8 - Within-Apply\n", - "\n", - "The within-apply statement applies the pattern `U_dagger V U` that appears frequently in quantum computing.\n", - "It allows you to compute some function `V` within the context of another function `U`, and afterward uncompute `U` in order to release auxiliary qubits storing intermediate results.\n", - "\n", - "See also [Within Apply](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/within-apply/).\n", - "\n", - "#### Exercise 8a\n", - "\n", - "In this exercise, we will use within-apply to compute an arithmetic expression in steps.\n", - "\n", - "Use the `within_apply` operation to calculate `res = x + y + z` from a two-variable addition building block with the following steps:\n", - "1. Add `x` and `y`\n", - "2. Add the result to `z`\n", - "3. Uncompute the result of the first operation\n", - "\n", - "For simplicity, initialize the registers to simple integers: `x=3`, `y=5`, `z=2`.\n", - "\n", - "Hints:\n", - "\n", - "* Use a temporary variable.\n", - "* Wrap the arithmetic operation in a function.\n", - "\n", - "Execute the circuit and make sure you obtain the expected result." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/1ffa5d8d-2c07-489c-8cdb-87c71fb50178?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def addition_fun(x:QNum, y: QNum,res: Output[QNum]):\n", - " res|=x+y\n", - "@qfunc\n", - "def main(res: Output[QNum]):\n", - " \n", - " x = QNum('x')\n", - " y = QNum('y')\n", - " z = QNum('z')\n", - " prepare_int(3, x)\n", - " prepare_int(5, y)\n", - " prepare_int(2, z)\n", - " tmp = QNum('tmp')\n", - " within_apply(compute= lambda: addition_fun(x,y,tmp),\n", - " action= lambda: addition_fun(tmp,z,res))\n", - "\n", - " \n", - " \n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Exercise 8b\n", - "\n", - "Why should we use `within-apply` and not just write three concatenated functions?\n", - "To understand the motivation, we will create another arithmetic circuit.\n", - "This time, however, we will also set Classiq’s synthesis engine to optimize on the circuit’s number of qubits, i.e., its width.\n", - "\n", - "Setting constraints can be done via the `set_constraints` operation - see [here](https://docs.classiq.io/latest/user-guide/platform/synthesis/constraints/).\n", - "\n", - "Perform the operation `res = w + x + y + z`, where w is initialized to 4 and the rest as before:\n", - "\n", - "1. Add `x` and `y` (as part of the `within_apply` operation)\n", - "2. Add the result to `z` (as part of the within_apply operation)\n", - "3. Uncompute the result of the first operation (as part of the `within_apply` operation)\n", - "4. Add the result of the second operation to `w`. There’s no need to perform another uncomputation, as this brings our calculation to an end.\n", - "\n", - "Create the model, optimize on the circuit’s width, and run the circuit. Can you identify where qubits have been released and reused?" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/5916e27b-bbb9-4805-893b-0fd402b123d6?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def addition_fun(x:QNum, y: QNum,res: Output[QNum]):\n", - " res|=x+y\n", - "@qfunc\n", - "def main(res: Output[QNum]):\n", - "\n", - " w = QNum('w')\n", - " x = QNum('x')\n", - " y = QNum('y')\n", - " z = QNum('z')\n", - " prepare_int(4, w)\n", - " prepare_int(3, x)\n", - " prepare_int(5, y)\n", - " prepare_int(2, z)\n", - " tmp1 = QNum('tmp1')\n", - " tmp2 = QNum('tmp2')\n", - " within_apply(compute= lambda: addition_fun(x,y,tmp1),\n", - " action= lambda: addition_fun(tmp1,z,tmp2))\n", - " res|= tmp2+w\n", - " \n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Bonus: Use a Single Arithmetic Expression\n", - "\n", - "What happens when we don't manually decompose this expression?\n", - "\n", - "Use Classiq’s arithmetic engine to calculate `res |= x + y + z + w` and optimize for width.\n", - "Look at the resulting quantum program - can you identify the computation and uncomputation blocks? What else did you notice?" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/d0955720-e6c8-4067-b8cb-feb616b14e28?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "\n", - "@qfunc\n", - "def main(res: Output[QNum]):\n", - "\n", - " w = QNum('w')\n", - " x = QNum('x')\n", - " y = QNum('y')\n", - " z = QNum('z')\n", - " prepare_int(4, w)\n", - " prepare_int(3, x)\n", - " prepare_int(5, y)\n", - " prepare_int(2, z)\n", - "\n", - " res|=w+x+y+z\n", - "\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 9 - In-place Arithmetics\n", - "\n", - "For the following exercise we will use numeric quantum variables that represent fixed-point reals.\n", - "\n", - "Arithmetic expressions can be calculated in-place into a target variable, without allocating new qubits to store the result. This is done using the in-place-xor operator.\n", - "\n", - "See also [Numeric assignment](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/numeric-assignment/#semantics).\n", - "\n", - "In-place assignment is often used to nest arithmetic expressions under quantum operators. Note that out-of-place assignment requires its left-value variable to be un-initialized, and therefore cannot be used under an operator if the variable is declared outside its scope. Applying operators to arithmetic expressions is required in many algorithms. One example is the piecewise evaluation of mathematical functions - calculating different expressions over `x` depending on the subdomain where `x` falls.\n", - "\n", - "For this exercise, replace the missing parts in the code snippet below to evaluate the result of:\n", - "\n", - "$$\n", - "f(x) = \\begin{cases}\n", - " 2x + 1 & \\text{ if } 0 \\leq x < 0.5 \\\\\n", - " x + 0.5 & \\text{ if } 0.5 \\leq x < 1\n", - " \\end{cases}\n", - "$$\n", - "\n", - "Notes:\n", - "- We cannot use `x` directly as the control variable in a `constrol` operator, because it also occurs in the nested scope. to determine if `x` is in the lower or higher half of the domain we duplicate the most significant bit onto a separate variable called `label`.\n", - "- In Python assignment operators cannot be used in lambda expressions, so the computation of the function needs to be factored out to a named Python function (but not necessarily a Qmod function).\n" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/94b1e4ac-25d4-46d9-99e0-380a2b4b6260?version=0.41.2\n" - ] - } - ], - "source": [ - "\n", - "from classiq import *\n", - "\n", - "\n", - "def linear_func(a: float, b: float, x: QNum, res: QNum) -> None:\n", - " res ^= a * x + b\n", - "\n", - "\n", - "@qfunc\n", - "def dup_msb(qba: QArray[QBit], msb: QBit) -> None:\n", - " CX(qba[qba.len - 1], msb)\n", - "\n", - "\n", - "@qfunc\n", - "def main(x: Output[QNum[3, False, 3]], res: Output[QNum[5, False, 3]]) -> None:\n", - " allocate(5, res)\n", - " allocate(3, x)\n", - " hadamard_transform(x)\n", - "\n", - " label = QArray(\"label\")\n", - " allocate(1, label)\n", - "\n", - " dup_msb(x, label)\n", - " control(label, lambda: linear_func(1.0, 0.5, x, res)) # 0.5 <= x < 1.0\n", - " X(label)\n", - " control(label, lambda: linear_func(2.0, 1.0, x, res)) # 0.0 <= x < 0.5\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 10 - State-preparation Algorithm using Quantum-if\n", - "\n", - "#### Binding\n", - "The `bind` operation allows to convert smoothly between different quantum types and split or slice bits when necessary. Here’s an example:" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/d865c2f7-c7ab-4092-8192-602cf2de60dc?version=0.40.0\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "\n", - "\n", - "from classiq import *\n", - "from math import pi\n", - "\n", - "\n", - "@qfunc\n", - "def main(res: Output[QArray[QBit]]) -> None:\n", - " x: QArray[QBit] = QArray(\"x\")\n", - " allocate(3, x)\n", - " hadamard_transform(x)\n", - "\n", - " lsb = QBit(\"lsb\")\n", - " msb = QNum(\"msb\", 2, False, 0)\n", - " bind(x, [lsb, msb])\n", - "\n", - " control(msb == 1, lambda: RY(pi / 3, lsb)) # msb==1 <==> bit1 bit2 == 01 (binary of decimal 1)\n", - "\n", - " bind([lsb, msb], res)\n", - "\n", - "model = create_model(main)\n", - "qprog = synthesize(model)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The first `bind` operation splits the 3-qubit register `x` into the 2-qubit and single-qubit registers `lsb` and `msb`, respectively.\n", - "\n", - "After the `bind` operation:\n", - "1. The registers `lsb` and `msb` can be operated on as separated registers.\n", - "2. The register`x` is consumed and can no longer be used.\n", - "\n", - "The second `bind` operation concatenates the registers to the output register `res`.\n", - "\n", - "For this exercise, fill in the missing code parts in the above snippet and use the `control` statement to manually generate the following lovely 3-qubit probability distribution: `[1/8, 1/8, 1/8, -sqrt(3)/16, 1/8 + sqrt(3)/16, 1/8, 1/8, 1/8, 1/8]`.\n", - "\n", - "The following series of gates generate it:\n", - "\n", - "Perform the Hadamard transform on all three qubits.\n", - "\n", - "Apply a rotation on the LSB (least-significant bit) conditioned by the MSB being |0> and the second to last MSB being |1>. How would you write this condition using a QNum?\n", - "\n", - "The following series of gates generate it:\n", - "1. Perform the Hadamard transform on all three qubits.\n", - "2. Apply a `pi/3` rotation on the LSB (least-significant bit) conditioned by the MSB being |0> and the second to last MSB being |1>. How would you write this condition using a QNum?\n", - "\n", - "If you want to validate your results without looking at the full solution, compare them to running using Classiq’s built-in `prepare_state` function.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/258b4944-0bbb-4642-b8af-d8969349efbf?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "from classiq.qmod.symbolic import sqrt,pi\n", - "\n", - "prob_list= [\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1/8 -sqrt(3) / 16,\n", - " 1 / 8 + sqrt(3) / 16,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8\n", - " ]\n", - "@qfunc\n", - "def pre_prepared_state(q: QArray[QBit]) -> None:\n", - " prepare_state(\n", - " [\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1/8-sqrt(3) / 16,\n", - " 1 / 8 + sqrt(3) / 16,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " ],\n", - " 0.0,\n", - " q,\n", - " )\n", - "\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def main(res: Output[QArray[QBit]]) -> None:\n", - " prepare_state(probabilities=prob_list, bound=0, out=res)\n", - " \n", - "\n", - "model = create_model(main)\n", - "qprog = synthesize(model)\n", - "show(qprog)\n", - "\n", - " \n", - " \n", - " \n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.7" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/community/QClass_2024/Submissions/HW2/Razeen_Ud_Din_HW2_QClass2024.ipynb b/community/QClass_2024/Submissions/HW2/Razeen_Ud_Din_HW2_QClass2024.ipynb deleted file mode 100644 index e2d1e012..00000000 --- a/community/QClass_2024/Submissions/HW2/Razeen_Ud_Din_HW2_QClass2024.ipynb +++ /dev/null @@ -1,658 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# The Qmod Workshop - Part 2: Higher-Level Concepts\n", - "\n", - "This is the second part of the Qmod workshop, covering exercises 6 through 10. Make sure to go through Part 1 before continuing with this notebook." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "from classiq import *" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 6 - Exponentiation and Pauli Operators\n", - "\n", - "The Qmod language supports different classical types: scalars, arrays, and structs. Structs are objects with member variables, or fields.\n", - "\n", - "See also [Classical Types](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/classical-types/#structs).\n", - "\n", - "The builtin struct type `PauliTerm` is defined as follows:" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "@struct\n", - "class PauliTerm:\n", - " pauli: CArray[Pauli]\n", - " coefficient: CReal" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Note that `Pauli` is an enum for all the Pauli matrices (I, X, Y, Z).\n", - "\n", - "Pauli based hamiltonian can be represented as a list of `PauliTerm`s. A Pauli operator defined this way is the argument to a hamiltonian evolution functions.\n", - "\n", - "In this exercise we will use the Suzuki-Trotter function to find the evolution of `H=0.5XZXX + 0.25YIZI + 0.3 XIZY` (captured as a literal value for the pauli-operator), with the evolution coefficient being 3, the order being 2, and use 4 repetitions.\n", - "\n", - "The declaration of the `suzuki_trotter` function is:" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "@qfunc(external=True)\n", - "def suzuki_trotter(\n", - " pauli_operator: CArray[PauliTerm],\n", - " evolution_coefficient: CReal,\n", - " order: CInt,\n", - " repetitions: CInt,\n", - " qbv: QArray[QBit],\n", - ") -> None:\n", - " pass" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Fill in the missing parts of the following code in order to complete this exercise:" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/80c5a839-8aae-4997-af10-c8b6645f0c60?version=0.41.1\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "\n", - "@qfunc\n", - "def main(q: Output[QArray[QBit]]) -> None:\n", - " allocate(4, q)\n", - " suzuki_trotter(\n", - " [\n", - " PauliTerm(pauli=[Pauli.X, Pauli.Z, Pauli.X, Pauli.X], coefficient=0.5),\n", - " PauliTerm(pauli=[Pauli.Y, Pauli.I, Pauli.Z, Pauli.I], coefficient=0.25),\n", - " PauliTerm(pauli=[Pauli.X, Pauli.I, Pauli.Z, Pauli.Y], coefficient=0.3),\n", - " ],\n", - " evolution_coefficient=3,\n", - " repetitions=4,\n", - " order=2,\n", - " qbv=q,\n", - " )\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 7 - Basic Arithmetics\n", - "\n", - "#### Exercise 7a\n", - "In this exercise we will use quantum numeric variables and calculate expressions over them.\n", - "\n", - "See details on the syntax of numeric types under [Quantum types](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/quantum-types/#syntax).\n", - "See more on quantum expressions under [Numeric assignment](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/numeric-assignment/)\n", - "\n", - "Create the following quantum programs:\n", - "1. Initialize variables `x=2`, `y=7` and computes `res = x + y`.\n", - "2. Initialize variables `x=2`, `y=7` and computes `res = x * y`.\n", - "3. Initialize variables `x=2`, `y=7`, `z=1` and computes `res = x * y - z`.\n", - "\n", - "Guidance:\n", - "* Use the operator `|=` to perform out-of-place assignment of arithmetic expression.\n", - "* To initialize the variables, use the function `prepare_int`.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/a7aec343-f19c-4a69-859e-dc4d7876a8ec?version=0.41.1\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "\n", - "@qfunc\n", - "def main(x: Output[QNum], y: Output[QNum], res: Output[QNum]) -> None:\n", - " prepare_int(2, x)\n", - " prepare_int(7, y)\n", - " res |= x + y\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/7c8f2135-1669-4e24-9608-bf68ea70a29f?version=0.41.1\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "\n", - "@qfunc\n", - "def main(x: Output[QNum], y: Output[QNum], res: Output[QNum]) -> None:\n", - " prepare_int(2, x)\n", - " prepare_int(7, y)\n", - " res |= x * y\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/b276f7d5-89a5-487b-adcc-aa49ed5e9d8a?version=0.41.1\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "\n", - "@qfunc\n", - "def main(x: Output[QNum], y: Output[QNum], z: Output[QNum], res: Output[QNum]) -> None:\n", - " prepare_int(2, x)\n", - " prepare_int(7, y)\n", - " prepare_int(1, z)\n", - " res |= x + y - z\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Exercise 7b\n", - "Declare `x` to be a 2-qubit variable and `y` to be 3-qubit variable.\n", - "\n", - "We will perform an addition of two superposition states: `x` is an equal superposition of `0` and `2`, and `y` is an equal superposition of `1`, `2`, `3`, and `6`.\n", - "\n", - "1. Use `prepare_state` to initialize `x` and `y`. Note that `prepare_state` works with probabilities, not amplitudes.\n", - " The declaration of the `prepare_state` function is:\n", - " ```\n", - " @qfunc(external=True)\n", - " def prepare_state(\n", - " probabilities: CArray[CReal],\n", - " bound: CReal,\n", - " out: Output[QArray[QBit]],\n", - " ) -> None:\n", - " pass\n", - " ```\n", - " (Set the bound to 0 in your code)\n", - "2. Compute `res = x + y`. Execute the resulting circuit. What did you get?" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "ename": "TypeError", - "evalue": "unsupported operand type(s) for +: 'QArray' and 'QArray'", - "output_type": "error", - "traceback": [ - "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[1;31mTypeError\u001b[0m Traceback (most recent call last)", - "\u001b[1;32m~\\AppData\\Local\\Temp\\ipykernel_10168\\4234725309.py\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[0;32m 17\u001b[0m \u001b[1;31m# Your code here:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 18\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 19\u001b[1;33m \u001b[0mqmod\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mcreate_model\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mmain\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 20\u001b[0m \u001b[0mqprog\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0msynthesize\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mqmod\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 21\u001b[0m \u001b[0mshow\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mqprog\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32m~\\Anaconda3\\lib\\site-packages\\classiq\\qmod\\quantum_function.py\u001b[0m in \u001b[0;36mcreate_model\u001b[1;34m(entry_point, constraints, execution_preferences, preferences, classical_execution_function)\u001b[0m\n\u001b[0;32m 41\u001b[0m \u001b[1;34mf\"The entry point function must be named 'main', got '{entry_point.func_decl.name}'\"\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 42\u001b[0m )\n\u001b[1;32m---> 43\u001b[1;33m return entry_point.create_model(\n\u001b[0m\u001b[0;32m 44\u001b[0m \u001b[0mconstraints\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mexecution_preferences\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mpreferences\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mclassical_execution_function\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 45\u001b[0m ).get_model()\n", - "\u001b[1;32m~\\Anaconda3\\lib\\site-packages\\classiq\\qmod\\quantum_function.py\u001b[0m in \u001b[0;36mcreate_model\u001b[1;34m(self, constraints, execution_preferences, preferences, classical_execution_function)\u001b[0m\n\u001b[0;32m 76\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_qmodule\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mconstants\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mdict\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 77\u001b[0m \u001b[0mQConstant\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mset_current_model\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_qmodule\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 78\u001b[1;33m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_add_native_func_def\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 79\u001b[0m model_extra_settings: List[Tuple[str, Any]] = [\n\u001b[0;32m 80\u001b[0m \u001b[1;33m(\u001b[0m\u001b[1;34m\"constraints\"\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mconstraints\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32m~\\Anaconda3\\lib\\site-packages\\classiq\\qmod\\quantum_function.py\u001b[0m in \u001b[0;36m_add_native_func_def\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 97\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfunc_decl\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mname\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_qmodule\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mnative_defs\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 98\u001b[0m \u001b[1;32mreturn\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 99\u001b[1;33m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mexpand\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 100\u001b[0m self._qmodule.native_defs[self.func_decl.name] = NativeFunctionDefinition(\n\u001b[0;32m 101\u001b[0m \u001b[1;33m**\u001b[0m\u001b[1;33m{\u001b[0m\u001b[1;33m**\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfunc_decl\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdict\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[1;33m{\u001b[0m\u001b[1;34m\"body\"\u001b[0m\u001b[1;33m:\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mbody\u001b[0m\u001b[1;33m}\u001b[0m\u001b[1;33m}\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32m~\\Anaconda3\\lib\\site-packages\\classiq\\qmod\\quantum_expandable.py\u001b[0m in \u001b[0;36mexpand\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 84\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mself\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mQExpandable\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mSTACK\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 85\u001b[0m \u001b[1;32mwith\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 86\u001b[1;33m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_py_callable\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_get_positional_args\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 87\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 88\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0minfer_rename_params\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;33m->\u001b[0m \u001b[0mDict\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mstr\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mstr\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32m~\\AppData\\Local\\Temp\\ipykernel_10168\\4234725309.py\u001b[0m in \u001b[0;36mmain\u001b[1;34m(x, y, res)\u001b[0m\n\u001b[0;32m 10\u001b[0m \u001b[0mprepare_state\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mprobabilities\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mprobabilities2\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mbound\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m0.01\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mout\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0my\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 11\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 12\u001b[1;33m \u001b[0mres\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mx\u001b[0m \u001b[1;33m+\u001b[0m \u001b[0my\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 13\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 14\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;31mTypeError\u001b[0m: unsupported operand type(s) for +: 'QArray' and 'QArray'" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "\n", - "@qfunc\n", - "def main(x: Output[QArray[QBit]],y: Output[QArray[QBit]],res: Output[QArray[QBit]]):\n", - " probabilities1 = [1/2, 0, 0, 1/2]\n", - " prepare_state(probabilities=probabilities1, bound=0.01, out=x)\n", - " probabilities2 = [0,1/4,1/4,1/4, 0, 0, 1/4,0]\n", - " prepare_state(probabilities=probabilities2, bound=0.01, out=y)\n", - " \n", - " res = x + y\n", - "\n", - " \n", - " \n", - " \n", - "# Your code here:\n", - " \n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 8 - Within-Apply\n", - "\n", - "The within-apply statement applies the pattern `U_dagger V U` that appears frequently in quantum computing.\n", - "It allows you to compute some function `V` within the context of another function `U`, and afterward uncompute `U` in order to release auxiliary qubits storing intermediate results.\n", - "\n", - "See also [Within Apply](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/within-apply/).\n", - "\n", - "#### Exercise 8a\n", - "\n", - "In this exercise, we will use within-apply to compute an arithmetic expression in steps.\n", - "\n", - "Use the `within_apply` operation to calculate `res = x + y + z` from a two-variable addition building block with the following steps:\n", - "1. Add `x` and `y`\n", - "2. Add the result to `z`\n", - "3. Uncompute the result of the first operation\n", - "\n", - "For simplicity, initialize the registers to simple integers: `x=3`, `y=5`, `z=2`.\n", - "\n", - "Hints:\n", - "\n", - "* Use a temporary variable.\n", - "* Wrap the arithmetic operation in a function.\n", - "\n", - "Execute the circuit and make sure you obtain the expected result." - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [ - { - "ename": "ValidationError", - "evalue": "1 validation error for Model\n__root__\n Handle 'x' was errored with \"At the end of the function, in port x is expected to be HandleState.INITIALIZED but it isn't\"\nHandle 'y' was errored with \"At the end of the function, in port y is expected to be HandleState.INITIALIZED but it isn't\"\nIf you need further assistance, please reach out on our Community Slack channel at: https://short.classiq.io/join-slack\nIf the error persists feel free to open a ticket at: https://short.classiq.io/support (type=value_error.classiqvalue; _raw_message=Handle 'x' was errored with \"At the end of the function, in port x is expected to be HandleState.INITIALIZED but it isn't\"\nHandle 'y' was errored with \"At the end of the function, in port y is expected to be HandleState.INITIALIZED but it isn't\")", - "output_type": "error", - "traceback": [ - "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[1;31mValidationError\u001b[0m Traceback (most recent call last)", - "\u001b[1;32m~\\AppData\\Local\\Temp\\ipykernel_10168\\4146049375.py\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[0;32m 19\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 20\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 21\u001b[1;33m \u001b[0mqmod\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mcreate_model\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mmain\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 22\u001b[0m \u001b[0mqprog\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0msynthesize\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mqmod\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 23\u001b[0m \u001b[0mshow\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mqprog\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32m~\\Anaconda3\\lib\\site-packages\\classiq\\qmod\\quantum_function.py\u001b[0m in \u001b[0;36mcreate_model\u001b[1;34m(entry_point, constraints, execution_preferences, preferences, classical_execution_function)\u001b[0m\n\u001b[0;32m 41\u001b[0m \u001b[1;34mf\"The entry point function must be named 'main', got '{entry_point.func_decl.name}'\"\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 42\u001b[0m )\n\u001b[1;32m---> 43\u001b[1;33m return entry_point.create_model(\n\u001b[0m\u001b[0;32m 44\u001b[0m \u001b[0mconstraints\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mexecution_preferences\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mpreferences\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mclassical_execution_function\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 45\u001b[0m ).get_model()\n", - "\u001b[1;32m~\\Anaconda3\\lib\\site-packages\\classiq\\qmod\\quantum_function.py\u001b[0m in \u001b[0;36mcreate_model\u001b[1;34m(self, constraints, execution_preferences, preferences, classical_execution_function)\u001b[0m\n\u001b[0;32m 87\u001b[0m \u001b[1;33m(\u001b[0m\u001b[1;34m\"classical_execution_code\"\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mclassical_execution_function\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mcode\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 88\u001b[0m )\n\u001b[1;32m---> 89\u001b[1;33m return Model(\n\u001b[0m\u001b[0;32m 90\u001b[0m \u001b[0mconstants\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mlist\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_qmodule\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mconstants\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mvalues\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 91\u001b[0m \u001b[0mfunctions\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mlist\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_qmodule\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mnative_defs\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mvalues\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32m~\\Anaconda3\\lib\\site-packages\\pydantic\\main.cp39-win_amd64.pyd\u001b[0m in \u001b[0;36mpydantic.main.BaseModel.__init__\u001b[1;34m()\u001b[0m\n", - "\u001b[1;31mValidationError\u001b[0m: 1 validation error for Model\n__root__\n Handle 'x' was errored with \"At the end of the function, in port x is expected to be HandleState.INITIALIZED but it isn't\"\nHandle 'y' was errored with \"At the end of the function, in port y is expected to be HandleState.INITIALIZED but it isn't\"\nIf you need further assistance, please reach out on our Community Slack channel at: https://short.classiq.io/join-slack\nIf the error persists feel free to open a ticket at: https://short.classiq.io/support (type=value_error.classiqvalue; _raw_message=Handle 'x' was errored with \"At the end of the function, in port x is expected to be HandleState.INITIALIZED but it isn't\"\nHandle 'y' was errored with \"At the end of the function, in port y is expected to be HandleState.INITIALIZED but it isn't\")" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "@qfunc\n", - "def prep_plus(x: Output[QNum], y: Output[QNum] , Add: Output[QNum]) -> None:\n", - " Add |= x+y \n", - "\n", - "@qfunc\n", - "def main_plus(Add: Output[QNum], z: Output[QNum] , res: Output[QNum]) -> None:\n", - " res |= Add+z \n", - " \n", - " \n", - "@qfunc\n", - "def main(x: Output[QNum], y: Output[QNum] , z: Output[QNum], Add: Output[QNum], res: Output[QNum]) -> None:\n", - " prepare_int(3, x)\n", - " prepare_int(5, y)\n", - " prepare_int(1, z)\n", - " \n", - " within_apply(lambda: prep_plus(x,y,Add), lambda: main_plus(Add,z,res))\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Exercise 8b\n", - "\n", - "Why should we use `within-apply` and not just write three concatenated functions?\n", - "To understand the motivation, we will create another arithmetic circuit.\n", - "This time, however, we will also set Classiq’s synthesis engine to optimize on the circuit’s number of qubits, i.e., its width.\n", - "\n", - "Setting constraints can be done via the `set_constraints` operation - see [here](https://docs.classiq.io/latest/user-guide/platform/synthesis/constraints/).\n", - "\n", - "Perform the operation `res = w + x + y + z`, where w is initialized to 4 and the rest as before:\n", - "\n", - "1. Add `x` and `y` (as part of the `within_apply` operation)\n", - "2. Add the result to `z` (as part of the within_apply operation)\n", - "3. Uncompute the result of the first operation (as part of the `within_apply` operation)\n", - "4. Add the result of the second operation to `w`. There’s no need to perform another uncomputation, as this brings our calculation to an end.\n", - "\n", - "Create the model, optimize on the circuit’s width, and run the circuit. Can you identify where qubits have been released and reused?" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Bonus: Use a Single Arithmetic Expression\n", - "\n", - "What happens when we don't manually decompose this expression?\n", - "\n", - "Use Classiq’s arithmetic engine to calculate `res |= x + y + z + w` and optimize for width.\n", - "Look at the resulting quantum program - can you identify the computation and uncomputation blocks? What else did you notice?" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 9 - In-place Arithmetics\n", - "\n", - "For the following exercise we will use numeric quantum variables that represent fixed-point reals.\n", - "\n", - "Arithmetic expressions can be calculated in-place into a target variable, without allocating new qubits to store the result. This is done using the in-place-xor operator.\n", - "\n", - "See also [Numeric assignment](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/numeric-assignment/#semantics).\n", - "\n", - "In-place assignment is often used to nest arithmetic expressions under quantum operators. Note that out-of-place assignment requires its left-value variable to be un-initialized, and therefore cannot be used under an operator if the variable is declared outside its scope. Applying operators to arithmetic expressions is required in many algorithms. One example is the piecewise evaluation of mathematical functions - calculating different expressions over `x` depending on the subdomain where `x` falls.\n", - "\n", - "For this exercise, replace the missing parts in the code snippet below to evaluate the result of:\n", - "\n", - "$$\n", - "f(x) = \\begin{cases}\n", - " 2x + 1 & \\text{ if } 0 \\leq x < 0.5 \\\\\n", - " x + 0.5 & \\text{ if } 0.5 \\leq x < 1\n", - " \\end{cases}\n", - "$$\n", - "\n", - "Notes:\n", - "- We cannot use `x` directly as the control variable in a `constrol` operator, because it also occurs in the nested scope. to determine if `x` is in the lower or higher half of the domain we duplicate the most significant bit onto a separate variable called `label`.\n", - "- In Python assignment operators cannot be used in lambda expressions, so the computation of the function needs to be factored out to a named Python function (but not necessarily a Qmod function).\n" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/820a33c8-8d74-40f1-910d-bc58a9036ae0?version=0.40.0\n" - ] - } - ], - "source": [ - "\n", - "from classiq import *\n", - "\n", - "\n", - "def linear_func(a: float, b: float, x: QNum, res: QNum) -> None:\n", - " res ^= a * x + b\n", - "\n", - "\n", - "@qfunc\n", - "def dup_msb(qba: QArray[QBit], msb: QBit) -> None:\n", - " CX(qba[qba.len - 1], msb)\n", - "\n", - "\n", - "@qfunc\n", - "def main(x: Output[QNum[3, False, 3]], res: Output[QNum[5, False, 3]]) -> None:\n", - " allocate(5, res)\n", - " allocate(3, x)\n", - " hadamard_transform(x)\n", - "\n", - " label = QArray(\"label\")\n", - " allocate(1, label)\n", - "\n", - " dup_msb(x, label)\n", - " control(label, lambda: linear_func(1.0, 0.5, x, res)) # 0.5 <= x < 1.0\n", - " X(label)\n", - " control(label, lambda: linear_func(2.0, 1.0, x, res)) # 0.0 <= x < 0.5\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 10 - State-preparation Algorithm using Quantum-if\n", - "\n", - "#### Binding\n", - "The `bind` operation allows to convert smoothly between different quantum types and split or slice bits when necessary. Here’s an example:" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/7b2bd311-2a76-4bc6-8904-8f470ce01f88?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "\n", - "\n", - "from classiq import *\n", - "from math import pi\n", - "\n", - "\n", - "@qfunc\n", - "def main(res: Output[QArray[QBit]]) -> None:\n", - " x: QArray[QBit] = QArray(\"x\")\n", - " allocate(3, x)\n", - " hadamard_transform(x)\n", - "\n", - " lsb = QBit(\"lsb\")\n", - " msb = QNum(\"msb\", 2, False, 0)\n", - " bind(x, [lsb, msb])\n", - "\n", - " control(msb == 1, lambda: RY(pi / 3, lsb)) # msb==1 <==> bit1 bit2 == 01 (binary of decimal 1)\n", - "\n", - " bind([lsb, msb], res)\n", - "\n", - "model = create_model(main)\n", - "qprog = synthesize(model)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The first `bind` operation splits the 3-qubit register `x` into the 2-qubit and single-qubit registers `lsb` and `msb`, respectively.\n", - "\n", - "After the `bind` operation:\n", - "1. The registers `lsb` and `msb` can be operated on as separated registers.\n", - "2. The register`x` is consumed and can no longer be used.\n", - "\n", - "The second `bind` operation concatenates the registers to the output register `res`.\n", - "\n", - "For this exercise, fill in the missing code parts in the above snippet and use the `control` statement to manually generate the following lovely 3-qubit probability distribution: `[1/8, 1/8, 1/8, -sqrt(3)/16, 1/8 + sqrt(3)/16, 1/8, 1/8, 1/8, 1/8]`.\n", - "\n", - "The following series of gates generate it:\n", - "\n", - "Perform the Hadamard transform on all three qubits.\n", - "\n", - "Apply a rotation on the LSB (least-significant bit) conditioned by the MSB being |0> and the second to last MSB being |1>. How would you write this condition using a QNum?\n", - "\n", - "The following series of gates generate it:\n", - "1. Perform the Hadamard transform on all three qubits.\n", - "2. Apply a `pi/3` rotation on the LSB (least-significant bit) conditioned by the MSB being |0> and the second to last MSB being |1>. How would you write this condition using a QNum?\n", - "\n", - "If you want to validate your results without looking at the full solution, compare them to running using Classiq’s built-in `prepare_state` function.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [], - "source": [ - "from classiq import *\n", - "from classiq.qmod.symbolic import sqrt\n", - "\n", - "prob_list= [\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " -sqrt(3) / 16,\n", - " 1 / 8 + sqrt(3) / 16,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " ]\n", - "@qfunc\n", - "def pre_prepared_state(q: QArray[QBit]) -> None:\n", - " prepare_state(\n", - " [\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " -sqrt(3) / 16,\n", - " 1 / 8 + sqrt(3) / 16,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " ],\n", - " 0.0,\n", - " q,\n", - " )\n", - "\n", - "\n", - "# Your code here:" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.13" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/community/QClass_2024/Submissions/HW2/Samyak_Jain_HW2_QClass2024.ipynb b/community/QClass_2024/Submissions/HW2/Samyak_Jain_HW2_QClass2024.ipynb deleted file mode 100644 index a782215c..00000000 --- a/community/QClass_2024/Submissions/HW2/Samyak_Jain_HW2_QClass2024.ipynb +++ /dev/null @@ -1,720 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# The Qmod Workshop - Part 2: Higher-Level Concepts\n", - "\n", - "This is the second part of the Qmod workshop, covering exercises 6 through 10. Make sure to go through Part 1 before continuing with this notebook." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "from classiq import *" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 6 - Exponentiation and Pauli Operators\n", - "\n", - "The Qmod language supports different classical types: scalars, arrays, and structs. Structs are objects with member variables, or fields.\n", - "\n", - "See also [Classical Types](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/classical-types/#structs).\n", - "\n", - "The builtin struct type `PauliTerm` is defined as follows:" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "@struct\n", - "class PauliTerm:\n", - " pauli: CArray[Pauli]\n", - " coefficient: CReal" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Note that `Pauli` is an enum for all the Pauli matrices (I, X, Y, Z).\n", - "\n", - "Pauli based hamiltonian can be represented as a list of `PauliTerm`s. A Pauli operator defined this way is the argument to a hamiltonian evolution functions.\n", - "\n", - "In this exercise we will use the Suzuki-Trotter function to find the evolution of `H=0.5XZXX + 0.25YIZI + 0.3 XIZY` (captured as a literal value for the pauli-operator), with the evolution coefficient being 3, the order being 2, and use 4 repetitions.\n", - "\n", - "The declaration of the `suzuki_trotter` function is:" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "@qfunc(external=True)\n", - "def suzuki_trotter(\n", - " pauli_operator: CArray[PauliTerm],\n", - " evolution_coefficient: CReal,\n", - " order: CInt,\n", - " repetitions: CInt,\n", - " qbv: QArray[QBit],\n", - ") -> None:\n", - " pass" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Fill in the missing parts of the following code in order to complete this exercise:" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/3954d784-f033-4b7c-9057-aae0d861767d?version=0.42.0\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "\n", - "@qfunc\n", - "def main(q: Output[QArray[QBit]]) -> None:\n", - " allocate(4, q)\n", - " suzuki_trotter(\n", - " [\n", - " PauliTerm(pauli=[Pauli.X, Pauli.Z, Pauli.X, Pauli.X], coefficient=0.5),\n", - " PauliTerm(pauli=[Pauli.Y, Pauli.I, Pauli.Z, Pauli.I], coefficient=0.25),\n", - " PauliTerm(pauli=[Pauli.X, Pauli.I, Pauli.Z, Pauli.Y], coefficient=0.3)\n", - " ],\n", - " evolution_coefficient=3,\n", - " repetitions=4,\n", - " order=2,\n", - " qbv=q,\n", - " )\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 7 - Basic Arithmetics\n", - "\n", - "#### Exercise 7a\n", - "In this exercise we will use quantum numeric variables and calculate expressions over them.\n", - "\n", - "See details on the syntax of numeric types under [Quantum types](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/quantum-types/#syntax).\n", - "See more on quantum expressions under [Numeric assignment](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/numeric-assignment/)\n", - "\n", - "Create the following quantum programs:\n", - "1. Initialize variables `x=2`, `y=7` and computes `res = x + y`.\n", - "2. Initialize variables `x=2`, `y=7` and computes `res = x * y`.\n", - "3. Initialize variables `x=2`, `y=7`, `z=1` and computes `res = x * y - z`.\n", - "\n", - "Guidance:\n", - "* Use the operator `|=` to perform out-of-place assignment of arithmetic expression.\n", - "* To initialize the variables, use the function `prepare_int`.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/20a1aa71-8b21-4605-9b53-52152229ebe8?version=0.42.0\n", - "Opening: https://platform.classiq.io/circuit/f7310431-f729-4402-a55d-b562fb8c7598?version=0.42.0\n", - "Opening: https://platform.classiq.io/circuit/eccb46b4-41df-42b9-8850-3119a29cc55f?version=0.42.0\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "@qfunc\n", - "def main(result: Output[QNum]):\n", - " x = QNum(\"x\")\n", - " y = QNum(\"y\")\n", - "\n", - " prepare_int(2,x)\n", - " prepare_int(7,y)\n", - "\n", - " result |= x + y\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)\n", - "\n", - "# %%\n", - "@qfunc\n", - "def main(res: Output[QNum]):\n", - " x = QNum(\"x\")\n", - " y = QNum(\"y\")\n", - " prepare_int(2,x)\n", - " prepare_int(7,y)\n", - "\n", - " res |= x * y\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)\n", - "\n", - "# %%\n", - "@qfunc\n", - "def main(res: Output[QNum]):\n", - " x = QNum(\"x\")\n", - " y = QNum(\"y\")\n", - " z = QNum(\"z\")\n", - " prepare_int(2,x)\n", - " prepare_int(7,y)\n", - " prepare_int(1,z)\n", - "\n", - " res |= x * y -z\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Exercise 7b\n", - "Declare `x` to be a 2-qubit variable and `y` to be 3-qubit variable.\n", - "\n", - "We will perform an addition of two superposition states: `x` is an equal superposition of `0` and `2`, and `y` is an equal superposition of `1`, `2`, `3`, and `6`.\n", - "\n", - "1. Use `prepare_state` to initialize `x` and `y`. Note that `prepare_state` works with probabilities, not amplitudes.\n", - " The declaration of the `prepare_state` function is:\n", - " ```\n", - " @qfunc(external=True)\n", - " def prepare_state(\n", - " probabilities: CArray[CReal],\n", - " bound: CReal,\n", - " out: Output[QArray[QBit]],\n", - " ) -> None:\n", - " pass\n", - " ```\n", - " (Set the bound to 0 in your code)\n", - "2. Compute `res = x + y`. Execute the resulting circuit. What did you get?" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/672dc63b-991f-45a1-aeca-cee51d46c835?version=0.42.0\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "@qfunc\n", - "def main(res: Output[QNum]):\n", - " x = QNum('x')\n", - " y = QNum('y')\n", - " \n", - " prepare_state(probabilities=[0.5,0,0.5,0], bound=0, out=x)\n", - " prepare_state(probabilities=[0,0.25,0.25,0.25,0,0,0.25,0], bound=0, out=y)\n", - " \n", - " res|=x+y\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 8 - Within-Apply\n", - "\n", - "The within-apply statement applies the pattern `U_dagger V U` that appears frequently in quantum computing.\n", - "It allows you to compute some function `V` within the context of another function `U`, and afterward uncompute `U` in order to release auxiliary qubits storing intermediate results.\n", - "\n", - "See also [Within Apply](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/within-apply/).\n", - "\n", - "#### Exercise 8a\n", - "\n", - "In this exercise, we will use within-apply to compute an arithmetic expression in steps.\n", - "\n", - "Use the `within_apply` operation to calculate `res = x + y + z` from a two-variable addition building block with the following steps:\n", - "1. Add `x` and `y`\n", - "2. Add the result to `z`\n", - "3. Uncompute the result of the first operation\n", - "\n", - "For simplicity, initialize the registers to simple integers: `x=3`, `y=5`, `z=2`.\n", - "\n", - "Hints:\n", - "\n", - "* Use a temporary variable.\n", - "* Wrap the arithmetic operation in a function.\n", - "\n", - "Execute the circuit and make sure you obtain the expected result." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/a4f86787-d712-43aa-b0c9-3cb96442d2e3?version=0.42.0\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "@qfunc\n", - "def two_sum(x: QNum, y:QNum, res: Output[QNum]):\n", - " res |= x + y\n", - "\n", - "@qfunc\n", - "def main(res: Output[QNum]):\n", - " x = QNum(\"x\")\n", - " y = QNum(\"y\")\n", - " z = QNum(\"z\")\n", - " tmp = QNum(\"tmp\")\n", - " prepare_int(3,x)\n", - " prepare_int(5,y)\n", - " prepare_int(2,z)\n", - "\n", - " within_apply(compute= lambda: two_sum(x,y,tmp),\n", - " action= lambda: two_sum(tmp,z,res))\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Exercise 8b\n", - "\n", - "Why should we use `within-apply` and not just write three concatenated functions?\n", - "To understand the motivation, we will create another arithmetic circuit.\n", - "This time, however, we will also set Classiq’s synthesis engine to optimize on the circuit’s number of qubits, i.e., its width.\n", - "\n", - "Setting constraints can be done via the `set_constraints` operation - see [here](https://docs.classiq.io/latest/user-guide/platform/synthesis/constraints/).\n", - "\n", - "Perform the operation `res = w + x + y + z`, where w is initialized to 4 and the rest as before:\n", - "\n", - "1. Add `x` and `y` (as part of the `within_apply` operation)\n", - "2. Add the result to `z` (as part of the within_apply operation)\n", - "3. Uncompute the result of the first operation (as part of the `within_apply` operation)\n", - "4. Add the result of the second operation to `w`. There’s no need to perform another uncomputation, as this brings our calculation to an end.\n", - "\n", - "Create the model, optimize on the circuit’s width, and run the circuit. Can you identify where qubits have been released and reused?" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/6d97d4c4-13a2-4e02-893b-52e0685a6693?version=0.42.0\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "@qfunc\n", - "def main(res: Output[QNum]):\n", - " x = QNum(\"x\")\n", - " y = QNum(\"y\")\n", - " z = QNum(\"z\")\n", - " w = QNum(\"w\")\n", - " tmp = QNum(\"tmp\")\n", - " aux = QNum(\"aux\")\n", - " prepare_int(3,x)\n", - " prepare_int(5,y)\n", - " prepare_int(2,z)\n", - " prepare_int(4,w)\n", - "\n", - "\n", - " within_apply(compute= lambda: two_sum(x,y,tmp),\n", - " action= lambda: two_sum(tmp,z,aux))\n", - "\n", - " two_sum(aux,w,res)\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'res': 14.0}\n" - ] - } - ], - "source": [ - "job = execute(qprog)\n", - "results = job.result()\n", - "parsed_counts = results[0].value.parsed_counts\n", - "for sampled_state in parsed_counts: print(sampled_state.state)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Bonus: Use a Single Arithmetic Expression\n", - "\n", - "What happens when we don't manually decompose this expression?\n", - "\n", - "Use Classiq’s arithmetic engine to calculate `res |= x + y + z + w` and optimize for width.\n", - "Look at the resulting quantum program - can you identify the computation and uncomputation blocks? What else did you notice?" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/481d5262-abd0-4491-acfa-2903adde02de?version=0.42.0\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "@qfunc\n", - "def main(res: Output[QNum]):\n", - " x = QNum(\"x\")\n", - " y = QNum(\"y\")\n", - " z = QNum(\"z\")\n", - " w = QNum(\"w\")\n", - " prepare_int(3,x)\n", - " prepare_int(5,y)\n", - " prepare_int(2,z)\n", - " prepare_int(4,w)\n", - "\n", - " res |= x + y + z + w\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 9 - In-place Arithmetics\n", - "\n", - "For the following exercise we will use numeric quantum variables that represent fixed-point reals.\n", - "\n", - "Arithmetic expressions can be calculated in-place into a target variable, without allocating new qubits to store the result. This is done using the in-place-xor operator.\n", - "\n", - "See also [Numeric assignment](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/numeric-assignment/#semantics).\n", - "\n", - "In-place assignment is often used to nest arithmetic expressions under quantum operators. Note that out-of-place assignment requires its left-value variable to be un-initialized, and therefore cannot be used under an operator if the variable is declared outside its scope. Applying operators to arithmetic expressions is required in many algorithms. One example is the piecewise evaluation of mathematical functions - calculating different expressions over `x` depending on the subdomain where `x` falls.\n", - "\n", - "For this exercise, replace the missing parts in the code snippet below to evaluate the result of:\n", - "\n", - "$$\n", - "f(x) = \\begin{cases}\n", - " 2x + 1 & \\text{ if } 0 \\leq x < 0.5 \\\\\n", - " x + 0.5 & \\text{ if } 0.5 \\leq x < 1\n", - " \\end{cases}\n", - "$$\n", - "\n", - "Notes:\n", - "- We cannot use `x` directly as the control variable in a `constrol` operator, because it also occurs in the nested scope. to determine if `x` is in the lower or higher half of the domain we duplicate the most significant bit onto a separate variable called `label`.\n", - "- In Python assignment operators cannot be used in lambda expressions, so the computation of the function needs to be factored out to a named Python function (but not necessarily a Qmod function).\n" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "ename": "ClassiqAPIError", - "evalue": "Error number 22102 occurred. Size mismatch for port 'result__temp__' between declared size 4 and assigned size 5\n\tat file C:\\Users\\HP\\AppData\\Local\\Temp\\ipykernel_1564\\2419106230.py line 5 character 4\n\nError identifier: E50C921F3-E14B-4C30-8E89-40E137DEAD68.\nIf you need further assistance, please reach out on our Community Slack channel at: https://short.classiq.io/join-slack\nIf the error persists feel free to open a ticket at: https://short.classiq.io/support", - "output_type": "error", - "traceback": [ - "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[1;31mClassiqAPIError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[1;32mIn[11], line 29\u001b[0m\n\u001b[0;32m 25\u001b[0m control(label, \u001b[38;5;28;01mlambda\u001b[39;00m: linear_func(\u001b[38;5;241m2.0\u001b[39m, \u001b[38;5;241m1.0\u001b[39m, x, res)) \u001b[38;5;66;03m# 0.0 <= x < 0.5\u001b[39;00m\n\u001b[0;32m 28\u001b[0m qmod \u001b[38;5;241m=\u001b[39m create_model(main)\n\u001b[1;32m---> 29\u001b[0m qprog \u001b[38;5;241m=\u001b[39m \u001b[43msynthesize\u001b[49m\u001b[43m(\u001b[49m\u001b[43mqmod\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 30\u001b[0m show(qprog)\n", - "File \u001b[1;32mc:\\Users\\HP\\Documents\\GitHub\\classiq-library\\.conda\\Lib\\site-packages\\classiq\\_internals\\async_utils.py:45\u001b[0m, in \u001b[0;36msyncify_function..async_wrapper\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 43\u001b[0m \u001b[38;5;129m@functools\u001b[39m\u001b[38;5;241m.\u001b[39mwraps(async_func)\n\u001b[0;32m 44\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21masync_wrapper\u001b[39m(\u001b[38;5;241m*\u001b[39margs: Any, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs: Any) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m T:\n\u001b[1;32m---> 45\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mrun\u001b[49m\u001b[43m(\u001b[49m\u001b[43masync_func\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[1;32mc:\\Users\\HP\\Documents\\GitHub\\classiq-library\\.conda\\Lib\\site-packages\\classiq\\_internals\\async_utils.py:39\u001b[0m, in \u001b[0;36mrun\u001b[1;34m(coro)\u001b[0m\n\u001b[0;32m 34\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mrun\u001b[39m(coro: Awaitable[T]) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m T:\n\u001b[0;32m 35\u001b[0m \u001b[38;5;66;03m# Use this function instead of asyncio.run, since it ALWAYS\u001b[39;00m\n\u001b[0;32m 36\u001b[0m \u001b[38;5;66;03m# creates a new event loop and clears the thread event loop.\u001b[39;00m\n\u001b[0;32m 37\u001b[0m \u001b[38;5;66;03m# Never use asyncio.run in library code.\u001b[39;00m\n\u001b[0;32m 38\u001b[0m loop \u001b[38;5;241m=\u001b[39m get_event_loop()\n\u001b[1;32m---> 39\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mloop\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrun_until_complete\u001b[49m\u001b[43m(\u001b[49m\u001b[43mcoro\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[1;32mc:\\Users\\HP\\Documents\\GitHub\\classiq-library\\.conda\\Lib\\site-packages\\nest_asyncio.py:98\u001b[0m, in \u001b[0;36m_patch_loop..run_until_complete\u001b[1;34m(self, future)\u001b[0m\n\u001b[0;32m 95\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m f\u001b[38;5;241m.\u001b[39mdone():\n\u001b[0;32m 96\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mRuntimeError\u001b[39;00m(\n\u001b[0;32m 97\u001b[0m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mEvent loop stopped before Future completed.\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[1;32m---> 98\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mf\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mresult\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[1;32mc:\\Users\\HP\\Documents\\GitHub\\classiq-library\\.conda\\Lib\\asyncio\\futures.py:203\u001b[0m, in \u001b[0;36mFuture.result\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 201\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m__log_traceback \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mFalse\u001b[39;00m\n\u001b[0;32m 202\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_exception \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m--> 203\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_exception\u001b[38;5;241m.\u001b[39mwith_traceback(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_exception_tb)\n\u001b[0;32m 204\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_result\n", - "File \u001b[1;32mc:\\Users\\HP\\Documents\\GitHub\\classiq-library\\.conda\\Lib\\asyncio\\tasks.py:277\u001b[0m, in \u001b[0;36mTask.__step\u001b[1;34m(***failed resolving arguments***)\u001b[0m\n\u001b[0;32m 273\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m 274\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m exc \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m 275\u001b[0m \u001b[38;5;66;03m# We use the `send` method directly, because coroutines\u001b[39;00m\n\u001b[0;32m 276\u001b[0m \u001b[38;5;66;03m# don't have `__iter__` and `__next__` methods.\u001b[39;00m\n\u001b[1;32m--> 277\u001b[0m result \u001b[38;5;241m=\u001b[39m coro\u001b[38;5;241m.\u001b[39msend(\u001b[38;5;28;01mNone\u001b[39;00m)\n\u001b[0;32m 278\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m 279\u001b[0m result \u001b[38;5;241m=\u001b[39m coro\u001b[38;5;241m.\u001b[39mthrow(exc)\n", - "File \u001b[1;32mc:\\Users\\HP\\Documents\\GitHub\\classiq-library\\.conda\\Lib\\site-packages\\classiq\\synthesis.py:20\u001b[0m, in \u001b[0;36msynthesize_async\u001b[1;34m(serialized_model)\u001b[0m\n\u001b[0;32m 16\u001b[0m \u001b[38;5;28;01masync\u001b[39;00m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21msynthesize_async\u001b[39m(\n\u001b[0;32m 17\u001b[0m serialized_model: SerializedModel,\n\u001b[0;32m 18\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m SerializedQuantumProgram:\n\u001b[0;32m 19\u001b[0m model \u001b[38;5;241m=\u001b[39m pydantic\u001b[38;5;241m.\u001b[39mparse_raw_as(Model, serialized_model)\n\u001b[1;32m---> 20\u001b[0m quantum_program \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mawait\u001b[39;00m ApiWrapper\u001b[38;5;241m.\u001b[39mcall_generation_task(model)\n\u001b[0;32m 21\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m SerializedQuantumProgram(quantum_program\u001b[38;5;241m.\u001b[39mjson(indent\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m2\u001b[39m))\n", - "File \u001b[1;32mc:\\Users\\HP\\Documents\\GitHub\\classiq-library\\.conda\\Lib\\site-packages\\classiq\\_internals\\api_wrapper.py:108\u001b[0m, in \u001b[0;36mApiWrapper.call_generation_task\u001b[1;34m(cls, model)\u001b[0m\n\u001b[0;32m 106\u001b[0m poller \u001b[38;5;241m=\u001b[39m JobPoller(base_url\u001b[38;5;241m=\u001b[39mroutes\u001b[38;5;241m.\u001b[39mTASKS_GENERATE_FULL_PATH)\n\u001b[0;32m 107\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mawait\u001b[39;00m poller\u001b[38;5;241m.\u001b[39mrun_pydantic(model, timeout_sec\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m)\n\u001b[1;32m--> 108\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_parse_job_response\u001b[49m\u001b[43m(\u001b[49m\u001b[43mresult\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mgenerator_result\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mQuantumProgram\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[1;32mc:\\Users\\HP\\Documents\\GitHub\\classiq-library\\.conda\\Lib\\site-packages\\classiq\\_internals\\api_wrapper.py:58\u001b[0m, in \u001b[0;36m_parse_job_response\u001b[1;34m(job_result, output_type)\u001b[0m\n\u001b[0;32m 56\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m output_type\u001b[38;5;241m.\u001b[39mparse_obj(job_result\u001b[38;5;241m.\u001b[39mdescription)\n\u001b[0;32m 57\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(job_result, JobDescriptionFailure):\n\u001b[1;32m---> 58\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m ClassiqAPIError(job_result\u001b[38;5;241m.\u001b[39mdescription\u001b[38;5;241m.\u001b[39mdetails)\n\u001b[0;32m 60\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m ClassiqAPIError(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mUnexpected response from server\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n", - "\u001b[1;31mClassiqAPIError\u001b[0m: Error number 22102 occurred. Size mismatch for port 'result__temp__' between declared size 4 and assigned size 5\n\tat file C:\\Users\\HP\\AppData\\Local\\Temp\\ipykernel_1564\\2419106230.py line 5 character 4\n\nError identifier: E50C921F3-E14B-4C30-8E89-40E137DEAD68.\nIf you need further assistance, please reach out on our Community Slack channel at: https://short.classiq.io/join-slack\nIf the error persists feel free to open a ticket at: https://short.classiq.io/support" - ] - } - ], - "source": [ - "\n", - "from classiq import *\n", - "\n", - "\n", - "def linear_func(a: float, b: float, x: QNum, res: QNum) -> None:\n", - " res ^= a * x + b\n", - "\n", - "\n", - "@qfunc\n", - "def dup_msb(qba: QArray[QBit], msb: QBit) -> None:\n", - " CX(qba[qba.len - 1], msb)\n", - "\n", - "\n", - "@qfunc\n", - "def main(x: Output[QNum[3, False, 3]], res: Output[QNum[5, False, 3]]) -> None:\n", - " allocate(5, res)\n", - " allocate(3, x)\n", - " hadamard_transform(x)\n", - "\n", - " label = QArray(\"label\")\n", - " allocate(1, label)\n", - "\n", - " dup_msb(x, label)\n", - " control(label, lambda: linear_func(1.0, 0.5, x, res)) # 0.5 <= x < 1.0\n", - " X(label)\n", - " control(label, lambda: linear_func(2.0, 1.0, x, res)) # 0.0 <= x < 0.5\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 10 - State-preparation Algorithm using Quantum-if\n", - "\n", - "#### Binding\n", - "The `bind` operation allows to convert smoothly between different quantum types and split or slice bits when necessary. Here’s an example:" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/0e9d2e13-0910-499e-aadd-ec87b4b87a64?version=0.42.0\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "\n", - "\n", - "from classiq import *\n", - "from math import pi\n", - "\n", - "\n", - "@qfunc\n", - "def main(res: Output[QArray[QBit]]) -> None:\n", - " x: QArray[QBit] = QArray(\"x\")\n", - " allocate(3, x)\n", - " hadamard_transform(x)\n", - "\n", - " lsb = QBit(\"lsb\")\n", - " msb = QNum(\"msb\", 2, False, 0)\n", - " bind(x, [lsb, msb])\n", - "\n", - " control(msb == 1, lambda: RY(pi / 3, lsb)) # msb==1 <==> bit1 bit2 == 01 (binary of decimal 1)\n", - "\n", - " bind([lsb, msb], res)\n", - "\n", - "model = create_model(main)\n", - "qprog = synthesize(model)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The first `bind` operation splits the 3-qubit register `x` into the 2-qubit and single-qubit registers `lsb` and `msb`, respectively.\n", - "\n", - "After the `bind` operation:\n", - "1. The registers `lsb` and `msb` can be operated on as separated registers.\n", - "2. The register`x` is consumed and can no longer be used.\n", - "\n", - "The second `bind` operation concatenates the registers to the output register `res`.\n", - "\n", - "For this exercise, fill in the missing code parts in the above snippet and use the `control` statement to manually generate the following lovely 3-qubit probability distribution: `[1/8, 1/8, 1/8, -sqrt(3)/16, 1/8 + sqrt(3)/16, 1/8, 1/8, 1/8, 1/8]`.\n", - "\n", - "The following series of gates generate it:\n", - "\n", - "Perform the Hadamard transform on all three qubits.\n", - "\n", - "Apply a rotation on the LSB (least-significant bit) conditioned by the MSB being |0> and the second to last MSB being |1>. How would you write this condition using a QNum?\n", - "\n", - "The following series of gates generate it:\n", - "1. Perform the Hadamard transform on all three qubits.\n", - "2. Apply a `pi/3` rotation on the LSB (least-significant bit) conditioned by the MSB being |0> and the second to last MSB being |1>. How would you write this condition using a QNum?\n", - "\n", - "If you want to validate your results without looking at the full solution, compare them to running using Classiq’s built-in `prepare_state` function.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/c25cd6ea-4855-4212-8a68-bf52c1e5d168?version=0.42.0\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "from classiq.qmod.symbolic import sqrt\n", - "import numpy as np\n", - "\n", - "prob_list= [\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " -sqrt(3) / 16,\n", - " 1 / 8 + sqrt(3) / 16,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " ]\n", - "@qfunc\n", - "def pre_prepared_state(q: QArray[QBit]) -> None:\n", - " prepare_state(\n", - " [\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " -sqrt(3) / 16,\n", - " 1 / 8 + sqrt(3) / 16,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " ],\n", - " 0.0,\n", - " q,\n", - " )\n", - "\n", - "\n", - "@qfunc\n", - "def main(res: Output[QArray[QBit]]):\n", - " x = QArray(\"x\")\n", - " allocate(3, x)\n", - " #pre_prepared_state(x)\n", - " hadamard_transform(x)\n", - " \n", - " lsb = QBit(\"lsb\")\n", - " msb = QNum(\"msb\", 2, False, 0)\n", - " bind(x, [lsb, msb])\n", - " \n", - " control(msb == 0, lambda: RY(np.pi / 3, lsb)) \n", - " control(msb == 1, lambda: RY(np.pi / 3, lsb)) \n", - " bind([lsb, msb], res)\n", - " \n", - "\n", - "model = create_model(main)\n", - "qprog = synthesize(model)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.9" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/community/QClass_2024/Submissions/HW2/Yasir_Mansour_HW2_QClass2024.pdf b/community/QClass_2024/Submissions/HW2/Yasir_Mansour_HW2_QClass2024.pdf deleted file mode 100644 index a7729a24..00000000 Binary files a/community/QClass_2024/Submissions/HW2/Yasir_Mansour_HW2_QClass2024.pdf and /dev/null differ diff --git a/community/QClass_2024/Submissions/HW2/Yue(Leslie)_Xu_HW2_QClass2024.ipynb b/community/QClass_2024/Submissions/HW2/Yue(Leslie)_Xu_HW2_QClass2024.ipynb deleted file mode 100644 index 46835818..00000000 --- a/community/QClass_2024/Submissions/HW2/Yue(Leslie)_Xu_HW2_QClass2024.ipynb +++ /dev/null @@ -1,949 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# The Qmod Workshop - Part 2: Higher-Level Concepts\n", - "\n", - "This is the second part of the Qmod workshop, covering exercises 6 through 10. Make sure to go through Part 1 before continuing with this notebook." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "from classiq import *" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 6 - Exponentiation and Pauli Operators\n", - "\n", - "The Qmod language supports different classical types: scalars, arrays, and structs. Structs are objects with member variables, or fields.\n", - "\n", - "See also [Classical Types](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/classical-types/#structs).\n", - "\n", - "The builtin struct type `PauliTerm` is defined as follows:" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "@struct\n", - "class PauliTerm:\n", - " pauli: CArray[Pauli]\n", - " coefficient: CReal" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Note that `Pauli` is an enum for all the Pauli matrices (I, X, Y, Z).\n", - "\n", - "Pauli based hamiltonian can be represented as a list of `PauliTerm`s. A Pauli operator defined this way is the argument to a hamiltonian evolution functions.\n", - "\n", - "In this exercise we will use the Suzuki-Trotter function to find the evolution of `H=0.5XZXX + 0.25YIZI + 0.3 XIZY` (captured as a literal value for the pauli-operator), with the evolution coefficient being 3, the order being 2, and use 4 repetitions.\n", - "\n", - "The declaration of the `suzuki_trotter` function is:" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "@qfunc(external=True)\n", - "def suzuki_trotter(\n", - " pauli_operator: CArray[PauliTerm],\n", - " evolution_coefficient: CReal,\n", - " order: CInt,\n", - " repetitions: CInt,\n", - " qbv: QArray[QBit],\n", - ") -> None:\n", - " pass" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Fill in the missing parts of the following code in order to complete this exercise:" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/2b2ce9eb-badb-4fef-84ca-eadc0326f1ba?version=0.41.1\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "HAMILTONIAN = [\n", - " PauliTerm(pauli=[Pauli.X, Pauli.Z,Pauli.X,Pauli.X], coefficient=0.5),\n", - " PauliTerm(pauli=[Pauli.Y, Pauli.I,Pauli.Z,Pauli.I], coefficient=0.25),\n", - " PauliTerm(pauli=[Pauli.X, Pauli.I,Pauli.Z,Pauli.Y], coefficient=0.3),\n", - "]\n", - "\n", - "\n", - "@qfunc\n", - "def main(q: Output[QArray[QBit]]) -> None:\n", - " allocate(4, q)\n", - " suzuki_trotter(\n", - " HAMILTONIAN,\n", - " evolution_coefficient=3,\n", - " repetitions=4,\n", - " order=2,\n", - " qbv=q,\n", - " )\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 7 - Basic Arithmetics\n", - "\n", - "#### Exercise 7a\n", - "In this exercise we will use quantum numeric variables and calculate expressions over them.\n", - "\n", - "See details on the syntax of numeric types under [Quantum types](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/quantum-types/#syntax).\n", - "See more on quantum expressions under [Numeric assignment](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/numeric-assignment/)\n", - "\n", - "Create the following quantum programs:\n", - "1. Initialize variables `x=2`, `y=7` and computes `res = x + y`.\n", - "2. Initialize variables `x=2`, `y=7` and computes `res = x * y`.\n", - "3. Initialize variables `x=2`, `y=7`, `z=1` and computes `res = x * y - z`.\n", - "\n", - "Guidance:\n", - "* Use the operator `|=` to perform out-of-place assignment of arithmetic expression.\n", - "* To initialize the variables, use the function `prepare_int`.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/36d40def-902e-472d-b9fa-517f778cb3c0?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "\n", - "\n", - "@qfunc\n", - "def main(res: Output[QNum]) -> None:\n", - " x = QNum(\"x\")\n", - " y = QNum(\"y\")\n", - " prepare_int(2, x)\n", - " prepare_int(7, y)\n", - " res |= x + y \n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/d04eec41-3220-4651-9627-be90ae12682b?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "\n", - "\n", - "@qfunc\n", - "def main(res: Output[QNum]) -> None:\n", - " x = QNum(\"x\")\n", - " y = QNum(\"y\")\n", - " prepare_int(2, x)\n", - " prepare_int(7, y)\n", - " res |= x * y \n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/16764d23-2152-428f-a902-12fb642c8108?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "\n", - "\n", - "@qfunc\n", - "def main(res: Output[QNum]) -> None:\n", - " x = QNum(\"x\")\n", - " y = QNum(\"y\")\n", - " z = QNum(\"z\")\n", - " prepare_int(2, x)\n", - " prepare_int(7, y)\n", - " prepare_int(1, z)\n", - " res |= x * y - z # should be 8\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Exercise 7b\n", - "Declare `x` to be a 2-qubit variable and `y` to be 3-qubit variable.\n", - "\n", - "We will perform an addition of two superposition states: `x` is an equal superposition of `0` and `2`, and `y` is an equal superposition of `1`, `2`, `3`, and `6`.\n", - "\n", - "1. Use `prepare_state` to initialize `x` and `y`. Note that `prepare_state` works with probabilities, not amplitudes.\n", - " The declaration of the `prepare_state` function is:\n", - " ```\n", - " @qfunc(external=True)\n", - " def prepare_state(\n", - " probabilities: CArray[CReal],\n", - " bound: CReal,\n", - " out: Output[QArray[QBit]],\n", - " ) -> None:\n", - " pass\n", - " ```\n", - " (Set the bound to 0 in your code)\n", - "2. Compute `res = x + y`. Execute the resulting circuit. What did you get?" - ] - }, - { - "cell_type": "code", - "execution_count": 108, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/56c673b5-8a5a-494c-89cb-572e64d37366?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc(external=True)\n", - "def prepare_state(\n", - " probabilities: CArray[CReal],\n", - " bound: CReal,\n", - " out: Output[QArray[QBit]],\n", - " ) -> None:\n", - " pass\n", - "\n", - "@qfunc\n", - "def main(res: Output[QNum] ) -> None:\n", - "\n", - " \n", - " x = QNum(\"x\",2, False, 0)\n", - " # x = QArray(\"x\")\n", - " # allocate(2, x)\n", - " # allocate_num(num_qubits=2,is_signed=False,fraction_digits=0,out=x)\n", - " prepare_state([0.5, 0, 0.5, 0], 0, x)\n", - " \n", - " y = QNum(\"y\",3, False, 0)\n", - " # y = QBit(\"y\") \n", - " # allocate(3, y)\n", - " prepare_state([0, 0.25, 0.25, 0.25, 0, 0, 0.25, 0], 0, y)\n", - " \n", - " res |= x + y\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": 51, - "metadata": {}, - "outputs": [], - "source": [ - "job = execute(qprog)\n", - "# job.open_in_ide()" - ] - }, - { - "cell_type": "code", - "execution_count": 59, - "metadata": {}, - "outputs": [], - "source": [ - "results = job.result()\n", - "parsed_counts = results[0].value.parsed_counts\n", - "counts = results[0].value.counts\n", - "# for sampled_state in parsed_counts: print(sampled_state.state)\n", - "# print(results)" - ] - }, - { - "cell_type": "code", - "execution_count": 60, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'0100': 276, '0010': 230, '0101': 277, '0011': 534, '0110': 256, '0001': 240, '1000': 235}\n" - ] - } - ], - "source": [ - "print(counts)" - ] - }, - { - "cell_type": "code", - "execution_count": 61, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[{'res': 3.0}: 534, {'res': 5.0}: 277, {'res': 4.0}: 276, {'res': 6.0}: 256, {'res': 1.0}: 240, {'res': 8.0}: 235, {'res': 2.0}: 230]\n" - ] - } - ], - "source": [ - "print(parsed_counts)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 8 - Within-Apply\n", - "\n", - "The within-apply statement applies the pattern `U_dagger V U` that appears frequently in quantum computing.\n", - "It allows you to compute some function `V` within the context of another function `U`, and afterward uncompute `U` in order to release auxiliary qubits storing intermediate results.\n", - "\n", - "See also [Within Apply](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/within-apply/).\n", - "\n", - "#### Exercise 8a\n", - "\n", - "In this exercise, we will use within-apply to compute an arithmetic expression in steps.\n", - "\n", - "Use the `within_apply` operation to calculate `res = x + y + z` from a two-variable addition building block with the following steps:\n", - "1. Add `x` and `y`\n", - "2. Add the result to `z`\n", - "3. Uncompute the result of the first operation\n", - "\n", - "For simplicity, initialize the registers to simple integers: `x=3`, `y=5`, `z=2`.\n", - "\n", - "Hints:\n", - "\n", - "* Use a temporary variable.\n", - "* Wrap the arithmetic operation in a function.\n", - "\n", - "Execute the circuit and make sure you obtain the expected result." - ] - }, - { - "cell_type": "code", - "execution_count": 67, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/19a9a6d2-9565-4387-9442-c849bfbaeb62?version=0.41.2\n" - ] - } - ], - "source": [ - "# from classiq import *\n", - "\n", - "# # def within_apply(compute: Callable, action: Callable) -> None:\n", - "# # pass\n", - "\n", - "# # Your code here:\n", - "# @qfunc\n", - "# def add(x:QNum, y: QNum, a:Output[QNum]) :\n", - "# a |= x + y\n", - "\n", - "# def sum(t: QNum, z: QNum, s:Output[QNum]):\n", - "# s |= t + z\n", - "\n", - "# @qfunc\n", - "# def main(res: Output[QNum]) -> None:\n", - "# x = QNum(\"x\")\n", - "# prepare_int(3, x)\n", - "# y = QNum(\"y\")\n", - "# prepare_int(5, y)\n", - "# z = QNum(\"z\")\n", - "# prepare_int(2, z)\n", - "# tmp = QNum(\"tmp\")\n", - " \n", - "# within_apply(lambda:add(x,y,tmp), lambda:sum(tmp, z, res))\n", - "\n", - "\n", - "# qmod = create_model(main)\n", - "# qprog = synthesize(qmod)\n", - "# show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": 85, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/6ee39773-a9c4-408a-ae80-69afce0ab748?version=0.41.2\n" - ] - } - ], - "source": [ - "\n", - "# def within_apply(compute: Callable, action: Callable) -> None:\n", - "# pass\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def add(x:QNum, y: QNum, a:Output[QNum]) :\n", - " a |= x + y\n", - "@qfunc\n", - "def inplace_add(x:QNum, y: QNum, z: QNum, res:Output[QNum]):\n", - " tmp = QNum(\"tmp\")\n", - " within_apply(lambda:add(x,y,tmp), lambda:add(tmp, z, res))\n", - "\n", - "@qfunc\n", - "def main(res: Output[QNum]) -> None:\n", - " x = QNum(\"x\")\n", - " prepare_int(3, x)\n", - " y = QNum(\"y\")\n", - " prepare_int(5, y)\n", - " z = QNum(\"z\")\n", - " prepare_int(2, z)\n", - " \n", - " inplace_add(x,y,z,res)\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Exercise 8b\n", - "\n", - "Why should we use `within-apply` and not just write three concatenated functions?\n", - "To understand the motivation, we will create another arithmetic circuit.\n", - "This time, however, we will also set Classiq’s synthesis engine to optimize on the circuit’s number of qubits, i.e., its width.\n", - "\n", - "Setting constraints can be done via the `set_constraints` operation - see [here](https://docs.classiq.io/latest/user-guide/platform/synthesis/constraints/).\n", - "\n", - "Perform the operation `res = w + x + y + z`, where w is initialized to 4 and the rest as before:\n", - "\n", - "1. Add `x` and `y` (as part of the `within_apply` operation)\n", - "2. Add the result to `z` (as part of the within_apply operation)\n", - "3. Uncompute the result of the first operation (as part of the `within_apply` operation)\n", - "4. Add the result of the second operation to `w`. There’s no need to perform another uncomputation, as this brings our calculation to an end.\n", - "\n", - "Create the model, optimize on the circuit’s width, and run the circuit. Can you identify where qubits have been released and reused?" - ] - }, - { - "cell_type": "code", - "execution_count": 91, - "metadata": {}, - "outputs": [], - "source": [ - "@qfunc\n", - "def print_depth_width(quantum_program):\n", - " generated_circuit = QuantumProgram.parse_raw(quantum_program)\n", - " print(f\"Synthesized circuit width: {generated_circuit.data.width}, depth: {generated_circuit.transpiled_circuit.depth}\")" - ] - }, - { - "cell_type": "code", - "execution_count": 100, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/705a1fe2-ea48-4b1b-8ace-73072304c4bd?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "\n", - "@qfunc\n", - "def add(x:QNum, y: QNum, a:Output[QNum]) :\n", - " a |= x + y\n", - "\n", - "\n", - "@qfunc\n", - "def inplace_add(x:QNum, y: QNum, z: QNum, res:Output[QNum]):\n", - " tmp = QNum(\"tmp\")\n", - " within_apply(lambda:add(x,y,tmp), lambda:add(tmp, z, res))\n", - "\n", - "@qfunc\n", - "def main(res: Output[QNum]) -> None:\n", - " x = QNum(\"x\")\n", - " prepare_int(3, x)\n", - " y = QNum(\"y\")\n", - " prepare_int(5, y)\n", - " z = QNum(\"z\")\n", - " prepare_int(2, z)\n", - " tr= QNum(\"tr\")\n", - " inplace_add(x,y,z,tr)\n", - " \n", - " w = QNum(\"w\")\n", - " prepare_int(4, w)\n", - " add(tr,w, res)\n", - "\n", - "\n", - " \n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": 96, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Synthesized circuit width: 20, depth: 147\n" - ] - } - ], - "source": [ - "qmod = set_constraints(qmod,Constraints(optimization_parameter='width'))\n", - "qprog = synthesize(qmod)\n", - "print_depth_width(qprog)\n", - "# show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Bonus: Use a Single Arithmetic Expression\n", - "\n", - "What happens when we don't manually decompose this expression?\n", - "\n", - "Use Classiq’s arithmetic engine to calculate `res |= x + y + z + w` and optimize for width.\n", - "Look at the resulting quantum program - can you identify the computation and uncomputation blocks? What else did you notice?" - ] - }, - { - "cell_type": "code", - "execution_count": 102, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/d53e7f16-7c4b-4af3-8b45-f4ec97312489?version=0.41.2\n" - ] - } - ], - "source": [ - "# Your code here:\n", - "\n", - "@qfunc\n", - "def main(res: Output[QNum]) -> None:\n", - " x = QNum(\"x\")\n", - " prepare_int(3, x)\n", - " y = QNum(\"y\")\n", - " prepare_int(5, y)\n", - " z = QNum(\"z\")\n", - " prepare_int(2, z)\n", - " w = QNum(\"w\")\n", - " prepare_int(4, w)\n", - " \n", - " res |= x + y + z + w\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": 103, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Synthesized circuit width: 12, depth: 155\n" - ] - } - ], - "source": [ - "qmod = set_constraints(qmod,Constraints(optimization_parameter='width'))\n", - "qprog = synthesize(qmod)\n", - "print_depth_width(qprog)\n", - "#Not sure if I am using the within_apply correct, but it seems the within_apply complicate the quantum circuit..." - ] - }, - { - "cell_type": "code", - "execution_count": 97, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/9b6eea8a-21d3-46ac-9611-0512f1bec2aa?version=0.41.2\n" - ] - } - ], - "source": [ - "# Your code here:\n", - "\n", - "@qfunc\n", - "def main(res: Output[QNum]) -> None:\n", - " x = QNum(\"x\")\n", - " prepare_int(3, x)\n", - " y = QNum(\"y\")\n", - " prepare_int(5, y)\n", - " z = QNum(\"z\")\n", - " prepare_int(2, z)\n", - " w = QNum(\"w\")\n", - " prepare_int(4, w)\n", - " tr1= QNum(\"tr1\")\n", - " tr2= QNum(\"tr2\")\n", - "\n", - " add(x,y, tr1)\n", - " add(tr1,z, tr2)\n", - " add(tr2,w, res)\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": 98, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Synthesized circuit width: 13, depth: 169\n" - ] - } - ], - "source": [ - "qmod = set_constraints(qmod,Constraints(optimization_parameter='width'))\n", - "qprog = synthesize(qmod)\n", - "print_depth_width(qprog)\n", - "#" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 9 - In-place Arithmetics\n", - "\n", - "For the following exercise we will use numeric quantum variables that represent fixed-point reals.\n", - "\n", - "Arithmetic expressions can be calculated in-place into a target variable, without allocating new qubits to store the result. This is done using the in-place-xor operator.\n", - "\n", - "See also [Numeric assignment](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/numeric-assignment/#semantics).\n", - "\n", - "In-place assignment is often used to nest arithmetic expressions under quantum operators. Note that out-of-place assignment requires its left-value variable to be un-initialized, and therefore cannot be used under an operator if the variable is declared outside its scope. Applying operators to arithmetic expressions is required in many algorithms. One example is the piecewise evaluation of mathematical functions - calculating different expressions over `x` depending on the subdomain where `x` falls.\n", - "\n", - "For this exercise, replace the missing parts in the code snippet below to evaluate the result of:\n", - "\n", - "$$\n", - "f(x) = \\begin{cases}\n", - " 2x + 1 & \\text{ if } 0 \\leq x < 0.5 \\\\\n", - " x + 0.5 & \\text{ if } 0.5 \\leq x < 1\n", - " \\end{cases}\n", - "$$\n", - "\n", - "Notes:\n", - "- We cannot use `x` directly as the control variable in a `constrol` operator, because it also occurs in the nested scope. to determine if `x` is in the lower or higher half of the domain we duplicate the most significant bit onto a separate variable called `label`.\n", - "- In Python assignment operators cannot be used in lambda expressions, so the computation of the function needs to be factored out to a named Python function (but not necessarily a Qmod function).\n" - ] - }, - { - "cell_type": "code", - "execution_count": 105, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/5cd98615-e0a6-4cda-8e18-e61efad270ba?version=0.41.2\n" - ] - } - ], - "source": [ - "\n", - "from classiq import *\n", - "\n", - "\n", - "def linear_func(a: float, b: float, x: QNum, res: QNum) -> None:\n", - " res ^= a * x + b\n", - "\n", - "\n", - "@qfunc\n", - "def dup_msb(qba: QArray[QBit], msb: QBit) -> None:\n", - " CX(qba[qba.len - 1], msb)\n", - "\n", - "\n", - "@qfunc\n", - "def main(x: Output[QNum[3, False, 3]], res: Output[QNum[5, False, 3]]) -> None:\n", - " allocate(5, res)\n", - " allocate(3, x)\n", - " hadamard_transform(x)\n", - "\n", - " label = QArray(\"label\")\n", - " allocate(1, label)\n", - " \n", - "\n", - "\n", - " dup_msb(x, label)\n", - " control(label, lambda: linear_func(1.0, 0.5, x, res)) # 0.5 <= x < 1.0\n", - " X(label)\n", - " control(label, lambda: linear_func(2.0, 1.0, x, res)) # 0.0 <= x < 0.5\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 10 - State-preparation Algorithm using Quantum-if\n", - "\n", - "#### Binding\n", - "The `bind` operation allows to convert smoothly between different quantum types and split or slice bits when necessary. Here’s an example:" - ] - }, - { - "cell_type": "code", - "execution_count": 106, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/59d2185e-2a15-41d0-a00c-1013bbc7e6d4?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "from math import pi\n", - "\n", - "\n", - "@qfunc\n", - "def main(res: Output[QArray[QBit]]) -> None:\n", - " x: QArray[QBit] = QArray(\"x\")\n", - " allocate(3, x)\n", - " hadamard_transform(x)\n", - "\n", - " lsb = QBit(\"lsb\")\n", - " msb = QNum(\"msb\", 2, False, 0)\n", - " bind(x, [lsb, msb])\n", - "\n", - " control(msb == 1, lambda: RY(pi / 3, lsb)) # msb==1 <==> bit1 bit2 == 01 (binary of decimal 1)\n", - "\n", - " bind([lsb, msb], res)\n", - "\n", - "model = create_model(main)\n", - "qprog = synthesize(model)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The first `bind` operation splits the 3-qubit register `x` into the 2-qubit and single-qubit registers `lsb` and `msb`, respectively.\n", - "\n", - "After the `bind` operation:\n", - "1. The registers `lsb` and `msb` can be operated on as separated registers.\n", - "2. The register`x` is consumed and can no longer be used.\n", - "\n", - "The second `bind` operation concatenates the registers to the output register `res`.\n", - "\n", - "For this exercise, fill in the missing code parts in the above snippet and use the `control` statement to manually generate the following lovely 3-qubit probability distribution: `[1/8, 1/8, 1/8, -sqrt(3)/16, 1/8 + sqrt(3)/16, 1/8, 1/8, 1/8, 1/8]`.\n", - "\n", - "The following series of gates generate it:\n", - "\n", - "Perform the Hadamard transform on all three qubits.\n", - "\n", - "Apply a rotation on the LSB (least-significant bit) conditioned by the MSB being |0> and the second to last MSB being |1>. How would you write this condition using a QNum?\n", - "\n", - "The following series of gates generate it:\n", - "1. Perform the Hadamard transform on all three qubits.\n", - "2. Apply a `pi/3` rotation on the LSB (least-significant bit) conditioned by the MSB being |0> and the second to last MSB being |1>. How would you write this condition using a QNum?\n", - "\n", - "If you want to validate your results without looking at the full solution, compare them to running using Classiq’s built-in `prepare_state` function.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 109, - "metadata": {}, - "outputs": [], - "source": [ - "from classiq import *\n", - "from classiq.qmod.symbolic import sqrt\n", - "\n", - "prob_list= [\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " -sqrt(3) / 16,\n", - " 1 / 8 + sqrt(3) / 16,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " ]\n", - "@qfunc\n", - "def pre_prepared_state(q: QArray[QBit]) -> None:\n", - " prepare_state(\n", - " [\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " -sqrt(3) / 16,\n", - " 1 / 8 + sqrt(3) / 16,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " ],\n", - " 0.0,\n", - " q,\n", - " )\n", - "\n", - "\n", - "# Your code here:\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.9" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/community/QClass_2024/Submissions/HW2/bogachan_arslan-HW2_QClass2024.ipynb b/community/QClass_2024/Submissions/HW2/bogachan_arslan-HW2_QClass2024.ipynb deleted file mode 100644 index 7488af2c..00000000 --- a/community/QClass_2024/Submissions/HW2/bogachan_arslan-HW2_QClass2024.ipynb +++ /dev/null @@ -1,878 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# The Qmod Workshop - Part 2: Higher-Level Concepts\n", - "\n", - "This is the second part of the Qmod workshop, covering exercises 6 through 10. Make sure to go through Part 1 before continuing with this notebook." - ] - }, - { - "cell_type": "code", - "execution_count": 55, - "metadata": { - "ExecuteTime": { - "end_time": "2024-05-26T22:09:22.231289Z", - "start_time": "2024-05-26T22:09:22.209148Z" - } - }, - "outputs": [], - "source": [ - "from classiq import *" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 6 - Exponentiation and Pauli Operators\n", - "\n", - "The Qmod language supports different classical types: scalars, arrays, and structs. Structs are objects with member variables, or fields.\n", - "\n", - "See also [Classical Types](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/classical-types/#structs).\n", - "\n", - "The builtin struct type `PauliTerm` is defined as follows:" - ] - }, - { - "cell_type": "code", - "execution_count": 56, - "metadata": { - "ExecuteTime": { - "end_time": "2024-05-26T22:09:25.591971Z", - "start_time": "2024-05-26T22:09:25.577439Z" - } - }, - "outputs": [], - "source": [ - "@struct\n", - "class PauliTerm:\n", - " pauli: CArray[Pauli]\n", - " coefficient: CReal" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Note that `Pauli` is an enum for all the Pauli matrices (I, X, Y, Z).\n", - "\n", - "Pauli based hamiltonian can be represented as a list of `PauliTerm`s. A Pauli operator defined this way is the argument to a hamiltonian evolution functions.\n", - "\n", - "In this exercise we will use the Suzuki-Trotter function to find the evolution of `H=0.5XZXX + 0.25YIZI + 0.3 XIZY` (captured as a literal value for the pauli-operator), with the evolution coefficient being 3, the order being 2, and use 4 repetitions.\n", - "\n", - "The declaration of the `suzuki_trotter` function is:" - ] - }, - { - "cell_type": "code", - "execution_count": 57, - "metadata": { - "ExecuteTime": { - "end_time": "2024-05-26T22:09:28.645410Z", - "start_time": "2024-05-26T22:09:28.621424Z" - } - }, - "outputs": [], - "source": [ - "@qfunc(external=True)\n", - "def suzuki_trotter(\n", - " pauli_operator: CArray[PauliTerm],\n", - " evolution_coefficient: CReal,\n", - " order: CInt,\n", - " repetitions: CInt,\n", - " qbv: QArray[QBit],\n", - ") -> None:\n", - " pass" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Fill in the missing parts of the following code in order to complete this exercise:" - ] - }, - { - "cell_type": "code", - "execution_count": 58, - "metadata": { - "ExecuteTime": { - "end_time": "2024-05-26T22:09:34.148522Z", - "start_time": "2024-05-26T22:09:30.302077Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/4741ece5-671b-41b8-a421-cd6094af0669?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "\n", - "@qfunc\n", - "def main(q: Output[QArray[QBit]]) -> None:\n", - " allocate(4, q)\n", - " suzuki_trotter(\n", - " [\n", - " PauliTerm(pauli=[Pauli.X, Pauli.Z, Pauli.X, Pauli.X], coefficient=0.5), \n", - " PauliTerm(pauli=[Pauli.Y, Pauli.I, Pauli.Z, Pauli.I], coefficient=0.25),\n", - " PauliTerm(pauli=[Pauli.X, Pauli.I, Pauli.Z, Pauli.Y], coefficient=0.3)\n", - " ],\n", - " evolution_coefficient=3,\n", - " repetitions=4,\n", - " order=2,\n", - " qbv=q,\n", - " )\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 7 - Basic Arithmetics\n", - "\n", - "#### Exercise 7a\n", - "In this exercise we will use quantum numeric variables and calculate expressions over them.\n", - "\n", - "See details on the syntax of numeric types under [Quantum types](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/quantum-types/#syntax).\n", - "See more on quantum expressions under [Numeric assignment](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/numeric-assignment/)\n", - "\n", - "Create the following quantum programs:\n", - "1. Initialize variables `x=2`, `y=7` and computes `res = x + y`.\n", - "2. Initialize variables `x=2`, `y=7` and computes `res = x * y`.\n", - "3. Initialize variables `x=2`, `y=7`, `z=1` and computes `res = x * y - z`.\n", - "\n", - "Guidance:\n", - "* Use the operator `|=` to perform out-of-place assignment of arithmetic expression.\n", - "* To initialize the variables, use the function `prepare_int`.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "ExecuteTime": { - "end_time": "2024-05-26T16:24:23.563715Z", - "start_time": "2024-05-26T16:24:19.794537Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/1f2b1ee3-5763-4c37-b9d7-8ebcaedef07d?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "# 1. Initialize variables `x=2`, `y=7` and computes `res = x + y`.\n", - "@qfunc\n", - "def main(res: Output[QNum]) -> None:\n", - " x = QNum(\"x\", 2, False, 0)\n", - " y = QNum(\"y\", 3, False, 0)\n", - " prepare_int(2, x)\n", - " prepare_int(7, y)\n", - " res |= x + y\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/fa0232f9-2c91-42ef-b564-86f5afe126e9?version=0.41.2\n" - ] - } - ], - "source": [ - "# 2. Initialize variables `x=2`, `y=7` and computes `res = x * y`.\n", - "@qfunc\n", - "def main(res: Output[QNum]) -> None:\n", - " x = QNum(\"x\", 2, False, 0)\n", - " y = QNum(\"y\", 3, False, 0)\n", - " prepare_int(2, x)\n", - " prepare_int(7, y)\n", - " res |= x * y\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ], - "metadata": { - "collapsed": false, - "ExecuteTime": { - "end_time": "2024-05-26T16:26:34.590082Z", - "start_time": "2024-05-26T16:26:30.828338Z" - } - }, - "execution_count": 9 - }, - { - "cell_type": "code", - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/5d6f1e2d-d6b2-4781-bd76-e37416ee207b?version=0.41.2\n" - ] - } - ], - "source": [ - "# 3. Initialize variables `x=2`, `y=7`, `z=1` and computes `res = x * y - z`.\n", - "@qfunc\n", - "def main(res: Output[QNum]) -> None:\n", - " x = QNum(\"x\", 2, False, 0)\n", - " y = QNum(\"y\", 3, False, 0)\n", - " z = QNum(\"z\", 1, False, 0)\n", - " prepare_int(2, x)\n", - " prepare_int(7, y)\n", - " prepare_int(1, z)\n", - " res |= x * y - z\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ], - "metadata": { - "collapsed": false, - "ExecuteTime": { - "end_time": "2024-05-26T16:27:29.729189Z", - "start_time": "2024-05-26T16:27:25.952134Z" - } - }, - "execution_count": 10 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Exercise 7b\n", - "Declare `x` to be a 2-qubit variable and `y` to be 3-qubit variable.\n", - "\n", - "We will perform an addition of two superposition states: `x` is an equal superposition of `0` and `2`, and `y` is an equal superposition of `1`, `2`, `3`, and `6`.\n", - "\n", - "1. Use `prepare_state` to initialize `x` and `y`. Note that `prepare_state` works with probabilities, not amplitudes.\n", - " The declaration of the `prepare_state` function is:\n", - " ```\n", - " @qfunc(external=True)\n", - " def prepare_state(\n", - " probabilities: CArray[CReal],\n", - " bound: CReal,\n", - " out: Output[QArray[QBit]],\n", - " ) -> None:\n", - " pass\n", - " ```\n", - " (Set the bound to 0 in your code)\n", - "2. Compute `res = x + y`. Execute the resulting circuit. What did you get?" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "ExecuteTime": { - "end_time": "2024-05-26T16:32:36.149627Z", - "start_time": "2024-05-26T16:32:32.435232Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/758e7261-9010-4074-892a-b51add9d6631?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def main(res: Output[QNum]):\n", - " x = QNum(\"x\", 2, False, 0)\n", - " y = QNum(\"y\", 3, False, 0)\n", - " prepare_state([0.5,0,0.5,0], 0, x)\n", - " prepare_state([0,0.25,0.25,0.25,0,0,0.25,0], 0, y)\n", - " res |= x + y\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 8 - Within-Apply\n", - "\n", - "The within-apply statement applies the pattern `U_dagger V U` that appears frequently in quantum computing.\n", - "It allows you to compute some function `V` within the context of another function `U`, and afterward uncompute `U` in order to release auxiliary qubits storing intermediate results.\n", - "\n", - "See also [Within Apply](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/within-apply/).\n", - "\n", - "#### Exercise 8a\n", - "\n", - "In this exercise, we will use within-apply to compute an arithmetic expression in steps.\n", - "\n", - "Use the `within_apply` operation to calculate `res = x + y + z` from a two-variable addition building block with the following steps:\n", - "1. Add `x` and `y`\n", - "2. Add the result to `z`\n", - "3. Uncompute the result of the first operation\n", - "\n", - "For simplicity, initialize the registers to simple integers: `x=3`, `y=5`, `z=2`.\n", - "\n", - "Hints:\n", - "\n", - "* Use a temporary variable.\n", - "* Wrap the arithmetic operation in a function.\n", - "\n", - "Execute the circuit and make sure you obtain the expected result." - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": { - "ExecuteTime": { - "end_time": "2024-05-26T16:59:29.969734Z", - "start_time": "2024-05-26T16:59:26.122712Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/42a51d5a-6496-4b09-8939-06acb3affa7a?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "@qfunc\n", - "def add(x: QNum, y: QNum, tmp: Output[QNum]):\n", - " tmp |= x + y\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def main(res: Output[QNum]):\n", - " x = QNum(\"x\", 2, False, 0)\n", - " y = QNum(\"y\", 3, False, 0)\n", - " z = QNum(\"z\", 2, False, 0)\n", - " tmp = QNum(\"tmp\", 4, False, 0)\n", - " prepare_int(3, x)\n", - " prepare_int(5, y)\n", - " prepare_int(2, z)\n", - " \n", - " within_apply(lambda: add(x, y, tmp), lambda: add(tmp, z, res))\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Exercise 8b\n", - "\n", - "Why should we use `within-apply` and not just write three concatenated functions?\n", - "To understand the motivation, we will create another arithmetic circuit.\n", - "This time, however, we will also set Classiq’s synthesis engine to optimize on the circuit’s number of qubits, i.e., its width.\n", - "\n", - "Setting constraints can be done via the `set_constraints` operation - see [here](https://docs.classiq.io/latest/user-guide/platform/synthesis/constraints/).\n", - "\n", - "Perform the operation `res = w + x + y + z`, where w is initialized to 4 and the rest as before:\n", - "\n", - "1. Add `x` and `y` (as part of the `within_apply` operation)\n", - "2. Add the result to `z` (as part of the within_apply operation)\n", - "3. Uncompute the result of the first operation (as part of the `within_apply` operation)\n", - "4. Add the result of the second operation to `w`. There’s no need to perform another uncomputation, as this brings our calculation to an end.\n", - "\n", - "Create the model, optimize on the circuit’s width, and run the circuit. Can you identify where qubits have been released and reused?" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": { - "ExecuteTime": { - "end_time": "2024-05-26T17:17:42.572608Z", - "start_time": "2024-05-26T17:17:37.254529Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Synthesized circuit width: 18, depth: 147\n", - "Opening: https://platform.classiq.io/circuit/9411868e-e419-4ec1-8326-1415200bb04d?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "def print_depth_width(quantum_program):\n", - " generated_circuit = QuantumProgram.parse_raw(quantum_program)\n", - " print(f\"Synthesized circuit width: {generated_circuit.data.width}, depth: {generated_circuit.transpiled_circuit.depth}\")\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def add(x: QNum, y: QNum, res: Output[QNum]):\n", - " res |= x + y\n", - " \n", - "@qfunc\n", - "def main(res: Output[QNum]):\n", - " x = QNum(\"x\", 2, False, 0)\n", - " y = QNum(\"y\", 3, False, 0)\n", - " z = QNum(\"z\", 2, False, 0)\n", - " w = QNum(\"w\", 3, False, 0)\n", - " tmp = QNum(\"tmp\", 4, False, 0)\n", - " tmp2 = QNum(\"tmp2\", 5, False, 0)\n", - " prepare_int(3, x)\n", - " prepare_int(5, y)\n", - " prepare_int(2, z)\n", - " prepare_int(4, w)\n", - " \n", - " within_apply(lambda: add(x, y, tmp), lambda: add(z, tmp, tmp2))\n", - " res |= tmp2 + w\n", - "\n", - "qmod = create_model(main)\n", - "qmod = set_constraints(qmod,Constraints(optimization_parameter='width'))\n", - "qprog = synthesize(qmod)\n", - "print_depth_width(qprog)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Bonus: Use a Single Arithmetic Expression\n", - "\n", - "What happens when we don't manually decompose this expression?\n", - "\n", - "Use Classiq’s arithmetic engine to calculate `res |= x + y + z + w` and optimize for width.\n", - "Look at the resulting quantum program - can you identify the computation and uncomputation blocks? What else did you notice?" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": { - "ExecuteTime": { - "end_time": "2024-05-26T17:19:06.347632Z", - "start_time": "2024-05-26T17:19:02.589362Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Synthesized circuit width: 12, depth: 155\n", - "Opening: https://platform.classiq.io/circuit/9b721435-34b1-4487-96fd-f06a021f8247?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def main(res: Output[QNum]):\n", - " x = QNum(\"x\", 2, False, 0)\n", - " y = QNum(\"y\", 3, False, 0)\n", - " z = QNum(\"z\", 2, False, 0)\n", - " w = QNum(\"w\", 3, False, 0)\n", - " prepare_int(3, x)\n", - " prepare_int(5, y)\n", - " prepare_int(2, z)\n", - " prepare_int(4, w)\n", - " res |= x + y + z + w\n", - "\n", - "qmod = create_model(main)\n", - "qmod = set_constraints(qmod,Constraints(optimization_parameter='width'))\n", - "qprog = synthesize(qmod)\n", - "print_depth_width(qprog)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 9 - In-place Arithmetics\n", - "\n", - "For the following exercise we will use numeric quantum variables that represent fixed-point reals.\n", - "\n", - "Arithmetic expressions can be calculated in-place into a target variable, without allocating new qubits to store the result. This is done using the in-place-xor operator.\n", - "\n", - "See also [Numeric assignment](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/numeric-assignment/#semantics).\n", - "\n", - "In-place assignment is often used to nest arithmetic expressions under quantum operators. Note that out-of-place assignment requires its left-value variable to be un-initialized, and therefore cannot be used under an operator if the variable is declared outside its scope. Applying operators to arithmetic expressions is required in many algorithms. One example is the piecewise evaluation of mathematical functions - calculating different expressions over `x` depending on the subdomain where `x` falls.\n", - "\n", - "For this exercise, replace the missing parts in the code snippet below to evaluate the result of:\n", - "\n", - "$$\n", - "f(x) = \\begin{cases}\n", - " 2x + 1 & \\text{ if } 0 \\leq x < 0.5 \\\\\n", - " x + 0.5 & \\text{ if } 0.5 \\leq x < 1\n", - " \\end{cases}\n", - "$$\n", - "\n", - "Notes:\n", - "- We cannot use `x` directly as the control variable in a `constrol` operator, because it also occurs in the nested scope. to determine if `x` is in the lower or higher half of the domain we duplicate the most significant bit onto a separate variable called `label`.\n", - "- In Python assignment operators cannot be used in lambda expressions, so the computation of the function needs to be factored out to a named Python function (but not necessarily a Qmod function).\n" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": { - "ExecuteTime": { - "end_time": "2024-05-26T21:06:37.494727Z", - "start_time": "2024-05-26T21:06:37.412072Z" - } - }, - "outputs": [ - { - "ename": "TypeError", - "evalue": "object of type 'int' has no len()", - "output_type": "error", - "traceback": [ - "\u001B[0;31m---------------------------------------------------------------------------\u001B[0m", - "\u001B[0;31mTypeError\u001B[0m Traceback (most recent call last)", - "Cell \u001B[0;32mIn[39], line 28\u001B[0m\n\u001B[1;32m 24\u001B[0m X(label)\n\u001B[1;32m 25\u001B[0m control(label, \u001B[38;5;28;01mlambda\u001B[39;00m: linear_func(\u001B[38;5;241m2.0\u001B[39m, \u001B[38;5;241m1.0\u001B[39m, x, res)) \u001B[38;5;66;03m# 0.0 <= x < 0.5\u001B[39;00m\n\u001B[0;32m---> 28\u001B[0m qmod \u001B[38;5;241m=\u001B[39m \u001B[43mcreate_model\u001B[49m\u001B[43m(\u001B[49m\u001B[43mmain\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 29\u001B[0m qprog \u001B[38;5;241m=\u001B[39m synthesize(qmod)\n\u001B[1;32m 30\u001B[0m show(qprog)\n", - "File \u001B[0;32m~/.pyenv/versions/3.9.7/lib/python3.9/site-packages/classiq/qmod/quantum_function.py:39\u001B[0m, in \u001B[0;36mcreate_model\u001B[0;34m(entry_point, constraints, execution_preferences, preferences, classical_execution_function)\u001B[0m\n\u001B[1;32m 32\u001B[0m \u001B[38;5;28;01mdef\u001B[39;00m \u001B[38;5;21mcreate_model\u001B[39m(\n\u001B[1;32m 33\u001B[0m entry_point: \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mQFunc\u001B[39m\u001B[38;5;124m\"\u001B[39m,\n\u001B[1;32m 34\u001B[0m constraints: Optional[Constraints] \u001B[38;5;241m=\u001B[39m \u001B[38;5;28;01mNone\u001B[39;00m,\n\u001B[0;32m (...)\u001B[0m\n\u001B[1;32m 37\u001B[0m classical_execution_function: Optional[CFunc] \u001B[38;5;241m=\u001B[39m \u001B[38;5;28;01mNone\u001B[39;00m,\n\u001B[1;32m 38\u001B[0m ) \u001B[38;5;241m-\u001B[39m\u001B[38;5;241m>\u001B[39m SerializedModel:\n\u001B[0;32m---> 39\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m \u001B[43mentry_point\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mfunc_decl\u001B[49m\u001B[38;5;241m.\u001B[39mname \u001B[38;5;241m!=\u001B[39m \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mmain\u001B[39m\u001B[38;5;124m\"\u001B[39m:\n\u001B[1;32m 40\u001B[0m \u001B[38;5;28;01mraise\u001B[39;00m ClassiqError(\n\u001B[1;32m 41\u001B[0m \u001B[38;5;124mf\u001B[39m\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mThe entry point function must be named \u001B[39m\u001B[38;5;124m'\u001B[39m\u001B[38;5;124mmain\u001B[39m\u001B[38;5;124m'\u001B[39m\u001B[38;5;124m, got \u001B[39m\u001B[38;5;124m'\u001B[39m\u001B[38;5;132;01m{\u001B[39;00mentry_point\u001B[38;5;241m.\u001B[39mfunc_decl\u001B[38;5;241m.\u001B[39mname\u001B[38;5;132;01m}\u001B[39;00m\u001B[38;5;124m'\u001B[39m\u001B[38;5;124m\"\u001B[39m\n\u001B[1;32m 42\u001B[0m )\n\u001B[1;32m 43\u001B[0m \u001B[38;5;28;01mreturn\u001B[39;00m entry_point\u001B[38;5;241m.\u001B[39mcreate_model(\n\u001B[1;32m 44\u001B[0m constraints, execution_preferences, preferences, classical_execution_function\n\u001B[1;32m 45\u001B[0m )\u001B[38;5;241m.\u001B[39mget_model()\n", - "File \u001B[0;32m~/.pyenv/versions/3.9.7/lib/python3.9/site-packages/classiq/qmod/quantum_function.py:60\u001B[0m, in \u001B[0;36mQFunc.func_decl\u001B[0;34m(self)\u001B[0m\n\u001B[1;32m 56\u001B[0m \u001B[38;5;129m@property\u001B[39m\n\u001B[1;32m 57\u001B[0m \u001B[38;5;28;01mdef\u001B[39;00m \u001B[38;5;21mfunc_decl\u001B[39m(\u001B[38;5;28mself\u001B[39m) \u001B[38;5;241m-\u001B[39m\u001B[38;5;241m>\u001B[39m QuantumFunctionDeclaration:\n\u001B[1;32m 58\u001B[0m \u001B[38;5;28;01mreturn\u001B[39;00m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39m_qmodule\u001B[38;5;241m.\u001B[39mnative_defs\u001B[38;5;241m.\u001B[39mget(\n\u001B[1;32m 59\u001B[0m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39m_py_callable\u001B[38;5;241m.\u001B[39m\u001B[38;5;18m__name__\u001B[39m,\n\u001B[0;32m---> 60\u001B[0m \u001B[43minfer_func_decl\u001B[49m\u001B[43m(\u001B[49m\u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43m_py_callable\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mqmodule\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43m_qmodule\u001B[49m\u001B[43m)\u001B[49m,\n\u001B[1;32m 61\u001B[0m )\n", - "File \u001B[0;32m~/.pyenv/versions/3.9.7/lib/python3.9/site-packages/classiq/qmod/declaration_inferrer.py:153\u001B[0m, in \u001B[0;36minfer_func_decl\u001B[0;34m(py_func, qmodule)\u001B[0m\n\u001B[1;32m 148\u001B[0m \u001B[38;5;28;01mdef\u001B[39;00m \u001B[38;5;21minfer_func_decl\u001B[39m(\n\u001B[1;32m 149\u001B[0m py_func: Callable, qmodule: ModelStateContainer\n\u001B[1;32m 150\u001B[0m ) \u001B[38;5;241m-\u001B[39m\u001B[38;5;241m>\u001B[39m QuantumFunctionDeclaration:\n\u001B[1;32m 151\u001B[0m \u001B[38;5;28;01mreturn\u001B[39;00m QuantumFunctionDeclaration(\n\u001B[1;32m 152\u001B[0m name\u001B[38;5;241m=\u001B[39munmangle_keyword(py_func\u001B[38;5;241m.\u001B[39m\u001B[38;5;18m__name__\u001B[39m),\n\u001B[0;32m--> 153\u001B[0m positional_arg_declarations\u001B[38;5;241m=\u001B[39m\u001B[43m_extract_positional_args\u001B[49m\u001B[43m(\u001B[49m\n\u001B[1;32m 154\u001B[0m \u001B[43m \u001B[49m\u001B[43mpy_func\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[38;5;18;43m__annotations__\u001B[39;49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mqmodule\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mqmodule\u001B[49m\n\u001B[1;32m 155\u001B[0m \u001B[43m \u001B[49m\u001B[43m)\u001B[49m,\n\u001B[1;32m 156\u001B[0m )\n", - "File \u001B[0;32m~/.pyenv/versions/3.9.7/lib/python3.9/site-packages/classiq/qmod/declaration_inferrer.py:139\u001B[0m, in \u001B[0;36m_extract_positional_args\u001B[0;34m(args, qmodule)\u001B[0m\n\u001B[1;32m 132\u001B[0m result\u001B[38;5;241m.\u001B[39mappend(\n\u001B[1;32m 133\u001B[0m ClassicalParameterDeclaration(\n\u001B[1;32m 134\u001B[0m name\u001B[38;5;241m=\u001B[39mname,\n\u001B[1;32m 135\u001B[0m classical_type\u001B[38;5;241m=\u001B[39mpython_type_to_qmod(py_type, qmodule\u001B[38;5;241m=\u001B[39mqmodule),\n\u001B[1;32m 136\u001B[0m )\n\u001B[1;32m 137\u001B[0m )\n\u001B[1;32m 138\u001B[0m \u001B[38;5;28;01melif\u001B[39;00m QVar\u001B[38;5;241m.\u001B[39mfrom_type_hint(py_type) \u001B[38;5;129;01mis\u001B[39;00m \u001B[38;5;129;01mnot\u001B[39;00m \u001B[38;5;28;01mNone\u001B[39;00m:\n\u001B[0;32m--> 139\u001B[0m result\u001B[38;5;241m.\u001B[39mappend(\u001B[43m_extract_port_decl\u001B[49m\u001B[43m(\u001B[49m\u001B[43mname\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mpy_type\u001B[49m\u001B[43m)\u001B[49m)\n\u001B[1;32m 140\u001B[0m \u001B[38;5;28;01melse\u001B[39;00m:\n\u001B[1;32m 141\u001B[0m \u001B[38;5;28;01massert\u001B[39;00m (get_origin(py_type) \u001B[38;5;129;01mor\u001B[39;00m py_type) \u001B[38;5;129;01mis\u001B[39;00m QCallable \u001B[38;5;129;01mor\u001B[39;00m (\n\u001B[1;32m 142\u001B[0m get_origin(py_type) \u001B[38;5;129;01mor\u001B[39;00m py_type\n\u001B[1;32m 143\u001B[0m ) \u001B[38;5;129;01mis\u001B[39;00m QCallableList\n", - "File \u001B[0;32m~/.pyenv/versions/3.9.7/lib/python3.9/site-packages/classiq/qmod/declaration_inferrer.py:99\u001B[0m, in \u001B[0;36m_extract_port_decl\u001B[0;34m(name, py_type)\u001B[0m\n\u001B[1;32m 94\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m \u001B[38;5;28misinstance\u001B[39m(py_type, _AnnotatedAlias):\n\u001B[1;32m 95\u001B[0m py_type \u001B[38;5;241m=\u001B[39m py_type\u001B[38;5;241m.\u001B[39m__args__[\u001B[38;5;241m0\u001B[39m]\n\u001B[1;32m 96\u001B[0m \u001B[38;5;28;01mreturn\u001B[39;00m PortDeclaration(\n\u001B[1;32m 97\u001B[0m name\u001B[38;5;241m=\u001B[39mname,\n\u001B[1;32m 98\u001B[0m direction\u001B[38;5;241m=\u001B[39mdirection,\n\u001B[0;32m---> 99\u001B[0m quantum_type\u001B[38;5;241m=\u001B[39m\u001B[43mqtype\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mto_qmod_quantum_type\u001B[49m\u001B[43m(\u001B[49m\u001B[43mpy_type\u001B[49m\u001B[43m)\u001B[49m,\n\u001B[1;32m 100\u001B[0m )\n", - "File \u001B[0;32m~/.pyenv/versions/3.9.7/lib/python3.9/site-packages/classiq/qmod/qmod_variable.py:256\u001B[0m, in \u001B[0;36mQNum.to_qmod_quantum_type\u001B[0;34m(cls, type_hint)\u001B[0m\n\u001B[1;32m 254\u001B[0m \u001B[38;5;28;01mreturn\u001B[39;00m \u001B[38;5;28mcls\u001B[39m\u001B[38;5;241m.\u001B[39mQMOD_TYPE()\n\u001B[1;32m 255\u001B[0m type_args \u001B[38;5;241m=\u001B[39m type_args[\u001B[38;5;241m0\u001B[39m]\n\u001B[0;32m--> 256\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m \u001B[38;5;28;43mlen\u001B[39;49m\u001B[43m(\u001B[49m\u001B[43mtype_args\u001B[49m\u001B[43m)\u001B[49m \u001B[38;5;241m!=\u001B[39m \u001B[38;5;241m3\u001B[39m:\n\u001B[1;32m 257\u001B[0m \u001B[38;5;28;01mraise\u001B[39;00m ClassiqValueError(\n\u001B[1;32m 258\u001B[0m \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mQNum receives three type arguments: QNum[size: int | CInt, \u001B[39m\u001B[38;5;124m\"\u001B[39m\n\u001B[1;32m 259\u001B[0m \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mis_signed: bool | CBool, fraction_digits: int | CInt]\u001B[39m\u001B[38;5;124m\"\u001B[39m\n\u001B[1;32m 260\u001B[0m )\n\u001B[1;32m 261\u001B[0m \u001B[38;5;28;01mreturn\u001B[39;00m \u001B[38;5;28mcls\u001B[39m\u001B[38;5;241m.\u001B[39mQMOD_TYPE(\n\u001B[1;32m 262\u001B[0m size\u001B[38;5;241m=\u001B[39mExpression(expr\u001B[38;5;241m=\u001B[39mget_type_hint_expr(type_args[\u001B[38;5;241m0\u001B[39m])),\n\u001B[1;32m 263\u001B[0m is_signed\u001B[38;5;241m=\u001B[39mExpression(expr\u001B[38;5;241m=\u001B[39mget_type_hint_expr(type_args[\u001B[38;5;241m1\u001B[39m])),\n\u001B[1;32m 264\u001B[0m fraction_digits\u001B[38;5;241m=\u001B[39mExpression(expr\u001B[38;5;241m=\u001B[39mget_type_hint_expr(type_args[\u001B[38;5;241m2\u001B[39m])),\n\u001B[1;32m 265\u001B[0m )\n", - "\u001B[0;31mTypeError\u001B[0m: object of type 'int' has no len()" - ] - } - ], - "source": [ - "\n", - "from classiq import *\n", - "\n", - "\n", - "def linear_func(a: float, b: float, x: QNum, res: QNum) -> None:\n", - " res ^= a * x + b\n", - "\n", - "\n", - "@qfunc\n", - "def dup_msb(qba: QArray[QBit], msb: QBit) -> None:\n", - " CX(qba[qba.len - 1], msb)\n", - "\n", - "\n", - "@qfunc\n", - "def main(x: Output[QNum[3, False, 3]], res: Output[QNum[5, False, 3]]) -> None:\n", - " allocate(5, res)\n", - " allocate(3, x)\n", - " hadamard_transform(x)\n", - "\n", - " label = QArray(\"label\")\n", - " allocate(1, label)\n", - "\n", - " dup_msb(x, label)\n", - " control(label, lambda: linear_func(1.0, 0.5, x, res)) # 0.5 <= x < 1.0\n", - " X(label)\n", - " control(label, lambda: linear_func(2.0, 1.0, x, res)) # 0.0 <= x < 0.5\n", - "\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)\n", - "\n", - "# No idea why I'm receiving the error" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 10 - State-preparation Algorithm using Quantum-if\n", - "\n", - "#### Binding\n", - "The `bind` operation allows to convert smoothly between different quantum types and split or slice bits when necessary. Here’s an example:" - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": { - "ExecuteTime": { - "end_time": "2024-05-26T21:13:18.785358Z", - "start_time": "2024-05-26T21:13:15.434650Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/021c1f73-e815-447b-b9c5-106cd4460e23?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "\n", - "\n", - "\n", - "from classiq import *\n", - "from math import pi\n", - "\n", - "\n", - "@qfunc\n", - "def main(res: Output[QArray[QBit]]) -> None:\n", - " x: QArray[QBit] = QArray(\"x\")\n", - " allocate(3, x)\n", - " hadamard_transform(x)\n", - "\n", - " lsb = QBit(\"lsb\")\n", - " msb = QNum(\"msb\", 2, False, 0)\n", - " bind(x, [lsb, msb])\n", - "\n", - " control(msb == 1, lambda: RY(pi / 3, lsb)) # msb==1 <==> bit1 bit2 == 01 (binary of decimal 1)\n", - "\n", - " bind([lsb, msb], res)\n", - "\n", - "model = create_model(main)\n", - "qprog = synthesize(model)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The first `bind` operation splits the 3-qubit register `x` into the 2-qubit and single-qubit registers `lsb` and `msb`, respectively.\n", - "\n", - "After the `bind` operation:\n", - "1. The registers `lsb` and `msb` can be operated on as separated registers.\n", - "2. The register`x` is consumed and can no longer be used.\n", - "\n", - "The second `bind` operation concatenates the registers to the output register `res`.\n", - "\n", - "For this exercise, fill in the missing code parts in the above snippet and use the `control` statement to manually generate the following lovely 3-qubit probability distribution: `[1/8, 1/8, 1/8, -sqrt(3)/16, 1/8 + sqrt(3)/16, 1/8, 1/8, 1/8, 1/8]`.\n", - "\n", - "The following series of gates generate it:\n", - "\n", - "Perform the Hadamard transform on all three qubits.\n", - "\n", - "Apply a rotation on the LSB (least-significant bit) conditioned by the MSB being |0> and the second to last MSB being |1>. How would you write this condition using a QNum?\n", - "\n", - "The following series of gates generate it:\n", - "1. Perform the Hadamard transform on all three qubits.\n", - "2. Apply a `pi/3` rotation on the LSB (least-significant bit) conditioned by the MSB being |0> and the second to last MSB being |1>. How would you write this condition using a QNum?\n", - "\n", - "If you want to validate your results without looking at the full solution, compare them to running using Classiq’s built-in `prepare_state` function.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "metadata": { - "ExecuteTime": { - "end_time": "2024-05-26T21:24:07.288911Z", - "start_time": "2024-05-26T21:24:03.287314Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/5413423e-d9c7-44d4-9896-e5f01b2054e2?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "from classiq.qmod.symbolic import sqrt\n", - "\n", - "prob_list= [\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " -sqrt(3) / 16,\n", - " 1 / 8 + sqrt(3) / 16,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " ]\n", - "@qfunc\n", - "def pre_prepared_state(q: QArray[QBit]) -> None:\n", - " prepare_state(\n", - " [\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " -sqrt(3) / 16,\n", - " 1 / 8 + sqrt(3) / 16,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " ],\n", - " 0.0,\n", - " q,\n", - " )\n", - "\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def main(res: Output[QArray[QBit]]) -> None:\n", - " x: QArray[QBit] = QArray(\"x\")\n", - " allocate(3, x)\n", - " hadamard_transform(x)\n", - " \n", - " lsb = QBit(\"lsb\")\n", - " msb = QNum(\"msb\", 2, False, 0)\n", - " bind(x, [lsb, msb])\n", - "\n", - " control(msb == 1, lambda: RY(pi / 3, lsb)) \n", - "\n", - " bind([lsb, msb], res)\n", - " \n", - " \n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)\n" - ] - }, - { - "cell_type": "code", - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/a9b38449-c2b7-4781-8cd7-a463c5dd929c?version=0.41.2\n" - ] - } - ], - "source": [ - "from classiq import *\n", - "from classiq.qmod.symbolic import sqrt\n", - "\n", - "prob_list= [\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " -sqrt(3) / 16,\n", - " 1 / 8 + sqrt(3) / 16,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " ]\n", - "@qfunc\n", - "def pre_prepared_state(q: Output[QArray[QBit]]) -> None:\n", - " prepare_state(\n", - " [\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8 - sqrt(3) / 16,\n", - " 1 / 8 + sqrt(3) / 16,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1/8\n", - " ],\n", - " 0.0,\n", - " q,\n", - " )\n", - "\n", - "\n", - "# Your code here:\n", - "@qfunc\n", - "def main(res: Output[QArray[QBit]]):\n", - " pre_prepared_state(res)\n", - " \n", - " \n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)\n" - ], - "metadata": { - "collapsed": false, - "ExecuteTime": { - "end_time": "2024-05-26T22:03:42.729351Z", - "start_time": "2024-05-26T22:03:38.467856Z" - } - }, - "execution_count": 54 - }, - { - "cell_type": "code", - "outputs": [], - "source": [], - "metadata": { - "collapsed": false, - "ExecuteTime": { - "end_time": "2024-05-26T22:09:58.027692Z", - "start_time": "2024-05-26T22:09:58.020707Z" - } - }, - "execution_count": 58 - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.7" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/community/QClass_2024/Submissions/HW2/index.md b/community/QClass_2024/Submissions/HW2/index.md index f93767e0..ed49372d 100644 --- a/community/QClass_2024/Submissions/HW2/index.md +++ b/community/QClass_2024/Submissions/HW2/index.md @@ -1,7 +1,9 @@ # Submitting HW2 ## Submission: Rules & Instructions + To keep track of submissions, we kindly ask you to: + 1. Complete `HW2_QClass2024.ipynb`. 2. Rename the files to include your full name, for example: `Nadav_Ben-Ami_HW2_QClass2024.ipynb`. 3. Navigate to your local clone of the `classiq-library`. @@ -14,7 +16,7 @@ To keep track of submissions, we kindly ask you to: **Please ensure you follow these steps carefully to properly submit your assignment!** ## Support + If you need help or have questions, feel free to reach out in our Slack channel! ## Enjoy your learning journey at QClass 2024! - diff --git a/community/QClass_2024/Submissions/HW3/Amon_Koike_HW3_VQE.ipynb b/community/QClass_2024/Submissions/HW3/Amon_Koike_HW3_VQE.ipynb index eda8e0b6..b106ce1a 100644 --- a/community/QClass_2024/Submissions/HW3/Amon_Koike_HW3_VQE.ipynb +++ b/community/QClass_2024/Submissions/HW3/Amon_Koike_HW3_VQE.ipynb @@ -76,15 +76,20 @@ "outputs": [], "source": [ "from typing import List\n", + "\n", "from classiq import *\n", "\n", - "HAMILTONIAN = QConstant(\"HAMILTONIAN\", List[PauliTerm], [\n", - " PauliTerm([Pauli.I, Pauli.I],-1.0523),\n", - " PauliTerm([Pauli.I, Pauli.Z],0.3979),\n", - " PauliTerm([Pauli.Z, Pauli.I],-0.3979),\n", - " PauliTerm([Pauli.Z, Pauli.Z],-0.0112),\n", - " PauliTerm([Pauli.X, Pauli.X],0.1809)\n", - "])" + "HAMILTONIAN = QConstant(\n", + " \"HAMILTONIAN\",\n", + " List[PauliTerm],\n", + " [\n", + " PauliTerm([Pauli.I, Pauli.I], -1.0523),\n", + " PauliTerm([Pauli.I, Pauli.Z], 0.3979),\n", + " PauliTerm([Pauli.Z, Pauli.I], -0.3979),\n", + " PauliTerm([Pauli.Z, Pauli.Z], -0.0112),\n", + " PauliTerm([Pauli.X, Pauli.X], 0.1809),\n", + " ],\n", + ")" ] }, { @@ -102,22 +107,20 @@ } ], "source": [ - "\n", - "\n", "@qfunc\n", "def main(q: Output[QArray[QBit]], angles: CArray[CReal, 3]) -> None:\n", " allocate(2, q)\n", " U(angles[0], angles[1], angles[2], 0, q[0])\n", " U(angles[0], angles[1], angles[2], 0, q[1])\n", - " \n", - " \n", + "\n", + "\n", "@cfunc\n", "def cmain() -> None:\n", " res = vqe(\n", " HAMILTONIAN,\n", " False,\n", " [],\n", - " optimizer=Optimizer.COBYLA, # Constrained Optimization by Linear Approximation\n", + " optimizer=Optimizer.COBYLA, # Constrained Optimization by Linear Approximation\n", " max_iteration=1000,\n", " tolerance=0.001,\n", " step_size=0,\n", @@ -126,6 +129,7 @@ " )\n", " save({\"result\": res})\n", "\n", + "\n", "qmod = create_model(main, classical_execution_function=cmain)\n", "qprog = synthesize(qmod)\n", "show(qprog)" @@ -211,16 +215,17 @@ ], "source": [ "from typing import List\n", + "\n", "from classiq import *\n", "\n", + "\n", "@qfunc\n", "def main(q: Output[QArray[QBit]], angles: CArray[CReal, 3]) -> None:\n", " allocate(2, q)\n", " U(angles[0], angles[1], angles[2], 0, q[0]) # Apply U gate to the first qubit\n", " U(angles[0], angles[1], angles[2], 0, q[1]) # Apply U gate to the second qubit\n", - " #Entangling after the two U gates \n", - " CX(q[0], q[1]) # Apply CNOT gate to create entanglement \n", - "\n", + " # Entangling after the two U gates\n", + " CX(q[0], q[1]) # Apply CNOT gate to create entanglement\n", "\n", "\n", "@cfunc\n", @@ -229,7 +234,7 @@ " HAMILTONIAN,\n", " False,\n", " [],\n", - " optimizer=Optimizer.COBYLA, # Constrained Optimization by Linear Approximation\n", + " optimizer=Optimizer.COBYLA, # Constrained Optimization by Linear Approximation\n", " max_iteration=1000,\n", " tolerance=0.001,\n", " step_size=0,\n", @@ -238,6 +243,7 @@ " )\n", " save({\"result\": res})\n", "\n", + "\n", "qmod = create_model(main, classical_execution_function=cmain)\n", "qprog = synthesize(qmod)\n", "show(qprog)" diff --git a/community/QClass_2024/Submissions/HW3/Aniekan_Afangideh_HW3_VQE.ipynb b/community/QClass_2024/Submissions/HW3/Aniekan_Afangideh_HW3_VQE.ipynb deleted file mode 100644 index 3d44e2b7..00000000 --- a/community/QClass_2024/Submissions/HW3/Aniekan_Afangideh_HW3_VQE.ipynb +++ /dev/null @@ -1,317 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "id": "fc72d98f-8993-4bd4-a545-23d122f3df71", - "metadata": {}, - "source": [ - "# H₂ Molecule Homework Assignment\n", - "### Quantum Software Development Journey: From Theory to Application with Classiq - Part 3\n", - "\n", - "- Similarly to what we have done in class, in this exercise we will implement the VQE on H2 molecule.\n", - "- This time instead of using the built-in methods and functions (such as `Molecule` and `MoleculeProblem`) to difne and solve the problem, you will be provided with a two qubits Hamiltonian." - ] - }, - { - "cell_type": "markdown", - "id": "56eda6d8-76c4-4862-b914-0c4598d67274", - "metadata": {}, - "source": [ - "## Submission\n", - "- Submit the completed Jupyter notebook and report via GitHub. Ensure all files are correctly named and organized.\n", - "- Use the Typeform link provided in the submission folder to confirm your submission.\n", - "\n", - "## Additional Resources\n", - "- [Classiq Documentation](https://docs.classiq.io/latest/)\n", - "- The notebook from live session #3\n", - "\n", - "## Important Dates\n", - "- **Assignment Release:** 22.5.2024\n", - "- **Submission Deadline:** 3.6.2024 (7 A.M GMT+3)\n", - "\n", - "---\n", - "\n", - "Happy coding and good luck!" - ] - }, - { - "cell_type": "markdown", - "id": "d41e969d-f6a7-4ff7-9660-19ce6c97ba6b", - "metadata": {}, - "source": [ - "### Part 1" - ] - }, - { - "cell_type": "markdown", - "id": "f710d6f4-d40b-42d5-b524-c6acb8059fe2", - "metadata": {}, - "source": [ - "Given the following Hamiltonian:" - ] - }, - { - "cell_type": "markdown", - "id": "6ba8a6f1-3259-4492-a1ca-3abde7530cd4", - "metadata": {}, - "source": [ - "$$\n", - "\\hat{H} = -1.0523 \\cdot (I \\otimes I) + 0.3979 \\cdot (I \\otimes Z) - 0.3979 \\cdot (Z \\otimes I) - 0.0112 \\cdot (Z \\otimes Z) + 0.1809 \\cdot (X \\otimes X)\n", - "$$" - ] - }, - { - "cell_type": "markdown", - "id": "736d275c-9a5a-4c08-b891-3078430dc6c1", - "metadata": {}, - "source": [ - "Complete the following code" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "id": "19266c11-6acc-4edb-910f-2d0dfe80a6c8", - "metadata": {}, - "outputs": [], - "source": [ - "from typing import List\n", - "from classiq import *\n", - "\n", - "HAMILTONIAN = QConstant(\"HAMILTONIAN\", List[PauliTerm], \n", - " [\n", - " PauliTerm([Pauli.I, Pauli.I], -1.0523),\n", - " PauliTerm([Pauli.I, Pauli.Z], 0.3979),\n", - " PauliTerm([Pauli.Z, Pauli.I], -0.3979),\n", - " PauliTerm([Pauli.Z, Pauli.Z], -0.0112),\n", - " PauliTerm([Pauli.X, Pauli.X], 0.1809),]) #TODO: Complete Hamiltonian" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "id": "0bb68899-2076-45c0-8868-131f38aa3b78", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/cdeb3942-86af-4118-9adc-42ca3414dc37?version=0.41.2\n" - ] - } - ], - "source": [ - "@qfunc\n", - "def main(q: Output[QArray[QBit]], angles: CArray[CReal, 3]) -> None:\n", - " # TODO: Create an ansatz which allows each qubit to have arbitrary rotation\n", - " allocate(2, q)\n", - " U(angles[0], angles[1], angles[2], 0, q[0]) \n", - " U(angles[0], angles[1], angles[2], 0, q[1])\n", - " #U(angles[0], angles[1], angles[2], 0, q[2])\n", - "\n", - "@cfunc\n", - "def cmain() -> None:\n", - " res = vqe(\n", - " HAMILTONIAN, # TODO: complete the missing argument\n", - " False,\n", - " [],\n", - " optimizer=Optimizer.COBYLA,\n", - " max_iteration=1000,\n", - " tolerance=0.001,\n", - " step_size=0,\n", - " skip_compute_variance=False,\n", - " alpha_cvar=1.0,\n", - " )\n", - " save({\"result\": res})\n", - "\n", - "qmod =create_model (main, classical_execution_function=cmain)#TODO: complete the line, use classical_execution_function\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "id": "0563c1a8-7aec-4da9-9105-6b16c5c24382", - "metadata": {}, - "outputs": [], - "source": [ - "execution = execute(qprog)\n", - "res = execution.result()\n", - "# execution.open_in_ide()\n", - "vqe_result = res[0].value" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "id": "de17cfc0-8e64-4493-b4c2-4a97fc9797a0", - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Optimal energy: -1.063741015625\n", - "Optimal parameters: {'angles_0': 2.7905108249302994, 'angles_1': 1.628892707107819, 'angles_2': -0.35058382992185155}\n", - "Eigenstate: {'00': (0.02209708691207961+0j), '10': (0.17258376589355096+0j), '01': (0.1711632992203644+0j), '11': (0.9697575405739313+0j)}\n" - ] - } - ], - "source": [ - "print(f\"Optimal energy: {vqe_result.energy}\")\n", - "\n", - "print(f\"Optimal parameters: {vqe_result.optimal_parameters}\")\n", - "print(f\"Eigenstate: {vqe_result.eigenstate}\")" - ] - }, - { - "cell_type": "markdown", - "id": "5df11dfc-3e3a-4191-bd47-d522ca3dcbfa", - "metadata": {}, - "source": [ - "Does it similar to the `optimal energy` we calculated in class? \\ No\n", - "Does it similar to the `total energy` we calculated in class? Different too." - ] - }, - { - "cell_type": "markdown", - "id": "4f0e0bea-b12f-43ad-94e8-100fedf2b57f", - "metadata": {}, - "source": [ - "### Part 2" - ] - }, - { - "cell_type": "markdown", - "id": "66882248-de08-4a6e-b33c-647f015f7d79", - "metadata": {}, - "source": [ - "**Now, we want to have a more interesting ansatz in our `main`.** \n", - "Add **one** line of code to the `main` function you created in Part 1 that creates **entanglement** between the two qubits. \n", - "Which gate should you use?" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "id": "bb39be9e-4994-44e5-84d8-c99bc8b77145", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/3f71fe36-ce7b-409f-be1b-cfaeabb43b47?version=0.41.2\n" - ] - } - ], - "source": [ - "@qfunc\n", - "def main(q: Output[QArray[QBit]], angles: CArray[CReal, 3]) -> None:\n", - " # TODO: Create an ansatz which allows each qubit to have arbitrary rotation\n", - " allocate(2, q)\n", - " U(angles[0], angles[1], angles[2], 0, q[0]) \n", - " U(angles[0], angles[1], angles[2], 0, q[1])\n", - " CX(q[0],q[1])\n", - "\n", - "\n", - "@cfunc\n", - "def cmain() -> None:\n", - " res = vqe(\n", - " HAMILTONIAN, # TODO: complete the missing argument\n", - " False,\n", - " [],\n", - " optimizer=Optimizer.COBYLA,\n", - " max_iteration=1000,\n", - " tolerance=0.001,\n", - " step_size=0,\n", - " skip_compute_variance=False,\n", - " alpha_cvar=1.0,\n", - " )\n", - " save({\"result\": res})\n", - "\n", - "qmod = create_model (main, classical_execution_function=cmain)#TODO: complete the line, use classical_execution_function\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "id": "112a1590-283c-4f79-8035-72936561102d", - "metadata": {}, - "outputs": [], - "source": [ - "execution = execute(qprog)\n", - "res = execution.result()\n", - "# execution.open_in_ide()\n", - "vqe_result = res[0].value#TODO: complete the line" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "id": "06500e4c-a04b-4cfa-a84d-41f96a0c68eb", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Optimal energy: -1.8483884765625\n", - "Optimal parameters: {'angles_0': -2.9967764181949375, 'angles_1': 5.573021041013109, 'angles_2': -3.0558759903455814}\n", - "Eigenstate: {'11': (0.05846339666834283+0j), '10': (0.05412658773652741+0j), '01': (0.9968211192335363+0j)}\n" - ] - } - ], - "source": [ - "print(f\"Optimal energy: {vqe_result.energy}\")\n", - "print(f\"Optimal parameters: {vqe_result.optimal_parameters}\")\n", - "print(f\"Eigenstate: {vqe_result.eigenstate}\")" - ] - }, - { - "cell_type": "markdown", - "id": "30a635d7-2f15-4c94-a94b-f4270f17aed8", - "metadata": {}, - "source": [ - "Does it similar to the `optimal energy` we calculated in class? \\ Yes, they are close\n", - "Does it similar to the `total energy` we calculated in class? \\ No, not at all\n", - "What can we learn about the provided from this result Hamiltonian? It would seem that the local simulators do not operate the VQE as effectively as the Classiq simulator engine or the in-built methods" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "e885dda4-55d2-4489-ba32-dcc52eff6402", - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.9" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/community/QClass_2024/Submissions/HW3/Christopher_vanBommel_HW3_VQE.ipynb b/community/QClass_2024/Submissions/HW3/Christopher_vanBommel_HW3_VQE.ipynb deleted file mode 100644 index 0de75524..00000000 --- a/community/QClass_2024/Submissions/HW3/Christopher_vanBommel_HW3_VQE.ipynb +++ /dev/null @@ -1,332 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "id": "fc72d98f-8993-4bd4-a545-23d122f3df71", - "metadata": {}, - "source": [ - "# H₂ Molecule Homework Assignment\n", - "### Quantum Software Development Journey: From Theory to Application with Classiq - Part 3\n", - "\n", - "- Similarly to what we have done in class, in this exercise we will implement the VQE on H2 molecule.\n", - "- This time instead of using the built-in methods and functions (such as `Molecule` and `MoleculeProblem`) to difne and solve the problem, you will be provided with a two qubits Hamiltonian." - ] - }, - { - "cell_type": "markdown", - "id": "56eda6d8-76c4-4862-b914-0c4598d67274", - "metadata": {}, - "source": [ - "## Submission\n", - "- Submit the completed Jupyter notebook and report via GitHub. Ensure all files are correctly named and organized.\n", - "- Use the Typeform link provided in the submission folder to confirm your submission.\n", - "\n", - "## Additional Resources\n", - "- [Classiq Documentation](https://docs.classiq.io/latest/)\n", - "- The notebook from live session #3\n", - "\n", - "## Important Dates\n", - "- **Assignment Release:** 22.5.2024\n", - "- **Submission Deadline:** 3.6.2024 (7 A.M GMT+3)\n", - "\n", - "---\n", - "\n", - "Happy coding and good luck!" - ] - }, - { - "cell_type": "markdown", - "id": "d41e969d-f6a7-4ff7-9660-19ce6c97ba6b", - "metadata": {}, - "source": [ - "### Part 1" - ] - }, - { - "cell_type": "markdown", - "id": "f710d6f4-d40b-42d5-b524-c6acb8059fe2", - "metadata": {}, - "source": [ - "Given the following Hamiltonian:" - ] - }, - { - "cell_type": "markdown", - "id": "6ba8a6f1-3259-4492-a1ca-3abde7530cd4", - "metadata": {}, - "source": [ - "$$\n", - "\\hat{H} = -1.0523 \\cdot (I \\otimes I) + 0.3979 \\cdot (I \\otimes Z) - 0.3979 \\cdot (Z \\otimes I) - 0.0112 \\cdot (Z \\otimes Z) + 0.1809 \\cdot (X \\otimes X)\n", - "$$" - ] - }, - { - "cell_type": "markdown", - "id": "736d275c-9a5a-4c08-b891-3078430dc6c1", - "metadata": {}, - "source": [ - "Complete the following code" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "id": "19266c11-6acc-4edb-910f-2d0dfe80a6c8", - "metadata": {}, - "outputs": [], - "source": [ - "from typing import List\n", - "from classiq import *\n", - "\n", - "HAMILTONIAN = QConstant(\"HAMILTONIAN\", List[PauliTerm], [\n", - " PauliTerm([Pauli.I, Pauli.I], -1.0523), \n", - " PauliTerm([Pauli.I, Pauli.Z], 0.3979),\n", - " PauliTerm([Pauli.Z, Pauli.I], -0.3979),\n", - " PauliTerm([Pauli.Z, Pauli.Z], -0.0112),\n", - " PauliTerm([Pauli.X, Pauli.X], 0.1809)\n", - "]) #TODO: Complete Hamiltonian" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "id": "0bb68899-2076-45c0-8868-131f38aa3b78", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/fcced4ef-95d5-43c9-b6c2-b5d02a9d8469?version=0.41.2\n" - ] - } - ], - "source": [ - "@qfunc\n", - "def main(q: Output[QArray[QBit]], angles: CArray[CReal, 3]) -> None:\n", - " # TODO: Create an ansatz which allows each qubit to have arbitrary rotation\n", - " allocate(2, q)\n", - " U(angles[0], angles[1], angles[2], 0, q[0])\n", - " U(angles[0], angles[1], angles[2], 0, q[1])\n", - "\n", - "\n", - "@cfunc\n", - "def cmain() -> None:\n", - " res = vqe(\n", - " HAMILTONIAN, # TODO: complete the missing argument\n", - " False,\n", - " [],\n", - " optimizer=Optimizer.COBYLA,\n", - " max_iteration=1000,\n", - " tolerance=0.001,\n", - " step_size=0,\n", - " skip_compute_variance=False,\n", - " alpha_cvar=1.0,\n", - " )\n", - " save({\"result\": res})\n", - "\n", - "qmod = create_model(main, classical_execution_function=cmain) #TODO: complete the line, use classical_execution_function\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "id": "0563c1a8-7aec-4da9-9105-6b16c5c24382", - "metadata": {}, - "outputs": [], - "source": [ - "execution = execute(qprog)\n", - "res = execution.result()\n", - "# execution.open_in_ide()\n", - "vqe_result = res[0].value #TODO: complete the line" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "id": "de17cfc0-8e64-4493-b4c2-4a97fc9797a0", - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Optimal energy: -1.05943232421875\n", - "Optimal parameters: {'angles_0': 3.514522776666379, 'angles_1': 8.328553557070341, 'angles_2': 3.3726503432589316}\n", - "Eigenstate: {'01': (0.1875+0j), '00': (0.04419417382415922+0j), '10': (0.17399263633843817+0j), '11': (0.9657210712726527+0j)}\n" - ] - } - ], - "source": [ - "print(f\"Optimal energy: {vqe_result.energy}\")\n", - "print(f\"Optimal parameters: {vqe_result.optimal_parameters}\")\n", - "print(f\"Eigenstate: {vqe_result.eigenstate}\")" - ] - }, - { - "cell_type": "markdown", - "id": "5df11dfc-3e3a-4191-bd47-d522ca3dcbfa", - "metadata": {}, - "source": [ - "Does it similar to the `optimal energy` we calculated in class? \\\n", - "Does it similar to the `total energy` we calculated in class?" - ] - }, - { - "cell_type": "markdown", - "id": "3005f05e", - "metadata": {}, - "source": [ - "The result is not similar to the optimal energy we calculated in class.\n", - "The result is somewhat similar to the total energy we calculated in class." - ] - }, - { - "cell_type": "markdown", - "id": "4f0e0bea-b12f-43ad-94e8-100fedf2b57f", - "metadata": {}, - "source": [ - "### Part 2" - ] - }, - { - "cell_type": "markdown", - "id": "66882248-de08-4a6e-b33c-647f015f7d79", - "metadata": {}, - "source": [ - "**Now, we want to have a more interesting ansatz in our `main`.** \n", - "Add **one** line of code to the `main` function you created in Part 1 that creates **entanglement** between the two qubits. \n", - "Which gate should you use?" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "id": "bb39be9e-4994-44e5-84d8-c99bc8b77145", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/7d518ebf-6bb0-42a9-804f-416ca8b610a7?version=0.41.2\n" - ] - } - ], - "source": [ - "@qfunc\n", - "def main(q: Output[QArray[QBit]], angles: CArray[CReal, 3]) -> None:\n", - " # TODO: Create an ansatz which allows each qubit to have arbitrary rotation\n", - " allocate(2, q)\n", - " U(angles[0], angles[1], angles[2], 0, q[0])\n", - " U(angles[0], angles[1], angles[2], 0, q[1])\n", - " CX(q[0], q[1])\n", - "\n", - "\n", - "\n", - "@cfunc\n", - "def cmain() -> None:\n", - " res = vqe(\n", - " HAMILTONIAN, # TODO: complete the missing argument\n", - " False,\n", - " [],\n", - " optimizer=Optimizer.COBYLA,\n", - " max_iteration=1000,\n", - " tolerance=0.001,\n", - " step_size=0,\n", - " skip_compute_variance=False,\n", - " alpha_cvar=1.0,\n", - " )\n", - " save({\"result\": res})\n", - "\n", - "qmod = create_model(main, classical_execution_function=cmain) #TODO: complete the line, use classical_execution_function\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "id": "112a1590-283c-4f79-8035-72936561102d", - "metadata": {}, - "outputs": [], - "source": [ - "execution = execute(qprog)\n", - "res = execution.result()\n", - "# execution.open_in_ide()\n", - "vqe_result = res[0].value #TODO: complete the line" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "id": "06500e4c-a04b-4cfa-a84d-41f96a0c68eb", - "metadata": { - "jupyter": { - "outputs_hidden": true - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Optimal energy: -1.8381455078125\n", - "Optimal parameters: {'angles_0': 3.061526068748429, 'angles_1': 4.3511081831333325, 'angles_2': -0.5730647670171045}\n", - "Eigenstate: {'10': (0.02209708691207961+0j), '11': (0.03125+0j), '01': (0.9992673097074676+0j)}\n" - ] - } - ], - "source": [ - "print(f\"Optimal energy: {vqe_result.energy}\")\n", - "print(f\"Optimal parameters: {vqe_result.optimal_parameters}\")\n", - "print(f\"Eigenstate: {vqe_result.eigenstate}\")" - ] - }, - { - "cell_type": "markdown", - "id": "30a635d7-2f15-4c94-a94b-f4270f17aed8", - "metadata": {}, - "source": [ - "Does it similar to the `optimal energy` we calculated in class? \\\n", - "Does it similar to the `total energy` we calculated in class? \\\n", - "What can we learn about the provided form this result Hamiltonian?" - ] - }, - { - "cell_type": "markdown", - "id": "1b983b46", - "metadata": {}, - "source": [ - "The result is similar to the optimal energy we calculated in class.\n", - "It is not related to the total energy we calculated in class.\n", - "The result suggests the Hamiltonian is a good representation of the hydrogen molecule." - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.3" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/community/QClass_2024/Submissions/HW3/Christos_Koromilas_HW3_QClass2024.ipynb b/community/QClass_2024/Submissions/HW3/Christos_Koromilas_HW3_QClass2024.ipynb deleted file mode 100644 index db72314e..00000000 --- a/community/QClass_2024/Submissions/HW3/Christos_Koromilas_HW3_QClass2024.ipynb +++ /dev/null @@ -1 +0,0 @@ -{"cells":[{"cell_type":"markdown","id":"fc72d98f-8993-4bd4-a545-23d122f3df71","metadata":{"id":"fc72d98f-8993-4bd4-a545-23d122f3df71"},"source":["# H₂ Molecule Homework Assignment\n","### Quantum Software Development Journey: From Theory to Application with Classiq - Part 3\n","\n","- Similarly to what we have done in class, in this exercise we will implement the VQE on H2 molecule.\n","- This time instead of using the built-in methods and functions (such as `Molecule` and `MoleculeProblem`) to difne and solve the problem, you will be provided with a two qubits Hamiltonian."]},{"cell_type":"markdown","id":"56eda6d8-76c4-4862-b914-0c4598d67274","metadata":{"id":"56eda6d8-76c4-4862-b914-0c4598d67274"},"source":["## Submission\n","- Submit the completed Jupyter notebook and report via GitHub. Ensure all files are correctly named and organized.\n","- Use the Typeform link provided in the submission folder to confirm your submission.\n","\n","## Additional Resources\n","- [Classiq Documentation](https://docs.classiq.io/latest/)\n","- The notebook from live session #3\n","\n","## Important Dates\n","- **Assignment Release:** 22.5.2024\n","- **Submission Deadline:** 3.6.2024 (7 A.M GMT+3)\n","\n","---\n","\n","Happy coding and good luck!"]},{"cell_type":"markdown","id":"d41e969d-f6a7-4ff7-9660-19ce6c97ba6b","metadata":{"id":"d41e969d-f6a7-4ff7-9660-19ce6c97ba6b"},"source":["### Part 1"]},{"cell_type":"markdown","id":"f710d6f4-d40b-42d5-b524-c6acb8059fe2","metadata":{"id":"f710d6f4-d40b-42d5-b524-c6acb8059fe2"},"source":["Given the following Hamiltonian:"]},{"cell_type":"markdown","id":"6ba8a6f1-3259-4492-a1ca-3abde7530cd4","metadata":{"id":"6ba8a6f1-3259-4492-a1ca-3abde7530cd4"},"source":["$$\n","\\hat{H} = -1.0523 \\cdot (I \\otimes I) + 0.3979 \\cdot (I \\otimes Z) - 0.3979 \\cdot (Z \\otimes I) - 0.0112 \\cdot (Z \\otimes Z) + 0.1809 \\cdot (X \\otimes X)\n","$$"]},{"cell_type":"markdown","id":"736d275c-9a5a-4c08-b891-3078430dc6c1","metadata":{"id":"736d275c-9a5a-4c08-b891-3078430dc6c1"},"source":["Complete the following code"]},{"cell_type":"code","source":["# !pip install -U -q classiq\n","import classiq\n","classiq.authenticate()\n","from classiq import *"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"4Fnc5WqGypxB","executionInfo":{"status":"ok","timestamp":1717329207855,"user_tz":-120,"elapsed":91946,"user":{"displayName":"Christos Koromilas","userId":"17599903479737751299"}},"outputId":"aa98eadb-631f-4ad6-b8b2-8aee5d0edb9c"},"id":"4Fnc5WqGypxB","execution_count":2,"outputs":[{"output_type":"stream","name":"stdout","text":["\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m398.1/398.1 kB\u001b[0m \u001b[31m2.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m10.7/10.7 MB\u001b[0m \u001b[31m48.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.8/1.8 MB\u001b[0m \u001b[31m72.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m75.6/75.6 kB\u001b[0m \u001b[31m8.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.0/2.0 MB\u001b[0m \u001b[31m75.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m42.6/42.6 kB\u001b[0m \u001b[31m4.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.1/3.1 MB\u001b[0m \u001b[31m93.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m6.4/6.4 MB\u001b[0m \u001b[31m72.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m77.9/77.9 kB\u001b[0m \u001b[31m9.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m58.3/58.3 kB\u001b[0m \u001b[31m7.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m49.6/49.6 kB\u001b[0m \u001b[31m6.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[?25h\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n","torch 2.3.0+cu121 requires nvidia-cublas-cu12==12.1.3.1; platform_system == \"Linux\" and platform_machine == \"x86_64\", which is not installed.\n","torch 2.3.0+cu121 requires nvidia-cuda-cupti-cu12==12.1.105; platform_system == \"Linux\" and platform_machine == \"x86_64\", which is not installed.\n","torch 2.3.0+cu121 requires nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == \"Linux\" and platform_machine == \"x86_64\", which is not installed.\n","torch 2.3.0+cu121 requires nvidia-cuda-runtime-cu12==12.1.105; platform_system == \"Linux\" and platform_machine == \"x86_64\", which is not installed.\n","torch 2.3.0+cu121 requires nvidia-cudnn-cu12==8.9.2.26; platform_system == \"Linux\" and platform_machine == \"x86_64\", which is not installed.\n","torch 2.3.0+cu121 requires nvidia-cufft-cu12==11.0.2.54; platform_system == \"Linux\" and platform_machine == \"x86_64\", which is not installed.\n","torch 2.3.0+cu121 requires nvidia-curand-cu12==10.3.2.106; platform_system == \"Linux\" and platform_machine == \"x86_64\", which is not installed.\n","torch 2.3.0+cu121 requires nvidia-cusolver-cu12==11.4.5.107; platform_system == \"Linux\" and platform_machine == \"x86_64\", which is not installed.\n","torch 2.3.0+cu121 requires nvidia-cusparse-cu12==12.1.0.106; platform_system == \"Linux\" and platform_machine == \"x86_64\", which is not installed.\n","torch 2.3.0+cu121 requires nvidia-nccl-cu12==2.20.5; platform_system == \"Linux\" and platform_machine == \"x86_64\", which is not installed.\n","torch 2.3.0+cu121 requires nvidia-nvtx-cu12==12.1.105; platform_system == \"Linux\" and platform_machine == \"x86_64\", which is not installed.\u001b[0m\u001b[31m\n","\u001b[0mYour user code: GZHQ-NPBB\n","If a browser doesn't automatically open, please visit this URL from any trusted device: https://auth.classiq.io/activate?user_code=GZHQ-NPBB\n"]}]},{"cell_type":"code","execution_count":5,"id":"19266c11-6acc-4edb-910f-2d0dfe80a6c8","metadata":{"id":"19266c11-6acc-4edb-910f-2d0dfe80a6c8","executionInfo":{"status":"ok","timestamp":1717329272619,"user_tz":-120,"elapsed":3,"user":{"displayName":"Christos Koromilas","userId":"17599903479737751299"}}},"outputs":[],"source":["from typing import List\n","HAMILTONIAN = QConstant(\"HAMILTONIAN\",\n"," List[PauliTerm],\n"," [\n"," PauliTerm([Pauli.I, Pauli.I], -1.0523),\n"," PauliTerm([Pauli.I, Pauli.Z], 0.3979),\n"," PauliTerm([Pauli.Z, Pauli.I], -0.3979),\n"," PauliTerm([Pauli.Z, Pauli.Z], -0.0112),\n"," PauliTerm([Pauli.X, Pauli.X], 0.1809),\n"," ])"]},{"cell_type":"code","execution_count":6,"id":"0bb68899-2076-45c0-8868-131f38aa3b78","metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"0bb68899-2076-45c0-8868-131f38aa3b78","executionInfo":{"status":"ok","timestamp":1717329277215,"user_tz":-120,"elapsed":2498,"user":{"displayName":"Christos Koromilas","userId":"17599903479737751299"}},"outputId":"ad0c9969-6048-43e6-b2e6-78489e9c9597"},"outputs":[{"output_type":"stream","name":"stdout","text":["Opening: https://platform.classiq.io/circuit/1ff23650-9aac-412f-94ec-c9dfdbaa7a6e?version=0.41.2\n"]}],"source":["@qfunc\n","def main(q: Output[QArray[QBit]], angles: CArray[CReal, 3]) -> None:\n"," allocate(2, q)\n"," U(angles[0], angles[1], angles[2], 0, q[0])\n"," U(angles[0], angles[1], angles[2], 0, q[1])\n","\n","\n","\n","@cfunc\n","def cmain() -> None:\n"," res = vqe(\n"," HAMILTONIAN,\n"," False,\n"," [],\n"," optimizer=Optimizer.COBYLA,\n"," max_iteration=1000,\n"," tolerance=0.001,\n"," step_size=0,\n"," skip_compute_variance=False,\n"," alpha_cvar=1.0,\n"," )\n"," save({\"result\": res})\n","\n","qmod = create_model(main, classical_execution_function=cmain)\n","qprog = synthesize(qmod)\n","show(qprog)"]},{"cell_type":"code","execution_count":7,"id":"0563c1a8-7aec-4da9-9105-6b16c5c24382","metadata":{"id":"0563c1a8-7aec-4da9-9105-6b16c5c24382","executionInfo":{"status":"ok","timestamp":1717329283986,"user_tz":-120,"elapsed":2574,"user":{"displayName":"Christos Koromilas","userId":"17599903479737751299"}}},"outputs":[],"source":["execution = execute(qprog)\n","res = execution.result()\n","# execution.open_in_ide()\n","vqe_result = res[0].value"]},{"cell_type":"code","execution_count":8,"id":"de17cfc0-8e64-4493-b4c2-4a97fc9797a0","metadata":{"scrolled":true,"colab":{"base_uri":"https://localhost:8080/"},"id":"de17cfc0-8e64-4493-b4c2-4a97fc9797a0","executionInfo":{"status":"ok","timestamp":1717329286246,"user_tz":-120,"elapsed":202,"user":{"displayName":"Christos Koromilas","userId":"17599903479737751299"}},"outputId":"28870970-3f8e-4ff0-d94d-64d6cd306987"},"outputs":[{"output_type":"stream","name":"stdout","text":["Optimal energy: -1.0768361328125\n","Optimal parameters: {'angles_0': 1.9429837733198028, 'angles_1': 4.856944464295574, 'angles_2': 4.0415675677515015}\n","Eigenstate: {'01': (0.45821494683172437+0j), '00': (0.3262595784034547+0j), '10': (0.46770717334674267+0j), '11': (0.6817945071647321+0j)}\n"]}],"source":["print(f\"Optimal energy: {vqe_result.energy}\")\n","print(f\"Optimal parameters: {vqe_result.optimal_parameters}\")\n","print(f\"Eigenstate: {vqe_result.eigenstate}\")"]},{"cell_type":"markdown","id":"5df11dfc-3e3a-4191-bd47-d522ca3dcbfa","metadata":{"id":"5df11dfc-3e3a-4191-bd47-d522ca3dcbfa"},"source":["Does it similar to the `optimal energy` we calculated in class? NO \\\n","Does it similar to the `total energy` we calculated in class?"]},{"cell_type":"markdown","id":"4f0e0bea-b12f-43ad-94e8-100fedf2b57f","metadata":{"id":"4f0e0bea-b12f-43ad-94e8-100fedf2b57f"},"source":["### Part 2"]},{"cell_type":"markdown","id":"66882248-de08-4a6e-b33c-647f015f7d79","metadata":{"id":"66882248-de08-4a6e-b33c-647f015f7d79"},"source":["**Now, we want to have a more interesting ansatz in our `main`.** \n","Add **one** line of code to the `main` function you created in Part 1 that creates **entanglement** between the two qubits. \n","Which gate should you use?"]},{"cell_type":"code","execution_count":9,"id":"bb39be9e-4994-44e5-84d8-c99bc8b77145","metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"bb39be9e-4994-44e5-84d8-c99bc8b77145","executionInfo":{"status":"ok","timestamp":1717329417332,"user_tz":-120,"elapsed":2484,"user":{"displayName":"Christos Koromilas","userId":"17599903479737751299"}},"outputId":"b79d41d2-b8d7-4076-ec09-c56972612395"},"outputs":[{"output_type":"stream","name":"stdout","text":["Opening: https://platform.classiq.io/circuit/d08ae872-3de0-40d6-a66e-db1fcc1a096a?version=0.41.2\n"]}],"source":["@qfunc\n","def main(q: Output[QArray[QBit]], angles: CArray[CReal, 3]) -> None:\n"," allocate(2, q)\n"," U(angles[0], angles[1], angles[2], 0, q[0])\n"," CX(q[0], q[1])\n"," U(angles[0], angles[1], angles[2], 0, q[1])\n","\n","\n","\n","@cfunc\n","def cmain() -> None:\n"," res = vqe(\n"," HAMILTONIAN,\n"," False,\n"," [],\n"," optimizer=Optimizer.COBYLA,\n"," max_iteration=1000,\n"," tolerance=0.001,\n"," step_size=0,\n"," skip_compute_variance=False,\n"," alpha_cvar=1.0,\n"," )\n"," save({\"result\": res})\n","\n","qmod = create_model(main, classical_execution_function=cmain)\n","qprog = synthesize(qmod)\n","show(qprog)"]},{"cell_type":"code","execution_count":10,"id":"112a1590-283c-4f79-8035-72936561102d","metadata":{"id":"112a1590-283c-4f79-8035-72936561102d","executionInfo":{"status":"ok","timestamp":1717329433362,"user_tz":-120,"elapsed":3487,"user":{"displayName":"Christos Koromilas","userId":"17599903479737751299"}}},"outputs":[],"source":["execution = execute(qprog)\n","res = execution.result()\n","# execution.open_in_ide()\n","vqe_result = res[0].value"]},{"cell_type":"code","execution_count":11,"id":"06500e4c-a04b-4cfa-a84d-41f96a0c68eb","metadata":{"collapsed":true,"jupyter":{"outputs_hidden":true},"colab":{"base_uri":"https://localhost:8080/"},"id":"06500e4c-a04b-4cfa-a84d-41f96a0c68eb","executionInfo":{"status":"ok","timestamp":1717329433363,"user_tz":-120,"elapsed":3,"user":{"displayName":"Christos Koromilas","userId":"17599903479737751299"}},"outputId":"11e4d470-38be-4918-e309-90209c8679b8"},"outputs":[{"output_type":"stream","name":"stdout","text":["Optimal energy: -1.84172490234375\n","Optimal parameters: {'angles_0': -3.2337677964973515, 'angles_1': 5.719762730583857, 'angles_2': 0.8847642868459891}\n","Eigenstate: {'11': (0.04419417382415922+0j), '10': (0.05846339666834283+0j), '01': (0.9973108373270593+0j)}\n"]}],"source":["print(f\"Optimal energy: {vqe_result.energy}\")\n","print(f\"Optimal parameters: {vqe_result.optimal_parameters}\")\n","print(f\"Eigenstate: {vqe_result.eigenstate}\")"]},{"cell_type":"markdown","id":"30a635d7-2f15-4c94-a94b-f4270f17aed8","metadata":{"id":"30a635d7-2f15-4c94-a94b-f4270f17aed8"},"source":["Does it similar to the `optimal energy` we calculated in class? YES \\\n","Does it similar to the `total energy` we calculated in class? \\\n","What can we learn about the provided form this result Hamiltonian? The hamiltonian is the right hamiltonian to use!"]},{"cell_type":"code","source":["res[2]"],"metadata":{"id":"_PmeBI7Z0BUH"},"id":"_PmeBI7Z0BUH","execution_count":null,"outputs":[]}],"metadata":{"kernelspec":{"display_name":"Python 3 (ipykernel)","language":"python","name":"python3"},"language_info":{"codemirror_mode":{"name":"ipython","version":3},"file_extension":".py","mimetype":"text/x-python","name":"python","nbconvert_exporter":"python","pygments_lexer":"ipython3","version":"3.9.16"},"colab":{"provenance":[]}},"nbformat":4,"nbformat_minor":5} \ No newline at end of file diff --git a/community/QClass_2024/Submissions/HW3/Claudia_Zendejas-Morales_HW3_VQE.ipynb b/community/QClass_2024/Submissions/HW3/Claudia_Zendejas-Morales_HW3_VQE.ipynb index 4c7136f0..ba224d90 100644 --- a/community/QClass_2024/Submissions/HW3/Claudia_Zendejas-Morales_HW3_VQE.ipynb +++ b/community/QClass_2024/Submissions/HW3/Claudia_Zendejas-Morales_HW3_VQE.ipynb @@ -76,14 +76,21 @@ "outputs": [], "source": [ "from typing import List\n", + "\n", "from classiq import *\n", "\n", "# Define Hamiltonian\n", - "HAMILTONIAN = QConstant(\"HAMILTONIAN\", List[PauliTerm], [PauliTerm(pauli=[Pauli.I, Pauli.I], coefficient=-1.0523),\n", - " PauliTerm(pauli=[Pauli.I, Pauli.Z], coefficient=0.3979),\n", - " PauliTerm(pauli=[Pauli.Z, Pauli.I], coefficient=-0.3979),\n", - " PauliTerm(pauli=[Pauli.Z, Pauli.Z], coefficient=-0.0112),\n", - " PauliTerm(pauli=[Pauli.X, Pauli.X], coefficient=0.1809)])" + "HAMILTONIAN = QConstant(\n", + " \"HAMILTONIAN\",\n", + " List[PauliTerm],\n", + " [\n", + " PauliTerm(pauli=[Pauli.I, Pauli.I], coefficient=-1.0523),\n", + " PauliTerm(pauli=[Pauli.I, Pauli.Z], coefficient=0.3979),\n", + " PauliTerm(pauli=[Pauli.Z, Pauli.I], coefficient=-0.3979),\n", + " PauliTerm(pauli=[Pauli.Z, Pauli.Z], coefficient=-0.0112),\n", + " PauliTerm(pauli=[Pauli.X, Pauli.X], coefficient=0.1809),\n", + " ],\n", + ")" ] }, { @@ -96,7 +103,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Opening: https://platform.classiq.io/circuit/67cce443-862c-4003-a483-92d42441cfad?version=0.42.0\n" + "Opening: https://platform.classiq.io/circuit/5897752d-7912-4b31-bca8-98d6869c39de?version=0.42.1\n" ] } ], @@ -124,7 +131,10 @@ " )\n", " save({\"result\": res})\n", "\n", - "qmod = create_model(main, classical_execution_function=cmain) # complete the line, use classical_execution_function\n", + "\n", + "qmod = create_model(\n", + " main, classical_execution_function=cmain\n", + ") # complete the line, use classical_execution_function\n", "qprog = synthesize(qmod)\n", "show(qprog)" ] @@ -152,9 +162,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "Optimal energy: -1.0604361328125\n", - "Optimal parameters: {'angles_0': -0.1958825785281677, 'angles_1': -1.8571141405907794, 'angles_2': 2.9043437874754607}\n", - "Eigenstate: {'01': (0.09631896879639025+0j), '10': (0.09375+0j), '00': (0.9909256247317454+0j)}\n" + "Optimal energy: -1.063205078125\n", + "Optimal parameters: {'angles_0': 6.181820728010731, 'angles_1': 4.1946685536401125, 'angles_2': 1.5078000440044168}\n", + "Eigenstate: {'01': (0.05412658773652741+0j), '10': (0.05412658773652741+0j), '00': (0.9970660083464885+0j)}\n" ] } ], @@ -227,8 +237,8 @@ "outputs": [ { "data": { - "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAHgAoADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA5vxR4jvdDuNJtNP0uO/utSuGgRJLnyFXajOSW2N2U9qm07VNVEN3c+IdNstJtoE3+cuoecuBncWJRAoAHWud+IdtBd654Qt7m4lggfUJQ8sU7Qsv7hzw6kEfnSeINM0/Tfh74sFhqN1eeZpk28XOoSXW3EbYxvY7ep6dePSgDr7fW9KvL5rK11Synu0Xe0EVwjSKvqVBzjkUXeu6TYXkVneapY211Ljy4ZrhEd8+ik5NcJeaTp+j2vw9nsLOGCddQhh85EAdkktpd4J6ncQCc9TWBaafcanN4ttL/AFHwzbzy6hcLcpqlmXuFjJ/dsHMq/Js27SBgY9c0AeuXer6bpz7L7ULW1YxmXE8yodgIBbk9ASBn3FRyeINGia0Eur2EZu1D2we5QGdT0KZPzA+1cHDo1tc+OPB1rqE8Gqi10GV1uGUMkzAxKJMHIOQcjr60tivhyPxb40j8SLYo6GFY1uwoAshCu0Rg/wAOd+dvf3oA9Ag1bTrk2wg1G0lN0HNv5cyt5oThiuD82O+OlTC8tjfPZLcRG6WMStAHG8ISQGK9cEgjPtXkmixG0+DfhjxFArmbQ52vDx87QGV0mX/v2zH6qK7HwFjVZNZ8VMQRq12Vtj/07Q5jj/Mh2/4FQB1F9qNlpdsbnUL23tIBwZbiVY1B+pIFRrrGmPpp1FNStGsAMm6E6mID135x+tcd4h+w/wDC09E/t7yP7M/s+f7F9px5X2vemevG7y+mffFV/F39h/bPCufsP/CO/wBrP9s8vZ5PneU3l+Zjj7+M574zQB29trGmXenyahbajaT2UYZnuYplaNQBkksDgYHWm22u6Re3v2K11Wxnutok8iK4Rn2kZDbQc4wQc15vqf2L+2fHv9heT/Z3/COH7Z9mx5X2rbLjpxu8vGce2anl0mw0rwz8PbixtIYLgahZKZkQB2EkbCTLdTuyc+tAHpNvfWt1DJNb3UMsUbMjvHIGVWU4YEjoQQQR2qvNrukW2mxajPqtjFYygGO5kuEWJwemGJwfzrzXxLdz6DqfiXwvatsl8SvDLp2P4XnIhuD+GN//AAKpfEFlJZfETSNPgn0qzs7fRhDp39rW5mi3q+HCfOoEmwR++PxoA9JOq6etlHfNfWotJSqxz+cvluWOFAbODknA9TUJ8RaGbKa9/tmw+yQSeVLP9qTy434+VmzgHkcH1ry7VtDitvh/qdm+qadfW93r1qzx6amyG3Lyxb41G5tvXdjP8XvXQ+JLPSLHxv4RhvLa0t9GAutiNGqQfadiCPcPu52h9ufwoA7ez1Sw1BnFle21yUVXbyJlfarZKk4PAODj1xTLPXNI1K6ltbHVLK6uIv8AWRQXCO6fUA5FeR3fkeX8Vf8AhFtuPs9rj7J93Ox/N2Y/4HnHfPetXStJS71Hw1e2+v8AhSGK1mD2q6ZZmGWZChDRAmU5BU8jGcj2oA9Bl8SaHDKsUms6fHK0rQBHuUBMinBTGfvAkZHWreoanYaVbfadRvbazgzjzLiVY1z6ZYgV5dYaJpl14T+I11cWUE1xJqOpAyyIGYBQSoBPTByRjuc1YtJrS48YeFpvEbQvbSeG0eya8IMZuiVMpG7jfs2++M0AejjVtNbTf7RGoWhscbvtQmXysdM784/WnWGp2Oq2wudPvba7gJx5lvKsi59MqSK848dC2Nz4UGmz6PDo32+fzZJoRLZrcbDs3qjKM7t+Mn72M1seDtIez8UarenWdEuJLm3iWaz0qHylVlLbZGXe3JBIzxnHtQB3dFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFNfIRiDg4oAdRXD+GdN1rWPCuk6nceMNYSa8s4bh1jhs9oZ0DEDMBOMn1rU/4RrVv+h01z/vzZ/wDxigDpKK5v/hGtW/6HTXP+/Nn/APGKP+Ea1b/odNc/782f/wAYoA6Siub/AOEa1b/odNc/782f/wAYo/4RrVv+h01z/vzZ/wDxigDpKK5v/hGtW/6HTXP+/Nn/APGKP+Ea1b/odNc/782f/wAYoA6Siub/AOEa1b/odNc/782f/wAYo/4RrVv+h01z/vzZ/wDxigDpKK5v/hGtW/6HTXP+/Nn/APGKP+Ea1b/odNc/782f/wAYoA6Siub/AOEa1b/odNc/782f/wAYo/4RrVv+h01z/vzZ/wDxigDpKK5v/hGtW/6HTXP+/Nn/APGKP+Ea1b/odNc/782f/wAYoA6Siub/AOEa1b/odNc/782f/wAYo/4RrVv+h01z/vzZ/wDxigDpKK5v/hGtW/6HTXP+/Nn/APGKP+Ea1b/odNc/782f/wAYoA1dR0fTNYiSPVNOtL6NDuRLqBZQp9QGBwaq2nhfw/YQ3ENnoWmW8VynlzpFaRoJU/usAPmHJ4NVP+Ea1b/odNc/782f/wAYo/4RrVv+h01z/vzZ/wDxigDZlsbSVbfzLaB1tnEkAaMERMAQGX+6QCRkdiar3+g6NqlwlxqGkWF5NGMJJcWySMv0JBIrO/4RrVv+h01z/vzZ/wDxij/hGtW/6HTXP+/Nn/8AGKANlbG0FzFci1gFxFGYo5fLG5EOMqD1A4HHsK5nxPo2t6hqUc+nad4auBHGBBc6nEzTWz5OWXCkEdCBleau/wDCNat/0Omuf9+bP/4xR/wjWrf9Dprn/fmz/wDjFAGfP4Y1Sw8AW3hfQbi0JMDWtxd3hYFVYHfIqqDliSSASBz1rqNM06DSdLtNOtl2wWsKQxj/AGVAA/lWP/wjWrf9Dprn/fmz/wDjFH/CNat/0Omuf9+bP/4xQBsX2nWOqWxttQsre7gJyYriJZFJ+hBFMXR9MTTTpyabaLYEYNqIFERHpsxj9Kyv+Ea1b/odNc/782f/AMYo/wCEa1b/AKHTXP8AvzZ//GKANO20fTLPTn062060gspAyvbRQqsbAjBBUDByOtSvp9nJDbxPaW7RWzK0CGJSsTLwpUY+UjtjpWP/AMI1q3/Q6a5/35s//jFH/CNat/0Omuf9+bP/AOMUAa82nWVzeW95PZW0t1bbvInkiVnizwdrEZXPfFLqGmWGq232fUbG2vIM58u4iWRc+uGBFY//AAjWrf8AQ6a5/wB+bP8A+MUf8I1q3/Q6a5/35s//AIxQBpLomkx2K2Mem2aWiuJFgW3URhgQQwXGMggHPtVPxLYX+o6YlvZ2WkX2ZAZbfVVYxOuD0wGwc46g96h/4RrVv+h01z/vzZ//ABij/hGtW/6HTXP+/Nn/APGKAK/g/wAN3WiSaje35she6g8e6GxQpBBHGu1I0BwTgZJOByelbFt4d0SyvmvbXR9Pgu2JJnitkWQ56/MBms//AIRrVv8AodNc/wC/Nn/8Yo/4RrVv+h01z/vzZ/8AxigDYj06yjhuIFsrdYblneeNYlCys33iwx8xPcnrUd1o+mXtglhd6bZ3FnGAEt5YFeNQBgYUjAwKy/8AhGtW/wCh01z/AL82f/xij/hGtW/6HTXP+/Nn/wDGKANZdK05dN/s1dPtRY42/ZRCvlY6424xj8KTTtH0zSI2j0zTrOyRjkrbQLGD9QoFZX/CNat/0Omuf9+bP/4xR/wjWrf9Dprn/fmz/wDjFAHSUVzf/CNat/0Omuf9+bP/AOMUf8I1q3/Q6a5/35s//jFAHSUVzf8AwjWrf9Dprn/fmz/+MUf8I1q3/Q6a5/35s/8A4xQB0lFc3/wjWrf9Dprn/fmz/wDjFH/CNat/0Omuf9+bP/4xQB0lFc3/AMI1q3/Q6a5/35s//jFH/CNat/0Omuf9+bP/AOMUAdJRXN/8I1q3/Q6a5/35s/8A4xR/wjWrf9Dprn/fmz/+MUAdJRXN/wDCNat/0Omuf9+bP/4xR/wjWrf9Dprn/fmz/wDjFAHSUVzf/CNat/0Omuf9+bP/AOMUf8I1q3/Q6a5/35s//jFAHSUVzf8AwjWrf9Dprn/fmz/+MUf8I1q3/Q6a5/35s/8A4xQB0lFc3/wjWrf9Dprn/fmz/wDjFH/CNat/0Omuf9+bP/4xQB0lFc3/AMI1q3/Q6a5/35s//jFI3hvVgpP/AAmuucD/AJ42f/xigDpaKw/CN5cal4N0S/vJTNc3NjBNLIQBudkBJwOBye1blABRRRQAUUUUAFFFFABRRRQAVS1DU7DSbY3OpXtvZ24IUy3Mqxpk9BliBmrtMZFddrqGHoRmgDBHjbwzMHW01/S7qcRs6wW95G7vtUsQFByeAa57S9Y1+3Twvq2oamtzba86xy2YgRVtjJE0sflsBuONu07ic5zxXdPa27oyNBHtYFSNo5B4NcvpXgyexn0qO71lrvTtHJNhbfZwjKdhRTI+479qMQMBeuTmgCXxnrFzpUOm+XfjTbS5uxDd6iyKwtU2MwPzAqNzBV3MCBurP8Oaze+I4da0y017zXsLlEh1aOCNjPEyBshcbCQdy7gNpwDiuhkstaOnPHBrEP2o3DyLNNZB0ERYlYygdc4BA3ZBOM96y38Jagmhanb2mvNBq+pSiW61P7Pk8ALtRAw2AIoUYbI65zzQBJ4U1DULjU9asbi/bU7WxmSKG+aNEZ3K5kjOwBSUOOQB97B5Famq+ItE0YrHqmsWFjJIpZFubhIyw9QGIzUHh3SL3RtPFjc3NhLbRKq20dnZNbiMDOc7pX3Z45475zmtmRQUbIB4PUUAYPgH/knfhr/sF23/AKKWuirnfAP/ACTvw1/2C7b/ANFLXRUAFFFFACUtcxqOqXMPjrSbBJiLeaCUyR/3iASD+ldNTknG1+pEZqTaXQWiiikWFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU1/uN9DTqa/3G+hoA5/wD/wAk78Nf9gu2/wDRS10Vc74B/wCSd+Gv+wXbf+ilroqACiiigAooooAKKKKACiiigAooooAKKKKACiiigApr/cb6GnU1/uN9DQBz/gH/AJJ34a/7Bdt/6KWuirnfAP8AyTvw1/2C7b/0UtdFQAUUUUAcJrEm34saEvpbN+okFd3XnGuy4+Lmj/7MSL+Zf/GvRq3rK0Yen6s5qDvKfr+iFooorA6QooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmv9xvoadTX+430NAHP+Af+Sd+Gv8AsF23/opa6Kud8A/8k78Nf9gu2/8ARS10VABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU1/uN9DTqa/3G+hoA5/wD/yTvw1/2C7b/wBFLXRVzvgH/knfhr/sF23/AKKWuioAKKKKAPLPEBP/AAtSyl7Rz20f/fWa9Sry3XSD45uZv+eGp6eM/VGNepV01/hh6HLh/in6i0UUVzHUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU1/uN9DTqa/3G+hoA5/wD/wAk78Nf9gu2/wDRS10Vc74B/wCSd+Gv+wXbf+ilroqACiiigAooooAKKKKACiiigAooqjqWlafrNobTUrKC8tywYxTxh1yOhwaALE86W1vLPKcJEhdj6ADJrjNK8Ua476DfapBYJpuutst44A4ltmaNpYw7EkPlVIOAuCR1rXg8D+FrSTzLXw/ptvNtZRLDbIjqGBU4IGRwSPxrI0rwvriPoNjqk9g+m6E2+3kgLmW5ZY2ijLqQAmFYk4LZIHSgDX8S6xd6Y+lWdiLZbnUrv7Mk91kxRYRnyQCCxOzAXIyT1qnpXi1Rb64ury2vn6JOIriW1B8uUMispVSSQx3bduSdwxk5q5qVnquoaLLb3mm6LfyNcN/o1yziBodx2ZJRjvxtz8pGc4rK0zwBZpp10mpxRRzXV1HdeVpbvbR25jULGsZUqcKBnPGSScCgC94S1zVNZl1iLV7WC2ms7xYkiiySiNFHIA5JILDfgkYGRxWnqviLRNGKx6prFhYySKWRbm4SMsPUBiM1k+F/CR8O6vrd59quZo724V4RLeSzEII0U795OX3K3PJ24Gew6iRQUbIB4PUUAYPgH/knfhr/ALBdt/6KWuirnfAP/JO/DX/YLtv/AEUtdFQAUUUUAeW61zquu3P9zU7Ln/dUj+teojoK8t1bnTPFVz/c1SLn/dZR/WvUh0FdNf4V/XRHLh/il/XVi0UUVzHUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU1/uN9DTqa/3G+hoA5/wD/wAk78Nf9gu2/wDRS10Vc74B/wCSd+Gv+wXbf+ilroqACiiigAooooAKKKKACiiigAooooAKKKKACiiigApr/cb6GnU1/uN9DQBz/gH/AJJ34a/7Bdt/6KWuirnfAP8AyTvw1/2C7b/0UtdFQAUHpRQelAHl94nmeDPGD+uqvj8JEr0uFt8Mb/3lB/SvO40834feJn/56Xs8n/jy/wCFd9pj79Ls3/vQIf8Ax0V0Vvh+b/JHLQ3+S/Nluiiiuc6gooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmv9xvoadTX+430NAHP+Af+Sd+Gv8AsF23/opa6Kud8A/8k78Nf9gu2/8ARS10VABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU1/uN9DTqa/3G+hoA5/wD/yTvw1/2C7b/wBFLXRVzvgH/knfhr/sF23/AKKWuioAKQ9DS0122ozHoBQJ7Hn+mJ5vwt1V/wDnoLmT9T/hXYeH33+HNMf+9axH/wAcFct4fj3fCSUHrJbXJ/MvXR+FX3+FNJP/AE6xj8lArorfa9Wc1Dp6I2KKKK5zqCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKa/3G+hp1Nf7jfQ0Ac/4B/5J34a/7Bdt/wCilroq53wD/wAk78Nf9gu2/wDRS10VABRRRQAUUUUAFFFFABRRRQAUUVR1LStP1m0NpqVlBeW5YMYp4w65HQ4NAFiedLa3lnlOEiQux9ABk1xmleKNcd9BvtUgsE03XW2W8cAcS2zNG0sYdiSHyqkHAXBI61rweB/C1pJ5lr4f023m2solhtkR1DAqcEDI4JH41kaV4X1xH0Gx1SewfTdCbfbyQFzLcssbRRl1IATCsScFskDpQBr+JdYu9MfSrOxFstzqV39mSe6yYosIz5IBBYnZgLkZJ61hy+PX07R9cbUDZS6hpF3FZs0DlIJHl2bGOSSgG8hhk42N1rc1Kz1XUNFlt7zTdFv5GuG/0a5ZxA0O47Mkox3425+UjOcVgJ8PmPhzUbdjY2mo3l1Ddxpaw4trdoSvlRqvBK/JycAncxwKANrwprs+sfa0udQsrmWHZmO3s5rZ4t2fvJKxYg44bABwa6ORgEbJA4PU1zujaTqh8Q3eu6x9kiuZLWO0jt7N2dFRWZizMyqSSW6YGAO+a0NV8O6JrJWTVNHsL6SNSqNc26SFR6AsDigCn4B/5J34a/7Bdt/6KWuirnfAP/JO/DX/AGC7b/0UtdFQAlVr5/L0+5f+7Ex/Q1ZrP1x/L0HUH/u20p/8dNOOrRMnaLMPw3Fn4bQR/wB61k/Xd/jV3wU+/wAHaWf+mOPyJFHhmL/iitPj/vWg/Uf/AF6g8Avv8E6afQOPykYVvU1UvX/Mwpqzj6f5HT0UUVznSFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU1/uN9DTqa/3G+hoA5/wD/yTvw1/2C7b/wBFLXRVzvgH/knfhr/sF23/AKKWuioAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmv9xvoadTX+430NAHP+Af+Sd+Gv+wXbf8Aopa6Kud8A/8AJO/DX/YLtv8A0UtdFQA09KyfE77fC2rH/p0kH5qRWuawfGT7PCOqH/pgR+fFVTV5L1M6rtBvyLXhxdnhfS19LSL/ANAFZXw+48I28f8AzzllX/x8/wCNbmkr5ei2Sf3bdB/46Kw/AXy6Jcx/8872Zf8Ax6tN4S9V+pmlacPR/odVRRRWJ0BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNf7jfQ06mv9xvoaAOf8A/8k78Nf9gu2/8ARS10Vc74B/5J34a/7Bdt/wCilroqACiiigAooooAKKKKACiiigAooooAKKKKACiiigApr/cb6GnU1/uN9DQBz/gH/knfhr/sF23/AKKWuirnfAP/ACTvw1/2C7b/ANFLXRUAJ3rm/Hj7PBWon/ZQfm6iuk71y3xAGfBt1H/z0kiX/wAfX/CtKP8AEj6oyrfw5ejOjtk8u1hT+6gH6VzfgjiLW0/uarOv/oNdT2Fct4P+W88Qx+mpyN+eKcdYyJlpOPzOrooorI3CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKa/wBxvoadTX+430NAHP8AgH/knfhr/sF23/opa6Kud8A/8k78Nf8AYLtv/RS10VABRRRQAUUUUAFFFFABRRWTquv6VoktsmqXiWi3BKxyTArHkY4L42qeRjJGecdDQBrUVHHIk0ayRurowyrKcgj1BqrqWlafrNobTUrKC8tywYxTxh1yOhwaALE86W1vLPKcJEhdj6ADJrjNK8Ua476DfapBYJpuutst44A4ltmaNpYw7EkPlVIOAuCR1rXg8D+FrSTzLXw/ptvNtZRLDbIjqGBU4IGRwSPxrI0rwvriPoNjqk9g+m6E2+3kgLmW5ZY2ijLqQAmFYk4LZIHSgDX8S6xd6Y+lWdiLZbnUrv7Mk91kxRYRnyQCCxOzAXIyT1rFbxpfw6L4g3Q2dzqei3EdvM8G7yCr7D5pGSyhAzFlySNjc1talZ6rqGiy295pui38jXDf6Ncs4gaHcdmSUY78bc/KRnOKwY/ANwnh3UII20+3v7y7gujbwRFbNVhKbINowShCYY4GSxOO1AGl4U8R3OtX+oW0t1p2o29skTR6jpoYQuzbt0fLN8y4BOGPDDOK6qRgEbJA4PU1zWhaJqUPiG+1nUY7C1ee2itltrF2dCEZjvdmVct82B8vAHU1p6r4d0TWSsmqaPYX0kalUa5t0kKj0BYHFAFPwD/yTvw1/wBgu2/9FLXRVzvgH/knfhr/ALBdt/6KWuioAK5Tx582iQR/89LyFf8Ax7/61dXXKeOBug0ZP7+qwL/6FV0vjRjX+BnVdq5bwz8viPxMnpdo35rXU9q5bQfl8beKY/8Aatm/OM04fBL0/VBU+KHr+h1VFFFZmwUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTX+430NOpr/AHG+hoA5/wAA/wDJO/DX/YLtv/RS10Vc74B/5J34a/7Bdt/6KWuioAKKKKACiiigAooooAK5Xxhqx0+O2tjrOh6VFdCQSTaq4JIG3iOMlQ/3ucnA44Oa6quO8VxTyeIdDltbS11KeCO4cadcPs8wfuwZUYqVDJkDBxkSHBoAwvDejeHba8i/4RbxjDPqLXKTzwQXkRimj3DzF+zx4Rfl3YIUEHBz1r06vPbfwlf3+oSarcafYaVK19Z3ENvG4dolhYmR9yqBvkU7CBxtAyTXoVABRRRQAUUUUAFNf7jfQ06mv9xvoaAOf8A/8k78Nf8AYLtv/RS10Vc74B/5J34a/wCwXbf+ilroqAGmuX8YfNe+HY/XVIm/LNdQa5fxP83iLwynrdu35LWlH4vv/IxrfD935nVVyulfJ8QdfX+/Dbt+S4rqq5W0+T4lagv9/T42/JsUU9pen6oKm8fX9DqqKKKzNgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmv9xvoadTX+430NAHP+Af8Aknfhr/sF23/opa6Kud8A/wDJO/DX/YLtv/RS10VABRRRQAUUUUAFFFFABXBfEaSxgisby4m1pbq0juLiJNJkSN/LVQZXZm42qMd+dwGCSK72uH+Idtp11ZwwXV5fW19cQ3FrALC1a5llikUCVfLCnK42knjBC8+oBpeHY4rLU9R08alq97PFFBK39oSq4Cvv2lMAdSrA57qK6auN8Eojvf3MzaxNqEvlLPcajYNaBkUMESNSANq/MeMnLZJ5rsqACiiigAooooAKa/3G+hp1Nf7jfQ0Ac/4B/wCSd+Gv+wXbf+ilroq53wD/AMk78Nf9gu2/9FLXRUAFcrr3zeNvC6f7Vyx/CMV1RrlNV+f4haAv9yG4b81xWlL4n6P8jGt8K9V+Z1VcqPk+KJH9/Sc/iJa6quVuPk+Jtm39/TnX8nzRT6+jCr9n1R1dFFFZmwUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTX+430NOpr/AHG+hoA5/wAA/wDJO/DX/YLtv/RS10Vc74B/5J34a/7Bdt/6KWuioAKKKKACiiigAooooAK4bxLNJeail9purrpk+jXYsJ2lsPtHmNciAqo/eLhcvGSeuR2xz3NcVrHgnUNRvtQltvEclnbXt3BePbizSTEsQiCkMTnGYUOKANLQbjVI9X1DTNV1SC+nhggnXybH7OqLIZR18x9xJjPpjHfPHR1z2h6Dfabqd9qGo6w2o3N3DDDuNusIRYzIQML15lNaWpabFqlr9mmluokLBt1rcyQPx/tIQce2aAL9c3oXiG+1PXNU0y/0pLCWxSGQbbkTeYsu/GcKApGz1PWprHwtZWF3Hcx3usSOmSFuNVuZkORjlHcqevcVj6OdaTx5q17c+G723sr+K3hSd7i3YJ5Xm5ZgshbB3jGAT64oA3PEGtto1vaiG0N3e3twtta24fYHcgsctg7VCqxJwenSso+NDBpuoNe6a8Wq2VzFZtYRTB/Nll2+VscgZVt45IGMNkcUuuW2r366fqUOl4u9J1R5Y7U3CE3EG2SLcrdFLK+4BiMYwSKyrjw3rWpRarrTWa22pTajaXtrYSzKTsttuEd1yoZ8P0JAyvPWgDo9E125vtTvNL1KwFhqFqkcxjjn86OSJ9wV1fapPKMCCBgjvmtyRgEbJA4PU1zOh2epXfia/wDEGo2DaeJLWGyt7aSVHk2ozuzsUJUZL4ABPC+9amq+HdE1krJqmj2F9JGpVGubdJCo9AWBxQBT8A/8k78Nf9gu2/8ARS10Vc74B/5J34a/7Bdt/wCilroqAErlbr5/iXYL/csJG/NsV1Vcr9/4peyaT+plrSn19GY1vs+qOqrltT+T4iaG39+3nX8hmuprltc+Tx14Xb+99qU/9+xRS+J+j/IK3wr1X5o6qiiiszYKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApr/cb6GnU1/uN9DQBz/gH/AJJ34a/7Bdt/6KWuirnfAP8AyTvw1/2C7b/0UtdFQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNf7jfQ06mv8Acb6GgDn/AAD/AMk78Nf9gu2/9FLXRVzvgH/knfhr/sF23/opa6KgArlbX5/iVft/c0+NfzbNdVXKaV8/xC15v7kFuv5rmtKe0vT9UY1d4+v6HVVyviT5fE/hh/S4lX80FdVXK+Lfl1Pw4/pqKr+Yoo/H9/5BW+D7vzOrooorM2CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKa/3G+hp1Nf7jfQ0Ac/4B/5J34a/wCwXbf+ilroq53wD/yTvw1/2C7b/wBFLXRUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTX+430NOpr/cb6GgDn/AP/JO/DX/YLtv/AEUtdFXO+Af+Sd+Gv+wXbf8Aopa6KgANcroPzeNvFL/7Vso/CM11RrlPDPzeI/Ez+t0i/ktaQ+GXp+qManxR9f0Z1dcp41+UaFJ/d1aD8vmrq65Tx2dumWMn/PPUIG/U0qXxodb4GdWOlFA6UVBqJVLU9RtdJsnvL2Xy4UIDNgnGTgcD61drkfHkYutP07TySBeX8ULY67ecn+VXTipSSexnUk4QbW51iOsiBlIZSMgjoRTq5bwbdzLa3Gi3bbrvTJPKJP8AHH/A35fyFdVSnHlbQ6c+eKkFFFFSWFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU1/uN9DTqa/3G+hoA5/wD/yTvw1/2C7b/wBFLXRVzvgH/knfhr/sF23/AKKWuioAKKKKACiiigAooooAKKKKACiiqGpabFqlr9mmluokLBt1rcyQPx/tIQce2aAL9c3oXiG+1PXNU0y/0pLCWxSGQbbkTeYsu/GcKApGz1PWprHwtZWF3Hcx3usSOmSFuNVuZkORjlHcqevcVj6OdaTx5q17c+G723sr+K3hSd7i3YJ5Xm5ZgshbB3jGAT64oA3PEGtto1vaiG0N3e3twtta24fYHcgsctg7VCqxJwenSqVl4j1C/tNQhj0ZBrNjOsM1kbseX8yhlcS7eUKnP3c8EYqDXLbV79dP1KHS8Xek6o8sdqbhCbiDbJFuVuillfcAxGMYJFU44/Eljb+IdetdE36vqMsQtdPaePMSIgQM7bgpOdzFQ3TAz3oA29D1241G+1DT76wFnf2BjMiRzedGyyAlWV9qk/dOQVBGPet1/uN9DXM+D7Sa0tbpbvS9RtryVxLc3d9JAz3chGC37qR9oAAAXgAYAzzWlq2g2mrFZLmXUEZEIAtdQntwfqI3UH8aAKfgH/knfhr/ALBdt/6KWuirnfAP/JO/DX/YLtv/AEUtdFQAnY1yvg/5rzxDJ66nIv5Yrqj0Nct4I+aHWn/v6rO3/oNXD4JfIxl8cfmdTXLfED5fCryf8854m/8AHxXU1zHxBGfBGoeo8s/+RFp0f4kfUdb+G/Q6cdBS0yNt8SN6gGn1maLYSuV8Qf6R4w8NWnUCSadvbavH611Vcq/+kfE2MdVtdNLfRmfH8q0paNvsn+RlV1SXdoj8Rj+xNesfEaDEJItL3H/PNj8rH6H+ldYpDLnrVTUbGHU9PuLKcZimQo3tnv8AUdaxvB17NJp0ul3h/wBN01/s8v8AtKPuN9CP5UP3oX6r8gXuTt0f5nT0UUVmbBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNf7jfQ06mv9xvoaAOf8A/8AJO/DX/YLtv8A0UtdFXO+Af8Aknfhr/sF23/opa6KgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKa/3G+hp1Nf7jfQ0Ac/4B/wCSd+Gv+wXbf+ilroq53wD/AMk78Nf9gu2/9FLXRUAIehrlvAfzaFPJ/wA9L2Zv/Hv/AK1dSehrlvh9z4PtpP8AnpJK3/j5/wAK0j/Dl6r9TGX8SPo/0OprnvGyb/Bupj/pkD+TA10NYvixN/hPVR/07OfyGaVPScfVFVVeD9GaGnv5mmWr/wB6JD+gq1WdoL+Z4f05/wC9bRH/AMcFaNTJe8you8UwrldE/wBI8b+I7n+GMQQKfouW/Wuoz1rl/BX71NavD/y31KYqf9kYA/rVQ0jJmc9ZxXzOqxXJamv9leOtMvo+I9RVrW4HYkDKH69voK62uV8djydHtdQ72N7DPn23Y/qKKXxW76BW+Hm7anV0UgOQKWoNgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmv8Acb6GnU1/uN9DQBz/AIB/5J34a/7Bdt/6KWuirnfAP/JO/DX/AGC7b/0UtdFQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNf7jfQ06mv9xvoaAOf8A/8k78Nf8AYLtv/RS10Vc74B/5J34a/wCwXbf+ilroqAILltlrM/8AdQn9KwfAKeX4J00f7Ln83Y1sas3l6NfP/dt5D/46azfBibPCGmD/AKYg/mSa0X8J+q/JmL/ir0f5o36y/Ea7/DWqL62ko/8AHDWpVHV18zRr1P70Eg/8dNRHdGk1eLKnhd93hXST/wBOkQ/JQK2KwfBj7/CGmN/0wA/IkVvd6dTST9SaTvBPyRDczLBbSzN92NCx/AZrn/AcTReDrIv9+XfIx9cuf6Yq74quPs/hXU5M4P2Z1B92GB/Op/D9v9l8PabARgpbRg/XaM/rVLSm/N/l/wAOS9aq8l+f/DGl3rF8U2n2zwtqUJGSYGZR6lRuH6itqmOqyIyMMhgQR6ioUrNM0lG8Wu5n+H7o33h/TrknLSW6Fv8AewM/rmtKuX8Asy+HPsbnL2VxLbt9Q2f611NVNWk0TTleCfkLRRRUGgUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNf7jfQ06mv8Acb6GgDn/AAD/AMk78Nf9gu2/9FLXRVzvgH/knfhr/sF23/opa6KgAooooAKKKKACiiigAooooAKKKoalpsWqWv2aaW6iQsG3WtzJA/H+0hBx7ZoAv1zeheIb7U9c1TTL/SksJbFIZBtuRN5iy78ZwoCkbPU9amsfC1lYXcdzHe6xI6ZIW41W5mQ5GOUdyp69xWPo51pPHmrXtz4bvbeyv4reFJ3uLdgnleblmCyFsHeMYBPrigDc8Qa22jW9qIbQ3d7e3C21rbh9gdyCxy2DtUKrEnB6dKg0rxKtzDqn9qW66dc6W+28RphJGi7A4dXwMqVOckA8EY4qlrltq9+un6lDpeLvSdUeWO1NwhNxBtki3K3RSyvuAYjGMEiqMfhS+17+2LvU3uNIlv7uCaOCJopXSOBQEEmQyNlssRyOgyeaANnwx4lk8RjUvN06WxNncCFUlbLujRpIrMMDYSrjK849a6F/uN9DXIeEtB1bSNb8Q3OoajdXUN3dI8LTLCPOAhjXzD5agg5UrjgYXOOcnb1bQbTVislzLqCMiEAWuoT24P1EbqD+NAFPwD/yTvw1/wBgu2/9FLXRVzvgH/knfhr/ALBdt/6KWuioAy/EbbPDOqt6Wkv/AKAaj8LoF8K6SP8Ap0iP5qDTPFr7PCWqn/p2cfmMVZ0FNnh/TU/u20Y/8dFaf8u/mY/8vfl+po1FdL5lrMn95GH6VLQfums0avY5rwE/meCdNP8AsuPydhXS1y3w+GPBtrH/AM85JV/8fb/GuprSt/El6szo/wAOPojlvH7E+FpLZThrqeKEfi4P9K6dFCIFUYAGAK5fxb+/1Hw7Zf8APTUVlI9QgJP866k0S0pxXq/6+4Udakn6L9f1HUUUVmbHJ+HP9F8UeJLAcDz0uVHr5i5P611dcrJ/onxLhbol9YMn1dGz/KupzzWlXVp90v8AIxpaJrs2OooorM2CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApr/AHG+hp1Nf7jfQ0Ac/wCAf+Sd+Gv+wXbf+ilroq53wD/yTvw1/wBgu2/9FLXRUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTX+430NOpr/cb6GgDn/AP/JO/DX/AGC7b/0UtdFXO+Af+Sd+Gv8AsF23/opa6KgDnfHD7PBupn/pmB+bAVsWC+Xp1qn92JB+grB+ILY8E34HVjGB/wB/FrpEG2NQOwArR/w16v8AQxX8V+i/UkoPSig9KzNjlPAXy6FNH/cu5l/8erqu1cr4I+W31iP/AJ56pOv8q6rtWlX42Y0P4aOV1M/aPiHokPa2tp5iP94bf6V1XeuVtf8ASPiTqMvX7LYxwfTc2+upFFTSy8v+CFLXmfn/AMAdRRRWZscp4q/0XWfDmo/88737OT6CUY/pXVGuZ8eQtJ4TuZo/9bbOk6exVh/TNdDbzLPbRTr92RA4+hGa0lrCL9V+v6mMNKkl6P8AT9CaiiiszYKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmv8Acb6GnU1/uN9DQBz/AIB/5J34a/7Bdt/6KWuirnfAP/JO/DX/AGC7b/0UtdFQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNf7jfQ06mv9xvoaAOf8A/8k78Nf8AYLtv/RS10Vc74B/5J34a/wCwXbf+ilroqAOW8eo0nhsxKpYyTxLgDP8AEK6j0pOtFU3dJdiFG0nLuOo7UUdqks5Twd8t34iT01SVvzxXVVynhdlTXvEqEgf6YG591rqDImD8y9PWtKq977vyMaL9z7/zOY8L/wCkeIPEt513XawZ/wCua4/rXVVy3gL95oM15/z+Xk0+fXLY/wDZa6mir8bXbT7go/An31+8WiiiszYoatafbdHvbQDJmgdB9SpFZ3g25+2eEdNmzkrCIz/wAlf6VvMcVy3gk+Rbappx4Fpfyoo/2DyP61a1ptdmjGWlRPumdXRRRUGwUUUUAFFFISAMmgA7VDPPDawPNPKkcaDLO7YAHuawdR8XWlvOLLTEOp6g3CwW5yF92booqrB4Zu9XnW88T3AnKndHYwkiBPr/AHj/AJ5q1Tsry0X4mLqXfLDV/gbGmeIdK1reun3sczJ95RkN9cHBx71q9qwtT8KaXqKo3kG2uIwBFcWx8t0x0wR/Ws37b4i8OcahCdX09f8Al5t1xMg/2k7/AIfiafJGXwP5MOeUfjXzR14+lLWVpXiHS9ZXNleRyP3jJ2uPqp5rVrOSadmjSMlJXTuLRRRQUFFFFACUdqimmit4mlmkSONBlndgAB7k0sU0dxEssMivG4yrKcgj1BosK/QlooooGFFFFABSUVDcXEFpC01xNHDGvLPIwUD8TQLYnzSVBa3dtewLPazxzxN0eNgwP4ipzQ1YE77C0UUUDCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmv9xvoadTX+430NAHP+Af+Sd+Gv+wXbf8Aopa6Kud8A/8AJO/DX/YLtv8A0UtdFQAUUUUAFFFFABRRRQAUUUUAFFFUdRtLm8tDFa6jcWEm4HzoEjZgPTEisv6UAXqwNF8TQ63qWoWC6ffWc9isTut3Gqb1k3bSoDE/wHrjtS2Wi6pa3sc9x4p1K8iXOYJoLVVbjuUiVvfgjpWFomqiT4i61IdO1eOG9gtYoZptNnSMtH52/LMgAHzLgk4OeKAOl1rW4NCtI550mmeaVYIIIF3STSN0VQSBnAJ5IAAJJqnB4u059Jvr+4S5tDYSeVdW1xH++jc4KrtUkMW3Lt2kg7his7xFPc3b6Rq9vpl+6aRqsnnQeQfMeMJJCZI06uMuGGOSvIrndZ0PUPEWmeJNUhsL2KO6vrKa3tXUwzzRW+zeQpwVY/NtBwflHTNAHoGlanPqYlMukX+nbMbReCP94DnkbHb05BweRWm/3G+hrifCNnHB4i1G40jTLrTdDe2hVYLiB4A9wGfc6Rvgj5SoJwNx9cZrotW0G01YrJcy6gjIhAFrqE9uD9RG6g/jQBT8A/8AJO/DX/YLtv8A0UtdFXO+Af8Aknfhr/sF23/opa6KgAooooAKKKKAOdv/AAZoGpXkl5d6eJLiQgswldc8Y6BgKg/4V74X/wCgYf8AwIl/+KrqKKtVZpWTf3mTo027tL7ipYWFtptlFZ2kQigjBCICTjnPU89TVvtRS1DbbuzRJJWQUUUUDExxXKXfhzVItXvNR0jWFtDdlWlhktg6kqMZyTx/9eusoqoycdiJQUtzlMeN4Oj6NdL/ALQkRj+XFH9peMV66FZv/u3QH866qiq9p3SI9k+kmcr/AGt4uHXwzA30vVFL/bHi3/oVo/8AwOSupoo9ov5V+P8AmHspfzP8P8jlDqfjCYeXF4etbZ24Es14rqvuQvJpv/CJ3mp/N4g1ie5U9bW3/dQ/Q45b68GuspaHVa2SQeyT+Jt+v/AKOnaTY6XD5dlaRQIeuxcE/U9T+NXu1FLWbbbuzVJJWQUUUUDMPVPC2k6ufMuLUJcdRPCdkgPrkdfxzWaNO8VaMcWF/Dqdv2ivsrIv0cdfxrraKtVJJWeq8zKVKLd1o/I5X/hKNVsx/wATLwxfoB/Hass4+vGMU+Px/wCHj8s149vIOsc0Dhh+ldPmmPDHJ99Fb6jNPng94/c/87i5Ki2l96/ysYKeNvDjdNWh/EEfzFVbnxlDPJ9k0G2fVLojqh2xJ7s5/wA+9dAdNsn+/aW7fWMH+lSQW0FsmyCGOJM52xqFGfwovTWqT+8OWo9G18kczD4WudUmF14lvDeMDuSzhysEf4dW+p/Wo5dF1Lw1M934dJnsyd0umSHj3MZ7H2/nwK7HpR2o9tLrt26B7GPTfv1MjRfEFlrkLm3Zkmj4mt5RtkjPoR/WtGWeGBN80qRr6uwA/WsjVfC2n6vcJdN51tdrx59q/luR6E9xVaHwH4fR/MltHuZP788zsf54otTet2vIE6i0sn53/wCAWrjxdoFrnzNWtSR1CPv/APQc1TPxA0FuLaS5uj6Q2zn+YFbFvoWlWmPs+m2cWO6wqD+eKvBQoAUAAUXpro38/wDgBao+qXy/4JyjeINc1Y+VoujS26nrc6ivlqv0Ucmn2/g6O4nW6168m1a4HIWT5YVPsg4/z0rqhQelHtGtIq35/eHsk9ZO/wCX3HK3fhBbe4a88PXTaZdHlkQZgk9mToPw/KmR+LLjS3Ft4ls2s3PC3cQLwP8AiOQfb+VdYKY6LIhWRQynqGGQaPaX0kr/AJ/eDp21g7fl9xm2/iXRLojydWtGJ/hMyg/kea045UlXcjq49VORWZceG9EuifO0mzYn+IQqD+Y5rOfwB4dZiyWbwse8U7j+tFqb6tfiF6q6J/O36HT5ozXK/wDCCaev+qvtUh/653ZFH/CCafJxeX2qXqf887i7JX9MUcsP5vw/4Ic1T+X8f+Aa934g0ixJF1qVtEw/haUbvy61Fa+KNDvcCDVbUseitIFJ/A4NJaeFdCsgPI0q2BHRnTeR+LZNS3fh7R73P2nTLWQn+IxAN+Y5o/d+YfvfI0ldWUMrAqehBzmlLAAkkADua5hvAWkIxaylv7Anr9luWX+eaB4A0R+boXd2fW4uXP8AIijlp/zP7v8AghzVf5V9/wDwDbbVtOSQRtf2iyHopmUH8s1bWRXUMjAg9CDkVhr4N8OrEUGkW+0+oyfz61UbwDoiktaC7snP8Vtcsp/Umi1N9X93/BC9VdF9/wDwDqc0Zrlf+EQul+VPE+shB0DTAn88Uf8ACGyt9/xNrv8AwG6x/Sjlj/N+Yc8/5fxOqzRmuV/4Qth93xLr4+t5n+lH/CI3g+74n1cf70gNHLH+b8w55/y/ijqs0Zrlf+EQum+/4n1o/wC7MF/pR/whZP3vEmvn6XmP6UuSPcOef8v4nVfjR+Nct/whQ/6GPxB/4Gf/AGNJ/wAIUe3iTxAD/wBfv/1qOWHf8A5p/wAv4nU0tcr/AMIhdL9zxPrI/wB6cN/StzS7GTT7MQTXs124YnzZj83Pak4pLR3KjKTeqsX6a/3G+hp1Nf7jfQ1Joc/4B/5J34a/7Bdt/wCilroq53wD/wAk78Nf9gu2/wDRS10VABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU1/uN9DTqaw3KQDjIxQBz/gH/AJJ34a/7Bdt/6KWuirjtI0HxZo+jWOl2+v6O0NnbpbxmTSJCxVFCjJFwOcD0FXvsXjP/AKD2h/8Agnl/+SaAOjoriten8Y6J4d1HVv7X0Sb7FayXBi/smVd+xS2M/aDjOOuK0Vs/GRUH+3tD5H/QHl/+SaAOkornPsXjP/oPaH/4J5f/AJJo+xeM/wDoPaH/AOCeX/5JoA6Oiuc+xeM/+g9of/gnl/8Akmj7F4z/AOg9of8A4J5f/kmgDo6K5z7F4z/6D2h/+CeX/wCSazden8Y6J4d1HVv7X0Sb7FayXBi/smVd+xS2M/aDjOOuKAO1orm1s/GRUH+3tD5H/QHl/wDkml+xeM/+g9of/gnl/wDkmgDo6K5z7F4z/wCg9of/AIJ5f/kmj7F4z/6D2h/+CeX/AOSaAOjornPsXjP/AKD2h/8Agnl/+SaPsXjP/oPaH/4J5f8A5JoA6OiuK16fxjonh3UdW/tfRJvsVrJcGL+yZV37FLYz9oOM464rRWz8ZFQf7e0Pkf8AQHl/+SaAOkornPsXjP8A6D2h/wDgnl/+SaPsXjP/AKD2h/8Agnl/+SaAOjornPsXjP8A6D2h/wDgnl/+SaPsXjP/AKD2h/8Agnl/+SaAOjornPsXjP8A6D2h/wDgnl/+SaRrPxkFJ/t7Q+B/0B5f/kmgDpKK4rQZ/GOt+HdO1b+19Eh+22sdwIv7JlbZvUNjP2gZxnritL7F4z/6D2h/+CeX/wCSaAOjornPsXjP/oPaH/4J5f8A5Jo+xeM/+g9of/gnl/8AkmgDo6K5z7F4z/6D2h/+CeX/AOSaPsXjP/oPaH/4J5f/AJJoA6Oiubaz8ZBSf7e0Pgf9AeX/AOSaztBn8Y634d07Vv7X0SH7bax3Ai/smVtm9Q2M/aBnGeuKAO1ornPsXjP/AKD2h/8Agnl/+SaPsXjP/oPaH/4J5f8A5JoA6Oiuc+xeM/8AoPaH/wCCeX/5Jo+xeM/+g9of/gnl/wDkmgDo6K5z7F4z/wCg9of/AIJ5f/kmkaz8ZBSf7e0Pgf8AQHl/+SaAOkoritBn8Y634d07Vv7X0SH7bax3Ai/smVtm9Q2M/aBnGeuK0vsXjP8A6D2h/wDgnl/+SaAOjornPsXjP/oPaH/4J5f/AJJo+xeM/wDoPaH/AOCeX/5JoA6Oiuc+xeM/+g9of/gnl/8Akmj7F4z/AOg9of8A4J5f/kmgDo6K5z7F4z/6D2h/+CeX/wCSazNFn8Y6xYyXX9r6JDsuri22/wBkytnypni3Z+0DrszjtnHNAHbUVzn2Lxn/ANB7Q/8AwTy//JNH2Lxn/wBB7Q//AATy/wDyTQB0dFc59i8Z/wDQe0P/AME8v/yTR9i8Z/8AQe0P/wAE8v8A8k0AdHRXOfYvGf8A0HtD/wDBPL/8k0fYvGf/AEHtD/8ABPL/APJNAHR0VxOiz+MdYsZLr+19Eh2XVxbbf7JlbPlTPFuz9oHXZnHbOOa0/sXjP/oPaH/4J5f/AJJoA6Oiuc+xeM/+g9of/gnl/wDkmj7F4z/6D2h/+CeX/wCSaAOjornPsXjP/oPaH/4J5f8A5Jo+xeM/+g9of/gnl/8AkmgDo6K5z7F4z/6D2h/+CeX/AOSazNFn8Y6xYyXX9r6JDsuri22/2TK2fKmeLdn7QOuzOO2cc0AdtTX+430Nc99i8Z/9B7Q//BPL/wDJNIbHxkQR/b2h8/8AUHl/+SaAHeAf+Sd+Gv8AsF23/opa6KsvQNMOieHNM0lphMbK1it/NC7d+xQucZOM49a1KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAMnW9Y0zSLVP7TciO4bykiETTNKSCSoRQWbgHOAeKn0zUrTWNPivbGdZ7aTO1xkdDggg8ggggg8giuc8T3cGk+MfD2r6hIsOmxQ3du9xJwkMr+WULHouQjjJ9cd6l8CAy2Gq3yIy2t9qtxc2pZSu6IkAOAezEMw9Q2e9AHW0UUUAFFFFABVW/ntLbT7ie+aNLSONmmaQZUIBzn2xVquW8UWOt3t5pwsbO0vLCGQzT29xdtB5kikGPJEb5UHLY45C+mCAbWl6paazpkGo6fKZLSdd0blGTIzjowBHTuKv1xfwue7k+H2nfaoIodu8R+XKZN6bjycqMHORjnoDnnA7SgAooooAKKKKAMnWtX0zSbdF1KTi5JijhWFpnlOCSBGoLNxnOB0qbS9VstYsVvNPn86EsUyFKlWBwVZSAVIPUEA1yvjudIdX8PSzXz6RCkk5bVgAfs52ACM7gUG/J5cEfJxyQas/D1y2h3rAtNGdRnaO+KlTegkHziDxySRxhfl4AGBQB2NFFFABRRRQAVjaZ4l0nVtRurCyuWkubVQ8yNBIgCklQQWUBhlWGQT0rZrz618TaE/xavkTV7Eu+mW9qqidcmZZ5y0Y5+8MjI96AOg0vxVoOoXEFhY3BV3Q/Z43tpIVkVRz5ZZQrgD+7niuhrznSvFOjeM/F1ncxaxYpa2Esn9n2n2hPtF1KUZGlKZyqBS4VcZOSxwMV6NQAUUUUAFFFFAGNF4k0qXX20OO4Y6gFZjE0EgUhcbsOV2nG5eAe9RyeI9Gs9RXSFlk86MpGY7e1kkSEnG1XZFKpwRwxHBFc5rvibQ7X4naDFcavZxSW9reRTq8ygxu5tyitzwTg4HfFcyrz6Pca3Gmr30fic65JLZacsrBJ4pJQVPldHQoTlznbjGRtoA9mooooAKKKKACsD/AIS7RBqY083brMZzbBnt5FiMucbBIV2FsgjGc5rfrzjVvFWieIvEy6BJrFhaWWnXsZuvOuESW5uI3DLDGpOdocDc3cjaO5AB0954q0DRLtdNuLtbd41QMqQuY4FbhN7KpWMHtuIroK8s1rULXS4PHmkX+TqOquz2MBQl7xZLaONFjH8WHVlOOnWvR9Nilt9LtIJ23TRwokhznLBQD+tAFyiiigAooooAwP8AhL9EGpiwa7kWYz/Zgz28qxGXONgkK7C2RjGc5qfU9b0nw9Dbm/njtUurgQxKqE75Hb0UHqTyemTyea5DVvFWieIvEy6BJrFhaWWnXsZuvOuESW5uI3DLDGpOdocDc3cjaO5FDx5Z+IIxqGoz6fYXEDXllDZym9ZWhiFzCQvl+URl3A3Nu6beDtAIB6tRUFuZjBGZ40SUqC6I24K2OQDgZGe+B9KnoAKKKKACsD/hL9EGpiwa7kWYz/Zgz28qxGXONgkK7C2RjGc5rfrzjVvFWieIvEy6BJrFhaWWnXsZuvOuESW5uI3DLDGpOdocDc3cjaO5AB02oeK9A0S7ls7m6ELxYkn8u3kdId5zukZVKpnk5Yj1rfDBlDKQQRkEd68h8WTRJqni+KfV30mWeJEj04R7hqo8lQDyNx3cxYiKkBeTmvVbAu2m2pkg+zuYULQj/lmcDK/h0oAt0UUUAFFFFAGHqfivR9Hungv7iaEoAZJPssrRRg9C0gUov4kVDc+LNA0y8eykuTCVkAkcW0nko78jdKF2KSWB5PesD4h6pp9xpt/pY8SG0vUt3V9LRFZr3coIjK48whgdv7tgfmPNUfEPirSNUC+ELvULDR4/IiOqm5uEQxKVB+zxhiNzEcFuij3IwAen0U0EEAg5B6Yp1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUV5V4N1PXdU8RWhtrjTrLT20qKdrCK1k8pV+0Sq2wCUBXO0/Ng9uDjkA9VorzXTfiDqOp3lpc29m01hdXYhW2TTLrzEiL7BKZ8eUccMQBgDPzEitTTfEOtXia5f3Uuk2WmaddXdurSo+WERIV2bdhQMDPBzg4xQB21FebW/jLU9R/tbShcQNcDSpb21vI9PubVRtIUjbKct95SGVvyqbTL/AFSDQPBMmqvYajJfXNuqStbOHiBtZG37mkbMvy4L8ZDNxzQB6HRXAx+Ldba0g8QNBY/2FPqAsxAFf7QqNN5Cyl920/Ng7NvQ9c1Fc+LvEMFvreqiHTP7M0rUmtXiKSedNGGQFg27CsA3oc47UAeh0VxU3ifUY/F8mmXFzYabbLcRxQR3ltLvvEKqS0c24Rg5LKFwxyvPWu1oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArlbDwRZ6VPp81hqOoW72kQt2KtGftEQkMmyQMh4yzcrtOCea6qigDmrPwnHp10rWOq6pb2SzmYafHInkKxbcQMpvCkk/KGxz0xU3/CKac2ianpEpnktdSmnmn3OAwaVizbSAMYJ4/rW/RQBzFl4NtrfVm1O51LUtQunsnsWa8kQgxMysRhFUA5XqPU5zxhbPwfb2lrpds2pahcw6XcJPaLO0f7vbE0SplUBK7XPXJyBzXTUUAcqvgjT475JBeXxso7s3qaaZV+zrNu37gNu77x3bd20HnFWJ/CFhcaPqumNNciDU7hrmZgV3KzFSQvy4A+UdQa6KigDnb7wrHqd75t3q2py2nnpObEyJ5G9GDL/BvwGUHG7HFdFRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//2Q==", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAIAAAC6s0uzAAEAAElEQVR4AeydB4AlVZX3q17sPNM9OQdyDkMYooIERcCwiKKi4Kof6JpA2QXX/K3ZXQOu6VsxoBhwUTAgICg5ZwRkGJicOsx0fvn7nXvqVb/umc6vZzqcO2/q3bp17rn3/ut1/eucm/xCoeBZMAQMAUPAEDAEDIHdi0Bk9xZnpRkChoAhYAgYAoaAIGAEbL8DQ8AQMAQMAUNgDyBgBLwHQLciDQFDwBAwBAwBI2D7DRgChoAhYAgYAnsAASPgPQC6FWkIGAKGgCFgCBgB22/AEDAEDAFDwBDYAwgYAe8B0K1IQ8AQMAQMAUPACNh+A4aAIWAIGAKGwB5AwAh4D4BuRRoChoAhYAgYAkbA9hswBAwBQ8AQMAT2AAJGwHsAdCvSEDAEDAFDwBAwArbfgCFgCBgChoAhsAcQMALeA6BbkYaAIWAIGAKGgBGw/QYMAUPAEDAEDIE9gIAR8B4A3Yo0BAwBQ8AQMASMgO03YAgYAoaAIWAI7AEEjID3AOhWpCFgCBgChoAhYARsvwFDwBAwBAwBQ2APIGAEvAdAtyINAUPAEDAEDAEjYPsNGAKGgCFgCBgCewABI+A9ALoVaQgYAoaAIWAIGAHbb8AQMAQMAUPAENgDCBgB7wHQrUhDwBAwBAwBQ8AI2H4DhoAhYAgYAobAHkDACHgPgG5FGgKGgCFgCBgCRsD2GzAEDAFDwBAwBPYAAkbAewB0K9IQMAQMAUPAEDACtt+AIWAIGAKGgCGwBxAwAt4DoFuRhoAhYAgYAoaAEbD9BgwBQ8AQMAQMgT2AgBHwHgDdijQEDAFDwBAwBIyA7TcwqRDIuUCT+OaYzWY55vN5jXR2dmprU6mURlSsUCh0d3dnMhlN1COnmktlSNRTIqEe4qEqzcWxvb2dEomggUAE5XpVTzVOxo6ODo1TASKkUBYyeqqXdj5qc0IZ5NPpNGKklyrs6uoKK4yw1jlMUbVaT+JhelhDLmnTtPI0KqwJKSEmYYSriqGmUKJmLxXQgkgPS9FcoWYitIUs1EcbSDUIKhCqCisTRkI0EA7joXypfosbAuMHAT/8sY6fOllNDIERI8CDOxaLkZ2HbzQa7aMHTuIBTXpFRQWXoKvq6mpSIpHgTRSW4mo8Hlcx3/dVFX8mqhYNJJIdslFJBIijQR/9lZWVWihZNDunWgR1o1bJZBIGoggtlDgpmqX0iCQaVAkFtbW1IZZIJEKdXKJcLY4Ip8QpSPkb4bDyZNcK0LqqqiqagB4StThqxVWOXNIUVBHR7GH1FKsdO3ZMmzaNq2ThiCR6UEuhtEg1aBxqrKmpQWb79u1kQRvCYeVJp4HIkIWMnG7atGnOnDlgUipGrbikQfGnpYCvzSEdAdLDslReSwkbWFRg34bAuEPACHjc3RKr0GgQgF14QPMIVhpAFY9sntE8mkncJdXx+Ia6kCcj2UMG1WrAEwTywg16DB/3pOtTngjCpU986ArqamhoaG1traur02qgv5RdVH9TU9OMGTMw+6ghbIQ8hFRKkCoWHmE7aoIqTaHCyCs5hTIakXq7QIvCaiiPIkCEysCRSmlhFhKpOW0Ji1DaVgElPD2qEt5gKAR5jophS0tLfX29yof8zSmsSVAEkAdMlSEjcQ28Z9TW1pLuKp4DB5XhiHIariCjhzqQyKmmIE+icrlmAVLkd4lMqNMihsCeRcAIeM/ib6WPCQIhz5WSByWRvmHDhoULFxIvfdbzEC/lIew8HtywNekQg1aR5ztPeR7xKIG9oC5VTqJyAGLwDaelpqRmh/+QgauQQYDssDIMQSmQRKhfSUhPqY8yChnJghghrAwyMBABmmxubobpSWlsbJw+fTo6SedY2nZtnb5qhLXVRKoBz0HkVJ5aUYpWgKO+jugLB8I0XN9UUB7WhLop74a5SKEIhEnXBqKZIsIsXKJpyJNCceFLD+nUGZRCCkeMQHoojCrVqa3QS7QXVcT1FGHUIhZWySKGwPhEoOePbXzWz2plCAwLAegEquBxzPHaa6/Fq0k8DNDAihUrbrzxRnSqpUWEqxx50HPkUc4Rlyk0oDRDCpdQC53Avvqsh/aIQLQ88ZUgyUWJcDaJMArypKjmrVu3QmwoRIBcyHOKTqU9xOAbNe8Q0GqQSBEESoRLOGopcBuXCOgnBQHi1FOLmzlzprKOlosAV/EAo1YleWkgkdeLzZs3c4lE6kM1SIFZIW9lX0iOJtA0ErmknmSaxqkWjX6uQpbafNVDE6gGZVEEhXKKZhRSBHnJQuUR4JQ4MgQtjghqaTjatOYURB1IRIAUmk+gaZxySRO5qoFcepUjJRLIojiokqKgfRsC4w4Be0kcd7fEKjQaBHj+anYiPH+xNa+44oqjjjqKxzTcwLMbAnjlK18JGfDE55ENT/C8Jl3NVmSQhJtJ5yocgzYuoU2pEQpBQANPeYqAfpRClAU5VaIiozIfxKZV4hIZNZESSVSbGIct9aQ4MlI96sZVAiWiX+mklFnJiB5lOOLQOXFVS4WR1wqQBVVaOqqgeXzdyPN6QVC7k1I0hXKRpwlIUk8S0UkpSBLfsmULrzIUQUupszoPQsRQEsKOMGJwNtqIYD3TOq0beQkIUBZB28UlBYFyyYJO6qAVQFIDKRRBWxCmPkiClV5Cid4C3ADoIR2xYj4P4g/jFjEExiECRsDj8KZYlUaFAM9r+ADyQAvHN7/5zUceeSRx7QcNmZVnPQ90HtmwgibyKFdrDw2aHRmNQBgkckpAWPlm3bp1ixYtQjMp2HyzZs0iDpUqo5BRiUQ1cAkXMUYqiWiDRUhBz6pVq/bee2+yUBlOlTW5Sq2IExDTQJyMUCxiIbWofxh5LYsjXLVt2zZk4CotkewkqpuauLqsaY5akzAxZWHpUn9yUf+gPFc94iiHfYlwlbaE3cmkqK9Yq4QGSqQVWpPQjYxyaBJhKk8AcNesoF00XBWS+PLLLy9dupS7oAVRQwWBI9kR0FYr+/ISgFrulxYXto6WIowSjiFKxC0YAuMQAfmxWjAEJh8CPIjDRzPsSAOVBvQBDY8+99xzMNB3vvOdL3/5yzA0D+sjjjjikUceQRIZOIDIPffc87a3vY2HO1fPPffc6667jic7BAAn/ehHPzrggAP++Mc/vuc979lrr73Iq37d7373u8uWLYMtXvWqV/3pT3864YQTXvOa1yhDH3vsse94xztQC6OghCLIcthhh/3f//t/sduordaNuHLMxo0b//M//xPzHXkqQF7qA2ORkaFbn//855cvXz537lyK+/d//3eIE8ZCA5FXvOIVF1988e23337GGWcgvO+++/7kJz+h+fDfo48+ih384x//GLJEnsogcNddd/ESgMeeU/Q//fTT//Iv/zJ79mwu7bPPPj/96U9Jh1BR/re//Y2Mv/jFLz72sY/x8kFvOqxJ3e64446DDjoIPI877jiQed/73nfooYfqK4g65KntqaeeigBc/tGPfvSZZ55BpwYyvva1r0Xz29/+dnwP9BH84Ac/oLYEYETmhRdeIAvNJIXKU7c1a9YgCfvyhkHbqSSXuAtXXnnl6tWryUKVFMygDPsyBMYnAvyRWDAEJg0CUCNGGM2B8+BCWIQeXx7TUB2GGq5UprtoY+EACObwww+He77xjW9Aw9AepMJVbDKODz74INmPPvroT3ziE9/61rdOPvlk/oR/+ctfcgm7EzKGF5csWQK/fvazn4Vg4LNrrrkGGagXeTgDtli8eDGnMB/1eec734kFDEGigVOOn/nMZ5CHaBHglKCVp6rEL7jgAq6+7nWv+/rXv/7tb3/7rLPO+q//+i/SKR1+hZxe//rXc+ld73oXYhdeeCF5IW8E5s+fDyctWLDg4x//+De/+c3jjz8egZdeekmLho9POeUUxAha7pve9CaInPqTAkSAQPjXf/1XqPScc84h7/e+9z29yisF5dLqgw8+mDZ+8Ytf5OVGEwGKN4nPfe5ztPGQQw6BL7UV6KSGECRvKrxPIAPHk12Kd4Gy4GAqQG3/+7//mxcOSnzqqae4qM3hRYeU97///dwmEIPjH3roIa7SXiX1yy67jGa++93vhpVPP/10VasIa9yOhsD4REB8dBYMgUmDAAQcPvfhDx7c2vGpbkxOMZvgVwxZmJhTnvsvvvgiD3qo6Oabb8Zsgk5AA77BfITGQmTw3PK4h2YQhsmuv/56svO4Vw7TUUsY1pi5ECS5EIOPIRv4T5XcdtttZMGKhTnQD0NgqsKF1KeULTSOqYrwhz70IdUMz6GEsmggFioFwWph3T74wQ8irLRE07CMITwagiqyQ/DQ4eWXX06VyILxCkcyGlxbjWYo8I1vfCOXiENjXMWfzCmVpLjzzjsPRqf5pDz++OMUpCCgWRViByOAiYwAnmHsaWSgf9WAIc6bza9//WtOCej5/e9/TwqvMvq2oYPSf/e736GNCqMH0KgtDaEC1BZtf/nLXzQ7R8WHS9xfLN3f/va34aX/9//+H8K8OZGXRCofXrKIITAOETAXNH+wFiYPAhAPD3ee7DyCef4yAggrDeaDBjji54RlYS+IFkmMOZyf0BWECkOfeeaZZKFTFgaFSG699VaIDVOMUxTy3IcvITmcnGggC6j90z/9ExlxCONAhlmhEFzW8AeXYJqLLroII5u8ii/Z4Ta1kqkkmqkPjmXstvAGUAFqRemY7+j81Kc+xZFEHL/IEKEIbHpeMjD7SOGZwhEbnWrgZ4Y4tcQDDzzw1a9+NapInzdvHr7fxx57jFaTnVrhEoDSOOUqfElnNk5jLeWvf/0rpjZ6MIUhaVDCnIXCgQUBIuSiIaRrxVBFS/EeM9oLAd5v8LrjRkYMxGjmz3/+c30voVFY4QjgrifvDTfcAH1Sf3Lhr8bDTxbUogcLG8826WS/884799tvP1590KYocTsgaS794Q9/gObxEOCR5qbwHsOtBKhbbrmFZiKMNs1iR0NgfCIQDIUYn5WzWhkCw0UAtoOBeL6TESOJU5zAeI95XmsKV9euXUsiz2sMSmxcxJQC9RHPEcKAKuCGD3zgA+SCGCADItAVR/iGI9nRSQ8u8mpkY0nD+tAPamE+EtHAqCJoBnkCkvDcF77wBZy3nGICohDWJx5SBWVBrtQHUoHIeYFACQEZ1CKGZupPOpo1I+nwOsKMvYJ+MExpI+2iOHgIeQRgNa0GquBmmk8/Ll5rNGDK42nHEKdoHPUQLYGXFbgWGAGQypCXUwxfshMnAguSzlF9+3AkqgiASel09FINasuRNxUChSJMe6kS6WgmUcdtkQKPkpeGgzyeCQgYXtebiLl/9tlncxW0aREI67huUuiwh3dpIBoABFbWCoMDLxyhQiIWDIHxiYAR8Pi8L1arESKgT219yitrYnLx7IYJeCjz0IchoB+0K+fBOloS1KIkzXOcRFiWjP/8z//MIGocszzf0akUcswxx8AcCKMQSSKwFOUqw6EfbmbclupHOXo4oh/+eO9730uHMUOW6BiGgDH7ME+5GlZDKzP6Iy2lYgRVRfX0vUHfITC7v/a1r0F1kCUO4be85S1UQCmTmtPvix1PQyB1JWCmMtPziipGSiPGxCd9ZYHveRsgndZxHKAVNBbuhKcZ+waYgAOPkl1fDtBJQbAvSgCEognEyQJooVqaowWRC3k0YIvTtYyNzgsTteWlh7cH7Gm93aoQPRYMgfGJgBHw+LwvVqsRIsADmoe7ei+VjFWRUhGPfj1VKiXOMxoSwvbiia+mFTzKwx2qQAa+gXigAa6SDhNgb3EV5oAnIFpYGSUUREQHS9MBCUOTqBzACF5YgfpQK3iLgAMW8uMUG1dNYa0SRypPoEp4a7ECcVDzNqB0xVWKho3gHl4gSMdJy9gl5EnHXoRxqa3alNQWNtK66ZE6UyJKOHIVxmXQGZ3EvBzgP6eXl0u0F0uaq7SXVnMJnbQa/VwFIo4KI+m0CDFeQQiQMdY/VwmASZVwX9MEIlylJgS6xsEBxDCFEaM+tIW60RwiWMwUhE4qo63Qe0EKbMpwOcAkF9r0ZlElqockRrC+KyCmLQVeqYcLtAX54pl9GwLjDgHrAx53t8QqNBoElGZ4rKOEpzwPbuLKUhAGKaRDAzy+4UviUBdX4Tx94pMCx0C0DM56wxvewBQX+kHhBjiGR7lSnRLS+vXrEcYPzHOfBz2WJc5nirjpppu0dNiCIcqkcBVJuIQjgQHMdLv+8Ic/JO9pp52mtKGXqAlFk53iLrnkEmrLoF+OJMKsyBChIOxmKsyIYlK0vYw9Rg92LW8GFMcLAaVjuCNMtWmRtldrQiIDoaFYBjHREUu/KQOPAQo+Q9v555+PtfqPf/wD5RAnjaVWgIASmkCEorUm0DARsuPBpqMXxy+nsDh94fAiwmSBXN/61rdC3l/5yle4qlloC1dpI0c1zRHjEq2jDohRhLaXVtD7CwHTY00ceSrD7aBRRKgqt49WkJ1c+m5BRLmfiLEvIFgYzwiYBTye747VbdgIwDFKFeSEjTg+8MADuEl5dnOK4chD+ZRTToFacKvyxMckVQ7jiU+cpzydnfrgZlLpE088sf/++zPeGFsT+bvvvhsGYvAU2pBBHqLCeiNOudAG82QYt0y3LiOo4T+m22KtQngUBEHCrPAZlyiFAUSwL/QDeSCAQo7UFsKGYKBDLDmmIaEQS5cK0yiyMOj6wx/+MMyNY5whV3iVWdXrySefhM7p0MUTqxWDs+EzqodCKkb1UEgFiIQFMTab3mjmzsK+0DOSUBq5/uM//oNxT1zFW45ZiZuaNjJEmbcWZDDHYVOUcIq5jDwt+v73v49HnbpRBwqiztQEJiZOS6k86V/60pcAE2RAHgBRyPgygKWq8DeS1A39nFJP4KIgoCDx05/+NMJ4xRlopjeUTmu00a/PqwyDq1HCcDksbO4jUPBKgVOd2WVgi0ILhsC4RoC/OguGwGRCgCc4zeHxzdxZtah46PNHCFXoU55xyAhgpfFARwamDJuPGLQUnsIZDITGd0o6ph40wNglrmLt/exnP0M5Y4ZVWC1d4rh2mVdDFhb34CpMhg1HOkSrtjiSmG4opDdUEzVd7TYkISHViZH91a9+FT1QC0zGNGKc0pAfV3kbwOrFTU2L4HjmHMOFcC2XIEhm2VJVUjgFDbgQo1nnDpFCBThip5IXlqJDWisQlvv3v//9Ix/5iPaUczzxxBOvvvpqsiCAJYrnAL7nFNbkSKAVmKG0FOKE+TCgmaDMi4sWpLUCZ/RAqwTmRF111VW8FWleWsFIZpQ4ZeK+Zhg2A694W9IUxnkxOYpcvKNQOsO/eQ3SS7wHMAObicI0hNcIaBhTm5FZejXUqad2NATGGwKyqDrPAguGwORAAC4h8KTGZNQW8QuHwKA3CBgag0V4WCPDKRSCGBFYijhPcEiLOALkVbbWv1iohRTIj+xkIXAKhShL8aAnRflG89KXqbQNYdDDio2IPAJYtyg86aSTKOjPf/4zRiSaw8pQPcQ4RUaL4LQ0UDetgNZNLVGc52rmIkkKCsPSw3QtOlSFHjW4FRzNhQxAqeZQsjQjEFFDuq6hTEgduDSF5pORsvABaFsYg40PH087l1DFkUu4izkStDjSUa7NVHjDQhHgrQjoyEg9uarV4MgplQdGZCiUoE0gL+mUziXVwylX+2gOi7CIITAeELA+4PFwF6wOZUMANoUCeaxjCOrTn6cwPEGPI4mQhBIkEZ7m0AnyxHmsQyfYXtjKeG4hIeUhnvKI8YjX+nEKf/CU11PYV+Nkx1zj0U9Z0AxXlX2xkknHGEWMACVwiWFZjNRl6BAGNPKkqH5qQhwxjtAGicShW4JmpHTSqSF103Syq1dWKYqMtJRA6QirPK3Tfm6ukks9yWhGTIvj1URZivqjmUs0mSMZEQ75TMEkC+xLOnAR14oBLJr17YG82P0gyQRrBLhEADTi3AKNUBwZlTiJ6ylAcctIp2hSYF+yEKeNFK3VACICMgRk9BKvAkhSW4S5EcQJGkdGT+1oCIxPBMwCHp/3xWo1QgRgAp7CPPQ1P09qfSiTTiJHCEwf/QhoBAaCGzjlqa2GF9RFXKkaGbXDVA/co32ryKANGa4io8IsAcG4LV3cg57IX/3qVyxJgY8X/Siky5Y1NH7zm99g++LmxUlLIoyiR+XLsG5h9bQhHGkLlKOkAs/RHI1TJYgNPaEkCqmbcmSYqDZreEoE0uKorxooVJILEVNJagUvckkhpaccyicjbmH6bmk1BTFVF5f1ypUrcX3jV8cJzyU6krGDUYK7XjsCaBoZOYIkRxTSHARwp0O3pfVXEBReBECYaiBARHEmkQpzDN8PiJcGWoEAufqAUCpjcUNgzyPAb92CITCZEODJq92fNIo4oU/roCLsv1CGq5zyuCcCdXGE0vpk4RQ90LPSbWle7bvVUrA1mZnKDCV4As8w2wao9QkTQAn0H/MHj9uZoUOkoFML5dLOxXEJ5qM+SFKoVqxUDDJDgBR4XdNhMq2G8hytIGiFVUCLowO1T7m4rFWAUpBHCUEL1XrqVdRy2qcmnFIBVt3ifYLWQXj04GofLfXRjLs8Uge0weh6lTj3RSumKQBLA4Fa66ANAc8+FUAY65kjdUaeo8qrEjsaAuMZAbOA9/w7kNWg7AjwJ6fWValmeA5CYhAQj3LML57jWJA8r9V3CruQyLObiKYgwFU0YGaV2mekIMNVtR2x50JLDsuPUkhRtkAbTAxtQ8ZUiVzoUftPs5CCEq2tHqkh1SARsdLKh3E4hmqHhiD8hDBZQoEwoso5hV9ptZrL4VXqRl6aRkEEKkxKqUFJdrL0aTjZ1Qim+VyCekNfMadhiYjBvqABoYKh+slJRIBmlpai9aFo2FddC6SQK2wgl7TmIIP3gqqqgOKGQr1ZqifURq6da14qY3FDYDwgYAQ8Hu6C1aFsCEAqPKZVHVwYRkqf+0p1XNIHvYrxZA8pECYIZVQDD3ooijjEE9IJMqRApcpGYRaogqe/9ncigNGG1at5sergQuJh0LycKnNrOqo45UiAfgjwE7wF65S+WGC4K/1AckhCWhAPClEipOq4KpRBAwJOZQE9IVmSN2REClX9iGl2VCGgPMclEnkDoGl61NqqBq2/UjJ1QEP4WlBKqJqFeiIPpKjiBQXAaSOJBKDTtiuDKuyka9tRiwZK17tMo7RPgTqETIyMgoDOsBVarh0NgXGFgBHwuLodVpnyIKBkgC4e3DyFVak+1nkiy2PezbvlEvzEk51EJUI9qs2KPIFLhNJqkQij8NxXDlOZkMZCwoMkoBAKgvZIhBVCSg4LRS1KICq4DaYhQgXIQkatNnEuEUorQCJB+Yl0ikaYvBQRMhPp2rdNomYPWRDS0p5Rrb/SFRr6NBMNlEJ9wEdLRzlxytWq6lHbCwjIqAbeP9CPQl6GSA/tWlXCkQpTW21gmEgEhSgvbazejtImkIs6hGj3EaA4RaZUSWkRFjcExhUCk5yA5UFV8qjSv2R9APGny7NDR98gs/PjYFzdJ6uMIWAIGAKGwMAI9HnTHVh4PFydEgQMuRJgX16c6Q/jRZu3chyJvLBDvRgKXNVX+PFwS6wOhoAhYAgYAqUI8PRWlw8PauI8sblKnPF3rOaGTYV7hjEHmmUCGVSTnIC5VdwM/FEEHG544RgOw0p+LCbApfAG4xvkanhqEUPAEDAEDIHxgwCPcewlHuN4LqmVGlQQMFPe2eqbNVO1qtohMn6qPWhNeuYODio6sQTgV0e7wYHKKxnTO8XSsiwWyJANAjeM7ij6/PSVamK10WprCBgChsBUQCA0aonQXh7XRPBlzp8/X8fhKwg8zImEQwTGPzKT1gIOb1h4D7hbuCmwgHWsB9YwdxF+5p7xJrXzCJQwo0UMAUPAEDAExhsCuC1Z8ZRZBjztebaHw/0mEAFPoaXaoFtlWQgYPwanOqSTXxU0PN5+W1YfQ8AQMAQMAUUg7DFUC5hErCae5PQBM/ON7mFlX322h9Pqxj96k5aA4dc+d45TiJY5IZi83E51VpDCPQuFx/8NsxoaAoaAITDVEAhtpDCiCMC79CQS175hnuohQ08IiCYtAYfol746cW/wPOOg4I0pTA8lyxJhZJd+RJsM86LHQjotCL0uaZIdDQFDwBAwBEaEAM9wJp3jfCY3j3TlYD2OSN8eyFQ2At6Zz+A5fPQhHDBf2D4uEceHwJF0ImRHUl9edECyXtXsXCUgrJf0SEaMV9XAkbx6GpZIKShR61azq36OBE0noqYwGkYfqCJNok4B5fJdcB8vzyUSucpRWiKBaFFQE+xoCBgChoAhsCsElBGwgHloc10nkRLBqamX4GAuhcvd7ErHuEsrGwGHngGm1bICDg3VlfPCFgMTcS5Bk1xCDAQZhAwREiE7R+LQJ12zSHKqzn3iXFWI4VQ0IMBRnclcVc2wslIpt0EJnlJQggCnSrS6ABApYxd6MypnRbYtFqlMXDyzb0PAEDAEDIEpikDZCBiSU9Mz3PUTRGFNfSvhKlyLgPrruQRfvvWtbz3ggAPYOub888/X9THgZiVyutZhaMaXP//888cddxwRVtN985vfTCJ0y5GJvB/4wAeYec1OZ1z9xCc+QfrGjRv1NsLEFB2awhC2MjGljPV9BlD9FJk3GN5lo7zGGnnTbwgYAobAxEKgbASMuQnnqXMA5mNpEnUUk4hdy1WoFzJWxy/267ve9a5HHnnkhz/84Q033PDMM89cfvnl0CTEqW5kFqyHyNetW3feeecdeOCBSLK9KO5+OBgq5dKmTZso5ZprrvnLX/7Ctuff+MY3/uM//gM+pjhuQGhV681QUkezVm9M7xAWNx+hWx/ztxe8nJDOh4izi3tdHdNamXJDwBAwBAyB8YZA2eYBw3z0s0KxfVoYrmuPBcwldQKvWrWKzboff/zxww47jERWxoBoH3300UMOOYRTmFu90H/4wx/OPfdc7FqsWzKinxXwoVuEYVNKJB1OhW4/+clPkv7iiy+STnbEuEocARQqK6sRDBlD5PQT6KlmR6bcobcr2ov09UQrSZe7VNNnCBgChsCkRIDHeJ+HNk9yVhTeLc/zsUK0bEYYxKbsi39YbV+OQMPCF9Qd4OA8JVFOb7nlljlz5uy3337qJT755JMhUTKy1SgoK/syto2rECROZlBGQJ3YDzzwABo4hVyxpInont6cogEbmgjjsyhR2VdLR4zELVu2cDqWAd7lI4uluQC8UO8u2JerO1NykMm+DAFDwBAwBKYAAmUjYKVSOBLmUwbFYGWSFr5omA82hQLBU7tpGV0Fp0KQcDZ2KiRNF+8999yDvL7j0FkLYa9YsQL2/Zd/+RcoFjr/+Mc/Dh+rJQ1Pw+5YupSL8I9//GO6hHFNI4kGPN76EkCJFI0AYnCzjoUe49uKDxxuFf8zX5woJ2uhvpfXj54aB4/xvTD1hoAhYAiMXwTKRsBKupAfxAlHfuxjH4NfMYvpzYVWYUrihL333hsTVo1UUIEmlRehYfIigFFLuhqvrNj8ox/96Pe//z3DrCDptWvXnnrqqVAvQ7QoDrVIwui4qY844ohLLrkEbfA6iejhSMAB/oUvfIFCkScw4EvTx/AYzDuKQL3MR8IWDgkZ6i3SsdCwnhgHj+G9MNWGgCFgCIxjBMrWB4xxGdIeY54xfHEIqysYXsTSxf+shi8MfeONN/7bv/3b6tWrtUsYYYzXP//5z/Arkpi2kGvo8UcP9AyG0DArfzLg+T3veQ9iStUHHXTQP/3TP33+85/X8dVwM5SP1UspWL1UCaOZ+hBBIfbx4sWLx7LPgFm/Gc/H9o1T49ZUoTIpY7FYIJxPVAgYOibISKycG6LFG1DwsuAu2MEQMAQMAUNgZwRCRggH7vAkn+h9wH3HTO3c7CGmqAmrDmQ8wASgATLsTvCC/3BBQ43wIgpXrly5bdu25557bt9994VrH3zwQQxc7F31SKtpC3mTnTjcrHVg2yk6cY866ih0ksLVgw8++JWvfOUXv/hF5WPSKYIZSkuWLEGAEglUSY+qZMyPvjgVMgXv5c1NDz3+9H77H7xs6YyIL2QrU5IJmMhORs/saAgYAoaAITA1ESibC1odyKWdrJAiNAz1KgWCL95mWJPIokWLzjzzTKYeMQHp4YcfZkrSMcccw3QjLm3evJkB0kw6wmsN+/7KBfa7uO666970pjcx1+joo49GjAHPh7vw2c9+lqtqbaOfS7AvJi81oSytD3UgnUCVNDJ2x2wG8o3iYn7mH6v/ePtd9zzyeNoXRzSuZvE2w75ypu5nG4c1dvfBNBsChoAhMN4RKBshqe0L4WHvhjQM82mAC4lAkLiFuYpRe/XVV1911VVveMMbMIUvvfRSTuk5hrDhXab/4l7GpEbVY489du21165fvx7X8Yc//OErr7wSPRjHzAwmEWOXecCcAjPK8XVTEHrC4dZaEwqFeokjMNY3JF/gnSaC/3lHKr9h244XN2xVv7O6nt3kYIiYtLK9+ox1i0y/IWAIGAKGwFggULY+YDVtcfZCkDtXVAmYq1yCWdVUDcWgRrhWKRz6hCxVAOIki+ZCGDGU05FMZzAK6eiFyGFfPM/IkJFuYJUJNWsEYZRTBIYyvu6x6wMWG5dx1wUv63u/+csTP7/h94uWLPnsx95Os6czsszLR72UV4CLfc+P5bwk8sGqHS6jHQwBQ8AQMAR2iYA+xrnEk1xJYRL0AZfTDoMdCaXYQYcEOBLIYFO9FJqhMDG+YhLJpVYsYpAo7MtYKs0C6FyCXMmlymFf1QP7ooHx0mjWjFoQV7kxHElUSc3IPVOO18QxOsKumTw067V1p+NVdZ2Z0plIoO2cz74y9RhVwdQaAoaAIWAITAAEykbAcJu+lcC4yp2wIwHy4xKcqiOngAQ/swJDOnGlSTzPsKxqwCnNWCrlSzJCsbBymJ2RzMrlZFRCDYkWSWV3HcYFeVMZygoF9HRMb4s4l6NCui1tnZlCpKM7Q5xE6tGbdR0Tj2lVTLkhYAgYAobAOEagbASsbVSGg3TVjaysCRHqVSiWiMro0hwskQHRwpoYr7AsAkxJYvENfMVIqiMaK1lplSwkMrga5RRBRuV4eJc4LEt2SkS/yqsYWbjKkbAbCDiTK+BVpmudFnUXYh056NiLMi5La0DXL0OgC/gJpEq93AWBgH0ZAoaAIWAITAkEyjYIS9FSZ28f5CBITYFiiSit6nykGTNmkBJatypASjj1iHhoMWsWUgjKqeElTQmzq8LQRHY5dtMhImtdRZkmlUl1paJ13akMja/zhZId3TJOO+Zi8LBx8G66KVaMIWAIGALjEIEyE/A4bOFurpJfEAKGWrH7Mx6WuoyKho8Dm1eIGOezBFJ6O6U12Y6GgCFgCBgCUwIBMcIslBEBurzRBrNm0tIDjUsgXQj6gAPiLWNhpsoQMAQMAUNgwiJgBFzmW0f3ro636hYGprc32j3mc4/L3ARTZwgYAoaAIbAbEDACLjPImLw65lnnRHHqlgnZdSk2CGvXuFiqIWAIGAJTAAEj4DLfZJzOaMQITmUYEM2CG5FUt/meywyyqTMEDAFDYBIgYARc/psI+8pyHOmczj/WOVHlL8Y0GgKGgCFgCExkBIyAy3n3Sk3dDEtiy1SjaCZPX3Bx6HM5SzNdhoAhYAgYAhMYASPg8t88ltxkNUoMXz8aS2Vy7R2yfggBGg6C7IlkwRAwBAwBQ2BKI2AEXP7bD9FCwAUvwgftsiLmzoXAwbtI3VnOUgwBQ8AQMAQmJwJGwGW+r2rbpjL4nB3BRqLpdLALxS5KMg7eBSiWZAgYAobAlEDACHhMbnOqGwKWDmC0645Pu6Bama9kwRAwBAwBQ2CKImAEXM4bD8vqp7M75fZhYiGOSOcAK3EYB5cTftNlCBgChsBEQsAIuPx3Cw7G6mUQtBjBbluk8pdhGg0BQ8AQMAQmOAJGwGNyA7vTaV0IWtaCTttalGMCsik1BAwBQ2BCI2AEXM7bxyJYurpkOu/l/Fi0kI0WcoyIzvQphPnBfCwYAoaAIWAITGEEjAbKfPMZdgUHN7amo4naaLYz276jIxMQsIzIcgtyhDOUyly2qTMEDAFDwBCYOAgYAZf5XsG+0geci2Q9vyISiRQy6WyOlSkJfsC+8lUcAF38LnMtTJ0hYAgYAobAeEfACHhM7hCDsFh/I5lMol2nIY1JMabUEDAEDAFDYMIiYARc/luHBax7EVZVVTEIq7MzWIqy/CWZRkPAEDAEDIEJi4ARcPlvnRIwo6Bra2uj0agRcPkhNo2GgCFgCEx8BIyAx+Qeyk4Mvl9XVwcBd3V1jUkZptQQMAQMAUNgIiNgBDwmdy+bzTIAq6amBgK2PuAxgdiUGgKGgCEwwREwAh6TG5jP5yFgBmFxZDTWmJRhSg0BQ8AQMAQmMgJGwOW/e8xEam1txQieN28uHcBEyl+GaTQEDAFDwBCY4AgYAZf/BjIIC6sX5zOzkGKxGKOx+q6EVf4yTaMhYAgYAobABEPACLjMNywP/Xoeg7BwPldXe/F4HHd0d6rMpZg6Q8AQMAQMgYmOgBFwme+g78tSlIx8xvBVAqYA246hzCibOkPAEDAEJj4CsYnfhPHVAtiXlxq6fnM5v6pKXNDUL2M+6PF1l6w2hoAhYAjseQTMAh6Te6AWMASMCxpTOJWyHQnHBGdTaggYAobAxEXACLjM9y7ntlegD5hBWNXRgIBZmbLMxZg6Q8AQMAQMgQmOgBFwmW9gNi+7IWVz+RiDsDyvws9mCoWurMdcYHYhpDD1URdLNfyLSNi3IWAIGAJTDIHdQQAMA1ZUM8W+ULyyBMxE0kkMBVRMV65gASldRVnFuMTk2nBVqba2NlLCS5pRZ9w2NTWFp6qKAckUR0Ec9dLYHaMxryXt5WPJiJ+r9bxZFWwMXNOUZnfCni0IixwM+LsD/7FrrGk2BAwBQ8AQGDECu4MAWBVZ60eHKBGlW6gxPIUgYUdSYNDt27fjvIV6WUaK3YSQ17WUSWFpZRKR7OjoYJ8DLjHEiVzQMCmcKh/PmDGDOAFhVBGBtimU4lgb0l0ZqwP0zrtGiiFXkWgiEWMzwioWwmJMVqbAMQgIFcQOtmAIGAKGgCEwlREYcwLG6ISAocnQzNUUuFMNXDiyublZByuROH36dO4H8hw1C5c4hYzb29tJ5LS6unrz5s3EYW6OiURCI8jAxGgjkSzhElQIKBOHxjECYxSYB0yHL02urKykCF4CaK/1AY8R2qbWEDAEDIGJi8CYE3Bo74buX+XCjRs3XnTRRRi1s2fPvvzyy0FQZ+yokxkDF3MWWn3qqacuvfTShoYGSPSjH/3omjVr1NidO3euSnJ6+OGHI3/vvfeiBG6ur6+HfSkltLw1srOveyxuW8THZJchVxUVFXqk9D6u8rEo13QaAoaAIWAITCwEdhMBQ0IEoFHTFtv37W9/O1bsjTfeeNNNN911111nnHEGV/E2YzLihYatYdwdO3aQjvn4yCOPPP/887Dvm970JihW+UwN4s997nPz589HLUROxzB8T4B9SYFx9WYQJ2A6Q9tjfXsAVO1dGkK/LzRMw42Axxp2028IGAKGwIRDYDctxAEJYc5CjUrDq1evxmC94447jjvuOOjqmmuued3rXrdly5Y5c+aAIF5ovMdQ5p133snAq6uvvpoU6PNHP/rRvHnzYOsTTzwR85e+3l/+8pdQ+M9//vPbbrutsbFx7733Jjvsji8aDibo/SCifmAYfTfcIe20hnpxoxsB7wbArQhDwBAwBCYiAmNuAatjGeoFHY7QMFz4xBNPwJGwL3HYceXKlS0tLY8//rjarNiL5MKCRJ4jbmpoGz7Gt0x2CFhZnA7dL3zhC7/4xS9mzZpFRtzU0Pa2bdvQTFmh0QkfI8klKJzidsNN4pWCGgr1OgJW7t8N5VoRhoAhYAgYAhMIgTEnYCVLZT6Nw4UvvvgitixEhSGrvDht2jQ8zMS5qpYrnHr00UeTkR5iEjFw/+M//gMaXr9+PbkgZtzRZ5999hFHHIEe+oAxoMFdyVi7hznFmw1JYxnj0CZQ6FjfGxiemtNSagi4vEnQhPBtYKxLN/2GgCFgCBgCEwWBshEw1Eib1YRlYNRVV12l3leoCOaj45aIpjz77LM6QniXGMFYqooIHunrr7/+vvvuQ57uWyj2kEMOUbP4v/7rv4h86lOfQgkuXzgY8iYLcSJQOIVC2xDzJz/5yXXr1tFhjJG9du3aXRZaxkSsXnVB0wr8+1SDiMJSxlJMlSFgCBgChsBER6BsfcBq3UI28B90e9lll2Ge0ncL6eIEhoeUdHERH3rooQ888MCmTZu4hHWo9iK9s0uWLCGOBtI5QqKcnnzyyfQEQ2mYyBSBko985CN0DOOI/tvf/oZTGrLH58ylV7ziFe94xzt+8IMfaB8wNwZ/NQE9etxttwrip0SaTImgYRbwbkPeCjIEDAFDYAIhUDYChnJoNnyDMQqDznRBgWBwMsSp5umiRYsgpGOPPRaaxLSlGxiufeihh6BSZhORnaC56LgNl9SA0cn1xz/+ER/yihUr6BX+7ne/+/nPf568XGKqEmO4GJClLmsqACUjz1WIWYPqpA4aGbsjLmgqQKH6woEjmpqQMnYlmmZDwBAwBAyBiYhA2QgJaxVbU81N4srHEA+GIEGZD1oCI44Ywccff/wVV1zBJCIY9+KLLz7qqKNwOGPpYtGecMIJDHiGmyHp3/zmN4sXLz7ggAP+9Kc/YfsyeYm8qGXSEQEB5TlIjt7fpUuXksJorPBOkE4ck5QKEN8NfbGhC5q3EIrmSHt3Q7lhky1iCBgChoAhMCEQKBsBw6M6Ngq+gYY5EjBPQxTosoWN4EKlw2uvvfZDH/rQueeeCzVivzITCUnY9JlnnmE0Fv21nGLIPvbYY5/+9KeZtgS5fuMb37jwwgtDyxiFOuAZKxNhSFq7h+FgdML6oTGtrwVcpUphfcYuwmsEZK+1MgIeO5xNsyFgCBgCExqBshEwKGD1QnIcoR8d3qyGL5fwBmPa4jrGOFabldUzMHNhaPiYPl1klJgxhdVhS68w/b5f/vKXcTWrNYkSNKtfGpuScVXoZ5gVgXSW9SARSeoA+6JQK0NEeZeKwcScjnXQ+kPATL2qqEhQejgqe6yLNv2GgCFgCBgCEwUB6bgtS4A+YRoC2uA5WFbZTs1B4rAvlyBIaBIqRV7tV+I4jSFm8pIIeyHAes6wL5egWLJA3uSFxhAggjAUi4BOEdYtFvBIK09zqga0EjbyMDFHAjytkTE90gTaou8Zzg8tNR/TEk25IWAIGAKGwIRDoGwEDOVAlmr7hijAfPAQREgKnmFlJuLwMQEeJa52M+5iUpRuIVcoGXlSEGAGMIYySiBsBEhBGKOZq2prlm7MANVRB0ZfI4awvhBQBKeEsSZgeJ4mdWfzMa9QG/Uxw5NRKbQ7zR4NGuRVoODLnsEuBG8GwZl9GQKGgCFgCEwZBMrmglayhOq07xMAIT/lP2VNtXdJV/8wlzQS9tT2wTyUZzw1l1S/KuQ0tKeJl67wHJZOOvSvuYjvngCddnpec6cXzXbNq/bomq6NgUO0O19gGHQdVcrlgIj3kUzBq/QRVwIu22vQ7mmmlWIIGAKGgCEwegTs0T96DHs0QKdpPoVoJJ+p8DMMg45HvIgfyxfYHKIo5gvxYgS7ULSEixft2xAwBAwBQ2CKIGAEXP4brR3VGN+Ai8scBwC2eBpmLg4HK3+RptEQMAQMAUNgoiFgBFzmO4ZJq33b6niP+dJjTRk6DCt0oZe5VFNnCBgChoAhMNEQMAIu8x2T/l23DkkiIdjyX7u62XhCSuozEXm3jMoucwtNnSFgCBgChkA5EDACLgeKJTqYJoULGvPXrQ4iF4jjjmbAdk5HXJUIW9QQMAQMAUNgyiJgBFzmW8/UKp2+7NYCEeXSGRyJYBbnw7lIMiGqzOWaOkPAEDAEDIGJhYARcJnvF2t+MPEXxpUhWC4QJ4SrgpS5PFNnCBgChoAhMDERKLLExKz9OKx1e3sw7JmRV7ic6RJmlwiWA2NlzUQ8wgJgWmcGZ1kwBAwBQ8AQmMoIGAGX+e7rfF8dAo1qeBYXNIOfdTmwMhdm6gwBQ8AQMAQmLAJGwGW+dUw3gm51QS7Yl49OQ2KBa0rSaUjW/1tm0E2dIWAIGAITEAEj4DLfNLzNaNR1NJWAIWP6gHU/hoCAjYHLjLqpMwQMAUNg4iFgBFzme8YeErBsuJA12iFgUnTfCCPgMsNt6gwBQ8AQmLAIGAGX+dZhAcOy7AEVWrksxEGKbNNEUcWFOPTqWO/OVOa2mTpDwBAwBAyB8iFgBFw+LJ0miBa6xertQ8D0ARd3JbZJwGXG3NQZAoaAITARETACLuddY9JRdy6a82PJmM80JO0DjkVyMS+XyfkZzj32f5TdiSUqofitZ3Y0BAwBQ8AQmDIIGAGX81Yz8bcpG+/IR2ui6RomIBVk8cnZ0yrTXR1NHWkIOEVCoZCMejG5EvEjCbdcdDnrYLoMAUPAEDAEJgQCRsDlvE2wamfOz/rximgh4WV9+XhJPxf1c+lchDU4ZBtgNxDLl1U6LBgChoAhYAhMXQSMgMt878M+YPRCtRAu84D5Ls4DDorT4Ve2InSZ0Td1hoAhYAhMHASMgMt8r8JR0Oj13aBnnYYUzAMuc2mmzhAwBAwBQ2CiImAEXOY7F84DzrsOYLQnGZHl5gGb07nMWJs6Q8AQMAQmMgJGwGW+e+FKWOEcX/Yl1JWwGCOtIbxUTLBvQ8AQMAQMgSmHgBFwmW952AccsiwErH3AJdsBl7lQU2cIGAKGgCEw4RAwAi7zLdNdj9gNKSRgmfbLvoS5XDjkKrxU5rJNnSFgCBgChsDEQcAIuMz3CqJtb2+vrq6Ox+KZbIb1sOprhH3z+Xw04mWdGxqPtJZaXJiyzHUwdYaAIWAIGALjHwEj4DLfo2w2i8NZKZaIatdTZd8yl2fqDAFDwBAwBCYmAkbAo7pvOJNL/cnYu8z3hW5xQaOXiCy84Xnsx8Cp2xE4KC7k5lEVb5kNAUPAEDAEJiwCRsCjvXX4lkMVOJghYNg3FhNgWWqSY0jA7BRcNIllWFaYyyKGgCFgCBgCUxABI+Ay3HQ1gjli42YyGZa+irMVQ0moqKjgrKurW9PgbAg4HJNVImhRQ8AQMAQMgamCgBHwqO60GrJ6ZKRVKuVBrix91YeASaEYnSJMBEmORsCjgt4yGwKGgCEwwRGQrkoLo0EgdCY7AsauLWD/Rp2DueDJalh0DKtFjHdaHc+lXuvRFG15DQFDwBAwBCYuAkbAQ7p3kGgYgs7bQk57dCO+XOQ/U45SzrcM/apjQVzTvhdlEBYTkCKxzlw0r5nJKwF2Ng+EQ8IOhoAhYAhMPQR2BwGEBh/9o4owzETQDYJIDAX0qnpoWVKKdZVJUTGm95TeHXXn6g4H3d1B36qehll08k9prhHECx4LWMk4q/DjlLizXMorZLwCFctDvfGKZHNbeyTq1dZUIoP5y3SkfC5X5XkNNfHuSMXWlA/x5rLZZEUil+1mMnBeiNuCIWAIGAKGwFREYHcQcOikVU+s0i0sG57ClNAwKbDs9u3bo9Eo1Eu/aVUV5BV0nerEnh07duhdqqys3Lx5MzKwL0OcoF6yE7hKXKf9oA2aJyUk+LAmqmQIR6VdEURRD1s6reJg1o/Qc4Sys7LaZD6qDminPeIVGI8Vj3oZP9GVi0q+CNTsrskB/RYMAUPAEDAEpiICY07AUCC0BzWGLKgpEKoauNBtc3MzZEw6idOnT+c+KJVqFi5xCq1i9U6bNo34hg0bkJk7dy5HHWAMEyOshE1c7WM0K+OGpvDwCVgmEe2aJgsRz4/KZcfx2rnLawTkm4iz5lUQIq7IZFznAadJ1ToUaxIKFjPYtyFgCBgChsDUQGDMCUBJFNZUYxRU4UWOGzduvOiii+rq6mbPnn355ZeTojauupFra2vxPEOcTz311KWXXtrQ0ADdXnzxxWvWrCFxwYIFyEPb11133ZFHHok1PHPmzDe/+c0dHR0Up0SOQMi7WjSXlNe5VMZAN2+BGb++GLOY4zArbwDo195erUNxGlKXS5fmOwIec/DL2ExTZQgYAoaAIVBeBMacA5SA4RtHOYFpi+379re/HR/yjTfeeNNNN911111nnHEGDcNyhb3wQkOZuJFxOJMOqz3yyCO33347ieeffz551cC9+eabP/nJT77rXe96+umn77//fuicFZghPChc7WntXSYXvKvErEw8MgSVUHfKG0Gn+pFxQVM0zaxKVqgwWwJjJpOlooJhWF53pyNguBqvgFsO2g9oeietlmAIGAKGgCEw2RHYTaOgoSWoERZUGl69evW99957xx13HHfccfDrNddc87rXvW7Lli1z5swBcLzQdN/CmnfeeWdra+vVV1+tKT/5yU8wJR977LFjjz0Wqnv/+9//xS9+8b3vfS86oWSM4KamphkzZqi5qTeOSwRsa7VEtW94BPcU+txFb60sNIkLOqDmbN7r7E7BuMkKXYYD/s3jpSaUWsCcOmLuvVSHSFkwBAwBQ8AQmEIIjLkFrI5ltYM5QoSYjE888QT9tbAvcTzSK1eubGlpefzxx7FZwR7nM7kwhZHniJsaEoXDkMS0ffDBB0lft24dhjJdwkcddRSke+GFF9IxTIS80DBKyBL2AYeGb5+h1MO5zz3860ZQwbMYsqDH2KtgRY1cQZbBQic9vgEn50VCUoK1oKUPmKBoaNyOhoAhYAgYAlMTgTEnYIgQZJUCNQ4Lvvjii/PmzcP2Dd3FUCn9u/ArV7WTGDI7+uijyUgPMYkw6wc/+EEiWMCw8sMPP4zaj3/845/+9Kevv/56sq9YsQIbGhuXuN5LeA4zGj3Yx3QPY0yHg6iHdbMDNt05DxdgYTeXF35mBHQGK1jGPCuqeb+QQ4QTbRGVdzp4BXGY7KzQUgwBQ8AQMASmDAJlI2Ad36QmIGx31VVXYbPCuARIkd5ZIpry7LPPMmyqP4SxfVUVETzSkOt9992HPBoYdYW9q+5c+BgN9AG/9rWvPemkk77whS8sXLjwZz/7GaRLRiqgZnRbW9tnP/vZRYsW1dTU1NfXL168uL9y+0/H4u2ZNlQi5nb3LfjxREU6Lw7qZMxr2dGaz+Zqq2sEVoz7RCKXFw6uq67hTUIJmNbFE4ls1szgEiwtaggYAobA1EOgbH3A8CvoCbvE45DlZZdddvbZZ9N3C18ybAoOVtLdtm3boYce+sADD2zatIlL0BKcTV5s0yVLlhBHA+kcsRo5Pfnkk+kJxoSFVtGGdfuWt7yF9AMPPBCFmNH4tAk4n2fNmoWNSxzS1UHU1IcsV1555Yc//GH82FyidLKU4S7TVjebl65ttIX8TLU5ldlPkgopSxSzV5zhBa9oAXOJXIzWFtp2fcRlqJGpMAQMAUPAEJhYCJSNgKE3Wg774liGQRkSRVAsYETIEgaFRzFGIV1GUcHKmLZ0A0NaDz30EObp4YcfTnaC5tIRVRqH0Yn86U9/wmw85ZRTkFm2bBkl4sqGjDmlC3nVqlUXXHABHAzXIgzla146mwkUqkOUNbFMR5bZiMjqknw7GqYyvEzQByxYOBbW9xIqQyTNXg2uc5ojWwbLoh0WDAFDwBAwBKYqAmUjYLgHO48ALxJXPoaM4R4C7AvCykYcMYKPP/74K6644nOf+xz0yQRffMs4nLWz9oQTTvjRj34EN0PSv/nNb/AbH3DAAbfddttHPvKRt771rUcccQSq0HnJJZfQAbzvvvsyk/gHP/gBif/yL/+i5eKC5iWAanAkXQ1T4npKyohDCWlGCrrKhtOl6d1daUzdSjcP2NnFObdStF/JxCTf56oTE3bmdSWXlUlIpIi5bMEQMAQMAUNgiiFQNgKGRzExGR4F00DDHAlquSqkGK/wH25YAnx87bXXfuhDHzr33HOJMweJmUiIYSg/88wzjMbCouUUy5UhV7As05awp2FrSFdLwcn8pS99iYLOO+88ioaVmdREvy8EDDeXlosexDjCxzpAmvhwAn5iQr+uYhgUCY64mnnhoNWVyXAUNCtUytUKNzGJ9wkUiWGMtMslVGzBEDAEDAFDYEoiUDYCBj3ID5blqP5eeFENXy5hg2KV4hyGBbUzeP78+Zi5MCV8jN8YGSVmTGFojFN6henx/fKXv/z5z39eLVd6cMkOxzMBCc2Mq4KSoWEomaCeZzKyvgfLZlEi1eCUQARepD5qH2visI5qpBaps5jVTTKiDL1K929XWhbiSDIcS0LBy+W9mCyUhR3uexHse60Qq3VFsJSD2hW12bchYAgYAobAVEKgbDYY9An3EEAPixOWVbtTWMdN9lWChEqxU2FH5DFwESbOSpMwK3lJhH0RYMAz7MsliJYsOqoZxoVE4XhomzgyXMVWhlZRToTsKNQ1oik9pH8tkUuM1eI4oqB2cK+s2tgwCQJOp2UeML3PSsk6QxiilRT6gN3IbS7RhDCXRQwBQ8AQMASmJgJlI2AIBsJT2zeEEqaBieFRUnDAqoeWOOxIgHSJq90Ms5KidIsPGUpGnhQEGhsbYVwSYWIUtre3I0wiDE1eRm9xig1NBHm1ejGIychRi8ZoRpLiyEv6MAODwqQaUfElS6AxfJjK62bz5qP5PJeFVhnnnM/F8tmEivpxdgxG3s/LfsCEdM7llVWjxfj13RKWAVXLdQuGgCFgCBgCUwiBsrmglSzhOdhO8YOSCcTVElV7l1OolCOXNAJ9qnyfYygfjqZ2+ny1pMNEzaWJWhwpWgfK1VpB21SMgkKBPmX1f+rGN8soZ9lvMCoDp6JZWVoD17LnphaxrW8sno1iqtPxu72ltZD15zd4TFKO+8loRRJKroh5jOGGrf3Kqi3tXnWNV5GIZbs7khWVYgq70eP9V8CuGAKGgCFgCExOBMpmAU9OeLBUez5YwLi4xZzXj9i2EHMhE/NktQ0EmZKU8LPsSBiIupFW2MdiIseiOT/Ckh3kJfgRyeuLQguGgCFgCBgCUxEBI+AR3nUx7XE6OxNfjzJyzItgdscjYiOrbzm0udX+dr3ATs4ZvuFVSbJgCBgChoAhMJUQMAIe9t1WZiWbLOksBMwAZ+kk7k6LEQwBw62hjFsUSzqPpR9a5imJAYzn2Y8wPJqsktGCIWAIGAKGwBREwAh4kJvuRlr1lVF+lQFfxPBC+zijvQ6Z5StrgcXcNr9CryX5qipkhjRjwkmTjEzWsrHQJfhY1BAwBAyBqYaAEfCAd1wplCNdti6UcqokMBU4i90b4X8HFjB9wIzmVtFAXrqGieq4MJ3irKOgZQSWBUPAEDAEDIGpioAR8JDvvFi5EkLIdMoTFjAcy6c7lWFUFS5oBkgjo5+QwYt9wLKJk2YMsjuddjAEDAFDwBCYagiUbRrSVAMOftWdgOkJhpn5pHPYwkx30m7hEI+AtnVClM5LdtQrQ6hDIYsYAoaAIWAITDUEQnNuqjV8hO0N8cLsxaj1cgW/ogqOZeGPTD6fLeRnTK9nahFi2L6FPFExjzll8WoW6tKVQMRILhQS8YQx8Ahvg2UzBAwBQ2DiIxASysRvyhi0AILEq7zzOKwAtYA/xeQVCzgLKUeiMRnZTIrj4MD85TQW4RDsyySzj3xWzJYUC4aAIWAIGAJTEwEj4GHf91606cuUI6VZ+oChVMxixZRkYWbGSOdl6hHLfrH2pK5W7UZJa7mG/7DxtwyGgCFgCEwOBIwAhnYf2dIoCMK//A+AY85vXq7x6UwxwMpnwWq1gIvywXdVRYKuX9ajDhXZIKw+ENmpIWAIGAJTCgEj4KHf7h5/ckmeiFubUgi4o6sTCQiYq45lmR/MRGHSxALWTRhlX6YiAxsBl8BoUUPAEDAEphwCRsCjuOWOSun5VUrtYims4opXziguKA+TCMoQM4zrNkYMSjQCHgX0ltUQMAQMgQmPgBHwILcQcg0s350FHfHqehpEu9Ip+oCTcZnZ5TjZXebgvnXrJ/qAA7oWGXdhZ7WWYggYAoaAITAFEDACHuQmF4dc8S0LbDAmmi5eWeuqOPaqUJCtkPhk8TQX2AGRcVnMToJ22WaRqH68eIRtgzPMFGZmkjK65hqkeLtsCBgChoAhMEkRMAIe6MbCkXCtEKoXK3jscyzbA0e9LImwLYzq5dPJqiT9vGxx3Npa8CM1M2uq8xnZnSErpBwXvo0kidVX+lXx3JrNm/w4i1bm0BOLxtmWQe3jgSph1wwBQ8AQMAQmIwJGwIPeVWYCC0uK2Sozd6FMvuSM/+pEjnl5IWkZaxVNRGQeMJeCLYIDBveS0UKkgAPay5DL7Z7klJoXelD8TcAQMAQMgcmJgC1FOar7qhv6coSZUymWw5L5vm6r375qtQ+Y5Sq5INLyxX97AXJQ2MEQMAQMgamHgBHACO+5cqhyqdKwbjXIrkexiOPV0EB2JVRU0CXsMQqaoyNgkDfwRwi+ZTMEDAFDYBIgYBwwupsYGLOiRAm4MokTuqgzjMg8YEZmyTQknM6SqeRSUdq+DQFDwBAwBKYQAkbAo7vZcKnr+4VPlYCZ76vcWpxkJL3FBLc+h8dKWLI/g7GvgmJHQ8AQMASmMAJGwKO9+QVGMrug7uVknDFYMg9YkNUhVo6KE3GZ+JvO5JB2/CsDqs0QdsjZwRAwBAyBqYiAEfBo73q4noZutMC+v4JpQMpOOfsx6NRhkt2yHTb0ebSgW35DwBAwBCY+AkbAI7yHsuyG53V3dEQSzAH2UnkPAibMaoiK+Rtlmq/TzJDo4pir6upq9kpq3i7Gca7A3oVmADuI7GAIGAKGwJREwAh4hLddR1/p+GdUuI5glrsKxldFQiM3jDDo2c1PUknfYz9gR8DWHzzCO2DZDAFDwBCY2AgYAY/q/imnooI5wJAxBq5TV4CHhYNL2BeejcexlSOpbAaXNOOwSi6Oqg6W2RAwBAwBQ2AiImAEPMK7phYwPb6av7tbOnqZBAzRwsSBWcsalcWNhIWAk+KsTqez2kHsxmaNsHTLZggYAoaAITDRETACHuEdVI6N9BBwN7SrmwHvUiMErIthsWCW2r5Kw7sUtkRDwBAwBAyBSY+AEfAIb3Fg4xaXnezu7kYRFrCo6+tcZm8kCcFqlOk0468kpa+YE7KDIWAIGAKGwNRAwAh45Pc5JFCZ4JtOax+wEDOe53CAc4mjORaTlbdZiyN0QduKHCNH33IaAoaAITDBEbDNGIZ0AwN7l61+i4TKm4tMJJLNf72052PVRrxcIhr4lXveaySnmMmYxpV+PufFu/OJgLl99lnqERxSPUzIEDAEDAFDYLIgsDsIwC0+IYBh/ClumIxqNWpiKKBXc26mDn2lnZ2dpOgKU0TIwrG1tVXF2traNMLsWyIc0a9bEml6OERZT0dxlJ1/HVJM6o26eb153lyivteRyXV7kQ7Pa+xIF9LtM6uDMVlSFtTLWTTG5oN8V3reXjNruwuV61py9B9D3sl4ju2Ee6/ZMYo6WlZDwBAwBAyBCYXA7iDgcFCwztJRuoVlw1OYEu4kBRLdvn07Q4uhXvpTq6qqAFPXWIZZ0QMH19XVdXRAeV5tbS2X2tvb1bULH6OQXI2Njdojizbl7JDgw5qM4B7Bp/C/M14VtGwEGvVjUCivFQysihbS8WiOa8j4Hu8E8lrAmhwYxSRW5L2kn8v78e5CXJSIuoLnu+U8RlAby2IIGAKGgCEwwREYcwKGAqE9yDVkQU2BNdXAhW6bm5vhTtJJnD59OpCqEaxZuMQpzApJa5bQtK2srKypqYGbYV/4mIxkmTlzpo5GRrMybig/GgLe5Y2OFHc+CvuAdylGIlavtlHdAOKZLnqz+8ti6YaAIWAIGAKTGIExJ2AlURhUjVGg1LmzGzduvOiiizBnZ8+effnll5Ouhqz6kGFTKA3ifOqppy699NKGhga4lkhLSwuSSs8PPfTQueeeS/rBBx/8xje+8dZbb6UIpTfMYsRC3tWiqYlm5FJZAmOZi4OgWYhDDPSBpiH5PdOQKF0I2IIhYAgYAobAFEZgNxEw5EQAZ6VADNm3v/3tmzdvvvHGG2+66aa77rrrjDPO4CouZSxdvNBQJpN2duzYQTr+5EceeeSBBx6AfV/96ldDdVi9XLrkkkvg7Lvvvvv3v//9vHnz3vSmN23dupXsyCOgZAzpEqFQjSgTl+t2oxb4nFNaak4DByLg4jQk6h+M1DILuFx3wvQYAoaAITABEdhNo6AhJ+xRWFBpePXq1ffee+8dd9xx3HHHwZfXXHPN6173ui1btsyZMwcM8ULTfQu93XnnnQy5uvrqq0nBf/utb31r4cKF99xzzwknnIDAo48++p//+Z8rVqwgy5e+9KXf/va3zz//vPqfQ6KlOAI8rdawzsQt122S5kQDAh7UAqbQnnnAWgMj4HLdCdNjCBgChsAERGDMLWB1LMNVgMMRIoQdn3jiCQZYwb7E8UivXLkS6/bxxx9XBzLOZ3JhyyLPETc1JIrRPH/+/FmzZt1+++2czpgx47DDDvvNb35DRhzO1113HcL7778/2jCshXV9P+wDDvkY2i7jPdJGqQWsQ7V5SxhAv0JBGzXLAJJ2yRAwBAwBQ2DSIzDmBAwRAqJSoMZhwRdffBGnMbYvhqMOTZo2bdqaNWuIc1U7iSGqo48+moz0EJOI+fi2t70NJzODnImT8eabb8aGRg8dxljJDz74IBHIeO7cuUrkECRmNHH8wwycxpjGcV3GO6qNUjalIFqnFNtfEdouJFUgfC3oT97SDQFDwBAwBCYxAv0SsE71oeVKGBAeXbN9gIAXSVciUTFlPvJeddVVdIjCSQT4kq1wiWjKs88+y8ipPqrCUzhMVRHBI3399dffd999yMPNENiRRx6JO5pCsYzf97737bXXXrfccstzzz139tln0z2Mlazdw0iqGc3o6M9+9rOLFi0ivb6+fvHixWFBo40UCpUV0gpm9PKKgf8cHCilP7XsH4zVzjsBMGImMyaNvZPwCfQnb+mGgCFgCBgCkxuBfvuAoUxajpEKa2I4YqHCediXsCn0hicZQoUjCYjBiOp9hTuJkPeyyy6DFCFLssOL5FLS3bZt26GHHsqIqk2bNnEJ0oKzUUURS5YsIY4G0jlSCqcnn3wyPcGYsKjVOjDgmZr86U9/uuGGG/A2w3kU9/Wvf/1///d/OX7mM59BLLxnVODKK6/88Ic/jB+bOlM6FnN4tSwRZ+GLdx1t1HkAnXpVJQcQs0uGgCFgCBgCUwGBfgkY2xEiJEB+uHY5QnulFh4mJoyipAKD6ignaFI5m8FQBEUQVbAvVI0SjFFI99hjj4WVMW3pBoZrmVCEeXr44YeTnaC5mpqaMBk1DsXiQIa2IfKzzjqLRIpDpw7aQj81hFmZrYRRjgZM8LCqdDYTKJS3BOqpCst+pFyKoHr9aaZkKkYFeKvo6QMes/r0Vw1LNwQMAUPAEBgnCPTrgobSoApYFp6DWjgqxYb1hk4w5oROHPEQ4RQ+hqeJQ6sEiJA4tKSGsvIfR4zg448//oorrvjrX//KFKOLL774qKOOgk1haLp499tvPzp0YV9I+qc//Snjpen6/fOf/3zSSSe9973vPeKII6gV8tQHIxtJrGc83g8//DCDuSgLJbAvpfMqoLUlTt14mVDCDptQlogiSJXQVlHhdkPalV6olropAZvfeVcIWZohYAgYAlMLgX4JGJMOwxHOwBKFVum5hNjABkIlAqXBJXAwLEgK6cQ1QjrypHPEciUdSkZAKRC18CLHa6+9ltFSrKRxzjnnwKx05SIDzb/88suMxtIFN6jAY4899q53vQvixJP8FRcQQzOXsJtR9frXv3758uV//OMff/e732FPc5VLpCND0ZwSiBOoHi5rTSnjUW1qCNi9pvSrGAIGBmDBEGcUFiiJqFnA/QJmFwwBQ8AQmOQI9OuChq7UbMUUhl3oTAUJEmE1AhEojRSOAZc4tzAsC8dARdorrBoQU2uYjlgywrKkMKfoRz/6EQwNGeNeJoUI8pi2arlqx/OXv/zlz3/+8xivCBDQo65plBxwwAEs4kEFeEvgEpXE4EYhRSOPJNVwmWQMdvi6oCllOequvhApxdAuwChWcxfqEYOAqQb1lP7ift98dpHXkgwBQ8AQMAQmHwL98gAMB4exSjP0Bp/h+2XOD9QLWcKyysFwCYjAuByhT9iFQBxSJDtH4pjL8B9x2JdTVJELzchjqpJCnL5bCIy8JMK+CFAuY6m4BCWTBWYN2VQ7hjmlGpRC9egDRg8RLVEliYf0ryUiE3YqEy9XoMHwqSNg6jCQ1rjgIUAFY5+L7wcD5bFrhoAhYAgYApMUgX4JGJ6Aw6BGOmLpf123bt1rX/vagw46iCUvXnjhBdCAg0NShAuhTwiPFAzQECvlSHiUFPRAriFDo1xJC/5WRlfKhG6hUi2XFDLSK4xdS0Z1LKNN9Sj9I4CNzlENXyJo0BJJ0Qg+cEqhOF0jGpnhBCBSlNi+N+s2EowUvBjbHDEDSS9g/Gaw/Hkh8GVKkryDSBa9KCeaiEOc/YTxxYthHpjP/XogJJsFQ8AQMAQMgcmLQA9J7NxGOJhEWJClH5n2Q9cso6W+8Y1vHHLIIawc+atf/Uo7d/EVQ29KlkQ0kYxQJqdE1BLF3oUaOYVf9apGIHIVI7E0qH1MSjiaWrNTkEb0GGYJyyVFK0O5GtH3AwpS+g+zDBqBKfXjrFy27814LCyNu5t0aRzNEzLd1MH7SG1tIjIt4oWMCkOHexGCQiHTBQHXJKMV8UhzMz5xLxtJFDxHyoPWwwQMAUPAEDAEJh0C/RIw7IX5iBEJscGF2K/4hD/60Y/+/e9/ZywU+x+wlxEpH/rQhziGxuikw0fcy3wkFPiGfPP85wMDE/cLYs5mcqREE9GQTpEUYIOMYgHno76HOZ9gUWrh8By5UMILjhC4BUPAEDAEDIGph0BosPVtuvabQr24bZnVQ2Tt2rVMCvqf//kfVn1697vffd5550EkH/vYx0499VTWZ+6bf2qcY1ILAcswcDH0nfN51y1X4xsrnMvufaVf5Hed31INAUPAEDAEJhcC/dIA/mF1EcO+LDL1ve99jwm7CxYswPxlAyIicAlzk3BEM26Z7lWllskFzpBaAwG7sWhumu8AOdzwNOc230EfNrOlBmDrAdTYJUPAEDAEDIHJgUC/BAxJYOAy+okO1Pe85z3stvvVr36VtZfpGGY8M2OhYVxGPzE96YMf/OAUZF/4lHFU4oYuMP5Lfgy8rwzEqa47nGHbSDoCnhy/H2uFIWAIGAKGwAgR6JeAdYgTzlJ4hY0CWUKy1MyFg1lXmc0BKZZVqLSreIRVmODZmFOUSokPWh0GA7QGW1lHioUELBORBiLtAZTZJUPAEDAEDIGJjUC/g7BoFuyrE41mz56NNcyMXnp/X3rpJV03gzm1GqHvs3QE8sTGYzi1V3AgUV5NiA/qBoBtlaRdH/BwSjJZQ8AQMAQMgUmHQL8WMJ5n2IIjTcYaZj4PHEwKEV2TkvRly5a9853v/PjHPz7pYBlegxSlXU6m6qNIp0WBZJ90OzUEDAFDwBCYagj0S8BYafCuksqPf/zjj3zkIx/4wAcYb8WyU//4xz8YC/2JT3yCQVgs0Yw7mm5gpZapAx+GLwObod6KWATHABG89DJvur+Qy0WisqMi7MvCXkhhEDM3yYIhYAgYAobA1ESgXwKGfXVZKwgDAv7lL3954oknascwSLEWxxe+8AW2Q2CL+0suuQR6nmrwlW6jEFrAg/IprynQtlrAgwpPNUitvYaAIWAITCkE+u0Dpn8XqoBxCffffz/7ESltsCIHhi9rUj755JNMEYaVoR+9NKWAo7G8oOjs3rAPeCBOdYzdpw8YI9iCIWAIGAKGwNREoF8CDje0h11wMrPfH1OS8D+zIgdTj7CJly5digzrU5KiPDQFEdSGMwictkOuAxGwm4bE2wySjII26p2CvxZrsiFgCBgCpQj064Km9xdjF4Jh6up3vvOd888/n+OZZ57JWN+bb76ZXXs5YvvefffdLBA9lPFHpaVOjriMgmaRSbcPBC0ahIBdp6/OAw5HsU0OHKwVhoAhYAgYAiNAoF8CxquMaQvH4HBm03sGXn3rW9/aunUrrHzhhReyLseBBx5IeawODftOzXnAQsBuwWedVqTu5QHuAdI6Xwu4zAIeACi7ZAgYAobAVECgXwJmuBD7ALITETR80kknffe73/3a176mRAsHk6hrRMO+0M/UnAesvw+dB0yc+dAD/2Ig3URCfP7hPGBh8IHc1gPrs6uGgCFgCBgCExiBfvuA6fqFfZkwg2H3/PPPK7sQh4NhX1pMBzCuVLozSUR4AmMwWNUDjPyI57OhUYT/MC2e53whKnsO+l43uyL5kUQk2B7YbYXE5sH5ncFNosPLduV8NjQkGPkOhr1dNwQMAUNg0iKwM0cETaWvFxuXgVcs/vy2t72NfZB0sg3Grk5jRQ5WZlQRNDyo8TdB8YMgAahIk1HPT3p+POZlEl5WfMixeFdGWLapPZWNxOfOrPZdMqysexdqdgSdw9nPZb0ZlV48170jF2cicDrvxf2s60SeoPBYtQ0BQ8AQMARGjkC/XlM6ONXSRTcGLiOwbrvtNqb/wrUsQgkZw7tsz8C4aLZkGHn54z5nwL4Yt7L7giPjAmOeMXxjskhYNMKiVulchHjcL8R9zhRSdmqQ6yF7kyUW8SqwmQtYwFE8Bm5YNPL9vgONe2ysgoaAIWAIGAIjR6BfAmb8c0tLS0NDA7qZB3zMMcdAyY899hieZ4xjhmgR6CdW9p2Cg7CcUSskSoQ+Xd5IeDUZYDQ46EUjDMISQtdpSLiyA9tYIhYMAUPAEDAEphYC/RIwnAr7NjU1Ye8+/PDDOiAL0gUeuASywTWtUGk38NSCzYHAWpRYrxAwWNF8nPMRP6LEvDMaMHQkGk3iw/Z95J117EmiGcA7g2UphoAhYAhMAQT6ffzDDTQf9qUnmAgDsh555BFm/aqpBx/DwTt27OAS3cADWH6TFUNdgoPWARMWMKfJZHzQxiYSHm4DCHgyD1obFAUTMAQMAUPAEBigAxIzF/MXiPA5swXhW97yFnZiOO200zZv3ky/7ze/+c1/+7d/Y2sBxJDZuHHjVANT31xoPD4B+sihVazbAYK+o8SiHg58nAdp5z4IWXyAjHbJEDAEDAFDYFIi0K8FzAgs+JU2s9XPN77xjVWrVjU3NzPjCIOYft8DDjjgt7/9LVfV+zp//vxJic7AjYJ98wUPr7x2h8ejuKPldWSXAa7FVqYHGALGi5B285CcD3uX4pZoCBgChoAhMMkR6JeAmWuEk5nWsw3DNddcc+2112IKY8bV19fT6fvKV76S1Six/PA/s1TWJAepn+ZBttj/uOpdV67MD1Z/QD/iwtYQMLYyAsUO9P5kLd0QMAQMAUNgkiPQLwEzAzhcsAmihXox3bB36feFdHFEQ8+kAI8yyiTHaVfNg02ZWdTS0g0O+AY41UFqu5J1I9d8mXKEMKG728voQKxdSluiIWAIGAKGwGRHoF8CxpiDVGg+k5Ho+r3uuutwPrMtkhp5H//4x0nEFEYAjzR7F052oPptn5Kuegv6FcL5XNxAWCVxXBcTBshklwwBQ8AQMAQmLQL9TkOixdAqjMvmg1/60pdOOeWUJ554gmFZX/7yl2+55RZs4qeffhpTeN26dYsWLUJs0iI0WMPUT6AvK0MZDa6SbuC0vN9YMAQMAUPAEJiaCPRrAWOxQavYuESg2L///e8nn3zyW9/6VpzP7373u5mSxCxhGJpLOmFpCsKHz5luYHUD6HYUoZnbHxpk4a2FqwJsf0KWbggYAoaAITAFEBjIAmaY1dKlS+FX7F3o9n3vex/Wm26FpON+1fBlTUo6jKcAVrtuIs3ngm70OygBI1lCwLgN+h01vevCLNUQMAQMAUNgsiAwEAHDvkq0jHxm7u9dd921bds2Gs5QLGYoMZkVgxinNGt00DE8FO6ZLKD1akcvC9jzB2bUPhaww62XNjsxBAwBQ8AQmCII9EvAGL5wKlwLSfzlL39hQyQmJmEH0yW8du1aBl5hFr/5zW+GfWHiQYcgTVY0oduwD3hg6g0RCPuASTECDmGxiCFgCBgCUw2BfvuAGU8EAbMcB+7lj3zkI/ifIWBWoHzuueegHAxf5iPBu3ikOU7ibuCAVmUVjXDaUMzzI9qDy4qSqXzU93LJiOxLyKfYs+sjoydsOEii6mHYVaWf49UmlYuLunAH4an2u7P2GgKGgCEw5RHol4BBhglIis+GDRsgYF30CrrVdOgZ3h366N9dQo0ZrRYkV4lz5DRMCZf40H5WpXmthmrTLKQTdM1qTdepQUMZk6zy/R1hTWiSxTZkb8G8+JeFR31mP8cjsq6GR/dvUyoXzXfNq5U5W7lsNgBUtmmIys4VhALfTDuSK5We11DhFaIV29qzrIUVieKBGOgWuPx2MAQMAUPAEJiECPT79Me01Y5eGn3OOec8+eSTOJ9hRLhNx17BeTCcOp9LSXFYILEkhQ7sIhdxvNmcEpRZKZF04gxxgpUpkdJ1vDElYpGTBUOcalBbFupCGDGYWDuk0YaPl0QyciRousaHeWQVK2hY2BiVfGPXooFdkNjYKFLIJiM5FrjSRFcY2yKF2Gbhb6kHbWTTpAhkHO3KaW9xKOMu28EQMAQMAUNgyiDQbx8wzmdAgMM4HnfccR/84AeZB3zwwQfDYVAg5Ef66173OiXgkREbdi1DgsmrTKlKXLeo2NbwqHIqKQx00sHDel8YCzZr1iyqgYxuSAxDY5fDx9SHXMq4LNGlOkNTeGT11EJ3Pqq3We11XhoQGFQ/WVSSt4qis3pnxZZiCBgChoAhMPkR6JeAaToEqdTFxkcQxle/+lXdfxDmU5MXaoQCIT8lleGiBV0pY2FSoxklOplHZzppKRyxeknXzmZk4H7YF4qlbiFD63KYeookTMxVglYptIPVNT3ceg4sLzN63UsJYpSolu4AWUqmIQ0gZZcMAUPAEDAEJjkC/bpAsUqhPWVBjDw4TP3Pao/Cf9Az6chAfmoFDguqz3zmM2effTbZMbVZ0AN3N3EIEn5V45tESkfnFVdcAeOyMzEGN5syMSiMuiHJkiDvete7IG9o76KLLmKuFCxOrcgOAVNPXhqoJxGENUJ8WJUcVBh1Og2Jyovq/peXDMdhKQFTz0GVm4AhYAgYAobAJEagXwLGl8vc31e96lUYncpk//7v/86OhPAipy+++OK5557LJaU0dUQPCyZM57POOuuCCy7AbNVOZaV55Sf8yZp41VVX3XPPPd/5zncefvhhvM2veMUrtBTK/cAHPnD33Xffe++9N998M1df//rXK4uXsqyzsX2qB0nzokCFh1XJoQgrAVPtoXA7NCyShYK6EHgtGEoRJmMIGAKGgCEw+RDol4Bx5EJ4t99+O+thYVBy+sMf/hDagBc5xeC79dZbQzNOPcnDQucrX/nKZZddduaZZ8K7kDGqUAJTqjNZh19hDbMJBLs+nHfeeawK8v3vf5/NiW+66SbEGJh9/fXX//KXv9x7771RwmrVv/vd79avX8/8KPTAcBxRpRULKVm7tIdVz0GF1fp37yKDyoqAvgRorrBiQ8ppQoaAIWAIGAKTCIF+CRhHLnSL4aiEgZ0KB2OYcoQ8dO1J8bs6T+8IiES7Yzdt2gSdUxaqlJNIhyaVOFnxA/rHvQzglAgrsx41BMzpH/7wBzYqPuKII8iORf7a176WLI899hieaq4q0WJfoo2rsDtcju2ufdgIlCtg9WpZ+t4wsFo1kdVboM0fWN6uGgKGgCFgCExiBPolYNpMFyy8AvWqpQt7QW8kOmsvcLjCfwSoLuQ8dcmSHc5TF6teUhB1MUuc22iGhOBdlEPzsC9xZEhXiiJl69atpCjZa3YqgBucIngPgI8hfuJUAGH6ibGAtaqagh4K+uxnP8uOEbSCTuLFixernrIcMwVZR4MSaea0adJdPXBAuKMrTTWottZzYHm7aggYAoaAITCJERiIgBl1BXcqTRKHxhj3BEGSiDU5e/ZsiASG4xTrE7bDYiZOHyeG8uWXXz5//nw4FXKFsxHQcMwxx9x33304t9GAKta2VOsZUkcSzoZKyQ7ipODuhjiJhKTOVbLAr2gmkbzQM4nIkKhVJbsSP0og6SuvvJKhW8gQMLjLeC9ZKozXEO0gj8U8FsQaNNBkAmJqAYPJoFlMwBAwBAwBQ2BSIjDQNCRIDoZ7z3veAzVCaWz9izUJf2C9kQ4lQ6LwnxqsoAPR6tgijDz6d9/ylrfAf0rP5EISyoRiDzroIDJCrpA3SsIxz6SosQubYigTnzt3Lt3DlDtv3jzok3TMX7XLqQ9vA1QMJaRTOr3Cy5cvJ4Iermoip+gnUGHqVl7Cg0ghYG1ynCU2BgzqMQAHlRTadtOWBsxkFw0BQ8AQMAQmLQL9EjDUCH1eeumlRCBOOPWd73wndhuGJvYrpMspo44VGFgQzuNUOZjjAheUNZGBb9RCJQJrKkeihywwNCxLCmLQJOwOX+JP5pQInMoI58MOOwyd+MBZDORjH/sYaun0/dd//VcuHX744VTmlltuQe0BBxwAwSuLU1XK0jHVam4S11Ot8yiPuioly5QADva/mzAlDQgXg+6jXwk4FsWyl/U6aEKGFSrFGLZgCBgChoAhMBUR6JeAYV/w+Na3vgWxlRqOGHxwIZTGeGMEoB9YjRQsTjgY+kQe5iMQ4RIpHIkjrNYwEQJ2LbT9wAMPQEXYsqTA0PTRQrrQ7Sc+8QlGPpPIKpif+tSnli1bttdee5FIEcwepvSFCxeeeuqp//zP//zTn/6Urt9LLrnkwgsvJBEl1JDKqKdXSnL9yhypktbZpZXnkMnqu0VlvF8gexWExxlJ0MhmM7LImBFwL3jsxBAwBAyBKYTAQLxBZyqGL2ynZAaBQW8E4CEFI5UUvaT+XvhVrU8EEOMqER1aBXEiCU8rtNA205C+/e1vK83vs88+yN92221LlixBgHWnmW5EhJFWX//61ymI6cKYvyeccMKaNWtgLwLyDId+4xvfeOSRR0Lbp5xyyn//93+TSEGY0bwxUG0iWpymcJWMmjL6I7sdoSSVEqudN4wAx/77dJEOjGCHXjZDf7lXSFDV0dfFNBgChoAhYAhMPAQGImBlRwgGZsXNy5E4HKYpsCk8p+nQnsYBAAMU6oWJITyyQKK4l4lzCWsYPkYAxrr66qu/+c1vog3/MyOtSESDcjz6EeaINYxL+eKLL/74xz9emh0uRzNKfvvb35ILA5reYs3CkXTVQ1wDRjb1JJdOUioml+Hb9eRK5zc0mqPW/bNpSMBE9K2FPRn0vaQM9TAVhoAhYAgYAhMNgX4tQuVUjlAXR9oFWWLpcgrnqcmrNi7cySmJKgYbQYGckoWjdu5CgVCmJqKnFCWoGmuVXCjhEsaxXmWgFhE4mNHUFEFcB4UhSR04qkLqoOyrp0hqNZAnjmYiCKMZScie02GFYl1pTrC/b8iyGPjduYgfqaiKeQwDU5AEKQnsAcwOwXL0PN5yopou7It7IEKtCmnfy3jxwEjXTHY0BAwBQ8AQmDIIFPllpwYrTepR6RYaUykSlUrVvaxuZ0iRoAJhRE09EtFAIsRMXK1hIqocVaEYEZXhqo7w0oLCovWUq0S0lFCbnlIl1GoiKaoZSkaexDA7GoYS4EsY1L1KwL6RQnCiFCyTgBs7vEykclokV00boxCqJ4RPgFcLOV+2KyQtXvBjJES8AnwLiDPqKiLR/Pqt7WxhGMhrLjsaAoaAIWAITBkE+iXgKYPAwA1Vw5WjbHOkJy5DEGUz4IKXqIjkE86SJVWYFwn5zxn0KpJi8AqXZ728bBuccMoyhYjs9WjBEDAEDAFDYEoiYAQ8qtueTkt29RAMqkjGbbnubTXQ1YE/aC4TMAQMAUPAEJiUCBgBj/S2Oirt7mY9ShkFrYOZxVndTxCTmOByKWHTLx4k6iU7GgKGgCFgCEwlBIyAR3q3AwKWIWPaFz4URQU3Uku7tI2Ah4KYyRgChoAhMFkRMAIe4Z1VKtUx2+HAsUF1hQPFGQ5mBDwoXCZgCBgChsAkRsAIeIQ3VycrQ6Lkx6U8gPO5tADNFfYBmwu6FByLGwKGgCEwpRAwAh7V7dZ5xuE0qgF0lXKtzr8K5ysPkMsuGQKGgCFgCExWBIyAR3hnmWtMThbIhH11JjSnpSzbRy9A5708U6GRYUdFOJjlNgdah6xPfjs1BAwBQ8AQmFwIGAGP6n4O3QIOimGd6p6lKG0RjlGBb5kNAUPAEJjQCBgBj/T2uVHQYR/wULT0mQfM2plDyWUyhoAhYAgYApMSASPgkd7WkmlIMg94iGp6zwMeYiYTMwQMAUPAEJh8CBgBj/CehtOQdCEO1TIwDWMBl84DZq+IAfqMR1gty2YIGAKGgCEwQRAwAh7hjdIJRcOdB6y5bCGOEYJu2QwBQ8AQmEQIGAGP8GYqlYZ9wAPbvmEZmkvnAVsfcAiLRQwBQ8AQmIII2ESYgW86LyhsZxS8pugJGXAd5wqyx1EmV8h7sp0iBMxVPlwSMpb/nLH1EUc5c1fZ/shHIOHnEvlcOsfuSG6zJCSGEWR7JULBaQ5OnH4pU/UFrm0pWgIXpFqhrKbKlkwaXEYnw3lwUrxm34aAIWAIGAJjg0DxGT022ieFVkedQkxsDJyPeLKac96LRJOV0Gdrdyqdy8+YEc9nvWg2Fy1kYyKDNPsHw77MFY6Sk5ifS0NtscqK9rS3uD4Wz7Rv70x3DZuA2f4wIx9XDb70Q006M5k8lSjkC12dclE/GUi+IOxbyHk5l1Hy5jraW0njBUI/wsQiU/xMittmjTAEDAFDYJwjYAQ8yA1SVioKOfINeCoiVAYhYgDDtr4X8XNusyORIVdOthCOOTuVlGwMAUd4sHFF1IvlMrl8YdgWMPa2flyFtDYcKS4Zj8sCW36BsV1eLpdqbccqLvAyQMES2AmRelFD0cDKIeQiqIaAelWRS7eDIWAIGAKGwFgjYC7okSOcycN0OfzP0SjsCw3qdr+79uH6kUgW/otEYlHWjpZC6QNWFhxGDTCsnedZj5SkL1Ac8/lcKtudjCcrpk3zCrHktKSoTYrHWypERmrJiRi9nPZUUjVIogVDwBAwBAyB3YiAEfDIwXamZi6erMQCdjTmQ8geJ/0EWTYrEscdDQGzGxIEDIUHFNpPll0lo4AgpSiLKg3HIoWUGN6EGF5nNHOko7oSn3jOS0QLUexjGBhpXhR6+NflsIMhYAgYAobAbkfACHjkkKdSOUY1M6fIMdvgehBW4sMrHIvFuvN52UupYvCMJRI4mYV6MWMhW4k5Go7KcK6CjATzI3jFu3B8x6V7mAQkMX3zeT8qVq8Sfp7pyNCxs4WdCtWi6ooJ9m0IGAKGgCEwpgjYQ3fk8JbOQZKhWYQS1+7OerF6lYBldFY8zlkXo7CGGeBdZV/yoQ1Vyr7SuetCAXM85qU87+/rvHXbhYaRpy84LQOznAUciWhFyB7cfq3WMGti4oaAIWAIGAKjQcAIeITo5Qq5TCbDuCfdDHgoBCyDpIpBCRgn9rAC7AvNqqNZ6ZOB2S5BhnPFEgy6jkC3aH1+o/ff1/z8i1+/dlNrCQdjHcPaYodLn7WGMCJ83neqUlHIvg0BQ8AQMATKjUAPJZRb8yTXhz+ZDX0xJWUIFuynDNy/Bey8voK20ie54OMM9ukwg3Jwr0zYvsLC/JdR2axvSawr6728pWnNtqZnX2psbBcPNcGPMjILJ3ZQW2rTi32djB0MAUPAEDAEdg8CRsAjxDkWiW3btg0arqurg0aTiQjDmgfQVXQ/C+chz5bAGNAyZWgUQehTPc/QMq5nL9LRnaInmHqs3rClctr0VN77ze//EKvxWjPiiGZmMr3D7W0dEffSMIqSLashYAgYAobAaBEwAh45gmr1qgU8dC1wJcSp7mjdTnjoeVWy7z1Tm5o1Nzy/ojIJ+5LQ0rqjvTvlJSrWb228/5F1OKc7mACMZZzO1NTWynxl7Q4uLRv/MzUTVrdgCBgChoAhMOYI9H2Yj3mBk6gATFhaQ29uAGL//mdttBrBsCDyjIImUYdxDQsSpUih8CAb325otHigGV7lscIlYevWrblcZsnyZds7u2+7+75OuShGcFp4OlJK/EU9ksuCIWAIGAKGwG5DwB6/I4e6dBT0ULTo9FslYBm65fu6mdJQ8qqM8q6jXGepokuI2A2FrmA+UwQW1s7oLZs3ViTjxx+/cvGy5f948eW7HlhN3u6CV1VdISOxNDgjuBjV7/BaIGJfhoAhYAgYAmOEgBHwCIHFh6sErPOARctgFrCWJKQpa3HIalhdw5+HpEtSywJXqggtMjMYezqSzmSZZ1QRF25ubtoS93OHHlx30itP6cjk77jrXqYcU0EydXR0RKNuLS6piLmcHQp2MAQMAUNgtyNgBDxCyEsJGMITNhwiATvi1GlIw7WAZRYSo65k4FVvU5UaeJFMmoVBxCJmCHSqoy1SSNdWeseunDtnwfyX12+89+GX9GYnk5U9bQ5ZXBSqzt6ae0QtZggYAoaAIVBOBIyAR45m2AeMCphviEElIWDkR9AHLFwvKnaiSfZcisd1Hcwtm9pjkXxtpcwLrot4xx53Ei8Hd91zb2unvCgkGLAtYScNLtUOhoAhYAgYArsHASPgQXDGtlQD19mW6rCVbtZuXL6FRKyQqfRTMhFYCFim2HLkoOSmefUs78fYxBC46afFXxzzC9lIMlWIDpm4tZ4oZqwyRy3LbQChS2uwqKWsiSkVWd+4w0/W1tfVTve8Ws876YhlsWTixfUbV61vYggWnyKFZ1mTg1Mc2r7MYnKN4MuCIWAIGAKGwNgjsIcJGCMytALVoOQ0TNm+fbsiQF+pDtxVGRJVhu5M4hx1Qq3OCyod4qvZR3GE6hjqnA14SxQJUzHVh3HFq7e1V3vp5dNi7EPISOh0NuP2AEYmRJXsZIUTI1nPZ1YuqzLXxfKFVG7R/Bntuci2Ln+gucM71xtN7GHIpr8+CoV9tX4cZf2rbCevApS3uindnqtaMHPWdM+b43mHNHivPuvMNds7fvLrW+gJzshKHSjKeX4mLTs1uDxsVCiVHLolL0VaMAQMAUPAEBgxAiFVjFjDqDLiiWU4UmenTJMhzgZBnBKUaKdPn0468crKSqbbwrLquYVikWlqamJfW5iYIyOhkGTuDUdGFwfrUnEy+iAdrvJfiKoYiEPLqXwEC7gqkob2oEJIsYR6naj218qc2+CDWNTLxb10LAKTx9DguLOod0jfKBMTXD/kUOWSkEtTA9JbU37KT8ysn85Qq6qcV5H3jj1y/0WLljS2dt71cAu07ax57F63KKUWihZphZjwFgwBQ8AQMAR2AwJ7koCxa1lJikbCuxohrhEYtL29XdtPig5WgmXV5IWM4d0ZM2YgwIoWxNEAPc+dO5cj9Fy66rIqGYsjhaKWdwIdfRWuddVfWeEgLaqnbxLUvD/h/tNhyX7umh/J5Au8HOA5yGczixbMQwmET9irxnvFkYdub2v86wN3S619r8tPpLxkvODHyADtxvRgDNw/8HbFEDAEDIGyItDPo7ysZfSnDMZS0mI1x9bWVviY5SlIwSCGa2tqatSxDKFWVFSoYxljt3TqDpJkwRrmSFxl4Lbhjy7ur44DpSt9UnrJJgsDye9MwGWtZ4StiFmJAwu4sbGRus2bOxtihV6pHnOEzzhmxbRpyTUb1zz2zLaUTx82RnzUFy92wYtivpOPIIb5QG2wa4aAIWAIGAJlQmCPPW0/85nPnH322fiWq6qqYN9p06YRh0GxcUmhdSSqY/mKK66YNWsW7ugTTjjh6aefRgxihmPe9ra3LV26FMKeP3/+5ZdfXl9fr3QO96h9WSaIdq0Gy10JmEqq31ZL37W0Sw3du1jw0DbypS8TA2TsfYlbFtw1jQVq8SVEZWR1d0YI2C/kG6bJcGcIGI9ztNPbf7Z34pGHtmxvuu2+B+k5ZxHqoPuZHmyRyoijXVm4d3l2ZggYAoaAITAWCASP8rFQPbBOPMxnnXXWBRdcgKWLBYwwfIa3GWOXeEtLiyZeddVV99xzz3e+851bb70VyfPPPx/2hb2effZZKPn666+Hp//zP//zpptueve7340BqG7q4a7PPHBVd3k1JGCxgJ3EUAm4gI0pmxiSadgWMGRbpHEKxXrlE1Qvwk4LshfhjlYPbKfVVldVBEQNNdcmvaq89+oTjqmI+Q+tWvX0ZmcZkxNtUvtsoAdr2IIhYAgYAobAbkFgjxHwV77ylcsuu+zMM8+EdyEMbEEIDE+ycqcOv8Iavu6660477bTzzjtv5cqVP/7xj9mA6Be/+AXIHH/88VdfffWJJ55IR+xb3vKWd77znTfeeKMihomsvbNjCiBMpSPF1NoO+7AHLVQl1dmuNvSgWUoEuF+y8nORJ2HffPEW+qzzTHrT9lYcCTNnzkxGhVtJYcCXhK7MwfNrTj7m6M3dHb+7+9Es5i7rdTAgS646IxhRGZVlwRAwBAwBQ2B3IFB8eu+OsnqVof21mzZtgsDwOcOaykakQ59qTa5du/bll1++6KKLyAlJM8Zq3333feihh/QqRwKeZ3p/ybLffvuRFyLHhh46Hfaq0zBPirshSTZKpDJDUaB102FiI3lRkBFYuywoksnJ6OjWNhzMkfppdTFfCJgxWDIMq7vNy6eYifzqU1+Zj8fveeyxrpSXTnldeS8tUk4hBDy0JgylmSZjCBgChoAhMDACZSNg5RI4KXSrYr8qRZXSDCYsFWpra8PShS/hXSgTNoJ9iXOJdKxDIqTotCIGXnGK/xk9jHxGHjJWT7Vy3ubNm7/2ta+94x3vUJ0IQ3IUzSlx5BkVjOOaSHNzMyllCdiMNFCq1CBWphKqtrc//eosZi9ejM/Zs2upPBpUmIz6RsJpKVy7UgVZyl0rciaFixuaZaCTlVV0627cvJWGN9RPB8So+Ja9zs4OLxljyDMVnT+78pWvOIFyr/nRvRXVMj6rI+umAqMP+sYotmAIGAKGgCGwWxAoGwHDmpAc5AE10oPLqCjGRsGp2i8L2Wg45phj7rvvvtraWvpuhScaGtQilJ7USARigHfJTttJoRsY3iWipI4GMiJDInGGGiH24osvMpjrjDPOeM973sMpl2B3IsqIGzduhJsPPPBAaoWdvXz5ci6VJYi315XiiFDiVEm+hhBkIhGOZN+XF4UhyJeIcL/wPxfvmptnrKUWfHhdXMktO1pRO2tGfVxIWnzKtVWV8o7g5fKZdEXUO3nFkfUV8XWbN7ywTpL9CBORKllqJIdF7F5ZSoqzqCFgCBgChsBYISC2ZrkCA6DgYLThFqZ/l65ZunKhZJgGrsWQhUehz4MOOgj2hVxhSmzTcMwzKWrswrgYysTxOWPsrlu3bt48mdKKkhdeeOGwww7DXoRf6ebcsmULI7lOOeWU7373u9oji5mro7eoCfXhJYBB1JdccgmvArwi7NixY84c1oYqQ9AZvOiEDB0XD0MnBAzTAUu+UMhAmwzKikRC63lgIod9lbMdCZfQtxtGhQG7ectWMF+0YL6Y/14WMVleg55e32vLMe04ccKiinuWL7v3gUfvevyZvRYdhFiGNbByXm2MaInuYTTIRA0BQ8AQMASGjUDZCBhuYyqRcjDHBS5gzsKmVAp2pK8XLysRyAaOhG8wZ8kCW8CyypqYbjAolMy8I3Kpzfrwww8r6UKidABfeeWVat1iAZOOSQ37akaUhBOQtFyUEOE9QN3aiA0boX4ydHcLgyYScVhLlQrPiTW66yL6pLJrAq1g/RHeWAoV0n9M6KeonmSUwJB6dPwql6BYDF/S9dKWbU2sNDl7Dl3AJOVikUghU/AZcwUQ1UkW8KrxvHNPOu6BRx+874kHXnXsQctmy5zgykR1BHu6u8urkI4AC4aAIWAIGAJjjYCzo8pRCFQKp2LgcoRlGRiFvcszH0KF9pQy1RrW0rBrmdT7wAMPQNJ04q5atWrNmjVcgnShVeYXqdg555zzqU996vbbb0cYP/Ohhx6KvculJ598EtsXyV/96leoIq92IXNJiw67VCmdclUbRrNGRn/UnXyV5mXs0zAD9IlBT6ZUCjNY2HkoBIyYsm9QmnNBB3F3KZXz2jo6qdX0WuenZuFoKocYk7tiMfLywpXd4R17wLSVKw568aUX/nrfo7gsulkDWmpQ/IQaLWIIGAKGgCEwZgiUzQKmhvCc+pCJY4mqT1h5EVaGb7CMtSFwM9OQvv3tb+t0o3322Qf52267bcmSJQhArviWiUClX//617GGmS4MP5188snf//73NcsTTzyBZQx1qX4IHtZh1DTCqCKQnUJJJ6OO2KJ6CGgFRn/s7s6gWQsail0t9qgGpNk60BEwGnj/yOcxU3vehEgsig7jW4mZScAorJtZV+GWlhTqTaf8ZHU2EtnelaqplP2SMumOZKH6rFNOfPDRx+544MHTzjiyoVLIl2FcMbJZMAQMAUPAENgtCPQ890dZHHSrbl46X3EpQ42QE5xHdy+alaiwhokjACMyixcjlfFWcC3C9Acz01c5m9P3v//9HLGGMakvvvhiuorXr19/ww03HHvsscxcQsmFF15IXmQ0kBHlGLgopyziyr7aKLXCqR4rZ2nK6I/wHEq0yUPUprxKxVSeNxJ4l5rThCFqQEz9zEV5MgZ5Uc6lrVubs6yB1dCA319urQxslr0gOnFTO/ZN5D3WHGPHxMOWzTlpxYoNLc1/uPMFepXZFjEn1UBHUL1iEfZtCBgChoAhMCYIlI2AsduUWjBz4Vc14zhq5y50BRlrYqm1R5swmmFicmHCckkHPJOuzA0HM5AKWkUM/ShhQBba4Hic3ogpe6GBjOhHD1cxi1FFIlkQCOujA6SHCSTGqsy9FX+xhMA87c5Hc14sHi1gM9JyvSbHHk4spkmOcOkMrtNj69y9LMTs+9kcQ7HCXYGF/9xoKlGomkr1oUlM50BxVjjWmctaPaYTbWntyPqxGbV+4GrwEl6C2UeFjkwKnwAZM50ZL5ZPdXVUR7yTjj0qUVlx6513tqdlupIfjaWlzLL9JIJq2pchYAgYAobArhAo29MWWzA0B8OIdnNSLuRKorqC1RomUZkYEgrFiKgMV5VflbPVdy0FuCnCaGO6kTZHBdAZZuSqXtIiEAhNTBUOrw4aYcgx2wUVMHS9LB8nD2IyDnlrezYTqVwwsx4CrpCEfHdK3gCcBSmSOyOr+Xk/gGKRa6DXvJBt2t7hJ1hDw71JSJ9uppBjUBSznITV4WodYAUxCjliqkL7rO0s+/gKkXs+q2uwmYLHXCIm8T6zsbkrHtt3QbIOlzJXY3VeJI552xBPygqfuCKqYWE8EIy69lYesmjR7Nldnak/3v1yu5Nnf+BdVdzltIMhYAgYAoZAWRHYmSbKqn7iK1P+E/aTjf6CAOd15xnDHIlHfSxLthBCQJhersuhF6zFnYbEEhYzVBZ/5ENeMtDzSgaI25E30dACDtZlpqxegXOZCExlmDrEV9G2lmHOXmNniq7p2dOkD1xInSLd3oW8JfCRILse0ZY8C1VSwLmvPquzvf2+xx/Z7vg8Ea9yTVBROxoChoAhYAiMIQK9mGIMy5l0qrW7Wq1tNaz1CMXtsq0hsYUeeDXrVU8xC1KD3RGnXohV8hS/iULFvte4ZSvrbcybO5eEwC/u5Djt0VtMyWa84w9vWLJo4eoXVj366AYsZlsKGqAsGAKGgCGwexDoeSzvnvImTSl0OWvvMi1S6g0d6aVkV9peR3wFtptQF3Sl8wqLHoT0PjgCLBJ5P0we0KfuwUA2yYnVrPsZbdu6mRnGMxpmldxXnZ0sFQkSKcUpqUxIr/C5r311MhG/+eab0zJay4ZgCVAWDAFDwBDYDQiUPKh3Q2mTqIi+BFyc6zxAEwPqjDLkSji3qlq6ZZkujSeZc0kqGQ4dCO+srnjBffcsS+nHvM6s176jtbayoo6dCKFb7m0g3Psuk+jjPxcKx+o9bkVDQ101E6lbtpc42Xcu11IMAUPAEDAEyopA70dzWVVPbmWlBCwtzWOF9nBjScetIMx/+LXksnQDV4kFXOhOZ7JF05MhWKLKbRAoERd63SHhTlWkJQQDorFpc1Fvw5auQi47p76B1bmQYmVJEXK7J6HE5XMdwJLC9GghaLa5qPK86TXVDGpbvdZ5oYNi7csQMAQMAUNgbBHo9Xgf26Iml3advxuOuA5n94aOXseQO8Hr5trqFgxJtidymz6xTKRawGxpKHwpQ6mFI/lPrCc4ChWKJuKYFBlXipxhy67duKUyHps/qwETW1UE47ic77mnKm4QGAKwNx/y7r1sCf7zF9duRIkq7CnUYoaAIWAIGAJjg0DPY3ls9E9arUwypm1hv6/OdFLfch8TVinZsaczhIubGcUidNcyVrkATUJ7fOSKdAMPdFNybKwgoKq1LEOgNS8TiLY0N9ObO7OuDgJWFelshqiehdOL1SbO5aUkBmqx9PPB++/DqiaNOzpYr8Mpn7R3zRpmCBgChsD4QWCgZ/34qeU4rAmbT+jiIRiRTO2NJhKZbKbHC71TjQHaGa8+G1PgAOa0IpmAtne0tjHLmDWc4XN2QhZKZI1oIcddBKVbuYAlTa9zUQQOVgvYz2UXz5kTj3jd6W4uJtkAwzF0kX2VXoXjGerFV1XEY8mOuuoKXNCPPPUcKUbARVDt2xAwBAyBsUUgfIaPbTGTT7tawLowiLauOHq5D6RisSqdugt552EWCzURlam52bzsLNzDpXLFiZckIebs48DYJS6LPLsk5UuOEPCOjq5CJjtzWi1641FWI2FlDtzbYYCz9Sy0icUFjfB0FolmK8l8ZLvTGmawiCFgCBgChsDYIdCHLcauoMmmubQPWKm3SMClLe2BVzlYrjFd14VEUgg4lZUdgXvszt4DoYtsrDlETIdMl2SQS2jABd24fQfm9YJZM9CbEPc2vm1R55Tjsg64GI80MezfbIblvYSAZ05PsmIoVvi6zX0UB+XalyFgCBgChkDZEehhiLKrntwKWZ6aBur6l0q9rLBRwp67aL1gDRnifnY2cZXsvJvv7mL+rRi9kKJjSK66zy4UBDJOLLCAXVy0dkDAra3Q7uyGcM0ucWRzSWXcGlgS5b/UQmLZqCyx6dVVejNnNvAisGbD9kC4pHT85ISSBIsaAoaAIWAIlAEBI+ARglg6DUkWt3IjmAfgqYDBVKKQA/fqyihLUXalupURtR69+G9XrFfUExi2movE5g6vI5WuramqYfOFXOD0hmV7lCNUVKiJLAiCaCGbxhG9cOHCnB9bu2FzrwoUsTECLiJh34aAIWAIlA0BI+ARQlm0gAVAsYDdwo8hURWZrofzgmICApbrlRjAbnNGum/FHu0j26PCXZODkCPJcqXHnxyw6ubGTsY1z5kpa2DpmtQqL/l6QqBBE+IJRntl/Txjxzx2YtZhXBx1C6kwE62TBlowBAwBQ8AQKCsCRsAjhLO4FrRkh590TFZIwCQ6muTLIewmA4moLDYle/RCaEm3ZWB3RvZUGDiEXExEjVeRD1Nd4qatW9hVav7ceZQnxFq8yncQLXK2ZmWfRhmzXchH3ZDshQtnsyvilm2NvEj0IWDkjYAFcAuGgCFgCJQVASPgQeCEKR1GLC6Fp1aCUmCGibSFAuOoFEGGMiPpenJFxsXdF5c5KUbl24+zxSGGJpOFoh70KxOK6YhlVQ43f5dh0qzFwSfIJV8BiUZ00LKUGImRGUtXcskIaG/bjlQ+WjV9+nTZ7igGAbPSJCryZHE1jEgWPk4vifl0RpgZqUicHA3TuZBpbW2mZzujFVHqFtqWicolRB7UpidFKmjBEDAEDAFDYHgIKH0ML8/UkYbBZD3HQi6dj7APbzaXZdkM6G5jG5YtBJhrSLLlfT6VycaTrOrIvsGwXoYPuUBW7FylUlgxJ9sAe/HKrJdIxStQMqvGi2Va27o7YcUEmwmmGCaVge2yfgFRySsBBkVW0qFb9v5l5Uj2A/bYb5AFJ13GQncbCc+u2+7XzmMwM/3R3Uxtigi1xrI+y11C0myVlPWSKflQmvyvYKXKLHWszHTLah6VEW/x3Gq/0L5qc1sza2NyhfeCnJjDmTS91Gw/rE52KuIIuMB1SSSvBUPAEDAEDIERIGAEPDBoMnsHKoRm+DhPrFBOGkaC3oJZwLleHlpnMjqagql01hAMl49Ixywc5mcjUaYMwW7wZ8KXScDICSviNSYvzmyXwtEFLmpCUIkoBUtSzJmyKdg/FhWjt7m1qyPtz5gxg6uRiC8Le+S8qM/rgRjKlAKN8wnUUhDsSWohEomiUsLCOfWxWGbNpk2FJG8brjgIuFCIuXlTyCDusrj6BZV0rCy5LRgChoAhYAgMDwEj4OHhpVybYYVH6DORkC8hvCKM0vVajLtLOx2EzpHgGPOxmGHeiMxnIuhAp6KjOzCA9VLpETYtvSYu7Ur4cntTYz7TtWBBPbLYvhyzLLlVDOTQT0/lqKrTE2XUtLu67957Yb//4x//SKonHVFZxsOna9npVPGiRvs2BAwBQ8AQGB0CPQ/k0emZ1LlLxgDrYpPMQaLBlTqOGVs2Eg0HPTkg+qIq5FdUokSIGIZlRTwBIXemZUPfkN+cvVrEUxleztRMDUZXISNiYi1jXkfb0l5XZ2vMy86eGWSEg0v2hyhqc9+OdqVCckZPsB+8EOy9dGk+nV794suUKYY5Qax5kexVJUmRZBf6trSYbt+GgCFgCBgCgyBgD9BBACq9HJJoLwJ23NubgEszBXHNC5WBOPzFUVzQyRgjuTq6HBuSipaelStDJbCgEqGkaEEwohvDLMyY8WJbm9t5BahnRUm6i3E0S8BwFcu1NGjRQQpWu5/P5nCHS2WwxOfPTkTyuebmFixy13vNFTQwxdn902w9LwSBGvsyBAwBQ8AQGBkCPHstDA8BrE6dBIwFLHwUEHCRmgLrEGCDvQJdQi/u0/JIiscZEe11dsNwjpad4Vk6l6mkZk5/oBxGdjSLFRuJE9uwuTEZ9RbOnKa3kyWgySgEjLx+it+cqYykE2colkvhqz7pNdTVpjK5jU2BAczuEIhhSavdLxl6hUBTrzQ7MQQMAUPAEBgaAvYMHRpOJVKMO2L7IxLCzYCJK2vKsVcPbUk2EQrYENCVCOkDhldT2qWMAKoLEd/NEpahyT0h8D+ToJ5j515meJXQJz29GxtbYoXMgtkNqI3HWBDa9f5i47o9E0M1vdiXE+i7gj0bpDIExlcvnjfPi0RfXruBPm72PXTLVkeoTj8E7LLZwRAwBAwBQ2BECBgBDxs2SLbXVkjqFO6lpofpeif3kKpKYKRiXaZyjEh2oed6eEqSsm/Awc71HPA9o78gzy7Pa2ntjBQys+oqhJDpwc0xfFm4ulAySJk73etmy4hrty+Do1+GTeOFnjd7TsSPbW5sKRKwvDTwVtFTLyfsCrGDIWAIGAKGwKgQ6PVMHpWmyZsZGpO9hVxgKjDrTLEZMH26OJCdAzfCTsDMAIbs/HA49C7REB6TEcbKvsy2rampwopt6+iAL5lrLItj5fPxKAtyBFbpzmooAT5MxNlLWOYIwbSQ99pN2yLZ1PJ5DZxSUyomGXEdE5E5ShIoVD96KnIQsJfPZFJEK6Neqss7aO99YonEY089Q3vlGqJQvBrdQTb7MgQMAUPAECgPAkViKY+2ya9F2aiPBdxDUbLwpH4CKHbCt2e8M7wWi4gFnGVNLUzNIkMGhNkLS5m3G/q2dRVJnyU+iEU9BmQ3t3cypXhWXSWraxFishkw/Kr2sFBpWA0ilOOu4lcWIzgaw1AWgeq4N3tGQyad60hlO90kYWdHowbb2IIhYAgYAoZAmREIn8xl1jsp1YVE26sPuMBiFiUwBvzWGwA4kOCWjcK2VBaE1tRU7U6nHAGTjL1Zoqq3DjlzyoMOYE6dq3l73tvWsiMeyS+aVatrajD4SlYKgeFLnMdOuzN6pTJSiuN9Z+DmM3Q5V8VYDKsKu7y9K9PUIoa1ErBbK1rk5b82hIiLujHd7sQOhoAhYAgYAsNEQB6qFgZGQHlXqUfj4ShoMtJD6ihK+K4YnAO3eNLfN/ZpZUUFdm1HVwqrN8juvno0iRuYkntZxWGfLL5xLmzv8tpTucq4P4NhVEWC3HmJSPzN4nIuCSyryRJdKJeu5HyB8WA1Ca+mdlp3Jre5sUsuOGGOMhFJgib0lOIS7WAIGAKGgCEwEgSMgIeHmhJw6TzgkA4DBtXtj3bWijGq9qhTAcXyqWAQcsHv7GYcVY+bWC+FVLqzJoZuFRlaOni37WAdj/i0GrpxhSJLxl2FrF7UAY0WOZhv3MwZMXTzLDYprwx5mfa7aNGSTCGycfMWBMSH7UoqEnBRj30bAoaAIWAIjBoBI+AhQOioFfak19R1nHo7E3Dg6w2++tPJsCm5hJTyYDKZVAtY2A6qc+Spl/qogB4DexSajLKEtIybZowVwpu2pqOJ5Lw5s6BLt2yzZI1qB7As6yF2a0DYfVVzRbXKTCNEc1lv+d57Mwt43fqNyOpKHn0z9amZnRoChoAhYAiMCAEj4KHCFnIrfludaAt9klkt4PDqUNQJ6G7cEzOJZRpSRmYVC0kyGmrAAFtn3QocbhQYa1BGmfC7fuMWeo4XzJ+HUtaWxp/sGLdXB/DOWkWGjRjE6M3nZD0sKZqKLV26jEFh6zduTkHxzpVO03Rx6Z2VWIohYAgYAobAiBEwAh4edPBmio1z81BXpjIi+/lpkMHNYSjajOFVIVcxnmXabhDcohwJhm/lY1m3tQPXMUHlajF7UZQ8cZ9tD9EhU5BlkQ3Zi9hdhrubmrfn8pGGhoZ8NssEJrpy83lWk8zDo06kpxY9pct7Qy4qU3+5Gslm3NQot4jHvOlRP9u9dUd7ByqoMnZwIcvuim7FaFd/kiBmH+rOs/q0o3tXjh0MAUPAEDAEhoNAydN5ONnKJYspqSOKUahmJadhyvbt27Wgrq4uN94oWAMS+6+zs5NLRJSJ9GpbW5ue6lXNO6ojHbpYhq5bV6YCF1gxIwIBbt7Rnch1zqyQ7e5jyWRXOoPvV+pfMswJntKPq4Ab3hyNM29IWZCVI71MYUZdpZ+vzKaTUkih4MdjTMtFQIYfS2Zn7bJpoWzXqzOM2AEinkl3xuJJakLdqhLemnWb2Jx48ZLlqa6069JFmhozvygSDGNWCMIKEZG9mJjPnECt78WTFdXyckCVPO/AGV6dn9qW8Va1ejI9GbbNZ/xCjtbLGXkjwrqAEPNSfHTnJJGzYAgYAoaAITAcBPYwATMPBzes8iXxbDbLKUHJePr06bSFOKsuQ7FQFF7fpqYmRiFVVTHkV5Y7ZkgTNKwEXF1drYOkes0LGg4cfWUdV8E6Sl5cxaiEFbMwXiFbFZHlGgkUSnoJ+bpUkvTjzoS44DLfLTHpC6VH/Gw8Qs5oLrCAkQ4C9qULLqV4Imky6CqPrcyXuyba6JAGgdqaOnGJcy5+bBlaJTLUPGB8py9shpzxzsAHIziwg2kktcKrvnBmPZsWb9rO8GjEMI5LRnYRxw0elE6XNgW5ijj1djAEDAFDwBAYOgLyiN1TAbtWDVZ4VyPURCMQant7u1aMFDiGZZPhucbGxrq6Ok2HmMmI1QsNcxUSUt6FoSsqKsrbKOG1okYilMsZLwqapuUq9xelBv8ml2pQi1+zF48DZffdulziA45EGrezglUHRD69zksmWPdKmLcgDnG5s2GdB1LX+xo5ly9dwnCsDeuaMYm72CnCqQqknDOgh8dl1jJnFgwBQ8AQMASGjcCeJGDIRvkGTm1tbYWPlWUxiDHmampqdLotzAqhcqRxmMK6eEVLSwsR5Gtra7XR0PCWLVuI0xs6bBgGy1A6xgrLUg30ykpsRwlRZUQZSTykoC8ZELAO46LhZFMoBlnMMlAvBYmBG/W2Nnfm0yk2IqwMS5a+5ljQqQtmQ61UkJ8fxF7Ll+bS6ZdfXk0RmOxyIRiCHWgrquRSMRqWbhFDwBAwBAyBoSHgHq9DEy2v1Gc+85mzzz4bQsWZDPtOmzaNOCzb0dGh7mUSlZ+uuOKKWbNm4V4+/fTT6RXG+sQ4rq+vpz7K0MuXL4e9Vq1aNWfOHBKJ6zSh8lZYtDmKhdQgYEqB9MTEpO/WlaQM6qK7PoRWvl6GKNVSh4B7eGxQFiebrELJjYtSk63N2yOF7PyZM0o1uAWq3J0dpgmsShbPn8/GwJs3biJ3vLJCuodzPYPMSES101783nVzLdUQMAQMAUNgIATcg3QggbG6BomeddZZF1xwAZauepXxxEJRykkYuJp41VVX3XPPPd/5znceeeQRTN4VK1bghSYL1SICQ1900UUrV66EvPFFw8dogMWxjMtb79AChn6YJqsuaLiJENLqoASMcCijM4FDAg5qi5U/KAGLEpnuy3hnJg9tbWqOFnJL5s50VcFkZWwWF2l+RHp/gy2JA/VD/Jo3q6o6GWvd3tzUKaOfhYCLQQld0sQCVwLuuVqUsm9DwBAwBAyBwRHYY0/Pr3zlK5dddtmZZ54J70LGYgX6PsSJJ5la6/ArrOHrrrvutNNOO++88w466KCf/OQnCD/77LPqap45c+aNN974xBNPvPOd74Sb0QAfo0Q7jAdv+kglcMcqAcss4CIBKzMNrDKkaiIaV3e62vGiynl6UQXDDRbkxtE9u7llO6OU59bXsv+RsDvs6xbf4KrwsPOND6aq13X2JWyo9KbXVqW7uzZsScucJ4g2GfR2i1PaES9zkFwJbuR0LwV2YggYAoaAITAkBPYYAWuf7qZNmyAhfM6YsDoWiXToTS3FtWvXvvzyy9i4NIVEOnf33Xff3/3ud7iaodutW7deeuml3/ve90466ST81ZjFDN0iO87qsrugSy1gWFIHXVOrkHdDgSGhXhTStw3qrIyrrFy8uOtvV6JbvNnzOgteS2enn09Nr5CNEYV73ShlXNPF6U7ZniruWl+vVH4NrHKJqmmVSaZcbW3ZwWCzdAZ9QdD2FsdBMwabHHvsJ1SslH0bAoaAITAhESjb01ONQpgpJD/sVyUqvaTwbNu2jYgOXYZ44F2olOFIsC9xLumQZiKkQLFEIFSOGMf0vO69995YwJyiGWK+5JJLjjnmGHbnJQUzGj1KaZjCCGgc/fQcY2USaW5uRnIEAWqEI7NM0vW8jg6xNeF7yEn4x5nsQsAYoAPyMNXTbRuiEZk9hRd65vSIvnB0O45jVHR3RwcFBUto9FPRjk5kxNFMgS+sWVdXmVw2X9ahlECqC3LZjdNyM5eCxKF8MTU4k/WOPvKQqF94/sWXaWM0GOyNyasa+abuYgmzLEn4CjIU5SZjCBgChoAhECJQNgKGICE5uJZ+TXpwL7/88vnz58OpkI56hqEcAnx53333MXQZmxWCxKhVs48JOUjC2fAu2akfKXQDw3NEIHVIFD3IzJ07Fyb+9a9/vWbNmk984hMMmYZZkac4bRUsC/siyenGjRu/9rWvHXjggdQKO5vhWioz3CM1J4s0QFb/kNxUvkh2JcqcWMn54FHRI1OZA8liQf1mhPeiTDdyU31bPa+1OxX3szNrY84CJplXgPCeIguBDiPQIj4VMW9uw3R2CW5s2cGSWlI1aaoQcEC3BdTKS4Kx7zDANVFDwBAwBHojUM7BShCkdmcyRJn+3be85S105ULJkAo0o55hKJbeXNgXcsUOhlbDMc+kqLEL42IoE4drsWvXrVs3b948GBTlTz311CmnnILX+qc//enq1avJC/suWLCARi1btuz//J//86UvfUmnISFMfWBlBlFjKPMqwCsCtrKOlO4NwuBnSqzKjinZPFDeD0KiGzz/ThLiLnb8RVt450gznsp1swKUaO8/sBhlPBZncS5M8sZ2ry2VnlEZnV2ny1hJNrLDi8KYfIudyoyk4dQ0n4tHoovmz45FvA1bGttzXtG4Frblv1RP16x2A7ECy1uKs2AIGAKGgCEwDATKRsBwG1OJlIM5QooEiAWiojrYrDAN7lYi2KZwLUYqdjBZYGhYlhTEsIYhVGiVeUecqs368MMPH3bYYejk0jPPPMO4aC5dc801KF+/fj2SL7300jnnnMMQrVe/+tU6QBqdWi6SRHgPgH1VP8cRhFICphpooD4BhTp1wzd94UjJhB4a0t2d92qEJgEHhnP0uetqsvpUlOss+Ox7TR1eOu9Pq66oDhaZxioVwxQN4hoOGHPXevpJJSvra0bnzGCv4uSWxhY2G87VcF9Yfovq0f3tHAvO046olmUc3A+YlmwIGAKGwEAIlI2AoVI4FXKCQmBZJVrMVlI4qkNYrWGtDnYtFvADDzwA/WzevJlEGHrx4sWQLnSLb5mRzyTCrJ/61KewbvEe0+m7//77v/GNb8RHjSR0TpcwMnAYxyOOOAIyRie8ruZvSLqUq3EGTiM5vEBnLR3AjmA5Qo1KwDQKPcJxowvo0UHghUIVyrVHeQACDkpz/LqlJUVH95wZ9dxFtmFwvO0GUqsQA7IwVfuukDl4dSHUqrg3o376+h2bt7Z4BSFgEIBwpRAXivsqDq7MJAwBQ8AQMAR2jQCP7rIFeE59yGiETeFgIjq0Cm7GuapMSSJ9ukxD+va3v63TjfbZZx/kb7vttiVLlnD1ySef1IlG9O9+/etfh1aZLgxP43zG8IVidRUOCJiAZgK5UE7vr/qftRqkQ/yQppIl1WNYNZLDDUrAuXwh6oY2jYyAUSLl7mQpKyZu5FqVCDgLUyK7Co5kZfQWRi6G8KatjZFYfN7c2eFQKLVKEZMxY4KK/B9GkJxsT1iIR/0lixY9sWbb2nVbcovmlFbbNSNYaGsYmk3UEDAEDAFDoDcCw+kd7J2zzxl0q1Ym1icmHXwDp8J5dPciSZyjUhcCMOLVV18NfWLLwrUIQ6usp6Gczen73/9+jljD9BlffPHFdBVDxv/7v/9LZ7D2K8NY+JYJqIKhEZ49e7ayrw60VvbVSlIuAlRv6dKlmjKCo9I8GXkV4KgtGnDU8y4KEe7sHdDDK4Lq7H1l12c4rkWJu2/rNm3OFvJz58yS16g+iuUU9h0mAZPJzxdyssvT0qWLY4mKVS+vQZMO3laNHEVtIfB1u1M7GAKGgCFgCAwbgbJZwLCIch4mnY7spS4kaucuBKPGKInqjg5rirUKE6shSARmVYMV5satDQcjoC5lZAiQNKfa14taTtUg1hROlY8pBW1UgIBCjpQIzYflDjkC1wmbscQWdSfWmfdzfiQRZTfcon8X3XxEahgvNIiSKRFhz6FcKu+nqKcbSkWiaBEHslPIuZOULwnsNCjnUGtLY2uBPQ1r3DrQIkb15IYSdc1FzTDvryiJFvx83IvOn1EXiSY2bG1OS3Goop4Qs1TN85OUAUmj3Z1LmgVDwBAwBAyBYSEwzAd0/7rV/NXrYRwm1hRMVSKarrYjp8rEUGMoRiSMw77IKHHCu6qHI9lDDc4GDhZp0ox6SXOFRfBmoClheqht8Igs/OhnvHQFO+fmo5mI15KJZuLJOdNiFJwU/omnc6l4NC79repAdpTZR3NQgd6poD8tyXb3XVvbZX9jdjmsZHteZIR6YVgUSQFKcpImIYI1z1ogLAe9Ye36ymjygL2XZDtbotX1vCDkZX9fGU8tVfDRBP7DoEgs63wh4kdzVV7+4KV1bV3d67a2dmLwO/jRSYWpRjpSjWq/kE3IpKfhFeGaYAdDwBAwBAyB4TydpzJabuVFTFIWavS6ctGsH0tGcrBScbAx2Mh2xY44h4ET3JiIsgxWNlXwobm07ybdCtOG83cRCRlUBiELswrRFjqyXi6Tr4wneDOIJeOhuxlpZDiyKrQziMPsLudghxx2rsikKqJe/YyZOT/WvJ0lL1VlMNmJvn3xwuMSKKSCKUmDqbXrhoAhYAgYAn0QGN7TuU/mqXPqpu06Gir2AWN8h9iNxLAuYqe+ATrLSVByLV7p/zuCezqyrbE7l03XVldFxdCNh5XRbJBon5T+1fW9Im8SvBnEvCUL5vqF3PoNm7qzpOyydrtM7KvQzg0BQ8AQMAR2RmDET+mdVU3alD4jrXQoGV7xkHxGQ8D0T0N4OggrVNgflGqdcs/wE2/auo3e4IbpdXIL3VIbRPR2Cn+ONkTwNi9ZOD+XSa9dt8lj6Q/RLR52Kqmf4tdoS7L8hoAhYAhMTQT0iT012z7UVisBq38Z7tEx1TpSTFUoAavhOFSlRTmdpgUBa5evJPch/KJk+I0kFLt5W2PC92fPqHdZYEMZukz1RhnQEI6SWzp/lp/tfnn9ekrEoa2ae34xBV4Aes5GWa5lNwQMAUNgqiFgD9DB77gyay4viyITQguYOFzJJ3BQu6vDPagFzOBttCt9DoXI6YXdvLUpzqLNM+thR7dhEUtjMTKrqGS49SjKM7Ha9TPLYen86kS0sH7zNnp81aomURhahfWkmNG+DQFDwBAwBIaFgBHwUOHSecCQDpOgyKN9t0PN3L+c6oGA4VENgxIwXAgBb2ncHo8UZtbXcVoQFzTfjOcK1YiyPqdBAQN+uUlOIoGiJXO82mRsc9OORhakDHL1cLyop1zn/R5QpV00BAwBQ8AQ2AUCRsC7AKVPkjJiyItML0ZAZz2pt1gt4FCgT/aBT1UP7D6Y47lHDUzLuOQd7Z3RQrauIsYpGyTJZbdJUY/c8GO8XsScA1p0FrxpvleTiOzoSDe1CwG75T+ws8PAj8d+PyEaFjEEDAFDYHgI2AN0MLygHTe7V2cYw0xsO0GcVbfSuQJXwp0EY261r8HU9b3OMiNMj2Y17ArHbFnGNzN5un825oaps3r1hk1dHdtXHFrfTZ1IZW4wH9cr28sK7lvgIOfsl4H1m80VYr7M+l22cE5tw8yn/rGOQtOZtPNE592QbfRQagkdD6LYLhsChoAhYAj0QsAIuBccuzhxFENXb9jRi7WKEYzlyjrTveT7Z81eYr1PdHES9W9zZae1ontLuzNmLDWnvWw+UleVZBEs9iUWg1V8xkzM5Sj86zhY4y7qMg7hkI9H5SfBCpe0jYnOi2bPSGX99dt2oCXiu3U4Cnl2KpSAhPif7Sfk0LCDIWAIGALDRMCenkMFLPAzw3K5HNN2MYKVf0PKHJkLmj5gMqLQkejglaFbl9Fg67exVEeExa+hRIJMIhYLmO+AboeozeXucyAr7xvyw2Du0f57LcwUIv9YsxELOCbEi/4C304IEfv99EHPTg0BQ8AQGCoC9gAdElI6BwnRXN6DLDFYWVuzD3ahFTskjUUhnc7ENCQYbogBcty4bYcXSzIEmqlHcKFjXSVOsVyJjSbA8NE4Hmgvms8vWTg3kqh4aWNjB6tfojQXcDyO94DqR1OS5TUEDAFDYAoj0IdEpjASAzY99D/T/al7PLjFrXvyyHSkEbmgKyujZNR5wD3qBoxheW/e1hKNxWfPmgEL9hCh6wMeMOtQLro1Nd3bRSSfaqjzaqfP2N6R3tZYzFuQgdDa1lEyfVGjfRsChoAhMBURMAIe0l0PCLjAXoTCtPif1fc7pMwDClVUyGWZB+yINHRoD5AJ25SdgP1ocu7sGXr/HBH25mLpoh3VzSVz3Mszunr2vEXZSHzt+o1SJVEpRraqHqrffIDG2CVDwBAwBKYqAqN6Rk8R0ELTlsHBmUxAwPh+CaVG78gWpMSSRr/MAw4t2VKlu4IYL/CmLU3svTSjfjrdtCVmqHJwqGhXmYeQxtxelfKjst/ivIUL2Rh4/cZNQUGuovqikMuVFD4EzSZiCBgChoAhECJQLkMuVDgJI+xWRH9ozot1+WwGTAOzFVG2KnCjgOE/OIqtkIqkNaz2Q3TsPxgt5HJsdOhYT7ZXkp2AeTGC/dAunIot6+bgBm9LMGBz245MoVBdU08SY5XlLiLsQ+a6aLPWBj1cCPl0KFWTLKw4TamMqI6huODNmZ6siOaaWlpTbK4USXr5bkZ7JaTZ0ZzMXh6K0T6Uossjo28EvVYg0STUO4TVeu9JK2bgOlF9eSGissDrIvwA6GTgoiYENyKocaC2v/r3Fu5PalTpWjH3s9EfT5+jVFtlRlXMUDL3ADuwdI+cQq7SvesZypSqGgTtUlGLGwLjHYHd8HQY7xAMWD+evN3seJvPxiSW8Fa1pOKRXE0kg29W1l6GPqEhZwkzcEme1sN5QKChIe5V+bnuXLRNdvhDJ5YthBtla0JKFB7MY3SL15cHlTyrCl5nymvp2JGOeAuWVEKD1flctdfhYa5GayB01qN09ONyO2oWNUMMPPIyKeYbscOx87onU93esQfWxdNbnnr2Zd4/Wr3YjnTGy3VGvO50FsaPlD4+h1jI2IlRfcaK8SkIVLxC8AG9jMOQY45BZJl0d64gy4rKpopISZPzklZwKW6RE5Y64wOCrnXcXvJ2eXmWI2ljD0iZ+s0914+UhgCC+kExboFM8cOp0zFmbaalrrHFClATPmGt9NTVrSg5ZlUpvsFoVcA1/ARFhudEglCsdoDewKcuT0/eog77NgQmLAJGwIPeOoiRYc/yhGD9qWw8WV2ZmFnDbrlYruQlOXjIjuDJAK1C5NitbLubdka07+xp1cixqL+nkjz229plrYyqmmpuHpOAE1IvVuPASsYY1sCalC73COrkTD3WHpGGoTzh1Vd4dYlCZzq3pUtoKRfF3s56+TTvCagfSQnFWpb9mzcPzPeoVNzVS16GBCTeTjId3c6VEIuzjyTo5NPZbHc+05np6uCFI5EASHmjQjqb8Xa0SqQYiDoloqe3x4g8QREl4i5Nr8jF3RS4XYTiUVoPE1OVYkrPVYmNadCfhBY8UEEqJxJhLKytq7xe4WL4GUidXTMEJh4CvR8oE6/+Y19jLEue0MET3Ut3d2YzqWikuliwPp2LZ8P/5hnNkK5Cmm5gySx2J1ZLP09uHkRMV9ra1OwX8nNmyBwkl0ef9noy6qNbWyMmrZbnHq72ej61NU1buzZs9eYs8RJyiboWwGT8BVwFvCRQcSoZx2XOOUuo8Fwv1E7DoqXKXPC9TLKQ5qLHqiOy0yIWLTcZT0eBl6pkLDqtVnSQkSAvMn6y4Mvuk9xsUcYNItrTfGVfPSqFCHrFoOnFszH5LilCuUpLIU7oqaemjvmxT4E9p8S0SlqFXhdKa+Wa03M1vKTYljQ2vGIRQ2BiImC/5iHdN2ByD24vh082m+IZzfNBjNWeMEIk0aP7MbgtHnrU7TImRBL1tmxt9vO5+bMagse8dBhj1HF0zC0xtLr6SC13qan/RHFg5+KiULiHJmJWz22YmSnk127cgtJELBnuwTAC9f0XXKYrwU0RTKg/pIsHg/cFjafwHwt9utvpfPt4+z32Psasx1jMpvNdrbm25kLHdq+Q8gtZvcXkRQl+hi5xTUeyfizrR1gIhS0a3UdQKv4W3BaN3BExxd2neKFMzRtMTekt0TjH3Rjcz27o5cltGkg6bI62IjwdKI9dMwQmDAID/vonTCvGsKLskiD05npEsZW8XDoZ9adViwu6GIKngj4iiolD/SZXSMD6hh8Out5ZhTzMo0wCbo4W8gtmN3AqtZOCi/exWIni+c46Bkwhu9iBYuTygXgIOMkXzZnD+pNrNm3gNI6AiMmg7xGW4tSOzYF3D5w63CgGzfX0T0t9aQ748iUmPglxL+t3p/Pb05FO36NDvZtRcH40UlURrU74FXBnSj6FDDaxNpPc0DkfTGzplnAfINKPNId7IXeoGAlPXdpuPdA+PnsugJiCNngVBKXiW4tGds6jbdmjLdq5UpZiCIwegaH+mYy+pImpgc5QoV0lYHZKSLdvz3V3xAq5UuD0qSsNHP4zl6eKEjBrYamegQmYR//GxuZoLrtoRj153ZQlfdwVayTvCsRH9riCwCLimKUqMJjrVKT9ey9ZEolF12zaGCgVGR8buafh4+PuwpU5L8kn68kmUdSf1wjXyy7NSUa8BG8XQp+xtJdMJxpyFdMzyciGtLe+A690NJ1IZHOxNIPcgobhhhaeRZcq0Q4bmJjretRSemGteTny6XVh7DHS4jiGkbEvs7SEETVXf7d6LFVmcUNg8iNgfcCD3mMeDfJgkSFX4nZMVUQK9bVV8sAInrCjfYLQB4wypgIzsWfg2vDQx5u6pbElls/Ma6iBFdzWCVRAMkoti49AOFhqJ2NwtHoDKy65Ss8nLlkGnbHqZJRuUnFB7710btYrbNiyVYYNE9z2UESF/osllqjYY1GqpD3A/KxBRJrBAGY5yjaL0sPrx5hIlo0IjO1Zb12j94PrftvY1LJk7qxzznjl0fvWsL5YrNCQiOOHZ/g07EtuZJmRhWUdoeE6Oh1MaTefAPqdYVDUVWgs8ejlhuB2hCG8L8V7FCaEImMUUXB2rby0Ej21dS984plwQdOD4WPyR1YaShWUplvcEJiICBgBD3LX3DxXHJIy3hjGmzmtasn8OfstXypPCx4GbqhO8RE3iKr+Lut2h6xwOSif4e3s8LztnelYPj+jUoYju+eRUIsY6S64B5Y+y5Qt+yt21+nkCcYX5RlLDI1j6UbnzsCALDS37kinPPqHhczcg5EuUukrHjeBtvORN4MAGWoNiTpXOqt2RStT+DCi4j1uznu33P3SH267c0dXN870rU8//9Tfnz3h6EPPe+0Ze8/2t+e9mgizylgKDPJGCSrdJx9LRHlbkvYLOHJ06QK6Yh6AF0Cym8HR4rTxpcfdeIOG0WJEBbfisW8lwVM6WMIA0ApxmGIRQ2CiI2AEPNAdhF/cn730AfOwwBY8+Yh9jjtiH57BYhDrM849FuRJUfq0GEhrr2vor6+vT7+wZfv27XG/OpPNJGLRFN2VzrbtJepK2NzutbR318djSxqCTk0hQen4FCagCmwoTC73qMIIlgnEwwmqSnIkkvEsflk/TksxCOfOndvU1PT3f2ybd8gs13rsQrcX8jh7KGZS+YokJjwI5POp7giGVMx1WvuRdN7Py8oi3n1Pt/z6j7e9sHZzNJE48rCDVxx56OYNG+++6657H37q0SefOeawQy48//SGKhlFXRWJsOlGrrMTHWJTM3/YjyfwvWez0gcONLw0UYQcHdKBGSdvJnojxDUx9oFui1QqJf0liQQVSWXSyXiClmqleLdjpxB1tIx9XfotQXcxYR9PJKgPtZW41JKpX7zj5FyK/K3RHDfogt8Wv+ogyFuw/q6LKfZtCEx0BIyAB7mDPElDCcByxpQsbyGPW/fsEN4b3YPBbS0c0a5ftz1wIRaNCL/tFCh96w4GD0Vn1lWzhrQ+nDDt4jz3pTLYa/I94oc+eaENGuzIBLaSpSvE8ep58+fM3bq1cVtzSz4CAUd08Jd7lu5Uyz2XwH2ZlqRu+VRXJ0gmZLtkQkReaGKylMpTqxv/eMc9Dz/5fHN7at+DDjv1lScfsNf0BdO8wiH7Hbbfkqf//o+HHn705r/e++CjT53zmjNOOfHg2TWe3+1Nr6oC1nRHe6IykU/nI1GcAo7JWZQD4pAfCMi5edzF34LjZPldyOuRq8QYHXbs2FFdXU1j2VaLShA4Mtk5k3OvCNTA8ZzSXnt7e01NzRjVJFCrleCkd7OVfakn9eEi3MsRWZWKxX16B2TMOVO0Gacurwt9f8X6myRrUJB9GQITHwEj4MHvIc9RfVpwVLyCh8fOWcMnys6X+knhccIgLMwpnlD9iPQko35DYybnJ+bPrMEcz/mwo58r4CcOH3fy0CcDzzKdxtqTeWgxipD2ytOOaI6Wwu+k7LNs+aOPPr567fqst28cquddgMk74+1hyMShdGc0Hq2qpI7xtCfvMTJiORrp9Lzb/vLk/Q89vGH9JjjgTWe96swzj59b41W5m4vY0csqjlx26MojDv3TX+565PEnb7j5LzfdescbXvua179q76aCl+v26mtqQCRBk4FDsEEvpMsSpdoPS2oQuEhwrzKaOIYwTaubFpRKdbL57gwLpPiJimRUOigkZNLZuNCe1DkqnpLdFRQFSnPM6d4sWdGGfhbZbkuNcobb09HBy0HU/eDEb8DrHuP7ouJgKmbluwdbl2wHQ2CSILAb/yAnJmL86QvdEnjYyiNMogE9SbQkhE+ckrShRLFdoAR2JEQBDyYMrOLkor65qcyGpu05L7pg1iyG5sLaYmAFbk+M4Dyky/CpmEznoJayfper/PAIQNpBC7HtxKL2mc5KyrJFcxlhvHr9eriq0ll1+lDswadvZXfHuboNpL7qbCVGly13zI+0p/LpRIR+7FbPe3mL99Nrf9Xc1NS4ecORBx908VvPXz6XgeReHW8rXTtikXwyWZvwYgzgOmC+N/v8k848/aTv//C6dCb7yxt+98dbql575mmveuU+IMlfS8It4BFnQDX9EDEdHM0WlSk6xh1PCNRKyMMDfXRoQb3RWASerYoFdjAoUAFuI33ZuSwuaB+3SmUVfpM9Gfidi3vZ92XxmeKfET8hxYqfvfzyi6fuT61YW5fucoTixUv2bQhMWASMgAe6dfyt84cvf/v691/IR9244l5DTwdSMKRrxWlIMsQ4cNAFC0FTrutllC+pAj26W5p35CPxubPqvUx3hFkzzMt1A4HEZJCIVnRI5Q4g5EiM8lju2ZXrefMavGQ0ubW5pSXNypR0ssoAaT7jK/AukqzN0JHuxwpJjFPv5e3en/722J33P7hjR9vsaXX//M///JoTlmH1YtRX40XubvWlR5eWpBKRQp7h0bHo/KTXMNf76lUX/PWRTTf9/ub1m7f89o83/+2+B4477oTXn7rMZxkS13AMa95I+PuJR2I+hIxFLNgrJDJXWrTKm8rYErF7TRKveHgjWDeVqvBDAod4FNr1cQnA0DlH0qHYbo7g4MEIxlNDyLIWt/p7ItE8L4syqU2qw0uUvkfx4ucc1a6OPb9o59XpRcu7uRFWnCFQZgSMgIcOqAyI5c+fXioZD8LMFBd4PvQ8IoaurERSvXNqAUfEnJWHuCvIPZOIylNLUgibG7fzuJ03c6aXTkEecG5Alu4qB6lMSZ2IDveRRfHyONexRc4KJmVajdcwfXpzY9P6rTuWLqTXtFjeHv0WXFzAriLwNM9HI9lEDDOdVav++vDGG26+9cW1Gyuqq153zlmnnXTgohoPG1A+tLC7jRFmAlYmm013xioLFfEKHPvite72aiq8M1bMO3XFxXc/vvWan1+3YdPG+x5++M677nrHm/9p7ozqBbNECbkBHySYocR6Wg4xrY+MhYZ6A9/JWELE7yUKWcnq1qwlkmYpkWhMVtckRN30NiLUUExPJEbwa3Cqhnro/1ehP3L05PKyh1bc1RFx0ObXRe8LN6SInVsrRYuEnt2fg9ScMNyfsiqxoyEwXhEwAh7kzgSPFP7yxR8rjzCMGsa/Srb+HzeDKO19WdxxbhQry0FnI1kssUJM7Et52lAoNg7OZGfmYqFt2taI727O7NkMLeJyTp5gleWqCQXqI47SJfAVoQZikGA1zps5u3n72jUbNp4IAfM0Zy0pWVBqzwQQC9lXa4D3vgtQot7Gdu+lNa0PP/r43fc/0NredsJJx59z9qv3myvWKoOyWAS6vbOtYlqlF49l2ztjNdO8ypqYuGazrDOay2USiYpZFfGWts662jpY/JTDZx9/+Idue2jdL6//3Zam5v/79W/us9fylUcfdvQh+y+ZITQsLysuCAfz0V9FKWGMKW1QEPpdcRVJGfnMTWvr6u7q6qqfNp1V27hRmUwuGY9GxEm+W4JWKSzKncrrES+wuRz9vTH3ZsJpc2tra1empra+rko9OLI/FX0rvQZguab1/MLHFMywzhYxBHYLAkbAg8DMQyv4k5fHl1g5gVORVPfhABsHMsHXIDrDyzxb8GQWpN/O70oXmjKsiZhgsztWj+imsIJXkU9GvRh+ZrG06M6MeZ3NW2qihZrpSdknwaObMhfjm3Ldc4o6BtwpNdEHrh7DMgeKkAlpp0S4V0w4GbYj7kCIdkZdRUXMb2zaAfNnvUokIH96QbnaT7uDuvQuEvEhB2lUqMRlLLrE845+uabP5xyOzUi8s+D97IaHVm9qev7ZZ1qaGvfZZ6+L3/5Px6xYXs+GU55XrZ24dPYmamV5jWwhVjfNPfBFCwOUoknQjsuGg3nWWknm8cBHxJim4NccvWjFgf/y0FOrb7rtbzilr/3Fr//0p7pDD9x/5RGHHLzv/JkVzheNfl7NeD+jMK0W1XcV7tPg3nCFDUQKr3ZpVsm3S7zCPHKVpTRz8kMitGW9O+97+va/3lFZWfmaM04/9tAlMmosHqUjXyiO35bUz4k6xaSFqnpSS25ofwIqzLFXW/REj4qAdNkQItwvfuSFmLw2duW9F1/ecufd997/6GONLW2HH374qa844YiD9uZHjS9f2+t06K4kToOYwi4UhxyiHpmBj0EWvgaWK73ak0dz9YGHRPE3hIGsow8l+kavbAQadmrjCHT0kwWDpT/txTvaZ6pkMbkfhZMseY8RcHd3N4OPeE/nScEUxmQy2dnZWcV8j50C784E7RzlYkdHB/MuiJAL25H0trY2UoioNi6FkZ2UDS+B30LwcxCLV6NFt6KeOTYOrED9MxrOHxNP23Y4bMY8v6LiL/c//MgzzwBC7fSZLW0dkbi0MSqrFPcMaI54uWTH9oOXL4hVea1ZHKCVyZjX3Zmuq0qI/1MIRh7+UlO3SWyxziQNMeTZZ4nMrk+OZ3a1ulFxzNKsIw9Y+ND9natfXLfDW5mv8HmS8uvBBBREeFTyYHdtF684ho6wtqiSgvWCmPIOtfBhOnilnPnNEKJ0KsKIpyQVESNJxouzejO/gay8h3QUvMeeWn3Xnff8/blV0UgF/Z2z66rPOvH0V5543F4LKvUnzj2innrTpFhWGE3KfaPK8gkuIMILj95iflBMApZcHGlGXbW3aOXy01cuv/PJpjvvum/9hk33P/Ycn6WLFu+/395nnX4I/ME9o4p0K0dz6RiMJ335yRSsF1jHvDHlE7KatgSHFhDRZ5vzGT8XYzQ7A8HY5kEuUSM9OlmBGvZkMVTxKzMnincDNoAW/7PH6iKMtev0vL8+2XrDrXf9Y93WQrShY0PHA1v+dvrxR773DQfXIEZDUEeVdHkvYRF5MjKKjyitI64lihRFsw81e05yxXWla225pBERJqPjIt45NHDfucFtqVwiKf7lPMu15nk7FGSZWESvPL/2HXnv76t3/Pmeh+597O9t3fnq6fvk5ubvXNP5yLU3H7Jk4VknHX3ykQv4RaW705UV0mIGP9A1k0hWyUsgteRtxrmC+JWzcCuqqQn/ifMz4JKm6BEZKiTlBy8BQT0H+grJlbzcFLqcyK7zyBiGwbrw3FIWSpfFWFxlXAXcTzzQKkiCGu9zeo+5V8DkJFxHgdedlQnQ8lYkCoLAGVLuD0gaFATN5vYlKyaNxTcllhQ6SAmuJfKIGFrwZUl27rsGBSpsNRH68rif3Fp3V5FyuATHYrZJ/a1Ppz3QRNiX2X6wLw9r2Jc47AunUhVOt27dOnv2bHiUriNYlhEc/GrXrVu3aNEiuJbpjKSjgeUb+fusra0lFxMip02bhiSmEWrL0qTwt+L+VvTHUVRcvMZ38LdWTClKDP6NRiq6aGZivzlVa/OdqVymK5WqwvCtrMYZyvNN/Lx+nq0X3LEQy6eXzapaMqOSnzJ90HrzGGWTzWRk3qT8wPVpIb/okQbK5Q+Mqsk2QfzxoEkLqmclsHT39uYdq7Z582dJ9ycNV8NLH+JI8tDAhqEn0oElz3xFTaoj/90pj1H3VOKmE/QFS0ei9akzT9RsV3eisipSDQnKNvf8vdIDT9HbHfVuaPd+94dbH3vyGVagyPuR7ZnIiYcfsOLg/VcetX99pVQ73U1R2epkTAyw8A1A6CN46lA9Vy8tWSurR0nhUulfCBc6M97ph8445dCz1zZ7t975yL0PPbrq5TX0C9x+512HH7LfqSuPOWjv2loImCWz8ixjIreDjTsY3EszOUvyxkjvM3tqoZnftpssJEOo5DcEFmLYE4UeObqI3AuUbGtsnjmzgXcD2s4HiuNCe1ps34pK7+mXOm667a77n1q1PeUt2f+wY44/vqO17a7bb7nn/kde/PtTl73nguWz5deRYK5tPifjDHw/lU7lC9F4hXR2dHZ79H6DlHt9c7PLuIuwjC8D2Qjyy3JoKDRSWUGNFysyUVu9TkoeqFHIhxcEBvTzMoELoSPDXDvvjodX33LHXf9Yu6kjXaibMef4Vxy7cuVB+87zbru78eY/3Pjg40+ufXn1PQ8sO+2kY48+eD4as5lIVdyL4lcX7pMZd607Wiura/yIjPdW4pf6MHLO/fAo1S0mx48EEalhwIL8Oglax4GP3JrOLh449KO7mcrSUJg4wxYsiUruhzTaBUnEs8+oTN4L+bUTnKuDkvSnT0c3t1LunH6KGSsYc+/iGXn3wXHjJ9w7QiHHObJ6EfB0GJ9TigZ3bWyO4Fqs3JC+9TV6iHVCY+Ay1BbssoRi+dp2wXzqBJ/nwp5qrTySfB9TmAg/YHhXaxLauM3NzQ0NDSTymIZfWTGKOCTNk4ueJBXW0ZWwODL85cDHxJWAxQ5zYlxCP/J0OUHSHCH7PpdU224+Aj0jQnkwt7S119bW8LTiwczPUSw89xRzTw73cJbnjARxWWe9mphbBivtVSZkPJH7BfPiXTQx+yUYp2KgA0p45PKXQGm8kQsBUxk+RHakvU997pur16yva5g1e96CaDw5o37a7PraGQ11C+fNmz17el2dGH/656RH/W2hjlN+aDx7KrEfAu0D1SO8lmGksWMdjF2c7Vqf9S3e/Q8/8+hTz764dkOO+b5stFBZdfIrTz3vNYtnOBuU2vNQhrSJiLUiv7ShEHBYbL8RWkQdoJB8Qtiq3fP+dt+a2++6p3H7DtYyA739993r1JNPOOqIxbURebvKbG+ZWVfpqEoe5bwoUCl5oYzFc8Ve7OCh6yrMZpdu/WoqoMlCPgIfVhdudiaBs8RVJEGvPIuApDyfbosf/uyO++65iz+i+fPnn0g4/oC6Gjjee+GFlv/5n/9BTzaVffNb3nT6yfuACS6mXKYbGq5KsjkFirElM+5uu2c9N4k3P8dk7k0gHxHT0lUg+AGSyQW9o1pH6aoo3vBMZzqT7sIRUFnH/lL8nl/a7r28ofu7/+8aeC2aT9dWRFcetv+Zrzx+6aykmNFdXmWVt7HT++Ndj/3ujjs3NrXOX7h032X7nH7cymP2kdoiwHj1uMxF7+LM/ZQiOf7O02n+rqVHOVlRHHYmFdNXHR4s7pfIPaLRQw2uDfgTCpjUuTxz2MSm5nWFsvUxyZ8eTBktFFgtnPHl7h4BjrbdlYKcngKjZC/CpVWQ6uOFCBKLdCuvZ4EKsktJRSWSC2wD6z9ovWJQliM1QQ9hiNoirAIU/C5dtkEOtDMWPDyI0kRuuLRdfzVEXCpnmqCVIE1kdg7j/3m+c50HTdljBKzWLfWDNbWWmgIfq0W7ZcuWOXPmcInnGlav2sFcDZfyIR3JUh5tbGycyfBgl2X69OkT4YZlcm2N0eqkGHeJCgivvbPbj1cUmCdZHDIjP1v58eKo4dEf4SHErzX4hbKnT0yWhmACTfAQEJcZocft4/K6tCEddkHAynlt7M7ne7/53V8ee+rvW7c1dqaZ1cKjsxo+yPLAysjTkHtUV1fHexL3BV+FPBydA6MiEcPAJQ6V+vkU85y5pFf1XUoel6VPsWJV+XONVFSknLURZTKNH2lsbH7owUcffeTxmpq6LVu2JeIVxx9/wqteddzyBUEenMD8nnik4XdM+gKOvKnJW4V70owSn0I207otXlvNKh+en+wqsDewWHjQ8NOr2p5btfphXOGrVwPiggUL9t5r2eLZM044eK/5M2u5w9wIXhR4aGO66U3SZy5V5e0RYFiMQsz8rk55BEMcPLvl6B5cuLI7O2K1tZw3t7dX1UxnqdJtbS233vPYdX98JFOoSPi5U45b8dY3njSDn1LKq3WvsjR4y478V779vS3NqUy8cvaCJZf+n1fPYylv9/vB05vwMvl0G3nFUct4Pm6B4ENdENHXJIZWdzj6J90REQJY7WLZuZTiU5XfpDw+ZZ4eUNM9Edvhec9tyDzw9Ev3PPr0c6vX8cOY1VB3/BEHnPWKA5dUS89FsiCdKDg0MkzZnl7T4Xmr2r2f33TvPQ8/nerO77Vw8V4L573htCP2mydefT6s4d3UtLF+el1cPcDFH4l+5/B4i8Epd1sDVAZKUk4xZdBvWiXjHYHdOX61UXokr7ZZj5zm2D2aIXtJxhcg0k8QNnXBMSt6U3k6GuTHL9MHJTAonN93Nuk6RFwKB5eLvyh5YwMqAmhTStmPQVGuiMEPvCZwd+UG6+0e7Aj6Ud4S5bXFvchQ/+A3RkNKgoIU9BT0vlQiNRGe5yXVHVp0jxGwVo8uT2DleY0/h6B9wKS0tLQolRJRwxd5dUTD0/CxdhurEoxjWJnfNKdYz7imNT4RbhhDgdqFKzI8K/Ap88csjl/+0nTfeHiXO+T+UvkR854c39bhRSsSmJL6TKfNyKQ7OxLqdR8lwfBHLk8T/iD0WSxEzodzjUA2rR1eVbW3bmN6R1v7tuYda7a2NLd2bNm2lbef9vZO7pH6VML3KmFWR6445DKsNxKtYEN7ZEoDNw4m1rtZeuQJ3cmDzi8kI5HKWDTf3ZVvb6PrYnoyvmTWzDeceeZJK+ZAWmJFwbr4mrPChXFxFgb8kEtn8flFxVhxYZT4MDou3yZ0zj3JsrJ0ZT5ehU8CWDjy2drlPfb05vseePDZF1Z1dHXHkjXdjFaLxGc31O+399KD991rr4U1i2Z79VGGKbBqplfNgh5CLeJZd88pPMsBDvpQ5yjX3N3odH3J3Ii2vHfjH2+99/77tu7I5OOzDz54xfnnHr/fTI9R4LNwvDO+LNUm/eV+oisbTccjN9/30tU//nXNrAWAcvFbzz16v1rhPyrc1T6jklcJ5PlVuYej2LJAySoZiQz1KuQSftq9zoCeq0TOl/ctj1FdbC2FsCTz89DaEgGE7rS3ZuOOB554+r6Hn1y3uamydtqsWbNec8YZxxzRMN25i6MZry5Ow7Pt7dtrGIXOrOyC19zmVdXJZlbPrPV+95d77n70EZ+10auSp73i+PNPP5j3qmyXN93dWaKOAKgGc57l3QX/FhH3FseTHmaTvxgnEw0G2endH8JRAMc1QRe+T9uFQJxJyt8Frgh+Y7wCySg+3lm4EVyX/TrgT9fzxW/Y+b57ioFBpSYEZwrzR87MelAi6FF/lxxBgIBC+XORqASV0fiYHaXFQ1QueAxRVMUEtLQD0P14ePeTR4GScT+KwsbvdH0iPM93qvRgCXuMgD/zmc/cc889jzzyCFS6efNmtWtZ7n/GjBkh0Ni4GLIf/ehHr776ap7XJ5100ve+97299tqLRqmb+mc/+xmXHnzwQSj8mGOOueWWW2B0NbaQCfXwxzk+XdDyzM10uFE//ED5dUaymWxHJ0so+syBoQnu1yjU6xiQYxT20r98/hJSXakKOhWDN0der/mTdc/EUVnAxb9G4SrpK6U4/RvtSHsVCfcUcl2hvPDs6PYYH6P1oXCh53Zv27b09tb2l156CT8eL1XcXwJTVDPpXBoLIJbE48lqv1nsvhxrNLmVf5mjQsS1t/TIGBhe0MjLbhCVUb/Cz82qrV152EEnHLHfonppZJJti3TgGVV0OXPO55UGwkK2Iu7chIAsoSz4ZLzOVvGkJ5xJ5scy9PVBw454KAb6AY1Oz9vU6D3/4rrVG5qeXbt9c3NrZ1tbxM/FCtlCJlUV9xtqkiceu2Jufc2yBXPmzq4WXuH+u8FlPKjRQNAHEW0icNS70przbr/jyb/e+betTc385uumNbz7PRctnSks7me8BliNxna3iuHPcIqKGpahzCcS25k+3uZ96os/bO3mLnS+5rRXvvZVRy5wU6Jxkse4bxkmcFGO42BGGhQSeFRkGVJaBGM4Tyq0RjWom1aGCFVq6fYam7KbG1twitBh1NbR1djcxJ8tb2Op7s76urpDDj7wlJOOP3L/GagnI6jxfoHi7hT7L9OVG8X1g2amTwkvFbwu3kgxdePevc81337/fU8+/48dbR0N0xpe86ozX33KXjXOeUBj5afpFIIS7wt6yhHNvBnxYxIrlqjPb4SXiaEGGsVNpF3oUZ1EGEDGr7giWcXvlV7fHP3ozjuFMDK8ysiul4i5DjWNyGuBswd4BDnyRVACHiy6wzHgUatB73LxzP0FI+a82m4gpBQxxoG/Wv1xDV4OtXWjCQeXDCR4m6cDRUIRTn0Dds0uut2LrySapw8imuiOE+B5XlLbIUb3GAF/8pOf5Anywgsv3HDDDdu2bQt/vjo6mtrrwvGf//znv/zlLyOzePHid7zjHXTf3nzzzfj3ELj++uvf9773feELXzj66KOxku+88863vvWt6IFr9VZNiBvG04FfKOSTynjizXKPFVL48Jvl18iTRCNChjLul4EmhUSUFQYjmXQ3rmr5ias7C+nREjAl6B8MEfnb1+px7OYpnclWVcUYK9LRkYsmonQ/6+PY1Uskw1NUyJPL1V+vqippDrFiutR3wDg14JGtDdecnYwSjrohr04PBTFWF0tNOzB5ncm0Zesqa2XQlQi44dNwmlrAUt4oX1BcqajRTuWgDhiF1NLn2a0PM6oNFHwUyo5ub+u2zpfXrHv+xZdeWkcvZyf7MrGlVSESjyarEjW1VVX1MUZS4YMuZGsqIwyfZi+jymS8OlHB1F7iON9nTqvfuGED/u3NGzelu7r5Ezj99NNPXiFrS3Z3evVVQmx80p3tzP2lSyAqHhHZ/7i5M5eoimJZUplrrrvrr3c9DmAH77vstae9YsXBVQjRmSzmGVVX2qFRzubGYd4R8boYZI4ru8XbtCW7ral5ayNrsTS3tncwHZzueX6MkIUzhaMwDRZzLtWZiGQWzpx21AF7HXfovvsvbsAox0x0zkuBCZLO0d1SXQE+3cTwAUCUvFK3Zvxcavr0GrlrODPoKY949z617hd/uPW5DS1+TX11w9xZDXP2mbNw/rT6xQsT8+d406rkzYMXUv0Q50VNdMkrl9sngz8eBieGdBfcvX6/eKPbmmIhF3nnoHrM6drc6K1bv21bU+PTT/197pxZy5ctWr544dwZ8enV0sFPifxB1iQYgSV/LASG0emjjBSxnXkcFS/B36lMjjFlVFCDvHLKTtVylnLD4/USyXAwN8W9rGDuh39DQcayfoXVGaLW4M9xKNKiWkfAERMHnvwI+zSGK4qdvjINoHZCPM8HqP8uL+0xAsaTzFApBol87GMfW79+Pc5nRlVgvOrPV6+SwoPmyiuvvPTSS3Hv8F4J0ZLlggsugJ4POuigT3/60xdeeCGXNBdHuePFOUvj/4bJXxpOGvcnwPNOBzJjaDJklPd6Alf0B9rzMyVLMLgsn+poTzJxK5uR4UkqHvy1yx+JPv35cTv17vqQDmG+QDpUBc0okbV2ZGqqxbDo6MjAExSuRZT+dXGVoLqI8+GJxpMQwnAb8lIvLvYcnX3aK4WrETq+u93jGUHyE8DF8QRnKdbUkIcTVg6uYWqXr/BkrCpdlPJ76Pljd15EYWQxiZyWEeJDoZ1ZFvCQ9kIS7IPhmJ5qa0OlmTw5XZWkHMQc91B32RYCIY4bW72XN7W+vKlx9YZtz65et27r9hTLd1VAvBVisOXa6VaGQ3keMfodDyheVFrsp9nIWB7qc2Y0nHT8CaecvKSOLZrw5Xpejfut4BPiD0FHMir43RkGhrMXktfVnWe5cS397qc6brz5r48+dP9ey5a+6XXnHH/MbOZpsQIMIzGAhozpjNfU7K3f2LZh0+atre2Pv/xyc2dna1s7XtZoPIFhx88vxU9ORrpHWLSkpm4aXquZs2fxt1lVUbFscS2u9dnTvDlxGUIlJm8GEhd/thQj/SzMescLIt4CSmTZjWy33BaGYbtbxp3ktmKLJzIZP5+MdXreHx7eeP0td67a2lRVOQ2vepxeDnqsZRxZdHZD3YK5sxj/t9fi+dOqK+bOmDarPlLDoDd+Ju6Jz0Cw4N64Gz/wgSo9vSn90ubmZ/+xetXL67Y2b+9iTCd3wKfnXja0wK2SS3dFC7lZ9XV7LV24eO6sQ/ZaPLsBH3vQhQvz658iBeldoCYE0js66XfIrH5pTVtn15Ytmwht23dwvxjpQnfb0qVLp89omDOzqsLdCH5pAk7x944StO3xI0jy0boRoYYDH13Tg2prPDwqLPLDDv6g5YomhjJ9IsXnHi9o49Wj2afGQzgtGwHjZgz++IuuGPDiT5T3Yv50gQxyZcIuVm+II0/JH/3oRx/4wAdIl9dn3oi7ZXf0cDg0bszly5ffd999K1euxPZlHMcpp5xCChyMvfuKV7ziu9/97g9+8IMXX3zxVa961b//+78zoz8cQR3eJLicQLcxKQzsWrZs2fgZBV16g/TPlRR+0wR+3MHPUS6QpsnumrJIMPQjzOfER0cwTvsuDlpGSQ0CGVdJTA0eL0TDGmvdJcVZ76VVV7kg+6Bf8lKsgzjCfApK0MywxFBTT9HFoTHlxId2qilJMTw7nIHCbZKhsT33qHgLAkyCqlFv2FWIH1H9gGdn3mvv9jq7OPK2me3O55v5G2CgbSqdxkubSmU4Y4mWbKZ9e0tVIrnPkiVHHnrAvJnSOHQxjpnJTjI8WLpjMdyCaZelbdaqCg2xS6Mf2+Z5q7u8m2+7708330L/6Cmnnn7YiqPiichLL21q3LZl/dp1Wzdv7Opox55NxuNVkXymZVttIl5TXclfLv1BsMW8ubOnT69je8oqrPdqsV8Jelvkdrn2Ag7l8mKgRy3dXQwHVLscmEdMLyIPcny7/TShOcWMd1OZeBYRqm7Kei9tbNu0ddOWDS+3NDdt2rylsbmFkYC5CDuPVOCQwbTsTufpJuc9poonRcMshulVR/1Z8RzToHnX5wlAE+jqIs7bBg4C5yT2Oju9TZuaV61axWNk07amLMuTxhIyWyvdFcln62urFi+g0bMPOuAgBjqsemnd2o1bmna0pehMCIZnSG2xHxiCvvfeey9bNn8Wy5RWeGvXoplRY030r/HYYSwLN5YnIa3kAciziFcZxkmou450Rq6wizM/+Jq62kULFi9dvmTRgvkz6ry9Z3nM/uM9RoHlZiu2wEcKR/2r5BelcelLdo56TpXeVFLFFFlN0SOVD/WE6QgjqVk4avc354xF4KZw5LfHS0npkaGFmsKbL/cdVeGLCKo41RBWiatdaW8ac7j4m2KMYLRQKVaEvOoUZft+h8QRPtt5ko+rWS19azyE835bO4S8vURgTXCB6vhVwbX8pOBX7QhRCxVp/gBI51TX3IB3yYVvGfIGXP5C+BUioHpRhcONv5ZDDz2U3y5/U+jnXZuf7MaNG8lL5Bvf+Ab28YoVKz73uc8dccQRsC+lqyXNVfQg+cMf/pB+Yv4GOFWaV/3j4ih/VfzC5Qdf+hst1s39CYhZrxEeXm78QkC9Tkr+aIpZg295ymso/ekX00byLYW4v0nNrKeuNB7r0I9rgqRSPURIJCK1UPOjpN9InrbUl4tDOYo24TO5lT1BnFqCmBxlbHhJkO5w/qIdXJostZI6SQi+R44PCtBO4EjBnLoGuhsUgk7pUmetg1ZPC8ZVLtXmTw5Z+o7RU+15DYzSZT7O/2/vPqDsLqo/gG82BWIEKX8gmCAkSFVsFEFEQRQRBbGC2CsoiFhABCx4UFEQkHP0eAAVLCBVwIKiotgRUEE0YAOpahQsQELq/zNz386+bMtms++9ZXfmbH6ZN7+ZO3fu3LnfufOb3/ysjXvA3z15cXd6Gy2CYsq7EeV5ht4JSvu6GcElaccZ3Ek7jmMClNsuP1ssoB7FXTP+pU1e3px6RNfUOdO7Xr7PLnM32fB7P7rm29+/8vLvff9R62+wyNNszzKWLrGCve5662y0/qNmbbj+BjOm7/b4rdafvgbn1iu5iBeaCxYunu75ctp4nN/k9iELrU5aLJe/xIDWppamUklvc3FpOMlqE5nyrVTES1mWY7NAFZGPMVZS8y32zp7SNfMxay3ceGr3DnPJVzJU/vfSZXf949+33v2Pe+69/4+3/+M/C5fe++BD/1247P6lXf+af9/ie+7rXvTg7DXsmPJSPdizVcpOg8VaaQfCOuuslzfXMzyLuQyYA4jeLl572qRNZq679Vabbzl3s01mrrXuWl0zsJFb0b312st2eyze/r206/a7l/3l1jvumH/vvD/fc/+CRSzPzX/8yy1/ujUAtUBFamIOLA+75wvVW20+Z91HrTVz5sz/22hD+yj/92AX0wSnb7nllmkeKS1cZCfjvFtu/v3N8xBZvnjheo+css7aM6wuMI+IpK2q3j9eutQSIMKspVAS9SDrJxvDm6rLQVyK4ngL1Gck45Z0klQKBQXZ4TQNXGJjxtI0D8xfjRSPFNmEGTMemfqlX5CnpCWyOei7tdemUM68AQpT15g2Zfo0dU/y4RP7ISwkPPUpT9h5++2mepdjieNkVLRojbQin/RngoRRA+DoAN1McI7ROP30022YshfDT4nRweIbb7zxhRdeuOuuu+pLmGoD87x586gF6HVXZ9MMEdQUsTJDIcxMt9tuOykUiE5YujHZvOKKK8D8wQcfbAla/jPOOOO6664755xzLFb7KZuC0F3Oo4466pBDDgHkKKvObFaGsRIYzYReYayamZKSk9N/MpSrSFlHzcnZpie7GKEBgenHyLQ4V9wgVqj63RRP+DopcZ7hNr2QUwr15EoIlEJ4wBGPqxyRfThXdC2Oeo6nbJBGl81I12yiMy2c+J2v0eie2nONpBfTgvxr9eTDoETDEjOp0YyO/0oVCWYypwnj+ai5ysalp2DqTcw79iomLpytzL9khSYvXeDGlHRmR7QTSbk12WK7h+6OazBylttY7RVw7AATvm96UJ7+0jkeHkz2zjB6+iPXaVfx8qXrdS1Yb1LX7MnTt37S5ltOXeNbU6fd+Y//rrn2+ptsNneD9dfbdNas2Rt1/d8jE+aFaViAmyxwfOPPXzTMUqnqI0zihac1AO8paQsnTfAQ3t5zfef5bGNOIGIqlkslIaRk/IWo7P1Oj/JTAsdUL8FX+QVseLUqba1bypc195jilvLsxdqTu2dtvN6OG68nRUEVO5nkfwu6Fi6w3rvo/gcfWLDooXvnz1+6bPGih5YsfOjBBQ9CGGkQZtHf7vmHzXSTp09da+0ZG8+cNWfuppttOnfW+tPmrqW6tKtC7Wrxh6xuTuYpT4YIeoPJXVtv0t29ySaLujZ9oOvJ/15mor/YMUGCGf/8+fdBxzmbzuFts2AMjrDhhjPWfWTW40zHBR2iSPJ8HIvkb1ut+M//uv75z39zmj2Vu+sus4slt/7zwTseXHTH3+5j0+RtIFvaVR0KlcjlWwSQemzymtP9xLZjVh6yAdnr84n9rvvuj35J+ZNqRZi0bKEN86mVvSHuhh1O1YHvKRZY7PDOj7UXLe5Vr95C9kg21EHtKSSwthfOHr0Hk/bSTPXSW58YX24ZYOmjpk+ZMXXKnNkzzSZ8vNoCP+86zqVpojr+ozHKRqGdOozPat5E7Rxiddhhhx1wwAGg12wLdkJikUDibbbZBhCGN+z9hNmzZ7ulYHQ53I0JGniGmoKfdmnJiUuzRWAswm+WjlSwbgkIHsNmdGA5ThSMW9ItnQVxihGJY+bahA0NnpgwQysPicYwCc3OllieQJcEJDlnypPzB7T0jKyWNTAY670yiH3qWmE0r3gv2QwcrkonoBaGWLmQi0iOG7HhVOU6VqAZkmmFfPJRnUWLdEEKqVmJqdQ1yXAHL3Gv8BX8N/GcHeVG1ryKYOMNt2DKjIS3piespDKZMA1YzOdN8OUdmaVxHLJN0+qbxKMuLr7MeTUiyuWywVvKl/jkdtt1752ZyYvWnDrjGdvO3nGbl95v37TnnFMS8lnTNtlxlhXkTJDPP0or7I1O025gbB8AWlhKtVNU/neytDBLtbk9mYdcxjRCToUaMunhJj3ODmBoMCafo916+Pa/26FY3Z6Ie9i/6KG8MckcYjoAIB6nRofNb9a3DXHvb21N93r6NIeAdk2bGfojG+Yaf96ySrsHkmrFlmO8q85EZk11LX7QURuTJ68RrxtJz61KOTlq5JFW3c0E5E8HVjmnrevRs6fuMHvu8l3mSo1GWKpNCpr6INWSZibpCcTyGWl7YGI502zIQwY7HBmsdaZPnjtnnUlz1unq2lqeBb7/vaDrvge67r33AaAO0tgxfoUr69fj0abn9/7SVoxJ+UQzNfpIi4fpeZlEXO3/tTLA8c+BjRVEQeT0R6Sz2VBjJ1F2RdzUScNS3zkbPVPml+pxf6Tb00sY7A0W/+WPoLqo1BMEJ8f5znl6M+4hO/AXLXnoQYeoTPLi5H/+5fnGlnM2CeTOiyfWQBoC6aU73mN9refqtBfmcWGDgqmfZRM9allD73ryKp1XqoNFLNzHM2NaZa4nRa8LIihYz6ErEBrogsyrrrrKbmfqYtnZ8+BDDz1UNuvSfgoQlzLJDH232mqrQF94LH8QRKHEcaXs2AkGYX6W16zTAcm9ihhDOg/XlC1u0PU0wPteGy3rGQir29BSaROhXsbyLKHhKDRlaHDYnFLiDI8xvCoBFmXjnsqoOpn94IqeaWaKZ3McNBNz+V8/yYSsIleztBspw/0PtKRnrtqRuylNetSXoFd3SA3ekn3NwU98RmJ0Ss7tnv/z7CGneo6JZrctvP5fCO+y8ZbL3ZyBCJZPTplSSLnyOc0+Yrxk0Ywp0zW2hywzH5U38qafDaOW5JacGz8tZJMkQFjWPX1S97SpXctjq5gMGU9TY3JF8soK4nvoK2QK4pBk27vC4OaKoHRqvLqyO54KC5kTmTk96WdILMtqUjquEoZqnC1mAkF6FpyjaaEec4/gurkdfp5Xb9dIq+26On0rqadxSVxAwjWvmqY60n7kQGZEuu2MCnc51dEcoGjeUZik2+A23cbAA8vTqTEYTpWn6/JJDplZujQt0VliSK+frRF9atfk8kXLnMIeryEF+ZjiZzlHQs+1RybLFvwvdSA+06k0WTAeZDvThmFM3ETbUkxYq6t7q+ndy6Z3LVl3+rJlXoZP6yLJs0zbMFPc21b+pZlPn4Bwpi25QXGD8OEb+SSaTvlrLko7+oQ+KUnSPQT75Fynp7qUrrGmhTnzQ3kI5Mwsv6mLV8lSpdO65soAzlM5c8pUtY9DLxugLbnweL0kzBuVEE6nxeSsHOmpA10EjTAY/om7JQ8Ajld1OcEg01N0j3W9DSwP1zbmX3vssccxxxyz3377gXALyCeeeCLABq7eR9piiy322WcfVVjVOeKIIyxBW4uWzSIzN3fvvfdGXI3BDE0NlU2DJw3SJbfbGjEmA13sp/yNkZOtUmK65KHe4tJF4hp3x0LLsCSUtsTPvow1fHfGnlEe8ppsMQw26hOlTC1a3Es41eUfiZBGj8/RMvlkxE09gQF/rIeDjVIv5PoTD0JKzRHpPaz1yiTfSZtZwnGVIYNkQiJANqlxslKGq2T+G8RtTuakCo7BgE+25Co4dYqDwxvK4FZyIxJjKVe+Nl+ybBKiOsYrPQVN2OaQStt8vavkBBisTpqUdrSHSYj2LF3iFajcCMXz/8leRopIaXTGEjQd8zQlHRqJiZQ/PZyOJ75+R3KSDQAr85IkhNzG4FgUFif+YTTsjo9OTEtfA2PKBSKyTVpgBIxuDlv3FB9R8nJt4iwHkgW7Ebp92iIrBecTDXwFG8vWtBauD4B6mrI4x4ONSixOXSMBuogVBybDjnefLvY+OS9fZ6SX1pdP9q0SgkTAId7AcLIG9SBVz/899fsfypGMQOCT7BiLdw0l5hmFl4LTByu62cr83EHWLDma4IXK5UtM7ax6eGU6TzQy/+g0JnuJ8zTvMY60jiib25ie8aQa01WDSNI1zZDAP2cZ9ua1fscPKF6C+lOXmJ5keSqd5dOg371sSnoHIDenFMkR1pX+iMY1JiJpKqQR2rJiZr9UKTGlp0lAUm1dbx7VbWVjIoVRA2BuLrnpBqDLFQa3QqTokugVOCqFe2rweA/YQ2I/+ak77LAD+Lz00kttbNZz1157rQGGFFdYNi/4O4sDVO+xxx7nn39+eM+In3DCCQB7r732knn33Xd3KAceEEfT3UBfcQEew2AV2eufE8bKhc5lNR9AoTOLSRcNl7htLEQoP0UkNhdeUXnjzoppPUSG/3+pV5EVB1KijH+JpY5sSyUXHnM9aQznkOAhmQRDlQVa6ZXpnGJlcjm3I4oHHXZEJPgKe4Vi3tSUGHE4RwohmbjmhHQpfOaUyLhiWsk6cIRFS6/LCMxKMBFUpKS2JYFIYA3TqjILx+A1KDWgEYVcY7JWydWUlenHp/8g2NTkqaaIW0xT+mMSl6ejvhJ9N9UgyUu4mpjqa8wA3MjAFbWlKnr4EUXCTe8OTV3YPdUeJYtCvpoAVqbMAF/RDtmWL130gM1YvOIpU/lbiKfNrXIbTRCYoYR5KV9G6dLwlJJbzsb7H48y+fPqTl5Yzr6sTCn0+PH5BwqWdFNq/su6BEskwJjc0CmTvHeeQKlnagWUnX46xV+m4OYiftMyjw+T/YmQtnMlTpKg07IacaWQBNv0J9FfmoUkKErjMJWyEcqj67QCKwUu6JS09Ayn/cprdIlUIpMs3VLfwJy6OO8ELFYu3cwhZv+JalKC3E6o63AZwTp+qjHNARg67viaazwytbtp5Cigz1IuHa6dubez+HO2xFQmKp+SmuraU03KkUNqcM7ZbYF7oODzXM5cwVCScOIRISEzl2MrpniYS3saN5r/Sx+laArR2qRa6QkF1iWg3C2KHxzBWp8iUSJNJ3JBZ4lOpYwTLIzaa0ghN7qU1CurCVwUgYVUUxw6ingYbB1YtqLMsSNa8XBbgw7o9cBYKZrMo41EP1ETaH6ou3g43DLE01+ROD9LxK0yKkSkcLsh/Vh6DYkq+htIo3vnjUk/c46ExH64DhhCj90K7e/JWJIHLNQ3cSBWevP0UO5Nifw9uCs9cyc1Y0WP7Yv0zEk6jF6IdqzkygnoFU+jbq5blljC4PhDLyLIsu+PkCPV0C+U1J5WKCWU5H4FBkvIzqvCUXHkQgXZfM1vJSXnr/l+VJRrTrgQMBwl5Ovt2aXZ08vGlsrG89ZEOXk4HLJUAiqwYfmxMUSQJS2AN+QUXAVL8rJwmaUAYDg29X/5c4fS41Z3OmwyrXB7Mue1mLwoqufSzqk0BUhPRotsowmgPy2BTp2WzliWJwU15eCXP78Sm7mKdCclYUAMq+l/FNEX8ScixFJkLEen1qWTJSEesfSmpWKKJFzNH3RKv9Br1J2OqGpY+XwjX/JqdlTdkwjKmkM2C42EuBX0EnNoQ840s2OFmLGULYF9XoQnJJJP9SdZ+WWCQqR4lJpScky8pOikRDJfIz3qDYZy45I8RUw4EizltjWal7MmpnJu11T5QCGoxZ0+ZSOxUIiffeiU4r1iyPmSDNJjh7QOHgUHvGZRpdmHvvAwIJmFxQuzEVBKk+JKTgSUavBBjWn2HWi1Hd+WSy0PNDO9Yh3F1OuCgJhx8BrSKAPwihLr8K+HSYfF0BtCVr0ab3jQzzJI+pQZXHX7ZGzpz8GaI723ITkeKUNfe1obLQ/Gk22LUCJFJGSwgo/VkzP9P7ryKVX2qyJzlfwOVTblYn0jpP+LKBqRaF/OXRrVnK2H+UKvQT/nyYTLnVI+SPfUGsnpY8Ni5ZZI0+Qp+Es0C7VcvA/JlK1kKGVE+uTrqTpnUaDnd5SNzBHPJrlJWgFfg9TSXONK4wO1bqWFguE0XRg4pLb0tjVaNoLrgMQL3bjb0I8Bs3YicTCRDMpLUlR/uR0Kx3L3KlNJ5B8m9nxQSQx4Y9SWoAekXhOHIYFVGGKhtyPS3mEwMjpZBmtO//RIGfraY7VXaHMhVSIrsL5C3hXujOaPwWvJXMU6c3OFgxeQK27m68CNalAqRPrRL3cCzJprzvEG2YEG/AA1FmrNZZtprpihcWeQqvPdpgIRHSBzb54GS70JzXWvWnyA1g2LwBB1p1u9ZCPjyK79ORlALP0zPYxSYr2nMDyEVEueiRTpVaOJ1Ora1iqBKoEqgSqBKoEOS6ACcIc7oFZfJVAlUCVQJTAxJVABeGL2e211lUCVQJVAlUCHJVABuMMdUKuvEqgSqBKoEpiYEqgAPDH7vba6SqBKoEqgSqDDEqgA3OEOqNVXCVQJVAlUCUxMCYxbAC4vjYnEW9s6OI7jcHC0Mz28zS1FxNWb40N0vwOr425kc+JHc5Gg05xhCFItvVX5HEXxNqtE6eIBFaCIfRRrHz6pyufwZbU6OUMHnBoUw99R9qg5UGh1aLai7DjmkxlnzCl82PM4zSlMerTaUR5lqLZCtq2gOW4BuICuDhPITucJ0v10WGZkiGOinagymHAV8X0nd52IGb0bRZp7OujLUyKDUWtdeuVzdGVburJE0O+jAFRCIvUg/NGtffjUCnslUvkcvvSGn5O5iDP7Yvg7no/RKMf5DZ9Oq3OOYz5peIRmGUoJSw59HbaoR/hU4VY1Zxuz8YHeyx+zzK4KYzEzUkKE3YxDK6O3fvnLX2655ZYGkpMpnSZtLIkPhsEOxVxvPd/uTsjt6ihNves8S/2ts4O4WtB3laHUuyrMjkLeyucoCLGJBFUpfSpZ70sx6TbInXVKbXwCJIydbJDYyalNpdsXrXy2R9YOynUKvY42wNkKve97qT58HnjcHh6GU8t45TMsLW0XMeJiMBqPfuoCKQG6LLDFCWucw5HVmMijJeM76BJBG/VQoKwvEBfRs6TiMYcqic2RQNlICYvc/E1D3R+3REq8uXjb4pXPURd1c582d24oQCiDSt0i/FGvffgEK5/Dl9WIc4Z3FXAbH5UZMamWFpwIfDYPRu297rrrLE4UFPON2hIf+5HxfBZ0H0XXGWZMt912G2eFC+u7SbqNc8x3jEXmPvnjp0c++ji+DKE4sztv3ryddtrp73//O/BmeVFAGYRTC/Fm5RiQYIsSK5+jK9joU9foU/2r983hfAfTCso222xjVqf36QD9sRzSKU+o8jm6/T4YNc7u3LlzWQ/Td3EeMFOg38l/sCIdSR/HfBK1ENPNiLvyqcKh4vgakvE1vI5IfmSVjlsAjq4aUCj6ychhT1nV6DCdF65w//z626qOZWoEFRFRVqn77ruPzQ3XJ2y0nPL0p9CelMrnqMs5OlSfxgKJ3jfLYXnN28zJ6Izel0fEloLOdr3ahcrnqOtAIWjuZbxH18eojw+7EXvJMxYiE41P1liTjccw0cajXtBNDxck7uTSWUv1NVukhklqrsiMycObWD9kT/WfzhOi55pzRjwGWJg2paxvwGOI624pIhLxuPYn0oaUymcrhNzcoRHX9eZeELf5ORPhN+dsBSdD02yuvfI5tKxGdtd+EXaDZWcEYguIJxGUISzDyGi2otRE45PjVHwnU2HdYXr0cEFfCjBud0GHcgcsuRoqETeK9BMQlcGUNqB0iJHA72FtZTD2XJndWK9GLQhKbI4PQaqltyqfrRBvc8+WOAUI9A2VoB6E34rah0+z8KZIiVc+hy/AleZkK2LvFfRlNEzZvX421tBXKyYCn0XDtZf7G6PPYNR2YMytWmlvjp0M4xaAjQ0hvAHXEid6ixWBqRF3dXewLjHSeMmCWRXk9sBP5LjjjmOCTbWogoLWtFXR2fdBYyaBEyoYSul68sknm7DjE//4lKe4R4O1t9Xp5Gn2E/JUlwm7viBPXRB4JpFUg89WMzMEfZJ0l7MbuoFhYhQ/5phjQsLu0oTY1tfBMR9VExcOQwcwKXzgAx/AHnWVKFIUdYgmt/oWWeETb1ER/WQx3//+9wfbtAKfcYuStJqZIej3mU7FuLYL5J3vfGeIMURtfmM9bAg6rb41IJ/s0kc+8hEb9dUeoi7Z4tGbq1ZEQ1rNIfoxjkpFmGFF/dTFp5xyCtnqfXzGtWQbOkKLhMhjMBqY4kV5SmRoImPkbicfW44REQzNBhWBYUCCJonITIdozL/+9S9rUKEHxiF9Yk0YkQLtQ5Md9buhwZTb9AJxAwxvdmSsv/762MYzNYVw2HOrGMFRZ2OlBPGJGcNm/vz5G2ywQeRvlhvMi8kNA02qZaStlPLoZmhmicFFPFChqAFhkmSM/04xGU2mfjixtNMsgehrjIUmwGmaHPu3m7O1LY4BA0R1+AEPHqVH1aGxwaSUUGMCD2m3jb1SESlBVgxgyeywqGhkoJMxD/NTK3jDpWCbI4PxST/NukwXjHqyNdJJsj+8ScFwe+wASRpNGGN8AixDVnffffejH/3oiHe839vcfaW6CsBFFINGwhyEWssE1TbccMPIzfbRdXosDx0K8BuUUItvUHG6HioeiBsVYow5ZlbKz3A+WszOwORxElNUkUAvUxmzBOKFFqxGyJDtc7dTs5lgHYci2AjGSnv6WF7QQgFkKxk6FQkZEm/gWdhoiXhjhelqrJx3ij06yRAXHsADzYwuDq2gwDRTimtn5VkmsmRVYEw8BGuwY9V8IixDp+QZvBWb08xnsFRQjX7S4Wa4xb+UCC3lPyQWVRAXHgQ6iW06aeywV2Gy5Gme9baUq7FDvALwsPoi8IwC0XIGzs8wdjEFDnvRPGiHRXS0M8V4c41xRZtZMZBW6mGRKT11b04sd9sWwWGfGYB3urzeUxgokowdcyW9nRFdzHYQV1TKYEnxk/mQAjDcJcZsPTq5kzE0E0tWDopbSVHxhtWQZBEjpTVfbKcYS13EhZlwgs2uyqu0zfGSuYMRHY1PY9zwwYbZgBTCBBXSsT1GGB6MTzw3LzYwBX/7299mzpxJT7TCT6NPnlDjaFqrpU1uqlC7qvvPqygG3u65557HPOYxreZkDNKvALySTolJbh/LFTM1V3ct/Tkfx2lZCHVw5k65DacADPEYYFii/bjidlB0wy9SxMMUrqTxLbgdgBHXghPqAWnADIeagD1BE9pjIAZsZfhk4USWNQ+CxXkYERzi1k8R10456zqXoIhOR/MqwAOhQeLo62gatv1sThmwyS1NbO5KA4c5JrRYCwl1lUETQgekFMeupVz1J46HMs1yN+bZwac49jAWwzxeQ+pPoT0pg/FJqqEMWhETr2IKMBa6SviRGMatPQxHLYaV4YNDP5uNauhAMaTtZKmzdQ26+aizbI2d2g02zPAbTCRF+BkeXrK2hp8rdZcIfdkUQ6L//K5tDTGijK6oji2LOJbYi1h8hiXRFkx2Cn2xF2PPFVSwEUwASUpn4zAmxQIvqNAc6SxF2wTYp6KwuSG6eOJAmLjS4+yazIFnGqIJnUJfbBRzRnR+ctFoI95wSyelmD1gW0qwLaUjIbqSo0M5iSvmN8wuZvS4qwzaImhIp9AXG6oO3cOnn8ZRaIIHJYxAMBZ628EH6kPwGeMrWmF9Tlua+50akHOobrTOtaVBFwuc8jCVLE9EVBqLMWCYokaGcGNays9YI14BeCU9QktYWNAVq82f+cxnnvvc5zITz3nOc77zne/QGKqDBJsicSW0WnybXQjlZjvwbK7w2c9+1mB7wxveEM//ZHCrDIAWszMweYwZcu6BCtbt4x//+POe9zxGYeONN7YhVjo5B3J0Vp5XX331s571rFmzZhHgJZdcglW2jBrYuvm0pz1Ndz/2sY895JBDHIvGQBPvwK1tS+o3vvGNZzzjGfgJVtXJ5Ilj0il9hx56aCjnC1/4wj//+c9t4WiASkwITj311Fe96lUG1BZbbHHYYYf99Kc/JVJIbBABZsLcZJNNsLrvvvv+9a9/HYBEW5LMBvC5//77gwpHXx188MHf/e531WybgqsxRYHJ9tnPfjaou+KKK9rC1ACVDMZnZP3DH/7wspe9bNNNN7UWQl0vuugi81067C6ZR0Q8ZkUDUB+9pKju4osv3mWXXUwLbGp75Stfef755zNE5jTUYMcddyTbHXbYgaib5wqjx8KYplQBeCXdQ1HgFjAw3i688MKPfexjb33rW6+//vo99tjDKOVeGKiMC502LItmr4RoC26HXQgGsIphRs1rSE94whM8XGH1NASHMeRkbgELwyJJmMEMy+t9iU9+8pNemGFwP/3pT59xxhkf/vCHUWGFXcPbGBbRFmRiC575zGeab7EgyBMdzs0MfvCDHxx55JE33XTT2Wef/Ytf/OItb3kLYZaNRS1gZCUkYa3aTQo/+tGPmgr4aYKFZwpgcmAO8cQnPtFk4tZbb6W34cythGJrbuvNSy+9lPH99a9//dWvftXyxhvf+EarMnRVhccff/w3v/lN4+vnP/+5FaZXv/rVreFi5VTN/7797W9jgPTgBDV405veZIJFXU0c4Rk1OO2000QMqJh8r5xoC3IMxqeqKMDRRx/9pz/96bLLLrvmmmsOOuggYmepYuIrAyUJQ9EGAFaRAQJi3/GOd2DpZz/7mZUDky1TBCzdeeedjMAf//jHT33qU7qeq9ACUY1tkgRUw9ASYHZloLV77rnna17zmshs7AE2ehNTS08vpFO1oUm17m4MquDBCDRBNv/9/ve/b6r+nve8h/lwKxqCyZgxtI6Z4VBmDl784hcffvjhwQxz9tKXvvS1r32tSBQvLRoOtVbkYXyRBb1f+tKXCn3cEq+fxHjjjTca3HaQlbsdjMTzhe9973s0M9igqwceeGDEcdtxeYYSYkPkjjvuACE/+tGPsHf77beL8yaD89///vekaqLjVog6mqCgNka8pdcB+QxODHPIwVPHvynFl7/8ZWPKNCL4aQ97pe0D8hmJpjXnnnuunDHkTXk///nP+1l0I5pTxlqh2YpI1BWcBAP4sTinLmaqqOUFF1xg4thHUcvdVjA2Fmim2X0NQ0sgnpiys/AMQkDcyL/33ntbWuFV0DAWhGmO6fzQ1Fp0F06YTiKOB/EPfvCD4O2pT30qtilx+JS8omBSpEVsrJRsTMOpPrltu+22zISJsFHHCbZQ9oIXvCA8TuBnrK6UWkszRM9ilbujIsbXlej4DZYiyTlWSjvoVkbzqZ8u5plxhYmXCZYOFcjTIuo+++xjIf0pT3nK17/+dQY3irT/qupY0oBStFH/Mr4hWF84EH/c4x4nA2lvvfXWnkf89re/lZO6ahpupcciRKs5H4zPYIOQn//851sXsWyON1NwxgGchK66q7jQaibRV8uA8iRbt6z3Mk08S+xZWiBJyzlK4TDK0mGJbeDT0FaX7sOJEYRnS0fA2EMTtXsOpVtFLEdLpKhhvoIxpQSSD+G3gdsOVBGNrNfBJEBNKbSrTViU2/Tcz5jNHXvssU9/+tMVNBRdqZpsg9FpdXrwoBa2jIqzYpby/PREjQdsDS0YcBeTJXOruRqQfkgvru973/sgbgxCbIcAsReRWF0YkEh7EvW1Mfm1r31NdTF5xzbAC/Z23nln66i4jVvtYal/LUVKWOVGlAx+mhycdNJJPt9kbX+zzTZji8vdjkRCeq5WOx7/+MfjgfT4kV4lKPwYaHvttZd1fsI3piI9tIUhLtlaGunPpxT8WEfV48EM8Z5zzjm4xQl9CN5iZIXP11IOg3h/PqVb3scP9wCHYE+I5YTCT2hvsQklvXURAvHUxttQWILBFDJEVHhgrNx1zBweSJKoZQiRukakdex1kHInX2HUGWM/xJwxZt/UnRr5FB2d5moAM4pCm8OhNHfzs1MtUruqjT2K6xkV7ycmyHi2xGc3L8eIOTblhBb47xSf6o3aXaHFWWed5UmVD4rxeBz1x7M84ogjQp5GXWedy5AYwUI4hjXk6UoZTOp32203CuAZNm4N4A7KMxgLBmL9gE6aKVJdz4ZNv9yyFcB673nnncch7girBEhoOp2s7LbzwE+P44T0oGys9rvSTyn8Idm0JZojW0iYSiDSUv4H4xPnpi+eCnuaHgqMDX5wvL+OYY82qYq24L/VTKp6MD6le+DqYSod8ND9yU9+siFmFu7ZhO1O5Mk+BHttYBKfxo5RTBWtFni4bqXQYzvuL/20zsEuhf20p3X77bd/29vepoi+1tFGmeBnXEXGZ9DaGoaWQPg3NIkGXHnllTJHytvf/vbdd989yrIdVH9oOu25a4dLaGqs74kHjKmddQAqHeeT9IIHuGvrUJne8oatmcNgd8Mit0diQ9fCZtlmTG7N2TxZ58BFYpnFN2doczycYEvQnqQWfnT96aefTpLhR9pxahNDmxnrXx02aKbV++BTX8dDX8IUItEJhRx3ZU0fQz2iCUVV+pMd9ZQ+fJpbH3XUUSC24FbsvLMZ06xX7ZiPNSfx0gWjzlV/gn34JKgbbrhB17vKzE9wtRfP7Dakh88gEiLtT3DUU4hOXa5BWcSTJs/y4qdnZJ4+2B5vOluqxmpwW1LGa6Q+Aw60Gupqjua2Jz3M7uWXX+7pGp8DinzhC1+w198tKhWjkZYMRajF9zxMVcPLX/5yWw3Zgm9961s2jIA0y31snDHAfJieC+It5mVQ8vEcKEYjvyFenoncTJsUc2TskSfjG5OeQWm18oZ5QJAPQ+Dpgwh+mIkXvehFt9xyCx+OGtx1111m8VhtJS9D0SYxtymnK7uPPfyEHur63/zmN5jU7wyxLQLxLs1Q5Fp2j903jl73utd5q8fucZzEqoy+3mqrrcwRv/jFLxKyRHu2GWUvz+CFSnCANEcTWsbaCoQH49M8zHZoW7i9ymUZzJW0bd3/3Oc+xw9mEzDPCY6ZZXTHCnRH+8dgfBIUxry5TqRmBjH5lpnqhisZiwqU2U/X0earLz31qpG1dCUceihHGdeGDyQ2ITvxxBMtfuj3KI83QZyhENrAZ1++2/Z7vM4sRqtd4ewGtTPPPJOu2BPL/npcoY+sR9GqMuG1vDNa9a4qHWqqCAZCX72D5Cfe+OgMh3j4lMGhAbmq9Ecxvx2kQc20l8G1ssecWSjbcsstrT8z0+4aoh0UJgb0O/SCsnrcOvOvfvWreNpnNsO6YVgwmQC9xe8ZRRGtEikSw6pXftksr8lRTrwBNiuQVNRzSnbN+9ZsMeRbJcqjm5kHiZ8f//jHZor0k/GNvjZ8DjjggCc96UmWSa+99lrbhSyWxi2WFw+hCYFto8vSgNQG4zNMQbBBGcxsbA7AIfZIO0iJyNAe1R2QT0MbS6YClnk9ajXz9p6PURb7GILJItv28Iklrxo6NSEmLp/4xCeogaVE8wN9bZ8gg2BFhJaax8hcuGLKsEqkoQYDdtbDPTEtuNcwtAQMvDL4LZlaOPUQyJNg/mXAnuJlBA5Nqv13LZF5ATTqDSaLfrefmVKj2QDRsbzmMR4F8RjI873vfW+smAWfMoC3UqTNkauuuoqZCAfCmgFse8UrXuFFxpiYhxshgwBROitSK+Q8xfC6mFosvf71rycuArQV1v4m6rrTTjtZvAnL22ZJRnX6FGOxUCQSHq0ZbdzFqldvLX7wJm0zhtDSKUkoQMwX26MMg/EZogsMjrhWECk+Q12BRNyNFrX6OhifgVVWO2zCsu2OW2mBwTa3wqcInGs1e33oW/kwvaalHi6YGXidRAbzLTIsIUZWwHAUpxVEPY7RVzM7eXZEEX2NVAlUCVQJVAlUCUw0CdRnwBOtx2t7qwSqBKoEqgTGhAQqAI+JbqhMVAlUCVQJVAlMNAlUAJ5oPV7bWyVQJVAlUCUwJiRQAXhMdENlokqgSqBKoEpgokmgAvBE6/Ha3iqBKoEqgSqBMSGBCsBjohsqE1UCVQJVAlUCE00CFYAnWo/X9lYJVAlUCVQJjAkJVAAeE91QmZhoEnA876GHHhqtdtSAiOMmXB3m4OoN/bjlGodixhl+jlAo6eU8PymllILOLog8zjFwMmXEnXLgvI6Iu8rjXIvyM4r76XAi1zgAIXgonMTJD26VlFK8RqoEqgRGJoEKwCOTWy1VJbBaEvDNjFNOOcUJa5tvvrnvy0Jfp2452Dm+tANuA0ehrLMwnbQVB105/lCtThBzdciRq5ygNEo5OgrQOrfL54Z8NN7BQw4oljmo7bDDDvIH1sbZxX76Upar4kHTEYYxG4jDv2B/TAtQdnYV6EWzALyCNVQJVAmsjgTadMT56rBYy1YJjD8JOFA6XEmeJVQTtNEnCriYsNChjH6CvUDZOLgR8olIBNVg0nGYDqN2dqOcYBJkyiwiOPHRAZ/SAXZgtnjkhLVQP+Iq8pE4tyC0Iugjgix4VgXGYL+7pRZx7CHIsQ4OpdRQJVAlMGIJVA94xKKrBasERi4BH0B1RvdLXvISJ9H7DCq85LzCTkjsawq+BeSnj7m++c1vjk/EQD4fQPTFRufaQ00HU8NvXxucM2cO1HTU83HHHcddBpw+IHHsscf6qgEKfvpcDwSFuz56EZDvQ7y+66UiIOoEZrgLdCG6T80feOCBjvh3Pr6vVB155JGQmHsNrfnoXGrZxH04oaLvyDu+lqwSaJJABeAmYdRolUC7JADwYCpgg6C+tuQ7d9xKkOkbQY7RB88+SOCprXRfs+GhwksZfNMGBEo/+eSTucKcUUvZN99884c+9CHfPvIpJOxvt912hxxyiKsv9qAGYhXh9cYi9t133+0DcBtssIEvI/3kJz8Bxj6paaUauKrCB+dhtg9Z+jzcV77ylfhEoDweV/uOuk/WXH/99ZayUWuXnGo9VQLjWQJ1CXo8925t25iVAEydOXOmRWNeKTDmX/I1AeHRRx/tc0DHH398eMOAdv/99/cTNm+00UYc08MPP7w4oBxiDbSS7COJf/nLX8Czn76BExnk9/A4Nk+pKL5Q6UM0POxrrrkmvpvEV/YBaajsMzXK8qTf/e53W46Gsueddx6Q9mElQM6B9hVkPOCKZ2zqMGYFWxmrEngYSaAC8MOosyqr40cCHq9aW4a4VoBhJAeUh2rJ164oXi+oA88g2ccELSwLYJUHvPXWWwNXP8Enh/Wiiy6yk+t3v/sdRLS7ChECEucZc2RhPJqIy89dVlCGG2+80fq24rKhsMsuu8BmX43Fj6mAPArGrVmzZvnMMA6hsk/acaP322+/3XbbzRJ0+arg+OmP2pIqgU5IoC5Bd0Lqtc4JLwHgGlurOKlQlhMswEXuJneWS3r11VfzVn/4wx+Gexo7pDjKfFCQqdR1111n9Xivvfbip1oZtlINbqULSMkGhsUhqPyBzRLhsWfGMkQPWIsGzwBVNik8XagsqE6KiESQDIkvuOACe8R45D6ibi16wndgFUCVwChIoHrAoyDESqJKYFUlAH25uUoBOR4npISL0HH77be3mGxPlhDpcJRvKjMPGI4GKLplmxW32NNfsAojbebi8gZZ2MkhFoejqpBZQEQ2O7nOPPNMD3Hlcb3yyitF1CUuQxC3pg2SsYSg4lOnTnXXAEepWQAAA/tJREFUY2nhhBNOAPM33XTTpptuuqpNrvmrBKoE+kigesB9BFJ/Vgm0QwJWmyGrmmw5tm8ZwtlLBeq8wmsJ+ogjjvCY1hr15Zdf/q53vQt8yik/WI1SoNSLTLfddttll12m4Lnnnnv22WfzdGXjW1u+5klzi+M134BVBeGxBWTPhi0mz5s3j+vsGbC4bdXuoskzBsP8YPyAfKvQftredcYZZ9xwww12Y4nwg+Vvh4xqHVUC410CFYDHew/X9o1JCXjmGsvCJ510EofSKrR9y9Bum222ueSSS+yT4m7CP3dnz54NF4Exr9Qatfj8+fO1yStMsNneqIMOOuiss86ybxk8S5fHIvaee+7plmfGp556qiLxRBnA818vvvhi1W277bb77rvvjjvueNpppynlDCz+N6h2+IZs8FipO++8EwzDYzC/66677rzzzsraEYZVRWqoEqgSWE0JTDLmV5NELV4lUCWwqhLgYkK4eBwL8BSPPVPGYyxNSwGowM/uZUvEfnKagWtUFMNWTs5xOLhx1xUdPq50AF8ycIhhcJS1tmx1GtxGvbHg7JaUWMHGG5pI2ZMlHj53lA2WgkKk1GuVQJXAiCVQAXjEoqsFqwRWVwIwL2BYBBgjB/aAH2iULgBgibFjKx4AyykDXPTstlQfj4HdCkyNHVsBllFcZput4DHf145oQI6aDHJKcfUT+oLtQNwAdUArBc24IqUIPAb/8pfaa6RKoEpgZBKoo2hkcqulqgRGQQKwDZ7xWaEv5EMRNAJLyCdFsCFLoogrUATJAZbyAF246LwOtzy+dUUhPGNXFIA3vJQeOOoJMax1yzXgEzVxGdCEviKqwE+gr58S/ZQZn6oT0ITiFX0Jp4YqgdWXQPWAV1+GlUKVwCpLAObxa2PbVBQGb4GjcfYy7IRzoJdfC/NgoV3Q1oRljtXm5ipRK+5y+MFSlEUkfOj4WVxkESluwdpYgg7Ht9AM5I6yPGaPn/HgrlpMF/wsOWukSqBKYMQSqB7wiEVXC1YJjFwC0BH6AkKQhgqQg75gz09HXgA54CePn/KEewr2wsHl/koH2FFWRE75ebpI8VYVCSdVorhEGWJ3VVBQxG4soAvLkfVTKdkiszwKCjxsiaBXCAfdT/kDnsVrqBKoElgdCVQPeHWkV8tWCVQJVAlUCVQJjFAC1QMeoeBqsSqBKoEqgSqBKoHVkUAF4NWRXi1bJVAlUCVQJVAlMEIJVAAeoeBqsSqBKoEqgSqBKoHVkUAF4NWRXi1bJVAlUCVQJVAlMEIJVAAeoeBqsSqBKoEqgSqBKoHVkUAF4NWRXi1bJVAlUCVQJVAlMEIJVAAeoeBqsSqBKoEqgSqBKoHVkcD/AxQVb7zgnMCzAAAAAElFTkSuQmCC", + "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAHgAoADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA5vxR4jvdDuNJtNP0uO/utSuGgRJLnyFXajOSW2N2U9qm07VNVEN3c+IdNstJtoE3+cuoecuBncWJRAoAHWud+IdtBd654Qt7m4lggfUJQ8sU7Qsv7hzw6kEfnSeINM0/Tfh74sFhqN1eeZpk28XOoSXW3EbYxvY7ep6dePSgDr7fW9KvL5rK11Synu0Xe0EVwjSKvqVBzjkUXeu6TYXkVneapY211Ljy4ZrhEd8+ik5NcJeaTp+j2vw9nsLOGCddQhh85EAdkktpd4J6ncQCc9TWBaafcanN4ttL/AFHwzbzy6hcLcpqlmXuFjJ/dsHMq/Js27SBgY9c0AeuXer6bpz7L7ULW1YxmXE8yodgIBbk9ASBn3FRyeINGia0Eur2EZu1D2we5QGdT0KZPzA+1cHDo1tc+OPB1rqE8Gqi10GV1uGUMkzAxKJMHIOQcjr60tivhyPxb40j8SLYo6GFY1uwoAshCu0Rg/wAOd+dvf3oA9Ag1bTrk2wg1G0lN0HNv5cyt5oThiuD82O+OlTC8tjfPZLcRG6WMStAHG8ISQGK9cEgjPtXkmixG0+DfhjxFArmbQ52vDx87QGV0mX/v2zH6qK7HwFjVZNZ8VMQRq12Vtj/07Q5jj/Mh2/4FQB1F9qNlpdsbnUL23tIBwZbiVY1B+pIFRrrGmPpp1FNStGsAMm6E6mID135x+tcd4h+w/wDC09E/t7yP7M/s+f7F9px5X2vemevG7y+mffFV/F39h/bPCufsP/CO/wBrP9s8vZ5PneU3l+Zjj7+M574zQB29trGmXenyahbajaT2UYZnuYplaNQBkksDgYHWm22u6Re3v2K11Wxnutok8iK4Rn2kZDbQc4wQc15vqf2L+2fHv9heT/Z3/COH7Z9mx5X2rbLjpxu8vGce2anl0mw0rwz8PbixtIYLgahZKZkQB2EkbCTLdTuyc+tAHpNvfWt1DJNb3UMsUbMjvHIGVWU4YEjoQQQR2qvNrukW2mxajPqtjFYygGO5kuEWJwemGJwfzrzXxLdz6DqfiXwvatsl8SvDLp2P4XnIhuD+GN//AAKpfEFlJZfETSNPgn0qzs7fRhDp39rW5mi3q+HCfOoEmwR++PxoA9JOq6etlHfNfWotJSqxz+cvluWOFAbODknA9TUJ8RaGbKa9/tmw+yQSeVLP9qTy434+VmzgHkcH1ry7VtDitvh/qdm+qadfW93r1qzx6amyG3Lyxb41G5tvXdjP8XvXQ+JLPSLHxv4RhvLa0t9GAutiNGqQfadiCPcPu52h9ufwoA7ez1Sw1BnFle21yUVXbyJlfarZKk4PAODj1xTLPXNI1K6ltbHVLK6uIv8AWRQXCO6fUA5FeR3fkeX8Vf8AhFtuPs9rj7J93Ox/N2Y/4HnHfPetXStJS71Hw1e2+v8AhSGK1mD2q6ZZmGWZChDRAmU5BU8jGcj2oA9Bl8SaHDKsUms6fHK0rQBHuUBMinBTGfvAkZHWreoanYaVbfadRvbazgzjzLiVY1z6ZYgV5dYaJpl14T+I11cWUE1xJqOpAyyIGYBQSoBPTByRjuc1YtJrS48YeFpvEbQvbSeG0eya8IMZuiVMpG7jfs2++M0AejjVtNbTf7RGoWhscbvtQmXysdM784/WnWGp2Oq2wudPvba7gJx5lvKsi59MqSK848dC2Nz4UGmz6PDo32+fzZJoRLZrcbDs3qjKM7t+Mn72M1seDtIez8UarenWdEuJLm3iWaz0qHylVlLbZGXe3JBIzxnHtQB3dFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFNfIRiDg4oAdRXD+GdN1rWPCuk6nceMNYSa8s4bh1jhs9oZ0DEDMBOMn1rU/4RrVv+h01z/vzZ/wDxigDpKK5v/hGtW/6HTXP+/Nn/APGKP+Ea1b/odNc/782f/wAYoA6Siub/AOEa1b/odNc/782f/wAYo/4RrVv+h01z/vzZ/wDxigDpKK5v/hGtW/6HTXP+/Nn/APGKP+Ea1b/odNc/782f/wAYoA6Siub/AOEa1b/odNc/782f/wAYo/4RrVv+h01z/vzZ/wDxigDpKK5v/hGtV/6HTXP+/Nn/APGKP+Ea1X/odNc/782f/wAYoA6Siub/AOEa1b/odNc/782f/wAYo/4RrVv+h01z/vzZ/wDxigDpKK5v/hGtW/6HTXP+/Nn/APGKP+Ea1b/odNc/782f/wAYoA6Siub/AOEa1b/odNc/782f/wAYo/4RrVv+h01z/vzZ/wDxigDpKK5v/hGtW/6HTXP+/Nn/APGKP+Ea1b/odNc/782f/wAYoA1dR0fTNYiSPVNOtL6NDuRLqBZQp9QGBwaq2nhfw/YQ3ENnoWmW8VynlzpFaRoJU/usAPmHJ4NVP+Ea1b/odNc/782f/wAYo/4RrVv+h01z/vzZ/wDxigDZlsbSVbfzLaB1tnEkAaMERMAQGX+6QCRkdiar3+g6NqlwlxqGkWF5NGMJJcWySMv0JBIrO/4RrVv+h01z/vzZ/wDxij/hGtW/6HTXP+/Nn/8AGKANlbG0FzFci1gFxFGYo5fLG5EOMqD1A4HHsK5nxPo2t6hqUc+nad4auBHGBBc6nEzTWz5OWXCkEdCBleau/wDCNat/0Omuf9+bP/4xR/wjWrf9Dprn/fmz/wDjFAGfP4Y1Sw8AW3hfQbi0JMDWtxd3hYFVYHfIqqDliSSASBz1rqNM06DSdLtNOtl2wWsKQxj/AGVAA/lWP/wjWrf9Dprn/fmz/wDjFH/CNat/0Omuf9+bP/4xQBsX2nWOqWxttQsre7gJyYriJZFJ+hBFMXR9MTTTpyabaLYEYNqIFERHpsxj9Kyv+Ea1b/odNc/782f/AMYo/wCEa1b/AKHTXP8AvzZ//GKANO20fTLPTn062060gspAyvbRQqsbAjBBUDByOtSvp9nJDbxPaW7RWzK0CGJSsTLwpUY+UjtjpWP/AMI1q3/Q6a5/35s//jFH/CNat/0Omuf9+bP/AOMUAa82nWVzeW95PZW0t1bbvInkiVnizwdrEZXPfFLqGmWGq232fUbG2vIM58u4iWRc+uGBFY//AAjWrf8AQ6a5/wB+bP8A+MUf8I1q3/Q6a5/35s//AIxQBpLomkx2K2Mem2aWiuJFgW3URhgQQwXGMggHPtVPxLYX+o6YlvZ2WkX2ZAZbfVVYxOuD0wGwc46g96h/4RrVv+h01z/vzZ//ABij/hGtW/6HTXP+/Nn/APGKAK/g/wAN3WiSaje35she6g8e6GxQpBBHGu1I0BwTgZJOByelbFt4d0SyvmvbXR9Pgu2JJnitkWQ56/MBms//AIRrVv8AodNc/wC/Nn/8Yo/4RrVv+h01z/vzZ/8AxigDYj06yjhuIFsrdYblneeNYlCys33iwx8xPcnrUd1o+mXtglhd6bZ3FnGAEt5YFeNQBgYUjAwKy/8AhGtW/wCh01z/AL82f/xij/hGtW/6HTXP+/Nn/wDGKANZdK05dN/s1dPtRY42/ZRCvlY6424xj8KTTtH0zSI2j0zTrOyRjkrbQLGD9QoFZX/CNat/0Omuf9+bP/4xR/wjWrf9Dprn/fmz/wDjFAHSUVzf/CNat/0Omuf9+bP/AOMUf8I1q3/Q6a5/35s//jFAHSUVzf8AwjWrf9Dprn/fmz/+MUf8I1q3/Q6a5/35s/8A4xQB0lFc3/wjWrf9Dprn/fmz/wDjFH/CNat/0Omuf9+bP/4xQB0lFc3/AMI1q3/Q6a5/35s//jFH/CNat/0Omuf9+bP/AOMUAdJRXN/8I1q3/Q6a5/35s/8A4xR/wjWrf9Dprn/fmz/+MUAdJRXN/wDCNat/0Omuf9+bP/4xR/wjWrf9Dprn/fmz/wDjFAHSUVzf/CNat/0Omuf9+bP/AOMUf8I1q3/Q6a5/35s//jFAHSUVzf8AwjWrf9Dprn/fmz/+MUf8I1q3/Q6a5/35s/8A4xQB0lFc3/wjWrf9Dprn/fmz/wDjFH/CNat/0Omuf9+bP/4xQB0lFc3/AMI1q3/Q6a5/35s//jFI3hvVgpP/AAmuucD/AJ42f/xigDpaKw/CN5cal4N0S/vJTNc3NjBNLIQBudkBJwOBye1blABRRRQAUUUUAFFFFABRRRQAVS1DU7DSbY3OpXtvZ24IUy3Mqxpk9BliBmrtMZFddrqGHoRmgDGs/FvhvUbqO0sfEOlXVzJkJDBeRu7YGThQ2TwCazvDtxqyeLNe0zUdUk1CK2htZYS0EcewyebuA2gZHyL1JrqFghRgyxIpHQhQK5fTfDmuWXiq81ifXLOaO8WOOe3XTmQlI9+wK3nHB+c5ODnHQUAWPFOo39u2kadps4trrU70W/2goHMKCN5HYA8FsJgZBHOcHFYNx4k1rTYdV0VrtbnUodRtLK1v5YVHyXO3Dui4UsmX6AA4XjrXQal4evdTs4/M1fF/a37Xljci2XEIywWNkz84COUJyCevBqmfBZn03UFvdSeXVb25ivGv4oQgili2+VsQk4Vdg4JOctk80AS6HealaeJr/wAP6jftqAjtYb23uZIkSTa7OjIwQBTgpkEAcN7Vqar4i0TRiseqaxYWMkilkW5uEjLD1AYjNVdE0K5sdTvNU1K/F/qF0kcJkjg8mOOJNxVFTcxHLsSSTkntityRQUbIB4PUUAYPgH/knfhr/sF23/opa6Kud8A/8k78Nf8AYLtv/RS10VABRRRQAUUUUAFFFFABRRRQAlFc3431G40zwtc3FpK0U4KBXXqMsM/pmt61mFxawzDpIiuPxGapxaimQppycexPRRRUlhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNf7jfQ06mv9xvoaAOf8A/8AJO/DX/YLtv8A0UtdFXO+Af8Aknfhr/sF23/opa6KgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKa/3G+hp1Nf7jfQ0Ac/4B/wCSd+Gv+wXbf+ilroq53wD/AMk78Nf9gu2/9FLXRUAFFFFABRRRQAUUUUAFFFFAHF/E1iPCgQcmS5jUD16n+lbXhab7R4X0yTOT9nRSfcDB/lWZ44UTDQrZuRJqkO4eoGc/zqXwA5/4RG2ib78EkkTfUOf8a6JL9wvX+vyOSL/2h+h1FFFFc51hRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNf7jfQ06mv9xvoaAOf8A/8k78Nf8AYLtv/RS10Vc74B/5J34a/wCwXbf+ilroqACiiigAooooAKKKKACiiigAooooAKKKKACiiigApr/cb6GnU1/uN9DQBz/gH/knfhr/ALBdt/6KWuirnfAP/JO/DX/YLtv/AEUtdFQAUUUUAFFFFABRRRQAUUUUAcp4pHma94ah9btn/wC+VzR4MHlS67af88dTlKj0VsEUa5+88c+GI+y/aXP/AHwMUaJ/o/jjxHb9pBBOo/4CQf1rp/5d28r/AInJ/wAvb+dvwOrooormOsKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApr/AHG+hp1Nf7jfQ0Ac/wCAf+Sd+Gv+wXbf+ilroq53wD/yTvw1/wBgu2/9FLXRUAFFFFABRRRQAUUUUAFFFFABRRVHUr2WwtTNDp11fuGA8m18vf8AX52UY/GgC9RWDZa9e3l7Hby+GNYtEbOZ7hrbYvGedkzN7cA9axfCulWWkePvFFvYW6QRG2sXKrk5Y+fkknkmgDuKK5Dxqi3c/h3TLjP9n3+piK6XdgSqsMrrG3qCyLkd8YqroGlWTaj4q8OeQG0SGeAx2uTsiLxK7ouOi5AbaOPmPrQB3NNf7jfQ1yXw1ijt/A9tDEgSKO6vERVGAoF1KABWzq0+uRFRpWn2FyhQ72ur14Cp9gsT5/MUAU/AP/JO/DX/AGC7b/0UtdFXO+Af+Sd+Gv8AsF23/opa6KgAooooAKKKKACiiigAooooA5XUP3nxG0hf+edpM/58Un/Hv8Tf9m50z82V/wDCg/vPigg7R6UT+Jlo1v8A0fxx4cuO0nnwN+K5H61072Xl/mzlfWX95fojq6KKK5jqCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKa/3G+hp1Nf7jfQ0Ac/4B/wCSd+Gv+wXbf+ilroq53wD/AMk78Nf9gu2/9FLXRUAFFFFABRRRQAUUUUAFFFFABRRRQAVzll4M0TT9ZbVbeO9W9YgtI2oXDh8ZwGVpCpA3HAIwM8V0dFAGLN4Z0ifTriwltN1vPctdupkfImZ95dWzuU7jkbSMdsUtv4b0u00ifTLaCWK2nYtKUuZBK7HGWMu7eW4HO7PGK2aKAMTQvDGleG45k0yK5jSQ7ikt5NMuckkgSOwBJJJIxnPNbL/cb6GnU1/uN9DQBz/gH/knfhr/ALBdt/6KWuirnfAP/JO/DX/YLtv/AEUtdFQAUUUUAFFFFABRRRQAUUUUAcpafvPiVqLf887GNPzbNHjL9y+hXf8Azx1OIMfRWyDRo53+PfErf880tk/NCad4/Q/8IlczJ9+CSOVfqHH+NdH/AC8ivJfijk/5dSfm/wAGdSOlFRxuJI0dejAMPoakrnOtBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNf7jfQ06mv8Acb6GgDn/AAD/AMk78Nf9gu2/9FLXRVzvgH/knfhr/sF23/opa6KgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKa/wBxvoadTX+430NAHP8AgH/knfhr/sF23/opa6Kud8A/8k78Nf8AYLtv/RS10VABRRRQAUUUUAFFFFABRRQelAHK+GT5nibxPN63Eaf98qRWj4pg+0eFtTjxk/ZnYD3AyP5Vm+D/AJ7vxFL66pKn/fOP8a6S5hE9rNC3SRCh/EYrabtUv2t+SOeC5qdu9/zKPh6b7T4c0yYnJa2jJ+u0Z/WtSuZ8BymXwdYhvvRh4yPTDkfyxXTVnUVpNeZpSd4J+QtFFFSaBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU1/uN9DTqa/wBxvoaAOf8AAP8AyTvw1/2C7b/0UtdFXO+Af+Sd+Gv+wXbf+ilroqACiiigAooooAKKKKACiiigAooooAKKKxtH8S6TrtxdwabcvLLaBDMrQyR7Q27aQWUbgdrcjPSgDZorP1TVbLRrFrzULjyYQwQHaWLMTgKqgEsSegAJqnH4q0aXSZNUS7Y2scvkv+4k8xZOBsMe3eG5HGM8igDcpr/cb6GszSdb07W0lawnLtC2yWOSJ4pIyRkBkcBlyOeRzWm/3G+hoA5/wD/yTvw1/wBgu2/9FLXRVzvgH/knfhr/ALBdt/6KWuioAKKKKACiiigAooooAKD0NFB6GgGcr4G+bTtTl/566lO/6gf0rqO1cv8AD/5vCkUv/PWaV/8Ax8j+ldTWlX42ZUP4a9DlPBI8u11azz/x7alMgHtkEf1rqhXK+HiYPF3ia2H3fNhmHuXQk/0rqqVb4797fkKj8Fu119zHUUUVBsFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTX+430NOpr/cb6GgDn/AP/JO/DX/AGC7b/0UtdFXO+Af+Sd+Gv8AsF23/opa6KgAooooAKKKKACiiigAooooAKo6impSWhXS57WC5yPnuoGlTHf5VdTn8avUUAYNjB4pS9ja/wBS0ea0Gd6W+nyxueOMMZmA5x2Nc3oXibQ7n4neIIbfV7KWS4t7OKBEmUmR08/eq88kZGfTNehUUAcN4m1Oynk0PVkm83TtK1l0vpAhxCyxyxFm46LIwyeg69Kp2fibTNKfxb4tlmzo0s8CQTIOLl1iVCUzwQWIXd0+U84Ga9FooA4zwRc2mq3GqauNVsL3U70xG5hsbhZUtI1DCKPKnk/fJbuc44Ard1bTLy/Ie213UNPCoQUtkgYP7nzI2P5EVrU1/uN9DQBz/gH/AJJ34a/7Bdt/6KWuirnfAP8AyTvw1/2C7b/0UtdFQAUUUUAFFFFABRRRQAlQ3UnlWs0n91Gb8hU9Z2tv5WhahJ/dtpD+SmnHdEydk2ZXgJPL8FacPVXb83Y/1rpaxPCKeX4S0tfW3Vvz5/rW3VVXecn5smkrQS8kcrF/o/xMuk6C505ZPqVfb/KupxzXLaqPs/xA0KbtcQzwk/Qbh/Ouq70VNovy/wCATT0cl5i0UUVBsFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTX+430NOpr/cb6GgDn/AP/JO/DX/YLtv/AEUtdFXO+Af+Sd+Gv+wXbf8Aopa6KgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKa/3G+hp1Nf7jfQ0Ac/4B/5J34a/7Bdt/wCilroq53wD/wAk78Nf9gu2/wDRS10VABRRRQAUUUUAFFFFACVj+Km2eFdVb1tZF/NSP61sd657xw/l+DNSb1jC/mwH9aumrzS80Z1XaDfky/4eTy/DmmJ/dtYh/wCOCtOqthH5WnWsf92JB+QFWe9TL4mVFWikcr4t/c6l4du/7morET6BwR/SupI6Vy/j4FPDJuh1tbmGYfgwH9a6gHKgirlrCL9TOOlSS9GOooorM2CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApr/cb6GnU1/uN9DQBz/gH/knfhr/ALBdt/6KWuirnfAP/JO/DX/YLtv/AEUtdFQAUUUUAFFFFABRRRQAUUVk6rr+laJLbJql4lotwSsckwKx5GOC+NqnkYyRnnHQ0Aa1FRxyJNGskbq6MMqynII9QakoAKKKKACiiigApr/cb6GnU1/uN9DQBz/gH/knfhr/ALBdt/6KWuirnfAP/JO/DX/YLtv/AEUtdFQAUUUUAFFFFABRRRQAlct8QTnwbdxjq7xIP+/i/wCFdTXLeO/m0a0i/wCet9Cn65/pWlH+JH1Mq/8ADfodQoAUAdAMU6gdBRWZqjn/ABpF53g7VF9Id3/fJB/pWnpUvn6TZTf89IUb81BqLXo/P8PalF/ftpF/8dNV/Ccvm+FNKb/p2RfyGP6Vp/y7+ZjtV+X6m1RRRWZsFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTX+430NOpr/cb6GgDn/AP/ACTvw1/2C7b/ANFLXRVzvgH/AJJ34a/7Bdt/6KWuioAKKKKACiiigAooooAK5Xxhqx0+O2tjrOh6VFdCQSTaq4JIG3iOMlQ/3ucnA44Oa6quO8VxTyeIdDltbS11KeCO4cadcPs8wfuwZUYqVDJkDBxkSHBoAwvDejeHba8i/wCEW8Ywz6i1yk88EF5EYpo9w8xfs8eEX5d2CFBBwc9a9Orz238JX9/qEmq3Gn2GlStfWdxDbxuHaJYWJkfcqgb5FOwgcbQMk12mpaVp+s2htNSsoLy3LBjFPGHXI6HBoAvVy3h/VtaufEmtaVrH2E/YoraWJrRHXiXzMhizHONg5AHU1bsfBvhnTL2O9sNA021uoiSk0NsisuRg4IHHBIrL0nTvE8HjPUdVvLbSFs7+OGJxDeytJGsXmYIBiAJO/kZGMdTQBp+JNXvNNXT7bTkhe/1G7FrAZ8lE+VnZ2AwSAqNwCMnHIqjYazq9zBrdhcPp0Gr6XIga5KP9meNlDiTbu3D5dwI3dV64qTVtI1rU4bS7V7GPU9O1F7mzGX8qSLDoEkOMhjG5yQCA3TIpmnaRrtiuram406TWdRnjdoTI4t440UIqB9u4nAJ3berdKAHeEvEV1rlxqcEs9hfQ2jRiPUdOBEExYEsgyzfMuBnDH7w6V00jAI2SBweprnNA0XULXW9T1jUFsrea9jiiFrYszRr5e472ZlXc534ztGAoHNaOq+HdE1krJqmj2F9JGpVGubdJCo9AWBxQBT8A/wDJO/DX/YLtv/RS10Vc74B/5J34a/7Bdt/6KWuioAKKKKACiiigAooooATtXK+NPmfQYv72rQE/QZrqu1cr4q/ea54ah9b0v/3yuaul8a+f5GNb4H8vzOr7UUdqKg2IpoxLDJGejKVP41zngBy3gyxVvvIZEP4O1dOehrlfAp2aXqFt/wA++ozxY9MEH+taR/hv1X6mMtKkX5P9Dq6KKKzNgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKa/wBxvoadTX+430NAHP8AgH/knfhr/sF23/opa6Kud8A/8k78Nf8AYLtv/RS10VABRRRQAUUUUAFFFFABXBfEaSxgisby4m1pbq0juLiJNJkSN/LVQZXZm42qMd+dwGCSK72uH+Idtp11ZwwXV5fW19cQ3FrALC1a5llikUCVfLCnK42knjBC8+oBpeHY4rLU9R08alq97PFFBK39oSq4Cvv2lMAdSrA57qK6auN8Eojvf3MzaxNqEvlLPcajYNaBkUMESNSANq/MeMnLZJ5rsqACiiigAooooAKa/wBxvoadTX+430NAHP8AgH/knfhr/sF23/opa6Kud8A/8k78Nf8AYLtv/RS10VABRRRQAUUUUAFFFFACVy2ufvPG/hiLsDcufwQYrqa5bUP3nxF0Zf8AnlazP+fFaUvib8n+RjW+FLzX5nVUUUVmbCGuV8KfutY8SW392/Mv/fYz/SuqrldGHlePPEcXaVLeUD/gBB/U1pT+GS8v1RjU+KL8/wBGdXRRRWZsFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTX+430NOpr/cb6GgDn/AP/ACTvw1/2C7b/ANFLXRVzvgH/AJJ34a/7Bdt/6KWuioAKKKKACiiigAooooAK4bxLNJeail9purrpk+jXYsJ2lsPtHmNciAqo/eLhcvGSeuR2xz3NcVrHgnUNRvtQltvEclnbXt3BePbizSTEsQiCkMTnGYUOKANLQbjVI9X1DTNV1SC+nhggnXybH7OqLIZR18x9xJjPpjHfPHR1z2h6Dfabqd9qGo6w2o3N3DDDuNusIRYzIQML15lNdDQAUUUUAFFFFABTX+430NOpr/cb6GgDn/AP/JO/DX/YLtv/AEUtdFXO+Af+Sd+Gv+wXbf8Aopa6KgAooooAKKKKACiiigBPWuVf958UIx2j0ot+JlxXVVytp+8+JV+3/PKwjT82zWlPq/Ixq/ZXmdXRRRWZsNxzXLRfufidOvabTFf6kSYrqu9crf8A7j4jaQ//AD3tJovrt+atKfVeRjV+y/NHV0UUVmbBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU1/uN9DTqa/3G+hoA5/wD/yTvw1/wBgu2/9FLXRVzvgH/knfhr/ALBdt/6KWuioAKKKKACiiigAooooAKKKKACiiqGpanb6TaG5uVuDGGC/uLeSdsn/AGY1ZvxxQBforBsfFul6jeR2tumpCWQkL52l3US8DPLvGFHTuayvDME1j418R2Dajf3cMdvZyoLu5aXYz+du254XO0cADoKAOzorlfGE9w0uh6Vb3U1qmpX/AJM80LbHEaxSSFVYcqWKAZHOCcVijxL/AMIj/wAJFZXd69zDZXMCWD31xzumjBEbyt/CGDHcxyFPfAoA9Epr/cb6GuB+Hesx3l94hs28RprE0V4siSLciQFGhiLGNQTtj8wuABwOnWuq1bXrTSSsdzFqDs6Eg2unz3AH1MaMB+NAFPwD/wAk78Nf9gu2/wDRS10Vc74B/wCSd+Gv+wXbf+ilroqACiiigAooooAKKKKAErltH/eeP/Eb/wDPOO2T80zXVGuU8OfP4q8Tzes8Sf8AfKEVpT+GXp+qManxRXn+jOrooorM2ENcr4k/deK/DFx/dmmi/wC+0Arqa5bxp+7bQrj/AJ5apDn6HOa0o/Fb1/IxrfDf0/M6uijtRWZsFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTX+430NOpr/cb6GgDn/AP/ACTvw1/2C7b/ANFLXRVzvgH/AJJ34a/7Bdt/6KWuioAKKKKACiiigAooooAKKKKACiiigArl7Dwi2n+Ip9ZGv6vNNcBVmimMHlyKm7YpCxA4G9sYIPrmuoooAwb3wxbX9iba4vtQZxeNewXJmHm28hYkeWcYCqGKgEEbTg5qXSNAtdIhnAlnu57qXzri5uyHkmfAUE4AAwoAAAAAHStmigDK07RLbS77Uru3LCTUJxPLuxhSI1TC4AwMIDznkmtN/uN9DTqa/wBxvoaAOf8AAP8AyTvw1/2C7b/0UtdFXO+Af+Sd+Gv+wXbf+ilroqACis3WNYg0SwN5cpIYVdVYxgHbk4yeelaCkMM0Wdriur2HUUUUDCiiigBOxrlfB/z3niKb11ORP++QK6rsa5XwP81lqsv/AD11Od/1H+FXD4JfIxl8cfmdXRRRUGwlct4/+Twq9x/z73EUv/j4H9a6k9a5/wAbRed4N1NfSMN/3ywP9K0pO04+plWV6b9DoB0FLVTTJvtGmWk2c+ZCjfmoNWqhqzsXF3VxaKKKRQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU1/uN9DTqa/wBxvoaAOf8AAP8AyTvw1/2C7b/0UtdFXO+Af+Sd+Gv+wXbf+ilroqACiiigAooooAKKKKACiiigAooooAKKKKACiiigApr/AHG+hp1Nf7jfQ0Ac/wCAf+Sd+Gv+wXbf+ilroq53wD/yTvw1/wBgu2/9FLXRUAZ+saemqaTd2LkYniZAT2OOD+Bwaz/B1+2oeGrYzZFxb5t5geoZOOffGD+Nb3euU0v/AIlPjfVNOPEN+ovYR2DdHH1J5/CtIe9Bx7amM/dmpd9DraKKKzNgooooAQ9DXLfD/wCbwqkv/PWeV/8Ax8j+ldJO/lW8sn91C35Cuf8AAKeX4K04equ35uxrSP8ADfqv1MZfxY+j/Q6aiiiszYKzPEEXn+HNSjHVrWUD67TWlUU8Ymt5Yz0dSv5inF2aZMldNGX4Vl87wrpbf9OqL+Qx/StmuZ8AuZPBen5+8gdCPTDsK6aqqK02vMmk7wT8kLRRRUGgUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU1/uN9DTqa/3G+hoA5/wD/yTvw1/2C7b/wBFLXRVzvgH/knfhr/sF23/AKKWuioAKKKKACiiigAooooAKKKKACiiigAoorPstX03U5J47DULS7e3IEy286yGMnONwB4zg9fQ0AaFFV7q6t7G1kubu4it4Ixl5ZXCKo9STwKrHW9KGlHVTqln/Zw5N39oTyRzj7+cdeOvWgDRpr/cb6GqOnazpesxvJpWpWd8iHa7Ws6yhT6EqTirz/cb6GgDn/AP/JO/DX/YLtv/AEUtdFXO+Af+Sd+Gv+wXbf8Aopa6KgBK5PxmDYvpmuqDmwuAJSP+eT/K39PzrrKo6rp6anpd1ZPjbNEyZx0JHB/A81UHaSvsZ1ItxaW5cBDAEEEHkEU6ud8GX73vhqBJsi4tSbaYHqGTjn8MV0VKa5ZNPoVCSlFSXUWiiikUZ+tSeVod/J/dt5G/JTVPwenl+EdKX1t1b8+f61J4pfy/Cuqt/wBOkg/NSP61J4dTy/DWlp/dtIgf++BWn/Lv5mP/AC9+RqUUUVmbBQelFB6UAcp4EOzSb23/AOfe/mix6YIP9a6quV8I/utT8RW393UGlx/vjP8ASurrSr8bZlR+BIKKKKzNQooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApr/AHG+hp1Nf7jfQ0Ac/wCAf+Sd+Gv+wXbf+ilroq53wD/yTvw1/wBgu2/9FLXRUAFFFFABRRRQAUUUUAFFFFABVHUpdRhtC2m2dvd3GQBHPcGFcdzuCN+WKvUUAYNleeJpb2NL7RNNt7Uk75YdTeVhxxhTAuecdxWV4fW0t/iJ4mhtxBGn2Sw2pEAoz+/zgCuzrFt/Cnh2yvlvbXQdLgu1Yss8VnGsgJ6kMBnPJ/OgDF8XXFlc3fhp5ZoJdOTWhHdNuDIsixShFfsMS7Rg9Gx3rLTS7PWrvxnp0d6tnp02oWhWWHbtW4VY3fbn5dxKoD75713TaVp7Ws9o9hatbXDM80JhUpIzHLFlxgknkk9TTP7D0n+y/wCy/wCy7L+z/wDn0+zp5XXP3MY6+1AGJ4Z1C8OvazotxqCanHYiCRLoRojAyB8xvsAUsNgPAHDjNa2rQa5KVOlahYWyBDvW6snnLH2Kypj8jVux06x0u2Ftp9lb2kAORFbxLGoP0AAqy/3G+hoA5/wD/wAk78Nf9gu2/wDRS10Vc74B/wCSd+Gv+wXbf+ilroqACiiigDkdOzpPjrUbBhiDUYxeQjtvHDj6nr+FdZnFcz4ssrwvpuq6dbNPd2M+fLU4LxsMMP5frVc2XifWhm/vV0i1P/LG0O6Uj0L9j9PyraUVNKTaXf5HNGTg3FJvt8za1HxBpWj4F/fQwseiE5Y/8BGTirdrfW19AJ7S4iniPR0YMP0rM03wpo+l5aG0SSZvvTTfvHb15P8ATFVrvwXYPObrTJJtKu/+elq21T9U6Ee3FTam9Lv1LvUWtl6EvjZ/L8G6m3rEF/NgP61r6cnlabaR/wB2FF/JRXD+IbXxdJodxpc8FvqUU20Lcw/JIuGB+ZOnbtXoCqFRVHQCnJctNK99X+goPmm3a2i/UfRRRWRuFFFFAHK6J+58deJIu0gt5V/74IP611PeuVgxF8TbpOnnaasn1w+2uq7VpV3T8l+RjS2a82LRRRWZsFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNf7jfQ06mv9xvoaAOf8A/8k78Nf9gu2/8ARS10Vc74B/5J34a/7Bdt/wCilroqACiiigAooooAKKKKACiiigAooooAKKKKACiiigApr/cb6GnU1/uN9DQBz/gH/knfhr/sF23/AKKWuirnfAP/ACTvw1/2C7b/ANFLXRUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcrffufiPpT/897KWL67Turqa5XxD+68XeGJ/SWaM/wDAkArqq0qfDF+X6sxpfFJef6IWiiiszY5bxzfXVroS21izreXkyQQ+W2GyTk4PbgY/GtHw1qf9reHbG8ZsyPGFkP8Atrw36g1lXWdU+IVpb9YdMtmmf08x+APywaPDH/Et17W9FbhFmF3AP9iTqB7A4FbuK9nbqtfv/pHKpP2vN0en3HW0UUVgdQUUUUAFFFFABRRRQAlBrB1jxXpmkSeQ0jXF32trcb5D9QOn41oaVqMOrabBfWxJjmXcM9R6g+4ORVOEkuZrQhTi5cqepfoooqSwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmv9xvoadTX+430NAHP+Af+Sd+Gv8AsF23/opa6Kud8A/8k78Nf9gu2/8ARS10VABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU1/uN9DTqa/3G+hoA5/wD/yTvw1/2C7b/wBFLXRVzvgH/knfhr/sF23/AKKWuioAKKKKACiiigAooooAKKKKACiiigAooooA5Txn+7fQbj+5qkIJ9jnP8q6kDpXLeP8A5PDf2j/n3uYZfphgP611VaS+BP1MYfxJL0FppIAyTS1g+L9QOneGL2VCfNdPJjA67n+UY/PP4VEU5SSXU0nJRi5PoUvBYN6dV1tut/dN5Z/6ZJ8q/wBaTXv+JZ4u0XVgMRzk2E59m5T/AMez+Vbei2A0vRbOxAGYYlVsd2xyfzzVPxfYNqPhe9ijz50aedER1DJ8wx78Y/GtVNOr5PT5bGLg1S81r89zdpaztF1BdV0a0vVx++iVmx2buPzzWh2rFpp2ZummroaxCqScYHUmlHSuR8VSy6vfW/hizcoZx5t5IvVIQen1J/p61Y8IX0zWc2kXrZvdNfyHz/Gn8DfQj+XvWjptQ5vw8u5kqqdTlt8/PsdRRRRWZsZ2q6nb6Npc9/ck+XCuSB1Y9AB7k1zwtvEfiPDXk50axbnyIDunce7fw/h+IpdY/wCJ74rstGU7rSyxd3foW/gQ/wA8eh9q68A59q1vyJWWr/Awt7STu9F+Jl6ToGm6LGUsrZI2P3pD8zt9WPNYujD+wPFF3obfLaXmbqy9Af40H88eg9667jmud8X6bNd6at9ZD/T7B/tFuQOTj7y/iO3fApQlduMnv/SCcFFKUVsdHS1Q0jUYtW0q2voTlJkDY/unuPwOR+FXqzaadmbJpq6Foo4FICCMjkUDFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKa/wBxvoadTX+430NAHP8AgH/knfhr/sF23/opa6Kud8A/8k78Nf8AYLtv/RS10VABRRRQAUUUUAFFFFABRRRQAUUVR1G0uby0MVrqNxYSbgfOgSNmA9MSKy/pQBerA0XxNDrepahYLp99Zz2KxO63capvWTdtKgMT/AeuO1LZaLqlrexz3HinUryJc5gmgtVVuO5SJW9+COlYWiaqJPiLrUh07V44b2C1ihmm02dIy0fnb8syAAfMuCTg54oA6XWtbg0K0jnnSaZ5pVggggXdJNI3RVBIGcAnkgAAkmqcHi7Tn0m+v7hLm0NhJ5V1bXEf76Nzgqu1SQxbcu3aSDuGKzvEU9zdvpGr2+mX7ppGqyedB5B8x4wkkJkjTq4y4YY5K8iud1nQ9Q8RaZ4k1SGwvYo7q+spre1dTDPNFb7N5CnBVj820HB+UdM0AegaVqc+piUy6Rf6dsxtF4I/3gOeRsdvTkHB5Fab/cb6GuJ8I2ccHiLUbjSNMutN0N7aFVguIHgD3AZ9zpG+CPlKgnA3H1xmui1bQbTVislzLqCMiEAWuoT24P1EbqD+NAFPwD/yTvw1/wBgu2/9FLXRVzvgH/knfhr/ALBdt/6KWuioAKKKKACiiigAooooAKKKKACiiigAooooAzNb0qPW9IudPlYosy4DDsQQQfzArP8ADGsTXkUunaiAmqWTeXOv98dnHsR/nkV0Qrl/E2m3Mc0Ov6UudQsh88Y/5eIv4kP8x/8AqrSDTXI/l6mM04vnXz9DpzXKeIh/aPifQ9HByiSG9mA7BPu59icit7StSt9Y0yG+tm3RSrnHdT3B9wawfD//ABMfFmuas3KRMtjCfZOX/XBognFtvp+ewptSSS6/kdbSEZGDS0VmbnJ+DibGbVtCbj7DdFoh/wBMpPmX+v51u6pqMGk6bPf3BxHCpY+p9APcnArB1H/iVePdMvgcQ6jE1nKewcfMh+p6fhUWqE+JfFMWkL82n6cRPeHs8n8Ef9T+PpW8oqUlN7NXf6/icsZuMXFbp2X6Fvwlp88dtNq2of8AIQ1JvNkB/wCWafwIPoP88VW8SKdE1yy8SRDEPFtfAd42Pyt+B/pXXDAwBVe9s4dQsZrS4XdFMpRx7GoVT3rvZ/kaOn7lluvzJkKsoZTkEZGO9VtRvYdM064vJjiKFC7e+O31PSsPwfeSxwXGh3jZu9MfygT/ABxfwN+XH5VB4lJ1rXbDw4hzCT9qvcf881Pyqfqf6UKn79nt+gOp7l1u/wAy14OsZotMk1K7H+m6k/2mX2B+6v0A/nXS0gAAAAwBS1Epc0my4RUYpIWg9KKKRZx2j/8AEg8U3eiH5bO8zdWfoD/Gg/nj0HvXUXd3b2Fs9zdSpDDGMs7nAFYvivS57/TY7mxGdQsZBPb46kjqv4jt7CqNromoeILmPUfEYCQod0GmqconvJ/ePt/+qtmoySlJ+vc5k5QbhFX7diLOoeNmwPNsPD4PX7st2P8A2VP5/wAp/DtxNomqP4Zv5CyqDJYSt/HF/c+q/wCe1dYAFAAAAHAArE8SaL/bFgPIfyr+2bzrWYcFXHb6Hp/+qhTT9x6L8vMbpuPvp3l+fkbtLisTw5rY1nTt7p5V1CxiuYTwY5B1GPStrtWTTTszaMlJXQtFc7rPiaPT5xYWULX2qSfctoj933c/wj/PvTNI8T/aLz+zNXg+wamOkbH5Jh6o3f6fzqvZytexHtY81rnSUUVnazq1voumS3twflQYVR1dj0Ue5qUm3ZFtqKuzL8T6rcwiDR9LbOqX3yoR/wAsU/ikPpjnH/1qh8M3t1ZXs/h3VJmlurceZbzv1niPf6jp/wDqqbwxpNxB5+samudUvvmcH/lin8MY9McZ/wDrVJ4p0ea/tYr7Tzt1Oxbzbdh/F6ofYitrwX7v8fP/ACMLTf7zr28v8zoaXrWXoesRa5pcV5ENpYYdD1Rx1U1qVg007M6IyUldCUtYmveIbfRYkjCNc3s3ywWsfLyH+g96paX4pdr1dM1u1/s/UW/1YJzFMP8AYb19qtU5NXSIdSKdmzqKKKKg0CiiigAooooAKKKKACiiigAooooAKKKKACmv9xvoadTX+430NAHP+Af+Sd+Gv+wXbf8Aopa6Kud8A/8AJO/DX/YLtv8A0UtdFQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNf7jfQ06mv9xvoaAOf8A/8AJO/DX/YLtv8A0UtdFXO+Af8Aknfhr/sF23/opa6KgAooooAKKKKACiiigAooooAKKKKACiiigAoNFFAHBapJN4Jv7i/t42fSr0MzxKOIZ8cED0Y8f/qFbvg6xaw8MWayZ86VfPlJ6ln+bn3wQPwrYuLeK6haG4hjmiYYZJFDKfqDUoGFAHAFaSqXja2pjClyz5r6dF27j6KKKzNjn/F2l3Op6IVsRm+t5UntuQPnU+p9s1J4Y0Y6PpKxzNvu5mM1zITkvI3J59un4VuUVfO+Xl6Gfs483N1CiiioNDj/ABSr6Nqln4mgUlYv9HvVUctEx4P4H+lS+DraW4iuteulIudTk8xQf4Ihwi/lz+VdLNDFcwPDNGkkbjaysMgj0IpY41jjVEUKqjCgDAA9K0dT3OXr38jFUv3nNfTt59yWiiiszYKKKKACiiigAooooA43X4ZPD+rr4ks1Jt3wmowqPvJ2kA9R/nvRNrmoeI5Xs/DuYrUHbNqUinaPURg9T7/y4NdZJFHNG0ciqyMCpUjIIPUEUkEEVtCsMESRRoMKiKFCj2ArT2isrq7Rg6bu7OyZn6LoFlocDLboWmk5lnk+aSU+pP8ASpNY0Sx1y08i9h3Acow4ZD6qexrSoqOaXNzX1NOSPLy20OMTVNT8JyLb62XvNLJ2xagoy0foJR/X+fZLAN4u1warKD/ZFi5WzQ9JpB1kI9B2/wD1118saTRtG6q6MMMrDII9CKbDBFbQpFBGkUSDCoigBR7AVp7RWulqZ+yd0m7x7FjtRRRWRucXe58J+IxqKfLpWpOFuR2im7P7A9/x9q0dc8RtZzJp2mwi81aYfu4QfljH95z2Fa2o2MGpWM1lcoHhmUqw/qPcdapaF4csdAgZLcNJLJzLPKcu/wBT6e1a80Wk3uvxOfkmm4x0T/D0INC8Of2dK9/ey/bNVnH724b+H/ZQdl/z7Vo6rpFlrNm1rewrJGeR2Kn1B7Gr5oqHNt3vqaqnFR5baHFpe6p4QZY9TaW/0bOEvAMywDsJB3Hv/wDqrp7TVLG+UG1vIJgwyNkgJ/KrTqroVYAqRggjIIrBufBXh26yX0qFSf8AnkTH/wCgkVTlGWstH5f5EKM4aR1XmdDn3o/GuV/4QWzi/wCPLUtVssdBBdHH5HNL/wAISsv/AB+a7rFyP7rXO1fyApcsP5vwDmqfy/idFPd29su6eeKIersF/nWTc+MvD1oCZdWtjjtG3mf+g5qvD4E8OQvuOnCV+7TSO+fzOK17bR9Ns8fZdPtYSO8cKg/nin+7Xd/h/mH719l97/yMP/hObWfjT9M1S9B6NDbHb+ZpF8cWsDhNW0++0wk8PPCSh+jD/CuqNNZFkQo6hlIwQRkGjmh/L+Ics9+b8CtZalZahF5lndw3CesThsfXHSrmcd65288FaJdy+dHbGzuO01o5iYflx+lVx4T1ADC+KNV2+7An86OWD2lb1X+Qc1Rbxv6P/M6qiuV/4RPUP+hp1T8xR/wieof9DTqn5ijlj/N+Ye0n/L+KOpxRXLf8InqP/Q06p+Yrc0uyl0+yEE17NduGJ82b7xz2qWopaO5UZSb1Vi/TX+430NOpr/cb6GpNDn/AP/JO/DX/AGC7b/0UtdFXO+Af+Sd+Gv8AsF23/opa6KgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKa/3G+hp1NYblIBxkYoA5/wD/yTvw1/2C7b/wBFLXRVx2kaD4s0fRrHS7fX9HaGzt0t4zJpEhYqihRki4HOB6Cr32Lxn/0HtD/8E8v/AMk0AdHRXFa9P4x0Tw7qOrf2vok32K1kuDF/ZMq79ilsZ+0HGcdcVorZ+MioP9vaHyP+gPL/APJNAHSUVzn2Lxn/ANB7Q/8AwTy//JNH2Lxn/wBB7Q//AATy/wDyTQB0dFc59i8Z/wDQe0P/AME8v/yTR9i8Z/8AQe0P/wAE8v8A8k0AdHRXOfYvGf8A0HtD/wDBPL/8k0fYvGf/AEHtD/8ABPL/APJNAHR0VxWvT+MdE8O6jq39r6JN9itZLgxf2TKu/YpbGftBxnHXFaK2fjIqD/b2h8j/AKA8v/yTQB0lFc59i8Z/9B7Q/wDwTy//ACTR9i8Z/wDQe0P/AME8v/yTQB0dFc59i8Z/9B7Q/wDwTy//ACTR9i8Z/wDQe0P/AME8v/yTQB0dFc59i8Z/9B7Q/wDwTy//ACTR9i8Z/wDQe0P/AME8v/yTQB0dFcVr0/jHRPDuo6t/a+iTfYrWS4MX9kyrv2KWxn7QcZx1xWitn4yKg/29ofI/6A8v/wAk0AdJRXOfYvGf/Qe0P/wTy/8AyTR9i8Z/9B7Q/wDwTy//ACTQB0dFc59i8Z/9B7Q//BPL/wDJNH2Lxn/0HtD/APBPL/8AJNAHR0Vzn2Lxn/0HtD/8E8v/AMk0fYvGf/Qe0P8A8E8v/wAk0AdHRXNtZ+MgpP8Ab2h8D/oDy/8AyTWdoM/jHW/Dunat/a+iQ/bbWO4EX9kyts3qGxn7QM4z1xQB2tFc59i8Z/8AQe0P/wAE8v8A8k0fYvGf/Qe0P/wTy/8AyTQB0dFc59i8Z/8AQe0P/wAE8v8A8k0fYvGf/Qe0P/wTy/8AyTQB0dFc59i8Z/8AQe0P/wAE8v8A8k0fYvGf/Qe0P/wTy/8AyTQB0dFc21n4yCk/29ofA/6A8v8A8k1naDP4x1vw7p2rf2vokP221juBF/ZMrbN6hsZ+0DOM9cUAdrRXOfYvGf8A0HtD/wDBPL/8k0fYvGf/AEHtD/8ABPL/APJNAHR0Vzn2Lxn/ANB7Q/8AwTy//JNH2Lxn/wBB7Q//AATy/wDyTQB0dFc59i8Z/wDQe0P/AME8v/yTR9i8Z/8AQe0P/wAE8v8A8k0AdHRXOfYvGf8A0HtD/wDBPL/8k1maLP4x1ixkuv7X0SHZdXFtt/smVs+VM8W7P2gddmcds45oA7aiuc+xeM/+g9of/gnl/wDkmj7F4z/6D2h/+CeX/wCSaAOjornPsXjP/oPaH/4J5f8A5Jo+xeM/+g9of/gnl/8AkmgDo6K5z7F4z/6D2h/+CeX/AOSaPsXjP/oPaH/4J5f/AJJoA6Oiuc+xeM/+g9of/gnl/wDkmszRZ/GOsWMl1/a+iQ7Lq4ttv9kytnypni3Z+0DrszjtnHNAHbUVzn2Lxn/0HtD/APBPL/8AJNH2Lxn/ANB7Q/8AwTy//JNAHR0Vzn2Lxn/0HtD/APBPL/8AJNH2Lxn/ANB7Q/8AwTy//JNAHR0Vzn2Lxn/0HtD/APBPL/8AJNH2Lxn/ANB7Q/8AwTy//JNAHR0Vzn2Lxn/0HtD/APBPL/8AJNZmiz+MdYsZLr+19Eh2XVxbbf7JlbPlTPFuz9oHXZnHbOOaAO2pr/cb6Gue+xeM/wDoPaH/AOCeX/5JpDY+MiCP7e0Pn/qDy/8AyTQA7wD/AMk78Nf9gu2/9FLXRVl6Bph0Tw5pmktMJjZWsVv5oXbv2KFzjJxnHrWpQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBk63rGmaRap/abkR3DeUkQiaZpSQSVCKCzcA5wDxU+malaaxp8V7YzrPbSZ2uMjocEEHkEEEEHkEVznie7g0nxj4e1fUJFh02KG7t3uJOEhlfyyhY9FyEcZPrjvUvgQGWw1W+RGW1vtVuLm1LKV3REgBwD2YhmHqGz3oA62iiigAooooAKKKKAKt/PaW2n3E980aWkcbNM0gyoQDnPtiotL1S01nTINR0+UyWk67o3KMmRnHRgCOncVi+KLHW72804WNnaXlhDIZp7e4u2g8yRSDHkiN8qDlscchfTBqfC57uT4fad9qgih27xH5cpk3puPJyowc5GOegOecAA7SiiigAooooAKKKKAMnWtX0zSbdF1KTi5JijhWFpnlOCSBGoLNxnOB0qbS9VstYsVvNPn86EsUyFKlWBwVZSAVIPUEA1yvjudIdX8PSzXz6RCkk5bVgAfs52ACM7gUG/J5cEfJxyQas/D1y2h3rAtNGdRnaO+KlTegkHziDxySRxhfl4AGBQB2NFFFABRRRQAUUUUAY0XiTSpdfbQ47hjqAVmMTQSBSFxuw5Xacbl4B71Xi8WaDHfJpaXBikEv2WMG2kSIyDjy1kKhCcjGAe1YGu+JtDtfidoMVxq9nFJb2t5FOrzKDG7m3KK3PBODgd8VDqPinRfEniuLRH1ixtbPTb6NphNcIst3co4KRRqTnargZbHJG0dzQB6NRRRQAUUUUAFFFFAGNF4k0qXX20OO4Y6gFZjE0EgUhcbsOV2nG5eAe9RyeI9Gs9RXSFlk86MpGY7e1kkSEnG1XZFKpwRwxHBFc5rvibQ7X4naDFcavZxSW9reRTq8ygxu5tyitzwTg4HfFcyrz6Pca3Gmr30fic65JLZacsrBJ4pJQVPldHQoTlznbjGRtoA9mooooAKKKKACiiigDA/4S/RBqYsGu5FmM/2YM9vKsRlzjYJCuwtkYxnOaS/8U6Bot+1hc3aQTAh5AkLlIt54MjqpWPcc8sRmuY1bxVoniLxMugSaxYWllp17GbrzrhElubiNwywxqTnaHA3N3I2juRT1rULXS4PHmkX+TqOquz2MBQl7xZLaONFjH8WHVlOOnWgD1OiqemxS2+l2kE7bpo4USQ5zlgoB/WrlABRRRQAUUUUAYH/AAl+iDUxYNdyLMZ/swZ7eVYjLnGwSFdhbIxjOc1Pqet6T4ehtzfzx2qXVwIYlVCd8jt6KD1J5PTJ5PNchq3irRPEXiZdAk1iwtLLTr2M3XnXCJLc3EbhlhjUnO0OBubuRtHcih48s/EEY1DUZ9PsLiBryyhs5TesrQxC5hIXy/KIy7gbm3dNvB2gEA9WoqC3MxgjM8aJKVBdEbcFbHIBwMjPfA+lT0AFFFFABRRRQBgX/i7RNLvpLS9u5IpIiolf7PKYoiwBG+QLsXgjqR1p2peItH0CZLW6laOV0abybe2klYLnlysakgZJ+Y4Gc1zPjPxVpN5fXHg6bWLHT0kixqdzdTpGY4XH+rjDH5ndT16KDnrgVW8S3Ntb+MRK+vt4dgOkokN/GqsLsF3PlguCvycEADefM4OKAPRLS7gv7SG7tJkmt5kEkciHKupGQQasVzfgcOvgjRlez+xlLZF8gBhtA4Bw2WGRg4JzzzXSUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRXlXg3U9d1TxFaG2uNOstPbSop2sIrWTylX7RKrbAJQFc7T82D24OOQD1WivNdN+IOo6neWlzb2bTWF1diFbZNMuvMSIvsEpnx5RxwxAGAM/MSK1NN8Q61eJrl/dS6TZaZp11d26tKj5YREhXZt2FAwM8HODjFAHbUV5tb+MtT1H+1tKFxA1wNKlvbW8j0+5tVG0hSNspy33lIZW/KptMv9Ug0DwTJqr2GoyX1zbqkrWzh4gbWRt+5pGzL8uC/GQzcc0Aeh0VwMfi3W2tIPEDQWP9hT6gLMQBX+0KjTeQspfdtPzYOzb0PXNRXPi7xDBb63qoh0z+zNK1JrV4iknnTRhkBYNuwrAN6HOO1AHodFcVN4n1GPxfJplxc2Gm2y3EcUEd5bS77xCqktHNuEYOSyhcMcrz1rtaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK5Ww8EWelT6fNYajqFu9pELdirRn7REJDJskDIeMs3K7TgnmuqooA5qz8Jx6ddK1jquqW9ks5mGnxyJ5CsW3EDKbwpJPyhsc9MVN/wimnNomp6RKZ5LXUpp5p9zgMGlYs20gDGCeP61v0UAcxZeDba31ZtTudS1LULp7J7FmvJEIMTMrEYRVAOV6j1Oc8YWz8H29pa6XbNqWoXMOl3CT2iztH+72xNEqZVASu1z1ycgc101FAHKr4I0+O+SQXl8bKO7N6mmmVfs6zbt+4Dbu+8d23dtB5xVifwhYXGj6rpjTXIg1O4a5mYFdysxUkL8uAPlHUGuiooA52+8Kx6ne+bd6tqctp56TmxMieRvRgy/wAG/AZQcbscV0VFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/Z", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAIAAAC6s0uzAAEAAElEQVR4AeydB2AkxZX+u3uiNIqb2WXJObPkYDDY4IhxxDn9Hc7nHHAO54DPx5195+w7+5zzOWOwDZgMxianJcMCCxu1ytLk6f/v1ZtpzWqlXUkrrdIrhlZ19atXVV/39tfvVfLDMPQsGAKGgCFgCBgChsCuRSDYtcVZaYaAIWAIGAKGgCEgCBgB23NgCBgChoAhYAhMAwJGwNMAuhVpCBgChoAhYAgYAdszYAgYAoaAIWAITAMCRsDTALoVaQgYAoaAIWAIGAHbM2AIGAKGgCFgCEwDAkbA0wC6FWkIGAKGgCFgCBgB2zNgCBgChoAhYAhMAwJGwNMAuhVpCBgChoAhYAgYAdszYAgYAoaAIWAITAMCRsDTALoVaQgYAoaAIWAIGAHbM2AIGAKGgCFgCEwDAkbA0wC6FWkIGAKGgCFgCBgB2zNgCBgChoAhYAhMAwJGwNMAuhVpCBgChoAhYAgYAdszYAgYAoaAIWAITAMCRsDTALoVaQgYAoaAIWAIGAHbM2AIGAKGgCFgCEwDAkbA0wC6FWkIGAKGgCFgCBgB2zNgCBgChoAhYAhMAwJGwNMAuhVpCBgChoAhYAgYAdszYAgYAoaAIWAITAMCRsDTALoVaQgYAoaAIWAIGAHbM2AIGAKGgCFgCEwDAkbA0wC6FWkIGAKGgCFgCBgB2zNgCBgChoAhYAhMAwJGwNMAuhVpCBgChoAhYAgYAdszYAgYAoaAIWAITAMCRsDTALoVaQgYAoaAIWAIGAHbM2AIGAKGgCFgCEwDAkbA0wC6FWkIGAKGgCFgCBgB2zMwpxAou0CT+MuxVCpxrFQqGhkcHNTW5vN5jahYGIa5XK5YLGqiHjnVXCpDop4SifQQj1RpLo79/f2USAQNBCIo16t6qnEyDgwMaJwKECGFspDRU7207VGbE8kgXygUECO9XmE2m40qjLDWOUpRtVpP4lF6VEMuadO08jQqqgkpESZRhKuKoaZQomavF9CCSI9K0VyRZiK0hSzURxtINQgqEKmKKhNFIjQQjuKRfL1+ixsCMwcBP3pYZ06drCaGwIQR4MUdj8fJzss3FosN0wMn8YImPZ1Ocwm6ymQypARB9UsUluJqIpFQMd/3VRX/TFQtGkgkO2SjkggQR4O++hsaGrRQsmh2TrUI6katUqkUDEQRWihxUjRL/RFJNKgSCurr60MsmUxGOrlEuVocEU6JU5DyN8JR5cmuFaB1jY2NNAE9JGpx1IqrHLmkKagiotmj6ilWPT09ra2tXCULRyTRg1oKpUWqQeNQY1NTEzLd3d1kQRvCUeVJp4HIkIWMnK5fv37p0qVgUi9GrbikQfGnpYCvzSEdAdKjslReS4kaWFNgfw2BGYeAEfCMuyVWoZ1BAHbhBc0rWGkAVbyyeUfzaiZxRKrj9Q11IU9GskcMqtWAJwjkhRv0GL3uSde3PBGE69/40BXUtWDBgt7e3paWFq0G+uvZRfVv2bJl4cKFmH3UEDZCHkKqJ0gVi46wHTVBlaZQYeSVnCIZjUi9XaBFUTWURxEgQmXgSKW0KAuJ1Jy2REUobauAEp4eVQlfMBSCPEfFsKurq729XeUj/uYU1iQoAsgDpsqQkbgGvjOam5tJdxUvg4PKcEQ5DVeQ0UMdSORUU5AnUblcswAp8iMiE+m0iCEwvQgYAU8v/lb6lCAQ8Vw9eVAS6U899dTuu+9OvP5dz0u8noew83hxw9akQwxaRd7vvOV5xaME9oK6VDmJygGIwTec1puSmh3+QwauQgYBssPKMASlQBKRfiUhPaU+yihkJAtihKgyyMBABGiys7MTpielo6Ojra0NnaRzrG+7tk4/NaLaaiLVgOcgcipPrShFK8BRP0f0gwNhGq5fKiiPakLdlHejXKRQBMKkawPRTBFRFi7RNORJobjoo4d06gxKEYUjRiA9EkaV6tRW6CXaiyrieoowahGLqmQRQ2BmIjD0j21m1s9qZQiMCwHoBKrgdczxJz/5CV5N4lGABo455piLLroInWppEeEqR170HHmVc8RlCg0ozZDCJdRCJ7CvvuuhPSIQLW98JUhyUSKcTSKMgjwpqnnTpk0QGwoRIBfynKJTaQ8x+EbNOwS0GiRSBIES4RKOWgrcxiUC+klBgDj11OIWLVqkrKPlIsBVPMCoVUk+Gkjk82LDhg1cIpH6UA1SYFbIW9kXkqMJNI1ELqknmaZxqkWjn6uQpTZf9dAEqkFZFEGhnKIZhRRBXrJQeQQ4JY4MQYsjgloajjatOQVRBxIRIIXmE2gap1zSRK5qIJde5UiJBLIoDqqkJmh/DYEZh4B9JM64W2IV2hkEeP9qdiK8f7E1P/ShDx177LG8puEG3t0QwNOf/nTIgDc+r2x4gvc16Wq2IoMk3Ew6V+EYtHEJbUqNUAgCGnjLUwT0oxSiLMipEhUZlfkgNq0Sl8ioiZRIotrEOGypJ8WRkepRN64SKBH9Sif1zEpG9CjDEYfOiataKoy8VoAsqNLSUQXN4+tGns8LgtqdlKIplIs8TUCSepKITkpBkvjGjRv5lKEIWkqd1XkQIYaSCHaEEYOz0UYE65nWad3IS0CAsgjaLi4pCJRLFnRSB60AkhpIoQjagjD1QRKs9BJK9BbgBkAP6YjV8nkQfxS3iCEwAxEwAp6BN8WqtFMI8L6GDyAPtHB8+ctfvmrVKuLaDxoxK+96Xui8smEFTeRVrtYeGjQ7MhqBMEjklICw8s3atWtXrlyJZlKw+RYvXkwcKlVGIaMSiWrgEi5ijFQS0QaLkIKehx9+eL/99iMLleFUWZOr1Io4ATENxMkIxSIWUYv6h5HXsjjCVZs3b0YGrtISyU6iuqmJq8ua5qg1CRNTFpYu9ScX9a+W56pHHOWwLxGu0paoO5kU9RVrldBAibRCaxK5kVEOTSJM5QkA7ppVbRcNV4UkPvbYY3vttRd3QQuihgoCR7IjoK1W9uUjALXcLy0uah0tRRglHCOUiFswBGYgAvKwWjAE5h4CvIijVzPsSAOVBvQFDY/ef//9MNC3vvWtf//3f4eheVkfffTRt956K5LIwAFEbrjhhle/+tW83Ln6ghe84Oc//zlvdggATvrBD35w8MEH/+lPf3rLW96y7777klf9uv/93/+99957wxbPeMYz/vznP59yyinPec5zlKFPOOGE173udaiFUVBCEWQ58sgjL7jgAuw2aqt1I64cs27duv/8z//EfEeeCpCX+sBYZGTo1r/+67/us88+y5Yto7hPfOITECeMhQYip59++hvf+MYrr7zy7LPPRviAAw740Y9+RPPhv9tuuw07+Ic//CFkiTyVQeC6667jIwCPPafov+eee975zncuWbKES/vvv/+Pf/xj0iFUlF9zzTVk/MUvfvHBD36Qjw9602FN6nbVVVcdeuih4HnSSSeBzNvf/vYjjjhCP0HUIU9tzzzzTATg8vPPP3/16tXo1EDG5z3veWh+zWteg++BPoLvfOc71JYAjMg89NBDZKGZpFB56vb4448jCfvyhUHbqSSXuAsf/ehHH330UbJQJQWzWob9MQRmJgL8I7FgCMwZBKBGjDCaA+fBhbAIPb68pqE6DDVcqUx30cbCARDMUUcdBfd85StfgYahPUiFq9hkHG+66SayH3fccZ/85Ce/9rWvnXbaafwT/uUvf8kl7E7IGF7cc8894dfPfvazEAx89v3vfx8ZqBd5OAO22GOPPTiF+ajP61//eixgCBINnHL8zGc+gzxEiwCnBK08VSX+yle+kqvnnnvul7/85W984xvPfe5z/+u//ot0SodfIacXvvCFXPp//+//Ifba176WvJA3AsuXL4eTVqxY8fGPf/yrX/3qySefjMCaNWu0aPj4jDPOQIyg5b7sZS+DyKk/KUAECIQPf/jDUOk555xD3v/5n//Rq3xSUC6tPuyww2jjv/3bv/Fxo4kAxZfE5z73Odp4+OGHw5faCnRSQwiSLxW+J5CB48kuxbtAWXAwFaC23/zmN/ngoMS7776bi9ocPnRIecc73sFtAjE4/uabb+Yq7VVSf//7308z3/zmN8PKZ511lqpVhDVuR0NgZiIgPjoLhsCcQQACjt778Acvbu34VDcmp5hN8CuGLEzMKe/9Rx55hBc9VPSXv/wFswk6AQ34BvMRGouQwXPL6x6aQRgm+/Wvf012XvfKYTpqCcMaMxeCJBdi8DFkA/+pkr/+9a9kwYqFOdAPQ2CqwoXUp54tNI6pivB73vMe1QzPoYSyaCAWKgXBalHd3v3udyOstETTsIwhPBqCKrJD8NDhBz7wAapEFoxXOJLR4NpqNEOBL37xi7lEHBrjKv5kTqkkxb30pS+F0Wk+KXfccQcFKQhoVoXYwQhgIiOAZxh7GhnoXzVgiPNl86tf/YpTAnouvvhiUviU0a8NHZT+hz/8AW1UGD2ARm1pCBWgtmi74oorNDtHxYdL3F8s3d///vfRpf/93/9FmC8n8pJI5aNLFjEEZiAC5oLmH6yFuYMAxMPLnTc7r2Dev4wAwkqD+aABjvg5YVnYC6JFEmMO5yd0BaHC0M961rPIQqcsDAqRXH755RAbphinKOS9D19Ccjg50UAWUHvJS15CRhzCOJBhVigElzX8wSWY5g1veANGNnkVX7LDbWolU0k0Ux8cy9ht0Q2gAtSK0jHf0fkv//IvHEnE8YsMEYrApucjA7OPFN4pHLHRqQZ+ZohTSzzkkEOe/exno4r03XbbDd/v7bffTqvJTq1wCUBpnHIVvqQzG6exlnL11VdjaqMHUxiSBiXMWSgcWBAgQi4aQrpWDFW0FO8xo70Q4PsGrztuZMRAjGb+7Gc/0+8SGoUVjgDuevL+7ne/gz6pP7nwV+PhJwtq0YOFjWebdLJfe+21Bx54IJ8+aFOUuB2QNJcuueQSaB4PAR5pbgrfMdxKgLrssstoJsJo0yx2NARmJgLVoRAzs3JWK0NgvAjAdjAQ73cyYiRxihMY7zHva03h6hNPPEEi72sMSmxcxJQC9RXPEcKAKuCGd73rXeSCGCADItAVR/iGI9nRSQ8u8mpkY0nD+tAPamE+EtHAqCJoBnkCkvDcF77wBZy3nGICohDWJx5RBWVBrtQHUoHI+YBACQEZ1CKGZupPOpo1I+nwOsKMvYJ+MExpI+2iOHgIeQRgNa0GquBmmk8/Ll5rNGDK42nHEKdoHPUQLYGPFbgWGAGQypCXUwxfshMnAguSzlF9+3AkqgiASel09FINasuRLxUChSJMe6kS6WgmUcdtkQKPkpeGgzyeCQgYXtebiLn//Oc/n6ugTYtAWMd1k0KHPbxLA9EAILCyVhgc+OCIFBKxYAjMTASMgGfmfbFaTRABfWvrW15ZE5OLdzdMwEuZlz4MAf2gXTkP1tGSoBYlad7jJMKyZHzTm97EIGocs7zf0akUcvzxx8McCKMQSSKwFOUqw6EfbmbclupHOXo4oh/+eOtb30qHMUOW6BiGgDH7ME+5GlVDK7PzR1pKxQiqiurpd4N+Q2B2f+lLX4LqIEscwq94xSuogFImNaffFzuehkDqSsBMZabnFVWMlEaMiU/6yQLf8zVAOq3juJ1W0Fi4E55m7BtgAg48Snb9OEAnBcG+KAEQiiYQJwugRWppjhZELuTRgC1O1zI2Oh9M1JaPHr4esKf1dqtC9FgwBGYmAkbAM/O+WK0miAAvaF7u6r1UMlZFSkW8+vVUqZQ472hICNuLN76aVvAoL3eoAhn4BuKBBrhKOkyAvcVVmAOegGhhZZRQEBEdLE0HJAxNonIAI3hhBepDreAtAg5YyI9TbFw1hbVKHKk8gSrhrcUKxEHN14DSFVcpGjaCe/iAIB0nLWOXkCcdexHGpbZqU1Jb2EjrpkfqTIko4chVGJdBZ3QS83GA/5xeXi7RXixprtJeWs0ldNJq9HMViDgqjKTTIsT4BCFAxlj/XCUAJlXCfU0TiHCVmhDoGgcHEMMURoz60BbqRnOIYDFTEDqpjLZC7wUpsCnD5QCTXGjTm0WVqB6SGMH6rYCYthR4pR4u0Bbka2f21xCYcQhYH/CMuyVWoZ1BQGmG1zpKeMvz4iauLAVhkEI6NMDrG74kDnVxFc7TNz4pcAxEy+CsF73oRUxxoR8UboBjeJUr1SkhPfnkkwjjB+a9z4seyxLnM0X88Y9/1NJhC4Yok8JVJOESjgQGMNPt+r3vfY+8z3zmM5U29BI1oWiyU9zb3vY2asugX44kwqzIEKEg7GYqzIhiUrS9jD1GD3YtXwYUxwcBpWO4I0y1aZG2V2tCIgOhoVgGMdERS78pA48BCj5D23nnnYe1+uCDD6Ic4qSx1AoQUEITiFC01gQaJkJ2PNh09OL45RQWpy8cXkSYLJDrq171Ksj7P/7jP7iqWWgLV2kjRzXNEeMSraMOiFGEtpdW0PsLAdNjTRx5KsPtoFFEqCq3j1aQnVz6bUFEuZ+IsS8gWJjJCJgFPJPvjtVt3AjAMUoV5ISNOP7jH//ATcq7m1MMR17KZ5xxBtSCW5U3PiapchhvfOK85ens1Bc3k0rvvPPOgw46iPHG2JrIX3/99TAQg6fQhgzyEBXWG3HKhTaYJ8O4Zbp1GUEN/zHdFmsVwqMgCBJmhc+4RCkMIIJ9oR/IAwEUcqS2EDYEAx1iyTENCYVYulSYRpGFQdfvfe97YW4c4wy5wqvMql533XUXdE6HLp5YrRicDZ9RPRRSMaqHQipAJCqIsdn0RjN3FvaFnpGE0sj1+c9/nnFPXMVbjlmJm5o2MkSZrxZkMMdhU5RwirmMPC369re/jUedulEHCqLO1AQmJk5LqTzpF154IWCCDMgDIAoZXwawVBX+RpK6oZ9T6glcFAQUJH76059GGK84A830htJpjTb69fmUYXA1Shguh4XNfQQKPilwqjO7DGxRaMEQmNEI8K/OgiEwlxDgDU5zeH0zd1YtKl76/COEKvQtzzhkBLDSeKEjA1NGzUcMWopO4QwGQuM7JR1TDxpg7BJXsfZ++tOfopwxwyqsli5xXLvMqyELi3twFSbDhiMdolVbHElMNxTSG6qJmq52G5KQkOrEyP7iF7+IHqgFJmMaMU5pyI+rfA1g9eKmpkVwPHOO4UK4lksQJLNsqSopnIIGXIjRrHOHSKECHLFTyQtL0SGtFYjKvffee9/3vvdpTznHU0899etf/zpZEMASxXMA33MKa3Ik0ArMUFoKccJ8GNBMUObDRQvSWoEzeqBVAnOiPvaxj/FVpHlpBSOZUeKUifuaYdgMvOJrSVMY58XkKHLxjULpDP/mM0gv8R3ADGwmCtMQPiOgYUxtRmbp1UinntrREJhpCMii6rwLLBgCcwMBuITAmxqTUVvEEw6BQW8QMDQGi/CyRoZTKAQxIrAUcd7gkBZxBMirbK3/YqEWUiA/spOFwCkUoizFi54U5RvNS1+m0jaEQQ8rNiLyCGDdovBpT3saBV166aUYkWiOKkP1EOMUGS2C0/pA3bQCWje1RHGeq5mLJCkojEqP0rXoSBV61OBWcDQXMgClmiPJ+oxARA3puoYyIXXg0hSaT0bKwgegbWEMNj58PO1cQhVHLuEu5kjQ4khHuTZT4Y0KRYCvIqAjI/XkqlaDI6dUHhiRoVCCNoG8pFM6l1QPp1wdpjkqwiKGwExAwPqAZ8JdsDpMGgKwKRTIax1DUN/+vIXhCXocSYQklCCJ8DaHTpAnzmsdOsH2wlbGcwsJKQ/xlkeMV7zWj1P4g7e8nsK+Gic75hqvfsqCZriq7IuVTDrGKGIEKIFLDMtipC5DhzCgkSdF9VMT4ohxhDZIJA7dEjQjpZNODambppNdvbJKUWSkpQRKR1jlaZ32c3OVXOpJRjNiWhyfJspS1B/NXKLJHMmIcMRnCiZZYF/SgYu4Vgxg0axfD+TF7gdJJlgjwCUCoBHnFmiE4sioxElcTwGKW0Y6RZMC+5KFOG2kaK0GEBGQISCjl/gUQJLaIsyNIE7QODJ6akdDYGYiYBbwzLwvVqsJIgAT8Bbmpa/5eVPrS5l0EjlCYPrqR0AjMBDcwClvbTW8oC7iStXIqB2meuAe7VtFBm3IcBUZFWYJCMZt6eIe9ET+3//9H0tS4ONFPwrpsmUNjd/85jfYvrh5cdKSCKPoUfkyqltUPW0IR9oC5SipwHM0R+NUCWJDTySJQuqmHBklqs0anRKBtDjqpwYKleQixFSSWsGLXFJI6SmH8smIW5i+W1pNQUzVxWV94okn4vrGr44Tnkt0JGMHowR3vXYE0DQycgRJjiikOQjgTodu6+uvICi8CIAw1UCAiOJMIhXmGH0fEK8PtAIBcg0DoV7G4obA9CPAs27BEJhLCPDm1e5PGkWcMKx1UBH2XyTDVU553ROBujhCacOycIoe6Fnptj6v9t1qKdiazExlhhI8gWeYbQPU+oQJoAT6j/kHj9uZoUOkoFML5dK2xXEJ5qM+SFKoVqxeDDJDgBR4XdNhMq2G8hytIGiFVUCLowN1WLm4rFWAUpBHCUEL1XrqVdRyOqwmnFIBVt3ie4LWQXj04GofLfXRjCMeqQPaYHS9Spz7ohXTFIClgUCtddCGgOewCiCM9cyROiPPUeVViR0NgZmMgFnA0/8NZDWYdAT4J6fWVb1meA5CYhAQr3LML97jWJC8r9V3CruQyLubiKYgwFU0YGbV22ekIMNVtR2x5yJLDsuPUkhRtkAbTAxtQ8ZUiVzoUftPs5CCEq2tHqkh1SARsfrKR3E4hmpHhiD8hDBZIoEooso5hV9ptZrL0VXqRl6aRkEEKkxKvUFJdrIMazjZ1Qim+VyCeiNfMadRiYjBvqABoYKh+slJRIBm1pei9aFo2FddC6SQK2ogl7TmIIP3gqqqgOKGQr1ZqifSRq5ta14vY3FDYCYgYAQ8E+6C1WHSEIBUeE2rOrgwitS/95XquKQvehXjzR5RIEwQyagGXvRQFHGIJ6ITZEiBSpWNoixQBW9/7e9EAKMNq1fzYtXBhcSjoHk5VebWdFRxypEA/RDgJ3gL1qn/sMBwV/qB5JCEtCAeFKJESNVxVSSDBgScyhA9EVmSN2JEClX9iGl2VCGgPMclEvkCoGl61NqqBq2/UjJ1QEP0WVBPqJqFeiIPpKjiAwXAaSOJBKDTtiuDKuyka9tRiwZK17tMo7RPgTpETIyMgoDOqBVarh0NgRmFgBHwjLodVpnJQUDJAF28uHkLq1J9rfNGlte8m3fLJfiJNzuJSoR6VJsVeQKXCPXVIhFG4b2vHKYyEY1FhAdJQCEUBO2RCCtElBwVilqUQFRwG0xDhAqQhYxabeJcItRXgESC8hPpFI0weSkiYibStW+bRM0esSCkpT2jWn+lKzQMayYaKIX6gI+WjnLilKtV1aO2FxCQUQ18f6AfhXwMkR7ZtaqEIxWmttrAKJEIClFe31i9HfVNIBd1iNAeJkBxiky9kvoiLG4IzCgE5jgBy4uq7lWl/5L1BcQ/Xd4dOvoGmW1fBzPqPlllDAFDwBAwBLaPwLAv3e0Lz4Sr84KAIVcC7MuHM/1hfGjzVY4jkQ92qBdDgav6CT8TbonVwRAwBAwBQ6AeAd7e6vLhRU2cNzZXiTP+jtXcsKlwzzDmQLPMIoNqjhMwt4qbgT+KgMMNLxzDYVjJj8UEuBTdYHyDXI1OLWIIGAKGgCEwcxDgNY69xGsczyW1UoMKAmbKO1t9s2aqVlU7RGZOtXdYk6G5gzsUnV0C8Kuj3eqByisZ0zvF0rIsFsiQDQI3jO4o+vz0k2p2tdFqawgYAobAfEAgMmqJ0F5e10TwZS5fvlzH4SsIvMyJREMEZj4yc9YCjm5YdA+4W7gpsIB1rAfWMHcRfuae8SW17QiUKKNFDAFDwBAwBGYaArgtWfGUWQa87Xm3R8P9ZhEBz6Ol2qBbZVkIGD8Gpzqkk6cKGp5pz5bVxxAwBAwBQ0ARiHoM1QImEauJNzl9wMx8o3tY2Vff7dG0upmP3pwlYPh12J3jFKJlTggmL7dTnRWkcM8i4Zl/w6yGhoAhYAjMNwQiGymKKALwLj2JxLVvmLd6xNCzAqI5S8AR+vWfTtwbPM84KPhiitIjyTkZYaTZ0GAzPRlKqoSe/upk5iQK1ihDwBCYcwjwDmfSOc5nWsYrXTlYj7OlrZNGwNvyGTynQ4sVEQSikcYRRvq1AoiKF1mIIAZNEtGrqhmHwzBMsVzVC6HpqpNBVeTiEoloQ0CtW1WiCjkSNJ2ImsLDlM+NU6i27FX4CQfzP8MXQJGjnAv1VnDkiIBLCxmnNjfaba0wBAyBuYaAUgAWMC9t2qaTSIng1NRLcDCXouVuZkX7J42AI88A02pZAYfG68p5xNXcRACOhCA5KoLKoFAjbgTIkkAWriIPpmiAI9euXasZgVtZme8dJHX0MonQJxuzIKyloCHyJxPXTl/klWh1AaBZcWMmqZI8qu5prVdXZVnhYcfBYZWRVcY4uB4rixsChoAhMGUITBoBQ3Jqg0a7flJnPkyiJVs5dRN/ZAdWRj+xa9sZZ5wB9TKMjcUxIEsCGmBlNZRRSHzlypVf/OIXkSHX2WefzdZmfOAgiSo49cUvfjHpJ5988utf/3qIWT8C4GlYmaK1PpRLccrEFDRlSM5QxdzgQOzbWth6tBlnKqDJvrFvDSf7awgYAobAVCMwaQQMKcJ5atrCfCxNojyq1jA0GbWESbckwtMvf/nL3/zmN3OJiVzqNEYGZsX8xYxW65Z9Rj/5yU/++Mc/vvvuu6FhFj1BhlJQzq5nDz744G233fb1r3+dLVff/va3owTzFxrGqia78jHyGuGqVi+qyXyIsIox5FqlXY1xz6vnAsBWaXoyH3CxNhoChoAhMN0ITNo8YNgX2qsnWm2acp66haNFmBGDDjn+/Oc/f8Mb3qBUrfL0B2MWQ+GqCgv4Ix/5CAYu3mNGnLOI1c9+9jM2H33ssccOOeSQa6655thjj0WSjdCf85znPPzww6xGpjY39aEIdWUTR7kawZAxRWBG6ynVi1zW030vpqJ8bF9pu+clpN9XDVzHsjifax3CQsi+F68KTNon2VQ0x3QaAobAPEWA1/iwlzZvclYUntXv80l73UJsSpkYr0qoHIEGeov4FesWkobz1CzmOeKq8iUOZOgZ41gfLlSRlwUjn3zyyYMPPhj2JRf7uB122GHf+973uA0XXXQReU888UQ6g3FW451G4L777kMb9wn+RkbZF4XEEcY1vXHjRtU/746OekPfKwdemaOMulJDOKgavRE3zztorMGGgCFgCEwPApNGwNrhCh3CdvS50hodXQX7Rr5fLtELy1X81dpNy67dSs+YpLAsy1Rh/rLjN9mJ3HXXXbvtthtWL8phUBJZ+RMZsqCKS6TgylYP84oVKx599FFShrE+1E6haKBEqoTA/AoMsYrY11Ev7MuPNDjYV2e0CNT1E88vgKy1hoAhYAhMDwKTRsBKuvAiVAoNf/CDH8QAhRrhWtzCpBMnwJp03GKkYrZyilHLXuUQKgSJCUvgEl4FNBDg1PXr10OxGMQIQJ/oxHomI9khVBI5pWg0QPOUQi50KluDKCb1F77whf322w8ZgnL29CA9jaU6AlaPMwuZM0OLo+Ng7n7gYRdLgKcdBzvhaaysFW0IGAKGwDxBYGhs1E42GHaEFyE59MB/dNy+4x3vwOurfb1QIwIEvNAQJKyMmJIuMqSr+xpa1UuIkc6oK1j2jjvuOOussxBADFv2gAMOIBGaV381lEwRlMsAad1iAc2agn7I+1Of+tSHP/xh6ga1Y1vvscceO9nS2ZRd7NwAOLxUAsaFd/lBs7q/PBOBYz5GMNQrU4DDUtlPspT5pH2TzSagrK6GgCFgCOxyBCaNgNUAhWhpAiRKwJCF84hoo7BukdGrHGFHOBXGZSVPlcGWVRMW9kUAZl28ePHSpUtZa5tT+BhhRju/613v4pQhV+985zvvvfde+BjJSy65BAY5+uijYWjc1ErnfAcQ0KlHcs3HALn6clPgXdDvKXu33npvd1fny551alxN3yrjlm097Pn4eFibDQFDYPoQmDRzB57DyoQFo7bAghH7kggLYrkiBisjxnioO++8kzU0oNtbb7119erVyEOlnO6zzz5XX3011iryr3vd6970pjf97ne/Y9jzW9/6Vmzic845BybGO33eeee94hWvYOTzpZdeio177rnnYgHDvijXmmhBFM2p1kqJOarhvIjgYQ7iMvyKjxjP68p6f7j0iksu+2t/WbuBcUa7ZwCS3mrG0rzAxhppCBgChsA0IjCZBAzF0hLtx4X8CPVxeBEBKFCp+oILLjjqqKP+7d/+jRSmEjG8+Y9//KOayGvWrLn//vsxoNH2+c9//p/+6Z8wdtlyGUq+/vrryY7DmeOXv/zl4447jlU4mJWEht///vcI0Acc0S3ZKZSgvm7qowO+phHuXV10yB2BV2OYvxAwFnA55q1Zt747W9zS51agDL2yfDK5xyCYNHfIrm6mlWcIGAKGwCxEYCubdWfqD72RHYqt57/tKISblbCZfcTcoWG5uAprKmGjRPuS4V1MauIYyvWaoViyM0uY3mXSGfaM6UyIZKgbhI1OpkgxiHpWzxuLGjWmCMRLr6/vFeNev+/1eN5Tg94Hz//UotaW97zp/x2734J06AVFLyHMW2ZMtENS/NUWDAFDwBCYUQjoa5wqRdzBm9zmAQ/dI1iQMHTuDFDFC9OWAKcCIvApgrpaFrOPMFu5SiLCcIAeoVuEOeUI4zKcSh3aHHXxZ8TISC4KRYZTFELP9YtskEjQWkHn0LCmzKNjCQaWkc7aN9DZUyrHE/mKv25Th8BdnYfkhRjCYi5bMAQMAUPAENhFCEya1zHiNiiTAC9qBA8z/Fdvj0Ytg3qhZDp0oUwSycLAZniXU6VMZVw0I6Pdt+iER+kJhmiRRxK3s05bUvMXJzM0rAphZfQQkFRrm+xR6fMloiOw2PaIJTg8r6O7N5HODGTzHVt6qlg42i2WQ0ZAYw9v9QE1XzCydhoChoAhMA0ITLLRowwH58GXkC5s6hiw+lbnKozrjGEZDk0EMc2CcxiOxD8Md+JMVr6EXBEjC0ysKcjDpiRiEyMJDcO+ysTwLumUCK+rToQpnUTNS0TTicyXQOsZ64wLuixdwUwRKwwOJDML8kFDz0AWPi7genY3xy8TdZbyfIHG2mkIGAKGwDQjMGkWsLZDCa++TfUpxCHF6Kqaxdqhi4c5SldbllMdh6VZyKtGdr0Gzav8Cu9GGlQSYo7s8ujS/Ir4bsXJIEg6FzQAseHU+i25WKJ9Y3c/ey9DvuKVz/YmkGCHYLzQjo/nF0rWWkPAEDAEpgOBSbaAp6MJVuZ2EfCldxcJeJZfabA/9FJBqrmrdwACpn9YOs/5KApkWlLF2He7WNpFQ8AQMAQmEQEj4EkEc0aqch57aobjnqjumoxjgPVPcjCwBqxgbN+aZC3V/hoChoAhYAhMIQJGwFMI7vSrhlbd7F5ZDkv6wiHgnFcpVYqFgVyeKLef7mEJrNQRMp58+qtsNTAEDAFDYJ4gYAQ812+0I1UlYJqazRXo6mX4G+tT9va7eV8QsM9jwPjnmPHvXH8arH2GgCEwgxAwAp5BN2PyqyKMKkujKLVCtb2D2XjgJRPxWCK5ecsWrnMq1jHjr+bhJOnJR9w0GgKGgCEwVgSMgMeK1CyVq4RselS1bYn09vcnE7HW5ibmJa3buAUTWJbBkg5gR8OztJFWbUPAEDAEZiECRsCz8KaNp8osJqbiWLlM9WUJDlbjbmtpKoVeZ3cPR4ZG44J2fcSeX5UdTwEmawgYAoaAITAhBIyAJwTb7MkUT8RYjFLdzBwrYWygv/egA/f3Y8nH1q5LMPZKOoJxUrPCCX9mT8OspoaAIWAIzHIEjIBn+Q0cQ/XdJlVQr7iZGYTF0lgrli3Nl8rFCktEy0pZ9BOHPquGjUGXiRgChoAhYAhMEgJGwJME5IxUg0c5z6Kfbnkr4qzBMZDLxQJv772CQrGcLZSZg+RWfw589gyekU2wShkChoAhMFcRMAKeq3e22q5o+WsMXFbeKJYqiViwpMULY8nBXD47KCOgK4yBnuMwWPMMAUPAEJhxCBgBz7hbMrkVitHNK2tgVRhsJUtfBfFkPMauDE3NLbl8sbu7U1bAcmtxGAlPLvKmzRAwBAyB7SNgBLx9fGb9VTzMYt3KXCSvdwD+jTU0NHCyaOkyuoE7OzrEAvarC1XO+tZaAwwBQ8AQmD0IGAHPnns1oZoy8Aq6DWSykdfT3cdwZ7aNgnTZUxl3NCtCq1ZkSqGMh7ZgCBgChoAhsGsQMALeNThPZyll8TCz1oY3MDBAl3AmlcQFvbg5zR7AXbnQLQgts4G5pGw9nXW1sg0BQ8AQmDcIGAHP5VsNofJLwK6VYtwLyywBHfrNDemU5+3VErQm/fvWD/ayQMfggF/J+7IloQVDwBAwBAyBXYSAEfAuAnq6i6kEYaVUKmHmJhOyQdKKtka/lNvcV2BgVpylosNSLCYLYZkberrvlJVvCBgC8wUBI+D5cqdDL8jmi+w5mGlopA94+bLGcrksuwJDwAlMYk82BZ4vYFg7DQFDwBCYfgSMgKf/HkxdDbi7cK2bXySrPTPxl/Umm5ob8UkvaBXDt38wO1jwYnFMYvckwNJTVxvTbAgYAoaAIVCHgL1v68CYi1GIV+6xH+BbZicGrN625iYSGIfVkmlkfnBvv3M7V2SUFsIWDAFDwBAwBHYNAkbAuwbn6SsFE5gQBmVf1qFkrlFzU6NwLQOhFy0I/djmTrcOR1kMZd8eh+m7UVayIWAIzDcE7I07x+84A6tkbJXbaQEDOKwwCroBFzRO52WLFtD4dRs6xO6NsUS0+Z/n+MNgzTMEDIEZhYAR8Iy6HZNcGazf2g2WKUasvOFGQfsQcAIXdHMGF3RXd6/MPoqRIMJqME9yPUydIWAIGAKGwDYI1N7P21ywhLmBgFjAkKofFDxvU2dnujHTkEzQAUxgU8J4MrV2/XohYD8oFkOxlS0YAoaAIWAI7BIEjIB3CczTVwjdurIOtDNsc7igw7AhIStzwMFtTU3FYrF/IM91ZGLsDGz27/TdKSvZEDAE5hsCRsBz/Y6HXqVUhmIxc/tyOWKZRiFgfgzCKrAfQ18fWwZDwLIxsFnAc/1xsPYZAobAzEHACHjm3IspqIkjVDp6mYOEC3owVwyCINMofb38FrSn4vF430BusFRbAIuR0MbBU3AfTKUhYAgYAtsiYAS8LSZzK4Vxz74sxcFmwAzCiicT6YSYv/wyaa+lrZVdgXv7qoO1wiI0bcEQMAQMAUNgVyBgBLwrUJ62MvyK51cSiQT+58EcA63iqWQDrmb6heXn44Vein+6o3NAe38rYQn5aautFWwIGAKGwHxCwAh4rt/tUplh0OxI2D8YxpKJVColC254FX4kLl68uFgpb9y8WVGI6b7Bcx0Sa58hYAgYAjMBASPgmXAXprAOYYj1W/Ho5S0UY7EELmjpEJYQ94rewkw6KBc6e2UclktLuo2D9cSOhoAhYAgYAlOIgBHwFII7E1T7yUQYlhoTXt+WrnKp0tDcwhhoFsRisFVL2luajrUmK+u78EF7rFVZKZj/eSbcNKuDIWAIzAsEjIDn/G1mEBbb/XqVYommMuyZY8UPWQCacVhL2ppi5VyXm4mEpRy4q3MeEWugIWAIGAIzAQEj4JlwF6a0DtX9kPL5PMWkUrLkJIEOYMKyxW1eWNm0eYuQM8EeB8XBjoaAIWAITD0C9sadeoxnQAmss8FehIEXNjekueUxxmW5O79wgRfzgy3dXRCwTQCeATfKqmAIGALzCAEj4Dl+s6Wz14/BrwPZHJ28mcaULjeJs5lIU6PXmE5mc4W+vBAws5AsGAKGgCFgCOwaBIyAdw3O01YKS1sxsApyFQJmM+CGdH1VEoG3oK25FHqbu8qIsSlw/VWLGwKGgCFgCEwdAkbAU4ftjNDM7gvUA8s2mysFXimThnMlMBmJvY/oEF66eCEm8oZNXSTGYrYbg0PHDoaAIWAITD0CRsBTj/F0lwADM8WoUAljYZik+9ftjVQuyogrhkS3tjSHsURHdx9i0jFsFDzd98vKNwQMgXmCwKQRcNkNqy2VSoy2ZfF/9rnTYbfgqEaYCvT1se6whE9/+tOnnnrqokWLZJIMKxXnci7ZQwORnp4ecmnGj370o0uWLGlubj7llFM2bNjA1Ww2y/ErX/nKscce297erhqiCqgejpqdiNuMQJJZlFH+zKcQ8+MD+RLDrrZ0dZdLhRVLF7InIdOS2BM4lxUC3m3pknyh1NHdK2txiLVswRAwBAwBQ2BXIDBpBByLMa1Uppmy2CFb7kB1HLUFhYIs8a8C8ChMCYNCis9+9rNf/vKX77HHHpqRI5dgbiKtra3IwKyf+cxnfv3rX3/3u9+97rrr9t9///322w+GbmhogFw7Ojpe97rXvfKVr1y+fDlZlGWpAJdUSVQBnfyKTHd3N8f5E5RPWQKaOUe5UimolFMxL1HzM7P/L/esJZOqBLGuvv5JexTmD77WUkPAEDAEdgKBSXvrwp0wH1yr5AdNkhJVTOPKfzAlDPqpT33qYx/7GEZtf3+/2rsIQ9LwNxFUNTY2EvnGN77xkpe85Jxzzjn88MM/+clPIvD73/8eMxpuxjJ+xzveccIJJyA8MDDAUYvjEtRLBZSAqU9vb69eYuljjcyrYywhmwEPZouMcmYHJFmJg0AHcFy80Avb2vxYbENHF/DJeC0LhoAhYAgYArsEgckkYJgvmUwq7WF0ptNpeFcd0Wr+KrmqPcoRSagXSxd7F4sZYkaYRI7qiH7ooYc2b958/vnnI4OGfffd96STTrrkkkvUjIahEYZ3UcJVio44mFM+BfSUo4pB0g888MAuQXVmFYKZi1u/fzAXhJVMSkhXdv0N+dwRC3jhgrZEKrNxcyfk63oDZlblrTaGgCFgCMxVBCaNgLV7FXMTGlaw6NYlDukSlIYxfGFBEjFhlXphyqamJuShSUgXSeLQNtrIsnHjRk6xm9XnTBwqjSzsLVu2oIqAEsieq+rrJkKAnrnU2dl54YUX7r777mSkoOOOO06vzqsjzJovsh9wIREP0kltetXUZZWs1pagMdPc05ftGZhXqFhjDQFDwBCYZgQmjYBhOxhXu37Xrl374Q9/GIMVaiQdgxWCJEKgx/eGG24gBasXWm1ra4M1CZAuJixgwNDqfIaPkSdFDVl1IzMaixS4GapeuHAhcc1FBA0EIgTyKuUvWLCAmjzyyCOoxYwmogLz51gRi9cbLAg+gJZMyLnA6j6TOKQTXnNrW6lS6egYnD+wWEsNAUPAEJh2BKodgpNSD6xMpcaVK1e++93vfulLXwqVQr0EPMkwLoSKwIEHHki/L1TNKXYwnueIRAcHB+FsKoOZm8lkVqxYgQzOanVTk7h69eqTTz4ZIoGzyUV2eAWdHCFdtcL1ErlgbrKTSNHq944KmpT2zhYlfJXkIGDPb0rFE36NeeFeen059WXIWxBPbmJX4D32nC2NsnoaAoaAITDbEZg0Aob/oDeOkCWmLdxJgAIJEDPWKjSM51mtW3U7q48aaxgQlTX1aldXF5OLSNxrr73IdfHFF7/rXe+Cm9Fz33330SXMJTV2VQ+crUFvBpJKtBQNAROUfbmqDK1i8+OIuVthIegia1z55WQ8ztcNo8xTsgKHC6GHF7olmUjF/K6BgYIvF5xtPD/gsVYaAoaAITB9CEyaC1pJjiPsGzUH8oM1OYVHOcK1MKVeZYAVnuqnnnqK2UT33HMPzmHt8eUqPbV//vOfsYwJF1xwAcb0ZZdd9vDDD7/xjW/Etn7uc58L+1IK1vD999/PzGAKveaaa9asWYMpjKsZtzYfAeiBgLUs9Ghkvh2h0sALsHE7ewqeX2hvaxRCZiJ1GJcRzxUWgC4lQ2/fRa1evn9dX3+fo+f5hpK11xAwBAyBaUFg0izg8db+ay5oLqYYwdC//e1vn/Oc55ACGTNcWePYvrDpeeedh7f5mc98JhOCYXHsbMS+/e1vf/WrXyUCzT/96U8nctVVVxGht7ilpYVTCxEChXIh9MMkM39xHuAJ4K8PAbMaVsDmDEtaM0kv7Owb4LMlE+WxiCFgCBgChsBUIjBtBPyf//mfSp/aOlgW4xhTFYsZfiWOI5puYE7h4I9//OP1ICCAdctKWF/4whfwKqtjmRQNsC8RWLk+yzyP57KFCu7lNOtwuEFYMueX/wPMYWYJL1m0mE0JN23aZJDN8+fEmm8IGAK7EoFJc0GPt9LqFsZjjMFKHJey+qvpDFY3NZ5kunJxL0Oo0Uoa2MEUhLmMGBEEYF/iuLI1u/KuTlUab5XmsDxbIbErofYOiPXL/xAwvQPOS7+wja6CkIFycxgBa5ohYAgYAjMNgWmzgOFODFlsXEUEDoZKsVx1dBWnxGFiqBR+VZcyKYzXZYwVLEtGyJhTJFHFgC/EVKemzDSgp6s+SrV92VzFDxjjph9crh8eAuav7L+QafSSsaCnt18+aiwYAoaAIWAI7BIEps0CxvbFuoVudX8FXM0QJ4lYaSRyCvsyahpWVpKGXxGAs2ERteRIUUl8p2BFFo7ohIZZo2OXoDdrChkYFAIWNwPrfcK6VDwELv4KaKmk7ImUL5U7e2WIlgVDwBAwBAyBXYDAtBEwtAqDwrLLli2jAxjqhUF1WhG0Sgr2LmwKBIgxYYk4wpi/ahOTzsLO6mpmdQ6EyUIiERJ1jY5dAN9sKAJfAgtxlOjtZf409xsCjsGz8r0id58R4tjFixe2s2fDUxvtw2U23FKroyFgCMwJBKaNgGFKTFWYFRjVzIVB4VpN5xJ+ZgiDqxAqnb7QM2tS4otGWImZvKRjFpMFYUZHk121sdDHnLg7O90IGWwlSvJltgQGNhkGLSOvhIBj7hLrQ8v2DG0tzT67Am/pceI7Xa4pMAQMAUPAENgRAtNGwDpaCgalhkqoOEiVd0nB2OWoXuWon5hhWSQSNF3zEldVpEfZ1ZJ2svP7wFwjr8K8o+6eXlbCwtkgc5Bg35J8qRQLFZzQOlp86ZJF5XKls6eXdDwQihoRPm6I85WjKXY0BAwBQ8AQmCwEpo2AJ6sBpmcsCORKYSmUbnXXAQy/OkNXBmFJwAJuzjSwYkdndx+n0QcNESVg/eJxsnYwBAwBQ8AQmBwEjIAnB8cZrEW4diBfLIeyY6O73yVZhQNHgluXg6Uo8UsvaGsLYomnNmzkAryrRjC8CwGb+TuDb65VzRAwBGYxAkbAs/jmjanq8C+DsLJ5ljjRUdBu7q+wshrAuKAxhBmEFUum1m+Q8eQQsPasazzySI+pOBMyBAwBQ8AQGBsCRsBjw2n2SvkyCrp3MB/6cSZdi9M5ZCFPsYC1XxcCxgJub4V/Uz2sRimrfEovu/Ju5IWWVAuGgCFgCBgCk4eAEfDkYTkzNYVi8Q5k854fqxIwzMvQZ4gY4hV7V46sxdHQkCG1s1MGkNNZrJ5nCJggEhYMAUPAEDAEJhUBI+BJhXMGKpNpWh77RHmxgBHnwqUMaa6ObXZE7Og16XupVDqRTG/Z0qUDr/SIuBHwDLyrViVDwBCYAwgYAc+Bm7j9JgRswxCWiymvklQC9vibECoOvYqawqFsA8y620kIeCCHsSxdxGwjzNWwEngxThk5XRs8jZ0sP9e5vP2i7aohYAgYAobAqAgYAY8KzRy4wHLPxXjqyc3Zxlhl95ZEk8w4KofxljDe7IXFZFDywzzNxPwth97euy0tFyuPdxW2lL0i61OyQOXgoFeu+PzneXQN83MczIHrZRJrlDwHoLImGAKGgCGwqxEwAt7ViO/K8pQj88Uw7oVpv8J8Xxa+gjwLOvLKKwawq7Nl4eBFba2MvdrYNVhGmlryf4DtzCpjEodr+bkg5q9awPyxYAgYAoaAITAxBIyAJ4bbrMkFRw7ksjAr63q63t6o5u7M7WBRLMpaHMuWLsH1zN4YjJR2zOp78aR0GLtnJHpQ6pVEiZFSixgChoAhYAiMEQF7hY4RqFks1tfXDwHrFlLOsK21Bb9zLI6hy4BnaHXpwuZKKdfR0cFlMXZ1kLRbhFIMYuxh6UKOjF6sYwuGgCFgCBgCE0fACHji2M38nBAnv96+gSCeqG4GLIOqXGAgtIyFhkbZ+lHItZWtmcNy3+BAlWPrHg1Y2Oh25t9uq6EhYAjMLgTq3rKzq+JW27EhAJuyvAYWcKbBuaBrk3orGLgx6RRGIBkXczaT9prSyVKl3F10fcAkIRxnfHQ1GAfXkLC/hoAhYAhMAgJGwJMA4kxWgZE7mMsyl1e2ipKKRj5kyFfWxSpXGHQlK2Q1Jb3F7S2Vcrh+sxvejHSJgc8SXE+xi7hTOxgChoAhYAjsPAJGwDuP4czVANlCwPlCiaHMuucj83rVkA19bn1AL3CpJCkQcCrw2psznHT29EG8QtQQsJOumc0kRfytamZu261mhoAhYAjMcASMgGf4DdrZ6kGYfYOD7PXLbsruZofFUhHyZHAzs4QHc4VUMqFdwfialy5uZwGspzZugoBJdD5q6SZmHS0CuRzrOg6WyxYMAUPAEDAEJo6AEfDEsZsVOSHKUlm29U3GY0qfsZo9C5H6gYyC9sMKFjCO6NZMQxCPdff2kygDoWuSiUCpt9ZiY98aEvbXEDAEDIEJI2AEPGHoZkFGiBKWzeaLDLmKRkFDt1SdS/xwTGsz4GYWqFyyoJXe4vWbOjgtIsUILPFUeyo17Fnh1DH6LMDBqmgIGAKGwAxEYNhLdQbW0Kq0UwjAsoO5PDN9m5szTDxCV7S5AgzLMCyOUHIQylCspUsWlMPK+s0d1XWv3Fxf2b0QyWotRIMFQ8AQMAQMgZ1HoPZe3XlNpmGmIpDNZtnct6WFWb4yuCrwQ+66jsVSExZK9n1Zd2PJooWlitfV2wfNxhBya3GUoqFYwxpoXDwMEDs1BAwBQ2A8CBgBjwetWSiLgTuYzTkLuFp7IVvnPY4I1CWw3HOxtTnGipWFYrG3IO5lFaD/2O2OVGs8qVHOWpr9NQQMAUPAEBgvAkbA40VsNslDlDiTs4U82wo2plj5ypEnfBtW+ZVzGFpDpVxsCLyWlpYgHt+wiSwedjOXqvOXamJ1OYaSLGYIGAKGgCEwXgSMgMeL2GySh0TZ+yhfrsTLhWYqLn5nZhvJKpScyf907sofeQwqFaHb5pbGeBB0bhmQpBIp5SBZycvOwC4gjAObkVny0yQ7GgKGgCFgCEwEASPgiaA2W/LAnw/3ePFMZlGy2CK2LOybrJTLcV+4lqlH6dBLwqmsDx3Gkuk0LLtieVu5VOjYmGfbwniCkdHZnlxH2S9D5MLUZUZtxT0/UXJrWPL0GAvPlofB6mkIGAIzDQEj4Jl2RyazPhAqruSSH2ZiYW1NZ2YWkQwBy64MQp9CwEOFtrakvUqprzfn5h+RXgkTjN0qIyJSmL/SIxwIgUtCXU5JsWAIGAKGgCEwVgSMgMeK1CyVYxErRmDV9iLccSOWLFpcKRU3dmyWodIFdkGiR1gXkY7yiiUMc8sfC4aAIWAIGAITRcAIeKLIzZJ8uVwRAm5qaorqyyjoKD4swtOwbNEiGHtTx2b6i8tuM+CEx0JY0XMiJm9tV2DZScmCIWAIGAKGwMQQiF6sE8tuuWY6AoOyEHS5ubm5arCOzr60BGZe2NqS8IPuXiYieSxfiQXse7IeR/VBwX0tHmw5dTRuz89MfwCsfoaAITBjEbAX6Iy9NZNTMV2FAwtYCHhHXmMh4IyfSSWzxWzngBdjDJYsyKGLSLv60P8rBKzLeEjKjlS6XHYwBAwBQ8AQ2AYBI+BtIJlbCYVCARc0C0GPpVk8DS1MBW5IFivlDV1eAUKu+DEvxs/Zu6rDHM9jwdJkDAFDwBDYAQJGwDsAaLZfZiFJ1t9gMQ1ZhGNHAZZNe15TIlHyyx0DLEHJHOIyLuiY80CLArp9ZVksRmgZDe8ITbtuCBgChsB2EZhOAi4WZXyQLDWMoeXG+xDRxPqU/v5+zDi3ipPX3d3NJTo16drUFE4R4EjYsmWLRqIUPZ3Px6eeeqq9vZ0FJsWGrTNjR8SESb54nVcsW1IKKxu7utgFOJHEdJZloasPii+rSbMsh2oaA6ePWI4lGgKGgCFgCNTeq7seib6+vkQiEQSBDsqFU6FeyJhErQyXenp6iNN/mUwmc7kc8dbWVmRisRg+VTJ2dXUhgwB5EVi4cCF66PWsH/S765s2o0oEEL5UIlS3XzdolT2RFjY3Bal4x0AvRi6raGHu1q0FXe0D3r4eu2oIGAKGgCGwQwSmzQJmXC5WL6YqTEwtlSF02WHsXaVe6Dafzw8MDCDDTFbkMXxVBlOYU2w7ZMgOK6fTeE8lIIkGjdsRAAFq7H3AblfgBV489sSm9Vi7RVmxQ4Za1YxnTpzz2Yxfe7YMAUPAENg5BKr7se+ckgnmxsbNZDJqAcOgyqxQL5wKm8K7XMV3SqAADFwSdUEJ+LWtrY0s6oWGxZWGMYghcrWYJ1inOZdt+Chof2g/4G3bygTfWCXYbfFidgV+bL0QsB+PyUBnaDj6VMMcpr+gRsjbKrEUQ8AQMAQMgbEgMG0EDL/CpnAwtYQklFk7OzsxakmBXDWFOE5UGJdT6FYtYM0FcxOIq3mHqad5cUeTJTKIx4LCHJYBWyzgoXnA222q3IyQtTgW5iuFgc4OaFe6f123L4TrjN6aBSx2sCzEwYLSFgwBQ8AQMAQmgEBk10wg705lwbqNTFjIFWZF3YIFC+BUaBhrGGbVIVf0+GIEw68ErFvS6RJGmHRlYu0eVhnSMYKNfaN7U7OAZRT0WAZCQ7dLFiTo9h3IF+h1F9Ll/yGvs4spF0dlWMQQMAQMAUNg/AhMGwF/7nOfO/nkkyFLSBdmxYrFUNOuX/VFYyLjZ6ZFH/7wh5csWYJ1+8pXvvKyyy5T9r3vvvve8IY37LnnnhD2qaee+slPfhK2hoN7e3vJgsLxQzE3c+A8ANiGhjG1zodZi+WmRg8kg3isKyfW7zZsO8TGY1JqQoaAIWAIGAIjITBtBIz5++Y3v/lDH/oQZMnrHr8x5qx25XJKVTGROf7Lv/zLD37wg+9+97s33ngjRPKBD3yARLiZGUdk/OEPf/joo49eeOGF3/nOd+DgKJcO6eJ0Lgb4T81QYUb91Zqpl6pXNTFf9sNKkEzovr+SVvFioXMtD3XjylNQfRJKZRm/xlTgxliyr7dQEDe0jI3mcq27gvUpU3QOk8KVISWi24IhYAgYAobAWBGovVTHKr89OVzBcCcmKULwKy5i4kSwaOFO+BWWhRq1x/czn/kM8r/5zW8QQx5DjUv08pIFMfSQQlfu//zP/5x//vnnnHMO2X/0ox+tWLHiZz/72ate9aoTTjgBw5fR0fD03nvv/ZGPfOSb3/ym6sebrb3Cqhnl6FFndZSyvWbM6GtMCoIShffYExCmhYCBGy6UDRLCSjmfi6XSnDD5yA9iPQWvVMmEYdCe9OJlj0WtwlIJOiZjgjWuQrFvWe2ZH8ttsNwV7BxvjuM92Hvxkv6HHlv32JOrluwzgEzoMR3YD/NSnpcoBAk0sJdwDAtZti3kZ8EQMAQMAUNgfAhM2qsT8qPnVekTwoN0iWuEGkHAHNW3jBiszCUECHQAk1cpkwhiSpO4mjdt2rRx48bjjz9e6RNWhnQvvfRSLGC1cRlbpJdQiAuaRApCVUdHh6pCGxEoHzpnsPTatWtJmeUBJAVMAmxITI9y7ocxoWM6e0WAxTLyRZBPJOIN3Oa4+y4iUbP4st1gWeicuyR0TnAPg1vjarf29kSp3N/TD0VjEZcxermOWlEcI1HuE4HsLqee2dEQMAQMAUNg7AhMGgErI6oJqwyKgQu/QrSwI4E6caSPlkQECBAqJiyBvCRiuRJZt26djslCEvYl11FHHcUlNMPcDMLC5CVAq4zVogiY9bHHHsMCxlmNsPLxokWLlPKRueCCC7CbKYvO5tNPP33s0MxKSd3sSIxa/MzM3WLgVdjQKC598TN4MLQQpvw/euCZWLlieVgpbdrY4fhc87oMNXt30p6b0athVwwBQ8AQmNsITNqLFPsSrgUszFyI8+Mf//jy5cthWU6xUxcvXgy5YtQeccQRN9xwA3SrBAk9qKmKkUpe0slFChyMMIHI5s2bMWrhaQQ4QsYIIA+hQskPPfTQi170IpzS73jHO6gAxjFHZGBc5JH52Mc+tmHDBhLR86c//YnEORtC/MjuhoonX2zW/sEsPNrUmCE+0j6E8PQIYPCttGzp4rAkiHEZo7dOSvzVQ3lE79CZxQwBQ8AQMATGjsCk9QHr6o/Yo7Dm0qVL3/Wud9Fxy+hleBdSJECWVIuRU6tWrcK6bWlpgUShWwZeKRnDskQwYckCxSIPayJDHNMZeQZewdAqzyna7rnnnre85S2777779773PU6RxzgmQl6onVP9AiCOWjIec8wxXJ0zAe6DDPVYbZTMq/ZZPhKjlQOw0/aWZsFENvXF8h2Bh4dTKAucLGxNs/5kZ08PSmqPiFt8QxzXUgbpEjgdnlsv2NEQMAQMAUNgBwjU3q47ENvxZTgSY5cjbmHYcdmyZbAvtMfpypUro/xqyCp9Yt3iIoZWEVPKJM4lWBMih4Yxlw844AA6fQ866CD0YM4yDQlqRx6FDz744Ote9zpGYP3qV7/SFKiaCEc0I6C8Tq1QSBzuh/ijmszBCPN8Hb/SWLz8sG3/wCAWcHNjQ5UlK4yZkjsuLmjl43oU1DHtTOeWJg8XRF//IAOyZM51FES//C83QDYGtmAIGAKGgCEwQQTkRTopQdkOK1bJVXViv6rhSwRuhlZlSaYwJMIAq1tvvRUShVZvc4FRVHiqcR2fdNJJuKl1XUkm+370ox+9+OKLkXz+85+/1157PeMZz4CbGWZ14okn0rmL7Xv//feTFwHMX+gW9tXKqPmrNYGYSVe/9KS0d/qUcMuG37Uqv8pCG/BngAUMN3LCV4tfKTelk06AYdKkKc1up/p+Ku63pj1omx72Lb0iOVQe/O2LLT2Ush1NdskQMAQMAUNgdAQmzQLG8wzLwn+wI/wH3WoPLhwA7ZHIJa0GliisDK3CnZAiufAMw9y/+MUv8Fojc8stt8CmZ599Njz93ve+Fz1vetOb4OMzzzzzz3/+s9q4l19+OcY0xMxiHSinCDqhoXZ6f1GFDHnJiDYqQ1y/A/Bgjw7FrLyyFRfWVrpiZDPpcHC+KFshJROyFaGMYXajo+vaOZRbBLBohaBDxkvjQGhMJzcXy719XtiiOdAnHcBMf+LcEbCtCF2HpUUNAUPAEBgnAj4v6HFmmTXi2gdMdeFgKJkILmh6gjlC0tjH9ZdmSatqJOqIEEok0DChTxbQwDQtVwoVn7U6GUjFQpI//uMtv7z23jNOPeFD5x7YHBaZBYwLOu8nuOUMUXPzgPFax8qOT6XXOKyEYaUQJBnw9pmv/uaBJza+8qUvPPfE5fQhp2RRrHLoJVSYEmUScLV8R8fuxA6GgCFgCEwFAnPxfa6WzFSgZTqnHoEReA8bnxHmzvylfPwQYgGzaLZUJkqu1UzGMwt31wUGUstMYb5N2lpbShXGUcvCWBCvCwHsixbyuNnCdfksaggYAoaAITBOBEZ4h49Tg4nPBATUGIYbIVAZfsWPOWGDuUIQVhobUsNolhrXMtRVXh3UMkNMCHi3xYvYVqqjqwcJt/qWkDA6yQj7YmvX5bSoIWAIGAKGwLgRMAIeN2QzIoNMB1IurNmwQr0QsCz/qZcgTEZBQ54tTY0iLX3AY6o7K1pCwMuWLC6WKpu3dMG4zlsveVHAqVtNi7+qzh6hMaFqQoaAIWAIDEPA3p7DAJkNp0K0o9ZTXdDKlDowraVJFuIQ6qyoBTtC3rrnIEADBLxk0YKK73c4ApZxzxJ88jvW5SAdwMrA7pIdDAFDwBAwBMaHQN2Ld3wZTXq6EOCWbXvXGJDs7FJWdcZBXCNGVsLCAm7KpKsEOvKAu8owdcmYEG57W2Myke7u68tKL3A1YPbycwfKcAt81y7ZX0PAEDAEDIFxITDs3TuuvCY8wxBw/Ap38hd65MccMAZhDW0G7BhzZBaWpginesUSk5aQaW32GjKNA4O5/n4lfGFeJGrBEXHtxP4aAoaAIWAIjBcBI+DxIjbt8lUi5E/dzWN9jDgbENLRi/c4VpFLCOTL7P1bTsed2eozK5rkAAH5o+1wmyvUuBTujpUrASOhCemYl84ki+XC4GBBODtk4lKACrKX5CBLbfPHlSN/LBgChoAhYAiMC4Hqe3hceUx42hGAMuFEiNL5nWVEsmwaGLDUSdnLdTXE8vTWktjRMxCrFBa3eawoyfRfL92KezrhV5IyjFlpt7qwhpzIKlfxWCpOHH921vMWL2v3Yv76dRugZLF9wyDtDaQ8RnbFByBgXNelclXNtCNiFTAEDAFDYLYhYAQ82+6Yq2+dK1jOOYU1YVy31hWDrYpMRZKFM7w4q2DhUuYSp/yclcwmvizKIZyrGVUbR/2JRq8Cmbe0ZrCXB7I5NpOs9SvnY14espd+YZGm71n0WDAEDAFDwBAYLwJGwONFbCbKO59xrWJuGpKYsEw7CoJUIg4BbyVQE4z+DrsK3YZeJeEGQrOnVFdXDwtxqF/aZZFFxey5idCziCFgCBgCE0PAXqQTw23m5Bqa3VvlUeFHMUv7BvAk+yyCnXAXONQR7fbuO0O1Arfn4OL29kqxtHFLp3b2ujaTUcZI16maOVBYTQwBQ8AQmE0IbO9FPJvaMb/qOvpdY1AV605i8vpeT5/05TamGIM1xJe+8zy7bZGAbGQ95OUCA6wWtbVXSuWOLZ0ytanKulxxDE9u5IyH59eDZ601BAyByURg5FfwZJZguiYZga1vGR2x9b2wMgNJOJL/+vrLrKiRbkhyDlG61DFUxffiwuDyW9SWTAb+lp7eLC7palZ4WVaW5ufYd6xax1CwiRgChoAhML8QkBephVmLQJUWuYtKsVFD4OVsvsDWgfQB6z1GYKsg+ykJrXKMAjK1WcKy6cLiVq+5oaE3V+gZjAhYGFdIWPPY4xNhZxFDwBAwBMaJgL1BxwnYNIs743SrOmDy1qxTTRfPsNBnrhiGQcyNwXIGa32uGs1GaTwHEUOzI6E8FmWvlV2BG1LZQrmbBbWqVI0/W1aGrgrzJ8oW6bKIIWAIGAKGwBgQMAIeA0gzXkRJUGYKwb7FIkYqM476BgfZjnDBggVqsJIsYkFQzuedETtiqyrlSikeD0rFYkNMzNw9lu/GHsJPdfQzkanCdsJiL9csYFFn9DsijJZoCBgChsCOETAC3jFGM00CEtza5q1W0CViIouBikyhyOwhPxmXQcvcZiYjaT7dLmm0Rvmy4QIziUO0YO02plNF3+8eHEQ+kGWzmJ0kBFwlXvjegiFgCBgChsCEEDACnhBs05lpR7fMuaCp4GA2HwZ+QypNBnhShk65JSVrBCxuajFohwIJFSFZ6DeUeb8Q8MLWtpIXPLWly0my7Ibkgd7hYFK2zj6kyGKGgCFgCBgCO0RgR2/zHSowgZmBAMxYNUdj8KaYyH2DWUZBZzINcgk25X/ZjhAxYkPB2c3Rqdtn2A2kZkFpFC1ZvLASJNZt6hBy1hFasK6cCPny1zg4ws4ihoAhYAiMCwEj4HHBNQOFlQQ51kZaCb+K27m3rx+ybWlq4h7LjyQde+UIeHTiFHbVdmLmLlu42IvF12/ZspW8u86hXHNFz0BcrEqGgCFgCMxwBIyAZ/gNGqF6MB90KCS4FSsOl+wdGIwsYL1W0Q18axbwaLlh6hieaPzMobd4YVMQT3T29jGyK4RwycMPCbzUUTWGl2znhoAhYAgYAjtGwAh4xxjNKInRWLNWSbhRJvgS6ANmQBZLURKvmr5CnvTjIrOdALNXfJlqJH29LS04r2MD2cF8WC6HZVkPS0OID3pHdanJ2l9DwBAwBAyBbREwAt4Wk1mQAj0KQ4oZzB0U0tU/YpS6vY/o7C0Wi75X0nnA2iTpt2VwFdatG2qlZDrsCSCR5Tt0PUuKaE55DOIqsS1wKZavxF0fchUfJKVgqYAFQ8AQMAQMgXEjYG/PcUM2jRmcASvlx8U/zARd6NYv+3Fm/RaLbCBY8cq4ir3BULYL7O7pCMLC4taMVywzAksGNscTHnsG+wHGrONOYXF+NfKWv6UShcT6Qm9QCDbfFnhLmpOxSvDYur5KLEVBZfi4kCNbrOLHK9KzbMEQMAQMAUNgAggYAU8AtGnO4u6ZUKHzAVdXlBQTGAIOxUbFMhWqpsc3LKcTas1Kspi27qcDoYVhaz+5LCGIw6peHJZ1+w/m416pKZXAIu7PViB1LG40q5NbFo12XcUuox0MAUPAEDAExoeAEfD48Jqx0oFjYK0eNxVDuFwWMk4mWTrSuavrqj5sJlLdFQhZJgwzAamWJ2hpyvhepacPq1gImCBl6XylrXLaiSFgCBgChsA4EDACHgdYM1k08gUzNgq7NlcUAoZ6IeDxBTdEq+ZYlsdjQVubXwm7enqIq8Xs/NjuZHyqTdoQMAQMAUNgCAEj4CEsZnuszDobQUBfLw0ZGJBO31QqJatyuIDVuz3DtyYW/RUOlqHOQXtrS1gpdXf3kqKPi+hxC3FUR1dHeSxiCBgChoAhMGYEjIDHDNWMF5RO35ojenBQvMWZTKa+1uqmVoauTx8Wh8h5LBwBy5W21mY/rHT39OmQa7kUC4rOv71DVcM026khYAgYAoZAhIARcATFrI9EdIgJnMvlsFOVgEmPLtHIYafbNpvpvtXHwmc9Sq+1uZEu364+tyGSELMYv25VaLfvw7b5LcUQMAQMAUNgDAgYAY8BpNkmAkHKJGDfxwUtZFmRzRWiRmyXgHke5JHQuUmez95HXiaVDPzyYLYgKuR/WU+rIlsiWTAEDAFDwBCYOAKjEvAAvYgu6GDafD7f3d09rBy2myW9/uU+TMBOdxkC5UqYTCQxb5kaVK54PT093Jfm5mY8yQzFqh8jzSlh1IpVKol4QvzPwrTC2yt2Ewt4S3dPls0InWO6WPbiTE1SoVEV2QVDwBAwBAyB7SEwKgGr9xJPJi9r3ubYUm1tbf39/YVCAUpW0o3H46RjaUHD2yvEru0yBGqWrlrA3KBxl+x6keFnHzvXZzVoId1ELKiEfpa5xxJKTEFy042J44pGzoIhYAgYAobAuBEYlYD7+vp4ibOScDabxZDiiCezqakpmUxCyZCuMrEWyOm4S7YMU4YAd4P7hdXL59H4C8HclWWe6ev1AukDjse8xmQCpu0f1FHQFfRDzOKNtmAIGAKGgCEwUQRGJWBIFwKGZRsaGrB3Oda7MSkukUhAychwFVaeaAUs35QgwPcT90t3Yhh3Ac6MxsUsLOx5zGRqyjSUKmFPr9MUyo4MZvaOG1XLYAgYAobA1giMSsD07zY2NsKsW7ZsweSlAxijirwwLhG80Fi9cDBveVK21mln04wAFioEzF3jDo67Kli/jLJiSrHzaogL2mNPpCZc0D19A2IWO3qumr81j/e4S7EMhoAhYAjMewRGJeCIVjGFsYPpAMYIJhHSJSJTTl3gLT+RjsZ5j/tUAeAYEQuV3npuzQQtYJlnJFau3mP6g1ubm0tMBe51JnClzOUqAU9VM0yvIWAIGAJzH4FRCRiWxczt7OzECOY9/ta3vvWqq66CfXt7e2FfIpAxxAxCw1zTcx+zGdnC+m54yHMn+oBd89zQKhhY9kbyvKamDHspDWRz4nsOQ4hZfy46I+GwShkChoAhMOMRGJWAcUFjQi1YsGBwcPDSSy9du3bt8573vEMPPfTnP//5Qw89RLvgYB0LTTwyiGd8e+dKBeHY6rqQwoWwpGyK5MiSjQoZks6I5YRXagzKIjiuwAjnah6ZhATZ4oJuSIh6ZgIX2AjRT2ATkygjpd2WSeNSb8KGgCFgCBgCisCoBMxlOJgjNHzKKaf8+c9/fvzxx9/4xjd+5StfOfzww88999z/+7//00G2TFKamBGsM4zVjGa+U3RLoklN+FFJjGieeFdXF0eE+SyI5NHDFwBi9Uq4OrFaRWpnbMR5hhkjBU9KVJlXeme9clgqFbwAaLqK/uCWdfstSUOTYw+oYn6RWL0Qri+INpA/9PbcbWEilb7/8Q3MDS/Gmhla3chcYxFj5vH2HqGxF22ShoAhYAjMNwRGfXvSswuxwYWwLGN5ILzW1tbzzz//3nvv/Y//+I+LL774DW94Aynvec97OCqJjgs7PNhQOxyPixsK195Khg6hhBIpFwFmPUECOFeJE7jU3t7OoDCEqRLucU1EAK7lGHV5KnOjXMk7MtDr/bTjqu3MEQ6c9xfui4LGZV0MSNNn6LJHx0Cu7MfDYiYejouA0Ul21vJwyitBWIl5FSzppnQCMLPFMvdAjF7s4nKhanpH9bCIIWAIGAKGwHgQGJWA4VQIGC5UMoPwNmzY8PnPf36fffb52Mc+9uY3v/kPf/jDL3/5yyuvvPLMM8+cwDQkqAL9aqRC4VApHM+ALzVtKRfW5KVP6aTg7iau7VKWxdgll7rBUQJzK8tyhM5hboQheGXcyBSeAwQ86s11g5b1KjQJPjS2oaHqTR4110gXwK0+maW1ohs0RPy4pyeiu16xxQ0BQ8AQmNcIjErAcKpOYoHMfvvb3z7rWc9atWoVbmfM39WrV3/9618/66yzTjzxRFL+8Y9/qCU6LiAvvPDCU089lSLQj2MZKiWOwcpRV8GEg4lAybA+xxUrVhx33HEUzRJd2MfQ8Gte85rly5cvXLhw6dKl73znO+mlpgJwbUtLi7J1xLuRHQzlj6uSs0wYUnTrWLFqM99P+DDS6Ym0AG+CZoPCicW9oK2llS0YuB35IQZ2Ilw2Gp4IxpbHEDAEDIHaQJ5tkcCEUiLEpnzLW96y9957Mwr6xhtvhHf32msvnRMMLx588MHvfve7oc9tNWw/BYZ47Wtf+/a3vx0xHMsqjLELucLBmzZtgjUxvD71qU99+9vfxtqmExqifdOb3oQLmo8DKP+oo4766U9/esMNN/ARgDv6vPPOUyXUDe4hOzJUngi8qxFl4u1XbBZfZdSyI2AmbNNkUBr3XXGNjyg1+oJpbk6gDWDret7NAp7FT4pV3RAwBGYCAqOuFayeXmiSN+8dd9yxcuVK+CwiWqzMzZs3L168mDbgkdau4nG1533vex9zi3/wgx+oVYpygi5AjZ4lS5ZwZPWPn/zkJx/+8Ief9rSnUfSPf/xjRmUzJPtVr3oVFEs6MjArHwH33HPP5z73OeTVAkYVAlwVG873iSuX0BYS52zAXnXkyYA2Ws0dHNW/MRYIQi8exPAYMNconQi4Nd39g1B7mKmzeiOuHotCkzEEDAFDwBCoQ2B7r2jYV01G6BCaxADauHHjmjVrmAqMBny/GoHecBfX6RxTFPZFjv5azFwi8CtUqjkpiKKJY4VT3GmnnabEj6F88sknY/JSKwgGAT4CYFY6p2+99dY999wTVXwZkE6VEIj6gCPDN+pI1oLm2lEI2IcyIWBgmcBNGQJEZiBV3c3cFyzp5kyTV67k8yW9STr/qHbHhvJZzBAwBAwBQ2CMCIxKwLx2xYfpfMvYUrzNobc99tiDqcBElN5wAn/mM59RmTGWN0wMGoZlYVzS6QwmDtNTFkVjVcO+FA3TcxWjlpSDDjqIjwBK1yzMiYKVd9tttzvvvBMPuaYjSYQsNAFtnCKMO53PBfh+WAXm1KlrNd3cjFfj40O+aSbcPKjVETDPB9ORUMON4DuGLxhZJkvHQrstGSZcgmU0BAwBQ2CeIzAqAasNqp7bH/7wh5Duv/zLv/zmN7/57ne/++lPfxqPNF2z//zP/4zj92tf+xo8RwBK2I4jbIdfmlc2REiAUDnCqRp/+OGHVUwNWXp8SVfzV9/yGoeMoWckWZOL9z6Mgh5IVKvEKZ3Bn/zkJ//+979fccUVnOKXpmhsX605R+KMjv7sZz9LbWF3qJoPiDl7v9VgDUM2L+ro6KKZNHnUu7tDFBgI7bqTEdTtgVmNMpVIrl+/Pu7czkEikS0y5VimLVkwBAwBQ8AQmAAC2+sDhiAxOmFWCJgZRwxahiC1DNbi+MIXvnDzzTdDaW9729vo0FXWRBjDi/7C97///c9//vNhUAKDnDUdGaYV7bfffihR9oVleaerWlgW5obpVRWR+++/n4wdHR2MdkYSsccee+wZz3iGdjljGWPaHnjggQwK48uAmlx00UUveMEL6i1ySv/oRz/63ve+F9c0zI3LGnN5AjDNriyABrz1OEy4/o5tZageA+5Qwu2TXmHXCxzEZbdgC4aAIWAIGAITQ2BUAsbWhLTgPN7mWJmMQCZCGQxUxrjEEX3XXXfxOoaV4UsuYYNylZe+MuUiF7ROvLv19a2nGLUEDF8Yl+Puu+9OOqqgbUgXmxVhLR0XN+X+7W9/Y5gVNWEpLigZaoddVJUuWA2zYkNTASgZzdQh6lpGjCII+jGBmGacw0dayAcK7aXVE2+mAqxMK+t7eAvbF6CNYW48BWHMdQH7AS7uraYMT7w8y2kIGAKGwLxDYFQnJQ5MBQNKg4n/9Kc/QZCwI691zEpsYuxOZCBFUiA2xGBiWBBHMXEomYBFS2LEvhADOpV3H330UdiUdbWefPLJa6+9FjtYu3URPvbYY6+55ho1czGvP/GJT1xyySUMs/rQhz7EbODnPOc5kPFNN92E//nuu+9et24dk4Nf8pKX4GdmyUwqQEaInNL5FNAmEKca5ILO58MdBknaG93BSWmyjG4Lw97uHj/GcpXyBcSIL44T72aelGqZEkPAEDAEZi0Co1rAmJUYuzArVua3vvUtZtlyZDkO7Mu//OUvuII58pa//vrrWSAaYYJSphqjHAlwNnTLJVTB05FTFPvsS1/60je/+U1SmFl0+umnU8ovfvELHMggCdcyr1eJnP5mrC4WvGRmMEOgcTVD/8jAB7Dvf//3f3MVun3Ri17Eeh1q+JJRi4tuilrnfBbQbRwlzs2I8w3QfL45gEjt2J1qaU1FS6aBu8YXmJq8ysE7pdkyGwKGgCEwvxEYlYB5g0OZvHNhuBe+8IUPPvggg61gQV7uLKDxspe97JBDDgE6VoeOqJcIlMyRXJAx5MowKCIcscnQxiWywLVKwN/4xjc4xUqGp6O7QHFc5VTZlPiXv/zlCy64AHtOvdOowpbFcf373/8+yqXlqsmLh5yiqb/qQYYIXwMkagWiXHM1Ag5qAdfYcxIaymQxYKRrQPEMMX3nvjt/EnAzFYaAIWAIjIbAqASM1cjoJ3pyIU7WwcDWxGZVG1ftS3ptIUUoDcLD6MTSdUavvJXJqyxLXMlVpxLBnZAxREh6xIVQhVZOaRIDF6JFDLuWFOJYctQBGXRixRKhoMi/qtWAGMiIZu08Vj5WtRx1RDS10mpE6XM1wm0CAfl+mqQWclN1sTI+j1DJfaHbnds2WfonqZqmxhAwBAyB2YTAqH3AUB3si3nK9KEHHngARqRZOj1X6RAKhFAxtkhEGFJEhlczb/8IAGigPgXLVdkXRiSXOoTp9MVapSA0qAmLfrgWJaRohDgySt4oIU6KkgHVoHQVoyzpqqzNhqImKsn3AXyPGGzN1VkdWG2Srxc9Ohu0wo2Re+OX3GkCaHJi/PvpuE/6eM1U5KvPBPsMylaDcsb/izNeqjK4JZsfAF4vEXixuEfRthnhrH6arPKGgCEwnQhUX7bbVgGm1JHJmLavfvWrWQZSTVXIDLJUeRgROlS7VvtZ4TkE9Cr0ySnH+hS9pCmRPUpeNZTRhoCqUsnIXI4SUahx7QxGDBlVqF8JpESnKknNyYUYR1U7e48YnfL1IdYne/YSyvGKx68cFkM/KHnJbNnb1JdLNzU3ecXmcY5SZlPhmFfyYViIm9FWfsBwZ85Bjclb7bGuQtPS+3NegQ2SmHFdriTCsgzEsmAIGAKGgCEwfgTEdhoxYEOppctVbEdGYP31r39l+i8kB3FCafDuF7/4Re2XHVGDJU4FAlV/fW34MXwppOmHfiwUYuaDyvcGC2U8Dw2pGL7+Ub+wRq2c8jtjrSQrxXFOjF761lRlfTm5Oe8VdDY45FwOvRgi4y9k1NLtgiFgCBgC8wWBUQkYY5EFNBiiDBLMAz7++OOh5Ntvvx2XL6Ykrl0C9qVOMdK+4fmC2bS2E65TDo4iWp3ACwphKe5L/zouCm5WhnHLE64qNu/WmUmQYdWdIat5hjIgSzoIhgtNuDjLaAgYAobA/ENgVAKGU2Ffummxd2+55RYdkAXpAhEvd+xgXNMKl3YDzz/opq3FW9ubgevmhQtlgnU8IWfaR9DUJP3oEw/b0Cs+f7+73N1diu0Rr/hm9k4cWstpCBgChgAIbP0yr4NEe3xhXx24xIAspucy65d02Bc+5qh7G9BxGw1prlNg0V2AQO32uX0R1HdcDGUlLJwTmeqyoeOtBjpral1WiFi5eEFbO1avjn0jRazg2gj28ZZh8oaAIWAIGAJbvWrr4cDM1VHK+JzZlegVr3gFC1Q985nPZO8/+n2/+tWvfuQjH9GZQuRiOar6vBbfhQg4vnTDlXXEGct/4ahIpuKJuKwTKUw5kTB8m4XQK7e1t6BJCVhUMhJLlqQc9RGaSLGWxxAwBAyBeYPAqG9PRmDBr+DA9n/s+scWRqxOxdwhDGL6fVmcWdfBwNhChs0S5g1i09xQGK+e9KodtQxfZjJSEMciZWtH7NRknJlCEwtbUbajdykx7gWtzS0MvFYClk0J6QOe/aPKJ4aR5TIEDAFDYOcRGPUtTT8iTmYKYP3k73//+z/5yU8whXE1s6kfnb5Pf/rTWY2S0dH4n4dMop2vjmnYLgL11FsnqCwZ+F68FLLqiCxyEo+PemfrMo4W3YqDVQgnN/c6DMuMfueyI2Cs350pZbTSLd0QMAQMgXmBwKgvUCbmslyGYgDR8k5n8DP2Lv2+vIhxREPPpCCgns95gdaMaGSFe1Y3+1YHYWEBhxVWxoh5W7Z0SQdwJiNi468wlm1kVWtuZX2OLU2NuEDo/q9qxStdkIXJLBgChoAhYAhMAIFRCZg+YN62aGQyEl2/P//5z3E+y0QUt1Dzxz/+cRJ14So80rpE8ASKtyzjRABPs/62zQdFyga9fC1xjc+jCbCv69DlkdDfsCJkV6sS2tnrUBYmE5q2b69hGNmpIWAIGAJjR2DUaUio0HWVmXxy4YUXnnHGGXfeeSfDsv793//9sssu4z18zz33YAqvXbuWfQB1Acixl2qSE0agnlbhQNhYtieSPuDqt1Q+X+SsMZ1yklwf9RtrlDqMII8qUhcsaCuXi7ncII6RIgQMxbMepQVDwBAwBAyBCSEwwttW9TCQB1rFxiUCxbJx72mnnfaqV70K5/Ob3/xmpiQxSxiG5pJOWJpQ6ZZpYghAqyME3Z+IrTK4Zbig66l6BOmRkpTR0S7mrQtKvY7ow/aGOCav2MAFmQsu1yM5lbajIWAIGAKGwJgR2J4FwzCrvfbaC37lnQvdvv3tb8cprVsh6TJYavgyKkdXch5zoSa4MwhAesKtQ/zqYprKcSA7yNXJuSO1MvhMK5dLXiyB2kK3zAxf0iSGd8gi27FRv+F2ppGW1xAwBAyBOY/A9ggY9lWiZeQzc3+vu+66zZs3gwhDsZihxLpLGMQ4pVmjA3sIq2vOgzWzGyhEiPHKFxKRpkYZhCUDs3Aej/POwOIuW3WoFzeWFMY/o4+1OHp6B5mQdkDbAinOD4SHLRgChoAhYAiMH4FRCRjDF06FayHXK664gg2RmJiEHUyX8BNPPMF4HMzil7/85bCvrIDoJiyNv3TLsZMIDBm/obCkzzxg7TWge35iqtGybaAYHW/Fp9hja9fx1RXbb0GlTOK2spZiCBgChoAhMCYERvUfMu8IAmY5DryO73vf+/A/Q8BMQbn//vuZnsQrmPlI8C72FkfrBh4T2JMjBBvKLoHCt9EIK7ZGcB2yjL/Ks0tgpZSWTYoIbivBcZYrdItCKJ3tjlxBlBPI5sJeUybmhcWu3izrgFenAiNtwRAwBAwBQ2D8CIxKwKhiApIqfOqppyBgXfQKutV06Bne1alKsPX4i7Yc40bA7QEcL3kBM43cLoEsvgFPsvZVPsFuSJ5X8L0tg9lEaXBFJsGi0GU2KRxfIZjQsiWwVyp6pQql5FxBwvZeLF+oLF/cEITZjd051j8rBniqKVOZfnzFmLQhYAgYAobAqMSJaasdvWB0zjnn3HXXXTifWfSKXmEdewX7uhWXxDBSbjY0dwEC0B0/CNHxHqsxM/a5iFXKjeQHZWaLlaBcaEzILKFxsq9W36mHiBlhpexbTQ6SsaClMel7pf6c7ITFUtA4SXZBk60IQ8AQMATmJAKj9gHjfKbBuufgSSed9O53v5t5wIcddhiGbyqV0g3vzj33XO39JXFOojMzGwXR6sZHteqR4FfCSgAlur0I+TZqaGjYqf5Zdz85DN3XsCIE7FZiofcBbh66VKuH/TUEDAFDwBAYOwKjEjAqmF+kvmU2PmLI1Re/+EXdfxACVpOX8VlMSeFdr47osZdqkhNDAM4bzr4k1dm5RPk2goCbm+T7qe7K2AusleC6j4XSXUAV8dbmDMr7+vud/V27Zn8NAUPAEDAExo/AqASM7QuzohCujRaFVrcziVCvpoulFYshYBw8fvAnmAPOHW59upWw4Eh4UT+bMhlRPlxsDAVWGdeVQTwqy3fd/E3pRj8sM9VYCbhSrgQ2EnoMqJqIIWAIGALbIhBZOMMv4Vtm7u8znvEMmBXzF+r9xCc+wQRQVr/i9JFHHnnBC17AJZiYnOqIHq7CzncFAjrNV3pjuRN0zfIxxCYZzEKakJe49jw46uYw5Mf2hXObGuPJIJ4tyCaUcuMtGAKGgCFgCEwUgdoLd5v8DMJisu+VV17Jeli80Dn93ve+h9VLLyCnGL6XX345xpbmsz7gbfCbqgRs3eH3jNlC4h72GPZcLHtlOmuTcbbRkDFU4w9V5qU72Rel7rSqhdOWlNdAB0ShlM15RZafNvN3/AhbDkPAEDAEFIHhL/MIFwZhQbf0Aatvmc2A4WAmIHHExtKVDqFhLGAMYrWDo7wWmWoE6m4bXbXVM5lC5EiXTgGIs1wezqBjq1XAZCd1PTMVWC1gmRAsk5I8OpaT8UShXGJDBmYqCfGHdXUZWwEmZQgYAoaAIQAC23t7MtiKVznUq5YuI7AWLlxIYuR5Jj/WMAEHtaG5CxEQtLe6c36A8zkR8zZuDGOxRHtrG9YwM5EmHtAOh7t5x1oQK3GgjYKXLlpMf/CGLYVESmcqTbwQy2kIGAKGwHxGYKvX+DAgmPXLUCwm/mLpEmfjI7ZCgpJJpCd4yZIlGL70E3NqLuhh0E3ZKQxYqXcLu4KGbiLeCFLokt+ZeWHRzoaowggmUGqpwqJYHp7txoYGvNx9gwNytWZ8i5AFQ8AQMAQMgfEgMOooaJSoh/ktb3kLjmhsXLb+/exnPwsBYxBDvVAyNIwv2kZgjQfwyZSFF2uDpKqkzELQ3BoWgubc/RAZouexlw3tCoWTWzlYFj1jAS4prq2ltRRWtnR3eV77xJSPvRomaQgYAobAHEZgVAKGX1n66p//+Z+J8FpnFf7Xv/71WMM4nBmcBelyylJZCg12MIlzGKYZ1DThRoxgemo1wK/VZTlI6RuQYXH039dYd9wETEbylD239DMa+TldfHi5xS+99pZWuoS7e/pqRcwgbKwqhoAhYAjMIgRGJWDYl2Z87Wtfw/yt9zAzMotuYJiY/RgQgJuxt0iZRW2e3VUVpzDGaV0QP7CwIRdYhQMLWAl4a6E6+R1F0QMH0/+r/mdXWiXm+2Xxfgd0MLM1Q2dfj6gphbLipQVDwBAwBAyB8SOwPTOGMc/YPdEAK+1fxAKmFNIXL15MChFOdaT0+Eu3HJOJAKzZPzjMAkY/yWMNEZfCvtVssLGjdqdCTtpbxQLu6unmxC0X7a7YwRAwBAwBQ2CcCGyPgNUIxqJimBVqOTIBCT7G/MUOxiwmwMeaPs5yTXySEXA2qzgk0KsOCUedk1kK+y7xtdXa3MIgrM7ublTr8liTWYbpMgQMAUNg3iAwKgFDtPArR7p71QjWOcFuhK2vJq/axJCxWcC78IGJzNTa8CpZiEOGR3Ev8yW/5CdScenBHfXW7qiuqHPLfbDPksQg8ooX5xfzYqhtaogFpUq2Py89z/ifh6qzI7123RAwBAwBQ6AOgVH7gKFbxPSo/Bp19GoiVxkmzVEX5ajTadGpQgDPsFtdQ/TDkTXuk9UwUr7s3buuO1+MZxa0yFZIsl2vsOf4AjpjsiUwgZFYlBYreOxATEjQJcwzsc8yL54v9nX1sxplf+g1+NFIbBGyYAgYAoaAITBGBCZsJo1Rv4lNMgKQqg56dndOdu2t2rqh2KL5sl8Okqyf4j6suDSBUMsFd7PTcBBSnJaILixehttlUkxzSjAR2FaEngC+lsUQMAQMAUXACHj2PQkQrf62rbr2Aes84G2vjiXFWbkjCDpTWriZoplyhhekp8erjNvAHkGzJRkChoAhMD8RMAKe5fcdPtTgtqVijRR67pmGRDJjpmrXxvd362xV0kVF4AeuECFgSunsHLS9GMaHrEkbAoaAIVCHgBFwHRizIcoNG+GeMVSK4HlslUEjlIBHEJtAA2sWMYyOQjYDRgcEzMCvzZ1bRh1BMIGCLIshYAgYAvMMgcl5S88z0GZEc4fsVGcEKwH3ZwedBSyDqBwjj6+q6HQ9wDwVWz0Y0bnqVAu4q7OnJj++UkzaEDAEDAFDAAS2es8aIjMfgcjlXF9VR4RiAev87HRaemph4HqZscdro7CG52DctSYJAXtBd2/fcAk7NwQMAUPAEBgzAkbAY4ZqxghWvcG1+kQ0Cz0W3ZIp8cl0DctkJ34VN+CKCU/EU40NDMLSTSprtbC/hoAhYAgYAuNDYDIJmDeyLs1BFYjr+llaHeKs5oF9xikjdfFkspwW62pxJIVLCGiciL7ZdfUP7dQkI8JIqgaNc0oW5CNfa0QJmlc1cxWvLHFCJKmnc+Yolmngb+musDIo07LTgVcse7GACb2jWbOjNh06d7+AZa6qDmknGwv8XJ5RVzGu7r777sVyaUtnl5sfPKoqu2AIGAKGgCGwHQQmjYDZBoB1OXSlaHiROGtmwbVspkTxxLGZlAh5iRP51re+dfrpp8MWCxYsIC8CpPf39xNRJUrSjCf60Ic+tPfee++zzz4nnHBCR0cH2lgYRDkYvkf+kEMOQeG9995Lxohi4WAUaqFK+WTEd8px9ga+I7hh/KofFI4sI44tFIvgQKsns4GhWMBaKLdNKZlpThTB586kPT2TWWPTZQgYAobA7EBg0l6hUCmcB/USYEG1aGFKXVCaRPDQFbWgSYjzySeffP7zn89mw5zCi1i6ZGexLWxcOJWdhtEAl3zqU5/60Y9+9I1vfOO3v/3tsmXLDj/8cPR0dnaiCgKACT7wgQ+sXLkSokUnuyLCQLA4p4TIDuZrgHQUPvbYY7PjtoyzlmKz+j4Y0kxdsMyNwnL8PE5V0HnE6PVZ6QDmTmlKc5OQck/fAOVaMAQMAUPAEJgYApNGwBSvNiusCYNyhAzqWRABGEJXiuBV/m//9m8f//jHV61aBWuSLjvoBQHp5EUSOodIMHO/+c1vQrEvetGLjj322D/84Q9s0PT73/8eo1lbe+mll5L4H//xH3AtWdi0GFVNTU1chW5RSIRaaaFo3nPPPTXj3DtWvzzisRRfG5PdPLF88Wb7IdsfEW9pke2w8FuYC3qykTZ9hoAhMI8QmDQCxnLlpYxhqt3A8AER/M+wIBSoHmNYVvkV4xUqJRGZ3XbbjVyYyDAxwKMkOm7atIldh1/60peuX79eNTzrWc+6/PLLN27cqFz+1re+Fft4r732IgsCaFArjbjqIZ2aaKHE1YNNZPYG+E/4tc72JOpsVr+7rxe0AXmodXViQ4njjOkjErr1KNWp0JiWDZe44wMy69iCIWAIGAKGwEQQmDQCVs8nFKjjpKgLKfifOYVlddsGEpVH4QmsVY7IwKYQJHyJI1qvqr8as3Xt2rVk4RSSxtuMHrXzli5dCme/6U1veuUrX3nyySc/8cQTiOkXgBIwV1WVlsh3AOYaAmQnZa4G9b0r1GycMIGgzucaow8pENavKpQ/SX4Nabqbu3plVJ0FQ8AQMAQMgQkgMGkEjG0EU0KieIDpo33ve98Lv0J48AE2GRENBxxwwFVXXQXvwq/wLs5kbFmokUDtkeEIWXKEcdGzcOFCqFpTyLLHHnvApj09PV/+8pc5XnDBBbAOJeJ/JkJBHMlLRv0gWLdu3b//+78fdthhyKCQXmSuzqUQ9dcSGcgOgjkfHzRw8r403GaHdPniz3erYvHEcJO4rdw+bsFcAtPaYggYAobArkRgMmeMYsXCpryaoVUGT73hDW/AAsYSJfD6hiMxYfE8H3fccUSgQzj7qaeeam1thSyJw68k0nfb0tIC42LL0kOMC3r16tWnnXYa6bD7Aw88cPTRR5Plb3/725VXXgk3w7hoRv7pT3/6eeed9/Of/5w4FUAhhS5fvpwu5Le//e3IkIK1zYDqceEbWZLyaTB6GKPY6ArGfIWSqIps0xswMAo6LMueCAHdsdlSLOGVMrGiOPGlukwligh6TPrRFjXEqRBN1UQ/4YXliifKG+ikj1X6kw3dOfV+aykIWjAEDAFDwBAYKwKTRsBiIblViLVkKJAwWi0gV7qBoWqolAhiZId91cnMKWYcMnieIV0I+JRTTtGR1TfccMPb3vY2BL7whS98/vOfx+ZGjAlIr33ta7/zne+ceeaZXIJrVSFX+SagFAheq7edKpFl2wAbRQy2fXqpF9s+VW9bynhSGAnFeHK/5MmN43+IGEZkinSv53UXE2F/5/4LUkHFSwTik3dugO1XfKvCqXnc0TnNCdl7EL8zuxyGXsyXIvLFWFMiYCQ0c7n2X9r04Lr0g53FZ+KrkC0RlfLdmDehbE6HYBiKyQULhoAhYAgYAoLApBHweOHEcmVSEBYthunNN98MUzKWSgkSjzG+ZSxaDGhc2Z/4xCcWL1683377ffjDH8Z+VZbllCywMl5rtYCxjImgFm+zUu94q7R9eUhmHFS2fV07cxW282FYMVWjmwcnF1nhpOzHwyIWMLv2yrKRAYtmYCWPK8gGw446pYgY/2FDO5tbShQntM/qHukwyCS9op/qLQV1FvNMQWhcDTZhQ8AQMASmC4HoHb6rK8DyGj/4wQ8wcLHSjj/+eLpvL7roojPOOANCxeRlMBfsy2zgz372s1z6p3/6JxzLOKKvuOKKJUuWMDqaIzXGYuaoY5sx+KBebQZWdRTfmYbBXvWkOyKZKQNFYiPK7EwdxpiXauDDRxhHghqfavSPMft2xYaYNWod8PL1w02R5suaWS5A0Ui4Nagjyeol+2MIGAKGgCGwNQLTRsDfd4E3OJ27OKKpFf3HcAavdQ2kwM3Ysueff/5HPvIRuJZ0XNPIw76QDSSNZYzYUUcdxcgslCBApzIdw5PCvgqUEErNvaopw47KNNuXGZZlik4BEM24AeBDoMBDMLkFOV6noZjIwcL21rBSYhAW5DwUHBY6km4o0WKGgCFgCBgCIyFQs11GujalaTAE+mELiJNpvsSxdNWGI85LHAHXhenG33oefb06vhdewdjFzoN9cV/D0Mq+DNciF8sUoxOSnsTKiztXKru9MBaZ7eXf6WtUkK8Z1NB8eBBk8ENLF+7kBXqClVwhdkans4A3yDv1PEX6m7zCTJMhYAgYAnMdgWkjYF7leJJ11hDeZsUZWiWiNMwleFTpVq9i4ZFCRkiXFB1cjYBm1/5jvaTyk3R0Np4MJx6Nht0lClOZSSp1AmqUgBsbU+SFgKPj+FSJP7muZ9cxOEwOqcsVTul397z2tha/Evb2dEvjJ5fnx1ddkzYEDAFDYLYiMG0EDFPiScZXrFSh+EG68CuWLjYu3cPMNI0IFYczJjIp+KI5Iq+TULUbGG4mI/RMtzGXVGAy7okMSqr+IOARKFZ4ztFSndhkFDwBHbU+YMmqqKqbYQKqRswiDmYQcNsztDQlwkpZv5+wtfkgEmp2v1re2ndJLX3rqzUp+2sIGAKGwHxFYNoIGMtVSQLiZKYQ5AF9wsdq16q3mfU0EONqNKgKYlZfdNQBzCn3Dm6GbOBdtYZ1atPk3VO4I+IWQcydq3oF0NFwfbJe3LVHAKTA2o4JUvb4CXj058EZwfItUikHXqUhKQOtuVm0XJl1iG+lZAVkK6Qk2YIhYAgYAoZADYHRX7g1ian7q8N0IWCKwPmsZqtSryZG03bhYE3RXmHksY+HVUwF9Ij8sKsTP3XubnZ3ch5Y8c3y29rg061zXQmuY3viZe1Ezt6sjAkHxrR8kMj4tcHsYCLuTiaktu4jQ/KzBkd1TJe4oCtJ31uwoI2btXZjSakX+ZL0DNRYX/Krz0ASCTVO1jM7GgKGgCEw3xGYTgKeHdi7JRjZ14nawikDuWK+JNyCsQndQCpyUg0ySKkW39V/ddgZHzFRDfRbZAL1qGsRuatntZa5hTlwRfPNlICFK/0DWSTK4RAUtXJxVmvhsoFSNRapq6XYX0PAEDAE5i0CRsA7uvUwD78Yvc6yNkUylSiF1a5gJWCxhrEJo7mwO9I3RdfdWtpi+Eb6J28esKisEjCcKuteMeHXa26SbZe6enuZi43ty5UaSUdVsIghYAgYAobAqAgYAY8KjbsQ5PMFyLVcDrt7+sSiw5oLvGJt3K/wkSS6VDjYDSHevsYpujo4WKbHl77wSD/d51F8vJFt3cVVXXx7OJqlwQvaWikRWFAuhAww2z5Ngo6EbRVquh0NAUPAEJi3CGz7ypy3UIzc8JSbGQWZNbc2wyK4n5/c0Dlk+zoCngnsUpuDNETAk2YBOxIV2tXPDYlIi+kD5shoOJL58NCLIDMUmL1kzDsEh8UMAUPAENgKgWlbCWurWszgE1b66O0baMw0Mwqruzd79XXX33TbHauOO/Yl5zyDWsMwGoSEMI3DspjI0xF04DcWsJbP9K0glsBQxzk+CdVxzWM4WpwPtpoF3N7axlTgLrWAHdNyUaYfy0ed+yaJ0JmEGpgKQ8AQMATmGgJmAe/gjkJjTG2KJWLxRLBwYSbT0rJ+4+bb77grV/YK4dBwaDWCK7JGxfQEnQQc9QHrBCQ9TlaFKqy4UQ1i6Op6n8zGJjW6UidTk7W/hoAhYAgYAiMhYAQ8Eip1acVSJcc+fGz8MJDleOhhR6UXrbz3ic6BglcoekUlXrX65Dj1BCzdzPI/lXHFUqLcxGw5wEBNxmWLJM6r1Kt9s3XNGWNUyhBRGuRMaEahkRLiBeBPLPSxrb2muB+rFPoGgUEs/yRTkEWG/nFC3NWxigYpKNRfNUlkLBgChoAhMK8R4K1oYVQEYI4wHiRSCa+SzYTZeKmydElDao9jepr2vOz62xuTMuxooCjTbMJSuZLHLmR/3lG17fwFqY/HJoPwW4mNe93YJ+lE4DNgzcaeWGPzgqY4M6CpbiIeMDFphFFRY6gEk4scu4v/2vPjwpxswMDcXymKDQobil4iX/EO2r25Mcyv7ehhD6YMxF8a9CvZVIK9imXzYHZCHDYkTdazlGXFxlADEzEEDAFDYB4gYAS8vZsMsblJv/wpeOk45AF9HH3iqbkw/o877oZmYKhMImBRRjHvErGpZxfM3Fr/qhsJpSVSz3wYK3kxPhXEDK26xlVyew3c5lqVIGkXLUKto0uolPSK2w64WgE6gxtjXiIsFLzEgMPBC7GEi3yJkEt/1bHRkRUu7LvV0hzblG4JhoAhYAjMIwSMgHd0s+EiAhsP+0ElCDDvzjjSa42XHnpiw8Ob8lwBQZagKrve34quBeVy7OIDi3SytCdLgFUtTJbD0JpPYj3qNGIip5Oeric6KJsyw9U7sm2pz6RXaRJbZ6oMAUPAENi1CBgBbw9v0NEuVbcQRww7FyJu9byD91wapDJ/u/1+PLExfLOptHhc1Qjenr4pvMYoaAhYB0btXDFV83VrJe454QDJ1rzIyaSXSiTLYaWn1xnK25KrLFgiofpHT+xoCBgChoAh4BBwL1bDYnQEZPARDJJMeWWfjtB4zMt43lknHVH2k9fdthqHsK7J4ce8smyFMG1GHgTM1COWyN6RHTp6U6MrqBhRS83GVVM2HfOamjOVclglYGhWvM0jP1GOg0e+FBVrEUPAEDAE5hUC9k7c3u2GaTBwwwqjfxMwLqzUEHj0tZ545J5Yfk+u39zRmy+4AccMd5LVKre1ArenfjKvKQFjAY9IneMuyRmvPBzCqlFmNmTwcMNLCpf4NGlraQWH7r4+4VeGZtP8GknXMjnmrZ3I36hLuD7R4oaAIWAIzD8EjIC3f8/hjzLDd9nq0GOwlZtsw4jfloR38AH7BvHkNTfeGvrxklsKmV5g6QIe4qvta57kq7IzYKUi2zJOsmJVJ89JKKtsCMnKCldVAm5ikNrAYG6o0NrU46EHq+aIljwWDAFDwBAwBGoIDL0nayn2d2sEKixu5Q+UZfujfF8h5iiWnuCnn3hMS2Pq8utuYiBWPB4L3a6FjACerqU42AwY7kskhmzwuiFTW7dozGfDrFfhVmfg8tAIKvgDGlJhxc9B/aS4SUtb6ZZx2kPU7C7Z87YVQnZiCBgC8xkBeyFu9+4rhfh+kJCZPW0tbMAnPb3suXvaEe3Z7k395eD+zZWBQhjEYroh4HbVTcLFMmY4s6LY/MjZo/A+nMjiF6wFze68zRkZNYbTHJmJEjCUOYw1tdqAkHRKK/T7JplyFXpLlyxiXtGTT60jQ+D2Hi4XizxSYiVHbR1RWXTVIoaAIWAIzFcEjIB3eOehGGFfCSwFJbNdJbDw09NOOHIg7117y+rQbcIbjzMtp+qeVZmpOOrsomiOkbIs3I95ymbAWmJNZhLKhz2rdjAl8XMWMOQLv9LoxlSamUj5okyWLtJD7PMdwjzkOgKvsW/17xAtT0LdTIUhYAgYArMaASPg7d4+MeWASFaUEqTE+hQ+Js6CU3ihs8XKjXfcVwq8XtmWnm7i7WqbvItCsY573cHL5YSA0+n0ZBCcuJOH1bRGoyDgVuTwZSQVg7BaWtghyu8dzOKH14lYXszhNCx/dGojsCIoLGIIGALzHoFdxRizFWhG9opZCdlUrUvXEHgOC3jP5UuY9tPRO/hkr1eI+eISHmKqqW2wbDVYR8ADA3kImBFYejujHZCcvTqpNXEaoX/5MsEn39paLJe6e/vZjMHZ39XHSb4DBIqt4ZDUet+0O7WDIWAIGALzFQEj4O3fefBh7WW6gB0By0wbFqSsQMawCR2uRxxyIMx3+Y0PhSln+5WqDurtK92Zq1VyFZu8SnCQYX9/P9XIZDKkVknP9RDvTEGqXj8qxCJWMufImpSB+AD4tbamGY3VN8BilHgK3CdKKP3PSrXV0rdm4Wqi/TEEDAFDYN4j4N7j8x6F0QCAO9jRAEaJ0fvLbGCxhBM4omNeCZsPI/jkE1ZhjP7lulv6VEUxK07aXRCc+Rvt/Tc4OKgWMMynfKdThibRAka/9G/TbKdUNWcavEQqyTSkvC5CQsN95wmQiOKAi7oGiDHxLngwrAhDwBCYPQgYAW/vXkEdteFXeS/MS18wPzcUi0sQysH7NS5sbV7fPXD3o+5cjMAa32xP8cSvRe5lKalm5rIKBwRJHzCJVQKuo8mJF1aXMypL0kLGWZch+2SCbuC2QqGUzbIzIwwNPjE1zuuyWtQQMAQMAUNgBASMgEcAJUoCHWhGMBJaCzg4eoNmg5jbIndRzNt7UdOy1sb773uwm2352AxQBm0JB6twdHQ6SR/6OXPSJY/n4OpTrVcYyh4QDIDKVqhOKR0r4ypnyz+YkDWqsVel5uMOZKrm07brUSzg0HeznPkGCOBj9FNcW4ZFOgv9ea9f9kYmQTzRzhktIDhVVW3bzhMed9UsgyFgCBgCcwiBCb2i51D7t98UuIf1J2UXWz/lBQ2yKa7QUSL0U3BMI8OAPe8VZ52U7HrkH9f8qdDo9cW4FLAqNPwE/7Bf4UDRY5kozGjH3KQRpZ+4TFpFZvJCluMIFI4TnFHYpXKsWKkkUgHs2+N56wbLjXF/SbrC2Oy0j+Z4LJFCM5sGjjPQyc1UKgoJpKGuOI7E44kUvOsn027JzSCRSCAB3y5Iha0NiTVPbfZSsaw0M2DrxpjsS6gjxocsdm38OOtj4oaAIWAIzFkExv2GnrNIjNwwWIPuTQjYGXWOR0uyOYPjJCy+0Fvekl65oKGc67tjTQEGEpc13cLODyscFheORZ6fC/q3dlZNHM8fZXK6WoUf5QQOHmSx6rDYGJSpZeCcz1TDJ4LUuBheKoLa6lNB/fVXq59eql4lEaJub0qzRGfvYJ6vDb4saBj7VYiXXlvMzOGaNq3IuKtTK9v+GgKGgCEwxxAYepnOsYZNTnOq2/s4lOCiGiFxjgOWBDiuvS1x0KGH5YrhTbfdKexLILVSzclqFWJLRixUpbedhR1+r6624QrMMRFYFobEAN7Vob29HU94d+cWmNVRP9C49Tq2pu5dXS0rzxAwBAyBGY/AzjLBjG/gzlVQSBeIoDuxJF1MncAVHM2c6sobR69a5ccT9z28pt9ZgfTMysrMslWw/Fi+EsNUNIkC5SU9ij6XPu5KSn43EJqcxFmHkj7a6mbAtfRxK51QhpaWForu7e2lpUOhSsVDCRYzBAwBQ8AQGIYAHGBhewgwdEh+NRHnfsbVWvT8UrE4SDLO1n33X9LU3vZUx+aHH5NFGf14khUZw7IsyawcrEZwbbtc4V03UGmnwK+nbiVgVgXRao6vY7nWtIn9bc5k8HUzEVm/JBxQRBkrrs2stlG+GCZWgOUyBAwBQ2COIrBTHDBHMRlqFnRCp2b0c+yLmxnOZfFl+QFfoeClAjh4/2yu8I9b71AvNCOxYvEgYKwVZIgWx0tOr9CSOqQlNlTUOGIyINkFnexLNLKA9cJWU4bGoXgioi0tTdSnp6enWrT+qdVwmEbaazQ8DBM7NQQMgXmLwMQoYB7BBaHoz7XZcbEstUFaORmHTipJ1uPwvOOPPz6RSt9xz+q+vIxFctN1SGaYc1kGO0sWFxwdV+MTZaOIgCOipQ+YxKgPWNMjsai4qYi0tzfRxu7ubpRDu84u5wtDpioNa589alOBv+k0BAyB2YuAvRV3fO9q5FmTZPwVhCrDkIOwUoR/AfGwA1uaGhs2b968savUk3VjoUVcqZctA6scXCNmuTZhWzBi1ihSZINinNpsSyyKd12gCazHCRSD/b3Esf4VqwixocFnu65SVpIhYAgYArMDgekkYDoOI5AYtUQ8n88T0bhegmMiming7RUzKyyzC67HFkAy9FfjRDD7lIeIT1HYik5Cr5TLsexTviRrQrEG1aojD0snkhdfekWy0esveHnqyPaEYhJWmBkcVUnISeYWy1F+4w86x6lUrsQTCS29q6uL5re2VnUlE4z6wgTdFTd3YQue+DJVYsZz0hWIwR8E9H3TcDmnvfzhh7fA+fDH32DLYQgYAobAXETAvTKno2HQJ6N2Hb2GfX19nBJSqRSb6hCgUpZXhFxl4x2fUT4hKWw4Dzdzyh608A0rL5KFCMRMOhzA6hA0hRTyTlabqjQypM5RieOUeJIBzl5jnFWoZJzzsUceUinnH3rsyY6sF2Preh36XGINy7JjIkdBjnNlNY9qwDKuRcf8FwQi2ShO8yHc6HaOX2ukcnwRmLYhncLEHxysflFA/I77pas7MoUdEXOmv/EVYdKGgCFgCMxJBKI39q5uHSxLkVAszMrwXciYFIiW8USkQ6X0aMIusClmMWN8lFyJw9bsPaCGLxxMOsSs2hBWSo56Q3eyVRCd8q0ynlv7gih9vxyZ4RsrFnMIYN/C/Mfv19jW3LCuo/OuRzrxCDvukem64pqFg3FZDwvSMVy3V8Gwqzs6VeqFdfEDgBsIYG9rgH2dj2BHKibjOmXqTKTu7n7aUyN+UNnq0VIAJ6NA02EIGAKGwBxBYKu35K5sE2RJcUqcRLBZsWuhT7gTOuEqRi1HCAazuK2tDcaFm9lxD7Zm41t4lywIIKzVRh5TGPlI56Q0B+aAYyKYymLrkpAMZcJRQKExrxIvFSDglOcdcdD+5SBx98OPyyKUGLdkZqawuIKlkvzPr46HkZD0nQl4uN0Xi8dXiFjitRDBUkuYwr9tbS1oxw0OLrrs1zYtncLSTbUhYAgYArMUgYhZdnX9YVDsWhgU3sUIVnuXIwxKovqQoVIYDlbG8CUd9qWWXEWeiApHPlj0YBDDQ1xiXYjJaY8wCTTpVoCuMajjYAiXguJ0+kLAmSSbMEg38OknH88nw72PrF3XL6OAa1wbsjOC1qeW4s6EfSfiglZVVQtY5iCJBQwa8F/1ElXdaWqvKdvBX3q6FyxYQGW6uzsRVe/4rpyIvIP62WVDwBAwBGYqAtNGwLyyW1tb4QklYPCBdHEvK3PAtWrIwrvQKkYwNIwMzmdSCJC3ZoGbFVsyKjFzilNUE3f2KGsp66+qCQaFNmEdP5HGwmXNjbBUTAfigmZDviP2bU9lWtas2/jgY1uQRKyUz8lMJBc0L9mrQZVHNF1LHuPfqCN4YED2IlQCjpQD0Rj17LxYe2sb+1VgAaOq2kZ8GE5vVJ/qlbrznS/XNBgChoAhMKsR2HWv6RFhwrHMWGhcykSgZNzLSskIY/sSVyLB+QzBkKiScDbkzSkRuBnPM/SMJFY1EYSxkkcsbtyJEAamZB1tEFWOESMPI5fxzDLOuRzzSpmY0PBRq47pL5Ruu/MeFROTkJ+bGbtV6cq+23YMbyU0phP9NOEzBemo2VX+nXo7mAdI+4D1k6haoIyCHinI4G8LhoAhYAgYAoLAtBHw5z73uRNOOGHZsmUrVqyAfaFPKAQjWBlXqRdKxq76whe+sP/++y9atGjVqlVPPPEEidSblR+OPPJI2Fft4+XLl//rv/7rli1bOFVP9eTcXooSBhVlyh0uKqcyyonVFtn6j837oJ0yvmcRfPrxh2fi3r0P3N+P4xknNQOzYdk8exIGYjcP9SgzLAs1ydCP02HMLCXRJ4qHBxL5cVV/bHcYSbIhLxkHykHZTzbEA3zi8uHBRwtdz1rRKfYF00BovzkVFL14d9ZtgQQero3aDAT0CQur62FrtYa30c4NAUPAEJiHCEwaAWOGwqOKIG5hGJQ4kShRTzniRuaIu/g1r3nN6173OlzNcKp6kjFz1Z4jZcOGDYh9+9vf/vSnP/2tb33ruuuug2VPP/10JWBYduPGjf/5n//55JNPPv7446tXr/7whz9MZ6Tq0UJVEiVK6kTGH9wQKjUnfSFUbFx+EtFZRnH4lQ1047pLLuOwjt3d26s53t3dsWZtb6xQ8Uplr8ScKKYwB5Blkq16haIGZBdBcvmJnorHZX540pk6LKiFXrGQq5SLTHjmlFw5GDyU3YXp+gY7mQ1NYr4sQ708b31/vBimljYkcREwE7dUifGtwPBxIHZzoZz01BzAoNHzdmtN5WKZdbkk1cP0pe/b92SRTn6+VyRe/XQQDtbkqamNaTUEDAFDYFYhMGkEzOgneE57YTFMiRCI4CWGjJVWOQUc3Miw9Wc/+9l/+qd/UiuWjARYk3R1pXZ2dkK3nH7qU5/63ve+d+655x588ME//OEPWWrqJz/5Cel4m1euXAn14oveY489dtttNzTDuBTBCCyu6ilHSsebTYRAlTQynqPjDGe5cYh+NQ3KKFVe4Spm6InHHF0KktfedHuePZP8hEwKjjdQg+rnieQkCg8n2FqY/mP6S6FLVLCTblFGZYXMrGIyrXNeV2gJMilfiN/VQvLzBcBGw0Rg6FyRzuhEYywEXE5l6LX8caa5yE5hoM4U2tqYyJX9/qK0ipKlkmIME3Hd55KmDSZGDguGgCFgCBgCgsCkvRBlPxwX1MCN5uZSBsk6OBni1KE6OsCKREhXRywTh6qVOHFEY8tCnLiUyb7PPvtwhEQXLlx46qmnXn311artjjvuuOaaa5YsWXLUUUdhJdPvC81DsXRJEscUplwykkL3JLXiKhUgZeoCVAPDH3bCsZV4y3W33tfhe3m/wYu1lvm5DloxDKVSYkJrVdJlry0sNZeySclaLpQG8xW5UsmXWOvLG8x6+UG/nI1VBuJef8rLNnhhOgz9MJ/285A9rFwa7E2Exca0fHPgd5BGy8/Z7hqfugY7zUwS4+7oBG7n+HD1cGQ8xSWbekPAEDAEZjECeAUnJ+hmtDBrRHJwHqdq9UKHuJchTr3K+xrChmUhXWxfrQFkzCk0qeOtyPLoo49Cw0uXLkUAVSjkXa+sTBz/81577bXvvvvecsstH/nIR3BZ//d//3ekSsvFkv7GN77xpS99SYcIqebJafBIWsTy9LzFS7wlC5c9uXbNg5sqmZVBvsz2hCJdbWd14FV1lahs14aGxjgd4DhuWcExzTqWntefLzWQgi7p1MXCZTmtEo5p6WlOt4mmEJIu+2Ex4SdyfZ0xr9ySYU8mD5+1bIJARmSQqvZfczpVgZa1tnILfe4IXxBCwOzeSK2rraVcsdQtGAKGgCFgCAxDYOg1OezCeE9hVixXAh5mHMUf+tCHcBHDymoWt7e3Q67EDznkkCuvvBLlUClHTF4dsQzREkjBBQ09Q5xEuIT9CgGTwiWomlJ0ihGq3vWud51zzjmMz3rFK17xgQ984IorruAqHcMQOWrhAxTC8fQN00+MKij/5ptvRs/UBTU4mwJv1aEHp4Lk5TfeMgAp4lgWj7F4p5k0LL29dJY7VqJVDYuavQa5C2G2WOgr0UPMlUoq3s9AM9/rjgXZmGxt6AiNXuiEV0FZQSjZR0ke/sv29cT9CltBSOniwRYWZPQVS1SjSjCd4sCCnNxoPpj66aB2QX0PUmfqpCnVBrhmV9PsjyFgCBgC8xqBSbOA1Z+sbLp48eL3vve9L3zhC+mgZfQyr2Ym+EKfsCmGLBwcQQ5NqgXMK5tLpCMDfUKcxNX5/Nhjjx100EGkQ8kdHR1kh4+xZUlBs776X/WqV51//vnr1q1Tqxq11EdpgCO14si4rQMPPDAqeioi0A1taPG8px9xwC3XX3PdDde/5rzjMWkZLtWYVPaFo0pCjIgyYAo2rsTCQhCPJWIZulO97rLHyC2sWPnicNro/I35rPeBhznhXMzuAgeZ/iRBnf9NmUZoXOlWzGYXppp9qQFFcFy4sL3nyQ1dXaUVy+PS0euLfV/7uKv9rVbK/hgChoAhYAgIApNGwJAcNi4BUoRTGUJFoABcyjArV2FEjlziSCCRS8hjMXMKp5KC8Up2CFhpGLsZosW0PfTQQ5GEaW666aa3v/3tsCkmMlyLJEXgbb788suJMBSLOHnRySlqKQ4ZFSMF05zj1AVqky7nG2Opo1Z4By9tvvreNXfcs2G3w5bhgo4JKWa9IOvGXCWUnYQggzT+Z2g553n3barceNudDzy0ZrBn4G2vf+3CZm9pm1SWSzk/UWDEdcVrCbCkMYKVYxN0LffnsIaDVFrmSWP7QofiA+Z2aJmiYGoDXwx8Zq15auOW7i5/xWIK042YqKKMibZgCBgChoAhMBICk0bAUB0eYKhOO1+V/CgR3uVSfdGIYcsygBk7lY5bnMb33Xcf8nvuuSfuZTTst99+X/ziF1/wghfAoxdeeCE+5N13352+XqYOI3PGGWdAxuvXr6fHFxc0xd155530AeOIJo5yrmpxUR2U3UlUv3d9ZSY3zpSbtJeFAlOx1IHLF9y3acGtd9515mHLGqmRMqazDj2m7Pqpgpt9BJf25bw7Hthy9Y033vXQgwP5QiKeSgbxj3zic4fuf8ApJ5x41JF7Ll0itIpNHA9k3hHTf1PO/C2GcbJny5WyH8STKSmBbw72IArLzFD2Q1kA0w1Em9xWbqUNP3epEHDjuMuyBIq3mG+CuKw8InWOAk+A84grCls9D5GMRQwBQ8AQmFcITBoBgxpcG2EXkW4U4ZLGYV/iF1xwwXe/+11dNIMVNrB0f/CDH+C1xn7Fk7x27VqEMXnf+c53MnD6rW99K73Lxx133K9//Wsdk4WhfOmll0LPvPSZy/T+978fAtY6RBysLuioXCIo5ziVgfHJjJYahF+fftLxv7/jjnvue7C7eHaj67ptTKVKshxHmPIb2cMBq3dd2fvdn+++796HOp580s8XFjQ2PO3IIw84YL8gFfvFb367cWDTDy75tf+n2BGHHXHWmWceuLf0IkPDMFxJuNhjFlPW87aw8pafaFu0eCBbzDSIS4CZXzI7GaouVWQ3iCkODWkmUAWJWLBxw+aYtxe8C84hHwm1cklxznDY1/2tpdtfQ8AQMATmMwKTScDjwvE73/nO5z//eSYRkQsLFR7V1SWxgInDnSRCz0SYCkxAjHRSsGvxVMPZl1xyiQ69ri+XV3895ddf2kVxmI/+2nxp+fK2TKZ1bdfAP+7uftaqtqYUnmQWvaKL1OuteHeu7rzkHzf94777Y+nmfDa3cuHCU4484ozjD99nuRiOvYPeWSe++9o71l5/yy2Prd1w2803/+OGmw8+6IiTTzr+tKcthFqxniFZlrsi4iUaSznpRmafZM7E7pThbLBdIEtyEJWkKQqUgq9b9skAdpnoVfGkL9otRck1V7aQ7hRWYYpaZmoNAUPAEJhiBKaNgGmXsi8RCFXZVzdjwJ+J1Yv/mV5hDF+MY0iXIc3qWyaipi2nxMkLVaME5iaFQAo0zOkUQzei+lg5yAR+vBwLWIHjqFUnPPCXa+55fPNJq9owvTH8O4reVdfdc+P1d23o7CnG/HQsdfjuK0885shjjl3aEpcO+YGi15LwljXKeOYXH7ny2YeufPSpvqtvvftvd65+5Il7H1730I9/4z3tuKOeecKRR+7XSrMhYKzqbK6QamCmVlQlt6QWKnYB73FffI/eem4KHgtuRYidHtS7oKNK8DWwK5YHiVCwiCFgCBgCMxmBoXf2tNSSJZ3pl8VyovsWrzKbMVAN2JcXutZHeRROVX7Vbl3lXYgZGUiaEFUeO4yAWJSyKyOy4LOfHCx5qYQMlDr91KN+d9nfHl27fvWG/RelvEsvvuK22+8MUk3lWKOXypy06qAXnn38fu2ymEau5PnkintNCVau7C6Viyns23RTxo8ftKJ5n71OfsVLTr76zg1//OtVj63ddP3fbrz9hr8evO+eJ590Wmb5/ok484e9dHJrZzOsJ8QXkd/UwSBF8M0E5m48thTky2RkdTcTmZ57IfWwYAgYAobADEZgiLqmpZJq+HLk9Q0B6wAuHSoFN8OsOJnVCKZnV/uYsbQIcDAVJgtxxDjFDoZ6lbCJTEtzxCFLwW6VSFZA3rvN22tR272r7/rJz/ObH74zGRZZsHnp4iVHn3z6Sce3rwjEH13IhszgZf8GvxzGwrKXz8okJEZxs6ZGnP8xJYNSISwVKmcdvuwZR77ynvXeHXfffdMVl9xyw7X3r76nbY+D160Ply5oZrnKIbLVVSx1wNdQ6tRAwk6E7MeQ8flIgoCZscwpZU6t53tqmmJaDQFDwBDYlQhMGwHDuHAnvmKIE28zlIkVRcuVaLlKojIug7Yi9iVCLuVXuFYJW/HC+UxEiRwxpfZdCaWWBf1Qj2xhsCkpY5/PPu7IpzZfsXndI7stbj5sn71OXHX8vge0M5gKN227LKRcCsWMD/wSy11JxIuzJBb7N4ReMs7KmYOFbFNTWybpNyWFnRl+tXKRt9/Zh7/4tMPvuvWWf9xy+51PdAZhw4LWpdLxGhmbbgSWTMaVOblTHqg4tw7k+/oGdXLy1qQvDbNgCBgChoAhMAyBaSNgJVEoVlmWamHFMswKk5dXOVdJh56Z78uwZ+La0asjqLUN2vvLJSJkgZgJ0DCuafVOD2vqLjiF7RgELRslhbm05yeLDc897pBiUCnEvFOO2O/AJYwXFm9zD8s3wr6lzV7HBn/RSrfCBrzN1oRBxZfBVQW4Fo90MtGUrDIommFVNj/ER416FD3zlGNXHXHw3Wt7b1pXSibYxwG7U+YgQXeyAKUvmy+5GIepDdSnvVVW/MYCLpa8MpOQtilQUsRUtmAIGAKGgCFQRWDaCBjW5JXNEUOWsVdQJqc6qhnHMqc6kAr2RQZaxc9MhFrr8h3kQl4tYK5C2ASuIgMZa8q03OR0XExZZhx5IeOxUysWBuc963BqwjJX9PLya0o7fioPePl+r62VabSyaCRTsyCwbL7CfF46dd0CFkKlLCpZ8dx8Xs4q7JCUcRQrA8zC0qLmzAmHZPY6RIZ3CekTfLf8s3TBBs5JLxw8tQEj2/faGGLm53uKYV/Fa6jIrohSAy2Yzwqtg+sYnmhlIG+W2YwD1QAt5RNElvZ0C29yKvqrhUxU/8zJ5z5T2GqaMOK9k8dCG+6WTENyRLGZ0yCriSFgCIyCwLQRMBxJlZQ1dexVVEO1X7U3l0SVjCKREax5SYeJCZod4UheU3blkUpUWQfClRNhhVZHGGKhsmtwrEoeGOpewzLnM2b0lBis1LOpoXGYkSj52W5Y2iAx7pbq50jfN6/iRs9b4VooBO8LU7sgUvFatmralPxhyUmpI9VYuSi1pnvxw71e+yKmSBViPl52Wk5NRICqYtnTXj9CaGz1KeaYUQw+jGljh+Mwn0ys9bzHer1jW7wlbDbMHCg+uBKsi01XeSCToynMNXxs6meaFMyqBEwr2ExDquc+LyTC15gLbvdKuiOQlI9OUJXbbcEQMARmHQL2T3eSb1nt/Q9XMrBKyAAigh05ly8O8Q5LXHgoaGACrRckhJnlHapsK2LRr6atWklO9RIRp0xUQX78RPnWYVjerS9O2hleCQrK0A2c9LN+rIOlNtEt84+dleaIV4kEjiw7831cZePpKBYqhVJOCDiewK/+339a+y9f//WtjzyBNtHspjrzd5pGvo+rNWMQVtu3Jgj7OttfzmtM7P7NqphgbcEQMARmKwJGwLP1zs2QeuP25hmC/nUoe3d3rkoK+o0wGbXElE+6mWb5gmwF9fe/3bBp/YZrb7w1L8affNHgpMcRzvosk1Ha9OqQfSzcp9vwf5jqGhEOlh/d7PRS4GUx83d675eVbgjsFALD/53vlDLLPP8QiCZ8QcAMAGPy2PBHaqeZ2BfPslcoVrKV4OEnvXI+u+eKFbetfqSTRT9k3TG2cBSBqqd7lt8CKLb+J+2qtajKwc4UpmOdn7D1TsNbU29/DQFDYFcjEP3r3tUFW3lzAwF2eWayE9zA7G165Xt6enikpB9za1cqjVXjbbytZoyazMtizndB1i+54/6HcwM9W9av39Sde3h9X170ynhvCkyycbL8ncVBHOm1X30zaJj+9Kpz5uuS4Ordr5e1uCFgCMwaBPh3bcEQmDgCYoC5XlhxQfteV083KfilhzTWRYcSxxwTC5uha+Uwns5AtzfdtTod+MsXL/CSLTfd82i/G0JOCULR+KGF+Wc3Bw8DRr5aqltMypXonyuNpMlzqqnDWm6nhsA8QCD6Fz0P2mpNnCoEQtcH3Iyl2t3dSyGyLYQwszN7a3+DqnXnzsd+0NFlsUQQSzy00Xv48Sf2WLLgta94abpp4Q233teTZd61BLccuLLS2FXPXEn+WSr1OpLF1c6vokxs/2Jn7m2zmhkC40TA/jmPEzATH4YAw5+cicbkMSYEsZSKM8tkykxt1K5mIJl1QjCSx2m2kYH9Nopi8K3d0FmqlFsaYyfuF0+nMw88+kRPUVzUUpbwMK5wN1tpWA1nzymkyz9IZV/nXBbe1fbVmLjqyVcZ+9c7e+6t1dQQGAEB+yc8AiiWNHYEKpUi3cAsnbl8t3Y8z1s6O6HDYii8IYETNYXVpNPEcR19r1QJY4kUBHzZVVelUomzTzsFrYcceMCS5SsvvvyqAmuzlL0Ma5FQkBDw7A58b1RKhWIhx2Az1xLaSrtYcwMHO/FSdrAfp0ClWGYANJEaurO71VZ7Q2B+ImAEPD/v+yS1Gtu34qbGMK+Zdazdrhh5WRur9lztND/AObEk+yh7Hf1eX39/WCmuXLKw1fOedvwhHZs2P7xuUy/TrNXhjQc8kZzljMQiG6z7FiSSbE4ZY6H0gYFssVhmh+lCoTyQzTHirKGxsZDPJhPAjlNa+r4tGAKGwCxFoPainKXVt2pPNwJuvBXrUcluxKmGNKZw74CQJv9v7WuOXKnjqLEqgWQg4Psf2dQ/0LuorWHf5U0sbHLcXqz3GXuqo+fBJwvC8iyTxUrZQ2uFjaOUmSUKoCG+fHwH8SCZTjW1+Ml0Hrd0Ml1gJU7noi4WMY4xiNXfvjXMM6sxVhtDwBDYHgJGwNtDx67tAAEWJXY8CwWyXAZLecMeTAUeIRdcOqFQKBcpgx7eex54JJftP/zAvVtZu5Olpz3v5FVHFv3g5jtXUzprUSaSpM3255n10WJ+EA+DOOwKzfIxk3URVgJLNjV0Dspos0xTi8Be4DpnRsATerAskyEwAxCY7S+sGQDh/K4C+0MoACyKyZreLMrNBlakQAtw7rbjsMaLVhj48AxsdPe9D/vl3HFHHih9n2gveWeecny+4t9274MsgYUJjnUIHeH/Hm8RM0qepUWyJb+vKOzLD+v+8T7v5kf6//5A56DnDVbitFFami9KQ+lqn+iXzYxqtVXGEJifCPDatGAI7AQCMlFXtliAh1uammUtDjcTqapx5+gBno350gH8yHpv7frNixc3HrTXCh5ZNp1oi3sH7pX04sknN27p7q60tQfZcpmpSjDx7A2gJZ26cdnPmW+OjgJ2f+c1N96yevXqFbst3fODr2pvEm+8+8TwZXq0bJU1e5trNTcE5jsCs9tcmO93bya0361FqRshNDY2shVV30D/JA4NEjOa9Z9vfbQSJA7ef5/2tNv5OBQXdHvS2/+Ag7LF8l133IlQtsDwr9ntkOWDgxHd2Liw760Pdf/Pj/7y5f/90VU33dFTjN2zZsMfr3gI9uXHctvxVKOsQ0kGC4aAITBrETALeNbeuhlRcVmL2A0bKieDWGMyTPgVtkyAgPmy4yfTgWFQ+czT3RHdebXmEXvI5XrulIxOhgg+VoZa3/PQo03tC/ff9wD8zzKTuFT2gwRbL59wxMH33HrztXfe/6xnHI1JGJepxkxLHjlUfeVbXUS9q4YM25aMWqdIQ1QNKbQapLZjDjX9igdYbZ0TpVooR0DjV4p5/7j7yT9efuVtd9/P1X33P/g5Rx6zYs+9v/+TX1x+3d/Peub+SxiPJXrYhSLuYfCzKPTWOqOzkdobXbSIIWAITD8CRsDTfw9mbw0cbQQ4oFO+LIhxwNLG2ysDjz2+hThBDDShraAQCLU0wMHCdrp/QMRMwqh03BZZRcPt1UgGvKr8ZJqNF7Cn4/ou76Gn1rH/7bHHHOnYL+/FynihU17izCNaf+r5Nzzef3/OOzCZiocDnt/ghgpLBYaFiDlrzOTqwFhimcwTL/mxcpBQOqSWKsORmojTm5bonJ9xbUBEe5nOWyx4CbaeZF/KgBFl7GMkIWR+M0uGib3LMCvs2u6C99i6/G9+8+snN2zo7MnusdeeZ5145KnHHLFsUSNXL2pvemL9lj9ftebVz9ibSubyhXQqmS8WG5JsyTxyGKG9Ihglj5zLUg0BQ2CXIWAEvMugnoMF8eqHuwgQFfTSnonFyvlBN1IXlgm5CFf4/JHhUS7o2x8y01N3WaOO8fRc+Q8NyGHqPfbEusFifr/99ksnhA7FZmXBjTi+6ER7zNt7xW4PbM7f9nDpwMPiwmm1J1pV1RUgHwMjkI98OXCBscdY1y5aJ0YWNPBzadpWJzT2Qz7vpVJ01paL+Vi6QZa1hm7LzPL1yjGvoy9MNYub4K5Hsj/+1W/Xbdrc07V53wP2P+u5p56yar8DW8XTTpP7PO/Fzz3r69//+Q3X3/j8U/duS6EyuXFz15LF7dRQg7ZUj5oycntr8vbXEDAEph2B2utq2itiFZidCJTCSgL/rRsL3d6+kM7g3t5+bYpQqqPVur+jkkI9NRJ3p+JchR7vuOfefHZw1WEHZeJKwFjKVRFY/9gjD330r/+45eabXnrYyUk/iQtaVWlJo5YnVXSCFZQy7UdsXyrLv4eY9MDqBwNDjhPwJUr4hoDvay5qyTy2EM+Vk+mgISwXdUC40D1GfcyNcOarpdm/5f7uX/ziFwwdX7BgQcbLv+Udb9t99+V7L4sx15lfsZAN48lUEDvp8LZr99vrwQfuu+gP17/zvFNRw+4Xiu742ju2epuUIWAI7AIEjIB3Achztgh59YdMFMJGLDMwqL0lw8JYfYOyHLR7sGBKeG3bAGGrEVzlZ/5g53FU6WqqM687C95dDz6SjvtHHrobhCTmNF3MsUSFjmV6fZkNfMxBf7zihgfuW72x7+Q9mlkUS3gVDfVHJdeRqhJ4sTRfD1SYnxinYcErD+IqFpL0k3HMYtf9K3mlK1taLNrHFiBdv7GpLEtgJxP03DKPaHAw3dJIORi1f7t90xXX/23dunVhbjARDw7bd/eXvPhtrRlRD3risC4XaXI8iOGCznjec04/fv2j999+6y09Lzw1HXqtqWAwm2tqwEgee3vHVm+TMgQMgV2CgBHwLoF57haSkPlHEmDgDCzB7NVSkeHI0I0jK0khMgL5iRUbBenuhTsjMVUKKT6yLvvUpp4Vu63cZ4nQkg/7CjVCwGJ0l/Lefou9ZW0Na554avVjHYsPX0QVhDH5KhCOH3asFrdVKc52l1WW3QziGDFmGWOo4uiWejMoKk7lhJ41VJtbO93uX3KFcTF2EwkfMi4WSulGYd/rb1/728uu685XHn9qQ3ND+kXPftbznnH4YuF6L4vbvuIlK6UM3Ev3LtY5HwdlryHmrdp/4R9bGwaz+T/86YZXv/AU7PTGhrSrzrYt1ZRq5aL2cj6e6m+3bXbREDAEdhqB+pfgTiszBfMPAVy+MlrK92GudOAlWA468Luw76LgXvkcqlQh1ibBPXhueHRVsFygZ1dUyU+YmB9cdfu9j+YrwZGHHNDs8ghdMjBLSFI0xColeOrIA/ZMJ4Kb73mIYskiQUupWrauRI3XcxFFYLtjU1Ok2+wgjko6acVHzJrSOJzj2PcUSJLsNezk5c94AmXnStIkKlZi3HLce+Dxrl/++rePPbl+U0fnC1/4wq98+Z3nPPtwvOs0BGO2Oea1JbxMUPCyPfJ9ARuLESxXWxLeC55zVk9Pz5V/uzmnVB3VZGztjcQtYggYAjMBASPgmXAXZnEdHHlBX34sEP5IMeAontjSIyQqNjCEKf85tlTqqhGYGJxccFcczcjMGhlp7CiHNaXhrYGyd8vqB1ONzUcfeiAMFCvT9YlYIOOcfbGgWxriuGqfduzhrZn0bfc9uiHrCBgN0U8Is3ZKRInK4Q2z8RP2dXydkMoQY1B3Q67EEh9tXqzRrS9SgX3hYKpHq4SQxxOUvMnRjx854Q143l+uuuGRx5888fjj/u1z7371c/ZroRXwru9l+3rDYhGjNykQuRU2BBD5F8oULj4HGnxauu9uu+3W0Zf/47UP4zEYwFDnctRYgW577UXWgiFgCMwcBIyAZ869mH01gSB4gMIS1h2vfiHQRCzpx+N9/QOky7NFUkTAQn6OHryK0IY70YhEnSKnR9LYWIElKSBgLEX2eNhnjyaI1s1iElHKw+5msyAm/ub6Bw7fuyWTij2xfnPngBQgQ7Qi/7ac87/80QNFUCkNpKrFHOjqF36l4AXr84lH+hNdfjDgx0NsVhHBi1yStowzwL6uK1eGdJWdL/q+x7M33HJn+8LFL3/xabu3ek2e10aFBkO/WGltbkrEEzKETOpb8vjaEFxDfPtSg1wObcRfet4r/FT6lxdd2oMTgPajeszt1RswzkaYuCFgCEwVAvKStGAITBiBYqGQiMdKsvaGhBUrVvQODnT19xJ3FnCV9eQ5cyQoQi5ABkIeUSjRp+lMVYzFgSz9vIwDvvbGB+Hqww4+OOkMwnicYUmFUpnVNliKw0snhB2xfbEOjz3ysCCWvPGWx6lHXx92ZtDfz5HAfsLCf8OLd0lKSP25QixeLGe7mJqb971fXHP7u774/c/89IaNboZuuTjohVkvHIR/u3tVp8s8lkNY8nM9zamwUBA3ctbzLr3+1mwlfswxx+yW8RY69m31Kosayg1xAWPIvIZTWVYEf3gsyfcCRafTaZrMZ8dhBzRnWhb05cpX/O1RIOsvACt48NMPBB8z2lVta7hrtaWnQBZO4c+OAjKyK5MFQ8AQmDIE5MVowRCYKAIVbDZe/IUyM3CFBJobm8Mg1pfNKRugFjstIgfHuUOvfmLuBe8eQlbWgBXYiL4SpjMNsg8ByzHedU8sCA7ce/fFzeKDlRBnxa04gkEoHcYklEus8+GdeMyR7KF70y13ZCteuqkZzam0W6xRqLrGIgzJrhVeSxLjMtNAj2851piC4B7rKly3es1D3eWbH9ty5yavB793MunlB5kQlM/1tbVkXCXGfgi9hN+zYW0qKQWt7fZuvO1OP5E++5ln4lFvpDWVAa/ciwksewuGsqQGP6FhPkBkADZfGEMBHDnna+Jtb31toVD4y+XXrO9nDyi/P8cqJl5R1vUQJH3Zk9GFkdpbvbTNn20pmX59VvbeRtASDAFDYNIQsH9gkwbl/FQUyEsfU0lYDuJgciqDsLp7e+TBEr6rLpTonrMa60lXpVChkI371aw3uoDLJdmA3uvNe32h9+Cja1Ox8PADlzdAhIzR4kIAc5GzlIzTIwxHsyBHPCgVD9mrecmC1scfX/PYk4OYjFwIEkztxRcNW1NI9D0guesDFdP1umhA3ov/5i9XPriuo3n5Pg+u77r0unsY69RP7oZ0ONiXSkNHJWX9eg07ipda29uoOMT5u0v+NpAvHXzoIfssZ5QX/dF0WQ96Zcxr2FfUIMZfcZHTTPkx3rtq3nK1UKTDWjj40N29Qw88YEt3zyWX/R212ZLOXKarWtorHzxVH/+oVYNch13bNmWYgJ0aAobApCPgXoyTrtUUzh8EHHMwBIs3Or+2Fgg41tnbJwCwuqRjWbnkxNxZjYaVbFySExYJvyHjJ5JCV4H34FovX/GWtDfvuVhYB8FiRXp/CYHwVLmCuQy5+n4iFsA4hx50QKYhdesdd8FJjOHiiGGIXCzpOJvaYVpuzTs8/XSsFkvFXDkoxVpveXjttf+4vTHT9NKXPHdBS+a22257fHOpvwxXNvhJ7FXmEWEKjydA19mCl27oy3sdA96dd97Z2tp81hlPpxaU60acUU0c76KT2rm/7kjvrljA8nlA27X5iSQD3cRuJu/znnl6Y0PDjTfd+uSWsLEpAaZBQpbzFA3kEst1hPbKRTDYhn2leAuGgCGwyxHgH6oFQ2AnEJC1nSqMHkIFb/+WlhaOPb29otHxgZKKYwaNqt1bb/46zsDpKpOBArYUzLKoR8K74ZZ7Sl7syIP2aaWAnDAfHCM2LwzEeK6wlEglmAyM2cchN1A89bgjG2LB3avvY+gWRiQdoYM5sctRqL5Zl3WbQyVMxVMDYSO9uz/93eUlL378oQe+4DDv2ccfVujefNHFlwXx2PoBP0wugCGTYkwPfUBso2vbhFjQtKjkNTA2/JI/XU2f9dIFLYftn6j9q8PATXk+K4FwFBIlwM1EnAdenQcMC6fvmF8F3u3vzfI1ASAnHd7a0tiQyxWuuOZ6bsAga067jOSVflthbguGgCEw0xGwf6gz/Q7Nivphc1FPXMttzS0yD7i3T01NuEBZt9aKqrVXO5WrQwJutBRZsKZhoL/fdg8+5xNWHQ7lJISMZDMECLjIYCRKwvwVkzEYzJMWNiZjh+8b+JXcpo4ta9fDR44nWZra6d+Wk/S5p5JhEf6S5TIuumHNI+v6Fy1a/oIzjmnzvBeddtCiVHj77asf2uJVMmm80yEbKUChQ9WNGjFqhE7lnBfvddW+/sa/53q6zjnrDCZrYdFSQ7Fx8TNXCVgW3KA+WjHqJNWSUBACruRl+euwtKilASRwyC8IvHOec3auUPzHLbf3l2RxaWkpnx14HaQPuW4cuNOial10+AEXvfPSj5Bug7CGg2LnhsCkIrCdf5iTWo4pm6sIyAJW0IkQCqGtTfiTPmB3NiJbVckRgWoeEXXPYTIZFmWqL1zy0FrvqY6uRYuXHrB3M3QVw2gsl0kXUfyrIi6MIyO8ZNVkL5MMILYD99snVyjcfd+DKEF5IikVkA2IxCU7QiA1lUwM5GR67m8uvTHRvOy44046cqnXFHpHLvCeseoQpjf/7LdXwfCdrE0ZT4nHezyBKvYwsMzz/nztfSxCuXzZwlOOWIivgHKpXln6azNeLAMTC2m6dLZHoqeZjK4JSMG7fI1kGSZWyGe52uCXBjo20OYzjlu2z157dnR2/emym0PZrUl+oofhbGMOEfXm82ytVKxnXPNUjxlFEzQEJojAyC+mCSqzbPMRAfe6L+ehSWiOocfMfe0bZAc+MeiYp5pgi9sqbSHJeOOqu5UnD0tOPNeObIrMkw3SYsPlmezq3f/go6w+se8+ezbSjcqCUFBQvgDV83PDrllzK83eR37FT8T9gruEtlOOO2qgkrrr0XVMREK/ElFJLGZH1hxkDrFY02iFzDjKQhxJ789Xrx3IF3PZgXPP3gdf8ALfawi9F579jKSfuOPOex9aJy7xHFOUKJ8JV0zSdXWmjcRc49wEKilFfi4FERmcTBlbPO9Xf/xLKp1+5ctelC/KmlbY8ujiKqXTZKmDqy2JLkGaKd81EtSWlQ0cGtINhTzDwsKFC9t91sNmi6QXPK8Yz/zl+ttYrkPqVKVwPkxYoQPm5kfnuPjt+VGcw0SrKuIkDvh+l/t1V1IDlUQxdK4GJyzyW3+4kLLtzxXrDnpt6Fxj+mFQfxwuoefkJtTr1/Thx2optIuffIXRCp4P/dEqUvipttqf4TrGdl5f5yg+lLVakaEEixkC40Zg2gg4l+NV4mWzWY58fXPERBix+nyk13+YDwxgrkggl6b39fVpRLVxKYo4QTtMHQKBm+QTJj22DcjjMU6lcREnY6mFG7Me04NipUIM92m5UMrhSo1n837Bj+fd7oQQtl/ujjEJR+w7L5tIZGXEcjnD3sJMQLr15pbG4ISjDkIsienpJxoam6AupgEJrbJOJJ7bZCOjkuChZKqBruB02TvzxJWDDUuuvmdtOVdoDmX0FFzZyK71TDLGhVsq9RblTd07MOgVGYHcB0fyf4fvXfSXP4W57n9+9QuWsOYU62DBWhVv2eLUuc97djE78LOf/YF3ut+A/1nGYnuFPH5rHlaqzZEeZ7FTSS+Wsr1CupznpNM6my8OUtzlN3VtGSws2m23ww9a0p6QpTkagmKS7xJn7Drx6vvd0aiMoaKl/Jyl3+D5bZ7f4r5VgmSqUaiZgWqsWOl5xx/UtGCfI9cMJH5+0e0ABd/AuUAR8k+p0O+V+JciI8f5l0ZViXCaH+wTIW5K6HV73kbP+/X93gs+9pvzzv/yvRtzakkzoYkKDWQZylajRPeXRJTwo3+dHxFS6qiOs7ogF5Tstz5KYlWMv+4nVKqqOEa/2tVaHdx5yDrjRPCHyM8bDL3NFZktdvX9j/Ak9ZSlYgOl8kAhh7dCOi1EuBoihVFkhAtR+bhXtv3JVQlo0HrWqdcrdjQExoHAtBEwCwvAmg0NDXgWWb+QeGNjI5xKoPqbNm3iCI/iFsMVpt7HtWvXkpjJZPr7++FvcpFOpLm5mU911shFWwl7p1wmMg4MTHTiCFSYBCScKGtjMBhKaGP54gV9nd13P9LTjW3CXkO8onw/nsb2ZRKvrDdRfSuSzmb1lSyESiK2C5QVS6aJb+j2Ojq3FLO9Rx3UAr+6IAY2/wvNSHDzbdyZ8DGmmu+lfUxZb899Dyj4iYceeZiRWdBuXDNQOzEFY6mEGEyZTKNc4EkpVSCnn//+5lx+cO+Vi048bCEaWhviYSHPvoaQ91GH7r90cXvPlo6b7+nmucwVSZWh1OSmXGUgKiwtoE868BoyiaI8v24WcrmUSqRhvlvvvLtUCU875WSUE8qlAb4xMPWd6Sso6A8nu3ux05RqS90UJD41+P4AV0Eg+lE62kh9/nPPYuDaDTfeuLFH7gPdyps6uoPGJlnHJMAFj2B1F6dASiylGqFwWe8S3OGqH1+y5hvf+21X3sslW3968dVP9Ag+ZBgYzDc0xIvyOeEq5f5K3N0sPaPhdclDJ1slap6hI02ohnoxh2GN3GoCmlg7c38Z8x73+7d0cjKYlaVRaDK1/cqvr/jGzy75+i8uE08AbYvHgnhaLg6VJtXj02THQdByQbSPHFAzvO0jC1qqIbADBGpP2w7EpuSydjJBsUq0lAGnErBxlyxZwinpiYQ4KWOxWFdX18qVK4nD0PAr/E2cq0wDJQLpwt9EIHLWKCBiYRchIFZGpRI05MqJlNsz4NRD916YKv/50ssf2YDFixWXKYmfozI4WJQzseCEveR/PJy+9CFzCznjiGO15AV33/cQd3nZ4gWtjFIapRnc6Kj/UkV4nNBw0lEH4/S+4ba7GTaVc6/wEkYgnwZQUchYK5l2KwEbOt5Ujjes2VS54vK/+sX8y194TpvbEYGL2D6IM+Jq3+Xe044/ZkvHxiuvuqoPu1CM4KQQm2sF2qie22eBhlQ/FYoMiBINXkcvD2Kw+oGBe++6Y/dli5928oHa0tok3ahlNL3+R+6xBipw+kHe8Qe09vdt/s0lf4H6B/lH1NZWCoIw3uTFW1hBixo3eaUWr5hwnvNy6OeCREcssdnzvvr9v1xxyS/ai0++4uxV++yz+4133P3d316K1Zwtlpsb6XUvJdz6XFI7V0WtsWty9VvAXanV1tGdcpwc5Rqy1JGvFedIFwH341a4TKDkfiRuFWpyQplbFSFSpaZ22pVobmjt7+5A8rp7+39zxT33ri9ec/O99963hh1B8vkSn4WFYpjLuwVEKUzL2xrobTSLdnlMqo3buubSBLnhNU0ibMEQ2EkEhj/6O6lu7NkhV6xV2BcqhVDhXaVh/MnYuOjZuHEjW5QT6e7uhl/b29uRx/ZFEj6O0pWAeflCxh0dHclkEm1kQcDClCMgPjrZEIC5rnhUuSvYZGcdd9DTjj5o9erVf7z8Wt7mmwfhghaWkExlZNN7ZOTmVV+JRMXS5COLB5HXG+zbU/RuvX01T8VpJx1L+ohvSW3XiAR8/KEtzUnvroeeXJ8VI5D3u37nycqOFZlT25yWxK7BSj6W7ve8Sy67qre3/8Rjjj5mPyopdSgXChjidEQzmInTs89c1ZpJPvLow7fcvQGGK8ouSQmZfuycwlAxL2Z5bTPb2K3HmWmK8ZKGhMvJZkzMyy+9LFkpnHbS8c3unxoKM8k0nSquCQiihgvDftq+HR/R1owRfPoRjZnEzXfftSnvdWKHJ7weljFx3aKiniHgdKLzK/ulQrzox9cXvUcGvE997aKrr7++LV359Dtf+cqz937hc57OfOrbH3js7w/2EOnPYyGXfR/HRM1j7JgHfVpjjYxYRW0b4vJz2EBp1Z+jXqdJ7sKIweEkVyhC/ldp4kR8r7e3i7sy0N3PlURr24Ob+n78iz8kkguOOe6Mvpz3fxf/aVNvbyYV51EbYJdlPpiGBamTS4rU1gtIkVIxbp8IOjIeqnwtq9bcydZntrghMG4Eoqd93Dl3MgM0CWVCwDAuqojwPiUFfzJ0C5UuXbqUdAzftrY20rU4zFztA8ZCIl2ZGOezvosXLVrEVbJzSeXtOMUI0M8WsgMwQ414Z0Gn+CUO3y32gtOPWb5syc2rH/zllQ95GZ+OuiCVLjhrBBl+BHmLya5/vMfoEK3Q7UqM931fybt/zWOw5tOOP1J5zomPfBjGwTwle7d4eyxu2dBbuOXhbrTxGo2Jk5yy8M9SyzwbFTMuesCLD3jetXc8dc3fbtlrjz1ffu6zGjyPDtpif18sKW9tiiYbsT3avNNPOZavwytvvKWXIT8sKolRCT2XinGvQA75gpAZzFQfo5GubjFxaV0yk7n5wc133XbrQfvs8bTjD6fVfJ24todu+wrUkwUbk0j9b+SWjphKj3STVzzqoBVtC9vKyYbf/+W6xrR0cuvSI9wRaT8OAFngk9LSuXiijxHmHaUPXfDdv99578GHHPTZj79//2UNS33v5P0SL3zeWT2F4g9+88eHO4tBKuMYyhGwZJaNpFxPg3Q2uKZWK12tGEm1gIDLsIOjtrmWSf5qCpooyOlT7kcZDXFHv5JZ0MJJOuZlB0v9fvxHl1z36JonTjlq1RtfturwQ46+6dFN3//j1dILXghbWjKue37buqBOdTp8aKcrUo51YcRsel3rGdW2LpNFDYHxIcBTND3hM5/5zNlnn41Xme3VsGuhWMh1y5YtWhuolAiGLIbv+eefjz2E4fvsZz97zZo1ah9jDSPw05/+9KSTTsJQXrhwIdpI4cU97KWsCu04NQi4lxZDp/QvL618JR16h++z8NznP7sUBr/605UPd3u9cDQdqGX6IHnlydhjIvJ+x1iD48SJLbxIoEd2/ZZ8/0A+nUysXOAxBHq0B5QbTZA8dQHhJs875pB9y8nMDXc/igEqJETAlIGH8HiXWTyLob4eg5kg4F//5Wq8lM98+umUxZThMD+YbpBOa+FTukxL0s8KZT7v7KcvXrzwnocfu+7Obny8tIVqxf0KTl03lFpNX+zlmGy54FUGBtjJSdpy6dV/jwexYw85aM82D2MSOg9ZT7NQCGRGE5UfrXGuzmM4sOYkHwGZIPbs5z6nq6//mhv+TqHsxYDeqnZBuezJKLZ0Pub1+N6vrn7gwv/6Vm9v96knrPrQ+1+zpL1hEeuHeSWcTq967uH77rHs0SfW/uqSK2lmQT4Y5FuknplQqzTMcXgF3TUOBCoQtY0qRD/NoldVUlOio1OrmmFfJUFBzQnIKd9F/MuPZZr8xvgvr3vwrzfffeDKla84+9CD270XP/f0oGm361avve2BjcWQceLewMgrl0W8rmqjwt0zOXQ2VG1BsUraAkbtJ18kdeIWNQTGjUD0z2TcOXcyA3bqWWed9ZKXvARTuKmpSVkTHmVQldq1sDKG7L/+67/+7//+75///Od7770XK4QNzJ966imKhoZ//etfv+9973vzm998++2333333a9//etRAlXjlEb5TlbPso8ZAdk2gClDPEky5FgGL+Wxg88+ee8jDzs40dz2X/97UTbwHu8qNaQSlTLd824ZjerrjAG9MclWKcJkvOagzOtvvjsWTx5xyMG8/uG/EV/T1C0i4PrvLfgcQ/bUYw5LNC+4/eEnN+fEpJa3J/scyLrKvriVZX8/GWr0+2ueeODxjYcdseq0kw9k4DV9h16O7QzZBFDeqsgwehr+qeTKy1u9U049oT9f/OuNt+LZhpx4vKTvWmb7yJMWMEuJhkg3IfnoDE9R7u1rync/8Ph+e+153GEH0pBM3M25KpfqhgLJ7gtSvYkHXLv0vCdOOmzv3ZbuxjZQl195V2OCTtAQHPgSkg8O6hZryifif1/r/erajp/8/gpGq7/0mad8+i1ntzBojtvlMZY8oJ94iee95aXPXZhpeOCJzb+85n6amfNSbkNG8bLXBSUeOSoVUY7+nAyJ1W+sEV8uJLpcNF3EIrWaXj2FcYV00cpRjO/qj68fWTklMRh4tzxR+cEfrm9p2/28Z596/AovM+it2ttbdcLTeoL2H1x05eaS3PpGvP1oHKq806Y6o6MMupcgkk6WG8uvVk+X6g61GlI37ru79W4AxJCExQyBcSLAQzU94aMf/egHP/jBE044AbJkAhLvUx08haVLheBaWJmU//qv//rUpz514okn7rHHHldeeeUjjzxy7bXXIgA9f+ADH7jwwgvh3SOOOGL33Xd/9atfTTp6GJ6jFD49DZtfpfL8xL24bAgIxzhziT0NcvSjwsFvfOWZ3NnHN3T+7E/3ZdplPA+LNuvbtwoSo1ogLYJ72/Ke5KV53T9u5RPqxGNXoY2U7T+gagRHHMwLPVEaYO8GJiY91dHDwGAKlb2CYF4GFOk+fa5jc1POu/iv1zQ0tRx3zNGLm5gXxLYIfQGjo9lIMYhLt2mBfYy8WCgbBVITvNCJVPLBRx5b2+F1Y0VLpXE4F2XX3pCVsGWqc/9Av6uxz57IrKZ54y13DeTLey5ftv/KFBqAqJQv0LSA9UE0u/uzc4cANlW2eO1LXpaON/zuD3/uwnRNqXOApTyZpxVjJ+E71nu/ufr2r//wp2Dxlte84m0vOhFqanXfK0BUKDGAvNjsFY/evfHV5z7r3nvuvfGWex/qlk8NvlTEVpf7AFfr3YjuCVn5bR2EO/ko4Qe/jhBcIveZ7zD5FBumUTLIwyB/6o5EeXKkIznuS8/9mrz39V/8AWfK8Yce9ILT9mqseItS0pw3v+xQvppuWbP+0lsfGJDHCV2u5pLdKRGlaFblciKhdubq5vjVfVtE7VSp6tE9q67+tGKb5m8laieGwA4QGPkZ20GmkS7r9CGuRG9DmFXjuIuVXLW7V81TDF+uMn2IS8TJyPgpzF+V1BSMXTqDTz75ZE6hZLgZwv7rX/+KMAvlP/HEEwjDzbipX/ayl91xxx28jnnj6+oBEQ2TEVc21SPS2dk5Ut0tbaIIQJ+yniKLJGMreQ2QDG863LuBrEu1otF73z+/kc6Fn/3+0lsfxQWMA5EXVowlNXjsmC4ixqMfr7hBAMQ4ZcmLvsF8Jp06cp90IQcriI21/cBNJ9Rkyj5bBhcrJxx/bHPrwosv/RvvyADvNu9u+gXFCOaXYDbwxX+5nZlOe+6x8rmnLtNPh5gbV+81NfGmZmQ906bo2oXR03H5Rlja5L3+Na/u2LLpf3/wCwTFxYyZJJ5k+ReEchqW4ZMxl2OlTOIbt3hXX3djLEi87lXPZc4t1AFNJnAP4EOV9z8VJm14iJox/MIo58jHKjI+IlP0Ttwvs/++B2TLiV9efDPEScNpSBiLD3rB5fes//JPfn3DnbcvWbrwC5/859MOX9bqeYswf9ll2VVCRjIyYLhSyBRy55x48PNOP+WuO+//2SW3d/MpLIOihVFFkPKUgzluU3ta7dKQdfZrWCkzqs0FLvEj0Hr+IZb4RJMngSegMEqTRVNBFgaQ6/k8mx7jOAiyMm0soAvgP3/997uf2nLw0tb3vPCYjBQs08BYv2wvz/vA688L25Z8649X3vXoJiAHB6k8UEjN6ytNnJ+rRs0IpizxalQ/DkqsP0AeasAdZQSDNkFecPmsfHu5D4ja54JktWAIjBcBeX1MSoAd4TzGQDGcCoWQLqf6ZuSft46iYoAV6ZinuuYGfEwuTFvYUYdW4UCOjFf48tFHH4V6MXAhZlb5RyE+avh13bp15CXyla985T3vec8NN9yA/qOPPhq1RJTClYaR/NKXvnTIIYegmT7mffbZZ1Iaa0oUAV5g2vsrvaby5nJBeE5m6rCE4lF7ec942okLliz73x/+9KmOgYqfxCVaibvvrQDblEfFD1pacT9DduS//9GnmDJ78L57YTJmxClcfelVNe/wDy/icq45Eaw6fM8tm9c/sW4TZhDvX16g0CKebS9M9BbCzj7v9jvvaG5MnX3GKerorv4zEKqlZAm87320yU/e3KSuWNRy1GGHbN6y5frbO+DxHCtCMCIajuYz0tFIrlxONDZXYila9ZfLr2JG+gnHHNuY9PAPYEyL5xmipkUca7TDuQaKqKXVksbyl+VH4oHfX1oQk12SXvyCc/tylZseePLhXumBHvTiWS+45G+3f/Onv7zroQfpif7S516zZ4vHFwcfTF65mCyXkxVpmjQ/kfEGiolY2FIpvfI5Z6xYtODmu9f88hrGpPOJ5TOhC1OYGwSMwsYSHAdLA+QjSUjQpbpDZZDdONy+GrmCWy6DlT/cjUAG50Sc5VpKpcHuTqzzKJM0n8sAXgvJxgygUCDyvEoolqll1OePf3v09v/f3nkAWFVc//++tu/t28IuTekIUgVEqYKAWFBRUdEYNRKNxp8mGuMvienFFPMzv2g09WfLP2AXFTsqiiKiKIgIImChCAgLCwtse/29/+fcs3t5wlZYd98uc3ncnTt37syZMzPnO+dMW/sZs9qvu/jcHnT2CM+uIyj9KaswaY3oZY0bO6IkHH3m1cVFbEZik81X9qZjHukqYcNOv6ro1nSTKSas2eZlGap3yxgB6VZEkizNxlEZpSp5XHQxZdABW/uXo0qP1rgNBxrAAam9TXIp4jI0iyLLNho333xz165dbeXEhTEZ/FM3cAtegoWgKZjKBOY1a9YAujq1CuVYOuM2fgPkTMUCTTE78znx40/vc9u2bcRcVFREQtdcc82MGTPA13vuuefoo4+eNWsWnlzSSbU39CDkj3/841WrVmGyBsX5qkkyayJxOIBUsjEYEYdmIhOd0VT4JcLl7f0W2zp+cyoze45Yt+7zx556AY1GTJr2ZsX27sUSGBhLpDxRFyuArfdXrErGE2OPG4JmJuq0IFYjrwQm2fjxPa3CoG/bjuJ1X4gIxghNlSCuHRUxK8vz0mtv0zMb2q/3SUNy0dTpK8gl/Qa0eQSr/Sg6q4rXJPmhUvbp4j7txFHxWMVL81+pYFDS72GlkeXNUfzim6h9QDFbOa/bVvHm4iX5weApE0fnsrbY3q5LQErGMu3J2IROH/+0E7ThR10NvkuHI+5jWhKto9wa0sc9cMiI9TvDT735+R608Lj190eefeCpF/aGwuPHHvf9y0/p67W6+axsUEXghhKIu9kvjJzCH5c75gmiovo8iRE9g98857Sdu0pfWrDk0+1WBaCFud3+yAXeY9a2rdJOxh1yJVZQKRINtiugR1UWjbuyPHtYDc3KqJj8sEpTUXbvLUc1Dxa2T4mxQBBUeif7X7LhSYqKkXRh1iB1ag7FsGq79fS8t8K7i66aPun43h6pNCkWwbE4m2IOgdJdfRykMWhAj45vLl314uK1dET4kKrJ0ZbUVfobgqFVZXxgwnQR6VRJMXn8bK1mH27B9PVsd1lUOODJ8oQTrhBxUVWYw89+qDqGsj/x5tlwoEEcaDIABjiBTHCOZNlG4/rrr9chWwzFzJBatGgRU6U++eQTDMiYlMFdgoGpnTp1YvgWtRV05BEhqQo0sQHPqL9cvC0uLsaHDimLg3U7DoAc/0GDBmkuQXRwF2wmHnzQnnnUVziYzAXAo23bQli9zb0JOIAkQ3KK8BQjXpVTZCqSjk0orXh7JgglrWu/Mbln1yPeXbb6+TdWKgaXVZSh2wR8vggbNbt87kA+KL6t1NqwcYvf5xk2oGsO468S7T4NyY61vhvYyXHCiSgq9injR5SHI28vX4vERzpn+TwV4VggP+ejrbFXFr7JYX4Xnn0ywfgJ0kM9Zmq3F23WfuKGqqpOdrUQAO7s4RDArv16d/vss89eX7QWsV7OtG6XOxqSbR25MHGzWUfEsuYtfCcUjhzTr+8xR0kuqnQ7G/Tkwf4ps+CVsku+Fx46iYpHAy7CM+mZwdSY3yvbjJx5xmTMTW8vfX/1dut//++xVxe/zx7XF08/7+dXntmTrUei4SxR7zCf2gO19AZIFEuVKHmWNztLYEoISZ41ue9JY4bv3ln09POvbtvNNwI/FUxQs4s5ikEWnlbxZx+ZeITCUW8gr4y9PNweFnTRGlmt9fLba/71n8c/3VJSlrDouwDPSbc/HOE0Cmz41Z9XOZT/wjOMaHToGLwnUbgqDE9Zc+a+s27DltNGH3PJ+H6MBHAOJRppWn8gzqlSQwutGWdNKizo9OxLCz/eIj134q6wERRrBudD2/06SUIuAX8711WPEgKojbNs2u5cMqa+cUfsrllPzn1jZRH7ePpc7kBWeSTF5qoCw4L85jIcOEgONGXtUbxUQlBe+/fvj8kXMO7Vq9eoUaOGDx+OA20VVbhdu3YALZgKYG/ZsoVPcOsFymKO1tFi4BnIBMhxAM+sCV68ePHEiRMJj12aMFwgLnd0aNB3wIAB6MqgL3isI82EJAbVnnHr6iYc5moSDlB7qsSYTKf6Eli6UQ5SsnWzvyLBEpHLL5yW9OY+/Pybb38aRpiKwSMelhFRUW7YHVok7MqPiyojkS6dOx6RI1op5dh46SZzjlKJOHrtlBOOiSVSy1atAQNUQIcjsirlP4/PLa+MnzDi+KFd/a5QJetmWVOKAEackh5kiEKPTEa5RDSL+VmySN6CWKGzrcknjuZx3oK3WK/sDkpgL5Ztvdwe4HtLmfXWkvfzCwpPGjeaT/jQbmNVc78loMQntk2R+tWX+In1lUTTvatf1/FXEDRuhSo8fimAEQOsQT0KKndtvfXP//pkwxf+nIIbr/veRRMHMtxbwCGG4AXbf7IBDqPxrJiyrU140UiyApaMx+bkYipiCB/L/FXnDx/Q0bPyg/dWrPmUTgwoGIoyaiBkZ7Glp1z7Sw9eeQJ528sinuwgrIafu6LWX+995q77H39z2eqb//fvT81bmmCnKqCUoP7cEFPC1ThvRye3KhiGS+4Y1mfbTkB4vCvj1ovzP1q6bMWgXr2uOmNCnpXwZ3vo72PQ31sGNLMkixy5o+GKQit+zpDuk8eO2rp9xzNz520pkd4DGcT8QS5cHm+UCQlkVpjucBsHP6okBPniLm8Ze37b9eGDj7f/5e5ZLyx49+8zZ9/90NMbS8S8n/J7ylI+Jcyh3TgMBxrLgf2bUGO/d8Lb4hLp51HkA2VVndWxYfXUMIzUgogowStWrCgtLWVYd5l9qT8xTJ48ef78+diomV2FAfnWW29lvS9zrDA49+vXb+rUqcTGNh033ngjPqjXqMVMgUbNZaEwkaDykhBwTgyQByWgMg4S/fzzzx2CjaNJOFBVgRD+jJKJRMMEK5fHH5RZx4nwETkuX9g6fXTXY8ecuL449MTcBUWyazL/RGZS3ChdSDpE/PKPPqbshg85RqQ7M1wdWWxH2LAbFHg5YRBU732EhRFl8/aSHbtF7JJWfruc+e9tX7Z2PWPSF02fRJ0oRISmyhmsJimVttwlWaJhqFNyIhFic2UONztoBS1r3PH9evfuuWlb8atvroNmdl9iiBQAkxTcLj5f8M6ynaVljH2MHML4r3wP2NlVsTo/KcmZ85MP5aKuqp8+NuxO7BAH7Oe3pytAckytmjZ+8JHZ0XD5HgZlfvXzG0cN6AjZnVjWvGenkIN6l8UhTy7pWvAhw9cymYjtRCT5CuwBBe04TpnHIR2sr00cHAlXvPzGW2+tLIKHTBJnDxM5f5mL0Adc+PEyOy8HZALzXl36+Q9+deeqdVv8HboMGzMpr3OPB+Y8d8s/Zm/aLTZtwrCxszRR59oXp5u26/PLIiKYzEXqa9fteO6559yxim9fPH1A59x46V6+9ZNWMhnIzWVoNskEPBcTDLyc3JhrWROHDRg1dCC2tyXLV0EMgR1DOlq1k2Y156s9PFnRJCYFpva74MbLizc+NOeFd1etm3jGeR169HvjvVW33HH3C4s+4xXbnJNZu2pVf2v+Gg40kgMiY5rkwiBMPICczoFCsAJ7eOKjo7+8RfHljnqKD4uL0ImZQgUSjxw5EuxcunQpqAls4yASPkTlJdj06dPZi2PSpEmA62OPPUYkvCKeP/zhD1dddRX7bxx77LHMcwakSY7ISZoLkafzsAgJHhMtkffu3ZtHczUVB0T+i8qACgbkSQVAMNvLQEUw7SlFC4pbkd3tfOx1ZZ19/tjBY05etaFo7rzlFaEKsIDKIiLXlsXFIeuzDZsA4BPGDPcgLOMRdihl0myjL1si5rjjOR5rxIgRlZHYe8s/IT7GZ3eXhmY//1KwQ5fxk05qh7W1vMTtibJtBvAjCVb/cNvootZge1dJRknJaizEbpMd/NaJ405gftAb77y/ZafsdmnjJrJdDLm7Yqi/y4N5hSeMHZ/NaK893UpmB4mL9zYgyzC57bbzVp1FktWf7dvAm8vNiUupQF7Y7d6NKTpp5VvW1OFdpo8fMOP8Kdd9e1rPPLGxZ0dT3kQ8J699RWkk7vJF6C3Z6ZPliOWRHbpB8UQYfZ9h2jIGj1GSaafJ0ukn9Jo8buT6TVtffW0hm1xCX8AvCI6jxou8wH600tKk9fTrax588vld5fGufQdff9PVV1x50uSp53frM3jJh5/c9s/73lldBLJSP6qz/+X4RPGVNyREhLg+2Vz+yusLo6Gy8ycfP2FwAI7m5rUvDWPyj5eUldHHZrcRe043Z7fA5CDAfkz34MWnj87PCby77IP3VhcTDxulAJkSL+P9+194V+3yAWEEY+T7hfmr73/sqaK94annXXThjHGXX3v56IlTPt1a8p/Zz855+aNtFRaLzWpjxf7Rm2fDgZo40GQADLxp/Ki86lAQVTgEMoFA/FlWxB33XXfdxZ0LAOYO1o4ePZpXqjqfddZZyGIMlcyluvPOOzEvY5eeM2fOkCFDCAOyEiEAzzpgIuTVCy+8wCxoNB7eAsZ8SxgUZWCYyAlJtLzCWM3dXE3HAUFf6lC1GLLlupQzW+En23fskNhbxokZVjyEutkz17rgrOMZHJi36NW31nwad+XKTgnM42UJExVjj1W8d7fLG+P8g2QikmJNLZHYBxs0itqYLHdi3pMYUU8cOYQTkRYv/xCbYdgbeHHRsuKdewpyg5ee3pdtmwtzMYMTWOZskwVEsv4kORHi+IGqLJeyzZW4qELJBNGOPa5/fn7Bhq1fvLd6M5mPIrAJkmKmkfX+sk8+/2JbTruC8WOPpD2Qa+LEpinVjwj5ceAfQKm2GU3nS9lrXHsE2LOC+aS/J5RkDZjfnYxXlgSt8BXnTv3G6SM7MgEbVqDUMi5K60skcvLzyTA/yoss4oglOZ1B1iJ56WLEYrlZVllENF25YhXeLNfll5zbuWPBmjVr31n6WUlEkAlsLgd5pKiJBqCUOzHgz1v02vXbEv+495kHHnw4EY2cf/YZ1181uX+B7Fk9dUzh1VdcPPK44Z+t2/Cve2c98cqKkK1zh5kOYFccwUZ+8JTReBsjK8NiUCHmVxe9/cq77x01cOBVF5+UqpRRbFINBtgqLdWhXQeSZykzBFVEKlDnhfiU1TFgjRzW85jjhn6yZdP8txfvgjKyqRln9bZc8omUsmSGDWFkqTpdB/aN2Rm1nnhuyewn5kTDlVNPmXjNJccVYhLoal3xjdFXzPgGsuXeWQ/d/9j87WVCGz/lKnfNQR13O1HSafDPiQtK7ZzVddfAVZFXEePQ5pBn5zqdAHKQ/pjutsOm3RxyGuggUWXRfneHqrR4NN20xA4DZ+MafL0MAYYdvRMU5FGRD7c6dBTWQWsiRGfVaBlCduKXMUKGbbKyHDjXR+AcB5ouMahb73iqnRkHtmjuekEM6YLB+qg0VL80fw+dA9QfOT4P7JGCEVkmeIYrwGk6PBR2sjzZcnAvVlAmRvW0pp82uCKx99bZz69LugWSwpan0soNW8s+WGnlursf3ZGi8vncLraEBDyYadzIC7slZDBUic59TC+rfbZn/bbdG6LWh5XWnEUfxyLhqy84kxAdJGI0v3z7tN1cnqiFuWlzsiRPHqYt+bwcvSuXPTeHg3hj1lF51tcuODeUjM968vESDNVAXNKe080g5QsvUmnPPe8cGMLyX1R5wM2e90wkDnMEXXgmjP6EU7yVibUaTJ4bcoEbfEskHbOFCgzKwWABHsRC++lg33krJUKC9ITs4yUEku0PYVGOx+tzg70STcCXBRO62jtaEMbKam+58wsC1ozp0wrzcx96dPaGoiQ66x66IkF73pNM5gLWYvR0kacM6+61rPkflNz1wJz5C9/p0b3rd7954VVnDmHqdSGHK9sVYGQX6wf/dfb088/dXR6d9cSLf7hn3upKa6cNw9JGkcDIaeZ6VSZCMsPNyg14K+OJt1Z+OnfRgkCP3mdfMQO62gWRDFLtsuSEDX6cRMlGYxSYO99f4MHb5gt9Hurgud88P9Cty9KPVr295COiJ+Mwx++hdw7leNB/SMpyZYCeKWYc4eC2PotY/3l62aNPPZ/tc1972QVXnTWks2V14dyLuNXdY110Us8brrly+LChi95d9tOb71i0cj3jz8SF3R7aiQlWVMZi7OvGDzdpcGcePuMckh434VsDf/YXNkbJ6i979y2JhQ4VKdmOKpi1w9g+VV0iXvOercklc9U//Yj12TFZbUVIzk9mTTM753AwqB1WgpOSEk4E8oNw+ydJ8ayvG3InLn4wp8YfrxyOyVRAOxU7BWHTYXLZbf8wyavJ5lfCAalCSDx+tlTnscpHPGRyFnKfrSoF4fIt66LJJwwZ0Meb3+lXt88WyYWia091WvbBikgsfNKEsfIxjVHml1YNrUo8Db3ccXZvwBwJhCPxfdbwgUfH4sklH8Yefnb1x5u2n3Ti+IG9fHmACxEmkokwtvNsBDKBkeN48pOM8F96B/yqExYfgliyqVXcOnZg/sB+vRlKfO2tdRwbVI70dltvvfdpya7SLp06Dh3QEdWdHZbTRjiVLVXMqUpB07Hv6ayrTrJBf4Uum3josoklCeE2GQFEuYM31dmRCHnkp185d02dRyLhK372V2yoKV2r8cf3GDq4Px2LWQ89XIKXvSSpPJYMsdIvmdq9qyTlsacjua1Hnlpy78wHi4q2T5pw4tVXzJg4vGcOfZpEvAMjAlYctksdcLO39ugbb/jesGHHLnpnya1/eWDhqp0IaHvFsS2SmYzt93CyMiK+kr3Bd5feO+v+3Pz2p592er/2QmE6/Uw9SH+kgyGdCc2YHbJbwJoycTxd8OdfmrezUpCgHBjjK4BbEEjmXLnZ+wwbPJPxXNbmMuuumW+/uuBN1ll88xsXnzJuoCcmPTMy0skrDpgzYlD+jEsumjRxAsujb7/34f97fP7WiBzKEbLJrwxFg6gIbBXuYkp2AsODQBYslqEH+WvXK7ufKmMBPNZxl/5B1UfkU3todoZdWDUkPtu2oXdyTS5iUbYbl5zJZ3QMGesXEBWjvpzayowL2YnBx5w09kmij+DLZrhbJnDIHA4S8DEpnu1k7FETBk7kR7z2rACJgsupNvU6tLpTZPqD8PQfb6sfpQMLqUR4uF0wwVyGA83EAdphe8v6r/MudYfCXxRtuvfJd8OdrGLm17AAqWhblsc75igO5uFCyvmSUY7DazRhXs6idzMDQAQQcm9g316Ve3e9/vJzqz9Y0qkgd9qZJxbYQ5hie5Z1MqJnN/ySSbnYSxOpjl7r1DEjPbEoA5Nrdll7s6wtLuu5d94vrQhNGDm6e8AS7IIAZmU1PgsNp+erDgntFBk9lG9cdHbHdjlbt2x+8snFcA7dBe3Sg/Xbk5vTsRvAs6PS+v6v71qwaLHPip518rjvfOusYUflqrqJPo4tmkF4mRxgL+jqFLBOHFpw7pSJp40dvmP9h4/O/Pf9T70T9Vsb2Geb0XuicFkRl8Ukq1LLuv+JV/aWufp26XP5hKM62F2KhueaasQnM07oP7Rnr/KK0L8eeX43gx1JwXUZCyAn1IMw5IvZeYvb+nCX9a//m7P105UFfmvGReefMqZP0C37u8Wj4VQMSzkgIcUKQ4b28lx45gnnnnv+jlT7p5Zu/sU/nlu+XSzwpRErjw5EeI8VL7XiZcww8LhCXjdzIFA7k5WhGIui2eQ0yoqwBt29sqqdATfmS8jhIBwqGQ4lQxXx8oQ7rr8Yewm6Q/zAzaQrZjFzjXVWLi/dSxdz61IRV6KcCXjeZLknWRnwsFZNbA3Aaszjq3Rl7Qi5SuLeMpev3PKWptz8IiBxIGjT6aagYRI/PlH0tZFS8bL+uzcVz0rE/HF+cX6BRJKxevklZRc22QSGA8AT9hY8qqRrSg0v4NYfkupkLsOBZuIA8iux1xraOfD1M8/IDngXfLhs0RZrb6618JMtvmBO3+49EW0y85W2nvLFkiLnD+qyjX2sN2UP57ED+nbtsLdokxXaO2XC6KM7C6LEMLmJ0dQ2zDYuAWxx8YA/CW6fOqZ3l8KCLVuLFny0mT7EG+tS739e1Llrj9NOHJqDTZj5Wqmw24tcUcHVuGQyJDTlFQ9FUKNZGDbjkq9znMaSJUvmvbWJggHDyu17mLy/v+H6H/0+lMzyZQevu/ryS84+vpNf+lCV5SFGpSlLNxtkiEkilYVeiN5j77Iysl/OTf919mXnnum3Ei+89PJNtz5Y4bN2gWHM1fBYe6gqbmv23HeXr1nfr8+gay+d3hHkqxSdvuEXWmK7qNU+Zd1wxWXZ/pz316x/ZMGn7J9RBiliz+AoqRg6KEgCCC9cs/Pux55Zsfyd/l0Lb/vtjaOO6YBw5BeSs9psdTnJQZSSL9jC/aj21vmTe//sV9/15HRcveGLf9772NxF6zkIEoa4AvkSuWztArF0BoHmOJuK57FvGUnbGWjInYBouNX5lbjY/jSLFX5eWgmHiiRYKc18Aqa2M8DAncmCFA2J0YOJu31Rlz/qyk548pO+9lF3ftydF7ECFSnf7khqZ2UckzhWgNxsVwA7vp1TrAeMRjjp2alL9dVfFTiiUROiEXcs26w1gCvcMUBAoL1Ft21+qGodWIrInPOrzvDh8Jf6YC7DgWbiAA2tkLG0mDVt3IARwwdtC5fePvvh9Zb15qefIkVOPG4EggD0khbPTsVoEtJceWjExVG7qL/MCGT/KcRlV3ZezMsq376xYzamyJHEj2degK2TcCJIRKg15oIYtJmoP5UsdFunnTjWnx2cv/yjjxLW0+9+UBRzTZ48+cgcy13BXK1YEh1IBrkaR39jiGmGsMmgjC7LcRTHDWh/8qQJzHCc//qCEnuNLHkrS1m//9uDDz7xfFZe+/wOR/z851ePO6aTH7SNC0R1yM1OobPFIy7mH4vA5QuZxcbUKezLdI9yUU/PnTz9nKmdOnbkOMVrf3T7kg0ojwKQIct6Z2PJc6++Qdhpp51xdEcryOww7LXgQMMvqkIy7ilP9m5vnXziRIBx4eIVmIuBKPYDiYdiAkH+LNJ6nX03X37llbcWnXHyuO9f+fXu+UJeuJRNBipyc4PxcMjFCDoT1mJhOhB0E8kF2hv9sOOPsH5/09ljhw3evWvnA4/O+fsDr0H8XqqANxfMiyX8lRVxzteUodZUpcuq8FoxDn/MsuINuWOs8bFnWJIllV5v3Othc8yIi7kF/LwpxsEDflc2Px+rktkfJAVp2IqlzdA92m1Zm2PWit3WKxvCT3+069cPvvbPl1cuWF+xAxOO3+MJitWdK2jFg9G9/vLi7PCeYCqSY8Xw8cY59lpaCo2Ei3ZCtPwEg6XF6B4sDbhjYKcThMLPntzwSxTeeIqVqp5E3JNkp570X9zjostFWofVtW+CUtvLNlqOTtFyliSx7JhVTNx1tRJZdl61vexnYo6QwHSCPVZxytqdbX37j//8oiJ+wriTly9eHCzd/f/+9BN2a8oHtSplZ2J687FEyMf+iCIKGn4hKGjG7nKkLHIuZT359Gvvf7CSOfbnnzWuMmTlZ1fNxHHFmXOTkA2iG3yh/sasiOy0xR4clp9FRz/+2+zXN+8edvJpS99d0j3gvvumi47KsvIjEVeAU4ehAKUCcY1kbKWXbJsVD0eT2e2Q6XQofnPrQ1u2bx8+dNgNV566qSj5n3vvqQyFdu2tPPv8r00+tX+ePcTgjsXciRQWjiqhjdUA0zM2VNEjGWhEhLPQ1o13WSQaCGRRI9jd4p6Zj64v2lFcWnrmWVNOnTIaFev2/723dGfJlHEnXv+18YEKi2Vd0l+iuBQWGsJRZjuznYsvuzzurcyxfvKXFzcUFR/dp8cvr53czh6QBuEqEvHHX3nz4Vfe2ptVOPLYYT/9+qTsymR+DrO0GP9McRRHLFTpwwztIAN0i2orueBUjyi7bDKN32W99Pq6p595jlUbffr2PufsM48bmA9IQyw/UfqBRfRgqg8boQNLDbyAOxhBeFInQRsLmTFOFadiM05LDVY1G2iUeV4x65ONpSWlZVu3F2/eVrStuGR3WUVIjgdJsh9wWWkpPYlOhe0G9etz7DGDB/Xv1ruA7cKj+dn2LAw7ftbuu+m9VlG4j87q3LspySo6CK9U1XVHtaV7A3VExacylix8lczo6DKRSYO18wSXyI2YSmq82qQ8NwC8b7lwjaVuPJuSA7REDFFlyVRn9y6X9eyG4lnPz99SVJbcu3fskYV3//IqhLGcDMjkYenNhziMV06qbSSA0VAZ3g1FE0xgRjjwK95ViR4j587LeiEOMGCuSoLNKRubNUzbUSuKGhRw+yPsDlzQ7onFm257an6pLxiuDF16xkk/OL13QYwsoKQg9xExmPREWWpsQpkSnlk6ob2u7GBJWdyXn4co/Whz4p5/z/x886bp086ZP++lVDzMCSvf+e71PY7KwQaKRthOFET6WWBNjNMsPPaOsOGKCtYjZNnLHGRfOnactv1jKS8T8ZD2iGeqxl0Pz5u/ZEWZO3vA8OPYcfrDJW8d36frrd+/lBM88mEhyVNipLEPF+rjEzp3hL0qs1OeLCbKrdho/fGOewG1K7916bhjWShulYajbyxcOPfVN/dErJNPn37R1GO72sAcjsSDMt2OozXDAUZV4QNDrnaFgf5EPObVs7OAl/LKQJ6sBKMbsezj3f9++Inte8pz27W/4GsX9uia06OD9L8Ug7kDM43siyWjUQYy2GFNzQqi3dKtw54Luyota0uptXFrim1hNn1RvLVoe+keurUxVywcC1fGwxWgfn7Q36F9QbvcXHbw3b5z59Zt23ftLWcxuDeQ045lgrn+C6eM79Ep78gODPxKS+H8aFYe5LACAFyUqdrSA5PUMGBQrJjvXRQAh5rYHYKG3OmpCKJKmdkALEXGd1wO0Ao42zBse9daugaAbf60nlubLLDWw/6aKLVbsbS/rHiFy7vNsh5c/Ol9Mx8f2qvX2YOOuvq8cbESNkPkRHtpju7YLrZXxGDcKACm0EkYAGaqCaK2rDyUl5stiO6ucqPAoJZy7mV2IKux9g8IhzA5pCEZS6EJZ+fusawb/zZ35YatrIL73Y8uG97eYhaZKwFWxFIpl0vOfUKg1CpTauJRJvkhfzFHeH0pV3ZxKOXNdqHtvfL62tmzZ6OUgVBjRhx32Tem5dkCGeYgxPPhD50PmdlL2bk4khC3szRR1r2IP2UjQpiBWM5rgqUYlnWXjNeWb5/5/OurPy/KCga6FPi/f9k5E/t3pAZYIcjARBp15dirjBrKJOKOJeKpaDLAfG4mds18dPmrby7yBLP+8OdrykLWGwvfnPvCCwGP/4JzLzx54tACtxWIsaKJknNRkbi0o0BqEM0jCqCQLzUYfEKt56RJcBz48ISwFgc8m3db9z8+942ly73+YPeePbp361qQ62/fLtiz25G9uxYW5IhlmwioEFBW752qTF+GO4i7qzSORrt5246t20t2l1d+vGFzRTTO5qAxNlbzyIEaGHRc8Uj3vOwenQr69TmqT89uXToXdixwFWZX1T9ShO712613lq5474MPtxfvZK9PzpPOyfZD6Kjjhp0w8miGbChEOqnYG+gxeCWbdJkBYJsQitWdS1k1lP028cqv/T5RJlTdpS7YxMmyATT+/cJWPcL/tmfRNBqw0YBrru5fkS9tjeZtJUoR57ss37py69mXlrw97+UHbvlFF7+bNcM0QHZnBjKDVomYqaqWfjSUHG3LX27CtGrn2oeFNYV0gtXqYOmNH8mEghcJudmCipWvy3Y8MmfuhAkTThzV9+gOkJ1MVe5l+1NUQTYSyQo0Ws+uNe0WeIEClOBcXl9OIRreLtSjgLWrwpo16/FPP1l71umnnn7yCVha2fsETZ/DjsmqiGyBDCkBNB6KU+U+jyptgR5b3alif3nSw5IxhpnjoYQnwLxc6/0N1otvvb985Yqzz5gwbdLRHZh3FCtzp2LeLBmWsGFrXyHWzRIbwJLhRCxbdiwT+Nm20/rnzMeXf/rJhDPP/HgjO4J81rFd3gVTTj3nxEEUWKTUErRXGLDDO8Q79NsZA42IDHBiJBmTKqt3sNsw2JnF7Kdtu+Nr1m+674FHKzEf0IFBgfUHWG4tx1En4p0Lgkd0KOzVveeR3bp0at8xv9BXkGdx8CYJETPZo0ZxVM3W7WXbtxYVlYfWFpXuKAvvLtkZqizzMKkYJidjjAN7Obw54CnMDXZol0tEvbt3792r25EdCrvnEpkQR975Ea1mAR+Nn7dSI1NW0Zata7aWPPrWpzsq3XtKdpWX7s0N+Pr16TVq+JD+fXoM7s1BGYK0BJYxBEZcGDy2FX3uDb8kLTtp7lpsRIWDX2WFRY+EANFQ3M/SeCao0V1jPhkharoMANfElQz2a5MFlsH8rp80mi5mZZZkZCUq2PAo6stH3GBS4zjXjgkOLLJ1Xa9VIVarVDC1R6SHbJgl0rOBF4KGq7oJI3yQNfZdXLxQISD3L4e039Z7wwaNvLXlRyRWyZF1KEBActH2ZHa2u2NHeyoq069iIcEUyFZhU01NvdFnXgBYx8rSGBtugTk7y+K5ebJdVPGeZHaWuyAoYwPCDKYHS1cJrI7aNmfJNs8M+Nn3fdkisM0SxWDxR7cST9S4EKcO+plIhJ7Kgt3KhNW+ncRvJxHxyTpbImTxEH20hmpg0EztotYh5dHiMCHj8/aKLfc+/MQXpWE0SI5vuWDa1PEDc7KYURVh3w+bPhuAlfJ0+quJ19pF14RIGYllehE0oiImXD4/mSE5DNqVUWtHaWTT9pKN24o3by/esr24aOduduLLY4eZFJJJLvRsDCfs38e+Q926deNkGjYEZJobe+6ycJm9huiklkS9MZeH/k1e0HtE+/xeXTr16FzYKT/Qt/sRhUFP53xvrj3Z0F4dRMrkDyaRC4FOVFWc+AqldkkJH+gn2Oc8YcUprnBF8nLWlVlrV+/izNYNGzaQejwR9brcHFKXl5vDpka6PxJn53Alk+xkin1A+tANucMWBoEIDOsgzMOqa1l4TSFGmR6f5YqPOW746OF9pTjZ+ptAYjWqtbXAMaMBCyNby9UmC6y1ML9GOtl5GQBmBDaHgaUIGxQwHdnPpBIZqkV0cMmGgHIkAKIymy0HmcXq5lR2EXANvIiJq7oRNz0AY4oDxOMyRIZYkbNqOQTAkXCY9EAMZFMyhlqEYiQ5cahpYBYyLFgyGo95vIxBMvotucaAzyXSErEZQZLGsmXDMt5ToEj3IOZQ3hNSAtiZSS8UB8Z4Y58OTCkj0XNlB0pCM+CoHLOnyJYmpF5gRGDrbj8zl5Mxn7t9w4ckhGabBghnoDmSDHnc2UQ488nXX1v4Xr/+wyZPOGnMMD+QDvL6WJDKDCHZmBMa91GuWbDzIS/IvbzGQa6AaiFeOCJrdWGOTxkhbv1BA68Jq8Ss3RArLQ9zvirb63LhYE4oU7d0c0Dgh73/gGR2DGzfvn1hTuCYo3p1bJfbuWNOQb507zR1YTcrfhmptXVTYo9jSo6zcN6dlZsNwQSwB3Ft07F0QGEATQnlkqEDd1wGR+hyCFVM5gLdCcHjXjaMW/vFkuUffrx+0xe7ypIef8IblLvbj6FblgolIn5XuSclm5RJ7uu723wibp1wnXKnOFqbNV/2KdSeZLts3+mTJ0w9eRzMJzYaOTTbW5zZ3x1wa5PyvKF9yQO4YTwMBw6GAwxa2RsfMpjE1oEiruioRyoq/blBW7qgYaJFMGJLo1TcpZkf9EU0yA0VmE4k+z06/g1yIGwxj7PvlS11wQzm2bLphr0lYqQy6opyIAhyWOxpYMmh0N4gcr7yQIJGbBTFH+ZYkfdUKlxJHjnlmcyxAbVMrpIBQuQ7gp5VPQJK+zhsF8A+Njgv+JwLnBDZy6wszmLWd0jiclYHJa3srKyUK8iqHRsLWa7rQWfaF5N8We9FlCRBlBQXybjcqH7E55s6ZVLf7n2OGdCrU4HgJNOT2Q8K9E3GKt1ZeUSr5OGgAB2a9dF5C0Oqdt3Ci5DUVnayZJPq6uXl8AI/PtdIuLNz1rG9fWjKKLRuqw+EsWNaRYWFEYVz09E1WaPRrl1Wbm6VzYexDnZ0kdli9oUSD6sAaTRiUXH5nh+0oi77ffxoOXQ48OOi2ARYBXHt3MiEaUiBE6It05eim8hS4hw5jyQWZ0KDy9M5K2fysG7jh3UjkiWrd+0NJ/eE4sw1jJE3n9/tZUp4NCta4pVFvQ26pCcqWrhNCSSJ+osenMCWjrWEsh3QpyeWIvLHNqAQXJ3RBkXeNgIZAG4b5dg6coEE8IupCcMd42FovkiEuJXFdB57mYfAlfy3NUwESbZ0y9PlXwNyKd+nXbbUSXvWBGyP/UJ+KVAdD1DttjiMHYHB4hT2ihaSsUOijPh8AU/QFjo6Awn5GgVI6ogsw1+peHe7PbLBYTKe7c9C/fUyVI+hQgpGyybJhhDRcIyXTF63t7qqypZyWLtR6uUAmz7a2peP44UxbaJBMsBpz/wRZGA/b2Jj/Bc9EjISUUYo8kSe2zWkgXyDAKYnsZDKlYXlHPkO+Z6KeLRrXlaPMb2ofZjIKU0OFmRus5zCUH2iTHqlS68nim2aC+4EY8cLGbmkFwIwwhxbA66GQAFgfmLgwTSSjHFkc647my7Avgsi8uVpSKee+zxtVKXTk2K6uAfG0OUDZDk7GyO94D6PmCXo+3jo+aXRij5MBpVgSUU3G7HHv0XTdUZXPdr1EY6wbyUzy7x+GYSFzTJDEUtA0jp5cAdSgflcqivzSG6C+/oD8lz3xYdafE4waONn8036RMAP+Cy2BCiio0D3m55rOsedL9uowwBwGy3YjMwWLQs4ciOUaOxoTWEWoUQRf8xescf4UIYJQj8eFBMZLxf3g2qQ+rUtNapi0mhUXh1UlFCCSiFWyoDfzbJLIhfqVJCzo72bnMiMJLTBgMjdiHQvRNq04lYWjad8XleWz8ueS2L3RHbbuirHBGG84CQlbKfMnfPmyIA3qFzFkyohq+zXuxQmdg+7SB0DNcPHPh9xeMSHjZ3EciC1wGVFI+F4LOoNuL1ZzMj1cjCTRqPCWyJr4JWkYwCi7S4vD+bmSxzhaFauYL3kpsrYQkGyyQUKbVVJVVcPW61PS8cl1hTJP/FQ9Nw9+MicQUY3ZaSWi+rAJRZf9hAB9sAVug/yE0z0BD3s5yHbV6HEph1dY3/EV3J6G8gqYE5sHlCYiwe9kTLppiLxaMDr1xqudVD9+Rjd2Oa90GZ72n+Iyc4ZMAzakWuJiChpazS96svedzrKSRUMKaAUk5EA+2SD2/ZFB4DhYR8FRNy0Ucqj3rswQ8ah9VKS1E0skineVXWybVazUyez4auoq/qqbf9pxaKhbRdMm8wd8jfFhB1aHg0PC3SAfZs52S5E1zfps8WXNEoEnNijJMzBXDRzFS/7pKQTjS08ql+L777ATpg6HZycU+rhkKZUrmq6GOtENLpTjGsxmxfpRideJBZil3XMAiv7BFydMWfoSwpEfwIvKKbo+jIp1u0PBNFWEJ7kkDs6IPASiaayswSjuGxtlZeix9mh8LMtwQondiHwIRtYMsSLHdJNBFmiLxFVBCDJzieGHMEzNEB7bnXUCrFMvEAltyTRgIsOE0Me0ODL8wXZKRkcys7NrYyIxUIm/bGwm4OAEknOXWOjTJkeZAOfECxkUwXVYSdFzmT1FNipKCSvZc9vUIoqG494XUmp22AvP5RpqcAIWLoPAflx2ayUj6svgsTiMZZGc9YFoMuxEAThkmQgIMkSLi+4GAmFCMMUJCZtebG6sHsMIeREbSCbA9dBSQ94j498aI+5imTnQX8SpV337Uyh50rtlZwygUFS1ETFJyVNj3z67JllsvkXG5kRiTCGw0fYYhoTuqA4fvXeSdIjk+qw8oteS8yMPqP3wllO8pBZZilUfCEdcti82h3w2X0NIfcwuQwAHyYFnSnZ9DKeBEoxpmfvt4POBGAh1BEfNGlarIoDhE76ANuhUG8LHokAx6FfoC/iNRpnq10vNDOGhwbMJCHEohLM1BgRWEhqHThV2XboCbdQDKi/sQjzX6MBsaWj7WFnFsgREW5nLQZCIVNt3TZgoy/eVayGD/su20/Etng5hcIOj/hFI5EsaoEoP1iFQSgvcI5sQreU7Z3Y0AoA8x2kOT/O3Gy328dJkqFU2d5QfvtglhvNHaoZyk8k3UlG7G2KPMlInJ6FUriP8BpcIEhVFsvDsWwbNlDkJSfMLkQ1pFLbC6AllF3hpacC28SwQyhwRy7hA4R52Wpa+gLpl0AkoQWXWL7EKZNMRbTRlLvMdUuSI75nurJYjyQm+y13qYV2DsBakpBXOPiKdgYFNpBKzPI5hJITaJMaq1+JIRrSWAZNk5SkmdclfRHRd2miduyEsAuxIXeJ106e6PnI/h6Md4G15J7trMkmNERiEboSOTIf7vC6DAAfXuXd8rnVVojKY7dhrHSIbmdwSskTMSV2Pvuq/lv1WP+fqg+I3vlUVNK0y05Zn50gaa/rchKes9s4j7bKsJYtUfMfGcIlsUnk/EWXkj28uPZL3PZrJTflYYA+hQxlIoWrOSdarpQQP6R6+qVPdjjErL5R/qSHE22NZ37KHWz6koToZ1L2vLURyf4Ee6gMSlQnkh5NtV/tfwkts5MkBlxBl4/Tx6lzAjOADvnh3ED9WqhNQ9/9iLfDSK6rAiv9PLQTIKnylH4J5MuQr1521Hhi9a1CLmGJ4KpAYHWomv5WvYYTTpoanjsp2HFKaZBUejzVn0mU+GsA5bHsLWdfVeH3FYH4pkUicdg2/+pazVu7BO3sQ45DkcZX3510tZA1oHxNanYkmNqrIstmFlwVFY2Mvr7kM/y9AeAML6A2St6+VpYuY5zMavN0Hg/SkSZVDjKGAz6DsCrSvxz5vvxUyTJ5XS3yDoilFXmkZdPOe9qzOtOF6wH5ctjiOPYFOeBz0Yt4jX9anPaHeGnofV833FUdw/5f1FTxvpRKNc3VILFfBF8KK+80oeqv0kPbQQ8Inx6iPrd+XPd9/zhqy/i+cPWRlJ6XKnd9n+yLvNrFh+nxVHkfEE8NYapjaMt/D9Nst+UiNXkzHDAcMBwwHGgNHDAA3BpKydBoOGA4YDhgONDmOGAAuM0VqcmQ4YDhgOGA4UBr4IAB4NZQSoZGwwHDAcMBw4E2xwEDwG2uSE2GDAcMBwwHDAdaAwcMALeGUjI0Gg4YDhgOGA60OQ60WQB2js7AIRvV2JesbeeE97y8aJS9bWXRIQ7uuijeDlLDjWPC1FeDhcOyF7nzicaTHqCGKFrUy9Dfgux36gk0OFWlxorkFFMLUntg0q2d/gNzpD5aFhz8p82Z84jwZ7ep2sJnmv9hSD9iHGFOhVR5TmGxl5aKdOWGfWCirsjPtOKqlZ42i391FwAAHXZJREFUC8AO6FJgXDCAwuPCn0cOHtEAbO3GK04Eq41DfJLL6SSWVVJSosWsn6hbv9L4cTuO2mJrfn9Df/PzPD1Fp0o4Dt7uV5GoWnhSzSis9G8zwe2Q7ThaF/218ZDmD/oGg0FtzhwCiBBAoNcWPtP8D0P6qYF6pZcFPirJQV8O6aIE0alUrUoPlrHuVlPhGstB7RnxlWx1lkyy4SjSTUtryZIl/fv3p+Ht3buXLVhpe7hrw+CKigoO5uRbipn7zp07KV3Oqaa8tf+lwpT4SYsATrqNJfgrCm/o/4oY28BoqXJO3eATahE+dN4RFhx+TvUrLCxUYUowkJiz2RsYc/MEa+3018alUCjEyX8wnAZL26cUOIV3x44dise1fZU5/ocb/SrGqY04aCnaiGhHPFJk+CjoIoExZmDjzJySqocSctK2L4qEizxSQoqy3bt3d5iCBMStfSjHM93hWDnwVEnKWdlOAIpf3Tgct/M2ExyG/hYvhfS6kV5JtCJppYJIXlFYLU7tgQS0dvoPzBE+qi0p3ILENYbJZM/Dmf70RgQf3nvvPYwZDoqVlZU57sx3uCAxk+tZE9JGTukxbdy4ESUDFRbrE8WG/oqOqEbmGtNiiIgy5hPwm88Rl2vWrBk9evT27dsBbyQmMRAzEE61wJ1eOWqMsJk9Df3NzPD9ktO6wV3rBvWEWkRdOuKII7DEDBo0iN4htYi6RD3ErJJpGlhrp3+/4nAeUXb79OmDNKA7jhsNmKYN/8mvEyaTHYch/RQNl3YH1c0dnUoVKhRfmhJSPZNL7UDa2iwAa1EdmGF8KCdaGnIQaagFRuGpKnxgeMobaw9maiLkExx8y1e7d+9GVqrKorKVkIQ5MIaW9TH0tyz/SV0rBnVDDS3UInpFSHz6f/TtqHvUIsLgYGpCZlYhqOJqpfTXWAHoA9F+tQi0FTO6hE2CbNYYPtM8Df1aIkhjWEE7UhFNO8KfYm0tSJyJJq8mqeu2xKgSGekR0mNisEftfshByo/C49KSSw+pbm2QKnr4CvsGeAzi8tb5BIe69X5gJC3oY+hvQeY7SadXDHVThejDgbjp41UUVnpI5/MWd6RT1RrpP5CBzP9ADiCpadQ6pQP0pVC0pR8YPtN8DP1aIihOju5EF5biozvVWtCXLLTZWdBaPAo/3Gla6qbVUU6AKAHoAiuUauAa7+grSEle0Va5Iy7VXk1sGiGe6e4aI2lBT0N/CzLfSTq9hjhuKpKir1YtqhmF5XySUQ6HZqhy3K2I/gOZSdvXuVegL0KALjjLwFoL+pKdw5l+pwbCB9RfbTU0IngCGKNWHVjcGevTZgGYtsSlvXXujpuSwFihmKpu7rytrYRomWjJXPSqQG4G6nD88pe/RHTS1aIq8CE2bZLIzHWc2sOAQqqmVlbut912Gx1/6Cdf0E8YR62pjQ8t5Q//6S0p/6GBjj9lB/8pMsUtPCkFpb+liKwjXRUHkEcWtCygnOu3v/2tVh6+pUQ0hgzMRW30//rXv6Yh0BzIFA6nIdTBipZ6tV+3xmmntAJGUqGKisRFf8IpkZYitcZ0a6SfWSn//d//rQRr1YJ+7HM1xtCCnkgeiFQ5AxmIUCUG/zvvvJOmTRWiOdAEdCCAt5oppywOBFSaidNSEGv6IZVQY3Yc+pjh90wctswoltFcwSqEPjUGB7TRHqgxu3btwmal9YB6D07Q/6I+OdCeIblAPkIt9Z5uByRRraEZudOhQweyQ16ovkgfyOYVITOEbIcM6IdImllxcXGnTp3UP53PGHK1M0QbphSclunE0OIOqge8xfSSTomWCIIJmtXfKaP0YJngrpF+rTNwW2sUUpKWQovIBILTaYAqkAk+Qye9N6cKEUaZD+W0XB5BAqqZUxzpkbSguw76oUpxS5stq9rQ5luQ1DqSpsEif+Awd5Wi3HlE7CjxZATmkwXaMiXlgDFx8ogQ0K/qSKKVvjIAXH/BaUOluugaTdCrc+fO+hmyCU/qEGGoJQpy9cfYvCG0E6p1WhFX04dg7fg7jzQDFUbNS2BdqUGhdmlx0ETJBV0feg8UB9KfZqk8R7byNtN6P/tlTGlWfZFCodpwaYlQf3BnuJRJpx/mKzbgCefBLdqCWtT3y3UmPKZ3bnDDagVaSgHyYDsO6M9YAKuNfu39UHmgn5arkioTGO7QQLOFMBiOj9PXwa05wof2y2psWrTzieMgDO09wxuFQ+3BOQwAN4hvjpSkTiBAeVRhpC1Wu2/pjaRBkTZXIICWBsAdoclFbxSJmV6tkaTIo4yt61C+X8+ANWAs43H453BeZ9g5/pngcHo8aOrMfFaSHEGJ3CRr9BvUJ11CZQLx0FAb/dQfKpVy3mE7jUI7qRlCPGTAYW2zVHseYTU+WvnhNszHMgHzaRfaQ80cypWS2uiHePLFCma6nhm+jpn2S0dBmQzc4qYskKLgLj02x+TAI+KUgiDjeqd0uDBgZFqhNCE9GWdybMK8NUlU1Bvioa5zp65QG5A7tAqEKZUJ0YM/AMadR6oLjoy6qP1QC0mQTdXHgQxCAJEjuvw84kmmIB5RS6vOKOIhBqqgXIUjZUF28AR96VnDbS0d+hPqn2nSH1IhjCzgUD0ecYmgITv0IfCE/nStPQMxoDb6KRTop9pwp/5o1cpA/sN8NerAZy66CNqWIRt/ZThhcFAWrETCP6Ou2uhX4hWDVexkIPFwkgpPFhA4XNQWrSe0BWQmOwwiUZFO2LTw55FKxSNuLSPatVYwp8gyqmiahBgDwPWwUSs3kqWoqIig6DEMRtKSqe7cqVt4UnXo01FLqDH1RNfsr6nTWulJWSs3DkilZmvXkpageYR4FVXNTmNdCaqI5E5Lprk6UpI2DMH4MG5Ef5lsUiI08rriaol3EKlZgFTSR1mhtkCwavCQDcJpFngLPLQEjXWlWRv9VCHVKRmRIRfkSDujdcXVEu+o51o3tBtKW9CeELTQeNVNHnmkgDJwDLs2+gEthJLik7aLDCQerlLhYa8jgqgzWm1U+NCoabMEUJUXBYBHyovwKlq17eDTEnWnOdJssxlrKuZRyxH6QJRam//1r3+dfvrp1JjTTjvt5ZdfRpiq1ggYazNuqnSbMB7ap9ZmZBB5oQ9x1113UeOvvPJKHbcjAK80TBOm2yRRQbDCEi2ZZvmnP/3pzDPPpJV26dLlV7/6FUlQLtqkM5b/zz///MSJE48++mh4PmfOHGhWff2HP/zhkCFDkEQTJkz4/ve///bbb2emLbFG+skLdZ5dAK+77jqt/Oeee+66deuapNCbMBI6N3fcccd5551H55Ktr6655ppXXnlF40e402mD81izyM7Xvva1zZs3N2HSTRJVbfTroCltmQYC8aeeeirZefHFF5sk0SaMRDv3N91006RJk7D29+zZ8zvf+c7KlSsRm7yiA4Ep6Hvf+x7NmbejRo168MEHSZ3CIgDNRLtNCKgmJCmjojIAXE9xUAMofoQ79fvxxx//n//5HyrQsmXLJk+eTKum+09dQRsAG2gG3OuJrtlfa/tUwsgCGdm2bRsLMIYNG0ZjoHtBBqFcdUcCNzuB9SQI85VIbM633HLL7bffzgKYzz///J///Oc999zzu9/9ju8BAO6qDdQTXbO/Rogw0EWn7Y9//CP6Fo90dOjRY0f57LPPfvOb33z44Yesx3jnnXd+8YtfaGeu2WmsK8Ha6KcisSfrySeffOyxx77xxhsbNmygXTjKZV0xNu87+mcvvfTSjBkzoPaxxx5DTf/2t79Nv5MWQY269dZb8aSHsWLFCtoyGNy81NWfWm30QzwdU7oONBDqDw4acgbWH+oJUmXt2rVXX331u+++O3fuXLTeadOmqVBFeF5++eXg8dNPP01n7rLLLrv22msXLVoEX+iYqiqMOwPlUv0l18AQVERz1c0BFCwCIIlOOeWUb37zmxqYug6A/fWvf6U+4cPAHncqir7NnDtkKzHQhuinQ92rV6/58+fTZf7Rj35EM+atZpAA2pPIHOLTKUHcTJ8+/YYbblAiETcXXnghrReHBnNymv5V5rhVFXj11VepOVClZMNzfVy4cCENFm0gcwjej5L96OctbeHiiy/WYGQkY/mvlRzycKDjAmlwG7I3bdqEG61Ri2D16tUUweuvv84rWormizsfknfnsfkdNdKvFCJ2Pvnkkx49epAvOqCoj7RlBpWUyJYlez9GUeGpJHjS0YHPCxYs0AB02h566CF1kylw99FHH1XKCZ9RWdgvR03yaDTg+jsqdNNUOIJbSHwQV78544wznnzySSoQ9YaWDDCgYtYfXfOGQLvdsmULaUIbblQuYGzMmDHIeiSL6o70UpV4HM1LXf2pqf2Zug6fBw8e/PDDD9OAaZkowU888cTZZ5+t40NoNojR+qNriRBUD1hNlx9VmOwgT6ECsvGnRJCbeBIART8DNUhIrZF+pDz8x6g7derUbt26HX/88c899xxCtiUYXFeakKSmEUQ5tZ16Qh8UfZFvOIkB9zHHHEMAKtjAgQMxhGKQICTNgRIhDP6UEWVXVxpf5bva6FfyIOyss85iXIyxMGhGJUBYUZG0LfCWz7m+SgLriRsGOhUeEQT/lZl0GqhCfDx+/Ph//OMf2n4xMZKv4cOH85VKJALrXNF6kmm1rw0A11N02rXnTjukAdNEEaPUbxoti/qpLtQq7rzFikuweqJr9tdIEz0thH7DAw88wLj1z3/+c5po7969wQBtAzjIEcQTuNkJrCdBlSawFwp///vfY8hCg4f5iP6ZM2cy7sj3KltVvNYTXUu8RgBpLwFRglhR6Q8h4K5a/nFgS58yZYpCRUvQWFeaNdKPpoI/xk+s0NgPMd4ymErtqiuilngHh7V6006pQnRAGXfnos6gATPuCBJAFxWMjt3QoUNRJQlJT1SLjPLiLXjQErRLmrXRD6widtgSjukFWLO068ZAgM6u5yulmWC4WxCD4TO0IVuUkzRSFABAl/YLVXSAnnrqKSYkMoOMUW1a9zPPPDNgwAD4D9mM0OsklZZifjOkm3EaWzPkuVFJaH+N9okD886qVas4Qo5uJkKT2kMdooap4ki7bcGKXlumoIpXVGX0GMQlWotKefKCAFIxSgth+g/iSXX92qJqKX+livvs2bPvu+8+mihdCjQVtuJjEsqNN96o/EceqRhqKTprSzcdVlWsa52B54rBjHt98cUXDFVqZastnpbyr5F+DLZQy9g2AxkQxpQC7LqPPPIICnFL0Vljush9RDmVB0Bi1t7ixYupOYSkzoAKKF74c6cs8NH1MJSRFhPBFMaoWkRSY/xftWdt9JOjF154gQFsQFcbCJSgB+vsejICpNH2ySP5ainiIUm5CrjCScTjT37yEwhmviGE6ZRDpoLS6aFpH3XUUeSIQQ0s0tQrRK4zr5sPWzALX20Rwxdz1c0BkIkAanmeN28ebvVh8t5JJ52k39KGaSp1x9OybxlZ0ZrkaGAKV1BFY0CbyVj64bbSBu4ylQlpqJz82c9+hi0dDOatStKW5XAdqetEAWwnjDjqDCAdd+eTSy+9lOOloR8wppNURyQt+OpA+iGG6vS3v/0Nyqk/PF5//fVMkmhBIutOGvKo+YxcKP+pMzroS83nUs+uXbv++c9/Jh5KR6uZZs2pcnUn8ZW+3Y9+MOnHP/4xEOsgE7WLEmFyKL1tKCFTTPRTkjR3Xyl59UZO3f7Wt75FF4FBawJje8OHUQCkEFoNPjCZa9y4cZjoYDvD29xpFDq9pt74W2kAY4Kuv3+DvkIgbKGYep599lmqDjoBqPCf//xHp03SGLT2Uwnqj67ZQ+ish4suuoiOJ22SiYi0AaCLSUzIIGo5zZiOKhfuZqeungRpfnAbDsNb+vW6mEe/QfTgw+g7ZMN/hKZ2kuqJsXlfQyEJUnm4IwexmmB1IC9kiorEGPb7779/9913Q39mqu+10U92qEIffPABGaH+ICiZalDjhoLNy+/9UwOHaL9XXHEFq4+Yag6FavWhzmDqhOf3338/dlE8mcuN/RYAIAqqFhoYxUTW9o+xeZ9rox8dnency5cvZ+kXAMad2sXSgH//+9+AHFWLTKFBas9Vq1/zEr4vNXZQAGu/+93vvvbaa0yEZvAL5kMSTIbhZBBVGAcM5zryyCNZHUAAekswnwJyFIZ9MbYlF5XMXHVwQJVdDXDvvfdSGxhJ/fjjj+mmUQ0wp1DFnQ5mBmowCl0QhoMOJmuQyAs0o7vTgHGr7qiU0xjqYEVLvcJCpUmzSgFBiZ0KcYMtun///tifEa+8BXozkPlKNhQCVKyyQL6wjI3KA/28YhYxogd/xCXoxZWZWaiRfkQkQ780gVmzZiE9WZ+NrAThNMsZdUdThM4333yTnij1H2u/1hma7de//nWm/DA1fenSpSxUZR2qvqKlkAUtDsWwFsxRbfSraFLyADl6QoynQjlkUzpKMA4CtHi90qkbDLJQBNQW7hiuVPLQDcICxMJO/LFpUVLM5oN4ZJFmkD5ruhBuwYL4KpKWQQ5z1c0Bit9phJhAMYQy6MJIMHqkwhufOzW+7qgy5y2mKhZuKj1KfIu30jqYQ1uF1UhM+j3Mg6P7DP8ZT0Lx4iulnwCOXbeOqJr/FctM6eyrFkIHAhGDLW79+vU4dMQOB9jMHRNF85NXb4o10s9XMJxVAMxjojkgQzEOKXrVG2FzBqBuwFg1UOFQjZaetNJAFlgijBEFrZHpxAAD/lQ2rUjaH23ZSlUb/cpqRSZ1kzuKAPq1OYDEmYBbdC4hCXUc8qgnXDhQ37UI4C1GOMZ9UXxpAnSAWOagReBkRLPDY5u8MnHvCErIXIYDhgOGA4YDhgNtmwNmDLhtl6/JneGA4YDhgOFAhnLAAHCGFowhy3DAcMBwwHCgbXPAAHDbLl+TO8MBwwHDAcOBDOWAAeAMLRhDluGA4YDhgOFA2+aAAeC2Xb4md4YDhgOGA4YDGcoBA8AZWjCGLMMBwwHDAcOBts0BA8Btu3xN7gwHDAcMBwwHMpQDBoAztGAMWW2bAxwidN1112ke2TMBB9s+cGfzBO7sOaCvuLNnEHe2HOHOtgaOf/q+m85XfMi2DBqGXSbYRUjd7HLAfhrOt4RhDwTnUT/nkW2EufOhs7eDQ4nuCMErx8f53DgMBwwHDo4DBoAPjm/mK8OBQ+IAZ2P85S9/YYe1vn37cp4r6MtWjmy8rFsFAbeKo6Asu5+ySZlupMV2g6TKjmDc9TAZQgKl+hVbOAG07OnNsT+cssf2W+xARGCNbeTIkXylWKt7BfPIiVjc+VzjZPdg7Q0QCVGB/dotIGb2kAJ6idMBeD40l+GA4cChcKCFtxo/FNLNt4YDrZcDnTt3VlUSzRJU4yIvHBWAigkWsjkij8CeoqxuoAjy4cATqAYm2c+PkyrYQ5GQwCSQSWAcXOy8yIad+APYitm4NSRYC+qrm4Q4wp1XIDSfED+REC3wTBIQpvvgO6kQEvKIEMVaKcTHXIYDhgMHzQGjAR8068yHhgMHz4HTTjuNvbgvuOACjprgoBjwEo0T7ASJOa2BM3l4PO6449jFnk3qSQbk4xh5dqv/9a9/DWpecskl4DenAXKKKqjJVsyczY66DHBy5O0vfvELThcgBh45HgcEBXc5xEIhnwNxOdeLhABRdkIGdwFdEP2qq65iV162/uewdE6duummm0Bi1GvQGh0dlZpguDnAwKDvwRe8+dJwII0DBoDTmGGchgPNxQEAD0wF2EDQ22+/nXPlUCuBTM7qOeOMM4BnDgZg1Bb/W265BQ0VvCQAx90AgfjfdtttqMIoo5iy165de/PNN3M2EUctQf7QoUOvvfZa7pyQQ2xALJ+g9aoRe+vWrZdffnmnTp04uWjRokWAMUdqYqkGXEmCA97BbA6svPXWWzkXXY/qIwzD1X/96185TJdTazBlE1tz8cmkYzjQljlgTNBtuXRN3jKWA2AqJ8BgNEYrBYzRL9E1AcKf/vSnHMvz29/+VrVhgPa8887jEWzm6CQU0xtuuMFRQPX4NizJHO3M8UrAM/nlvFUNQHg9mQ5PEtKTKOfPn4+GzbGsei4TujIHRYPKnEVPMDTpH/7wh5ijQdlHHnkEkObgJoAcBfr888+HBqhCM6brkLGMNYQZDrQiDhgAbkWFZUhtOxxgeBXbMoiLBZjRVhRQNFRMvsyKQusF6oBnIJnD/jAscwGraMADBw4EXHkEPlFYn3jiCWZyffTRRyAis6uIBAbhRjNGkQXjiZPICY+6zIcEWLlyJfZtPicYMZxwwglgM0fCQQ9dAcLwob7q1q0bxxhDIajMoa2o0dOmTZswYQImaOd0v7ZTHiYnhgMtwQFjgm4Jrps0D3sOAK46tQolFZRFCeYCF1E3UWdRSd944w201QULFqh6qjOkUJTRQYFMvnrvvfewHk+ZMgU9FcswlmrgFn8uoiIYMIwbBCW8YjOe4DFjxgTQEsAWDTwDqATDB00XVOYiOXxw4Akkg8SzZ89mjhgaOQfXY4s+7AvQMMBwoAk4YDTgJmCiicJwoLEcAH1Rc/kKkEPjBCnBRdBxxIgRGJOZk8Wl/uAouimB0YDBUQVFXjHNCrWY0V9gFYxkMhcqr0YLdqIQ4wZHSYLAXERCMGZycRY6g7iE4T5v3jwcpIWbABo5Nm0gGZKIkM99Ph9vGZbm+sMf/gDMr1q1qlevXo3NsglvOGA4sB8HjAa8H0PMo+FAc3AAazPISkpMOWbeMgjHXCqgjiW8mKBvvPFGhmmxUT/77LM/+MEPgE9CEh5Y1a+AUhYybdy48ZlnnuHDhx9+eObMmWi6BEO3xnyNJo1arMt8FVb5EDzGgMzYMMbkNWvWoDozBoybadW8JU40Y2AYPRh6gHys0Dwyveuee+5ZsWIFs7FwoAcTvjl4ZNIwHGjrHDAA3NZL2OQvIznAmKuahf/85z+jUGKFZt4yaDdo0KA5c+YwTwp1E/zjbffu3cFFwBitFBs17uLiYvLEEiawmblRl1566X333ce8ZeAZf8JgxD7llFN4xZjxHXfcwSc6ogzAo78++eSTJDd48OBzzjln1KhRd955J1+xBxb6N1DN5hsEA4/5asuWLcAweAzMjx8/fuzYsXzLjDBI5RNzGQ4YDhwiB1y0+UOMwnxuOGA40FgOoGKCcDocC+Dxuc6Zoj2qaRofABXwY/YyJmIeUZoBV01Imy0hUY5VwdW33IkHHRd/AN4JgEIMBuu32JaxTgO3mq4anHmFj1qwoY04iYo5WbhV59ZvlSSNQX3M3XDAcOCgOWAA+KBZZz40HDhUDoB5CsM4AGOiA/YAP6ARfy4AGE+dsaUDwIQkALjI2K2TvA4D80oxVWdsKVjq5wRmshV4jO7LjGiAnNgIQEh8uPMI+gLbirgK6gAtPsSpd6LiE/AY+Ce8k7pxGA4YDhwcB0wrOji+ma8MB5qAA2AbeIbOCvqCfMQINAKWIB8+XEzIwhMHd0ARSFawJAygCy6yXwevGL7lTgyqGXMnBsAbvMRfcZQRYrCWV9wVPokNNwGIE/TFQRLQo+jLI548Ehg6SY6LOEFxg74wx1yGA4fOAaMBHzoPTQyGA43mAJiHXqvTpvRj4E1xVPdeBjvBOaAXvRbMAwuZBY1NmMBqbU5PktgcdVn1YHz4lkhUh9ZHR0XGgQ+vwFo1Qavi68SpyK3fojEz/AwNvCUVugs8OiGNw3DAcOCgOWA04INmnfnQcODgOQA6gr4AIZBGLIAc6Avs8ciWF4Ac4EcYHgmj6imwpwou6i/+ALZ+i4OQhEfTJSq0VT5RJRVP3HgSQGdXaQx8wmwsQBcsJ1oe+YpgGpgwfMiFho0n0MulCjqPhFd4xm0uwwHDgUPhgNGAD4V75lvDAcMBwwHDAcOBg+SA0YAPknHmM8MBwwHDAcMBw4FD4YAB4EPhnvnWcMBwwHDAcMBw4CA5YAD4IBlnPjMcMBwwHDAcMBw4FA4YAD4U7plvDQcMBwwHDAcMBw6SAwaAD5Jx5jPDAcMBwwHDAcOBQ+GAAeBD4Z751nDAcMBwwHDAcOAgOWAA+CAZZz4zHDAcMBwwHDAcOBQO/H8CvTqmYidRzQAAAABJRU5ErkJggg==", "text/plain": [ "" ] @@ -238,9 +248,10 @@ } ], "source": [ - "from PIL import Image\n", - "import io\n", "import base64\n", + "import io\n", + "\n", + "from PIL import Image\n", "\n", "image_bytes = base64.b64decode(vqe_result.convergence_graph_str)\n", "\n", @@ -251,7 +262,7 @@ "image = Image.open(image_file)\n", "\n", "# Muestra la imagen en el notebook\n", - "display(image)" + "# display(image) # uncomment to display" ] }, { @@ -282,7 +293,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Opening: https://platform.classiq.io/circuit/e57a3c95-4185-4ac7-8eda-0b41e8de8779?version=0.42.0\n" + "Opening: https://platform.classiq.io/circuit/4e6ec74f-825e-4588-b50e-546b95d1b2f9?version=0.42.1\n" ] } ], @@ -311,14 +322,17 @@ " )\n", " save({\"result\": res})\n", "\n", - "qmod = create_model(main, classical_execution_function=cmain) # complete the line, use classical_execution_function\n", + "\n", + "qmod = create_model(\n", + " main, classical_execution_function=cmain\n", + ") # complete the line, use classical_execution_function\n", "qprog = synthesize(qmod)\n", - "show(qprog)" + "# show(qprog)" ] }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 9, "id": "112a1590-283c-4f79-8035-72936561102d", "metadata": {}, "outputs": [], @@ -331,7 +345,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 10, "id": "06500e4c-a04b-4cfa-a84d-41f96a0c68eb", "metadata": {}, "outputs": [ @@ -339,9 +353,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "Optimal energy: -1.8541486328124999\n", - "Optimal parameters: {'angles_0': 3.2528566097261744, 'angles_1': 6.931253517134524, 'angles_2': -3.1732937057222257}\n", - "Eigenstate: {'10': (0.07328774624724109+0j), '11': (0.0625+0j), '01': (0.9953505192895616+0j)}\n" + "Optimal energy: -1.85614296875\n", + "Optimal parameters: {'angles_0': -3.056840799296021, 'angles_1': -0.7504225570620288, 'angles_2': 1.9166459061480523}\n", + "Eigenstate: {'10': (0.03125+0j), '11': (0.04419417382415922+0j), '01': (0.9985340817919036+0j)}\n" ] } ], @@ -457,14 +471,14 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 16, "id": "bc2604de-0dc3-4615-863c-1aafbda475bf", "metadata": {}, "outputs": [ { "data": { - "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAHgAoADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA5vxR4jvdDuNJtNP0uO/utSuGgRJLnyFXajOSW2N2U9qm07VNVEN3c+IdNstJtoE3+cuoecuBncWJRAoAHWud+IdtBd654Qt7m4lggfUJQ8sU7Qsv7hzw6kEfnSeINM0/Tfh74sFhqN1eeZpk28XOoSXW3EbYxvY7ep6dePSgDr7fW9KvL5rK11Synu0Xe0EVwjSKvqVBzjkUXeu6TYXkVneapY211Ljy4ZrhEd8+ik5NcJeaTp+j2vw9nsLOGCddQhh85EAdkktpd4J6ncQCc9TWBaafcanN4ttL/AFHwzbzy6hcLcpqlmXuFjJ/dsHMq/Js27SBgY9c0AeuXer6bpz7L7ULW1YxmXE8yodgIBbk9ASBn3FRyeINGia0Eur2EZu1D2we5QGdT0KZPzA+1cHDo1tc+OPB1rqE8Gqi10GV1uGUMkzAxKJMHIOQcjr60tivhyPxb40j8SLYo6GFY1uwoAshCu0Rg/wAOd+dvf3oA9Ag1bTrk2wg1G0lN0HNv5cyt5oThiuD82O+OlTC8tjfPZLcRG6WMStAHG8ISQGK9cEgjPtXkmixG0+DfhjxFArmbQ52vDx87QGV0mX/v2zH6qK7HwFjVZNZ8VMQRq12Vtj/07Q5jj/Mh2/4FQB1F9qNlpdsbnUL23tIBwZbiVY1B+pIFRrrGmPpp1FNStGsAMm6E6mID135x+tcd4h+w/wDC09E/t7yP7M/s+f7F9px5X2vemevG7y+mffFV/F39h/bPCufsP/CO/wBrP9s8vZ5PneU3l+Zjj7+M574zQB29trGmXenyahbajaT2UYZnuYplaNQBkksDgYHWm22u6Re3v2K11Wxnutok8iK4Rn2kZDbQc4wQc15vqf2L+2fHv9heT/Z3/COH7Z9mx5X2rbLjpxu8vGce2anl0mw0rwz8PbixtIYLgahZKZkQB2EkbCTLdTuyc+tAHpNvfWt1DJNb3UMsUbMjvHIGVWU4YEjoQQQR2qvNrukW2mxajPqtjFYygGO5kuEWJwemGJwfzrzXxLdz6DqfiXwvatsl8SvDLp2P4XnIhuD+GN//AAKpfEFlJZfETSNPgn0qzs7fRhDp39rW5mi3q+HCfOoEmwR++PxoA9JOq6etlHfNfWotJSqxz+cvluWOFAbODknA9TUJ8RaGbKa9/tmw+yQSeVLP9qTy434+VmzgHkcH1ry7VtDitvh/qdm+qadfW93r1qzx6amyG3Lyxb41G5tvXdjP8XvXQ+JLPSLHxv4RhvLa0t9GAutiNGqQfadiCPcPu52h9ufwoA7ez1Sw1BnFle21yUVXbyJlfarZKk4PAODj1xTLPXNI1K6ltbHVLK6uIv8AWRQXCO6fUA5FeR3fkeX8Vf8AhFtuPs9rj7J93Ox/N2Y/4HnHfPetXStJS71Hw1e2+v8AhSGK1mD2q6ZZmGWZChDRAmU5BU8jGcj2oA9Bl8SaHDKsUms6fHK0rQBHuUBMinBTGfvAkZHWreoanYaVbfadRvbazgzjzLiVY1z6ZYgV5dYaJpl14T+I11cWUE1xJqOpAyyIGYBQSoBPTByRjuc1YtJrS48YeFpvEbQvbSeG0eya8IMZuiVMpG7jfs2++M0AejjVtNbTf7RGoWhscbvtQmXysdM784/WnWGp2Oq2wudPvba7gJx5lvKsi59MqSK848dC2Nz4UGmz6PDo32+fzZJoRLZrcbDs3qjKM7t+Mn72M1seDtIez8UarenWdEuJLm3iWaz0qHylVlLbZGXe3JBIzxnHtQB3dFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFNfIRiDg4oAdRXD+GdN1rWPCuk6nceMNYSa8s4bh1jhs9oZ0DEDMBOMn1rU/4RrVv+h01z/vzZ/wDxigDpKK5v/hGtW/6HTXP+/Nn/APGKP+Ea1b/odNc/782f/wAYoA6Siub/AOEa1b/odNc/782f/wAYo/4RrVv+h01z/vzZ/wDxigDpKK5v/hGtW/6HTXP+/Nn/APGKP+Ea1b/odNc/782f/wAYoA6Siub/AOEa1b/odNc/782f/wAYo/4RrVv+h01z/vzZ/wDxigDpKK5v/hGtW/6HTXP+/Nn/APGKP+Ea1b/odNc/782f/wAYoA6Siub/AOEa1b/odNc/782f/wAYo/4RrVv+h01z/vzZ/wDxigDpKK5v/hGtW/6HTXP+/Nn/APGKP+Ea1b/odNc/782f/wAYoA6Siub/AOEa1b/odNc/782f/wAYo/4RrVv+h01z/vzZ/wDxigDpKK5v/hGtW/6HTXP+/Nn/APGKP+Ea1b/odNc/782f/wAYoA1dR0fTNYiSPVNOtL6NDuRLqBZQp9QGBwaq2nhfw/YQ3ENnoWmW8VynlzpFaRoJU/usAPmHJ4NVP+Ea1b/odNc/782f/wAYo/4RrVv+h01z/vzZ/wDxigDZlsbSVbfzLaB1tnEkAaMERMAQGX+6QCRkdiar3+g6NqlwlxqGkWF5NGMJJcWySMv0JBIrO/4RrVv+h01z/vzZ/wDxij/hGtW/6HTXP+/Nn/8AGKANlbG0FzFci1gFxFGYo5fLG5EOMqD1A4HHsK5nxPo2t6hqUc+nad4auBHGBBc6nEzTWz5OWXCkEdCBleau/wDCNat/0Omuf9+bP/4xR/wjWrf9Dprn/fmz/wDjFAGfP4Y1Sw8AW3hfQbi0JMDWtxd3hYFVYHfIqqDliSSASBz1rqNM06DSdLtNOtl2wWsKQxj/AGVAA/lWP/wjWrf9Dprn/fmz/wDjFH/CNat/0Omuf9+bP/4xQBsX2nWOqWxttQsre7gJyYriJZFJ+hBFMXR9MTTTpyabaLYEYNqIFERHpsxj9Kyv+Ea1b/odNc/782f/AMYo/wCEa1b/AKHTXP8AvzZ//GKANO20fTLPTn062060gspAyvbRQqsbAjBBUDByOtSvp9nJDbxPaW7RWzK0CGJSsTLwpUY+UjtjpWP/AMI1q3/Q6a5/35s//jFH/CNat/0Omuf9+bP/AOMUAa82nWVzeW95PZW0t1bbvInkiVnizwdrEZXPfFLqGmWGq232fUbG2vIM58u4iWRc+uGBFY//AAjWrf8AQ6a5/wB+bP8A+MUf8I1q3/Q6a5/35s//AIxQBpLomkx2K2Mem2aWiuJFgW3URhgQQwXGMggHPtVPxLYX+o6YlvZ2WkX2ZAZbfVVYxOuD0wGwc46g96h/4RrVv+h01z/vzZ//ABij/hGtW/6HTXP+/Nn/APGKAK/g/wAN3WiSaje35she6g8e6GxQpBBHGu1I0BwTgZJOByelbFt4d0SyvmvbXR9Pgu2JJnitkWQ56/MBms//AIRrVv8AodNc/wC/Nn/8Yo/4RrVv+h01z/vzZ/8AxigDYj06yjhuIFsrdYblneeNYlCys33iwx8xPcnrUd1o+mXtglhd6bZ3FnGAEt5YFeNQBgYUjAwKy/8AhGtW/wCh01z/AL82f/xij/hGtW/6HTXP+/Nn/wDGKANZdK05dN/s1dPtRY42/ZRCvlY6424xj8KTTtH0zSI2j0zTrOyRjkrbQLGD9QoFZX/CNat/0Omuf9+bP/4xR/wjWrf9Dprn/fmz/wDjFAHSUVzf/CNat/0Omuf9+bP/AOMUf8I1q3/Q6a5/35s//jFAHSUVzf8AwjWrf9Dprn/fmz/+MUf8I1q3/Q6a5/35s/8A4xQB0lFc3/wjWrf9Dprn/fmz/wDjFH/CNat/0Omuf9+bP/4xQB0lFc3/AMI1q3/Q6a5/35s//jFH/CNat/0Omuf9+bP/AOMUAdJRXN/8I1q3/Q6a5/35s/8A4xR/wjWrf9Dprn/fmz/+MUAdJRXN/wDCNat/0Omuf9+bP/4xR/wjWrf9Dprn/fmz/wDjFAHSUVzf/CNat/0Omuf9+bP/AOMUf8I1q3/Q6a5/35s//jFAHSUVzf8AwjWrf9Dprn/fmz/+MUf8I1q3/Q6a5/35s/8A4xQB0lFc3/wjWrf9Dprn/fmz/wDjFH/CNat/0Omuf9+bP/4xQB0lFc3/AMI1q3/Q6a5/35s//jFI3hvVgpP/AAmuucD/AJ42f/xigDpaKw/CN5cal4N0S/vJTNc3NjBNLIQBudkBJwOBye1blABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU1/uN9DTqa/3G+hoA5/wD/yTvw1/2C7b/wBFLXRVzvgH/knfhr/sF23/AKKWuioAKKKKACiiigAooooAKKKKAEpa5fVNTuIPHGjWCSkW88UpkQdGIUkZ/wC+a6em4uNr9SIzUm0ugtFFFIsKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApr/cb6GnU1/uN9DQBz/gH/AJJ34a/7Bdt/6KWuirnfAP8AyTvw1/2C7b/0UtdFQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVzdt4gv5PGb6FdaUsERtZLqC4F0HMipIicoF+XO/P3j06VranNd29jJLY2Yu7ngJCZRGDkgEliDgAZPQ9OlAF6mv9xvoawdE1251DUr/S9Q09bO/s0ilcRT+dG6SbtpVtqnOUYEFR071vP9xvoaAOf8A/8k78Nf8AYLtv/RS10Vc74B/5J34a/wCwXbf+ilroqACiiigAooooAKKKKACiiigDgtdm2fFPQVz0hP8A49vFd53rzTxJNj4saNz91Yk/Nm/xr0vvW9ZWjH0Oag7yn6i0UUVgdIUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTX+430NOpr/AHG+hoA5/wAA/wDJO/DX/YLtv/RS10Vc74B/5J34a/7Bdt/6KWuioAKKKKACiiigAooooAKKKKACiiigCteWqXtnLbSPNGsgwWglaJx9GUgg/Q1iQ+ELG3uI5kv9cd0cOFk1m6dSQc4KmTBHseDXSUUAcRdNrQ+I9vqMfhu9ksIrKSxNwLi3AJeWNvMCmTdtAQ9s+1bOralrtvY6q2m6H9puoCq2KtcIoudyrljkjaFJYEEgnbx1Fb1FAHKeDrW5tYro32l6hb387CW6vb14Ga6fGOBFI+1VAwF4AHTJya1dW0G01YrJcy6gjIhAFrqE9uD9RG6g/jWtTX+430NAHP8AgH/knfhr/sF23/opa6Kud8A/8k78Nf8AYLtv/RS10VABRRRQAUUUUAFFFFABRRRQB5Z4nG74i283/PG7s0P0JJr1LtXl3iHnxNrM3/PC9sDn/gJr1HtXTX+GHp+iOTD/ABT9f1YtFFFcx1hRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNf7jfQ06mv9xvoaAOf8A/8k78Nf9gu2/8ARS10Vc74B/5J34a/7Bdt/wCilroqACiiigAooooAKKKKACiiigAooooAKKKKACiiigApr/cb6GnU1/uN9DQBz/gH/knfhr/sF23/AKKWuirnfAP/ACTvw1/2C7b/ANFLXRUAFFFFABRRRQAUUUUAFFFFAHluu8x+Lrn/AJ53lpz/ALuB/WvUa8x1FPO8O+NH/wCn8D/vl1r0m3fzLeJ/7yA/pXTX2X9dEcuH+J/11ZNRRRXMdQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTX+430NOpr/AHG+hoA5/wAA/wDJO/DX/YLtv/RS10Vc74B/5J34a/7Bdt/6KWuioAKKKKACiiigAooooAKKKKACiiigAooooAKK5u28QX8njN9CutKWCI2sl1BcC6DmRUkROUC/Lnfn7x6dK2r2W6htJJLO2S5nA+SJ5fLDHPdsHH5GgC1TX+430Nc/omvXV9q9/pOo6fHZ39nHFMwgufPjZJNwX5tqkHKHIKjsec10D/cb6GgDn/AP/JO/DX/YLtv/AEUtdFXO+Af+Sd+Gv+wXbf8Aopa6KgAooooAKKKKACiiigAoPSig9DQB5vGnm+DfF7/3r+5f8AVNd1pDeZo1k/8Aet4z/wCOiuN0pPN+HniB/wDno12/6H/Cuq8Nvv8AC+lN62kWf++BXRV2fqctDdea/U1qKKK5zqCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKa/3G+hp1Nf7jfQ0Ac/4B/5J34a/wCwXbf+ilroq53wD/yTvw1/2C7b/wBFLXRUAFFFFABRRRQAUUUUAFFFFABRRRQBWvLVL2zltpHmjWQYLQStE4+jKQQfoaxIfCFjb3EcyX+uO6OHCyazdOpIOcFTJgj2PBrpKKAOIum1ofEe31GPw3eyWEVlJYm4FxbgEvLG3mBTJu2gIe2fat+5vdRWPUcaI9wkLokCLPGDdoyrvIDEBcEsMMRnb71sUUAcV4S0W403WtRu4NFXQtKnhjVNOEiMWmBbdLtjJRMqVXg84yelb+raDaasVkuZdQRkQgC11Ce3B+ojdQfxrWpr/cb6GgDn/AP/ACTvw1/2C7b/ANFLXRVzvgH/AJJ34a/7Bdt/6KWuioAKKKKACiiigAooooAKQ/dNLUF2/l2c7/3Y2P6UIT2OP8LJ5vwzlP8Az2iuT+ZYVteD33+EdKP/AE7qPy4ql4Nhz8PrOLH34ZP1Zv8AGpvAb7/BenH/AGXH5Owroq6qXr/mc1LRx9P8jpKKKK5zqCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKa/3G+hp1Nf7jfQ0Ac/4B/5J34a/7Bdt/wCilroq53wD/wAk78Nf9gu2/wDRS10VABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU1/uN9DTqa/3G+hoA5/wD/wAk78Nf9gu2/wDRS10Vc74B/wCSd+Gv+wXbf+ilroqACiiigAooooAKKKKAEqjrL+Xod+3923kP/jpq/WP4nfZ4X1U/9Oko/NSKcVdombtFsh8Hp5fhDTB626n8+f61T+Hw/wCKPto/+eckqf8Aj7f41qeGk2eF9KX0s4s/98CsvwJ8ui3UX/PK+mT/AMe/+vWzd4y9V+phFWlD0f6HVUUUVgdIUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTX+430NOpr/cb6GgDn/AP/JO/DX/YLtv/AEUtdFXO+Af+Sd+Gv+wXbf8Aopa6KgAooooAKKKKACiiigAooooAKKKKACiiigAorm7bxBfyeM30K60pYIjayXUFwLoOZFSRE5QL8ud+fvHp0rennitoJJ53WOKNS7uxwFUDJJPYUATU1/uN9DXN+GPFD+I7jVIzp8lolnMixmR8tKjoHVyuBsyrA7TkjPPPFdI/3G+hoA5/wD/yTvw1/wBgu2/9FLXRVzvgH/knfhr/ALBdt/6KWuioAKKKKACiiigAooooASsLxi+zwjqh/wCmBH58Vu965rx6+zwTqR9VQfm6irpK9SK80Z1XaDfkzY0hPL0WxT+7bxj/AMdFYXgn5V12P+5q04H0+Wuktk8u1hT+6ij9K5vwl8mp+I4vTUGf/voVS1Uv66kNWlD+uh1dFFFZG4UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTX+430NOpr/AHG+hoA5/wAA/wDJO/DX/YLtv/RS10Vc74B/5J34a/7Bdt/6KWuioAKKKKACiiigAooooAKKKKACiiigCteWqXtnLbSPNGsgwWglaJx9GUgg/Q1iQ+ELG3uI5kv9cd0cOFk1m6dSQc4KmTBHseDXSUUAcRdNrQ+I9vqMfhu9ksIrKSxNwLi3AJeWNvMCmTdtAQ9s+1ausaZdeJbS+0u5Fxp9sk0ZhuYZI3NwoCucowIC7sqVYHOPQ10VFAHGeFvD2r6T4o8QXuoaldXcF08XktMsA87ESAuRGoIKkFccAjnBPNburaDaasVkuZdQRkQgC11Ce3B+ojdQfxrWpr/cb6GgDn/AP/JO/DX/AGC7b/0UtdFXO+Af+Sd+Gv8AsF23/opa6KgAooooAKKKKACiiigBK5X4g/N4RuI/+eksSf8Aj4/wrqq5Xx2M6PZxf89L+BP1/wDrVpR/iR9TKv8Aw36HVDoK5Xw58ni3xPF6Twv/AN9Ia6odBXLaN8nj7xIn99LZ/wAkxRD4Zen6oU94ev6HVUUUVmbBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNf7jfQ06mv9xvoaAOf8A/8k78Nf8AYLtv/RS10Vc74B/5J34a/wCwXbf+ilroqACiiigAooooAKKKKACiiigAorJ1XX9K0SW2TVLxLRbglY5JgVjyMcF8bVPIxkjPOOhrSjkSaNZI3V0YZVlOQR6g0ASUUUUAFFFFABTX+430NOpr/cb6GgDn/AP/ACTvw1/2C7b/ANFLXRVzvgH/AJJ34a/7Bdt/6KWuioAKKKKACiiigAooooATvXK+NfmGhR/39XgB+nzV1XeuV8W/PqnhyL11BX/75FaUviRjW+BnVVytj8nxH1Rf+elnE/5HFdVXKx/J8UJB/f0kN+UuKKfX0CpvH1OrooorM2CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKa/3G+hp1Nf7jfQ0Ac/4B/5J34a/wCwXbf+ilroq53wD/yTvw1/2C7b/wBFLXRUAFFFFABRRRQAUUUUAFFFFAHK+MNWOnx21sdZ0PSoroSCSbVXBJA28RxkqH+9zk4HHBzXN+G9G8O215F/wi3jGGfUWuUnnggvIjFNHuHmL9njwi/LuwQoIODnrW74rink8Q6HLa2lrqU8Edw4064fZ5g/dgyoxUqGTIGDjIkODWdb+Er+/wBQk1W40+w0qVr6zuIbeNw7RLCxMj7lUDfIp2EDjaBkmgD0KiiigAorm7bxBfyeM30K60pYIjayXUFwLoOZFSRE5QL8ud+fvHp0q14o1s+HPDd7q4gW4+zKG8ppPLDZYDlsHA59DQBtU1/uN9DWL4d1i41q2luZV0vywwWN9O1H7WjeuW8tMEccc9a2JGARskDg9TQBg+Af+Sd+Gv8AsF23/opa6Kud8A/8k78Nf9gu2/8ARS10VABRRRQAUUUUAFFFFACVyviIb/FvheL1mmf/AL5QV1VctrPz+PvDa/3EuX/NMVpS+L5P8jGt8PzX5nUmuWufk+Jtk3/PTTnT8nzXUmuW1T5PiHoTf89ILhPyGaKW79H+QVdl6r8zqqKKKzNgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmv9xvoadTX+430NAHP+Af+Sd+Gv8AsF23/opa6Kud8A/8k78Nf9gu2/8ARS10VABRRRQAUUUUAFFFFABRRRQBwXxGksYIrG8uJtaW6tI7i4iTSZEjfy1UGV2ZuNqjHfncBgkitfw7HFZanqOnjUtXvZ4ooJW/tCVXAV9+0pgDqVYHPdRWb8Q7bTrqzhgury+tr64huLWAWFq1zLLFIoEq+WFOVxtJPGCF59ZvBKI739zM2sTahL5Sz3Go2DWgZFDBEjUgDavzHjJy2SeaAOpvLVL2zltpHmjWQYLQStE4+jKQQfoaxIfCFjb3EcyX+uO6OHCyazdOpIOcFTJgj2PBrpKKAOIum1ofEe31GPw3eyWEVlJYm4FxbgEvLG3mBTJu2gIe2fat28u78x6gv9hPdJDJGLeMTx/6WpClmAYgLtJYYYjO33FbVFAHJeHtNv8A/hJ9U1u40waVBdQQwraGRGeR0LkyvsJUHDhRgk4XntWvqvh3RNZKyapo9hfSRqVRrm3SQqPQFgcVrU1/uN9DQBz/AIB/5J34a/7Bdt/6KWuirnfAP/JO/DX/AGC7b/0UtdFQAUUUUAFFFFABRRRQAneuWvfn+JOmL/zzspX/ADOK6nvXKv8AP8UIx/zz0kn8TLitKe79GY1dl6o6o1y2v/L418Lv/tXKH8YxXUmuW8UfJr3hqX0vSn/fS0Ufj+T/ACCt8PzX5nVUUUVmbBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNf7jfQ06mv9xvoaAOf8A/8AJO/DX/YLtv8A0UtdFXO+Af8Aknfhr/sF23/opa6KgAooooAKKKKACiiigAooooA4bxLNJeail9purrpk+jXYsJ2lsPtHmNciAqo/eLhcvGSeuR2xzraDcapHq+oaZquqQX08MEE6+TY/Z1RZDKOvmPuJMZ9MY754zdY8E6hqN9qEtt4jks7a9u4Lx7cWaSYliEQUhic4zChxWpoeg32m6nfahqOsNqNzdwww7jbrCEWMyEDC9eZTQB0NFFFABRRRQAU1/uN9DTqa/wBxvoaAOf8AAP8AyTvw1/2C7b/0UtdFXO+Af+Sd+Gv+wXbf+ilroqACiiigAooooAKKKKACuVtvn+Jl63/PPTUT83zXVVyulfP8Qteb/nnBbp+a5rSntL0/VGNXePr+h1Vcp4zG2fw/J6arCv55/wAK6uuU8c/LYaZL/wA89Sgf9T/jSpfGh1vgZ1Y6UUDpRUGoUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTX+430NOpr/cb6GgDn/AP/JO/DX/YLtv/AEUtdFXO+Af+Sd+Gv+wXbf8Aopa6KgAooooAKKKKACiiigAooooAKKKKACiiigAorm7bxBfyeM30K60pYIjayXUFwLoOZFSRE5QL8ud+fvHp0rR1zVoNC0e51K5DmOED5UxudiQqqM8ZLEAZ9aANOmv9xvoawPDWvXGvRzySRaascRAVrLUVu+ecq+FAUjjjJ+tbsjAI2SBwepoAwfAP/JO/DX/YLtv/AEUtdFXO+Af+Sd+Gv+wXbf8Aopa6KgAooooAbQBXF/ELVX02LSfLlaMm9WVtrYyqdQfbkV2gPAqpQaipdzOM1KTj2HUUUVJoHauV0H5vG3imT/atkH4Rmup7Vyvhj5/EHiWX1vFT/vla0p/BL0/VGNT44+v6M6quW8f/AC+FzL/zzuYX/wDHx/jXU1zHxAXd4Jv8dR5ZH/fxaKP8SPqh1v4b9Dpx0FLTIm8yJH/vKDT6zNFsFFFFAwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKa/3G+hp1Nf7jfQ0Ac/4B/wCSd+Gv+wXbf+ilroq53wD/AMk78Nf9gu2/9FLXRUAFFFFABRRRQAUUUUAFFFFABRRRQBWvLVL2zltpHmjWQYLQStE4+jKQQfoaxIfCFjb3EcyX+uO6OHCyazdOpIOcFTJgj2PBrpKKAOIum1ofEe31GPw3eyWEVlJYm4FxbgEvLG3mBTJu2gIe2farPi/Sb/xV4d1rRvsKRhZIWtHlmBS62FJCCByg3Apz9a66igDjtB02+k8WXGtTaONHtzYpaC3aSNnlYOW3nyyVAUcDnPJ4Fbeq+HdE1krJqmj2F9JGpVGubdJCo9AWBxWtTX+430NAHP8AgH/knfhr/sF23/opa6Kud8A/8k78Nf8AYLtv/RS10VABRRRQB5x8QoP7T1aO26/Y9Onuz7cgf+y13OkXH2vRrK5znzYEf81Brmhb/wBqeNfECHpDp6Wv/fwFq0PA1x9o8G6cx6ohjPttYr/Sumr/AA0u1vx1OSl/Fb73/B2OjooormOsTsa5XwZ80/iGT11WZfyxXVHoa5XwN81hqcv/AD01Kd/1H+FXD4JfIxl8cfmdVXP+NU3+DtTHpFn8iDXQVjeKU3+FdWH/AE6SH8lJpU3aafmVVV4NeTL2mPv0q0f+9Ch/8dFW6zPDz+Z4c0x/71rEf/HBWpSl8TKg7xTCiiikUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTX+430NOpr/cb6GgDn/AP/JO/DX/YLtv/AEUtdFXO+Af+Sd+Gv+wXbf8Aopa6KgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKa/3G+hp1Nf7jfQ0Ac/4B/5J34a/7Bdt/wCilroq53wD/wAk78Nf9gu2/wDRS10VABRRTHdY42djhVBJPtQDOX8Jf6RqXiK+7yX7Qg+ojGB/OjwP+6stUsun2XUZo1H+zkEfzNO8Aq3/AAikNw4w9zNLM31Lkf0pugf6P4y8SWg4VnhnX33L83610T1cl2t+GhyQ05Jd7/jqdXRRRXOdYh6GuW8AHPhjzf8AnpczP/48f8K6aRgkbOf4QTXN/D4Y8E2BPU+Yx/7+NWkf4cvVfqYy/ix9H+h09Z2vJ5nh/UU/vWso/wDHDWl3qrfp5mn3Kf3omH6Goj8SNJK8WjO8JyeZ4T0o/wDTsg/IY/pW1XO+B33+DNMP/TMj8mIroqqorTkvNk0neCfkhaKKKg0CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApr/AHG+hp1Nf7jfQ0Ac/wCAf+Sd+Gv+wXbf+ilroq53wD/yTvw1/wBgu2/9FLXRUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFc3beIL+Txm+hXWlLBEbWS6guBdBzIqSInKBflzvz949OlbF9JfRWcj2NvBPcgjZFNMYkbkZy4ViOMn7p9PegC5TX+430Nc3oHiDUtU1vVdMvtLtbVtPEQeW2vWnVncFtnMaYIXBP+8K6KRgEbJA4PU0AYPgH/knfhr/sF23/AKKWuirnfAP/ACTvw1/2C7b/ANFLXRUAIelZPiWf7L4a1ObOCtu+D7lSB+prWrl/HzsPCk8CH95cyxwr9S4P8gaumrzS8zOq7Qb8jS8NW4tfDGmQ4wRbISPcgE/qayx/o/xN/wBm60382V/8K6eNFijSNRgKAB9BXMa9i38Y+G7voGeaBvfcvH65q4PmnLzT/wAyJx5YR8mv8jq6KKKxNypqbbNMun/uwuf/AB01k+CU2eDtMH/TIn82Jq94gfy/Dmpv/dtZT/44ag8Kps8KaUv/AE6xn8xmtF/Dfr+hi/4q9P1RtU1lDIVPQjFOoPQ1mjVnLfD0k+C7IHqrSqf+/jV1Fct4C+Xw9JF/zzu5k/8AHv8A69dTWlb+I/Uzofw4+gtFFFZmoUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNf7jfQ06mv9xvoaAOf8A/8k78Nf8AYLtv/RS10Vc74B/5J34a/wCwXbf+ilroqACiiigAooooAKKKKACiiigAooooArXlql7Zy20jzRrIMFoJWicfRlIIP0NYkPhCxt7iOZL/AFx3Rw4WTWbp1JBzgqZMEex4NdJRQBxF02tD4j2+ox+G72SwispLE3AuLcAl5Y28wKZN20BD2z7V1EdzePc3yS2DRxwMot5BKrfaQUBJA/hwxK8+mehq/RQBzng3S7rTdC36imzU72eS9vVDBtsshztyODtXanHHy1d1Xw7omslZNU0ewvpI1Ko1zbpIVHoCwOK1qa/3G+hoA5/wD/yTvw1/2C7b/wBFLXRVzvgH/knfhr/sF23/AKKWuioAbXK+Lh5+oeHrL/npqCykeoQZP866uuV1E/afiLo8Pa1tZpyP975P6VpS+K/ZP8jGt8Nu7X5nU1y3jn91Y6be9BaahDKT7ZIP8xXU1z3ji3+0+DdSUdVjEg/4Cwb+lKk7TQ6yvB+h0Q6UtVLC4+16dbXH/PWJJPzANWqhqxpF3VzG8Vts8J6qf+nZx+YxVjQE2eHdMT+7axD/AMcFZ/jd9ng3VD/0yA/NgK19PTy9NtV/uxIP0FaP+GvX/IyX8V+n6lug9KKD0rM2OU8D/Lb6vF/zz1Sdf5V1dcp4PPl3niGL01OR/wDvrFdXWlX42ZUfgQlLWKniGzfxK+hgt9pSLzSeNvrt+uCDWznis2mty4yUthaKKKCgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApr/cb6GnU1/uN9DQBz/gH/knfhr/ALBdt/6KWuirnfAP/JO/DX/YLtv/AEUtdFQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNf7jfQ06mv9xvoaAOf8A/8k78Nf9gu2/8ARS10Vc74B/5J34a/7Bdt/wCilroqAENcrYf6T8RtWm/59LSK3z6bvnrqj1Fcr4S/0jVPEV93kv2hB9RGMD+dXDSMn5fqY1NZRXmdVVLVrf7XpN5bYz5sDp+akVepD0qE7O5q1dWMDwXcfafCGmSZziEJ/wB8kr/St+uW8B/utGu7P/nzvpoMemDn+tdT6VdVWm/Uzou8F6HL/EJseCb8DqxjUf8Afxa6ZF2IqjoBiuY8ffN4cWL/AJ6XUKf+Pf8A1q6kdBTl/Dj6v9BR/iS9F+otFFFZmxyvhr5PEniaL0ukf/vpa6K5uY7O0muZm2xwoXc+gAya5zQ/k8c+J0PRvszD/v2c0njSV7mGy0OBiJdSmEbEdViXlz/L9a2muaovRfkjmhLlpt+b/M5lbSe00e08ZSIReNe/aZgOot3O3b9MYx7GvTo3WRVdSGUjII7iqt1p0FzpUumlQtu8JhAH8IxgY+lZHgq8kuPD62k//HzYSNaTD3TgfpiicuePN2f4PYKcfZyt3X4rc6WiiisTpCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmv9xvoadTX+430NAHP+Af+Sd+Gv+wXbf8Aopa6Kud8A/8AJO/DX/YLtv8A0UtdFQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVzdt4gv5PGb6FdaUsERtZLqC4F0HMipIicoF+XO/P3j06Ve8Q6zH4f0K71SWKSZYFB8tCAWJYKBk8AZIyT0GTQBrU1/uN9DXPaN4gurzWbrSNS06O0u4LeO5Bt7n7RGyOWA+bapDZU8EfQmt+RgEbJA4PU0AYPgH/knfhr/sF23/AKKWuirnfAP/ACTvw1/2C7b/ANFLXRUARSMscbOxwqjJPtXN+AVY+FYrlxh7maWZvqXI/pWl4luPsvhvUps4K20mPqVIH6mjwzb/AGTwxpkOMEW6Ej3Iyf1NWtKb82YvWqvJP9DXoooqDY5Tw3/o/ijxNZjjFxHOPfeuTXVVysJ+z/Ey5Tot1pyyH3ZX2/yrqa0q/En3S/Ixo6Ra7N/mct44+ay0qP8A56anAn6n/Cuq9K5Xxl89z4ej9dUib8s11XpRL4I/MIfHL5C0UUVmbHKad8nxE1lf+elrC/5cVHpI/tnxnqOqfegsV+xQHtu6ufz4+hrP13VBofjDVLzPzf2QrIPV/MCr+pFdJ4X0o6T4etLVx++2+ZMT1Lty2fzx+FdM9I83dJfhqccPelydm3+OhskCuUi/4k/xBlixtt9Xg8xfTzo+o/755/GusIzXL+NbeQaTFqluubjTJ1uVx3UHDD6Y5P0rGlrLlfXT/L8TarouZdNf8zqKWoLa4ju7WG4hYNHKgdD6gjIqaoNdxaKKKBhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNf7jfQ06mv9xvoaAOf8A/8k78Nf9gu2/8ARS10Vc74B/5J34a/7Bdt/wCilroqACiiigAooooAKKKKACiiigAooooArXlql7Zy20jzRrIMFoJWicfRlIIP0NYkPhCxt7iOZL/XHdHDhZNZunUkHOCpkwR7Hg10lFAHEXTa0PiPb6jH4bvZLCKyksTcC4twCXljbzApk3bQEPbPtV/xNb6zq+h6xp1pZeSQ8SwObgL9si+RpVyOY8jfHz9eldRRQBxHhLQ59O1+7u7TQv8AhH9LktUjNkZI282YMT5m2NmVcL8uc5OeRwK6HVfDuiayVk1TR7C+kjUqjXNukhUegLA4rWpr/cb6GgDn/AP/ACTvw1/2C7b/ANFLXRVzvgH/AJJ34a/7Bdt/6KWuioA5jx0JZPCtzBAjNJO8cQ2jOMuM/oK6KKNYolRRhVUAfQVJjNGabeliFG0nIWiiikWcprX+jeOfD1z/AAzLPAx/4DkfrXUZB7/WszVtCsdchjivo2cRtvQo5Ug4x1FZf/CAaFn/AFdz/wCBL/41p7kkuZ2a8v8AgmFqkZPlSafn/wAAb4nPmeIPDUQ73jP/AN8rXVHtXPWPg3RtNvob2CKbz4SSheZmAJGOhPvXQ9qU2mkl0Kpxkm3LqOoooqDU4XXPD0+q/EDTLhoXNlFAGlkx8uUdmCn6krx6V3IGKKKqU3JJPoZwpqLbXUWoZ4Y7m3khlXdHIpRlPcEYNTUVJocl4MuGt9NudJuG/faZO0BLcZTOUb6Yz+VbU+vaTbEifU7SM+jTqD+Wapah4P0LVL9728svNncAMfMZQcDA4BHapYfCXh+AYTSLQ/78Yf8A9CzWrdNu7vqYRjUS5VbQsafrmmapJJHY3sM7x8sqNkgev0rS7Vzer+FYLsR3Om7dP1CD/UzwKFH+6wHUf59qTR/Eckt22k6xELTVUHC5+SYf3kPf6f8A18S4Jq8f+CNVHF8s/v6HTUUUVBsFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTX+430NOpr/AHG+hoA5/wAA/wDJO/DX/YLtv/RS10Vc74B/5J34a/7Bdt/6KWuioAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmv8Acb6GnU1/uN9DQBz/AIB/5J34a/7Bdt/6KWuirnfAP/JO/DX/AGC7b/0UtdFQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWTrWhWeu2oiuVIdDuilQ4eJvVTWtRQm07oUoqSszjotR8S6Gpg1DTJNVt4+Fu7Vh5jL23R9Sf881es/Guh3knkvdfZZxwYrtTEwP48frXRVTvtNstQj2XlpBcL2EqBsfTPStOeEviX3GXJOPwv7/APMWfUrG1iEk97bxRkZDPKqgj6k1jXHjnw9buUW+8+TslvG0hP0IGP1p8Hgjw5byF00qFiTnEhZx+TEitm3srW0TZbW0MK+kaBR+lH7td3+H+YfvX2X3v/I55PH2jBgt2t5ZE/d+027KD+Wa2rLWtN1HH2O/t5if4UlBP5dauPGkiFHVWU9QRkGsW78H+H77PnaVbg/3oh5Z/wDHcUXpvo1+P+QWqLqn+H+ZsTTwwJvmmSNfV2AH61kXPjDw/aZ83VrY46iN/MP/AI7mqsXgLw7G+97Jpn9Zpnb9M4rWttE0qzx9m060iI7pCoP54o/dru/w/wAwvVfZfj/kZaePvDMv3dUUf70Tr/NatJ4t0CQfLq9mP96UL/OtWS2gm/1kMb/7yg1Uk0HR5v8AW6VYv/vW6H+lF6fZ/ev8gtV7r7n/AJlaTxZoEY+bV7P/AIDKG/lVN/H3hmLg6orH0SJ2/ktaseg6PD/qtKsU/wB23Qf0q3HbwRD93DGn+6oFF6fZ/ev8gtV7r7n/AJmJb+OPDdz9zVYV/wCugZP/AEICtODV9NusfZtQtJc/885lb+Rp8+m2V2D9ps4Js/8APSNW/mKzJ/Bvh25+/pNsP+ua7P8A0HFH7t919z/yD96uz+9f5m2HVujA/Q07I9RXMH4e+GD/AMw3H0nk/wDiqb/wr3w8PuW86f7tw/8AjRy0/wCZ/d/wQ5qn8q+//gHU5HqKMj1Fcv8A8K+0D/nlc/8AgS/+NH/CvvD/APzxuM+v2l/8aOWn/M/u/wCCHNU/lX3/APAOo/GjPvXKnwJZJ/x76lqtv/1yuiP5g0f8IdcJxH4m1oL6Pcbj+eKXJDv+Ac0/5fxOqyPWml1XGWAz6muX/wCEHtnH+k6vrFz7S3Zx+gpw+H3hvnzLF5GP8T3EhP8A6FT5afVv7v8AghzVHtFff/wDqKK5b/hX+iJ/qBdW/wD1yuXH8yaT/hCUX/Va9rsY9FvOP5UcsP5vw/4Ic9T+X8Tqs0Zrlf8AhD51+74m1v8A4FcZ/pR/wiV9/wBDRqv/AH2KOSP835hzz/l/FHVZozXK/wDCH3B+94m1v/gNxj+lH/CFn/oZfEGfX7b/APWpcke4c8/5fxOqzRmuV/4Q6Yfd8Ta5+Nzn+lL/AMIhd9P+En1nH/XYf4U+SP8AN+Yc8/5fxOp/Gj8a5X/hC3P3vEuvH6XeP6Uf8IQv/Qw6/n1+2f8A2NLlh3/AOaf8v4nVfjR+Ncr/AMISB08R+IB/2+//AGNH/CFH/oZPEH/gb/8AWo5Yd/wDmn/L+J1X40fjXLf8IUf+hk8Qf+Bn/wBaj/hC2H3fEuvj63mf6UcsO/4BzT/l/E6nNGa5X/hD7gfd8Ta3+Nxn+lH/AAiF5/0M+r/9/BT5I/zfmHPP+X8UdTS1yv8AwiN3/wBDPrP/AH+H+Fbml6e+nWYt5Lye7YMT5tw25ue2amUUlo7lRlJvVWL9Nf7jfQ06mv8Acb6GpNDn/AP/ACTvw1/2C7b/ANFLXRVzvgH/AJJ34a/7Bdt/6KWuioAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmv9xvoadTWG5SAcZGKAOf8AAP8AyTvw1/2C7b/0UtdFXHaRoPizR9GsdLt9f0dobO3S3jMmkSFiqKFGSLgc4HoKvfYvGf8A0HtD/wDBPL/8k0AdHRXFa9P4x0Tw7qOrf2vok32K1kuDF/ZMq79ilsZ+0HGcdcVorZ+MioP9vaHyP+gPL/8AJNAHSUVzn2Lxn/0HtD/8E8v/AMk0fYvGf/Qe0P8A8E8v/wAk0AdHRXOfYvGf/Qe0P/wTy/8AyTR9i8Z/9B7Q/wDwTy//ACTQB0dFc59i8Z/9B7Q//BPL/wDJNH2Lxn/0HtD/APBPL/8AJNAHR0VxOoT+MbC/0i2/tfRJP7Qumtt39kyjy8QyS7sfaOf9XjHHXPatP7F4z/6D2h/+CeX/AOSaAOjornPsXjP/AKD2h/8Agnl/+SaPsXjP/oPaH/4J5f8A5JoA6Oiuc+xeM/8AoPaH/wCCeX/5Jo+xeM/+g9of/gnl/wDkmgDo6K5z7F4z/wCg9of/AIJ5f/kmj7F4z/6D2h/+CeX/AOSaAOjoriYbjxjN4jvNJ/tfRR9mtYLnzf7Kl+bzGlXbj7Rxjyuued3tzp/YvGf/AEHtD/8ABPL/APJNAHR0Vzn2Lxn/ANB7Q/8AwTy//JNH2Lxn/wBB7Q//AATy/wDyTQB0dFc59i8Z/wDQe0P/AME8v/yTR9i8Z/8AQe0P/wAE8v8A8k0AdHRXOfYvGf8A0HtD/wDBPL/8k0fYvGf/AEHtD/8ABPL/APJNAHR0VxOiz+MdYsZLr+19Eh2XVxbbf7JlbPlTPFuz9oHXZnHbOOa0/sXjP/oPaH/4J5f/AJJoA6Oiuc+xeM/+g9of/gnl/wDkmj7F4z/6D2h/+CeX/wCSaAOjornPsXjP/oPaH/4J5f8A5Jo+xeM/+g9of/gnl/8AkmgDo6K5z7F4z/6D2h/+CeX/AOSazden8Y6J4d1HVv7X0Sb7FayXBi/smVd+xS2M/aDjOOuKAO1orm1s/GRUH+3tD5H/AEB5f/kml+xeM/8AoPaH/wCCeX/5JoA6Oiuc+xeM/wDoPaH/AOCeX/5Jo+xeM/8AoPaH/wCCeX/5JoA6Oiuc+xeM/wDoPaH/AOCeX/5Jo+xeM/8AoPaH/wCCeX/5JoA6Oiuc+xeM/wDoPaH/AOCeX/5JrM1qfxjo9jHdf2vok2+6t7bb/ZMq482ZIt2ftB6b8474xxQB21Fc59i8Z/8AQe0P/wAE8v8A8k0fYvGf/Qe0P/wTy/8AyTQB0dFc59i8Z/8AQe0P/wAE8v8A8k0fYvGf/Qe0P/wTy/8AyTQB0dFc59i8Z/8AQe0P/wAE8v8A8k0fYvGf/Qe0P/wTy/8AyTQB0dFc59i8Z/8AQe0P/wAE8v8A8k1mTXHjGHxHZ6T/AGvop+02s9z5v9lS/L5bRLtx9o5z5vXPG334AO2ornPsXjP/AKD2h/8Agnl/+SaPsXjP/oPaH/4J5f8A5JoA6Oiuc+xeM/8AoPaH/wCCeX/5Jo+xeM/+g9of/gnl/wDkmgDo6K5z7F4z/wCg9of/AIJ5f/kmj7F4z/6D2h/+CeX/AOSaAOjornPsXjP/AKD2h/8Agnl/+SazNPn8Y39/q9t/a+iR/wBn3S227+yZT5mYY5d2PtHH+sxjnpnvQB21Fc59i8Z/9B7Q/wDwTy//ACTR9i8Z/wDQe0P/AME8v/yTQB0dNf7jfQ1z32Lxn/0HtD/8E8v/AMk0hsfGRBH9vaHz/wBQeX/5JoAd4B/5J34a/wCwXbf+ilroqy9A0w6J4c0zSWmExsrWK380Lt37FC5xk4zj1rUoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAydb1jTNItU/tNyI7hvKSIRNM0pIJKhFBZuAc4B4qfTNStNY0+K9sZ1ntpM7XGR0OCCDyCCCCDyCK5zxPdwaT4x8PavqEiw6bFDd273EnCQyv5ZQsei5COMn1x3qXwIDLYarfIjLa32q3FzallK7oiQA4B7MQzD1DZ70AdbRRRQAUUUUAFFFFAGPretaVoUEFzq9ykEbTCOFmQufMYEDaACehPPYZzxWxXlXxEs9fEGr6hNYWNzaD7PDaSm9ZGgj82Mt+78sjczgZO7oF9OfTLZrhrWJrmOOKdkBkjR96o2OQGwMgHvgZ9BQBZooooAKKKKACopJUhjaSR1RFBZmY4AA6kmpazdeLDw7qRS0+2OLSXba8/vjsPycc89PxoAo6X4p0DWL8Q2NxuuJot6GS3ki8+NT1RnUCRRu/hJHPvXQV5P4Tmil8ReG0ttcfXfJspY5Y2jC/wBmDYP7oBBJATEm5vfrn1igAooooAKKKKACsa68S6VZ63baPcXDpe3LBYk8iQqzEFgN4XaDhWOCe1bNcD488Q6Pp2t+F7e91O0t5odVW4kSWUKUi8idd5B6LkgZ9TQBu3XivQNHvJLG4uTA0bgSsLaTyo2fB+eQLsUncDyR1roa838WeLtD1e5l8Jtren2dtLErajd3FwiYhcAiOLcfmd1P3uig56kCvRUKmNShBQgbSOmKAH0UUUAFFFFABWJY+IdH1y9vNMtpmnmgQGeKS3dV2MSvVlAYEqw4z0NbdefWviTRJvizfwxaxZGWTTLe0RfOUkzLNPuQDPLDIyPegDpYfE+lXeqnTbeeWacO0ZaO2laIOucqZQuwEYPG7OeK3K8Z8HyS6ZaeHNOtdWvpfEEd39n1LTpJWZI4QX8wtF0QDAYPwWJHJ3V7NQAUUUUAFFFFAFLUdQttLsZLy8kMcEeNzBSx5IAAABJJJAwB3qlY6/o+tQ3XlTgra7XnjuYmhaH+JWZJACBxkEjt7VPrutWPh3RbvVtRlMVpbLukYDJ5IAAHqSQB7mvPWdfFvhfxbf2WpWV3reoaaYVsbG5SY20KhykRKk5di75PTJwOBkgHdaR4q0bXp3g0+7aSVUEux4XjLxk4DrvUblz/ABLke9bdcDZ6tp/iTxxoVzokomgsLC5+1sikCESeUEib0bKk7eo2131ABRRRQAUUUUAZWq69YaKYRevMHn3eWkNtJMzbcZO2NWOBkc+9SWV/p2pWEOq2k8M1sUbZcdMLn5hk8jleQe456Vj+MfGFr4UtbZJJrZL+9Yx2i3UoiiyMbndz0RcgnucgDk1iJpVxd+EbC08P3en65Zy3Uk+pyG78pbtmZndQyK4CmRuVx90be5oA7HRdc07xDp4v9MuPtFsXaMPsZPmU4YYYA9RWnXEfDiS/fTNXF5ZwW4GsXpXyrgyZYzvvHKLgA8A9xzgdK7egAooooAKKKKAMC/8AF2iaXfSWl7dyRSRFRK/2eUxRFgCN8gXYvBHUjrT9U8RaNoV0IbqZkuJlM7RwW0kzlRhd7CNSQOANx449q5jxn4q0m8vrjwdNrFjp6SRY1O5up0jMcLj/AFcYY/M7qevRQc9cCq3iW5trfxiJX19vDsB0lEhv41Vhdgu58sFwV+TggAbz5nBxQB6JaXcF/aQ3dpMk1vMgkjkQ5V1IyCDViub8Dh18EaMr2f2MpbIvkAMNoHAOGywyMHBOeea6SgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiivKvBup67qniK0NtcadZae2lRTtYRWsnlKv2iVW2ASgK52n5sHtwccgHqtFea6b8QdR1O8tLm3s2msLq7EK2yaZdeYkRfYJTPjyjjhiAMAZ+YkVqab4h1q8TXL+6l0my0zTrq7t1aVHywiJCuzbsKBgZ4OcHGKAO2orza38ZanqP9raULiBrgaVLe2t5Hp9zaqNpCkbZTlvvKQyt+VTaZf6pBoHgmTVXsNRkvrm3VJWtnDxA2sjb9zSNmX5cF+Mhm45oA9DorgY/FuttaQeIGgsf7Cn1AWYgCv9oVGm8hZS+7afmwdm3oeuaiufF3iGC31vVRDpn9maVqTWrxFJPOmjDICwbdhWAb0OcdqAPQ6K4qbxPqMfi+TTLi5sNNtluI4oI7y2l33iFVJaObcIwcllC4Y5XnrXa0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVyth4Is9Kn0+aw1HULd7SIW7FWjP2iISGTZIGQ8ZZuV2nBPNdVRQBzVn4Tj066VrHVdUt7JZzMNPjkTyFYtuIGU3hSSflDY56Yqb/hFNObRNT0iUzyWupTTzT7nAYNKxZtpAGME8f1rfooA5iy8G21vqzanc6lqWoXT2T2LNeSIQYmZWIwiqAcr1Hqc54wtn4Pt7S10u2bUtQuYdLuEntFnaP93tiaJUyqAldrnrk5A5rpqKAOVXwRp8d8kgvL42Ud2b1NNMq/Z1m3b9wG3d947tu7aDzirE/hCwuNH1XTGmuRBqdw1zMwK7lZipIX5cAfKOoNdFRQBzt94Vj1O98271bU5bTz0nNiZE8jejBl/g34DKDjdjiuioooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD//2Q==", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAIAAAC6s0uzAADv2klEQVR4Aey9CZxsV1Xvf86pqee+3X1v950zkAQSBoEMQMJgCAiIDCqEPBQVBD9oNIoPyYvR939GRVCiMajE2QSQBz4FwUggCoTJmEACJGQg803u0H17nmqu8/+uvapOV/ftqfpWdVd3r33rntpnD2vv/TvV+3fW2pMfhqFnzhAwBAwBQ8AQMATWF4FgfYuz0gwBQ8AQMAQMAUNAEDACtt+BIWAIGAKGgCGwAQgYAW8A6FakIWAIGAKGgCFgBGy/AUPAEDAEDAFDYAMQMALeANCtSEPAEDAEDAFDwAjYfgOGgCFgCBgChsAGIGAEvAGgW5GGgCFgCBgChoARsP0GDAFDwBAwBAyBDUDACHgDQLciDQFDwBAwBAwBI2D7DRgChoAhYAgYAhuAgBHwBoBuRRoChoAhYAgYAkbA9hswBAwBQ8AQMAQ2AAEj4A0A3Yo0BAwBQ8AQMASMgO03YAgYAoaAIWAIbAACRsAbALoVaQgYAoaAIWAIGAHbb8AQMAQMAUPAENgABIyANwB0K9IQMAQMAUPAEDACtt+AIWAIGAKGgCGwAQgYAW8A6FakIWAIGAKGgCFgBGy/AUPAEDAEDAFDYAMQMALeANCtSEPAEDAEDAFDwAjYfgOGgCFgCBgChsAGIGAEvAGgW5GGgCFgCBgChoARsP0GDAFDwBAwBAyBDUDACHgDQLciDQFDwBAwBAwBI2D7DRgChoAhYAgYAhuAgBHwBoBuRRoChoAhYAgYAkbA9hswBAwBQ8AQMAQ2AAEj4A0A3Yo0BAwBQ8AQMASMgO03YAgYAoaAIWAIbAACRsAbALoVaQgYAoaAIWAIGAHbb2BLIVB0jibxzbVQKHAtlUrqmZ2d1dZms1n1aLIwDDOZTD6f10C9cqu5NA2BeosnkoM/EqW5uE5PT1MiHiTg8CBcY/VW/WScmZlRPxXAQwhlkUZvNerEqzYnSkP6XC5HMsKrBabT6ajCJNY6RyEqVuuJPwqPakiUNk0rT6OimhASYRJ5iFUMNYQSNXt1Ai2I8KgUzRVJxkNbyEJ9tIFUA6cJIlFRZSJPhAaJI3+Uvlq++Q2B5kHAj36szVMnq4khsGYE6Ljj8TjZ6XxjsdgCOXASHTThLS0tREFX7e3thARB+U0UliI2kUhoMt/3VRR/JioWCQSSHbLRlCTAjwTt+ltbW7VQsmh2brUI6katUqkUDEQRWih+QjRL9ZWUSFAhFDQ1NUWyZDIZySSKcrU4PNzipyDlbxJHlSe7VoDWtbW10QTkEKjFUStiuRKlIYjCo9mj6ilWExMT3d3dxJKFKymRg1gKpUUqQf1QY0dHB2nGx8fJgjQSR5UnnAaShixk5Pbo0aMDAwNgUp2MWhGlTvGnpYCvzSGcBIRHZWl6LSVqYEWAfRsCTYeAEXDTPRKr0MkgALvQQdMFKw0gii6bPpqumcBFqY7uG+oiPRnJHjGoVgOewJEXbtBr1N0Trr08HhJX9/jQFdTV29s7OTnZ1dWl1UB+Nbuo/JGRkb6+PtQ+aggbkR5CqiZITRZdYTtqgigNocKkV3KK0qhH6u0cLYqqoTxKAjxUBo5USouyEEjNaUtUhNK2JlDC06sK4Q2GQkjPVTEcGxvr6enR9BF/cwtr4hQB0gOmpiEjfnW8Z3R2dhLuKl4EB03DFeE0XEFGDnUgkFsNIT2ByuWaBUhJvygykUzzGAIbi4AR8Mbib6U3BIGI56rJg5IIP3z48P79+/FX9/V04tU8hJ5Hxw1bEw4xaBXp3+nl6eIRAntBXSqcQOUAksE33Farkpod/iMNXEUaEpAdVoYhKAWSiOQrCekt9VFGISNZSIaLKkMaGAgHTY6OjsL0hAwPD+/YsQOZhHOtbru2Tl81otpqINWA5yByKk+tKEUrwFVfR/SFg8Q0XN9UEB7VhLop70a5CKEIEhOuDUQyRURZiKJppCeE4qKXHsKpMyhFFE4yHOFRYkSpTG2FRtFeROHXWxIjlmRRlcxjCDQnAnN/bM1ZP6uVIVATAtAJVEF3zPVjH/sYVk38kYMGzj333M9+9rPIVE0LD7Fc6ei50pVzxWQKDSjNEEIUYqET2Ff7emgPD0RLj68ESS5KhLMJhFFIT4hKHhoagtgQSAJykZ5bZCrtkQy+UfWOBFoNAikCR4lwCVctBW4jCod8QkiAn3pqcTt37lTW0XJJQCwWYMRqSl4aCOT14tixY0QRSH2oBiEwK+St7AvJ0QSaRiBRakmmadxq0cgnFrLU5qscmkA1KIsiKJRbJCOQIshLFipPAm7xkwanxeFBLA1HmtacgqgDgSQghObjaBq3RGkgserIpbFcKRFHFsVBhVQS2rch0HQI2Eti0z0Sq9DJIED/q9nx0P+ia77vfe8777zz6KbhBvpuCOCHf/iHIQN6fLpseIL+mnBVW0lDSriZcGLhGKQRhTSlRiiEBOro5SkC+lEKURbkVomKjMp8EJtWiSgyaiAlEqg6MQZb6klxZKR61I1YHCUiX+mkmlnJiBxlOPzQOX4VS4VJrxUgC6K0dERB89i6Sc/rBU71TkrREMolPU0gJfUkEJmUQkr8g4ODvMpQBC2lzmo8iBBDSAQ7iUkGZyMND9ozrdO6kRdHAsrCabuIUhAolyzIpA5aAVKqI4QiaAuJqQ8pwUqjEKKPADMAcggnWSWfB/FHfvMYAk2IgBFwEz4Uq9JJIUB/DR9AHkjh+pa3vOX5z38+fh0HjZiVvp4OnS4bVtBAunLV9pCg2UmjHgiDQG5xJFa+efLJJw8cOIBkQtD5du3ahR8qVUYhoxKJSiAKEzFKKoFIg0UIQc7DDz98xhlnkIXKcKusSSy1wo8jmTr8ZIRiSRZRi9qHSa9lcYWrjh8/Thq4SkskO4FqpsavJmuao9okTExZaLrUn1zUv1yeqx5+hMO+eIilLdFwMiFqK9YqIYESaYXWJDIjIxyaJDGVxwG4a1a5XTRcBRL4+OOPn3rqqTwFLYgaKghcyU4CbbWyLy8BiOV5aXFR62gpiRHCNUIJvzlDoAkRkB+rOUNg6yFARxx1zbAjDVQa0A4aHn3ggQdgoI985CN/+Id/CEPTWT/vec/79re/TUrSwAF4vvGNb/zUT/0UnTuxr3/96z/xiU/Qs0MAcNI//MM/nH322f/+7//+rne962lPexp51a57ww03nHbaabDFJZdc8vnPf/6iiy56zWteowz9ghe84Gd+5mcQC6MghCLI8kM/9EO/93u/h95GbbVu+JVjjhw58sd//Meo76SnAuSlPjAWGZm69f73v//000/fvXs3xf3Wb/0WxAljIQHPy172sre//e1f+tKXfuRHfoTEZ5111k033UTz4b+77roLPfjGG2+ELElPZUjwta99jZcALPbcIv/ee+/95V/+5f7+fqLOPPPMj370o4RDqAi/7bbbyPh//+///Y3f+A1ePhhNhzWp25e//OVnPvOZ4PmiF70IZH7pl37pOc95jr6CqEGe2r785S8nAVz+3ve+9/vf/z4y1ZHxta99LZJ/+qd/GtsDYwR//dd/TW1xwEiahx56iCw0kxAqT92eeOIJUsK+vGHQdipJFE/hqquuevTRR8lClRTMchn2ZQg0JwL8kZgzBLYMAlAjShjNgfPgQliEEV+6aagORQ1TKstdtLFwAATz3Oc+F+750z/9U2gY2oNUiEUn43rHHXeQ/fzzz//t3/7tD3/4wy996Uv5E/7kJz9JFHonZAwvnnLKKfDrNddcA8HAZ3//939PGqiX9HAGbHHw4EFuYT7q87M/+7NowBAkErjl+ju/8zukh2hJwC1OK09V8f+P//E/iH3DG95w3XXX/fmf//mP/uiP/smf/AnhlA6/Qk5vfOMbiXrHO95Bsre97W3khbxJsHfvXjhp3759V1999fXXX3/hhReS4LHHHtOi4eOLL76YZDgt981vfjNETv0JASJAwF155ZVQ6ete9zry/uVf/qXG8kpBubT6Wc96Fm38wAc+wMuNBgIUbxK/+7u/Sxuf/exnw5faCmRSQwiSNxXeJ0gDx5NdineOsuBgKkBt/+Iv/oIXDkq85557iNTm8KJDyOWXX85jAjE4/s477ySW9iqp//qv/zrNfOc73wkrv/KVr1SxirD67WoINCcCYqMzZwhsGQQg4Kjfhz/ouHXgU82Y3KI2wa8osjAxt/T7jzzyCB09VHTLLbegNkEnoAHfoD5CYxEyWG7p7qEZEsNk/+///T+y090rh+msJRRr1FwIklwkg48hG/hPhfzHf/wHWdBiYQ7kwxCoqnAh9almC/WjqpL4V3/1V1UyPIcQyqKBaKgUBKtFdbviiitIrLRE09CMITwagiiyQ/DQ4f/8n/+TKpEF5RWOZDa4thrJUOBP/MRPEIUfGiMWezK3VJLi3vSmN8HoNJ+Q73znOxSkICBZBaIHkwAVmQRYhtGnSQP9qwQUcd5s/umf/olbHHL+7d/+jRBeZfRtQyel/+u//ivSqDByAI3a0hAqQG2R9p//+Z+anaviQxTPF033M5/5TBT1N3/zNyTmzYm8BFL5KMo8hkATImAmaP5gzW0dBCAeOnd6drpg+l9mAKGlwXzQAFfsnLAs7AXRkhJlDuMndAWhwtCvetWryMKgLAwKkdx6660QG6oYtwik34cvITmMnEggC6j95E/+JBkxCGNAhlmhEEzW8AdRMM3P/dzPoWSTV/ElO9ymWjKVRDL1wbCM3hY9ACpArSgd9R2Z/9//9/9xJRDDL2nwUAQ6PS8ZqH2E0KdwRUenGtiZIU4t8Zxzznn1q1+NKML37NmD7ffuu++m1WSnVpgEoDRuiYUvGczGaKylfOUrX0HVRg6qMCQNSqizUDiwkAAPuWgI4VoxRNFSrMfM9iIB7zdY3TEjkwzEaOY//uM/6nsJjUILJwHmevJ++tOfhj6pP7mwV2PhJwtikYOGjWWbcLJ/9atfffrTn86rD9IUJR4HJE3UzTffDM1jIcAizUPhPYZHCVBf/OIXaSaJkaZZ7GoINCcC5akQzVk5q5UhUCsCsB0MRP9ORpQkbjECYz2mv9YQYg8dOkQg/TUKJTouyZQCtYvnCmFAFXDDr/zKr5ALYoAM8EBXXOEbrmRHJiO4pFclG00a1od+EAvzEYgEZhVBM6THkRKe+4M/+AOMt9yiAiIQ1scfUQVlQa7UB1KByHmBQAiONIglGZKpP+FI1oyEw+skZu4V9INiShtpF8XBQ6QnAaym1UAU3EzzGcfFao0EVHks7SjiFI2hHqLF8bIC1wIjAFIZ8nKL4kt2/HhgQcK5qm0fjkQUDjApnYFeqkFtufKmgqNQEtNeqkQ4kgnUeVuEwKPkpeEgj2UCAobX9SGi7v/Yj/0YsaBNi0BY53UTwoA9vEsDkQAgsLJWGBx44YgE4jFnCDQnAkbAzflcrFZrREB7be3llTVRuei7YQI6ZTp9GAL6QbpyHqyjJUEtStL04wTCsmT8+Z//eSZRY5ilf0emUsgFF1wAc5AYgaTEA0tRrjIc8uFm5m2pfIQjhyvy4Y9f+IVfYMCYKUsMDEPAqH2op8RG1dDKnPyVllIxnIqievreoO8QqN3XXnstVAdZYhC+7LLLqIBSJjVn3Bc9noZA6krALGVm5BVRzJQmGQuf9JUFvudtgHBax3WZVtBYuBOeZu4bYAIOPEp2fTlAJgXBvggBEIrG4ScLoEViaY4WRC7SIwFdnKFldHRemKgtLz28PaBP6+NWgcgxZwg0JwJGwM35XKxWa0SADprOXa2XSsYqSKmIrl9vlUrx00dDQuhe9PiqWsGjdO5QBWngG4gHGiCWcJgAfYtYmAOegGhhZYRQEB6dLM0AJAxNoHIAM3hhBepDreAtHAZYyI9bdFxVhbVKXKk8jiphrUULxEDN24DSFbEUDRvBPbxAEI6RlrlLpCccfRHGpbaqU1Jb2EjrplfqTIkI4UosjMukMwaJeTnAfs4oL1G0F02aWNpLq4lCJq1GPrFAxFVhJJwWkYxXEBxkjPZPLA4wqRLma5qAh1hqgmNoHBxADFWYZNSHtlA3moMHjZmCkElltBX6LAiBTZkuB5jkQpo+LKpE9UiJEqzvCiTTlgKv1MM52kL6yp19GwJNh4CNATfdI7EKnQwCSjN06wihl6fjxq8sBWEQQjg0QPcNX+KHuoiF87THJwSOgWiZnPXjP/7jLHFhHBRugGPoypXqlJCeeuopEmMHpt+no0ezxPhMEZ/73Oe0dNiCKcqEEEtKuIQrjgnMDLv+3d/9HXlf8YpXKG1oFDWhaLJT3Lvf/W5qy6RfrgTCrKTBQ0HozVSYGcWEaHuZe4wc9FreDCiOFwJKR3EnMdWmRdperQmBTISGYpnExEAs46ZMPAYo+Axpl156KdrqD37wA4RDnDSWWgECQmgCHorWmkDDeMiOBZuBXgy/3MLijIXDiyQmC+T61re+FfL+oz/6I2I1C20hljZyVdWcZETROupAMorQ9tIKRn8hYEas8ZOeyvA4aBQeqsrjoxVkJ5e+W+BR7sdj7AsI5poZAdOAm/npWN1qRgCOUaogJ2zE9b//+78xk9J3c4viSKd88cUXQy2YVenxUUmVw+jx8dPLM9ipHTeLSr/73e8+4xnPYL4xuibpv/71r8NATJ5CGmlID1GhveGnXGiDdTLMW2ZYlxnU8B/LbdFWITwKgiBhVviMKEphAhHsC/1AHiRAIFdqC2FDMNAhmhzLkBCIpkuFaRRZmHT9a7/2azA3hnGmXGFVZlev733ve9A5A7pYYrVicDZ8RvUQSMWoHgKpAJ6oIOZmMxrN2lnYF3omJZRGrt///d9n3hOxWMtRKzFT00amKPPWQhrUcdgUIdyiLpOeFv3VX/0VFnXqRh0oiDpTE5gYPy2l8oR/8IMfBEyQAXkARCDzywCWqsLfpKRuyOeWegIXBQEFgf/n//wfEmMVZ6KZPlAGrZHGuD6vMkyuRgjT5dCweY5AwSsFRnVWl4EtAs0ZAk2NAH915gyBrYQAPTjNoftm7axqVHT6/BFCFdrLMw+ZBGhpdOikgSmj5pMMWopu4QwmQmM7JRxVDxpg7hKxaHsf//jHEc6cYU2smi5+TLusqyELm3sQC5OhwxEO0aouTkpUNwQyGqqBGq56GykhIZWJkv2hD30IOVALTMYyYozSkB+xvA2g9WKmpkVwPGuO4UK4ligIklW2VJUQbkEDLkRp1rVDhFABruip5IWlGJDWCkTl3nfffe95z3t0pJzri1/84j/7sz8jCwnQRLEcwPfcwppccbQCNZSWQpwwHwo0C5R5cdGCtFbgjBxoFceaqN/8zd/krUjz0gpmMiPECRPzNdOwmXjF25KGMM+LxVHk4h2F0pn+zWuQRvEewApsFgrTEF4joGFUbWZmaWwkU2/tagg0GwKyqTp9gTlDYGsgAJfg6KlRGbVF/MIhMOgNAobGYBE6a9JwC4WQDA8shZ8eHNLCTwLyKlvrXyzUQgjkR3ay4LiFQpSl6OgJUb7RvIxlKm1DGIywoiOSngRotwh8yUteQkFf+MIXUCKRHFWG6pGMW9JoEdxWO+qmFdC6qSaK8VzVXFISgsCo9Chci45EIUcVbgVHc5EGoFRylLI6IxBRQ4auoUxIHbg0hOaTkbKwAWhbmIONDR9LO1GI4koU5mKuOC2OcIRrMxXeqFAS8FYEdGSknsRqNbhyS+WBkTQUitMmkJdwSidK5XBL7ALJURHmMQSaAQEbA26Gp2B1qBsCsCkUSLeOIqi9P70wPMGII4GQhBIkHnpz6IT0+OnWoRN0L3RlLLeQkPIQvTzJ6OK1ftzCH/Tyegv7qp/sqGt0/ZQFzRCr7IuWTDjKKMlwUAJRTMtipi5Th1CgSU+Iyqcm+EnGFdogED90i9OMlE44NaRuGk52tcoqRZGRluIoncSantbpODex5FJLMpJJpsXxaqIsRf2RTBRN5kpGEkd8pmCSBfYlHLjwa8UAFsn69kBe9H6QZIE1CYjCARp+HoF6KI6MSpz49RageGSEUzQhsC9Z8NNGitZqABGONDjSaBSvAqSktiTmQeDHqZ80emtXQ6A5ETANuDmfi9VqjQjABPTCdPqan55aO2XCCeQKgWnXTwL1wEBwA7f02qp4QV34lapJo3qYyoF7dGyVNEgjDbGk0cRsAcG8Ld3cg5HIT33qU2xJgY0X+QhkyJY9NP75n/8Z3RczL0ZaAmEUvSpfRnWLqqcN4UpboBwlFXiO5qifKkFsyIlSIpC6KUdGgaqzRrd4IC2u+qqBQCW5CDFNSa3gRaIUUkbKoXwyYhZm7JZWUxBLdTFZv/CFL8T0jV0dIzxRDCSjByMEc70OBNA0MnIFSa4IpDkkwJwO3VbXX0FQeEkAwlSDBHgUZwKpMNfo/QB/taMVJCDXAhCq05jfENh4BPitmzMEthIC9Lw6/Emj8OMWtA4qQv+L0hDLLd09HqiLK5S2IAu3yIGelW6r8+rYrZaCrsnKVFYowRNYhjk2QLVPmABKYPyYP3jMzkwdIgSZWihRJxZHFMxHfUhJoVqx6mSQGQkIgdc1HCbTaijP0QqcVlgTaHEMoC4oF5O1JqAU0iMEp4VqPTUWsdwuqAm3VIBdt3ifoHUQHiO4OkZLfTTjolfqgDQYXWPx81y0YhoCsDQQqLUO2hDwXFABEqM9c6XOpOeq6VWIXQ2BZkbANOCNfweyGtQdAf7kVLuqlgzPQUhMAqIrR/2iH0eDpL9W2ynsQiB9Nx4NIQGxSEDNqtbPCCENsao7os9FmhyaH6UQomyBNJgY2oaMqRK5kKP6n2YhBCFaW71SQ6pBIMmqKx/54RiqHSmC8BOJyRIliDwqnFv4lVaruhzFUjfy0jQKwlFhQqoVSrKTZUHDya5KMM0nCuqNbMXcRiWSDPYFDQgVDNVOTiAJaGZ1KVofioZ91bRACLmiBhKlNQcZrBdUVRMobgjUh6VyImnkOrHm1WnMbwg0AwJGwM3wFKwOdUMAUqGbVnFwYeSp7veV6ojSjl6T0bNHFAgTRGlUAh09FIUf4onohDSEQKXKRlEWqILeX8c7SYDShtaredHq4EL8kdO83CpzaziiuOWKg35w8BO8BetUv1iguCv9QHKkhLQgHgQiREjVcVWUBgkkcCJD5ERkSd6IESlU5ZNMsyOKBMpzRBHIGwBN06vWViVo/ZWSqQMSoteCakLVLNST9ECKKF5QAJw2EogDOm27MqjCTri2HbFIoHR9yjRKxxSoQ8TEpFEQkBm1Qsu1qyHQVAgYATfV47DK1AcBJQNk0XHTC6tQ7dbpkaWbd+tuiYKf6NkJVCLUq+qspMcRhauuFoEwCv2+cpimiWgsIjxIAgqhIGiPQFghouSoUMQiBKKC22AaPFSALGTUauMnClddAQJxyk+EUzSJyUsRETMRrmPbBGr2iAUhLR0Z1forXSFhQTORQCnUB3y0dITjp1ytql61vYBAGpXA+wfyEcjLEOGRXqtCuFJhaqsNjALxIBDh1Y3Vx1HdBHJRhwjtBQkoTpGpFlJdhPkNgaZCYIsTsHRUVV2V/iVrB8SfLn2Hzr4hzYndQVM9J6uMIWAIGAKGwPIILHjTXT5xM8RuCwKGXHGwLy/OjIfxos1bOYZEXtihXhQFYvUVvhkeidXBEDAEDAFDoBoBem81+dBR46fHJhY/8+/YzQ2dCvMMcw40yyZSqLY4AfOoeBjYo3AY3LDCMR2GnfzYTICo6AFjGyQ2ujWPIWAIGAKGQPMgQDeOvkQ3juWSWqlCBQGz5J2jvtkzVauqAyLNU+0VazK3dnDFpJsrAfzqaLd8ofJKxoxOsbUsmwUyZQPHA2M4ijE/faXaXG202hoChoAhsB0QiJRaPLSX7hoPtsy9e/fqPHwFgc4cTzRFoPmR2bIacPTAomfA08JMgQascz3QhnmK8DPPjDepE2egRBnNYwgYAoaAIdBsCGC2ZMdTVhnQ29O3R9P9NhEBb6Ot2qBbZVkIGDsGtzqlk18VNNxsvy2rjyFgCBgChoAiEI0YqgZMIFoTPTljwKx8Y3hY2Vf79mhZXfOjt2UJGH5d8OS4hWhZE4LKy+NUYwUhPLMocfM/MKuhIWAIGALbDYFIR4o8igC8y0gifh0bplePGHpTQLRlCThCv/rViWeD5RkDBW9MUXiUckt6mGmmH9c6hk+iTzl8bipaOWpLwmCNMgQMga2GAH04i84xPtMwunTlYL1ulqZuZQLGRsFjQLvVdyJVfAnhFqdaLx5VhTfLA6upnpArELCBk8xb4BLyXXTXElHuRq6Og/mOPjUVYokNAUPAEGg4AtqfowHTaVOYLiLFg1FTo+BgoqLtbhpeoXoUsJUJuB74bHoZ8lONnB8K+3KtcsrEVQHmNQQMAUPAEFgPBIyA1wPlDSyDB6yfshpcqYov+q45Q8AQMAQMgQ1DYMuuA94wRJusYN3FeI5u/blXLnxKwnhCL6hMBJ9L0GRNseoYAoaAIbClEDAC3lKPc0FjHKcqyeq1QrJeoGZoI9sFiNmtIWAIGALrhoAR8LpBvSEFwbt8YFulXiFclF1XFY3CW2bhKiV4Q6pqhRoChoAhsL0QMBVoyz/vaJYVWm9Q9IIK8cqjh5axTkcGalWLtzwi1kBDwBAwBJoBAdOAm+EpNLIOsvQImhXqZUmS6sJwL6FueNjFOiYmAQn5H9mpG1ktk20IGAKGwHZHQPpcc1sZARZD+0GuIGuiJzIeJ4nwmc6Wedcxsum9W/n5W9sMAUOgaREwAm7aR1OnigUoun4QTwxPZW/5z9tu/86jGc9LpEQbLjtRkY2DK2jYtyFgCBgC64WAEfB6Ib1R5fgM/cbReh96/MgXbvvml75551RelGAoV2ZjCftG2rDx8EY9JCvXEDAEtiMCNga8tZ867BvmQy/re0OTM0Pjs60TnH/s5VCC59rttqiU86DsbWwOFPMZAoaAIdBoBKzPbTTCGylfLMt+LOvMzbkw4aU606UYd2loOdJ8zfy8kY/IyjYEDIHti4AR8BZ/9tBtEJfzGLIlvxhLHR+fkpBo4RGtl62h56zQWxwOa54hYAgYAk2DgBFw0zyKxlREx3i5TmdyJT8+NjXj9GEdA4Z9I+o1RbgxD8CkGgKGgCGwBAJGwEsAs7WCGQaeTRfjbR2FIM5gL2TL4L9b7xtgo5bR31A3jd5azbbWGAKGgCHQxAgYATfxw6lH1WJeCWpt9b1ctjieycbb2jJ5r4uQkI04SkUvFjIfK0x5nI9cpuR6lGoyDAFDwBAwBFZCwAh4JYQ2c7zbZrKApssnnysWQgZ7w3xW9sCSkd8QAg7yKMPi38zttLobAoaAIbAJETAC3oQPrZYqhxVmzWQyoXPp9OJsK5RszhAwBAwBQ2C9EDACXi+kN6IcKJWTFnTQN51O+37MjwWzs0UZ/ZX/i7glghdJaUGGgCFgCBgCJ4OAEfDJoLeZ8s5mM6HvB358djazOMsuHrqZ2mh1NQQMAUNgEyFgBLyJHtYaqsrzlfMHZfONdNYLgjDwZ9KzsvbIDM5rgNOyGAKGgCFQPwSMgOuHZVNKKrlBYCHgTI4hYPg4PZttyppapQwBQ8AQ2F4IGAFv8eddYt6z04BzhUIx9OHgTJ6toBcfA7Zfwxb/NVjzDAFDoJkQaMYut1DgtB5xTNzl6vQ2d89amnye29nZWb2fmZnBw1XTaHpCSFbOsO2/YrEEBmeGd4vFIigVS14JTi67+U9fjNJRVCWJfRsChoAhYAg0BoH5XXBjyqhVajweVw5uaWmBU5m+qxKy2Sws4vt+W1vb5OQkge3t7dF1YmKC9NwePXo0wYk/5hydwqgQa7bgFaBeVv+GobzELABn4f2CaLs1BAwBQ8AQqD8CTUfAuZwYSGOx2JEjR6CKVCoF3YrqVizih2JR4ODarq4ukh06dAiGnp6ehpUJgaEJ3LNnj3rqj9YmlAi38klnvFIos5wLpTCdzZmeuwmfpFXZEDAEthoCTUfAUO/4+DiEunfv3iAI8EC3XPEr9nhaW1vxoxkfPHgQSu7o6IC2SQND44Gh8Wy1B3US7YFumXfFgmC37bMY9m3B0UnAaVkNAUPAEKgPAs1IwDfccMP5558PsyrRdnd3w8Gq1GKaZgA4mUzS+ne84x1nn3021mao+l3vetfx48cJZDwYho5GkesD0maWotZlrPjswhFwMGEQm82IjUHCIx6ueCrfm7nBVndDwBAwBDYJAk1HwENDQ9DnpZdeesUVV6DaAiMWZjgYPsYiTRQWaa6PP/441Pv7v//7P/jBD/7jP/7jwQcffNGLXkTKnp4esjCKvEnwX49qwrUZHUZ3VoRoTH09yrYyDAFDwBAwBJZAoOmIqr+//6qrrsIQfeONN6rWq4xL/WFcHOPB8Oupp576/ve/f//+/WNjY6eddhpZ3vnOd+JXzmaKlg4SL9HqbRecyWTBDccM6LkB8pCzCG04eNv9GKzBhoAh0CQINJ0GrCuIoArUWdiUAV0Gd2FcrszDAjVNwFgv7AuXoPKSsq+vb3h4uLe3l3D0Y2Pf6Oelx/zOFku50I+V8nyyhRI2aDckXOLxyy8A07NZnyPIzGMIGAKGwLog0HAChg4hRWVNbRHkSiBXwglRysQzNTXFlRFc1F+4trOzkysZNS+BOLiWAWBlYhKrnylX733ve9/61rdyi1P7M8xNetJgcWVWF1SNZ3R0lJDt42h/PJTzgKfC2HiueLC3qyceHhmZYHm1W2pdxAAC8xYDD2VYhoXRh3XQePtgZC01BAwBQ2CDEGg4AUOHkGI0h5nFRVdfffXOnTvRXCFO9FoszOivePbt23fHHXfAmpAl9Iljvi5pyI4fzgYitTCThvTcwsfMunr729/+1FNPffzjH8dArSwOqWuJFHfttdeec845DCFT0Omnn75BOG9YsTFPlh+lQw/DfXsiFvA6xKtPmWfF/swvAMOCOyDJ2HfDHpMVbAgYAtsQgYaPAcOdqtRCipAxM5avvPLKyy67DEaEO9lJA5aVoV03uHvmmWfyDHQRERlJoI8EoiU9frRhTcmVjGjJP/qjP4rxmTlZxKLgYoUeGRmB0WFx5FDc+973vne/+91MqKZ0ZlMPDAyozO1ydW8qaP8gxuvL0VIJq8J2abu10xAwBAyBJkag4QSspmZ0VhRZcIBW4UJdPgQla6B6oEwmT5GSBKq/sqWGZtExXRYgQbpQrKq/iHr961/P6qNPf/rTEAxkTBTFwb6k1CVMZKeIHTt2qF2a2CZ+Fo2qGnougEDACqOa9BtVmMk1BAwBQ8AQWB0CDTdBQ6iQHwQJy1IlmBVGVP0VDySK0Vg9EAMMgaaLtfnee++98847Idrbb7/9tttuIw3cSdRrXvOam2++mc0mUY6Z9kzsP/7jP5KMBGjJqMJqqcbaHI0Tk1EDKR3T9+pg2VKpeOkALpBnNRfPAmTkSZgzBAwBQ8AQ2FAEGq4BszSI4V4du6XrhyxhRJRd1XG5qm6KhzQsAkaLvfzyy2+66SaYG9q+6KKLYGVIl2W+pGGQGJZFMz58+PAnPvEJLNhnnXUW/K3sftddd0GxatlGLOxOFkpU8zU0zNaVG4r2xhTOGDAaMLCDsJj3mY6GEdp2y96Yp2GlGgKGgCFQRqDhBKw7Y6Dd4jALQ4eUDCNCjYzIopMRiGEZBoVoWQRM7HXXXXf99ddDFaThFlYmHAUX/oBFdCYzBmclcpLBrIiFsBEI6cLKJEYJ1uxIgMgpEUpm9TC3280BIgjz9gPU4OBPcb6FEfB2+xVYew0BQ6DpEGg4AdNiun7ID7MzflVV0VmhT9gXVRjiVHaER/GTRs84IiUMSl5lZdgXCkcOuWBZ2BqzMzRMem4RyPgxUTAN0rjVvBAzTljHET9ZSL8NHdiCkj4FoHCjAdsQBmuyIWAIGAJNhMB6ELDSqjYaalSPMqJYRJ2DG9QTXTVldbhSeCRN2Zf0mhJKxg/XRiF4VAmGe7Q4vRK+3RxvHoDQ2dkOhkA6PR16O8UUYc4QMAQMAUNgoxBo+CSsjWqYlasIyOaTrO8NQ15cePmBgPGrHcIgMgQMAUPAENhABIyANxD89SgauqUYTNAYAzjFEQsBIQyKr0fZVoYhYAgYAobA0ggYAS+NzZaIgXdRgVF5MUFj79d5cIyUb4nGWSMMAUPAENjECBgBb+KHt6qqc4hFKLOgIWBM0BAwlMzct1XltUSGgCFgCBgCDUPACLhh0DaNYHbRNg24aZ6GVcQQMAQMgTICRsBb/6cAAZfHgGPlWeI2Brz1n7q10BAwBJoegYWLf5q+wlbBGhBg/lXJC3IchRSGyZjX7nlt8VJY8rO5osyN9oLQkxFi3sJk/TXOliYpDnY1BAwBQ6DxCBgBNx7jjSsBcmW21UzRC0ted0sMAu5NsCOHN53TY39jei5SMjqiwjeLyMY9LSvZEDAEthkC1uFu5QcOsUKxmbwXBn5rMmCPkvYYynCYyTkFWDRgZWJAkOOWzRkChoAhYAisGwJGwOsG9cYUBMWm07IRGPOfqYGtA96Yx2ClGgKGgCFwAgJGwCdAsrUCGNVlyhVar27SaeuAt9bjtdYYAobAJkbACHgTP7zVVJ3ZVRCw24Ujhd1ZCdjWAa8GOktjCBgChkBDETACbii8TSFcFx1x7kVEwLYTVlM8GKuEIWAIbG8EjIC3/vNXupU9sGQMWA5jsHXAW/+pWwsNAUOg6REwAm76R3RyFZSJ0Pk8k7DkjGSP05BkTbCdhnRyoFpuQ8AQMATqgIARcB1AbGYRTMIaHh7G/qyzoNkOWs9InpyRWmOUhqGdzy1MckcnaYBdDQFDwBAwBBqKgBFwQ+FtCuHFYpF6cB4wV98vezTQdr5qiidklTAEDIFtiYAR8NZ/7GpwxgRNUyHgRCKBRRq79NZvubXQEDAEDIEmRsAIuIkfTp2qxiQsGBcrNPJ43rogWGdmoQGbElwnmE2MIWAIGAK1IWAEXBtemzG1znlW3lUCho8hYBYHL2gO87MWhNitIWAIGAKGQIMQMAJuELBNJLZCwHLwBvquqsLsxTGPgI16m+iJWVUMAUNgWyBgBLz1HzNjwKi8LEBSx2AwtwTOEbDpvVv/V2AtNAQMgaZDwAi46R5JHSuEiZlPoeglwnzKL684SgZF3yukS/G8xxnBXuVAyjjacWhjwnVE30QZAoaAIbAsAkbAy8KzySPRbHOsAx5LJ0rZPT1Cxnx29yZL+dlDwxkv6cWynpwJDPXG+S6FQWVZ8CZvuFXfEDAEDIHmR8AIuPmf0dprCAGzBDgf+kFYaI3JFGhcIlZI+GG6lICbZQp0WIR1IWZJ5RLYxRAwBAwBQ2AdEDACXgeQN7KIAlqvm+3sViEJBydjcTbDKu9GOX8R0vy7jay2lW0IGAKGwJZHwAh4iz/ibEEIGMZtiYm+i47LeiQmYTELWvRdgtibwznf9N8t/luw5hkChkBzIVCZgtNctbLa1A2BmTS7b/iJWJxJ0Pq21dHeznpf3YhDgsLyuC9EzJ0pwXWD3gQZAoaAIbAsAqYBLwvP5o+cmZHTF2T7Saf+8ry72jvCUimdzWCddhpwuZGMABv7bv4Hbi0wBAyBTYOAEfCmeVRrqChTq2YzpSAeiydlFXApFB23vbWtUCiwFzTzs2TdkZsazTUw+hUwzBkChoAhsE4IGAGvE9AbVUymkA9jQTwelyddEgJOJZJhsZQvFWVVEqQb8a6NAW/UQ7JyDQFDYFsi0IwEjH6mz0LHKaMNignHr+fokSA6z2dyclLTT09Pq2dujye9365XKHVqZroQlrq7u/GzEonx3s72dozSo6Oj7g5onF7svovZXHlAeLsiZu02BAwBQ2DdEGhGAkZdUw5mvi4crFsZ61Repu9yri3Uy60SM7N5u7q6nnjiCSDr6OiYmZmZnZ2FYNYNwSYvCE2XGgIpii6gMNU5xpHAnl9wGrDEBTL9WbeCriwVbvI2WfUMAUPAENgKCDQdUen6VFj2yJEjEC0nB7S1tcG1UK/qtWjATCmCYtnTWHmakFNOOUWfBmlIH2nJW+ERnVwbwBN+BSthX0fAqbhMyyIcO4NQr/vIUmF89uJycmhbbkPAEDAEVo9A0xEw1Ds+Pg7d7t27F57AMzExoeyLGkfDYOWpqSltISEwNCFovTgCOzs7YWuErB6CrZ1yNpNmplVra6vQqyfqbyopBIzlQPbocB/04PLJhEbAW/vXYK0zBAyBZkKgGQn4hhtuOP/887E/QxtgxfglHAynKsui/sKyhFxzzTVnnXUWHHzaaae98pWvfPTRR7FXoxPD1iMjI80E8obVRWZBp1kILASs6i/m5lQCGg5y+TwEDPVCzGWnunDlzr4NAUPAEDAEGopA0xHw0NAQJHrppZdeccUVjOnSeKZWwcEEwiKYl2FitDe03ksuueQDH/jAI488cuutt8LE5513HhOLVEvu6+trKGqbSDgvJUx1Vg2YarPYN+k0YPDMyQiwKMG4ynZY7sYuhoAhYAgYAo1HoOl2wurv77/qqqtg2RtvvBGiBQFIF7aAWfVKCGZnHHOv0IZJwwDwhz/84Y9+9KOoxXA2GjAqcuOh2xwlZPKcuSBjwFx524Ju40y1CgIGy4tFrxDzUm5sWGzPYo9mjtbmaJfV0hAwBAyBzY5A02nAqLZgyjguii9sCk9AqKrX6iQsnfysaYjCUk34X//1X5MmYuXN/lTqVX+MytlCLPQSKb+oxIo2zJYcMT8seEHBHYLEUYREySRpcaoPq9+uhoAhYAgYAg1EoOEELKbOHAOOQqvqYFACueqEZ5mO6xb+6tQqlDPUX6Yxo8VyJWOUV6kX0tWFSdDtP/3TP3El/Qc/+MG77rrr9NNPRwlWSoaVCadEEjOrC0UZDzbqSi0277coqvM/0hbAwaHB6kiuXrExHxsvlPyWgY54l+fJoG8gKm7PjrYg1Xl0RMg4KBXiXsEPORm44LFhpY9wc4aAIWAIGAINR6DhBIxiKmtgKtNrWVx09dVX79y5s6enB+6ETbEwM2SLZ9++fXfccQesCVlCnzjGL0lDdvwggV/33FBmJdkb3vAG5l7dd999L3vZy17+8pcz94o0pISztUSKu/baa8855xxYmYJg6IYj2tgCSo5gV8WRJIKG8yWGfeMtsZIONjAjGl03nogV/TjToPHLSwpHApOWCVplPbixbTDphoAhYAgYAiDQ8DFguFOVWjRdyJjFRVdeeeVll10GI7JpRnt7OyzLUC4OBe7MM8+kTkqiZCSBPiTM0SjEkDTjvoQjRw3UxO7atWvHjh2f/OQnzz77bIaNf/3Xf51AOBt6Rg7Fve9973v3u9/NLCRyoR8PDAyozC15PXEulZoZdAyYJivDOoQ1pgLDiTkrMfZtCBgChoAh0AgEGk7A0Co9PTqrcgD0CRdCljAu4RqoHigTBZeUJFD9dc+ePbSZLPAuBmTCBwcHlUHJzqokWBwJKgTzMqxM+qNHj5JRA7nFA0PDvvipDNct6Xg7oV0nNo/3G98PwUlbrQQMkmxSmU4zLpCQCdCyF5bL7GMRabhRRGtiV0PAEDAEtjkCDe9tIVTID/pUhQtmhRGhT4gBD+TK0K96sBtDtHAqQ8L33nvvnXfeCancfvvtt912G2mUQVl69LnPfW5sbIzs11133YMPPoj9mQTvete7GOh9/etfDwcrbUebYUG6OsbMk8b0vd2ed2Z2JvD81pYWnrS+f2CaxhoPDjwUIV5ItyjfW/jtZLs9dGuvIWAIbAoEGq4BQ5YM9+qKXkgRTqWjR9lVHZerMise0rAIuLe39/LLL7/ppptgbhjioosugpVvvvnmCy+8kCHehx9+GE0XgYi65ZZb3v/+9yOQjC95yUtYDfzc5z5XQT9+/DimadgdsSSA1AmHhg8dOrQpnkpdKgmp8uFNhXlVigCjwQz2VhMwpwNTlgAVYwjAhoDrArwJMQQMAUNgVQg0nIAhSyoiU5nzeSyf0CG38AHUyIgsO2wQCEmgH0O0LAImFtX2+uuvZ5ySNNzCyoQzHsxcLdhXtTfo+atf/SqxOCRD6qjROqj81FNP7d+/X9lXE0DklAjTn3rqqRqy5a9ia3fmZg7+TSbjrUnmWjFFmlVIcSa0gS00nHVLhIFCsHJszblIaqPe8vhYAw0BQ8AQ2HAEGk7AtBBtFfLD7IxfDdGQJZQJ+6IKQ6XKjmio+EnDzCxNCQGTV1mZQPLCvlzJTgLs0szMQo5KjqZlwb4Eal74Hod8rpqF67ZyrAJLJgXXiFnhZrU6VCzzARbouMRHSbYVQtZYQ8AQMAQ2BoH1IGClVW2fcid+ZUQ3HVdilBI0jV41ZXW4hkQSYF9Sqhw8auXWvFGg6tBoeBoShWuyrXTlnYPmlEIfq0GhwERx0WWPHpflWExUa0l5xVI+HkvMFsNETN5IeCMaHh4teacBTqqlJV/Ix+OtKMcxMTqYMwQMAUPAEGg4AtbdNhziDSygVCjGfUbZGQhncrMYAWRMnKnPzhqhGjCUTbCcEQx/sy3WBlbXijYEDAFDYDshYAS8dZ52pN9HHsz10GtLMgW7imrstpyEgN0ypPJwgCZmgw5Ghc0ZAoaAIWAIrBsCRsDrBvV6FKSG6KgkhtjxV+z8KLeouKLjKgEzN41btzUWmrEMRriB8ii3eQwBQ8AQMAQaiIARcAPB3VjREK2sQSoVWzkB2LnQ7eiJptvaKht2QsCR1hspzRtbZyvdEDAEDIHtg4AR8BZ81sqmnDY4XwOW6eja2rY2WRgNAXOFgwvM3bIp0Fvwh2BNMgQMgaZGwAi4qR/PyVSO6c0yBuz7mKAXTHZ3CnB5DJgiSAkNozHzMWcIGAKGgCGwPggYAa8PznUqJdTn5a7i1w/CIVD5MJWKYd3yPfteFYsJv5SM+U7z5WBgWZsEGbcmPXbFyqH5Ku+ybNrl0rzOaxdDwBAwBAyBxiKgHW9jyzDp9USgzJmsKhKFFWblI1tccY5viV1NhIaZ70xUPBmw0jdRSu9oi+c8bzoMwkSKcKzPO1q8fCGXD2NT7IfFxliJZCE9HUdKrmAcXM+HZbIMAUPAEFgaASPgpbFp7hioVO3GlWo6JTh010pUoRjGw0JKtnn28pWFRjEvRAmOBzFGfgtFrwjlimrMV8mX7OYMAUPAEDAE1gMBI+D1QLnRZZTVVkh0vgKru2Sz7xUViGLCkCMx5JRGAlmmpEuPdN6WbhzW6NqafEPAEDAEDAEQMALe9D+DqkeIF+szxmgxQXPlkAu+mfPMLQQccTAex8ol5kFLIPtkuW06jIA3/a/BGmAIGAKbB4Gq3nvzVHpb17SaSOcBwaMUMo324mBseDab4barowMCJlppmA2j2RirpUXOw0insUw7BwGjP9tO0PMgtRtDwBAwBBqIgBFwA8FdB9Fl+qwqqeQYGK4thF4ml+WuvbVVCThKRS61S+tSYAl3GnCUwDyGgCFgCBgCjUbACLjRCDdAPvy5kHj1OYr9GS7ViVgQcDaX90OvLdWC8ksEc7ECORVYFiVVxoCzkaRQgs0ZAoaAIWAIrBMCRsDrBHR9ipHh3XmO5xcxqPMFzG1G3+XDKb/5UtHzS/GELEsipVud5Em05+kZkdHeWIQ4zXmecLsxBAwBQ8AQaBwCRsCNw3Z9JaP7QqGFAocP5osyAysZ8waHhpgI3dMdxNyi4ZhbaxSLy8mDne2tYamACVr13lI+H8RjLFta30pbaYaAIWAIbF8EjIA327MXJXihHiwKLw7d15edOFCFK4ncScBMcpbzgNUKrfFePB5n6RFHAssaYaLcaiS9yr05Q8AQMAQMgQYjYATcYIAbKX7hwwtDZVA2loRmC7JJVhj3g0RMtp+UMWCP85CEgMmok7DkuCTnfF/UYl0TrCF2NQQMAUPAEGgoAgv78IYWZsLrhQC7Rqqo8nivDO/Kxw/Y49mNBbMGKQff+gwAx+PCuDifeVYQsNvuKjoSWOUwJgw3GwGX0bAvQ8AQMAQaj4ARcOMxXrcSsCZjfNYJz2z+nIalw0QiEQ+EgPnA1pGRub29nXrNzMxwFSO0z8kNashet+paQYaAIWAIbGsEjIC3yuMXDVgmRBc4lMGNEs+modQSZxGKcdk5PwhjQsKiPbe3tnGdWwdMFmed1pR2NQQMAUPAEGg0AkbAjUZ4veXrpCpKTefyGKVZ76uHATMALFtFx4SOYWCIGWs1Y8BReiPg9X5UVp4hYAhsbwSMgDfd81dDsTw4UXijVcAB5xrJQt94qcAxC9BsvsA8rCAesApYjMwQsFsMLIch4WuJ530/nynKKUmyEkmibSeOTfdjsAobAobAJkbACHizPTzh32iwtjyjCt1WdrSCakvZVDyfCvPxopcrBvmwra+rj0lXysFZLyjKhOhEyvd6krlUIvPkVCbjezk5ssFra0sWikyKLk/v2my4WH0NAUPAENhkCBgBb7IHJgTp+Fd4UjwlxnTx83EKLLEsPsphXkYDLvqJuJ+CcvUxk1yVXcg6lSj5xXS65EO+rBJ2LvTYsMOcIWAIGAKGwLogYAS8LjDXsxAe2dI0GS0kChgDzlIss6CjcxbIFj1vliEx6JsX5dcdxCAbUTKPK4qvZ41NliFgCBgChsCJCFiHeyImmyekiojLXiVgmJRJWJkstmc23GA8mFgWKJUftlOgMThDwNlsmpTC0GF5j47N03irqSFgCBgCmxsBI+BN+fyWHqdlGJgDGIRvZ9KyyxUEXEXTEuP+Ey5rgnO5XFmUMLd+NiUgVmlDwBAwBDYdAkbAm+6RrVThIqPCQcn3ZjM5pj23pmQWNBqu2yvL5XWUm8TcHASchoQNusjIsM8mWpLQqccumV0MAUPAEDAEGomAEXAj0W2IbFbzLnxq8+7dfhrwaCabZ29oPfeX8d0FdcEuzXkMjPwyVysvlMxMLL9oK5EWwGS3hoAhYAg0DIF5XXfDSjHBjUMAbhX+xHysHMt5wLApQXm3swbn/sq9h0rMpzzJiqcuU6OdylsoyP7QOLLbXhyNe04m2RAwBAyBBQg0IwFzRp7WUs/qWXBQPLG6g3HUkomJCfzVyTgEN4rdyh5HvVED4ddiNhu0trIfNP7xiSn2ouzr6ynkZV8OdzySszZXnnkb5ulEYmRExoPDrEyZjnaKjmSaxxAwBAwBQ6BBCFQ64waJX5NYTKPKwUwggoOj/YrxMGmIWD1IIJvNcksJ3d3dRCl5HD9+nBB4ZU0lb4pMCx4Z2qvQrToBAQN1EEOdLRQ5npCdsGLuMGDSyCxoPT2J9HwUJX3bMeqtQGjfhoAhYAisEwILevN1KnWZYpRTMZweOXIERZYti9va2tBumS4EH6vVlOzcwh86wDk1NRXZTnft2kUsIcsUsYWj/EB0XeZeQcuzuULox4AoWgfsdu2YGwwGW3iX1xgBRGZBB0bDW/i3YU0zBAyBZkOg6QgY6h0fH4cJ9u7dC93iwcLMFQ7mSqwyNH4lY8zRnZ2d6MRDQ0NqskYJJqTZgK5TfQK3iEgO/Z3v3CguNCpkK6BxP5PJwsSwLMcRugFgUYJ9sVqXE/Nmg5DZ2VkR5Q5pIGNlmHi+eLszBAwBQ8AQqDcCzUjAN9xww/nnn4++q4fGY2GGg7E803ZMzar1KvtOT09DvT/zMz8DzXz84x8nC2lQgrFO1xuo5pR3AhFXLSWaTWch1JaWlD7j6jFybUz1kcBuMw6CIWBzhoAhYAgYAuuBQNMRMIosA8CXXnrpFVdc0dHRAQawLByMBzuzU9EEFwK5kuAb3/jGrbfe2tfXB53o5KzBwUH4WBJtC1feGjo6VVDnNLOyN53m8IWgpdWN+3rFwM3YkuftkkLdaMDgWdaAOROpVJTzCs0ZAoaAIWAIrAsColY2levv77/qqqswNd94442qyMITOicLJVh1XDhDmfj73//+6173urvuuuvVr3712NgYHIyKPDAw0FQtWtfK+PBsocSRg7IOWPeClvLFgF9VD2iYj4IZWQt4vwncEHJVQvMaAoaAIWAINAqBptOAdQURhIGOi4KrWi/UqzZnbnE6ERrGharf//7379mzZ3R0FN6FfdVqvaWXIckAMFOt3MoifhYM8DK1WZ6j/A9LQIf6S5piKR/4pTjphHuDCgWXB4CZJt5GhjCelmODxVVIupzAhdnFEDAEDAFDoFEINJyAUV6ZNlXNiHT0BHLV6VRcVcHVqcsQLeovk5yZSMWVjFFeqJcoMuowMCoyWd797nejw8G+zL0iveJEGk3MLazMrC7S4IGnGwXkusiFVvngmE7lhY43/VjR5/BfsTMLJReyQSLOIuiRNCElrzjbv8Ol9xN+rF18EHJcCJn5V32JeK4Ynyol2TN6OpdPJeKBWKHNGQKGgCFgCKwHAg0nYLRVtxKmXBCLi66++uqdO3f29PToMhgszIzgYlLet2/fHXfcAcVClqLnlkrMaiYN2fFDzMqveCYnJ7/yla/88R//8T/8wz/A311dXbAvVzRmpmuRLCqR4q699tpzzjkHcysFnX766esBaiPLKOunMqCrbxuiEHMjO0mKKsseHMLRBeHkUqIywhDKzleqM0taEiTCUivbQ3uxTNGXbG72lrFvIx+dyTYEDAFDYB4ClR56XmA9b5Q7oVWYEjJmcdGVV1552WWXwYjMmWLUFpZlRS8OtfXMM8+kbJ1CRcZoxyvM0fAraeBXJmThf/DBB5988kmYFeaGsJGPKvy///f/ZgaW1p5A5FDc+973PqIwTVM62bfqCLEsIMK59VpQsU4DV1OBAnLiVXHWtVvOws8xSkbBJ+JkIYaAIWAINASBhhOwmpohSCUDaBUuPPvss2FTKFkD1QNlotqSkgSODzwGd2k0WWBcZWvYFwUX/5ve9KYXvehFZIRFsC2/4hWv+L3f+73XvOY1FAclQ9i6xobsFLFjxw7YFz+xDUGxCYSWmbOy6UYmI/qxjogvVbvqWdCsuJZkRsBLgWXhhoAhYAjUG4GGEzCECiMybxkixMGsXGkFihdKsKq5DPfiYawXooVfGRL+wQ9+cOedd5Lx9ttvh1/PO+880qC/4vnQhz4E0ZKSEBWFNErh9pnPfCYUThS2aIREpBv5MX3XG8AmklcKS+zBIS8Zvox8g97yBKzvKGpmiGGWdhmbqD1WFUPAEDAEtjQC5aHZxrWRucqQLowIWUKuEC3X8tpTRiODQGlS07AIGP64/PLLzz33XOZYMYJ70UUX/cRP/MQ999wDiaL+Hjp0SLmcKARCM8hHIKPIRNEK2Fe3g0YsZRECD8H0eJDwxBNPNK6lGy6ZBkZ1ABn82vAocIEHDZgQfRbovwrXgjR2awgYAoaAIdAgBBquATPZiqq7ucx5FDLokFuIAcbVAV0C0YYxJsOdLAIm9rrrrrv++uuxLZOGW1iZcF2VhLqGsksgg7tcyYvD89BDDyFZTdnshEVi2EWzEwsbUSKUfOqpp3K7VZ1jUJklTgOBgquO8i7VXjABNCz/moDsHNywVGILNwQMAUPAEKgvAg0nYKqLhgr5MeiLX4kB5RWeQKPV+VPKjihwSq5qGiUlDEpeZWV0aLJDEqSBzpFGesRqLuQghMQapYm5hWBwyjRk39qHNCj10kycasOKp4aceAU9TakD49XZT0xsIYaAIWAIGAL1RWA9CLiaBqBebQC8iCdS0ZQMqtumKReEa6ByuUbpFYolr2rD1UJUCYa2tTi9VifYMv5MNtfe0hpmpuMt7VifMRXwLsIrzlINhG57e2Ik25FqmbNcL5Xawg0BQ8AQMATqjYCZHOuN6AbJW/BugQZMyILXlxOrxrsRTCyLht1g+YkJLMQQMAQMAUOgQQgYATcI2PUWq7p+RMM6shvZG06sjabEAgEB6yhwlPfExBZiCBgChoAhUHcEjIDrDunGCCzTZ2VDK91e40SbfFQ5TY/pHgJ2M6ZlRnoUax5DwBAwBAyBRiNgfW6jEV4n+WX6rOykoYuLdKHRojXQkwdhaAh4dpbdoGW91qIpLdAQMAQMAUOgEQgYATcC1Q2QqTtZRVtZoQFDqMtowFpFNGBmqOmiYcm7dXcK24BHYkUaAoaAIbAsAkbAy8KzqSLZCQsSDd2BSToGnErJ0q9lXGUMuLwUeJmUFmUIGAKGgCFQXwSMgOuLZ2OlYSMuPzB8Pl4xGkeG45KcgJQohXI6YbZUiIX5liA6NhhaJr1+ZIMw/rP8NxWU4mE+x/afUvH1WJMm5ZgzBAwBQ8AQiPpzg2KzICAnAXulnBcU4NYw7hVl6hQf1F8OfvTCRL4YzHre2MxUd9LfESuhAsfYv6TMuCTEcehvCcblZlebl+LQqVyICpwlkZC6OUPAEDAEDIH1QMA63PVAuX5llLywpPRZEAIVNVaUYT6+X3RabRiTg4IzhbxfzLclfHcIMBGi78qX+Pgu6W2r04CzhRA+Rq5z9pNQHOxqCBgChkBjEbDetrH4rpt0ZjUznYrimI0FuTIJi9u2tsg+vXhFdCcyHTC2SdCLY2ShhoAhYAg0BgEj4MbguhFSlYApWTTgMgGvUA+dJs0saDh7Ba5eQZJFGwKGgCFgCNSGgBFwbXhtitQQsG5F6XbIXq7Keu5FdCLhckktzhAwBAwBQ6CuCBgB1xXODRWme3Ggy+YLLOgN2ed5xWnNkQZcrritA97QJ2iFGwKGwLZCwAh46zxuJeBCAfVX9pXkJIYVrcrROmBo25whYAgYAobAeiJgBLyeaDe2LN3LGfZlMhYEjFuRVvW4JD08uLGVM+mGgCFgCBgC8xGomYA5QVYlcNw9HibQjo+Pz5cpA5CEYwVdEG63jUOg4PbSyGfC1hZvdHQS9uUoJLcGafEymTDNs2cMmGODGQMu68o2E3pxtCzUEDAEDIH6I1AzAeu0HSbZMsQ4MTGBDXPHjh3T09O5HPspFZV00asIZ2Wqrm+pf61N4gkIVB+loBrtiocBI0PM1L5PentXOgFRCzAEDAFDoLEI1EzAU1NT6Exs4s/alc7OTq6sfuno6BB9KxajN1cm1lpXs0Jj27HtpSvUgTuTgdcj8OAZrYgKm0XrIzMCXhErS2AIGAKGQH0RqJmAIV0IGJbVk+y4Yu2srlMikYCSSYM2vMyB8NVZzF8vBPRRiEnZ95c5i5Di1Obc2ipbaMl4Qb1qYHIMAUPAEDAEVofAPO5cTRbMlfTsMOvIyAgqLwPAepgdjIsHKzQdOhwMKxOyGoGWpi4IBG4bZ915Utf16mDBMsIh3bY2ma7FgzMCXgYoizIEDAFDoBEIrLhSdGGh0KoOLqIKowczAEwKAiFdHB5YmRA1Ry/MbPeNRIAheEZ0oVIl4BU1YFIyY4sXJtk2i1MMUYqZN7fi0qVGNsFkGwKGgCGwfRCoWQPG5oyaOzo6ihLMKOMv/MIvfPnLX4Z6JycnsTwrB0PMILjANL19MN2olkZbUUKo0Kru87x8ZVLuFAeel85Yt4nry8NlsYaAIWAI1BGBmgkYEzTabW9vL2rWF77whSeffPK1r33tM5/5zE984hMPPfQQNYODo348ooQ61thEgQBGBtFU+c8DlJN+5RgGgd2dVpguJopeqiVWSlbGetXC7B52yRM7tQwWc1IhBhBy5Ep+wWV04gxgQ8AQMAQMgfVAoGYCplK6ygUavuiiiz7/+c8/8cQTb3/72//0T//02c9+9hve8IZPfepTqnuxSMmU4IY8w9CDWWFRWDPkAfpyQGGxkI8n49l8loMFRwut6bCtp8Vvdywb1cH3iISv40VHwG2ehwa8s6M1bO05NC5x/vz5dFFG8xgChoAhYAjUHYGaCZgBYEzQzJuFZRllRA/u7u5+73vfe9999/3RH/3Rv/3bv/3cz/0cIb/6q7/KVW3Rda+0CUT15YPaK/PcRL1lCNc9yiBke5R0IVESDTh0GrAoxxVHUknAJxaGqL98ErGgFCTSRQk0ZwgYAoaAIbBuCNQ8CQtOhYChXjbfYPkvnkOHDn30ox/927/928HBwXe+851vetObSPAbv/EbL3/5y7/0pS+tW0u2eUEM+oKAmhxWsw5Y05PFmSvy2ew2x8+abwgYAobAeiNQMwEz9wpHNWHff/mXf/nLv/zLb3/72/v27UP9Pffcc/EwBszaJAzR5513ns6OXu82bcvyqgl4NbOgFSRI2x2IxG6U2xI1a7QhYAgYAhuHQM0EjHaFgssaUyZYvetd73rzm9/8oQ996GlPexoDw11dXcyFhoBZocTypCuuuAL/xjVte5VcJmBfDmDQ/bpXXAesALnVSpOzs2yetfLOWdsLU2utIWAIGAKNRKBmAtYNDjFEowd/5zvfOXDgQLWaCwcfP358165d1Pk3f/M3dai4kfU32WUEsEAXmQ7NtCzGgNNp+Ngx63L4kLKiAUsWI+DlwLI4Q8AQMATqjUDNk7CogFs2Su/t9ff3ow3TdzP6+9hjj6H+EtjX16cepmutZilqvVu0TeVBwNGiLx0DBnx5SEs7Xfurz8iOzVgaJ4sxBAwBQ6AhCNSsAdPLo/tqX482zGIkOJgQPE6LklqedtppP/uzP3v11Vc3pMomdAkE3PJr2QlL14lx0NESCecF675mmmVehN0YAoaAIWAINBKBmgkY9Rfe1dm2N95443ve855f+ZVfYb4VpyT94Ac/YC70b//2bzMJ66qrrsIczTAwxFxr/SEDZQU0OcqCV3SAUw3aUSxiGezE0EosgVRMja5Rgu22CrmMUl52l0zPzu7s8krLbi2J0gxFAxoIgyTGEN6rthtotf44Lb0hYAgYAvVCoGYCVkaEC1F8IeBPfvKTL37xiwnUCrEXxx/8wR/ceeedBw8efPe73w09r6GisK+SKGLhYFhBmdVpeHKELTIJhyqieUYEajhpVDsnjQqBjSJeUYpaQ5U2UZaiW8+raLj2LmmHFhO0X8YTrDZRG62qhoAhYAhsAQRqHgNmfJduHWrE3X777QMDAzAxQLD0BcWXPSm/973vsUQYVob2NKommFBkSY/efOTIEaZ3MUKpKhqB1eRK6RGbUgr6NzocBzQRiD2cjCpE00RaXZSlpiptlsTaumy2AFCAsCTxzm8PCJPRxoDno2J3hoAhYAg0HIGaCZjlv1opSA4j87//+7+jhsJ/0CRLj9CJTz31VNKwPyUhayA8qBciJ+PevXshTjxsackVYtazh9F9x8bGqIMqxHjIwsInimP+F4FUTPW/iHc15dpeCBr+BOpXACghjJF42utW94qFeRmnsGhKXTqsEpbJYlGGgCFgCBgC9UKgZgKG1eis6eXRQT/ykY8w4gvjshXlL//yL59xxhl/+Id/+Od//udQ3de//nU2iI4ocPXVhU1vuOGG888/H/nKDWxpCQej0qHpoqgR3tPTg0BM3MrQ0Abusssug6TxYE3lqkxMTfCQUT1KOauvzCZKiT2ZNUg4nQqn0C1ff0WDFxeSKQEvn95iDQFDwBAwBOqIQM1jwJAZXTZ9N3rqG9/4RiZeffjDHx4aGqIHf9vb3sa+HOeccw71g5JhR502VVN1EQWDXnrppRdffPHf/M3fkBeDNhyMB4G6ZobS9TzESy65hEFouBnW0RDUX2oYlSjM7PsoxPoqQMooaot5dECXRq1NA1ba3mKYWHMMAUPAEGhmBGomYDTU4eHhnTt3QsMveclL0FavvfZaJVo4mEDdIxrCQx9Vvqyp/awtZgY1pWDN1oFJZOp0Kp0oxO5acCpKMLSKh1h0YozeWKGhXmJxlEgUQrjijxRflVBTfTZLYtroJjXLKm3qvJpXDYVFnxGG/c3SUqunIWAIGAJbA4GaTdComLAvM57o4h988EEdbcUPWcKFgAIXok7RoRNI4lph0ixwgxI5pmNIlFIIV3LFQywEjwrOVlzYvXEYwCFXVeMiayp5oWTSE06FmT6GKbvW+jRZ+oAjA7VKc0+OdwwWarmjBvNekC1if89zFJIzSC9IK+cI89+tDBPjPJ5UnNxBviRbaOFpsvZadQwBQ8AQ2LII1NzhwoJQIxOvILyf+qmf4hwkeA54UKQgOcUJvkQrhfbwkAydTGlVY+n3CeSquhpXboliJhdXmBXNFeJUjZaMmhdRFISfCkDJlPWOd7zjz/7sz2655RZGnf/jP/7jta99LdwPy+rwJ2LJgsxrrrmG/TKJQmlmcZTWYfNeGer1fDiTCVYlfXguBNBY9VtCjR3PxWKlQm+LX21th2jh44LHTtFsz1GIuWMMW5OJROgNdAc8gMlcEcU5XZR9PMwZAoaAIWAIrAMCNZugIU7VdKkcdMg8LMiP5b+wHZOQ4Uh4l+MZYD4YlDSEc4VQtTEsLoI1/+Iv/oJb1UehW+gc4iQ9oi644AKUaSgWUajRaiDFDzHD0yRWzRj1+ulPfzonHiLnGc94xmc/+1luv/GNb1x00UWEoARruUzMxqD9a7/2a0zYRgL7VO/Zs0drshmvyo5cYV8OAHb2dTkVWDTasBTz45BopujHwkJFAyYtNF1SbVhelHgisjtHQc4P9ksweSyI8c5TLAknowCXpbmUdjEEDAFDwBBoHAI1EzDUyCqg3t5e6sQ6YPgSSr777rtRMdFNIVocNKnsC5USqEqtqqQsLrryyiuZsYyKjBYL9cKypMEh58wzz0RsRLqRSg3pKoMiioKYqMVQMUcfKi4Q+VlnnYWay9RrJWCUYOqpsbwu4BCuvK6BW/hKM2kd8C7fRt5pGCQHJVRnnpcYKirzqJfPaLGGgCFgCBgCdUGgZgKmf4d92fICffdb3/qWTsiCdKkNJIfeqfZkbnUYmEColy4enZVA+n3Y8eyzz4ZxCddA9SAZPZiUJIBoSazaKllgX+V11GtiYV8CCYGYIVdqwmTsJ5988kUvehGFwj3wCrEo6MpDWj38eovkLemYhIXCC0RgDkrLt5E0+oYSj8mMrXQuzzQsf4VMy4u0WEPAEDAEDIEaEBCeq8nBfKSH8yA/PEzI+va3v43qSTjsCx9zVdsybKe6LyGwAixLekLo7mFfpWdyYawmBA98CdGSCwq/99572c8SHkXJvu2220ijJArF/tM//RMWZtwHP/jBw4cPP/zww7feeisnE6MEP+95z1OKpW4QOaVo0/DjkH/s2DEN2cJXkKF1vJdwhWWXamlkIZB5WKkU+Ns86KWwsnBDwBAwBBqBQM0aMH26qr+YgjmCkBFWVuJCsY8++igDrtdffz1E+4EPfEAULN9nxBdVjNlPJKb2kCiBRKHsqo7LlbxE4VHbMur15ZdfftNNN0GZ0DYmZVj55ptvvvDCC7n97ne/yxWZyPnUpz5FcUgjAadB/Od//ifcA3kjHFGURZRCppWBj7XQRuDYJDJVA6YySsDL1EoJWJ5ILOCtJRyfkD0svZp/D8sUYVGGgCFgCBgCyyBQc4dLz652Y84A/tM//VMUUHbA2L9/P0ono7DYln/nd34HAoYF6dYZ8dWy0T5xSpyEEAUXoiizwwaBaMPQNjyKbZnY6667DmZFLVO+1BFf5V2EkBjyYByaTadJzC0pCUFLRgIhMDqMC3/jV4dwAglBca+EbblvmVoljQJ5rjqOvkwj/YAZ0W5yXCzBAwVAsC2FcRWyTEaLMgQMAUPAEKgLAjWboJkYpTorxzD8/d///cc+9jHUTZgSNRcu/OEf/uHHH3+crhyKZZ2uVhE1iywwN708XIgjPRwJ+8IW6KwkJhYPgThmZsHK3OJIoKwMfZIRORRHQRSH1RRHXiUPpn1xSxokUCJFk1c9yuXUSs3mdQGuaYUAGnXTZ7RiJUFME4MhWLm7FTNZAkPAEDAEDIE6IFAzAcOOkJyWDKVBpZh2oTrUWbiQQVa6fh18jXRQPPTvmgVlC4dfQ6BGpQquOAI1nAQkIyTS5Fw+yYijIK4UjXMBnpbILcmQQEbCuWodoBkCSRMJ11xb6srCrbCEUsuzoL28wdC6YNmNNXJ5OdoZusZyAHSMLDAhy5whYAgYAobA+iBQMwGjXyqDYgR+xSte8YlPfAK1kh6ccGp89dVXE4iGih+VlFnN69MMK4X55dAtrzm8FfEs9I0klO2tlnT6OkIWfV9R1XnJ1BZhCBgChoAhUFcEah4DpnRoFcZlyhXzkC+++GImRqE8cQ7SF7/4RXp/JjCjV7EoiCFhHZSta4VN2BIIYD6OyQAubz8QMNPUSCcW5mBJrTayH6hFQV+blpBuwYaAIWAIGAJ1RqBmDRi1CVqls8YDxd53330vfelL3/rWt2J8fuc738mSJKYxw9BE6fhinetr4pZAQC0QRCqPulVIyy1DIiV7YHGFqBmAJ7uuX1pCvAUbAoaAIWAI1BmBtWjATLPiDGD4FX0Xuv2lX/oljNJ03/TjTORh2FUVX+YtM2Bc5/qauCUQ4H0IczNTqiBgVFvdh0ONzIvnkFnTMvGKZUj6mHiCojWbMwQMAUPAEFgXBNZCwLCvEi1TkVn887WvfY09lqkt03+Y2MxQIgoxRmn26ECvWo4D1qWF26WQWIwR30Ioq4mYcp4MZPhXddxFERCN2W24zelIvDmRxjTgRYGyQEPAEDAEGoRAzQSM4gunwrX04Ox9wYFILExCD2ZI+NChQ0y8ggDe8pa3wL4wsc7uaVDVTew8BJw6WyjFeTeKp2Q6MycMykEMSzh5N9JB4sqiYRsDXgIqCzYEDAFDoCEILN1DL1Ec5k0IGJ0Ju+V73vMe7M8QMDtQPvDAAyxPQvFlPRK8izrF1YaBl0BxjcFqInZXzjISIdXPL1f0MyXOHEykghLrtEJZ4lt2OhmaxJKJ/xyFJOZq/stCpbZYIVHKZ4shy8uWmzZdkWbfhoAhYAgYAiePQHUHvlppLEDSpGzFDAGjDXML3Wo49Azv6lKlaJ7takVbupUQkIMIhTdJJ8/OsbDL4welZOzojJeLt/UkPU6C7Ix7BQ4trBJIYve8ObWh/NwTqRYCd5TGd8Qzx8Zz03JmsDlDwBAwBAyB9UCgZgJGtdWBXmr3ute9jv0gMT6z6RWWT517BfvCu2p8Vm5ej3ZslzJUq+UqG0mqix4hITMlrxSkWmNhqoqb56eUvETiyM4NX+1BMVnKMX6MBqwFVGTbtyFgCBgChkCjEKh5DFgn7OimDZxNdMUVV7AO+FnPehYdOrtW6Qm+b3jDG5SAtZdvVN1N7nwEoFJnjJjbCLqy/9j8dCfc8eAYEraNOE4AxgIMAUPAEGggAjUTMHVhfZHalv/X//pfTLn60Ic+pOcP0o+ryktvzvZY7IaohugGVt9Ez0fAHUXogbyot8s63o0izZiXKh4ZjzIKWTarRRoChoAhYAjUAYGaCRg9SfcZhmujTaHV7Ex16Mc1nDQsCCaBcXAdntKqRczOyjbdaqVYIVNFO4Z0OfxCCdgGgFcAzaINAUPAEKgfAtEA4mpFYltm7e8ll1wCs6IzQb2/9Vu/xYmE7H7F7SOPPPL617+eKDp0JKoherWiLd1JI4BxAhlKwDyACskuLld3iiYZy4B5jjw+OUPKnCFgCBgChsC6IFAzATMJi8W+X/rSl9gPix3/uf27v/s7tF5mYHGL4nvrrbcqDVB/GwNel4c4V4iu5VWrg7wBLev0JYkkKaZsMf+5UHCnOC6bxyINAUPAEDAE6oRAzQSMdgXdMgasvTyn88LBLEDiisFZNzWEhtWkGXXxdaqtiVkBAeaik6ImwwM8zTgETwol2JktVijCog0BQ8AQMATqgkDNBEypTLZifBfqVU2XGVh9fX0ERpZn0qAN4+jT61JLE7IiAkxi5lkyEIDVgdcgXWy0fC5Vl5muxUeXkNnpkcsjZrGGgCFgCNQRgbUQMKt+nbmyiKaLn4OPOAoJSiYQAujv70edYpyYWzNB1/FRrUYUmJNslRpw9TYpPD4ymgl6NSBbGkPAEDAE6oJAzbOgKVUtzO9617vowdFxOfr3mmuuoQdHIYZ6oWRoGCVslTRQl2aYEH3XYXQAKLBGrAYQJWBdsESWMMzoMuLV5LU0hoAhYAgYAieJQM0EDL+y9dUv/uIv4sGGyYFIP/uzP8vQIwZnJmdButyyVZZWCz2YwJOsomVfPQKMxJOYN6QV1wGTjHcm3QlLs3jeRDqd8Ty2kTZnCBgChoAh0HAEaiZg2JdKffjDH0Z/qrYwo3uhRcHEnMdAAri5paVllapYw1u5bQqAgHko0Trg5WmYwwqjIXo4G5AcfxsBb5ufizXUEDAENhSBtYwBM+dZlKfKBCvWj9IENGCuhO/atYsQPNzqTOkNbeD2KjzSgGn28suQmPQcpSGlDitE68e2F2rWWkPAEDAENgKBtRCwKsEM9+qUH64sQIKPUX/Rg9HAcPCxhm9Eo7ZvmdEYMLrv8gSs709RGn1V0uzbFz5ruSFgCBgC64hAzQRMxw2/cmW4VztxbNF039wSrv246sT05ttRA3acxsV9cxwg5xPJlfW5TFDmKuEuOvRKfGp81vq8uErG6OGFHI7kBwjPFSjMl2eBNSL0sEJwfCF+LQYPH70r+fGSF/hhSBrGIZIxP+8nsyGZzBkChoAhYAisBwJRH77awnTqrF6VX6OB3mhUWAcUdVOO1crdGumgL7iu5GGUz4uv6JXyXhFvseCV2CWSOcrQpEsDU8LKa+DgMlKOWUtKxZSULcUg+GwpyORL3d1y0kLSL/jUgjeAOaZ2VRL+D8JYfDpbSPphPMy3e17fjta0lzie9m076K3xS7RWGAKGQPMjUDMBN3+TNriGcFyZhdF0nQYsFChEq+wn0RU106WVgNU7srrcIjPKRYgfCAEX8QVBLHC7QLOvFfRf7cr1UQ2cLCjKpXipKBpwPCj5sUzRnxNandH8hoAhYAgYAvVGoOZZ0PWuwNaU5yy9worSPLkRD99z7ztYjeeIWFKdpAsCL1eS/ZyZ/sYEuHIFIH2ZDLe4IwuOgQOuasawMeDFkbJQQ8AQMAQagMAcIzRA+LYUCZ2FFf7jGw72Ywy2Qr46HCt0J3omQ7Oh+OvkEJXJsJVVUcbjo6e67ObObqJ6mYBZM8asOpsFXaenYWIMAUPAEFgZAdOAV8ao5hS+aLdFxlmhWnywrWNavDFPRm0jh7+OHJzJyIEK6LJzSu/S5xGKrVpeFULVgHXpsK5iiqpnHkPAEDAEDIHGIVBNB40rZTtJrmJU4WAYOMb8ZHAWLdh9RP31mCVVV/ZFHAZktFh0WUopqu67NAEzKI3TeezQsM6bMw14O/1Sra2GgCGwwQiYBlz3ByDTmJwOLBOe+UCHjuxQf4OYrEVyFmoNql/hjPay+itaCYYtWkZ/dZh3sVKEoDGCV2zUGK7xs557sbQWZggYAoaAIVB/BIyA64opg7sBBFy2K0C2wsbuHjaEicsRJBNadnd46uE4zBfShYBZBIw8UW1jy4muMG+5bM2lO6vUozomwxAwBAwBQ2AFBMqMsEKq9Y2OaEAPrFUtTa/YSCMz6czMDDQT6XCamJqiCKoEXay8vnX3SjnW+pZyeVl0BAF/7dsP/b8vfgO9UplYNWNhXxkcRgMNyjR80rWMxXyOvmACNMZk1O6WZLLApKylHcZp1izFY8LWuXyuvb0V2/X09HSUQ3Ro5yJPFGUeQ8AQMAQMgZNHoBkJGG1MGRRKgFaVcXW0EnbBjY6Owgps9AHFMvCpG2+RmDQYUdkFM9LnlJ41L2DphKOTR20ZCUEqKcRakhlY43nvX2659eYvfe2JkTxsVoW184oGXBW2jNDVRSlo2nZyLN9YjNPRADEwysol30eCvihUF7i8nOqU5jcEDAFDwBBYPQL1JIDVl7pMSh2GRJM7cuQIzMqcXibowqOEcKsqWkdHB7dM2T127Bi8G61ehUg4KCK6JY2SR6QKrw+X5ApFzMAQ8HTOu//xww8fPT48namM+Qrgzo8WjPq7DBI1R2nDAURNz1GrFxVU/eDRg5O8NjgCzp/IwIvmt0BDwBAwBAyBk0Oguh8+OUl1yg1rctIwZLB3714oBM/ExARXVW2JpRx0XNgXYt69ezfaMDoxgYODg1wHBgbgbKzT+CMGivTgdbCmQqlBPMlsq3Tem8p4rX27Wnt3HR4Zr6Jav+jxcchXhVLhk3S6iAhYlID9pWdgaUGaDD+rlZMJgQsNeFm79UlW0LIbAoaAIWAIzCHQjAR8ww03nH/++Whyyqzd3d1wsFYZ+yr2ZPhYyfVrX/va5ZdffvDgQUJe//rXP/roo9ir1ToN6aIxkxgPIepRJp5rfb198GnBC+FX1MjZrPfYkfGsl8zHWn7wxFPlAVVhXFmVVCbgiAPrURNeO2gglnmkih7Ly8qCqVbzS6kunKFgtV1nMgVFCUg1eeSZn9vuDAFDwBAwBE4KgaYj4KGhIfSwSy+99IorrsDUTOMwO8PBrJNBw0MDVuqFnm+77ba3v/3tKMqf+MQn7r///t/6rd/q6emBsyEMDNGKCn4c1EIu8urpEScF2EqZmWZVCGWRbXuHd+ipY5PpQtYLxqbTwojCvnLRz0qSao5XDVjfWsrD3ssScLkAl4bfASgBEXbsyE7Q6PeVmltoGQwBQ8AQ2EIIyCTYpnL9/f1XXXUVTHDjjTfqoCY2VSgZeoBKlX3h166urs9+9rPnnXfetddeq/U/44wzSIClGpaFiQlECCF4IiJBTqMbC9FKcVh1Pe+pY0N+IhVviY1MTEK6ci6gcHDVQiW5rZvTeeC8miBRCBhr/SoIWGtLFhDGtg+ApVKibnUyQYaAIWAIGAJLINB0GrBOaYYVUHzRgCESVWGpP8yqlmTl14985CNnn332q1/9ahj63HPPveWWW5R9SalES2KUOQRil8Y8Ozk5GZmyl0Dj5IMZ/A1ibP7MvlShd+jwUDzVwWKfhx9+RLVeJVw2pJT3Av7LV01OMrKntBwA7EaR8ZOf/1nf4ywjOVswKMqaY0oS4bxgySOeI3pZ+MQC4ei5g7RsSc2HlxuORyoU0d9dbo40xJpOVd2mXSpEW4Ff3LwbDbKrIWAIGAKGwGoRiDri1WaoNR1cCC8qrWpeenwCuRJOCFflS5axcqu2Yoizs7NT6VPzog2j0RKruVCCodU/+7M/e9WrXvWf//mfP/VTP/XGN74RDxIIR5kjGVdkXnPNNQcOHIDLoW1Gi7UODbpCVbFCwCxkGBHd+8jxielZ3y8lfD/26KBo3zAn48OxYjbpZXNgAPxCkzU5GU2ujCJTjmwujWRmnT05nmkL0wfai9y3JBgs97042jDjzdSHkp32Hybc4mMpltMKpUYFt2RK5q/tSmemjx4fDVKJHHnE3uCKkkMM5ZxDSe0+Qufy392Jx5whYAgYAoZAzQg0nIBhQTRXiFOrxuKiq6++eufOndAh05XRbtFf+/r68Ozbt++OO+7QYUiUVxw2VdKo4osHCRAqt3jQZfFccMEF73nPe170ohe97W1ve9Ob3vTRj36UKAZBI013x44dGLQffvhh+Bh39OhRrUZDr0xxzpZKY3mUx6Cjvae7c0c8iE1MTQkRQleQdFjwvQKaJRRZM3/J6cLyX3hYHAJK+Dn4NxfG0IBb/SzH/IqW7MtaZD1xyZ1GXClKQiUnc7S4MtGcbx5PnGOEEVIqSgESj2OXaN22mjC91+/ophxeFWpeQ8AQMAQMgVUh0PAxYHhUlVr4DzJmztSVV1552WWXMVSJWZgpu7AsQ484dOIzzzyTWivXklFXExGCOZpBX25VLUZjZgES/ksuuQTDMlG7du2Ca7/3ve+RGDlM2opaD8HjCESH1iHhKKpBHgZei6E/ODjtFUv9fT2dHd5TY08cHxkJz+gphB7jq1qNuldGTQXudUdaVi4FLl1GyQ7ZvbL8btSSSkDb2CMgVcK4xiRvOXYZGQ2C0cQaAoaAIbC1EWg4AaupGb1WNVdoFQ2VsVsYF0rWQPVAkLApKUmgGvOePXtAnyxQLDwNW6MBw7ukgcv379//jW9849d//dfJCGczffppT3uaJqBQckFIOiMJUzZy8Otto58oSifjwMcGj6OaDvTt6O5JHHvEGxwaLnlME3PapdgDyucA1qsy8CU4IA0o5NylKkdhBAiR8qUVcLGiJ/OyoMcCM227RZZTqxBJ5l5lFrwluGCX2S6GgCFgCBgCJ4dAWb85OSHL5VayZFwWliUdzArpwr4QKh5oUq3KypcQLRyJgnvvvffeeeed9P633347y41IA+OSnfXBH/vYx7S89773vV/96ldZg/TAAw98+MMf/vznP//mN78ZetaCKJdSNCV+HHzMzlka0sCrO2cB+UePj8S84p7+nr0DfcwGGxweQZ8U5hUWlFlaYvolqE6uioDj+lDdROzlpJOlXANXjbbWFEbxdIbZY8q/YkuQ/Fzc90JZxsYLEbF7Q8AQMARqQKDhGjCzpRju1RW9aKJwqlqDVcflqsyKhzRosb29veytcdNNN0GZ0PZFF10EK998880XXngh+vHIyAj7ZMHQ5Prpn/5p0jPEC60+5znPIQt7cdB0LNWUSFll/qhocvCxFloDPLUmddwFsTHf6fDgUOAXD/b3dfWxL2Xx2PBIZdRWhaIBuwHWOtGYEjDE7sbKHXc6gl9EvAtyNaUCJT/GXiWiH7e3yuA6GjD1RI7jXKZMu4SOiUkjnK0OIZJCub4SaN+GgCFgCBgCq0ag4QQMF1IZtE8ctmU1aaLmwoVMlWKwlkC0YdRWiJZFwCS+7rrrrr/+ejGluqlbsCzhECoJHnroIcZ6UZdJTyz251/6pV9CGlzLODFpoG0tEU8EAokhbEKY7RUFNsrDOCpH88a8w0eH415p/0C8Y4dMkzo+zKwsNwnLFUyayuhqfSoCNYJwLPBV7QcQMXevzsnGXaGXSqA6h5l8jrcHfhaEBfAu9vSyHAmYL28eI8+PsjtDwBAwBAyBFRBY0KWukHpt0fAi/MdMKNgXLsTBnTAE7Iu+hToLgxKLh0AcY72wMrc4EigrQ58QNuxLHdCMMV9HXE4a/Bifyau7QVEEyUSZc6O/yuXwEyS9tiasNpfjKk4+opjh8am4V9zZ5e1s52TecHwqzemATHCqKJMictkTe1dbpqZDLO8lInPuxQPqFC2VSi167APP3mdatlN1SSP865VYB4wGTJh8eEcos68U4uSIZ85Vxc4Fms8QMAQMAUNgFQisBwHDnUqW1AfixOHREKhRTdBccQRquKYkhARRK6K5zTA0gZGOG6UhPUSueblyq2lgJsRigo6ERzIb4YG2jk94mVLY09HW3+l1eF7/zj62xHrgkVJcTv2D2cRR9OqV1BXrOT4u7aX5rYw8w7hBkM6kT2hvmYh1bRKLg3keXmYWfuZVYEcXm0iXxienYHCUdZyeFiy+pd4UZCGzOUPAEDAEDIG1IGAd6FpQWz4P/Dee9vKloLNVNsLAnLujoyMMEhOzGaLEsfSHlxL11+nqVH3hYKfQaiGLlaBhUSI42L0FxEpeim1OWEClRgOnAYtl2r0olDXi6qpGEhYrpDqh+Q0BQ8AQMAQWRcAIeFFYTiIQU3DoHRvJ5Erert5u5mFDwAP9O0teMDQ6oTSJdB1ZrWzyeBLFVbK6JUhiYHDCJVRH0CvxfIuBWp1uAFK+15+AGwNGA86wQVeFfSvJy5n0y34x82GxO0PAEDAE1oiAdadrBG65bIF36NhQwYvt370LhRSL7r49A/nQPzI0XJ1LlMv6qY+MiyOQsXOKUKmRid5Rb4V9q0osT69yg8YEi/HaY7uSnBKwXqsrjB4c5RYjdnQzL5HdGAKGgCFgCKwKASPgVcFUQyJoKfCODI4WwuDA3r0JR8B7BvrZGfLY4IiQljPeYovWOVM1SF42qc4+0yFwZcYYB0Oc6FzpGiwEzE6TbNshW1uyDEmOcEhnMzoArGn0yAedOeaOOZ4v0Th4Ph52ZwgYAobA6hEwAl49VqtNyaDq4WPH2Q3rwL4BPbRoYGBnPJk6enxYTdA687i+BIwGTP1kRZarpgovj+DOVfyEx61DvH4J6m1jvNovwb/yclD5VLJWFOjKvX0bAoaAIWAInCQCJ/TIJynPsrtzD46PjqE7DuzqSriFPH3dXqq1bXxsQkZqiyieTJSuM/KsuYJuownhSr1LcXxFDdZ9NsrPzA0fe7oO2B6jIWAIGAKGQKMRqDMNNLq6m0B+qcBejuzGhXW2q93jfAPmYbE0qjWVnM2kZzkoybGf2m4L1dbe1bYNw7Ls4VGxL5etwOkixw7Gk/HKCcALpZF8Lgc+JwG91oX78aLvMX2LudD5kqwNJpRbdvBiWpZsnOknon1D5iaO0ZAKky8sze4NAUPAEDAEVkLACHglhGqJh68KqfgDT40l4qmBHX2yFXVYSpU8ZkYN9HS3d7fd9/jhHCwnQ8Gc18A65VqkC98Foc+8LvbFLvBxmXmCARJH0mEx3t7dkoDsIU5WORWKBRY7yTivsC1zseOyCIqS3eSrZFiMiaU54cVaczGvIAm9rrb2MEjNZDix2EuF2aDEacZhPgxyPgcjoS7zIUu1KxgHV8NhfkPAEDAEVo+AEfDqsVo5JezEdlfDU1OJmN/f2yPghhx3X5KVSH29pVJhZHLUxyqNY1IWmmZZfV1ZcpRCB2iFi2XHqrKTcktowLFkPID1OVNByg2EmFVHjcpxs5dRajmsuMjUKk4shsbRw5FFJZNBrOjHWa0sLwahBrOJSXlIuFJa5VtKobAFlFyJtW9DwBAwBAyBZREwAl4Wnhoj1Sj71OHDgR+eemCv5C4UxF7seQf27wuL+ScPH4ULC1AvxOV2jpS4ejjGgBGjY8CyAVYYBlpwRXjEwZWAed9UiGomEjGszpmMO7VpXvxiN0hcXuhimSzMEDAEDAFDQBEwAq7zLwEme/LwkbCQP7h3IKKnYuixJriYLzx15Ai6pjvynpnH9Sw6mgVdFuqmN1OZxR2KcKV0vtWLBswkatLPzOruWC43hzpEIirKrum8ESTmMQQMAUNgzQgYAa8ZukUywkzw65Fjx8NiboBDGHDuQCcmLvX1evHAHzo+IoZjVuj6ge9OBV5EypqCdCMOXQeMAFWvS6Jqn+jmHnp5b2jHwYS2JBMcwDA1LSuaxO4sWz3PJa4W5Dh48ajqZOY3BAwBQ8AQWAoB60OXQmYt4dCdjAGPTySDcKDHcZcQcCkWeD3tcuDu1Ex2ikFXAkOGaOd0y7UUNj+PasDshKWUu9QypBOVV+qnPwJq09bSgl4+nU5LMgQRpAuF58o6QYCdxzAHjvkMAUPAEKgBASPgGsBaMSmcNTLjzWRynS3xXV0VK28oK5G6k15fd1euVBoayQqJYQMWeltR5GoT6Biw7gVNHiVgvUYi5kqbPzwsCdgRS86qijMvK52R3SjL1Fsh4LkfSsUQHYk1jyFgCBgChsAaEJjrV9eQ2bIsQABmHZsu5Ip+eyrRqcOsMtNKlEROVexob2FB7fDkLMcdwHB86jgNi7OTqQynIVVXiYnWsDyf6sc8R8NVSUlAsniMZU5BruCmPZezViWSNUgLclcLrkppXkPAEDAEDIGVELAOdCWElohHuYy2e8znyxtq8PXwk0eDeMvTDu5hJY+A60zQeLjt6eyIpVoefepInt2yXMyiuzUvUeBccDSwW6DgStGYoDFqd3W1yE6SUGkqxTrgVEqWIi/uVAkOAoRQvWTgZXPe7v4BGpXJ5mhIkJCDlXQ6lrJ4Wc4CCl5cuoUaAoaAIWAIrICAEfAKAC0TrQTMmp/o4D9odWSCbSwSvV0d0Be8JY7lvroUuL+XM5EmZnMw88mov9WGZVlx5NTSigZ84goiKjXnTmRPVvnyI9APy5fRgPNFoXhZpCwkPf8XUslf/i63cE6++QwBQ8AQMARWicD87nWVmSyZaIZ+RIQQcOUYe+/Q0eOon/v6e9yGGIoUuzsWAfqMU0/NF0rHjo8Rmit6omaenIu4H+tzLpejGuznHKuQonKzK2EeB7sQ99xlfFeYlBx84oGsA8Zonc7LkcCyAyVu+ZliNgNLMDJnCBgChsBaEDACXgtqS+UBzccOHy0F8b39OyFgPfuIoV42w4LhTjmwE+Xy8KCsRML4HPH3UtKWCo8yRgSMHRpbtBJwhX/lFaFagnCqcwvYmIroj4B9McvrgNOyX7XLzlESlb2fJX8kwwlS8fMK0RLsaggYAoaAIbAyAkbAK2O0VAooSq3QJFArNNx2bHgU3XFg5w6ZDaW7RUJbQYg62buDPZrjHJSULojGyXbNS0leZbhSLDO62AWLmjADK+lERrbxpeRUEylCyATNcm5Ea0sSE/QsW2EJ2QY6Saw6sQhceL9UIRZuCBgChoAhsBwCRsDLobN8nFCXDsGyXZTzTKa9dK4UT7b07mDpbyh7MuNEhwzhYyZCd3V1z6RzwyMyyMpBCWtzSvYi2BUK3WazefwQsD5OVZEZwtWDh6tLmaf+6hIjJ8TxbXkny1mnAZMrdCp8eSFSefUR+0hXZBgTVyNrfkPAEDAEakTACLhGwCrJITk4DxcpwYzCDg6NJTHjtrW1CvuVYsqxjsZgWxTNXQN70CyPDg0hxu2RVRFXy7cyZpSD4WcWAcO+OA2MqhSNTEeJT/BAqBKmLNuSSLIeGDonBJplB01Xa0lgzhAwBAwBQ6C+CBgBr4BnRc2Dj0Tz45YRXPkUOe0ADbMQhAW+CZnMB0Njsx2p1s5kDCaUwVPUYD/uhoLlQCSw3tnTyyKlkfFpKI4sa3PCmLJIF+FSn5wXzxVj0HkiKEq57DUtF2fgjlYsVYh07nnLDGcnRK7i+GIYOBaWoG1hX2FlxHNqk0S5Mw11XjRpqvJoZrsaAoaAIWAI1IjAXIdcY8ZtkRz+gYq4um/hYP4z5ZhPLB7kM2mGX73cNFw2S1B7/N4nhvOz0+ccGFBVdIapznBXIgWVxcIsJ/Ue3LunWPIfOzYmOiaHBxfYdRmRNTjkwexwpWPMXLqYCRPBk+y/5ef7umOcpcDyp2wYZBl2LhUScZLjZCozTxotnI8Sb571wrwnyEG/Mp07GfOKmVx/T0dr0h8fOw770qBAVOpCimlaJffOwcuEaN8UXyAb7wBrfodwtbKLIWAIGALbGgEj4JUfvzCkcF75P198CBStk2lWMvBaYm8NjgM8Ojqd8Ev7+rp0eJcFtpJXjl7g6NwC86J7u7vxjU2KBkxUHJWzRld+YFIXnBw6CFNmZY5XKRkr6tqnkh+HGlFXpaLllKKzRh9yYjx3XBy4zbIkCnU9ycSwYg4NmOyOXAkmqgCBU1snSdRuF0mx4iri9c6uhoAhYAgYAqtFwAh4tUhpOmEf5zDuBgzxYqQN0AsDjLZQ0ZFjR1FPTzlwUNOU19Aq1RWL5N27uwPOHhoZLuuOuh1VWeRqvxaMAZON4WeuehgwntWMLkczuaJSGUJOpWRBMyuaytUjzu2WeWKJUS7zGAKGgCFgCKwNASPglXFbEiN0RjdPSUS4za3Gxyb9YnHfnlZ4mX9qiC4XwIZZntcvhxIGo6OjHHdQF93RKbKensSgq3gprjy/elnajAhYJUgLgsAdB4xhvJAXzd1pydISGXA2ZwgYAoaAIVBfBJYkl/oWsxWkVQgTNpKPkpJTEGEo1OCZUDTRVNzb0Sl6o++mQZXx5d6dPtjZ6nW0pNKz2clZgYTtpE8SGbEzcwaiW7kbHQZcs127UgmWAqMHowQ7jVooWSopU7HMGQKGgCFgCNQZASPgNQLq+BeSZXwXq7PPnOPDgyKqp6ujtSwygLgEXyFZkotBmqXAu3q6CqVweES2e3Tjr2t6BGR2vCjLnSoEXNaAuY/cKrgTlo2UYPIhxC0sdgo6bxnLqtFROeYxBAwBQ8AQqBWBNfX+tRayZdKHcm6Bo95KkyBgFiS52U5PHGKPyXBvfx+WZxkd9rx8pkDiUqko48TMl3JTlAd29oR+7PCxEWYxxWLMmqrNzVFqhYDhdz0TSceA5xLUIjhSc5XF0YDLw8CqBNciytIaAoaAIWAIrAYBI+AVUFrIuC656LOaDx8bXrlpwYMjo+iO/b3d0TlI+VyWZCXGiRn/LQgZy0TornaGg0cmpmG4amV1hXosEa0asJu2DJ2v2fYsdmbdviOZTKIQMw36pK3jS9TYgg0BQ8AQMAQcAs1IwHqyHtXToc1IOYNmcNEtCUjJLUfh4tfw6thonpFr6Ulc4EnUV8eWc9RLWMEtxYnH0EH5PPLEoVRL66n7BgpOeUynsz1wrai58KKcNJSenUE5PmXv7lg8+cijTxDFmUi1cnDZJEw20U1ZBSWbb4yMjECf3d3d2kidQiXVW7UBGawUrtbWVjh4eHiYE4LFMXk7CPL58qIjlW9XQ8AQMAQMgZNHoBkJmHlAysGYQ+Fg5Vc8cAxkhn6mFlfCScktnAHvMrUYOMjITCidFaz0TKDqdniqBztPHjsRC4u6NbIQ8ORMmort7Olqc4qoH2dKkxRe1ESe15pIoQHv3NFZKJTGp9NwqEtwMhWBYEUG7yVcIw141bS7SNFAGgmMouuLWyTWPIaAIWAIbGcEmo6AdUkrXHLkyBH4jHFNJvfCr5BxIpGAWaE91dWUhjU9DNHX18eDhD/Iq6OhytYEano8ayESVVG5Vj4wnqJWQv90W0KmMdh63vGx8UKpyBiwGoLjLFIiOCy5owjlaAY2z4Lc9vR3Mvfq+OgEm2fpkbs1/f7KQ7yVkV4lYAWhMgbM5hwici2NZZSaI4XZ2YPzldQ5Ml+bqLIE+zIEDAFDwBBYDIGmI2BYc3x8nB5/7969ECeeiYkJrqoHo+YSiGpLGp0uBGFMT0/D0AROTU2RMiKPiHfVLg1zq6a4GA5rCeM0BqfcxgrFcLrkTUzP8Iqwc4ePmgusYiGGlssOAobAZUdolgInW1pn0pnpmUrkSXwrAWuTsQQgicaWH+qaFGGERGhLnd0krAjJk6ipZTUEDAFDwBCYh0AzEvANN9xw/vnnw6/KKAxtwsH4H3nkkT179lB9VL0dO3bghyog4M7Ozo6ODsjvpptugoo0FzyEigzp4oF31aNMPA+Ak7iZo6XAPz7i5Qulnp6eVrfvpDMJI5o9lIuB6L2ikKJDF3Nee+Dt3NnP6O/IeHqOoE+iGgjRwfLWVqi/MhauJdYuVhcT6+sOoIlATA4nbSuvvSKWwxAwBAyBLY5A0xHw0NAQuuyll156xRVXQKvAj4Kr04ue9rSnEQXZTE5OEv5f//VfY2NjTzzxxPHjx6+55hoI+yd+4ifgZuh2dtbtc+HMsJA0dmnIEt1a7aurf6QLeUfM0XOkiUC1Rifj3mOHnozFE7t37yYoLFZNWSqFMbFFOwIuFjgcAZkDe3azj+Wxo4MVQ/Lqa1SVspKZSdYVDVhi9SVDarlWDZisSsAqqr5mA6miOUPAEDAEDAF3qE5zwdDf33/VVVfBbTfeeKPyCjoZvIs2Bn1yhWhxVPqss86CG+BmKPbuu+9+0YtetGvXLqiX9DqTCCFEkTJSfJGzltYK71YcRlk364p7pgfLOUF4PO/xxx9PtrbsHOiHbN1JwC69LuWJaLxQTLbIUHJ//27WDh8dHPL9U126k7pQiIwB+7xeiJyosWsTyhsMoCnyEQHHRbU2ZwgYAoaAIVBPBJx1tJ4CT1YWdmO0Vbp+FF80YBhXVViVq4SKHz0YGoZQIYyHHnrok5/8JPZneDfiDNiXvNxyhU7ICFtjyq61fmX2lKFQtxIpYt8w73EQUTFfjLcyYenY8FRr3NvV4ThQTtV15TA3mUODObavGKKDs6sy0oKS19fCOHZmcFKWT6Exx+e0aqcrL11FVzjvFH5RgECzZglykPVlOVMsXmh1ubG4x7yEU49V2goyq0ujeskYJxQClQgoYDtA5Xfbj3BbhoJGzD9DQqPmElRLNL8hYAgYAobAEgjU0DsvIWGFYDgS/UxnLGtSSJFArjp3l6sqpkyhIoHaimEARna5klHzKrMy0Ku3mkVHYT/2sY8x+PqWt7yF7BquwuFjZF5zzTUHDhyAy0lz8ODBFaq7IBoFt8TJgQVOMuJk3wLbaXDVNJwEPDuJmRf2nfC8w2NZf3Lw2Qe6hKVigRxij24cT3rxFPmLnPLHG0AyzqYcnYH3/P3dydzk94/Jwik5xohdp0STdh94DOeOasCrHxdUTuCXyFHKxT3eUwRFLzie9TKxVGdQ6mX4mQHy1ngyLLaGzLGG8PX0QCdgFRfeBna2x1Ol7PHhYZpZiidypThj6hwtzFsCseKEfXnBkF+O/nrAKJR9O7iWK7zA47LZxRAwBAwBQ2AeAg0nYFgQ07EyJSWzuOjqq6/euXMndKjWTizGrCBCo9u3b98dd9yB5orCitqKQ80ljVqeVYWFfeFgaFWHh/Ej8zOf+cyrX/1qLQLqhbbVBE0Uc7UwaD/88MPQPO7o0aPzWr/yDbQH4cmcKgiJKx/YRRwMJyO6MULGWAScKaa8Qn+n04A1CVldUi6anblMQcxPhJBcIuXnx3OFSRcl1Cu7aVVclbcSpN9OIlTNZC6XkaMTiGARFGSM4ThVVlJF5dZzmuQExFocyZNBGAsx+LPEypUiO12r0Z3SwQA9PmBrTQ6XQB13Gjnhkav2R4HmMQQMAUPAEFgEgYaboOFRVWrhP3iRxUVXXnnlZZddhgF5Zmamvb0dloVHcXDnmWeeSR0hXa5kJIFWGXM0CjHcjCMEP8ZkRn9ZlfSFL3zhnnvu+dd//VeyazISwNPRfCsIHkesGqJVYA1XSMkvq3rzcwXsfCEWZth3ymPseWcy0bujY36a8h2vOSIGszHcWfR6e7yWVGpiZnYS7VheITTeJSadI+AyI3O7mKsO1pOL5C0nSikFLUnjUapFPQq+mhkWTbAgEA7W2le1QZPMVae6KtU1XyDKbg0BQ8AQ2FYINJyAYT6oF+JURoRWMWmeffbZMC7hGqgeCJLpzaQkgaqzuuiILF1dXfpUkKbkCnOj6fb29j744IPPetazTjnlFIzPBJJMNWA1X0PzGsIVv96qqFqvCwkGTRQlkCnIMW98XEzf3d2dDAEvQzByOlLIy4HX1up1dXUMpdOT4164i4poJkqYI63Fqkcs22pJYs0gjC4zliUtxFk2Ecvd2p1CxBNBA46cFhTdLvDIa8XclGuU4OVbsSC33RoChoAhsE0RaHhfCaGi+LKshT4djGFWSBf2RfHFA7liT1YPzArRQgCQ2b333nvnnXfS799+++233XYbaVQbfvrTn/7FL34RUchEMtOvPvCBD6BPkxKZCIfFCeeWKyH6VPHjkH/s2LHan/NSEBEe5N1kpZGxdBDzdu3snZdUSbK6PLRaFMaCqIwDu/r9MBwZ0eVSImp1vDVPqL6mpLFBu9cLrnO6puPm6sJX6WcKub4zyXGJKzvolnR6xaMfbqPPyiIshSFgCBgC2xOBeZTRCAhYqgtPMGQLy6KVwrhco3W6ROl4raZhETC9/+WXX37uueeyDIkB44suuojVvRiZyU71GM0dHBzED38j6rvf/S5c+4u/+Itac9hXOUkUuKpjG5BJAmXotbTRbS0F9c0nSQLibIYF+x09coxq7N2zy9Ej3ONW+y4sSeoAQ7Emme+9+3ZDkYxJO8qSgdWFybmfz7blBJVAYd2yBiwqsJqOpYy1Gp9VvjMZyLqmyl4iLnhlOlfGVRl2NQQMAUPAEFgZgcX6/ZVz1ZCCyVakRvuEdGFHHMqo2IJbWnRREAZn2FT31mARMHx83XXXsdMkA7oQJzyKkfnCCy+EPmFc9ODXv/71CCQ79PymN70JzqYIVW0hIZKhQMPQlKLUTmLlYzy6XzSeVTvHuY5PIb7oI9nReaGlWArmeeroEa9Y2Lt7YBk0XZSwFAPczBjeO7CbCcqHDx9W4uLqmFiuc65ys0iUjJGXE9I6fPqCMpd3rT43/i4W9Uj+WiXN5VPc5u7NZwgYAoaAIbA+G3FAonChGoQjtoBcmUWlFmPYlAR0+rAmD0WHckkJW5MXViaQWzgGtsapf//+/YQzIQv+Zgsq/EiDg1FG8estYpFJIMXpS4BGrfZaliRfjoolX3lw1B2kwOsE7Dg6Ok7lezrbSLcEBwvPypIgUmOFzjMG3OmHxZHR4whUnlU+LWdHkIa69FJq5CqtixRdiiZSoYsCo+S1etxhSDKOHonS5cvLyokaXcZrSRiWlWKRhoAhYAhsKwSirrOBrYYbIlKERHEUpiFQo+qpXHEEajgJSEYICbRmmutEPyHwt4ZrYqUiQsiuflRnxPIGEAnX9Ku7zkGkY7jcCznKEttgtiCLX4dHRmDVp591oFBgWvNCByk5PmVDC6FhyRx6Z53ZNzs9NTo8wh2MnnUHA4tYz5uZTWuaBYKY9CXEViHGZIyTDpkD5mEV4PWClV1ZJoRJYX6JiV6y8Yjs+1Gra2fBb6kEqUcm6EXt6RWxGM/9dJaS/SwvOEXQCLJ5ho/FqL7Arq44VDLatyFgCBgC2x2BOXbZ7kis1H5HZo5ByykJYBFwMFHAYOs2yIx7LbJnI2ncnlnzBQaRblxkNNprSXpt7S2o7LNlRi5PZCITer9krSLPKu98oe4u0oArunH55WaRpKsL4sWFhLprZyRz0azu7SGeSHUUvXiBBVWxJIDEEy2qzS+axQINAUPAEDAEFAEj4BV/CdCfoOSQglkitVL2owhj3rGhQraQ7+nuSrAqWPamWNIFsocGG0Z5TMNqiXs93d2ZzOzQcAYNGKGQmeaNNPgTBYmKXEWJqtDD4gRjIajXs1SLAruhRFU6sSYaglKOyj+dL1KDgh8DnfHZDAbxXIF2Vjvuok91uPkNAUPAENi+CNSr096iCMr8Zxm6rcDktoh0bXUmVjH5HuFQo5LPORCojRiiiRSaXOgYAGa7K8ewDHM7gbv7d4aF4rHBQclTKQAvM7vm5XbiJI26ymm/wo6OgRkCJwbze5RNiRm7dCVPDd/kYd8SMjBpToqAOReQ6XxhpMmGQr3M7oZ629pkOCAWl31ECOQ657jRz1yQ+QwBQ8AQ2L4IVHX82xeElVpeWYakalwEmc7GgoAxGuueIYuYnqtlS05ZCszoKEy0h4nQQXDs2BB+eI4rjDVHtJLRBcim0os4Gf51jK5rulBbVYgMEldpyYvkXCkIAobCZWjZpWRC1lI5SADphkm5fvPuH9z/6DGS8tGGaPZyXmHx5ZqzVBEWbggYAobAVkUgYpOt2sCTaxecxidyZRaRe8gECuR6+Ngxdv3Yu3sPCmhJTm5wvDM/I3dF2Vy57KBIEg3s3oW1+cjgMUK5RZQ60V81xTwGq0Tz7VTbaJlQpAFLTEWES7VUfk205LVaAyYRc7KWSkoEDeY3dO8jw5/8f5++6R8/OTIt7cSqrmXPz7nG+ixVuoUbAoaAIbCpETACXsXjm8fBc+khJihlcGgYyty1q8uZoOdiF/jKBmGnziKPyVq7euUIiuHjo/NZSnaYXo0KG9FiNAZMiY6aF5Rc862OASuvk3kZAqb58m6B+vvf3zo8OPzIE08+9sSTBDIcznVBu1w9CDZnCBgChoAhIAgYAa/md6BTqxjEjfNhoFdHW3MlOSlpbGo2Ucz0toocP4BYGRCVYWNxDl0S8x0jL9/M2iLKTYnuaUvFw9LYtAzhKpORco58SabH7gpnye6VziGZ4VWkyIFEjEOjgOZKsSAMkkFJCxBOlBHYspvzVUKW+aYUVn1xJHAuaJkpcW6TuDIBC7fzEShI5uojF6ZfTYbel7/1vbCrr5Ds/O4PniCEzTFh30rRMu/M3VAxxcXJtYshYAgYAtsbAdeRbm8IVmq9QgTTlYp+go8X5v2Qla9hLOE9lfZGJjOd4fQZO1UXhLQkvUyV5lvoBrbmMF2+uU/kQ7/IPVpjyXvGvmSqmB+cLB7PiRLJnpaxMO8V2R1aFhdz8LA7TNCVziwvp09CZAV2vwzi0GRbIsx5AbtQDk+k2dDzQF9XKZNLwnB8kA6XJ2IyTlyLo57dfOL5Kb9jLOhBSqnotba1c4yxR2m5WZnFLSxcUIrHO1vw7rx/4lgYm2zvHYt1felb92eY5h2TFhHre/kwl/XycLC8u2RD8rkW1VIrS2sIGAKGwJZEwHrDFR4rLALhCPHICcDCK27iUR6TMv7RKYg1tqurvd0B6WIrmh/sKwZn8iIjREllpnApSJCGUFYitQVeD6cxFv1heA2pyIPkZFA1RPUljUhzFC7Rjrgkmdt7i2RxGYMWLufcIpRU5kCn/DJPR5boWhVOFGtU+BQasJ+aKqWowJwEWsECZakBgfJGASQkSMW9z9z8hZaOzotf+eq+fQdni7Hb7jhGrUjIS4Osy6KpbmUzITG3fZiIMGcIGAKGwLZHwAi4tp+AIyB4iKOM5BiGwUG0z4DNMuEtoHSa5+ICdQw44jMSJwKP7auYY3x8CLZltY/TmuFpId0lXRQpc7UclyMBl0rJ9teSDaYUyl+70w3FdAxYK+zKcro1u3k52VywwIPAkzPevQ/cv7s1+ZrzD77kvB/K5NJfuvNOWReFKZv/Om0t7hqnBnYXZRdDwBAwBAwBI+DV/AbKKM3RmpCR8N+RY4PxIMaKXuVFR4AnCmRWM4t7RYjyGT5NT0Z040HHwJUNsMq0eqKUKASCdaIkJRTITliwO1t2KgGXZ3tFc7SibKv2sEUXrZudnaYYjjzGSWNlMZIPn0LAtAajchAX/ftfv/jtnf0DT9/Vty/lXXzBGX5QenRo8DjD5aRmS0rZT0u2xMwFUq8lVlStumaW0BAwBAyBLYSAEfDqH6bjIkkOaAHMxBenMEGcKLJ5Wd+rJDtfYCWTEjYzuOAwwlRHZfsOsg8NDUse2JsIPouO3CLfFUHC6mnJ+YIcnAD1ssG2FqFXrUSlcL1b7VUPw0jPzJSrA+VCwIwGU21syM48Dqeitk+VvK99+26WLV3y/GfuDL3TOr29e/qGM7mvfXfUvSOwXTXfJQzrBSRIECLc1S6GgCFgCGx7BIyA1/QTqLAJBAz5YYJWWlXGUtoTopFx3wrCzF52rKuqKbogEf27doaBf4xTkKvSKTnP56l5d2Ud13EZRxHCx+xD6ejblQzVVcZc19Q22c0Kkk2nOeNBBJT5HrFCuvIWABXTMq733j80my0UcvmXnXt6py8zqC947nPyJf+22+9C8xWulWFjMbDLHUJFi9Y7uxoChoAhsN0RqNDDdsdhte0XSmKKlDCrrEEaHBxE49w90Oc2goZkymSzqDglTq5wEAZphkh39fViQD4+Ivqiy4lYtphejKOqrLcRAaMqQ8DcQsDkUdO0FA3twZdrddE6YCVgNGyRxAkSrHoqCIdSVa6TWe+r3/zvZCx5wfOf54Z700wBf/Hzn93T3fvEoaOPHWNHaNXpSc6cbqFjB9taq2X5DAFDwBDYWggYAa/+ebLytuKcAbZQ9CYmJrAhd3d7TAuGY4r53DxAyyRYnlelqqTarrFFE9nd2Q4BT05NK6vBcBQAowvNL+0iAkaZZoyVWz1reV6OkyBgdy5kiGKrAqPiqHG+JHO/+cCtkxnvnnvvK2bSl73x+cVCrjh5vNX3TuvxTt01UCoUHzo8dGw252GyRsfPFmBo0GP98vJNm9cEuzEEDAFDYEsjMI8vtnRL69M4x8FQp+B26NB4e3trKpXoZI0r9yGmYFmfsxBTiROlWY/5S3DqsUuD0XjvzqCto525SodkE2UcxI6NN6YstZCrRI7HYbvJRNJNiWLHDG94eAwbOKO2RDpOlzTqXPLKTS3fra2tvBbkcjnOVyqUcq0tqUIRKhUKbWlLwapy9pHn3fbNb6PJP/u00/soOO4Hraz+zVP11774onY/9s+fv6W1N5klXRhPxlOcVkgLWbU89xJTS5UsrSFgCBgCWw+BhWSx9VpY3xY5UgQ0H6IcHx+H/Hb1QUBCT3As/06gvQrClQjuJb/7ULcd3T1w88SkTDmW0FhMp0MvZN8TmqGKKUxJjFL7CUnWGMBrBIucs7mMVNJp0nKloFjAmmNme0Gik3nvngcf5cCGV130As4/glz9Fr5LHb53xq5ERxCOTs/8YNQrpFq9ICUZCjkFYMV2rbHSls0QMAQMgc2GQIUeNlu917G+sAcTlznBKDKfOtA4iPDIEchy//79VAZrsNsjUhIruSrfuHoq54o3itIgrrt37ybr4PERuE2o2RUk3sWc5KosDNJ43QhaV+4ulmMtYW1tSdhdjyNEs+U4wpjs/kHdg3xRuBYo7vvB6EOPH+rd0XPxeb3xEJ2YseEUZutU6J094D3z4J6xqcnb77kfldeTvcNYMswGIxGAa6mV5TEEDAFDYIshQJdubpUICFYQrNPhhAYPPXm4WAz3792DX+crsUfjKmVFTNzfvxu2Gx4eLmcsCzpBTIX/y2O7QaAjyrpdBkbjEzKsPaANrTUIsmn2lIR1qZC8D/gyCctPJWXol7rc9vX/yha9F7zgBW3o33lCUnmvNZvNs1UmIZdceC6EfMf3HhjNexXNt/xesvZqWU5DwBAwBLYWAkbANTxPCEmdsiFrkJghvGtXH7eMfwo1yxSlKFUl9SLfpNGPx1Jgtn4eHh0LZIJSEOqUYyRWu6pbmF9nO6sJGj0V+7AeIFid42T8zKjGpi3DwMKszKEq/0iKsiW0l2jxporePfc/0NrR9cIXXsDSo3YZ+Ialg3iSweMZ5lud9+zePf0DTzw2+NChWQaMxeYeL59gwZuHOUPAEDAEDAEQMAKu7WcAAzmCZbFQeQy4t1ckCI6yFriyQHg5qXMMDRv17+6q1oAh47noeULmSFjXBSkBp9Ni5a2vBkytUi1JljKl0xTFkRAsgYKIYWJ0Xdks+itffWA2n+/fvffAAezL7JaVBxSmksUTqTg7chWzbTHv/Gc/Pz1b/M49D89Qcd5OEjHEMo/cfnDznqrdGAKGwDZGwPrDFR5+tcY2x4EeC5DgvjTM17NDRkfLUcIyc47A6FMJdfQqoXrAgzcwAHmFQ8eH3RhwedKT7jNVybLwW43PSsDMVSaadcALE53EPVVkUBklGPVaJ3kp5Wu5xN5+x52plrbnnXse6i9LkzhDIsWBC8LS3Je8WA7CffEFz2lPdN793QeGJ2TrSi9WIJBazgPoJCppWQ0BQ8AQ2OwIGAGv+ASBiA+zrPLwBx/mI6H+HkkXJny/tSXeDV2JhdVxC9ba1TBMJQ2cNNDqxcPsyFSGtcDol0yrZv/GWElO/MUJpVE6q2ndOULkc1WRwjgyifS5AqbdYksQHRgsGVxiMRyTvlKUC1/dBeltMb8lFqAAZzl9iVycMuEnpgpyQOLDR71HB0eCZOrC5w0w3CsnAmedmTnmTfEtCOTjpexzTvG6W4LHnjw8OksKZFAdOQNKnLx/OM/SF02yUqql81uMIWAIGAJNj4D2iE1fzQ2sIIf9FYOCrM+djRXHWyBiFsLmvW+Pzg53dO3b399a8jo5ylf0P5IxWXoOUuW/+SxIrPsIUQm39XneaTvb86mu/34syyFCPpbfUjrpZ3RnD9oN0RaDQE4oFFW5wJYXLakWJn/5ieSM581g+c1O7mwjGw7q5MMiXZbdstUHSieTwiRklY6kcB5F9yaDWD4zMpOLpdrgz0SsJc0Yb6oFdfuLX/72YD51zvOef1a715EeF/W2tYtcvJSEKbBJsJd13Esnc96bf+yiWKrlHz71WScyleVlgXpEpIon+rj6RXd4SKkf/OYMAUPAENiSCLh+e0u2rC6NcpzA1CMOAYLXEgEbP2ahGmYGH5nJZZOpnu72NgjWTb0iBSTFdXUO5IWAWTzb391aiLeMzMoUahkC5tzhMC/RFRIinBLcXTEoT4N2FWJfjiKqcSEVL1YepBCWUpfkkElhNTsalIwFbMfFVl8izg1sB7HELHwfeg898VS24L/ghed7+UySI4MlRbnwSrkMhBe7kt7T9vclk8FUOvfE8TTTpMOYm6xFcsmynFMMV0q1nASLMwQMAUOg+RGo9NvNX9ONqiH7a5SpgNlImHvlhj2Njzx12B1EOCALkgjjKucV1ezIt2/PbmYy60qkEoW5YV0VNP/xyHZasieGcKJccfVdB0xxcU+s2bG2tnwQK6TzcGaIzR0TuFNj77536tCRp07f03/eQQpX27irhwOAxFJhn43BmJvlnXqw62n7+2cnx+743v0Yp+c2gi7XvZwxspIvEVxJZt+GgCFgCGwtBOb38FurbXVsDTA5euCb6UZylMJThw7FwtK+gQEJXwPxVipH9r17BkrF/LHBQTS/WJDA2C0jqRVXKdrd8w6AORouU5Mzmzum05BxvWZBsxMmI9BUKdbeiTE5O51BR4eAMYBncjKQ+4XbvlQKCq+46DzGwlsSyQJbTTrbOJWEcvmQRtg3EALuSngvecEPzU5NfO+BR9GesVUXGEuu0TnYa8xjyQ0BQ8AQ2AwIzHX0m6G2G1NHtE3HG2AF94oyCJcMDx1P+P6unZ1lBB1RwI81VZHUsO0AhxIWimjA2IsxYgeYais8RYL5EuVO5yRrQfVfhhTKTKtER3c+SGRmZtnlCps4s72YZz045t3/gwd7d7S/5LkHCzNS85zMFRMA+I/6y2Q0+JvtOkKvFfM1bwo/fN7pTMi6/8nBw2mxokfvDcuj5IBePonFGgKGgCGw6REo08emb0eDGuAIEALG2Ap9wC2i2/ne2DSLXbOpeGxXtyNIScbsLIkWBbkWR+pdPTtgpomJKSY6CfMm2TxZxm6R6sZzK1/unhslYNGTnQZMSGtrZXhV0p6EcyPQVCnV3lkI4mm3iwZV4sP0q69840G07VP39e/v8TpE1fVSrZ2q9HLHR5YkyWZgDJXLziR+wetv8c44Zd/Q+Ozt3xsSfASo1VaPatQG5WoFWzpDwBAwBJoCAeviVngMGIShDTcGis4XQ/flmNvBoVIqkexKpdB/hVAcG1UrpisIrUSDPrba3m6/JZVAlx1jySxRmHAjE7RsyxEtMdLCWBFFoEs5NwZckXjy39ibQy+RYnJ3bCYvR/rCg7wOjGa9b377Ox2tLS987jO7A5YYeVk5G7gy7CuGa7bjYJJakSwul9cSY1q096qLLyrFWr/0X3enHZFLA9UpGc/n48XCKunt2xAwBAyBrYWAEfAKz1NWwIplmblWPlZVVLyZvHd8bKyjJdXhTh9kipJoarI3M7xYM55wd0fca2U+cbE4PcX+yjgIH+ZSWQz4Ct3iHHXJMiclYA0kF1ppvE4KsE4jow0pN2M5UyrlhSAp1HvoSPjkyLBfLLzw2U/Tsd5kPGBGWmXZVXnyNiRLE/iQJRmEuZnpH77gzI6OjnsefJhVwrOq4ivNagOWuBoTLwGMBRsChsDWQaBmwliHpuvuSxSkJw3olk9RuTrvV2/zeQixPBNY/eTljDyNXeWIYyT5RI9wa5xqyEYTJVbceolMkVWv3g8eeXh2avppBw9AnxGCqURr5D9R1KIh0AxZkLtnoD8WSwwNjzjqiheLTsmVPLCvDMqqD7aD8trb2rkl41SaGdM5msnxCXVzYSnhe+1BLBkGjNvKC8estPzmr39tOsy/9Lzz9rRiAw8z2QwVSKcFmXIjnLLODTUmPR9mlnW2p4Do6Wee0dHR+ZnP38kscnlgzkUGA31wlWD7NgQMAUNguyBQK2WsBy56EgAltbS0wME6z0j7a27ZJXFqakrrkUgkpqenlaHxs3UieTmdnkASQMYaFamM0eqdmpohm1NhfY4l4L8822D53ujEJBOhd+/shV2Ed9h/UUmyJrmSGMttCYVyoL+f2g6PjkPAovC6fa+cF8kSgBNKU1/lqgc3UL01Fl6RM/eNhV3K8ToSyaCQm8zIIHCyNT465X3/kUfjLakXPvfZ6OapmF8MC/x0utpSlcrxLRlx0U8qiLGQaZbbV7zkBZnpye/e/zDSRD92Oj3V1uci8C7qkFcWuWi0BRoChoAhsLkRiHrLZmmGbm5Mp8xpu+hG0C1H/cCjhBClXXZnZyfVfeyxx7hi3oSnIWkYOjoUiECiyKKMG6nCayBgKCCeCOANDL0QcJZTBzzv6NAgA6Wn79+P6RfDNMyYLzDxaE0sHBYRcuqBA7ls/vCRoxAg8vxozwo419EV1VCKc9cyL+mCYd486kbAIkgMzt2pWFDMTE3PorDywnHH9x59amjowME9P/T0HXHX3kSSnbJkz2dcxQpNvWmKrIuu/Kpk1TKvFy94emJne/zw0Oh9h6XmhZKstOIDE+eLhejpqCyJ0I/cmzMEDAFDYMsiUOkqm6aBsOb4+Dgd9969e+ma8UxMTHDVCkKxapfGEH3aaacRODo6ypWFsBquyVRdjnr2SA+OzJ6abDVXuEDO45NNoZjVy6JYMaIeHxtnNHT/7j4YiNWtDJ2qVkfi2p2c07d3bw9vG0eOHleWZeIXctzqpzmR+IitXumUcwc4cBJD/Z4ik7hZ4ut1tgTxMA/IsC3GhG/c9X0QfuH5z4VgM7NpKpcIUmGpwFuI1srNGiOYyWrY7HVSGhbyTKylldax29dF554dJFu/+LU7EBiPxTnZkFJ4LvpolnsucwDUDq3lMAQMAUOgiRGoX9ddp0ZCwDfccMP555+PXqv7S3R3d8PBqL965g/hQgyMQ4bhu9/9blJCz89//vM/9alPoQdjhaYiCCEWSkNjxkNi9Wh3X1NNq/t//OweOZ330tlMMhbf0eF40nFQ6F4RHK3UIh7tNhStvrcHDTuGZZsiqkt06i8BMO+c01YQqu8cGAlUE51LsXYfBJygsLYWL8Wqq3wO//ePed999NBAT9+FzzkVo3eSCHlBCFpYaeQ2CStXmNcUIW+xnsPBUj0ZO8ZU7yWzpVe+8HmZUng3O3K4pnDhE5koolH/tVfcchoChoAhsNkQaDoCHhoaoju+9NJLr7jiCrUkM6ALB8O+hONgU7VLX3bZZbfccstf/dVfsYUF/ne84x233nqr2qsjjQpuxjEwjDZMd7+GY/tEFcXJMLBgBbscGRTVTaoky5NgG5KUKAGvmy/Nd02uhB6JyZyaz6RnZzj24QQO1ocEmynVKQEzA1nno4FGuZI1FbtkYiktlWQOczE/nUbd//o9jx/PFk7du3d/G6ciFYMk+3HKdOkgznIpsY/zcZo5GZkSDi3LqDauvaOdeePZzOyOVPGcU7tYszSV9x548DBRapwQ04JzPCP12NUQMAQMge2DQLkHbJ4G9/f3X3XVVb/xG7/xzGc+UwkGZoJ3qSGqIlSK2qea31133fXOd77zkksu6evr+7Vf+zWU4O9///vHjh2jN4ezuUYKVqT4qpyaGus4j5lQsI5sAw3ZHHryKW53D+yCZmS8lEMLMMayWJbT5tcAJ9O7fK8j8Hbs2FHIl4ZHQ9Eby84VKJOwHMdFoap3hh4qPk1jDLgSU4dvGZ7FwpzkZSKfnpiamPG+evc9QWf3ReddwPSrRII1wWj7sh+mmx1WXTGi9CwKRo3leaEmY2gWci2l233vBS+8KFdKfv2//zuTz2JId9ZreaZI4rFKele0eNQtuK0E27chYAgYAlsDgTUwRmMbDqlQALwCiaIB00HTg2sHLbZa9Kr2dunTPe91r3vdP//zPzMVC56GjGHfl73sZbt3756cnEQ9JQHpUYURiGmatUmEY8omvCbH6YCSPgiyRdmPAlIYYjmsVxjo6YU0ZN9kP8hxJhEjxW5icE3CxYTNOHfgsYyor40p1hwMPME8rwqtQekyv9rtfSlkxocHFojhWi45zk4KSomYKOJSkXLZIYQsqjlpxR5cwyOmdRidIU+dmDw1m52Y8h599NEdHW0vfk6bELBYzHOVY30DTPtSHy0rKl9uZY/KmWlZpISCzmIpsLr01WeUpo/f9f2HjmcDDl7Mu+lreZnJXVJNmCnY+ilLqkz/FtD5CCpUjZ9H9OFWoNJ4XksklTlDwBAwBDYJAjX0zmtrEUonw7dKqyoBciWQq0545qqKqS4uUlsxxMlUZ6VPzUsaRn8hUYSQl+sf//Efn3HGGaeffvrOnTvRgz/4wQ9eeOGFRHV1dRGLWGgbmddcc82BAwfg8p6enoMHD2odVnlFdwsLwiKZMCi2xCaL0vePjI2g9J4y0Ec4t5OZbCrZJkQXogc7zW+V0oU5goKfQEi75/3QwU6OPLjv8UcgTVjFHeVLDC3ljpN9RTSfsJhlbncxG6I0TmRnM2G+q519mh3jipFcEvuFQqzI5pFB1nNzllddH8iQkpjP3dnlpQthoaPno//8pd3tqVed95w2hnLlwyphDmWiYrwZBEEce3SF7J3+735PEsb/3o6UL0cAB2G8HeI+PfDO35cYThe/8pBMnBtnATcCW1qnM9NIY4sOhFI0H2mmvFCQ172MuG8sEF4h44WM8U+5zwyPhSegAFFzsruNQVbdWktoCBgChsCGItBwAoYFZZpuxTjL4qKrr74ayoQOZfDS97EwY0PGs2/fvjvuuAO7MRotyisOUzNpyI4fOUywUnKFiQHtl3/5l1HOPvvZzzL0e+2112K1/vKXv6zKcQQpdl0M2g8//DB8jDt69GgUtUoPZw6SsugmPzPZiZupKXaMzO/s6aIS9Ps+S2Zl+Y3vxkOVDlYpG3pBq2Z1kwe99be3wqyjk9PcIlaGnB0LiYZZ9GKiCYuT7ShlxpesfsowtywoJeOiQFbUXzKiH4syiBxhMpdr9RfSj2eEawHcTyUPHTk8Ozr62oufIfZ2pCAZOhT21S8RXClaFiA5PwmDIi8Bkl6aUmTStOezg8dF5xwsFsLvPPAIFEqsJA6zMTHg53nr4IMZH3NCLpctFNIeK7vYCISpYLwLZFGYfTe+rOhIEU6AVErdnK8SYt+GgCFgCDQzAjBHYx3cqUot/EefzuKiK6+8kjlTkChmYezJsCyjmDiU1zPPPJPaiNGSPr5Uiva0whxNSqha64pmTMjnPvc5tF4M0QS+8IUvxAT9vve9784771T9OJpvRS4cgfD6AnpWactfdbgTtkDB4gqlPXXoyUI2t7t/QBkgzqwjR0pOToWMlhdaiUUChEd+OGpP375Y2Dp8ZFxoTHQ+IlMujr0/OGHXaxMiJo6pT76QlefNZvJYb5OtbQgRoi0XfrJM1Noi0kq5dCKVTE+OP/ucs3a2CN05uVEDA3k9WNrpU9B4fgDcAv4Lzj33H2/55hN335m75PyOfo4zxJpdSjLjS1ZRhzE/aPOTMiROs6VJTEjLefEg0SKmfh4Ey83CWCsgaMnaTpda2790bSzGEDAEDIHmQ6DhBEzPC/VGM5ChVRYXnX322TAu4UqT6oEgsTCTkgSqMe/ZswfEyILiq2ZqRnPJglGa7IcOHRoYGICMCcTCzPXUU09FS8ahYav5WnVl/MjBr7e1PgVGWpl2hDEVTTOT9ybGRjo72nb2CVHAAdE2VByaW6tk0jNvWAY+ORNp157Abzl8FPu2Yxikh/AuGicaraSIQ7mU4Ma/0ch5FWChLYpyW2t7uVxyUgcdOqXObk8M5apVVozE+WyxIxVLs8tVa6IYY1y7+KY3vJaB4bnGicSVW8rLlrTD1ZanySPjum9f75lnnHbP/Q8+8cRjZ/afNT07swM7Au3i0AfWK6liH0PZxjlcaHfg5cUIEeR4AKGX5KxhXlc4KcI1rNI66scjBhIiy7q6E2IXQ8AQMASaF4GVe9KTrDuESl8MO8KyiKIXhkGhTxRfPJArw7TqoY+GaOFIuPbee+9Fl6X7vv3222+77TbSaIf+rGc969Of/jRpEPsjP/Ijl19++X/913+NjIwwG+tv//ZvX/GKV6Dswr7oxySgFK08fhzymSNda3MwpZYKzLESRgCsidGSX8zvG9jFeXwEClmKExj1pcHd1nBR9kVOV7cfb205Pj45UfCYJZxF35X1Pu5wezFxi4OqMNfCjkVoiS0yZrOwfnt7J1FIcKIcZbnE1KnWp0t62JcrRxrt3tFRykzs7Eidd1ZrC+cgu7cCeSGokJ4rZLUXwNFXqPNf9pJMIva17941w/B5MjXrtY7mi5PJlkyycybROhlPjPneuB/McBpxvG020TnpJaY9dqVmpVeA8g/NMlzMpqBikwcOPvIMBBgxI8gVvzlDwBAwBDYBAg3XgMfGxhju1RW9aKJwqlqDla64KrPiIQ2LgHt7e6HVm266CcqEti+66CJY+eabb8bITBrmPEd26Y985CO/+7u/+9rXvhbVGVX4T/7kT37+539elWNEUVZkBVX7J3yshdb0WHh/YCYWXTvdO4z41KFH2QGqvQ1Kcg5WLhMSk5k1rByzmlLImhBCkYnQnR1ed1dsZGJqeMzr3SVEi1OCjwUF8Tka5i0m61YuQTUzs7PgyTuHluWYJ0BrdbeiAWt4TVeIdnZqprOzvSPpTQ4dvvgNP85QN78SsZOXnQxD81me6Hi10metmXiavIFRs2c967S2rt477r7v0IR3sLstgx5fbNuRSkwowVeutI5CmKVFKexOEit4vQmdBYaOLicml4t3NalUjJZXnkYlyL4NAUPAEGhaBBpOwLAvjYcXcdiW6ZS5RYWFC1kUxHohAtGG6Z0hWhYBE3vdddddf/31jAQrX8LKhJOGXAihK0fBhWIZTv77v//7v/7rv1YKh4bxQM+q+JIsAh3hRBHCbK8ocPUe6gyVJeKiXmVnZ/YN9B/Y008IBbALMx6W5qiFFtKvKnY1JaDrTsdZeRXr7km17ulhO+jR0eNPersOkBnWZ9o1BxCzr5fwjdihWwpeHFqCgIilySRra2FHkMhRHXlbUFcVXgla9pv0hXymwwm84Dlns9vXK176QswImPCZm43osluFXJ4dD0sfjeYCfwDcmfKedcbz7vzG1+/45n37X3MOdU2mEoRHwvX1YTbncaDGRM57bGz0+PhImJ450LvjHKaz98Y6Wp2iW66K2KUxPoReKu9kUNtV1K7SEPs2BAwBQ2DjEGg4AdM0lFE6YuVFNURjc0YrhX2hEPplmJUEmCiVNZlvRS5S0omTV1mZNFEC2Bc/IaRBFEJgaxyBmpdciFJKxkMUxcEHDA+vAeoCW1rG40yBhiQG+nqf+6yzn/fsZ8O+fOjr+bDdpRvMZcdomlBrCX4mLKBQCxV1tRdTyWOzmUlHsQgqsPWFl+hiy62YW3PjdGLoilnKVKZYyMXCAmcT4VfWcezlvHKBtCuzz1dbqVIiHiT92FSu8IZXveRlL32JsB3vGW76t5Mhs6EqpS0nlLcWeXFx5UcvQJrhuc8799GHH/n6nd955avPQf1nVfHd989Ojk2OT00ODh4fHBpmM/DZ2TTPK+eVZoJSLOnnp8bYq+TVL3nR237y1TJnK5/htaOsBVMfBorXpu8v1wKLMwQMAUOgsQisBwErrWo74Ev10DvjgRr1tlpVqk5ZHX6iX6WdKERLJL16MIfCBLwBaKEqf/XXZCoFO6qW9vxnHeADBSkB48FFDUwma8Oz4KWmvUQp2Tseehxx0H3WRUPfOf63t3zrC98ZYgFPMSjlY8U4c9ByBfa2zsZL0G1HJpvMFVJBSy7wB48/FSsWOpIyDxs0UQPdYDWVUvOwXrWOq22u2x6y1JmMM8bc69iXnIhwrK5CqrzLStVXLpJED533g0nPe865Hf/yxeQ9jzx8+f/+6+PDg309vTOTU/GYbLeCK3HoBecloXK3cORS/Ow9A6ce3JudmXzg3u/c+pUvjY8PveXHX3v67j5s19QLfbeQz6USSazPLOeCzuX0JXOGgCFgCGwGBGojjM3QorrXEQVLhhahHeU5CoCQlIBlvFXmAsnOjBHdrZagXE2FabDJOwVuoKunv6snNzX72OQjebYACbwsqmcIAYdQL/64l+0pzMZnp+OlINaayvj5no6WzhY2ZZbZ1Ooq46ARB9dGwCqEJiBzzpbtmqwqtV4pze0RVtuYKy3tZYzZ856+ry8zdizBFpUJv6sl1pnoOmXfnq7OdsYIdu3a1bezv3dnCvrn18n7GgubWUd85/ef+a+f+8x/f++eY5NjP/mTP/7cMw5SQ2KTiSS7WcoemOl80MJWXfNeFsqg2JchYAgYAs2HgEyJar5a1adGaohGlmrAeHSXSq5MXKpWjpcuzw0xEs0yJEdI2r0rP7nZTmXaZQay0lVE0kvLrI4plNITQbJF5j0n24573rcfeDzmtYn1PdnCwp10Qqb7duZK7DyZjTPPudjql3yW9DC8mkqOYpb2SxefcxrzpJJUhI243PkQbv8pFg+XnLFaDouoxWmLyCHMXfXjiMLnCavJ9Is0NqtietgThycmpjOtnd2tbS07d8jLDWxKefqywCGIHP+INo9S2+VeERkM5lDD239w/C//8eMT+UKyteVtb/0fzzm9r8ftYZLKltpIxq4dDIq3d9Rsd5/XILsxBAyBZkSgHv1507XLCFis00s/ljkChl8jjVDUX6EmOElpKb5GAmZPx8IsY8hyxiHMkUrlwoCJXfAeZbESieU3VK6DZa+cfaRrf/NeW4INKYTGZtzGjX3McZsqdrIbJgTsZijLZCe/VIhhkUWJFAN1zU5eNLRpXAWfKiZWYRLrqJ3YZQCcXzLKLCucZL0v24l4MiuawW+Od8h7TCSLyyxmV45OaXPSWfM7MzTUvmf3bCAnEx8ueH924+fu/v4D6MqvfMlFP/7SpzNfoBd2RnIhz2HFXkenThefX7DdGQKGwOZGYEsS8Kq7zs397E6i9jCC+yjPcIXPHGpwMx9HGE48jKSUVUthbgfGIOUlW4VRS8UkG0pDSFN5NnFuK8khDaLdshWlu8XfnZAp0NGn0+mOwr5zFVFixCirbFZLdcptLVOrNBC5cqVyOJEZtVEmZc8rdRUF0bZYrpgbZZtqlPUMM+MQgZm9xYulSl4y57EFCIt+2cTaz4diYeAVYra9v7M4O4OKzGdX3PvFn3ndj778FcOHB2/78ldv+IebqViWjx+MTk3JWi4l71XUxZIYAoaAIbCxCBgBrxZ/6IC+ng+QVYzPbsPlauZbrbBKOj/Ix9q8eKuX4hp3A8uIKwRyuIOUwpf4hOkoK58Ii5AQ1lYhMk6EyE/GObwgO+vlshEbSnX47wiz/KpQKW3Fb/IJ2VanK4uTIMK50/FW552XsDrTcn6/wOg1wmSfyZIQMPSZYbMTmUvOCw1vH1if81xLpQLj4DKxKjsba0tOj0/nZuTUioGE9/M/9rxf/umfCqcmH/z+fVf9/p+Ped5R9OrenezaUVi9Or5cLS3OEDAEDIGGI2AEXAPEgCXsKzlU91W2Eo5am8NUnI4Hk4wfJwOMz2OFHPboks++jCz3LaEaOs4reUxJjme8GHtZ50rFLBwsRweV8t2JREr3y5IDAqvo0FWxwpS1Vc1RrBCtrO2R7+XbWFXoasrBUp/hHGN2xWIrySDFzijufYK1TwEW6LJij3U65fnJGMb4WMpLtXsdOwBqx46One1ea8EbYDFxyXvzhQd/811vbysWJsYmr/ydPznCimEOqnI2+dVUxNIYAoaAIbDhCNABmlsaAbfAtKxNMnCJEizU5EhYllEx4spnTtmsFU3oCxWQFTUQTJgKUvH2ADsra35l1jVLcRjSFcO0ngrsCi6xCaccksh2UCQo5ilRtuOgCu6j31ph/KI91+jKEsq5uHNtdBIpi/uKc1G1qpvAlWzzYq0czYAcqsf+pIgt15NAYX1eMAjAI+RP/EwetZYZaEwF91gwjaEawzu7fz3/6b1Xv/fXWJl95OjQH/zhh+97bEIfTuWlQfV1sWLzqUQ5qaJqs7kYHzwuTqNXc50nqgJGjd9LlVOjmJNIvlQNJNxhUr7OwUNMIz6Vh6XveStepck1VaO21NL8NbgVq12doFb51XmbwV9b/UFU/wBPvFae44JG1SZ/s6e2SVjLT8KqdLdVzFN55PxuIidsoX+8iySMUp3gIQsEjFPCUYlO75VAYuFeLsJPUEVZNCGsjHJpy/OkZKGUMpbjtfJbAn4SkbrWKiGrkmXxNroEUZS0vQZXbkh54RYV17Iq9dTe38l0g8wq2TVFIS4XxxAyM6N5cTk27f3ff/n8Z275j93797/lx37kJy84owMLd9GbzRVTbW1KvZlc2JqQnTwDEMPEjVkbKzeSAtYxkVpcqRQGvEsRyAQ3/MBHBgz/3OYxS5QS7IXGNLew6AeyXbY6iXfzANz66Uqo+9aoBeG8VbFdGsW3JORwDd7nqCHPl9JUpqAhT5OrfKlwricuYS+HVN7/XJ65C7vHMLtQJhhGCZzA8sQAxb36WpDJcDwV/svxmvKmKVgUfJluWPk9zMmviw+xrK9zXfTq5PmcmRa4xe4rpBdsXQOk9vrHskIOF109+2816SUNRUV/C6vJw69q1U6gZzimJvmrFr6GhOATyvTJVTqqT//GVZ16otzuAYmCgdDyH7j85Mov35VMc99bchJWLb+GOSi2ky/6vSxsdNQJlyOWTLgw49w9WWCAyAnRiitLJtaFuFvtGjSea/m2UodK2eVv91XJHuVZlaciSRNX5FeyVsUujKokWem70pAlqgdhzEmo8mqg6+xEgqw/ZtYzvcGuDu/HXvWq1tbOO+/67ic+9snc4IU/+WM/0t4asIf3TJ49UIuQUHuLO6xZxUk3gHke40KBYxCzxXwi1R5wpnJlSTPxRXgniIXFkLx+gCGc85joJcJ8jsSy4QciiiWIVPa7ZvMQbvPYJCAutgaJCE9IXc7RUhLljpVvUHdMCmL70Tx5KdWZ4bV1lavW08lx68+rIamkWeKbspx1oRTn3KgFzgmkUcLcfOBaXgf4KeltjF3EXQZXXWoutWeGXDymE/CUviORFbSigLV45DckhfLNF8CveJUkWs0F5bFuTdvhwku8S5Gw8hutfC/Is8ztaupSTjPvF7uMyHJUDZI1h7ZjRWRqkrtmaZX2rbo0oNfXB81RyT/vu/JANWGlF5yXZMveGAFv2Ue7ZRvmdOgAq7Q7HZJdSE4dCN784y/u7Oz8/Je+/vFvPnHn8G1vfePF5+yRzrqrTU43DAsFpUlZ5wSjuqVe9Aycq8HoM0qp+9MP0W4LBRRHztFCPWXFcpgtMFMbEvL5B+Uw5A7zan/Boile3enmtYdJsF2nvBPkcuzsjRndOacqw2J8UHWZaYYwoWRqlJAt4SjBqeNlSwb5kMhRT5IcLRwqZSYa1zAstsjWm2WnsUKPIVuuxpV4XE1osjAPcjIspmb8wo9x+gktmtOEY2Xbg8iKBayA04xcKVec3jMO4vZe5T1Fz6Eu894cD1e6Tc21xivzHcQSsEoHcLz+iFIrzuWrQOeMEg5n6q9NkATkcAdYao4Vr8ISq68Oz8kZn/QKHpJ92SvVEbfqImT7gRrwUemNuwr+8thXW3/+RGRtYflBkJPfnkAQ5eevWORJAH8+RLk7CdkuzkzQK5mgt8svocnb6f5mI1ucqJU+R2tBMjNMWYuLIXcy7z1wKPf+v/pUthju7+v40YsvetUL+9vRTTNedwtHO+S6OpLadWs/SYOz+VIq4eULabgOhlbucpPRidS0AotTBjkOERYL4GohRkiNzTNdf4EqjDor222687CizkVyhgwfIGdOlASWXSXQ6ZrCGbKNuA8jeqKLLuyJ8gWnMbvttU+MrciUb14rqCEKbXXgAr9WkrJEy6VUiNr1hFpXjNEazi5sovALupJogZA63Poy2xDpiKaYFa80SUzW0UvAiWRJ1JxuzqOKhb5sUbNKV2EAcuBdzXWJZ7tMeYLiaiRLGoV+9fisBsOTSQMo8htddf3dNAveR3kQvFmS272xqqcaIuqEKz9Nki3utqQJ2gjYCHjxn3uThGp/4fos4TNXKwnLZLKp1nb6JoYQZ1mD5Ew5/K0/NOzd8PeffvjRx9lmi+Msn37GGT/ywxf2dyafezqHOMioLtO+MvlSogUClV6WyVzsNVbt6MP5U2cfceeBy9CZOTRTkqD8UoSjo7kc9KhZXgLczDkEUjmnmzpKRWnWPku63bJzsSGqaSVAvrULcr2bTMhzQejH8sFxi6VbAnGoxk47Vo4kQJTeipNS3SefyfDCwFnc8/YFC0Nwg2zFFo51HfWXlwrnSsWCvGCcwLKwuSZYcI0yLghv+K1Do1xKFYSKFGAIHELl4jBLn/B4NWbJ65Ld/5I5+PXM/wEtmZIIxNdQgtRehK9e/nJl1yMu4OzUxX8Qi0mXn2wxLWYeeS40nLkFtEnJeLEMhJUf3SKxRsCLgNLMQVvygTUz4I2om/61u79K3qO1J6qEoQejkjpGhLX4EM3t4JR361fu/ua3vjM8lU0z/6pU2NXT1d/T+bSDe897ztlPP2tnu+MypEB43dJDh0yzyjGgCzHFZc/RHISaFNsrjmR8jo979z/4xCNPHPrugw9xrAfm7r17dp9+2oHTT9m3r7dsPnP06br8Si+LAAK1xy2gbkLttMQZezNU1L0B8K1FUHnSoKSTRNhZdxV1PZIm4Io0rkQucyUKUTQxSoMnh0mdXdeKXntbOZxaEY5DJokZ0U7EGFJHOCp90Ze5ZlSdmKgFkljfBvAIzdXHUVmtyOrEadp5hTsrJ7+NKtXKpVLgRezyiFXHrq4S1amchlcdsJyfKp0wNr90eirmtr+rBZ+lpdUjBpuTmERW6fjp+Pzs5E9TfkzSGnlG7nnw1CsPUZ5f5CqBUUDk2ZL9uWnApgFHv/Bm9OjfpvurXEDAkEaYKxRjiVbsW9qLk3g657VWRkuPjOQfeOzwN+76/m13fDfRtXMqIxOY9+/uP+f0vc962v7nnLn31F7Pz6Y7UgyzsdUY+2+JHCZX43l02Hv08Nh3H3jkgUcPDY5OZjiXGaOuH+fEZzRFbN5+Kcu+KB0tfn9Xe09b4iXnPXtPb8eB3X17e+BuZS2oPx8jJdqxT7cV0BXxSTv5VJWCjsx6Tw16Tw7OPHHk+FOHj46ODY8MPpVMxNtaWts62jvb+d+BP5aI7929h3lV+Ns7E53tXnsn50DL3i1058jJpL2pGW960pucLmZm07lCfujYYDafS8/MTkxNTk9OTc/O8DKSZYjbb0Hyzt6ePf29+/p79/fv2N3TQf3P3OtjDKDmwg9wWSmTZPZZEGMWm4yaOydKs3BZfR2Qr9Y54ydvLJFzvbmbse1WCFI3Z7YNi/kSo+Mc5RnGBfLVF6E8EclfjadWQKrZZkX55RatmG7dErhHsPom8LLp3nZpBzaKxTJLC13thYaXxdIIeN2ecn0K2pIPrD7QbB4p+rfu/jAhYOqtVMs2WjmxCwspBjKKKsOyZeMjf8/MhcrmCq0dbbx7TzBoGPe+eX/6W/c+/J177xsdHeWtPOkXdnW1DPR2vPjC55x+2v6u7r5jw8MPP/7kk0eHHn3iyGNPHSkEySDV6sfbGFHOlfyOzh179x0YGNjzzKcfkMlf096Thx575MEHh4486RcyrYkgPzvZlvC721t27eg4sKf/zDNOf8aZZ+7dJbO2XOfjpUPv+Fj41JGhJ44eH52Y+v5Dj4/NzI5PZTNsuBJv8eMpJn3l3GQxpl7RGK5Moor8GsIVilE/86mJ5YpySwhX0qufcOZjF9DrmVcWsulJPJ6MJeMpPxmfxV4vy63oDvM+ZudSLh4W4l6hlE3v6Ezt7u0Z2NnV39u7e2fPzr6ero72HR2d8C4mazmYOlHerk17zJP/EUV0h4fnupprdaH62+BKXh40+haO15HpWUb3GaX3W+Jef2s5vDrjUv6o/9dHtuFX2sWHN47VILMOacDN0WkNFgV9XdInVQ27Qi0qcvltVSI1sDpZtX9L9uemAZsGXP0jbzq//um6v8x5BFxVUR1eIsB1QbK7JX/KzCUWjTP6y8eqzDpeQh4dKn31W/fefs9DjxybmM6X2vp2TM/MoKu2t6WSQZibnS5lZxNBcd+unv6+rjNOOXDmaQdP2bd7V1dc9VrtgOgWqRKdC8c0PX549sjQyDfvvHtsOj08Pj05k8GAHcTZxou1TfFnnPPMTCYzMzWZnp7IpKfYQYVDquJ+IT870Z4Mutpaervad/ftOLB374H9u3t27d5zsGe2JLuLTs4UZtBdZ6ays2iuucEjx7jiJ6Q6HMqFWttb2tq7Oro7utrQmlvbCdm/Zx9X/IR0tXe2dfod7nhHlkBPTYdDx0cGR0YHhyeODY8NjoyNTmWOj0/m/Xi+FJSCeBi0oPViMGcSdioUJV4QnW9zZtIZrMzMNTzq8EPVhQJUuLhj0Jo+VIeuldSTXuFAX3trMqSeHd2dOzq7uXa0tsZT3u5eeXbKqVwBnKfL45t1G9fMZJlV541PeiMjk8OjIxNTMzMz6cmpqdHR8enp6YKuSaLOYaGTk0viXnt7O6MG3d3dXV1dnIRGhXt6elpaWjo7k11dxIrqj3wKwgygrEDpPGJ90Pj1ljTq4YoDFxJHIaSP/JoSLBhWQLdjeJ0iNFeUpjq9FlQtjWS0lxBKQZo8A/eeoT+8bEYksyEeV9H6Y16SpC41y8ZkrrJMY5crfkIoXTFccF0qnGRI1VYgR/3Iq5WApdIOSfUgkKrxQQ4zJzrdjMd0Ohvzi50tLYViLsG+8Es4I+AlgGnW4C35wJoV7EbVi798HH+xzp1ghS6Hu3iGl2SQ2OWQQ5bLs0XE7iXhxVKuMJsPw5YONL4pz3tiwnty1Pv4Z74yMjGZTc/27Wg7dd/AWafuP/v0fafv89rdxpitzipLZ8FSHL+EypiTlUVCTfQcCcbD6GFnmYnNVqHMpnYyHz+cf/TJo48/dfTQ4WOj4xMt7d0zmXRudgajLoc3HxjYefq+Xbt3tD/nGaf3tsV3dbfuaBGrb1y6R/pYP1dZdkIzCBLlni+P2cj0XWUn4TLpSGdowYyi7WEdnkuBIujWxcq87Tn0BEaGtp1UmU1D5akzKiOfGc8bz3vHxrzDx0uHh0aPDI6MjE7MzE5nJscDxodZPlWhT5kVxixrmbNdHhLWkOi2Us1538rfpIxCCYHaY4WZuMxnZ1KXWDD0imdsbAym3LFjB5TZ2spzkJlx2WLp2MgEVwzjML1I00k9NCEvt2EQk7cBptgFgZB9IZfLTNG5YyegMCwB/Cjw6xVrgawCc/YDFoKLnSAI22IhV3234JUCh5/6QOFR9agMRQEI19mZDB4c9VFHuYTzHsBVHenJqy7VksCDTHXI1ybTRsLVXy1/fGxKtkcvSnur5ZOSZJqSK3ndHb8WWZsehVSHa4IF1yjBgnDKIopS5tcTOuenJvjgFBzS4PAvkMAty5Bk2oOs18OJBZpjVZlkwFT26bHh9lTi5S950ctf8gLMRMw1I7yIaUoIuPqHPCeVaArlnjZSIp7aj5edk9YkPtOATQNukp/iaqoh5FHWIxZN7scZvsXRGbj1KnKog9zT+6ITEwvtyJ+wOP6Cp9k8IyUkxOKiFHMzlb05lkk6aUnAktNyx1YmDirAlGtuXGrxyTJNyhBqp2N1vRDRUNps2pvOeN/53n0tHR19vT07ezt3dHktbmoVkrN5jxVQdD3I50OfwiJkagXPQqhIkqvUAvEkL0EwUTjdnZvIJeEay5WeTpZHYXJ21wRa5AmxogsV83RzkoYhXozSQTzP5ty8XbgTrxHHa4wu5KEVtIsPHm2jXGWFknD/2JiQUIUU2HcLsaLdQn8O3YUXEtNp0oFq10lKIZWSNzg+lc4WoSsYl9GB8fHxqampXC5H708WpHDFrw4qLWXGUzE/lUrBiHBzT1/vjh29+E8/7WkU3d7ehkbbwYowV3N+DPkSk969mQlvdHJyfHh8ZGJkdnI2nU+PDo1mCpnMtPwrZFDbscZDLIlpOY1MFqRVu+rGEK61kkBZNcajBpiy0zpzQ+tISWOj9sojpily8GblJ+gyqUCQ5E79KksQ80pJfgaydlwK5aoe/EhDMnhqCIkV/+iWNATi1MO6dDwnOk1wYjjCo7zEqp+XOiBy2/NJjqgyC/wSp85n6/oZUHK8K3zMiyx/mFy7WmLtifglL73wR191cScrAL0cA/buHVL/8ioSqr5poBFwFR5N792SD6zpUW9oBaOeDhJQ+plfnB+nO6TLEQKmW8TeKosLSenn2FORab4Szv4aM34h7TN4Gm8Ji6lMUXSvVEp2tIhcAVISGnQqZBQq/Xp2rv8MWbxDvymd7NwyIUlcFoQulHW0PH/NkXTYkb6An96NflSzRctO0G8JIQqHZ9F1vaoDU88T50Yxs1uCpSrlyuB3TqQtdBSh01PnR7AVGPPWItDJGWUG02onrZDauvnb1REVPwnkMVRu+SY9BIn9AI4nah4pOVvrTMYbHy9CydjwSY+OxZjuwZ2YrIWA2SwFLQhWUZnTaVknTZokWm6lFCSPZWU2O68UvBtp115dB2rF82NLNYzWvP/wLjKZkx1YeM8QTnaOboRHQDXcoyg/DsFcnNfZ1Uo1IAYYjtK5upcMD6WdcP1QHbVkcOXcMvVrEe6lRTRpijpRPtXuakuxXAzJaJj6kQVvgdjVo2ZWmiu/qyhQH5ZeScBbyKLO/bgWiZEJbHM4CCDy7sXrhsy3kCaACnVW1qfms7M8yYUOrbajq9PNaCCKO94TCxA7U7uDIpvczOwf6DtloI/nUizO8l6Fvdz9EKJGzBO4JfvzqB+Y11S7MQSaBgF6lchV/2WqDhpFOU9YSDIGDJf4ci4hK1vpgrVXwkRMx5GAPjF4crqULvTxC34Km1ey4BVzjKc5QpMOlB4bRUX2EZgrnUjGROk7HKe7mtCtM7BMGvRsenG3SYfUo9L1ou61CbGJXHRE+imomk6aJGyYhZ+yZINpNFO3ewZTyRjRZVDPNcZdqIVjjKj/dHdz8WX+qQooexemKwdjqVWfWK0dhJJQKkAdJUoswS4FlRCzNuuRygGar3zVxAujliiUPJp+ngi24faDNveKRDhAUzw9O7Xgk4p7O1u8U3bHirv7lLG48kbVzmkkc1KYZs7EtQKGiJ1tbS6Y/FIY2pmI9OOcpyWqZcVJpPtUCXEzv51+SJOV0VUGTIFBlz1ayJ1M7FcZROGihrKsXG55hpVPdCsRkYseaWWIU+WIlgvGohqzzXXZrE0mgOXnwVe08XVUooqMfpcartIkY6XEKEQD2CO1ZocsRaSSkwCg5kpVcZClq7/cJhPtlVRz3yA/7V5xoiAVyRX8uVIpPHziMY5ZKbEAbtEXzSj71vMYAW+9Z7odWqTsq71a1BfRcDoFumBC3OxouZEgdWJZ5SVb+mV2bE6IggMdJUvwsay4ob9zzMfAYKaYjbMXNOmlJ6SnEEaVDpY9qjBhQ5ZiYIQokUNxrjLakUiB0j+5Dx7Z21KUFzQkVLOIWaXD0h6RMqigDKzJpGe23pdJO1qwfDuvdFXQj/q5kejFXNRSypfGOtHST1ZqhCch83PmnONdqazspFkuYC6WCGmmmvEJVlkuXth7UVeVpjq+TNXEagLXNgzpyQgTTV2RyvuKUyXdffnJgJSf5UWHFxc3kEBwKpHkU3no2mDHwUijoIDZ4Bg2ZMNIKbCqQtJwUsCvDFLyOiaHb7DhKLPP3TFZUiseJY/dXfFjTQEHUgkaPHEkyiNv5X1ASNQ5oC5/KrnkN1TxyzgIr4VkhJgq8qNYteiAaiRf0uAopSzfcZ4E4XE/V/Gv0qE+LppyKTnyWuN+DyTAo37XFkBwLVLbUtnCVGLhwVxLK61Dp2WYQ1+AyFPtwIm/B9BBGCDxAPC7d78KmNWpt67fCHjrPtst0zL+RqsMpI5Q5to2b+6R0301jmlNVT/uIJcvQjKFGBsfVjZXTMpuGzIKi0mtIJNc6EEgy6RyJcVUddjCGq6nYD4P/QWKsNh42fOfTtWV5/rECoO5oHI9yzspQNpiaaQ7o1OPJBcYyivR07Etlxih+bRIj7+giVJA1RwsbV/lGvFZJUC+q2pe9ldCWCErvSk7T2plCdcoLXO+NKqM6VZIRJ3zCHNJpijUMZnLSANX0GDINJdPhAJLWXYFPL2Nu323gVwtwASCnOwfFheAIBMIhUdPJmE0jrVy6EleOnCpoKNhenahR6zT0Bj5iKtc5RfFDHIme8MoZODtB6uIXyglSrycEUA93VUqyLxiBCzmQGgxB2sRrFyiOfWqP0mUXZEt3EMq9yoQvRhpSAQGgxzyDkQVxMlboPNL8yJXiZUU/J64PdHxBnhi4DIhcbe3eZRAi5OH4MdBSuvvau7oGHwWE0+b40XWubnXH3lQPEF5GeIXpe9vVLZQ4JASef3hQVX9lUclb3FPVR+1xVtqzdu0CCz7d0nnJH2Sc/i1+5HeTjpOZ4EWDTVIJthqQ+55UUfJVFKhg4SN+RtAp0qm3LbN0hGILFnNBLly60KkCB36Iq8L195CTmxw6emZXEft8rpMkqUsjKz0jTrOW66hixRSCVhwrDdUXroolDLXiKgPrsTO+45itXhXh3ICjdLwKE/llq2+XKXIAPG4VwG81FV6bj2OkPzlcNRcIqkNeaR1ICCEx4wt0fydX2SAB5qypHFtjtJrLr2Sn1iei+biKngJ8sTPcyDKvV5JFdeJbS4JOVwmqa8SBB7yC2DyVX5YzHaSHp3ChLrwwRi8w2k6BAt1y8ZgcoAD71CuAlxFSZRXk3m1QYYLYHh4URc9B0RWu5wjnWpZ1JGHoMnIJZ7K2xt3qiaWJVRkkZ0Fba4V5ZjofYVq85Mqi6sqeNEXIPcjXbwBi4hw0hR/FUwa+cDuTGrjNwAmms3VU/GZV/9KfYDfIeB+aZJL5geWAWU6ILPUi2GqRf7ueD7MvEtVnThSkbHFv42At/gD3vzNq+7EpDWV3mmRlhE1l1o6Bj6ub5Y80tNjrOQXr+zrItxYsEpSuZUrWpCUpH26JpB1LFXyXWCCNJpF05zkVfo5KkjVVu2WKn2pcBUMbYrTq3qd0uZoQ1qtzvWzJEKYXN1t+SqKvIQoQnNpNOWJV03vREUSKsXM+9a+fV5Q5YZSFnRYhIhTm4I2WbQrVy2JqAirRGmYXKtVWo0V7pIXjrJMSVTlNE1VwPJe+WGc6BYNPDFZVQhYOcwqQe6+crPa7woKq01PukWzgIzT7FcrRyrL+5P82Byo3OoPz+HAqE9ZLaewmJeKdrBbrfitkG7B73krNMnasJ0RcH/aCoB2pNo3S4hGiXJ8otO45a8uV5X8E6XUK0RrXi9pi8mRZlSQWanVy8efTOxiNVsujLIWf3wnZtJqSXhtYM7lO1Hmtg9ZEzj8zKoewZpEbGHgq6DZwq20phkChoAhYAgYAk2GgBFwkz0Qq44hYAgYAobA9kDACHh7PGdrpSFgCBgChkCTIWAE3GQPxKpjCBgChoAhsD0QMALeHs/ZWmkIGAKGgCHQZAgYATfZA7HqGAKGgCFgCGwPBLYsAUc7d+OJFvvL0nXP42RQFn3rljF4CGFPmWUeN0e1aKwm063hoyzVW89EgctIW+cotvTTNlJuOp3mytGp61yHky/ObVMlYqJncfIy10eC/jzYql5/NtmsHNcUNWd96rDKUiJsN+PvXCFVeIFazwao/ttcJQgbmyx6BM35C1keHO1YtJMhJd0Onc/yWWqKpRvXbdG0Pwci9q3TLl0fNMVtuie+ZQk4Il16E+1QeHg4wrnl9E1NwKHc/Ag4V3KpnwJZOjo6iOWsNH26mqX6Sat80kSepaStfzjHs3BMG38V9E20emJigrPbqiu//lWqqcTodUc9PAv+sNVfk5yNSszPDDLgaFv92XCMDz822R26ydxm/50DKcACL7gCNYADe9QJNBnYi1SHnzQ/bO1q8GtPsol+53QpdCx0L3QydDV0OHIu8xJnIC7S/lUEgYm66rSE6FOGffVAKmDEVadpZn/TdQT1AkvfjJAmO6hxiE0sRhejT+uOO+4466yz+Cvl58KvhD9a/EtxMK91vb29ytxch4eHebqcE87z1vcvJTPkUxYJonLr1ZCTlMMxavxJUGEaMjQ0tH//ft6yaUITcsCiLaXyR44c4Rnx5807EK2gb6WfWup5LSpkAwPpibq7u6k5Pwzq3NPTwym2PAjl4w2s2IKiN/vvHK7q7+8HYc4VBmH+0vmdDA4O8vtZ0NLmvOUXzkHIvDTwO6fmNAQa27Vr12b5naOP0peC/JNPPomJkVYcP36cHz89T10A126cx4qHzhYPJeK45U+JECVdemBwowJ1KXQ9hNCSre14JDjayBPSXzMkFCHLjwb/Mm/KyrKaXll2586dUXYev/rxRP4othk8/CVQDeoWtVGb3Ax1q6kO+jat4G+WtwcaqG/lSrcwcU1NXs/Em/13HmGlIAM4LaqvBhYV0QiP/qT1572Jql0NRdSx0NVoZ6idT3Wauvire1qw+ta3vsWLS8RivMdE/ub3sDn2csOfdcGrSYTQUt6YHn/8cX4WvJepkQr9lXd/tfwsWk/erHnGZIG/yQ4H33///RdccAEv1/zg+LNBApL1N4e/+sexqMB1DuSdgy5J7TMoXqeddtqhQ4f27dvHy+k612RtxSmw6PF79uwZce7MM8/ku9k0yKVaB+ann346vzpe+/CjAfMT4nE029/dZv+d83fH3ymv2mjAqMJPPfXUqaee+uijj+Jf6tE0VTj49/X1PfTQQ1xxR48epY/iR6IGtqaq6qKVwdJw+PDhgwcPPvbYY2CuHQ4mRnTiRdOvIRA0cDxonPq50r+pQoXiy9OnV///27vvl7uK7Q3g9wvf/0ERxR8U7I3Ye1cUYy+JaOzYUWPXWGPBFrvYezf2jt3YEXtFQUFU8J+4n8tzmXuIyfvGc9737JNk7R8Os2dPWfPsNeuZNTNnTx8ld5hliSXgvKoFIus90Q9syrjnhXl5bfg2XxYvG1eZIFKgLALyyqWfZ5QtfXg3ajFf9s5vSUUG084GGZpJ5vQKzelctkURAPjQRsAWAgyVMqOYiehFyd55GuM2mBuho4d4OVYxODqjhv8SoOcB1hvXT9NJsdrC+nXnijGfAJl8FknhDfetWSBgkYvLFDr9yVgf5oxkDI7mTLaee9G6mM4VEx1zB7fFhYmX2DVgL96FYudTdFpiUJbJZLri/Xl5rry5+RI3BUo5cpnf0EMyLG1ZBBLO798L6TAm7Y2Lb4hqcE07ITCCoi4QJR3JiIG0/HiOr4YwTJM0tbVAAQaMzHAH5pSH5PQN+9Kfv2vmgBUNmF1nUcLiq+cgBWy6M+tvkE3Jgb+4eMBRaQNNwlN1Ck/4TKcP+GaHlp2SMy+MjCmfGJwYn0kVwACrjbE4GBTYMHdxYd//9LhJRafzwmNW/OqfCeuW3hMSJRvXJFQ6hpxG0xmEUi/JLO9Ht5SWAkX2hscoqpNH2qvetNeeDhy27LLLMk+dCNNfpcwQhHm9AjjMGxn3rfVX0WTkomPMkJlnkhPbUI+FHTX21fDFXc9BCljwAhnUAAc78CfjnU5GmcT2CkhOyak6hReYjIomqUwmhWFhXhgZVcTgxPhMeI299jYrg6pgn71uZMytmvAaJ6/AJZaAdUhX/Dy/LQxKkxVtYkdYjKcLg1iXNqx2GVVh7kx+nnvuuZjYUIsqyEj5VKH/L6yQDuPDVRpIVDLPnDmTykbsDqVaYNUEg3AeNQkzVtCvzjnnHO/CU7BzDhZYQreREZ6qRPjog9ubbrrJgkVrlwHcCA6AYBup6DmZSauPwNxvZs5pPi3yKLa1W6hTO5GCeTQHsDgsfVl/vPDCC91K6anfNEqgW/nTH8nQeEIrSEXsKAxVP/HEEzGxyLyRJnnUnnZFwSQY/kUktTeRWoc1waMhMYxaR20CPgkjbZO5Nbxv4b1cV7KDK/rZvN4W6Lv8YWZcYteAJwpEvYJu0SeaJ6DYdHJjPVNe0QPz0uyX8Vc0b6KqnqhyWH8OgZ4f2zRRxU5sOaykvtTKTA8nsEsnB75XIKwbW+rLKLslHpEAxYgtIA8r4zaTJdbzLGCLbOrh6Sg7Z5yJWDEvJZiHnqP/Xgf5O/TP6AYZgi1U3WZkJtJ4Oo4vbdc3M7yOerRkbpMy8UP+pcCNPJpIIm3q5EE2YZAZ8HXbZnY8ShcGvvbmXbT0Qw7QZNgS0m8k0SiqwlrmvTCJJtU1UI/QutYvyOlWQ7qVf8hwjVFdEfAY4Pz3UfoJbcs6jb2sbWEpekbzpKFVvR1+/HKHlaJZTLZJT2Bbe5swLCnGqacRMIsjafpzbx7wSgPhZr96n3YeJh7LQkKWBchUgkiQpzZhX7fSaF3YonOB5xPAcIH8DCijn0dtDVK8tcmM4fy5c5lllpkv7zBv2+BApdEZG57tkAc7ZvLbC2/b7xadkV6HNS/qBXWoRaCmBjTZyMw4ppeKDOstozY800C3xJZe04hNi6JdLdkwA5npjQC948gmKoUnzwJ3aegOkO9t7zAlH826ioAX6b3EucGydAiBuaVnOkNmiqJ8Ho0gATOdETK9hag68Mi6XxBmmyKeQPqqcUNW7hu8eR2L9OaGlahJq0JmFF31Wklkxr/nxHvarQEdF48ocyOJ5rXL2MagTanGLW2SEuhrdIM1b+XH9/Kre9Kipiq9aAtL3/teWvahBRAYuxFNaJUCmcx8x8iWoU86bNrlpYR9ZaFpSuiwFWA0JiMwMeAsTH6weymEJJgEVMVt2+0vJcm1wtWmLlrzl+bAQtc+l2ZQettOz9xSJr/UK51EH2BhKR9uEK+T+HVLvQRG6mofhdFPdGw2C72Rf6SEjDCk0nvDvvowAxQ8sS8+AC8/QErWv9fyjkhD8AFliCZwazQkupGGiGk2V8yIyNwrBotJQ/xmIQDCAMcWxM4CtlmTPKJFGdL1Zh9mmJB6YnTA/2VVrXvGrPslM8kjD/3xIigSnREj7FePliYJhv+LqKIJRmmxKmSg3pQ82k482iKcTiq9BLSLaonxjoTTkOELr0Zvn7RkcMGZPCIJGa0mmE7ql9nBvhnGSZOW0p+8mtbwTpowUpWWBzzO69DbM53y559/WqRhjGiVNcjMbvUu71G71vPHKXS4jxkgGq9Xk5yQuopf13ClGL82RicmPqZHD5eH5POhGs9g/OI6SrEw8TSEH6CB8Wk6km6caoO2oQOSIO3fBzqd+76sedwpREVh0jcDqSGCW5d4T0GNp1v/FUPnKdXfNWocUCb0Mdn4iwYKUW9hI04tSq+k+QLaCHnSpl3NyHjk8qj1lAkV7R8URkLGBLwZyiBgkqdFSsHBGqhRIrVCQKcgtiuvz7uQ9x/Ut+QmHTkrPGpQ68/UhcZn1H/zzTfvtNNO+vYOO+zwyiuvWN6jW2RmsEIeoyY/efRw42uWSAeYM2cO1b/gggtGUE6dM1KxO+nMdqZcddVVK620kj68wgorXHTRRfq25jBDoyZ/LNGLL764+eab+1YXgR977DFCMvf054wzzqAwdGmVVVY57rjjfC931OR//vnn995773XWWYfkzz77LCVhOklOzrfffvuAAw6gQh5tuummzdHvpAnwVC/LThh4Ctt5u/3229PtnXfe+ZBDDvn000/1RI80Ab2dddZZXDEx++2336+//ip9ZiY6EV6lJDGgJLzwmWeeueWWWxrNGxzvueeeH374IbXXEGmAr42asPHGG9OZBx54QMNFeppCupKfJVT1aaedttVWW1EJn7465phjvvzyS5JDGyvT7UMPPXS11VbTxvXWW4/k0uuz7KRuq1Futasr+Uet3iLgcd5IuoEuQfUff/zxyy67jMLp5Ntss80ee+xh0E239I2M7BqFjFPoEB/rFWrTCibp888/v+aaa6ZMmYLYhijColaVzil1rIzJhgcffJDAMLf357rrrrv44osfeeQRk2As0aIWOqx0nABvH8gM/RVXXNFawdp6BR988MHRRx8N/9tvv92nTPfZZ59hybWo9cB8rbXWmj17tgw+4shWYl+G0scR999/f18wfe211xCYtxD/ZlHLneh0mQ6JI8im44Ovvvrq2GOPhe29995LtmnTptEQ1RrGzZo164UXXqBFGOKnn37yCmRBeBlYTLRoi1QeJWcxKLAm0ATG5N13333nnXfYELxFvMgmQG3uv/9++z1Ntnk7abhkrZssUn0TnYglJOH3339/5JFHfvTRR0ac0J46daoBqHaR8/DDD7ctDu9q3cEHHwzzefPmkYJPrNWxkB3iP9F4DFweROoaGwE9QQIdZrvttqNSSayHGP2xR/RPjGkivxQrT0fn15iU5ORhm1ZddVV9Zu211z711FN1mEirP0sjgb6dlJ0IT4zUGxkYVrc8G/2c5MJieAlcnISTeHR+G86RX7984oknAmyETAO5XwwuU+WL3HnaMBfoTT/8pgVzczlPP/10wjjsoIMOMqQgDIV3CeTR8MVrNaY/tttI5ZY+ewR5LrtIAzikZR4iKX/44QePfLg/w+WWffiBCEyMNCSKYTHb6I3kLZKoRkLije0effTRNJD+JDB8seerkdgxIJwQwL711ltJQFojnoTpM941aI7OSN+58szXis5vR86T8C5H7WIuicRrfP3112fMmJHxtRhTXnPnzqVw9MwEtR4V123U5DcXRLbDDjts9913X3nllf2NRDdgZ0nLwlLBzPdK5upKeBimajIQSfdmpyDMJGXO8LPPPnv//fd33HFHQ4cI3JWoC6zX6J7kRGVlCO/W/0n8WjSNqRIGu80pVEXTbOJLKzzV3pTZYbvIljnbEIC2EAwlIDBnd+62224+eW92/eWXXxbfXtYCoZjsSP0RgGqxquIXy+YW4/LRWXwgi/z666+JagwXVraQ4ZFpXj6clJMt5MLKN5okm8EWMTITSzEkpgOaY0lL6/RWXu+BBx7oEy72nVD4aIiU2VPZIf4kIQ+BCcOAUPi0wgoRYyJ+s802u/HGG8V7KaYMtXTdddeVK+ZRYggsDJylML4IeJyXzp7SIb9MEtLyj0N9gG7pReayPKKFfj1lPSUbp7ihPyYV7TeCNlD1YSM9PHJmX6hWRCKmSt/osGOzRyTRS4HJYjJDLsullpqc3QTejTba6PTTT8cERjwxuEPHcqwKSehxtgIIawXfBfLoFuBu6YY2sj7m6NIK6cVLk7zCY1Uwyc8iQ8hAmFYTzEnMpLrjjjvWX399U9AogeSGRJ5OsjjjFA9SKZoYtNetMc2ll1664oorWnokPJeXPosEO72SZY011vjmm2+ScpwKJu0x6wFSw52MIwXCW9OnT7e+vuaaa2qLXknVzfdY58JklMqlCTEvsofzJk3GsQomsA5IEvJIR7C99toL6fr+M8lZlaeeesoQ37q7Aajpq2eeecYatlcAf6MK+p8xxFh1LE3POu5Iow91dJ1JEkAMhtX2F+AGw9U4NzQy5MEcxBCMVKP824HY1vaY0chJYKIiBiZAR7IBRF+SJp4ZL6ET+UGni5IQ1OAlAzlNXpnass5kfM39tbbqLejVTEAnQo5RKWnB2IwLGHFA+Mxss9UKtxIcf/zxzJAlYUWxpPBvxhQC0ocIx6hokh4RgwBq9wq0Ja+DVpDQRqHzzz9fvbZoPffccw8//DCfpqvPcRAMkgEtw0dTU4RBVPbovfTSSxaDiSqNtqCBbCFOLh0WH3uKmBt5ux3mZewY9abDZLaPCeAWVoyPCY+f6MCbb75J5+1m0kwMF63QOyKzXLrqMGXurYu0+VoIhKFqd6HzB/XNWBIpzbSR3MSJfQMW4G3fMyNt42peR4qKdvUWu/SG4VjX2AjoMxJk5vnVV18VTswJJ5yw9dZbJ69ewbyOXU5XT21qjX6bRdSfhXV7/T9TW/5eFcHIzzB1JWQgVTtaigyMkWlD285NGIrRaVlYO8iIjSGSZqR+owAsqQBz+eSTTyKwXq2wV8VGJ8fFNLFDdbntTdkSDD/AwrL+wVztRhKXX365AN0g4dlnn20PwfCl6q2RrXcL2xYJRoItt9xyDgBukfiMqkuc9OKxL3WSuEM9p9VNQgGtsPncWi/XvMWfdNJJ9AfyvaMEHGbQnzUj1qYl7ioAQ7vGzKj9+OOPZCCYGOdeMyy8FDE6sotb79V4BUZCfjUh22W6EnvU6q0p6PHHXnqsRNbDrCchM6pm6I0w7r777n333dcj3BDXx9sdv7jhpiAnsXVvG0FNB9lvqUv4S4z1bJ2cSY0rwxAYbosZrnT/qy3eDCRJklgGKOGM9/kBxgpijCHiAP0v82iEUBcbZGFCIGN8vo6wEQNWPuKIIzhnfF880bYRaEjsVNJ32A42Xe1U3QVq8yLMpbDpXHv+2U2XtlAkBNyhnKpGS2SDLbThpj/6P88tt9xCt/Mdxyyv2EAgsUmU0JjVX83J6KFDPW9abSKEeDb2cx9Jvvrqq+cVYGjHSNjabc7fRmLeJGmvvPLKG264AbexQtor0OEr0A0hb+f5G2+8YVOn0YPXQTBymo2g7ZRHgMvrsoZt/7kERj9eBMkzCdGh/CNVdU1Bj/M6UFTIlXr5P4a1GYuRG264of886Am77LKLXu3Sr5rZHafE4T5GbMTTvUlLSD1BjK1Y/l/YBNFGYb2lxQw/QEgAAjnGxa2hwxZbbGHyXB/mOOrq9g/vuuuuZNPJu7VBf8eHSXKxofYBgRrI1iBRF7plcU4++WRz6QZAPEvtwnDsrwlS5Qj77RZ8AlDyTz75xPgGh/3888+Ilhk18+9/MiZIgc/X8asJxhAUJgOmv+Mw2TFAbn6hAAI2L3L99de/9957VIL+cLCSgArZQ3DJJZd4BQS++uqrrWRbrSShAZDWTbaoCyvfqMtI3dvn6d5zzz0PPfSQGL6jGIrtRWijHiqSqkipjfqvP5fjZk+NPDRzYYUPIV5/POqoo8wF3nrrrWCk0rSXtKRiGK348umNh0Ree+215oEsWxg0Uy2qTm2Arwld6c8Q8PlnVYyaSz6C8ugGOnAEs8vDRC4FshJs7kXfSDxiG0HJIxIfK+Lp2GLs7GBVBfBEEugbCej/CXTyS85I4jeiMqZGPAyTfs4A2USW+E7EG7dSIH/88cdtZGCeX1f0v7V8/0GYkWqDOX8yYYl6y9S0DltnaxUJ2ykjjCkjGwLwXzvx5iFsYkLAvTJ3FQZU65IBNuMYYZcth5GcIpl4sImP8PY0ZYI6j7qSvNdQELWNA+iG27vuuksviGxpoF9DIn9pa6bG0w6bEKORlSxm0EVs4PuDO8EA/u2331r3RdIIeIMNNjC8EJ8587S9F4G0dGn+/c9fPiBYVyFQCBQChUAhUAgME4FaAx4m2lVXIVAIFAKFQCHwXwSKgEsVCoFCoBAoBAqBDhAoAu4A9KqyECgECoFCoBAoAi4dKAQKgUKgECgEOkCgCLgD0KvKQqAQKAQKgUKgCLh0oBAoBAqBQqAQ6ACBIuAOQK8qC4FCoBAoBAqBIuDSgUKgAwS23XZb32lKxb69IOArKH59Y8Fv77/zfWlIjC9B+vUZBL+52vcs3bZcMvoCVBL4dEM+yujWVxGef/75xPuVxjcT2m2yu833EWWUIDI0SXw/QYJ8DqJlrEAhUAgMgkAR8CDoVd5CoE8EfKP4mmuu8Z2jHDiRj2s6ZyafFkK34VEs60uWPvzkW7tqygf8fJJQOB9RkhKVJpfvDSFaX/ScNWuWr0j6mpUvFkmc0nyIUa5wLSLPx4yc1CRS9pTpo2MZDShEUbg/wwIl+74jMlZmI3gZ6yoECoFBEPj/QTJX3kKgEOgPAR93jHPJs8RqLuX46CAXExfm/Am0F5ZtHzcWEOlrl2jS9/98qtMnmmVEkyhTYgGXD146uFo8wg5nCyclrsX6CavIOYkeYWhZMKtCFIueVUGwfDe/1SIl8RTIsY6EYuoqBAqBvhEoD7hv6CpjIdA/Ag6k8kVun6133I2DZfAljxN3YmKnODixyq2TiBx+7GAZ1WA+p7WfddZZ5513HtacNm0a/nYIgVNXsaaP4J977rncZcTpsAQfzXayghLc3nnnnRgU7zqcNZTvpB0HZKkIiR500EF4F+li9MMPP9xXfH182+HqDgM47bTTMDH3Gls7xY9LLZmwI0mKfft/8ZWzEOhBoAi4B4wKFgLDQgDh4VTEhkEd1PPZZ59xK1Gm04Kdo4eenWBo1Va883x4qPhSgqeeegoFir/qqqu4wpxRU9nff//9BRdc8PTTT1922WXEd3LU0Ucf7dexcUpDsbLwejOJ/fvvv8+YMcOZiY7nmzdvHjJ2pKbpaOSqCscY4GznATsD2Dnq9913n0fSWK52JINTJZzvZCpbacPCqeopBJZkBGoKekl+u9W2kUUApzoxxqQxrxQZ8y/5mtjO0baOXHQibLxhRLvHHnu4xc1ObuaYnnjiic0B5RBroJnkffbZx1E/6Nmt81mTQHqLx9k8paI//vhDXc6B5mE7WNDZlBLzlffbbz+s7Mw+tzzpmTNnmo7Gsg8//DCSdug6IudAO02IDKTiGRs6SFxXIVAIDIhAEfCAAFb2QqAfBCyvmlvGuGaAcSQHlIdqyteuKF4vqkPPKNmZhiaWXWiVB7zqqqsiV7fok8PqlDo7uZzdixHtrlIIUYR5xhxZHK9MhUvPXZZRgi+//NL8tuySKWGTTTbBzY6QIw96lkbGPHKK3+eff07CHPLKjZ46daoTmk1B51DFfppdeQqBQqAHgZqC7gGjgoXAsBBArtlaxUnFspxgF17kbnJnuaQO6OWtvvXWW3FPs0OKo8wHRZlyOVHY7PGOO+7ITzUzbKYa3Yp3KUoyNCyMQaUPN4vEx9aMJUhDzUWjZ4QqmRieLlZ2qU6MgEiUjIkfe+wxe8R45FtttVU74XhYaFU9hcCSiUB5wEvme61WjTgC2JebS0gkx+PElHgRO06ZMsVksj1ZrsTjUb6pxDxgPBpS9Mg2K26x1V+0iiNt5uLypljcySEWxqOqkNilEMns5HJ2ukVcafy++uqrAuoSliCFm9NGyURSoOzOivfUsrRr9uzZaP7rr79eccUVRxzhEq8QGH0EygMe/XdUEi6BCJhtxqwaZsuxfcsYzl4qVOcvvKagTzrpJMu05qifffbZU045BX1KKT1aTS5U6o9Mv/zyyzPPPCPjQw89dM899/B0JeNbm77mSXOL8zff0KqM+NgEsrVhk8nfffcd19kasLBt1Z4qk2eMhvnB5EH5ZqHd2t512223ffHFF3ZjCfCDpV8CX0k1qRAYOgJFwEOHvCosBP71L2uumRa+8sorOZRmoe1bxnarrbbak08+aZ8UdxP/ebr88svjRWTMKzVHLfzXX3+B0F+YcLO9UdOnT7/jjjvsW0bP4qUxib3ddtt5ZM14zpw5smRFGcHzX+fOnau61Vdffbfddttggw2uvfZauXwDi/+Nqn18QzJ8LNdvv/2GhvExmt9ss8023nhjee0II6osdRUChcCACPyfPj9gEZW9ECgE/ikCXEwMl+VYhCd79kzpj5maFoNQkZ/dy6aI3XKakWsqSreVknMcBzdP/SqHjysewbcEHGIcnLzmls1Oo9vUmwlnj8RkBptsylSUPVnC8bmTNyKlhMTUbyFQCPSNQBFw39BVxkJgUARwXmhYABkrDu0hP9Qo3oWARWbHVhaApZQAL1q7bdVnGdijcGp2bIUsk11im63wMd/XjmhErjQJpBTj1y32Rdth3JA6ohWjzPwqShZ8jP6lb7VXoBAoBPpDoHpRf7hVrkJgAhDAbfiMz4p9MZ8SUSOyxHxiXDZkiRTwixRRcshSGqSLF32vwyPLt36VEM/YrxKQN74UHx61QoxrPfIb+lSasATKxL4CqiBP2NetSLcSk1N1LmVi8WJf4NRVCAyOQHnAg2NYJRQC/xgBnMevzbapZEZv4dF8exl34jnUy6/FebjQLmhzwhJntrm3SqU1dzl+sBh5FRIfOrfNRRYQ4xGuzRR0HN9WZpg7eXnMlp/J4KlaDBfctpQVKAQKgb4RKA+4b+gqYyHQPwLYEfsiQpSmFCSHfdGeW5+8QHLITxq30sQ9RXtxcLm/4hF28gpIKT1PV1G8VVnipIoUFilBdlelBFnsxkK6uFyxbuWSLImlkdHFwxaJel1x0N1KH3oWrqsQKAQGQaA84EHQq7yFQCFQCBQChUCfCJQH3Cdwla0QKAQKgUKgEBgEgSLgQdCrvIVAIVAIFAKFQJ8IFAH3CVxlKwQKgUKgECgEBkGgCHgQ9CpvIVAIFAKFQCHQJwJFwH0CV9kKgUKgECgECoFBECgCHgS9ylsIFAKFQCFQCPSJQBFwn8BVtkKgECgECoFCYBAE/g28jEZukeReQgAAAABJRU5ErkJggg==", + "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAHgAoADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA5vxR4jvdDuNJtNP0uO/utSuGgRJLnyFXajOSW2N2U9qm07VNVEN3c+IdNstJtoE3+cuoecuBncWJRAoAHWud+IdtBd654Qt7m4lggfUJQ8sU7Qsv7hzw6kEfnSeINM0/Tfh74sFhqN1eeZpk28XOoSXW3EbYxvY7ep6dePSgDr7fW9KvL5rK11Synu0Xe0EVwjSKvqVBzjkUXeu6TYXkVneapY211Ljy4ZrhEd8+ik5NcJeaTp+j2vw9nsLOGCddQhh85EAdkktpd4J6ncQCc9TWBaafcanN4ttL/AFHwzbzy6hcLcpqlmXuFjJ/dsHMq/Js27SBgY9c0AeuXer6bpz7L7ULW1YxmXE8yodgIBbk9ASBn3FRyeINGia0Eur2EZu1D2we5QGdT0KZPzA+1cHDo1tc+OPB1rqE8Gqi10GV1uGUMkzAxKJMHIOQcjr60tivhyPxb40j8SLYo6GFY1uwoAshCu0Rg/wAOd+dvf3oA9Ag1bTrk2wg1G0lN0HNv5cyt5oThiuD82O+OlTC8tjfPZLcRG6WMStAHG8ISQGK9cEgjPtXkmixG0+DfhjxFArmbQ52vDx87QGV0mX/v2zH6qK7HwFjVZNZ8VMQRq12Vtj/07Q5jj/Mh2/4FQB1F9qNlpdsbnUL23tIBwZbiVY1B+pIFRrrGmPpp1FNStGsAMm6E6mID135x+tcd4h+w/wDC09E/t7yP7M/s+f7F9px5X2vemevG7y+mffFV/F39h/bPCufsP/CO/wBrP9s8vZ5PneU3l+Zjj7+M574zQB29trGmXenyahbajaT2UYZnuYplaNQBkksDgYHWm22u6Re3v2K11Wxnutok8iK4Rn2kZDbQc4wQc15vqf2L+2fHv9heT/Z3/COH7Z9mx5X2rbLjpxu8vGce2anl0mw0rwz8PbixtIYLgahZKZkQB2EkbCTLdTuyc+tAHpNvfWt1DJNb3UMsUbMjvHIGVWU4YEjoQQQR2qvNrukW2mxajPqtjFYygGO5kuEWJwemGJwfzrzXxLdz6DqfiXwvatsl8SvDLp2P4XnIhuD+GN//AAKpfEFlJZfETSNPgn0qzs7fRhDp39rW5mi3q+HCfOoEmwR++PxoA9JOq6etlHfNfWotJSqxz+cvluWOFAbODknA9TUJ8RaGbKa9/tmw+yQSeVLP9qTy434+VmzgHkcH1ry7VtDitvh/qdm+qadfW93r1qzx6amyG3Lyxb41G5tvXdjP8XvXQ+JLPSLHxv4RhvLa0t9GAutiNGqQfadiCPcPu52h9ufwoA7ez1Sw1BnFle21yUVXbyJlfarZKk4PAODj1xTLPXNI1K6ltbHVLK6uIv8AWRQXCO6fUA5FeR3fkeX8Vf8AhFtuPs9rj7J93Ox/N2Y/4HnHfPetXStJS71Hw1e2+v8AhSGK1mD2q6ZZmGWZChDRAmU5BU8jGcj2oA9Bl8SaHDKsUms6fHK0rQBHuUBMinBTGfvAkZHWreoanYaVbfadRvbazgzjzLiVY1z6ZYgV5dYaJpl14T+I11cWUE1xJqOpAyyIGYBQSoBPTByRjuc1YtJrS48YeFpvEbQvbSeG0eya8IMZuiVMpG7jfs2++M0AejjVtNbTf7RGoWhscbvtQmXysdM784/WnWGp2Oq2wudPvba7gJx5lvKsi59MqSK848dC2Nz4UGmz6PDo32+fzZJoRLZrcbDs3qjKM7t+Mn72M1seDtIez8UarenWdEuJLm3iWaz0qHylVlLbZGXe3JBIzxnHtQB3dFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFNfIRiDg4oAdRXD+GdN1rWPCuk6nceMNYSa8s4bh1jhs9oZ0DEDMBOMn1rU/4RrVv+h01z/vzZ/wDxigDpKK5v/hGtW/6HTXP+/Nn/APGKP+Ea1b/odNc/782f/wAYoA6Siub/AOEa1X/odNc/782f/wAYo/4RrVf+h01z/vzZ/wDxigDpKK5v/hGtW/6HTXP+/Nn/APGKP+Ea1b/odNc/782f/wAYoA6Siub/AOEa1b/odNc/782f/wAYo/4RrVv+h01z/vzZ/wDxigDpKK5v/hGtW/6HTXP+/Nn/APGKP+Ea1b/odNc/782f/wAYoA6Siub/AOEa1b/odNc/782f/wAYo/4RrVv+h01z/vzZ/wDxigDpKK5v/hGtW/6HTXP+/Nn/APGKP+Ea1b/odNc/782f/wAYoA6Siub/AOEa1b/odNc/782f/wAYo/4RrVv+h01z/vzZ/wDxigDpKK5v/hGtW/6HTXP+/Nn/APGKP+Ea1b/odNc/782f/wAYoA1dR0fTNYiSPVNOtL6NDuRLqBZQp9QGBwaq2nhfw/YQ3ENnoWmW8VynlzpFaRoJU/usAPmHJ4NVP+Ea1b/odNc/782f/wAYo/4RrVv+h01z/vzZ/wDxigDZlsbSVbfzLaB1tnEkAaMERMAQGX+6QCRkdiar3+g6NqlwlxqGkWF5NGMJJcWySMv0JBIrO/4RrVv+h01z/vzZ/wDxij/hGtW/6HTXP+/Nn/8AGKANlbG0FzFci1gFxFGYo5fLG5EOMqD1A4HHsK5nxPo2t6hqUc+nad4auBHGBBc6nEzTWz5OWXCkEdCBleau/wDCNat/0Omuf9+bP/4xR/wjWrf9Dprn/fmz/wDjFAGfP4Y1Sw8AW3hfQbi0JMDWtxd3hYFVYHfIqqDliSSASBz1rqNM06DSdLtNOtl2wWsKQxj/AGVAA/lWP/wjWrf9Dprn/fmz/wDjFH/CNat/0Omuf9+bP/4xQBsX2nWOqWxttQsre7gJyYriJZFJ+hBFMXR9MTTTpyabaLYEYNqIFERHpsxj9Kyv+Ea1b/odNc/782f/AMYo/wCEa1b/AKHTXP8AvzZ//GKANO20fTLPTn062060gspAyvbRQqsbAjBBUDByOtSvp9nJDbxPaW7RWzK0CGJSsTLwpUY+UjtjpWP/AMI1q3/Q6a5/35s//jFH/CNat/0Omuf9+bP/AOMUAa82nWVzeW95PZW0t1bbvInkiVnizwdrEZXPfFLqGmWGq232fUbG2vIM58u4iWRc+uGBFY//AAjWrf8AQ6a5/wB+bP8A+MUf8I1q3/Q6a5/35s//AIxQBpLomkx2K2Mem2aWiuJFgW3URhgQQwXGMggHPtVPxLYX+o6YlvZ2WkX2ZAZbfVVYxOuD0wGwc46g96h/4RrVv+h01z/vzZ//ABij/hGtW/6HTXP+/Nn/APGKAK/g/wAN3WiSaje35she6g8e6GxQpBBHGu1I0BwTgZJOByelbFt4d0SyvmvbXR9Pgu2JJnitkWQ56/MBms//AIRrVv8AodNc/wC/Nn/8Yo/4RrVv+h01z/vzZ/8AxigDYj06yjhuIFsrdYblneeNYlCys33iwx8xPcnrUd1o+mXtglhd6bZ3FnGAEt5YFeNQBgYUjAwKy/8AhGtW/wCh01z/AL82f/xij/hGtW/6HTXP+/Nn/wDGKANZdK05dN/s1dPtRY42/ZRCvlY6424xj8KTTtH0zSI2j0zTrOyRjkrbQLGD9QoFZX/CNat/0Omuf9+bP/4xR/wjWrf9Dprn/fmz/wDjFAHSUVzf/CNat/0Omuf9+bP/AOMUf8I1q3/Q6a5/35s//jFAHSUVzf8AwjWrf9Dprn/fmz/+MUf8I1q3/Q6a5/35s/8A4xQB0lFc3/wjWrf9Dprn/fmz/wDjFH/CNat/0Omuf9+bP/4xQB0lFc3/AMI1q3/Q6a5/35s//jFH/CNat/0Omuf9+bP/AOMUAdJRXN/8I1q3/Q6a5/35s/8A4xR/wjWrf9Dprn/fmz/+MUAdJRXN/wDCNat/0Omuf9+bP/4xR/wjWrf9Dprn/fmz/wDjFAHSUVzf/CNat/0Omuf9+bP/AOMUf8I1q3/Q6a5/35s//jFAHSUVzf8AwjWrf9Dprn/fmz/+MUf8I1q3/Q6a5/35s/8A4xQB0lFc3/wjWrf9Dprn/fmz/wDjFH/CNat/0Omuf9+bP/4xQB0lFc3/AMI1q3/Q6a5/35s//jFI3hvVgpP/AAmuucD/AJ42f/xigDpaKw/CN5cal4N0S/vJTNc3NjBNLIQBudkBJwOBye1blABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU1/uN9DTqa/3G+hoA5/wD/yTvw1/2C7b/wBFLXRVzvgH/knfhr/sF23/AKKWuioAKKKKAGkZoxXLePNXuNG0FJ7aUxytcIgYdccsR+S11IIIBHeqcWoqXchSTk49h1FFFSWFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU1/uN9DTqa/wBxvoaAOf8AAP8AyTvw1/2C7b/0UtdFXO+Af+Sd+Gv+wXbf+ilroqACiiigAooooAKKKKACiiigAooooAKKKKACiiigApr/AHG+hp1Nf7jfQ0Ac/wCAf+Sd+Gv+wXbf+ilroq53wD/yTvw1/wBgu2/9FLXRUAFFFFAHnfxVdm0+wtlGS8ry49kXn9DXcabL9o0u0m/vwI35qDXHeM4vtviCC26+Tpl1KB6FkKj+VdJ4Wk83wrpT/wDTrGPyUD+ldFT+DH+t/wDhjkpP99L+tv8AhzZooornOsKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApr/AHG+hp1Nf7jfQ0Ac/wCAf+Sd+Gv+wXbf+ilroq53wD/yTvw1/wBgu2/9FLXRUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFY1r4m0q912fRYLl21CBGkeMwSKNqsFYhiu04LAcE9av399babYzXt7MkFtCheSVzgKB3oAtU1/uN9DWVo/iDTdc88WFwzvAQJY5YXikTIypKOAwB5wcYOOK1X+430NAHP+Af+Sd+Gv8AsF23/opa6Kud8A/8k78Nf9gu2/8ARS10VABRRRQBx5i+2/EHUlHSHSxB9C7bqteApPN8Fac3cK6/k7CovD2JvFvia66gywwj22IQaXwF8mgTW/8Az73k0WPTDZ/rXTP4Gu1vyZyU/wCIn3v+aOqooormOsKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApr/AHG+hp1Nf7jfQ0Ac/wCAf+Sd+Gv+wXbf+ilroq53wD/yTvw1/wBgu2/9FLXRUAFFFFABRRRQAUUUUAFFFFABRRRQBWvFu3s5VspIYroj9288ZkQH3UMpI/EVjQ2/i8XMZuNV0N4Aw3rHpsqsVzyATOQDjvg/SuiooA8+uvE2hx/F20ik1ayWRNLntGUzKCszTw7Yzz944PHtV3xte2+oaDfwWxe5bS76zlvoI0YsI1kimYYx837v5uM12lFAHE6Lf2uu/EC81XSpludPi0yK2kuYuY3l81mChuhKqecdN9dBq2mXl+Q9truoaeFQgpbJAwf3PmRsfyIrWpr/AHG+hoA5/wAA/wDJO/DX/YLtv/RS10Vc74B/5J34a/7Bdt/6KWuioAKD0oqKaQQwSSt0RSx/AUAzmfBP72DV7s/8vGpTOp/2eAP60eDf3U/iC3PVdUlcD2bGP5U/wDGU8HWTN9+UySN75dv6Ypnh7914v8TwekkEg/4EhNdEtXNf1vY5YaKD7/qrnV0UUVznUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU1/uN9DTqa/3G+hoA5/wD/yTvw1/2C7b/wBFLXRVzvgH/knfhr/sF23/AKKWuioAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmv9xvoadTX+430NAHP+Af+Sd+Gv+wXbf8Aopa6Kud8A/8AJO/DX/YLtv8A0UtdFQAnesnxJP8AZ/DeqS7sFbWTH1KkD9a1q5nx7IYvBl8F+9JsjA9cuo/lmqpq80vMzqO0G/Jmh4Zh8jwvpcWMEWsZP1Kgn+dZdh+6+I2rp/z2tIZfy+Wult4hBbRRL0jQKPwGK5qUeV8T4G7TaWyfiJM1pF3cvNP/ADM5qyj5Nf5HV0UUVidAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTX+430NOpr/cb6GgDn/AP/JO/DX/YLtv/AEUtdFXO+Af+Sd+Gv+wXbf8Aopa6KgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKa/3G+hp1Nf7jfQ0Ac/4B/5J34a/7Bdt/wCilroq53wD/wAk78Nf9gu2/wDRS10VADTXLeNx5lppdr2udSgjI9skn+QrqjXK+I/33inwza+s8sxH+4maul8d+xjW+BrvZfezqq5XWB5Xj7w9J2liuIyfouf611RrlvFP7rXvDVz/AHb0xf8Afa4/pTpfFbyf5BW+D5r8zqqKKKzNgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmv8Acb6GnU1/uN9DQBz/AIB/5J34a/7Bdt/6KWuirnfAP/JO/DX/AGC7b/0UtdFQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNf7jfQ06mv9xvoaAOf8A/8k78Nf8AYLtv/RS10Vc74B/5J34a/wCwXbf+ilroqAErlbv9/wDErT4+v2awkm+m5ttdSa5bT/3/AMRtXl/59rSGH6bvmrSn9p+RjW+yvNf5nVVyvjj5LbR5/wDnjqcDk+3NdVXK/EDI8JTzDrDJFIP++wP60qXxoK/8NnVjoKKapDKCOh5FOqDZBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNf7jfQ06mv8Acb6GgDn/AAD/AMk78Nf9gu2/9FLXRVzvgH/knfhr/sF23/opa6KgAooooAKKKKACiiigAooooAKKKKACiq15ZWuo2ctpe28VxbyjbJFKoZWHoQetYsHgXwnbXEc9v4b0qKWJw8ciWiBlYHIIOOCDQBDBq2sp48bRrz7A1jLYzXUHko4lXZLGgDMWwchz0A5HWtvUf7QNi40xrYXZI2G5DGNeRkkLyeM8ZHPcVzdxpvic+PItZitdINlFbPZgPeyCQxvIjl8eURuGz7ucc9a1NWXxNLYasmltpkdyxRdOeVnAVSq72k+U/MDv24BH3c96AK+g6vqNzrOraNqn2SaewSGT7TZoyIwkDHaVZmKsNufvHhlPFaGq+ItE0YrHqmsWFjJIpZFubhIyw9QGIzVDwlpmo6RZSWl5Y2UAJ8xp4L57mW4lP33kLRJ8x4559OABXQyKCjZAPB6igDB8A/8AJO/DX/YLtv8A0UtdFXO+Af8Aknfhr/sF23/opa6KgBoHWuW8L/v/ABB4mvP712sOf+ua4/rXUk8GuW8CfvNJvbv/AJ+tQnmz65OP6VpDSEn6GMtZxXq/6+86nvWD41i87wfqa+kO78iD/St7vWdr8Xn+HNSiHV7WQD67TUwdpJ+ZdRXi15E2lzefpNlN18yBG/NQauVjeFJfO8K6W3paxr+Qx/StqlJWk0ODvFMKKKKRQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNf7jfQ06mv9xvoaAOf8A/8k78Nf8AYLtv/RS10Vc74B/5J34a/wCwXbf+ilroqACiiigAooooAKKKKACiiigAooooAKKKKACiiigApr/cb6GnU1/uN9DQBz/gH/knfhr/ALBdt/6KWuirnfAP/JO/DX/YLtv/AEUtdFQBWvZ/stjcXH/POJn/ACBNYvgaDyPBmmr3ZGf/AL6Yn+tWPFswg8Jao5PW3dP++ht/rVnQYPs3h/TYCMFLWNT9dozWm1P1f5L/AIJjvV9F+b/4BpVFcR+dbSx/30K/mKloPQ1mbM5jwDJ5vgvTyeqh1P4Owrpq5bwH8mh3Fv8A8+97NFj0w2f611NaVv4j9TKj/DXoLRRRWZqFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTX+430NOpr/AHG+hoA5/wAA/wDJO/DX/YLtv/RS10Vc74B/5J34a/7Bdt/6KWuioAKKKKACiiigAooooAKKKKACisnVdf0rRJbZNUvEtFuCVjkmBWPIxwXxtU8jGSM846GtKORJo1kjdXRhlWU5BHqDQBJRRRQAUUUUAFNf7jfQ06mv9xvoaAOf8A/8k78Nf9gu2/8ARS10Vc74B/5J34a/7Bdt/wCilroqAOW8fB38JzwRgl5pI4xgerg/0rpkUIgRRgKMClbnigVTeiRCjabl3sOoooqSzlPB48q78RQf3dTkcD2YD/CuqrlfD/7rxh4ng/6aQSj/AIEhzXVVdX4r+n5GNH4Lev5i0UUVBsFFFFABRTHdY1LOwVR1JOAKfQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTX+430NOpr/cb6GgDn/AP/ACTvw1/2C7b/ANFLXRVzvgH/AJJ34a/7Bdt/6KWuioAKKKKACiiigAooooAKKKKAOV8YasdPjtrY6zoelRXQkEk2quCSBt4jjJUP97nJwOODmub8N6N4dtryL/hFvGMM+otcpPPBBeRGKaPcPMX7PHhF+XdghQQcHPWt3xXFPJ4h0OW1tLXUp4I7hxp1w+zzB+7BlRipUMmQMHGRIcGs638JX9/qEmq3Gn2GlStfWdxDbxuHaJYWJkfcqgb5FOwgcbQMk0AehUUUUAFFFFABTX+430NOpr/cb6GgDn/AP/JO/DX/AGC7b/0UtdFXO+Af+Sd+Gv8AsF23/opa6KgAooooAKKKKAOUsv3XxJ1NP+e1lFL+R211VcrL+5+J1u/abTGj/ESZrqq0qdH5IxpfaXmxaKKKzNgooooA5L4jy+X4Mulz/rJI1/8AHgf6V0Glz/atKsrjOfNgR8/VQa5j4jRPdaTp9kv3ri/jT8MN/wDWrV8Fz/afB2lvnOIdn/fJK/0reUf3Cfn/AF+RzRl+/kvJG/RRRWB0hRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU1/uN9DTqa/wBxvoaAOf8AAP8AyTvw1/2C7b/0UtdFXO+Af+Sd+Gv+wXbf+ilroqACiiigAooooAKKKKACiiigDgviNJYwRWN5cTa0t1aR3FxEmkyJG/lqoMrszcbVGO/O4DBJFa/h2OKy1PUdPGpavezxRQSt/aEquAr79pTAHUqwOe6is34h22nXVnDBdXl9bX1xDcWsAsLVrmWWKRQJV8sKcrjaSeMELz6zeCUR3v7mZtYm1CXylnuNRsGtAyKGCJGpAG1fmPGTlsk80AdlRVa7uXtbOWeO1mumQZEMG3e/sNxAz9SKxYPEd/NcxxN4S1uFXcKZZDa7UBPU4mJwOvAJ9qAOjorh4NKsdO+LsU1rbpFLd6PcyzuMkyN58PJJ+tbvibV59E0Oe7traW4uMiONY4Xl2sxxuZUBYqucnAzgcUAbdNf7jfQ15v8ADi4sl8SeJ7O1lvpnaWCdprq1liaVvJTezb1G0lyTt446DArtNW1O8sCEttC1DUAyEl7Z4FCex8yRT+QNAFPwD/yTvw1/2C7b/wBFLXRVzvgH/knfhr/sF23/AKKWuioAKKKKACiiigDlNZ/dePfDknaVLiM/gmR/OuqrlfFP7rXPDVz/AHb3ys/764/pXVCtJ/DF+X6sxp/FJef6IWiiiszYKKKKAOU8TfvfEvhm2/vXEkuP9xQf60eAv3ehT2f/AD6Xs0GPTDZ/rRqf774h6HH/AM8LeeX8xto8K/uNd8S2fTbeifH/AF0XP9K6ZfwreV/xf+ZyL+LzebX4L/I6uiiiuY6wooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKa/3G+hp1Nf7jfQ0Ac/4B/5J34a/wCwXbf+ilroq53wD/yTvw1/2C7b/wBFLXRUAFFFFABRRRQAUUUUAFFFFAHDeJZpLzUUvtN1ddMn0a7FhO0th9o8xrkQFVH7xcLl4yT1yO2OdbQbjVI9X1DTNV1SC+nhggnXybH7OqLIZR18x9xJjPpjHfPGbrHgnUNRvtQltvEclnbXt3BePbizSTEsQiCkMTnGYUOK1ND0G+03U77UNR1htRubuGGHcbdYQixmQgYXrzKaAOhooooA5ybwZos+uDWJI737eGyJBqNwoAyG2hRJtC5AO3GDjpWtb6ba2d3eXcERE946yTtvJ3sqBAcE4HyqBxirtFAFG3021tLy8vLeLZcXjK877id5VQq8E4HygDjFXH+430NOpr/cb6GgDn/AP/JO/DX/AGC7b/0UtdFXO+Af+Sd+Gv8AsF23/opa6KgAooooAKKKKAOU8c/JaaTP/wA8NTgkz+JH9a6kEGszXNHi13THspJXiBZXWRMZUg5FZP8AwiupZ/5GjUv/AB2tFyyik3a1zB80ZtpXTsdSPelrgvEGl6vomi3GpQeI7+aSAKwR8bT8wBz+BruIZBNBHKvRgGH4iplBJJp3RcJttxasyaiiipNDlP8AW/E/2h0v9TJ/hRYf6P8AEfVoun2m0hn+u35KNKHnfELX5P8AnjDBF+a7qL3/AEf4kaXL0+1WUsH12nfXT1t5f8E5enN5/wDAOrooormOoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmv9xvoadTX+430NAHP+Af+Sd+Gv8AsF23/opa6Kud8A/8k78Nf9gu2/8ARS10VABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU1/uN9DTqa/3G+hoA5/wD/yTvw1/2C7b/wBFLXRVzvgH/knfhr/sF23/AKKWuioAKKKKACiiigAooooAx/FEPn+F9Ujxkm2kIHuFJH8qf4dn+0+G9Mlzktax5+u0Z/Wr11CLi1mhPSRGQ/iMVgeApTN4NsC33kDoR6Ydh/LFaLWm/J/n/wAMYvSqvNfl/wAOdNRRQehrM2OV8MfvfEXia5/vXSRZ/wBxcf1o8U/uPEHhm8/u3jQf9/Fx/Sk8EfPBrNx/z21WdgfbjFL48/d6La3n/PpfQz59MNj+tdP/AC9t8vwscv8Ay5v8/wAbnVUUDoKK5jqCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApr/AHG+hp1Nf7jfQ0Ac/wCAf+Sd+Gv+wXbf+ilroq53wD/yTvw1/wBgu2/9FLXRUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTX+430NOpr/cb6GgDn/AP/JO/DX/AGC7b/0UtdFXO+Af+Sd+Gv8AsF23/opa6KgAooooAKKKKACiiigBuK5bwN+70/UrT/n11KeLHtkH+tdSDzXLeGf3PiPxNa/3bpJsf765/pWkfgkvQxnpOL9V/X3HV01iApJ6Cl7VT1SbyNKvJv8AnnA7fkpNQtXY0bsrmF8PwW8IwznrPLLIf++yP6VZ8awfafB2ppjOIt//AHyQ39KXwVF5Pg7TF9Yd35kn+taWrQfatGvrfGfNt5E/NSK0k7Vm/P8AUyjG9FLyHabP9q0y0uM582FHz9VBq3WB4Mn+0+ENNfOcQhP++cr/AErfzzUSVpNGlOV4J9xaKKKksKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKa/3G+hp1Nf7jfQ0Ac/4B/5J34a/wCwXbf+ilroq53wD/yTvw1/2C7b/wBFLXRUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFc/beJYbnxRLoTaffwTJA9wks0arFKiOqEqd248uOoAxWlqeo22k6dPfXkvl20K73bBJx6ADkk9ABySaAL1Nf7jfQ1laVq02p7/N0jUdPCgFTdrGPMBz02uxHTocHmtV/uN9DQBz/gH/knfhr/ALBdt/6KWuirnfAP/JO/DX/YLtv/AEUtdFQAUUUUAFFFFABRRRQA3HNctZfuPiRqkf8Az82cU312nbXVVyt3+4+JOnSdPtNjJD9drbq0p9V5GNXo/NHVVjeK5fJ8Kao/rbOv5jH9a2a5nx8/l+C7/H3mCIPxdaVNXml5lVXaDfkzU8PxeR4d02L+5axD/wAdFaR6GooIxDbxxjoihfyFS1MndtlRVopHLeAf3fh6S0/59LuaDHphs/1rqa5Xwr/o+teJLP8Au33n/wDfwZ/pXVVdX42++v3kUfgS7afcLRRRWZqFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNf7jfQ06mv8Acb6GgDn/AAD/AMk78Nf9gu2/9FLXRVzvgH/knfhr/sF23/opa6KgAooooAKKKKACiiigAooooAKKKKAK15BNc2ksUF3LaSuMLPEqsyH1AYFfzBrFg0HV47iOSXxfqsyK4Zont7QK4B5UkQg4PTgg10dFAHB3WqbPihbT/wBnau1vFp81k066ZO0fmtNER84TBXCk7s4461Z8cWt14k8K63pNlZ3ontpYHUlfLFxtaOYiJs88ArnjDDHauzooA4TwnZRxeJ7q40bSr3TNFayRJIbiB4BJc7ydyxvzkLwWxg5HJxXS6tpl5fkPba7qGnhUIKWyQMH9z5kbH8iK1qa/3G+hoA5/wD/yTvw1/wBgu2/9FLXRVzvgH/knfhr/ALBdt/6KWuioAKKKKACiiigAooooAQ1yniP9x4n8M3XTFxLCT/vriuqNct44/d2el3XT7NqcEhPtkj+taUfjt3Ma3wN9rP7mdVXK+Ozv0izt/wDn4voIseuTn+ldUOgrlfF/73UfDtv/AHtRSTH+4Cf60UvjTCt8DR1Y6UUDpRWZscpp/wDo/wARdYi6fabWGf67fkrqq5W8/wBH+JOnS9PtVhJD9drb66qtKvR+S/yMaOnMvN/5i0UUVmbBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTX+430NOpr/cb6GgDn/AP/JO/DX/AGC7b/0UtdFXO+Af+Sd+Gv8AsF23/opa6KgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKa/3G+hp1Nf7jfQ0Ac/4B/5J34a/wCwXbf+ilroq53wD/yTvw1/2C7b/wBFLXRUAFFFFABRRRQAUUUUAJXM+PYjL4Mviv3o9kgPph1P8s101ZPiWDz/AAzqke3JNrJj6hSR+tVTdpp+ZnVV4NeRo28ont4pV6SIGH4jNc1rv73xv4Zh7KbiVvwQYrT8MzfaPDOmS5yTbRg/UKAf1FZl0fO+Jdin/PDT3l+m5ttaU1ab8k/yIm7wj5tHV0UUVibnK+J/9H8R+Gbzptungz/10XH9K6g1y3jv91pFnd/8+l/DNn0wcf1rqQeBWk9YRfqv6+8xhpOS9H/X3DqKKKzNgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApr/AHG+hp1Nf7jfQ0Ac/wCAf+Sd+Gv+wXbf+ilroq53wD/yTvw1/wBgu2/9FLXRUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTX+430NOpr/cb6GgDn/AP/JO/DX/AGC7b/0UtdFXO+Af+Sd+Gv8AsF23/opa6KgAooooAKKKKACiiigAqKeITW8sR6OhU/iMVLQehoBnMeApWk8G2Qb78e+Nh6Ydv6YqO0/f/EvUH/54afHF9NzbqPA/7u01W1zxb6lPGB7ZBH9aNB/e+NfE0/ZTbxL+CHNdEtJTf9atHLHWMF/WiZ1dFFFc51GF4ssDqPhbULZRlzFuUDuVO4D9KtaFfDVNDsr3OTNCrN7NjDD881o4zXK+DP8AQjquiHj7Bdt5Y9In+Zf6/nWi96m121+8xfu1U+6t92p1lFFFZmwUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU1/uN9DTqa/3G+hoA5/wD/wAk78Nf9gu2/wDRS10Vc74B/wCSd+Gv+wXbf+ilroqACiiigAooooAKKKKACiiigAooooAKKKKACiiigApr/cb6GnU1/uN9DQBz/gH/AJJ34a/7Bdt/6KWuirnfAP8AyTvw1/2C7b/0UtdFQAUUUUAFFFFABRRRQAUUUUAcp4b/AHPinxNa+lxFMB/vpmjwifNv/EVx/e1N48/7oA/rRafuPiVqEfT7TYRzfXa22jwGN+i3Vz/z8Xs0ufXJx/Sumfwt90v6/A5KfxRj2b/r8Tq6KKK5jrErk7r/AIlnxDtJ+kOp27Qt6eYnIP5YFdX1rmPHMLrocepQjM2nXEd0oHcA4I+mDn8K0pfFbvoY1vh5u2p1NFRQzJcQRzRnckih1PqCMipazNgooooAKKgubmC0t3nuJUiiQZZ3bAA+tLBNFcxLJDIkkbjKujAgj2Ios7XFdXsTUUUUDCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmv9xvoadTX+430NAHP+Af+Sd+Gv+wXbf8Aopa6Kud8A/8AJO/DX/YLtv8A0UtdFQAUUUUAFFFFABRRRQAUUUUAFFFFAFe7u7awtZLq7uIreCIbpJZnCIg9STwKyIvGnha4mjgg8S6PLNIwRI0vomZmJwAAG5JPat1lDqVYAg9QRTBbwAgiGMEdCFFAHLQXOrW3xIGnz6o9zp9zp891HbNBGghZZY1XDAbjw5HJ/CtDxdqF5pPhXUL+wMS3MMe5WlxtUZG5uSASBkgE8kAd6oT+HNdfxjHrseuWaRxwtbLbtpzMfJZ0dgX84fN8gG7H4Vd1fw/c63Y6lZ3WpssVxLDLaeXEoNq0ZRhz/H+8Tdz2OKAMfwdrd3qOvahaf2ncajZQ20UiyX1qLW4WRi2R5e1CUwBhivXIBPOOi1XxFomjFY9U1iwsZJFLItzcJGWHqAxGapaVoF7b61LrGq6ml7em2FrH5Fv5EaR7tx+XcxJJxzntwBW/IoKNkA8HqKAMHwD/AMk78Nf9gu2/9FLXRVzvgH/knfhr/sF23/opa6KgAooooAKKKKACiiigAooooA5DV5PsPj/Trk9JrCeP67Pnqz4Bj8rwVp+erB3P4uxrJ+Isv2M6Xf8AQx/aIs+7xEf0rovCsXk+FdKT/p1jb8xn+tdM/wCDF9/0uclP+PJdv1t/kbVFFFcx1hVa9tY72xntZB+7mjaNvoRirNIaE7aiavoc14IuXm8NRW03/HxYyPaSj0KHgfliul7muT0v/iWePdVsOkV9El5EOwYfK/4k8/hXWVdVe9fvqZ0X7tn00+4KazBQSTgD1p2eK4/W7ufxBqbeHdNkZIUwdQuU/gX/AJ5g/wB4/wCe9KMbvyKnPlXmR/N431XuNAs5Pwu5R/7IP1/lPN4WutKmN14ZvPsrE7ns5stBJ+HVT9P0rpLS0gsLSK1tkEcEahUUdhVirdVp2jt2M1RTV5b9zmLLxdHHcrZa5bPpd50HmnMUnur9Pz/OunByOOaqX+nWup2j215Ck0TjlXGfxHofeuYsL248JX0ek6nK0ulzNtsrx/8Aln/0zc/yP9Ohyxmrx0fb/IFKUHaTuu/+Z2lFFFZG4UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTX+430NOpr/cb6GgDn/AP/JO/DX/AGC7b/0UtdFXO+Af+Sd+Gv8AsF23/opa6KgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKa/3G+hp1Nf7jfQ0Ac/4B/5J34a/wCwXbf+ilroq53wD/yTvw1/2C7b/wBFLXRUAFFFFABRRRQAUUUUAFFFFAHEfFCHzfCqPj/VXKN+YYf1rq9Mh8jSrOH/AJ5wov5KBUOr6Vb61p0thdb/ACZCpOw4PBB6/hWgBhQB2rR1L01Hs2ZRp2qOfdIdRRRWZqFFFFAHJeK8WGqaJrQ4Fvc+TN/1zkGCT9P61o6n4o0jSSVubxDL0EEfzyE+m0dPxq7qemW2s6fLY3aloZQNwU4PByCD9RVfTPDmlaOB9isoo37yEbnP/AjzWicXFc17owcaik+W1mYz6r4k1xWTS9M/s6BuBc3xw+PVUHIP1yK29C0WDQ9OW1hJdid8krfekc9WNalHapc7qyVkXGnZ3buxaKKKk0EqpqGnW2qWUtpdxCWGUYZT/Mehq5SUJtO6E0mrM43TL658NX8ei6vIZLSU7bG9buO0bnsR2rq5rq3gXM08UQ9XYL/OoNS0y01Wye0vYllhccg9j6g9jWPD4E8Nwtu/s4SN3aWV2z+ZxWjcJavR+Rio1I6Rs15v/gF2fxVoNvnzNWtMjssoY/kM1Ubx54Zj66qp+kTn+S1pQeH9HtseTpVkhHcQLn88VcW1t0+7BEv0QCi9Psx2q9193/BOdPxC8Nn7l7JJ/u28n/xNTW/jjw5ccLqkaH0kVkx+YFdCFAqvcWFrdjFxawTD/ppGG/nRen2f3/8AAC1Tuvu/4Iy31XT7wD7Nf2s2f+ecyt/I1c3D1rBuPBfh25z5mk265/55Ax/+gkVU/wCEA0JB+4S7g/65XLj+ZotTfV/d/wAEL1F0X3/8A6n8aM+9cr/whEa/6nXtciHot5x/Kj/hCIn/ANfrutzD0e74/lS5Yd/wDmn/AC/idSSAM5oBBGQRXMD4faA3M8NxcH/prcuf5EUH4faCvNvHc2x9Yblx/Mmny0/5n93/AAQ5qn8q+/8A4B1H40fjXK/8IV5X/Ht4g1uL2+1bl/LFA8HXD/6zxNrR/wByfb/SlyQ/m/AOaf8AL+J1X40fjXK/8IPA3+s1rW5f9+8z/Sj/AIQTT+97qZ/7ejT5Yd/wDmqfy/idVmjNct/wgemf8/Won/t7akHgWxX7mparH/uXZ/wo5Yfzfh/wQ5qn8v4/8A6r8aPxrlf+EKx/q/EWvJ7fbMj+VH/CGSnr4m1z8LnH9KXJD+b8A55/y/idV+NH41y3/CFN/wBDLr5/7fP/AK1H/CFsPu+JdfH1vM/0o5Yd/wAA5p/y/idTRXLf8IfdD7vijWfxmB/pR/wiV/8A9DRqv/fQp8sf5vzDnn/L+KOporlv+ETv/wDoaNU/76FJ/wAInqH/AENOqfmKOWP835hzz/l/FHVUVyv/AAieof8AQ06p+Yo/4RK+PXxRqv4MBRyx/m/MOef8v4o6rNGa5b/hELo9fFGs/hMB/Sj/AIQ+5HTxRrf4zA/0o5I/zfmHPP8Al/FHU0Vyo8I3o6eKNW/GQGj/AIRPUP8AoadU/MUcsf5vzD2k/wCX8UdVRXK/8InqH/Q06p+Yo/4RPUP+hp1T8xRyx/m/MPaT/l/FHU4orlv+ET1H/oadU/MVuaXZS6fZCCa9mu3DE+bN9457VLUUtHcqMpN6qxfpr/cb6GnU1/uN9DUmhz/gH/knfhr/ALBdt/6KWuirnfAP/JO/DX/YLtv/AEUtdFQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNf7jfQ06msNykA4yMUAc/4B/5J34a/7Bdt/wCilroq47SNB8WaPo1jpdvr+jtDZ26W8Zk0iQsVRQoyRcDnA9BV77F4z/6D2h/+CeX/AOSaAOjoriten8Y6J4d1HVv7X0Sb7FayXBi/smVd+xS2M/aDjOOuK0Vs/GRUH+3tD5H/AEB5f/kmgDpKK5z7F4z/AOg9of8A4J5f/kmj7F4z/wCg9of/AIJ5f/kmgDo6K5z7F4z/AOg9of8A4J5f/kmj7F4z/wCg9of/AIJ5f/kmgDo6K5z7F4z/AOg9of8A4J5f/kmj7F4z/wCg9of/AIJ5f/kmgDo6K4rXp/GOieHdR1b+19Em+xWslwYv7JlXfsUtjP2g4zjritFbPxkVB/t7Q+R/0B5f/kmgDpKK5z7F4z/6D2h/+CeX/wCSaPsXjP8A6D2h/wDgnl/+SaAOjornPsXjP/oPaH/4J5f/AJJo+xeM/wDoPaH/AOCeX/5JoA6Oiuc+xeM/+g9of/gnl/8Akmj7F4z/AOg9of8A4J5f/kmgDo6K4rXp/GOieHdR1b+19Em+xWslwYv7JlXfsUtjP2g4zjritFbPxkVB/t7Q+R/0B5f/AJJoA6Siuc+xeM/+g9of/gnl/wDkmj7F4z/6D2h/+CeX/wCSaAOjornPsXjP/oPaH/4J5f8A5Jo+xeM/+g9of/gnl/8AkmgDo6K5z7F4z/6D2h/+CeX/AOSaPsXjP/oPaH/4J5f/AJJoA6Oiubaz8ZBSf7e0Pgf9AeX/AOSaztBn8Y634d07Vv7X0SH7bax3Ai/smVtm9Q2M/aBnGeuKAO1ornPsXjP/AKD2h/8Agnl/+SaPsXjP/oPaH/4J5f8A5JoA6Oiuc+xeM/8AoPaH/wCCeX/5Jo+xeM/+g9of/gnl/wDkmgDo6K5z7F4z/wCg9of/AIJ5f/kmj7F4z/6D2h/+CeX/AOSaAOjorm2s/GQUn+3tD4H/AEB5f/kms7QZ/GOt+HdO1b+19Eh+22sdwIv7JlbZvUNjP2gZxnrigDtaK5z7F4z/AOg9of8A4J5f/kmj7F4z/wCg9of/AIJ5f/kmgDo6K5z7F4z/AOg9of8A4J5f/kmj7F4z/wCg9of/AIJ5f/kmgDo6K5z7F4z/AOg9of8A4J5f/kmj7F4z/wCg9of/AIJ5f/kmgDo6K5z7F4z/AOg9of8A4J5f/kmszRZ/GOsWMl1/a+iQ7Lq4ttv9kytnypni3Z+0DrszjtnHNAHbUVzn2Lxn/wBB7Q//AATy/wDyTR9i8Z/9B7Q//BPL/wDJNAHR0Vzn2Lxn/wBB7Q//AATy/wDyTR9i8Z/9B7Q//BPL/wDJNAHR0Vzn2Lxn/wBB7Q//AATy/wDyTR9i8Z/9B7Q//BPL/wDJNAHR0Vzn2Lxn/wBB7Q//AATy/wDyTWZos/jHWLGS6/tfRIdl1cW23+yZWz5Uzxbs/aB12Zx2zjmgDtqK5z7F4z/6D2h/+CeX/wCSaPsXjP8A6D2h/wDgnl/+SaAOjornPsXjP/oPaH/4J5f/AJJo+xeM/wDoPaH/AOCeX/5JoA6Oiuc+xeM/+g9of/gnl/8Akmj7F4z/AOg9of8A4J5f/kmgDo6K5z7F4z/6D2h/+CeX/wCSazNFn8Y6xYyXX9r6JDsuri22/wBkytnypni3Z+0DrszjtnHNAHbU1/uN9DXPfYvGf/Qe0P8A8E8v/wAk0hsfGRBH9vaHz/1B5f8A5JoAd4B/5J34a/7Bdt/6KWuirL0DTDonhzTNJaYTGytYrfzQu3fsULnGTjOPWtSgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDJ1vWNM0i1T+03IjuG8pIhE0zSkgkqEUFm4BzgHip9M1K01jT4r2xnWe2kztcZHQ4IIPIIIIIPIIrnPE93BpPjHw9q+oSLDpsUN3bvcScJDK/llCx6LkI4yfXHepfAgMthqt8iMtrfarcXNqWUruiJADgHsxDMPUNnvQB1tFFFABRRRQAUUUUAVb+e0ttPuJ75o0tI42aZpBlQgHOfbFRaXqlprOmQajp8pktJ13RuUZMjOOjAEdO4rF8UWOt3t5pwsbO0vLCGQzT29xdtB5kikGPJEb5UHLY45C+mDU+Fz3cnw+077VBFDt3iPy5TJvTceTlRg5yMc9Ac84AB2lFFFABRRRQAUUUUAZOtavpmk26LqUnFyTFHCsLTPKcEkCNQWbjOcDpU2l6rZaxYreafP50JYpkKVKsDgqykAqQeoIBrlfHc6Q6v4elmvn0iFJJy2rAA/ZzsAEZ3AoN+Ty4I+Tjkg1Z+HrltDvWBaaM6jO0d8VKm9BIPnEHjkkjjC/LwAMCgDsaKKKACiiigAooooAxovEmlS6+2hx3DHUArMYmgkCkLjdhyu043LwD3qvF4s0GO+TS0uDFIJfssYNtIkRkHHlrIVCE5GMA9qwNd8TaHa/E7QYrjV7OKS3tbyKdXmUGN3NuUVueCcHA74qHUfFOi+JPFcWiPrFja2em30bTCa4RZbu5RwUijUnO1XAy2OSNo7mgD0aiiigAooooAKKKKAMaLxJpUuvtocdwx1AKzGJoJApC43YcrtONy8A96jk8R6NZ6iukLLJ50ZSMx29rJIkJONquyKVTgjhiOCK5zXfE2h2vxO0GK41ezikt7W8inV5lBjdzblFbngnBwO+K5lXn0e41uNNXvo/E51ySWy05ZWCTxSSgqfK6OhQnLnO3GMjbQB7NRRRQAUUUUAFFFFAGB/wl+iDUxYNdyLMZ/swZ7eVYjLnGwSFdhbIxjOc0l/4p0DRb9rC5u0gmBDyBIXKRbzwZHVSse455YjNcxq3irRPEXiZdAk1iwtLLTr2M3XnXCJLc3EbhlhjUnO0OBubuRtHcinrWoWulwePNIv8nUdVdnsYChL3iyW0caLGP4sOrKcdOtAHqdFU9Nilt9LtIJ23TRwokhznLBQD+tXKACiiigAooooAwP8AhL9EGpiwa7kWYz/Zgz28qxGXONgkK7C2RjGc5qfU9b0nw9Dbm/njtUurgQxKqE75Hb0UHqTyemTyea5DVvFWieIvEy6BJrFhaWWnXsZuvOuESW5uI3DLDGpOdocDc3cjaO5FDx5Z+IIxqGoz6fYXEDXllDZym9ZWhiFzCQvl+URl3A3Nu6beDtAIB6tRUFuZjBGZ40SUqC6I24K2OQDgZGe+B9KnoAKKKKACiiigDAv/ABdoml30lpe3ckUkRUSv9nlMURYAjfIF2LwR1I607UvEWj6BMlrdStHK6NN5NvbSSsFzy5WNSQMk/McDOa5nxn4q0m8vrjwdNrFjp6SRY1O5up0jMcLj/Vxhj8zup69FBz1wKreJbm2t/GIlfX28OwHSUSG/jVWF2C7nywXBX5OCABvPmcHFAHolpdwX9pDd2kyTW8yCSORDlXUjIINWK5vwOHXwRoyvZ/Yylsi+QAw2gcA4bLDIwcE555rpKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooryrwbqeu6p4itDbXGnWWntpUU7WEVrJ5Sr9olVtgEoCudp+bB7cHHIB6rRXmum/EHUdTvLS5t7NprC6uxCtsmmXXmJEX2CUz48o44YgDAGfmJFamm+IdavE1y/updJstM066u7dWlR8sIiQrs27CgYGeDnBxigDtqK82t/GWp6j/a2lC4ga4GlS3treR6fc2qjaQpG2U5b7ykMrflU2mX+qQaB4Jk1V7DUZL65t1SVrZw8QNrI2/c0jZl+XBfjIZuOaAPQ6K4GPxbrbWkHiBoLH+wp9QFmIAr/AGhUabyFlL7tp+bB2beh65qK58XeIYLfW9VEOmf2ZpWpNavEUk86aMMgLBt2FYBvQ5x2oA9DoripvE+ox+L5NMuLmw022W4jigjvLaXfeIVUlo5twjByWULhjleetdrQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXK2Hgiz0qfT5rDUdQt3tIhbsVaM/aIhIZNkgZDxlm5XacE811VFAHNWfhOPTrpWsdV1S3slnMw0+ORPIVi24gZTeFJJ+UNjnpipv+EU05tE1PSJTPJa6lNPNPucBg0rFm2kAYwTx/Wt+igDmLLwbbW+rNqdzqWpahdPZPYs15IhBiZlYjCKoByvUepznjC2fg+3tLXS7ZtS1C5h0u4Se0Wdo/wB3tiaJUyqAldrnrk5A5rpqKAOVXwRp8d8kgvL42Ud2b1NNMq/Z1m3b9wG3d947tu7aDzirE/hCwuNH1XTGmuRBqdw1zMwK7lZipIX5cAfKOoNdFRQBzt94Vj1O98271bU5bTz0nNiZE8jejBl/g34DKDjdjiuioooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/2Q==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAIAAAC6s0uzAADriElEQVR4Aey9B4AkR3X/390Td2d3dmfT3ekknRIogUgySSQBQhhMMLYBY0ywwT9+2Jhk/23AOeEAxhgMxgFji59ljEk2JmcwJieJIAmEhHSn27yzs2FSd/8/r95M79xe2tnbvdvw6uZ6qqurXlV9e7a//V69qvLjOPYsGAKGgCFgCBgChsDpRSA4vdVZbYaAIWAIGAKGgCEgCBgB2+/AEDAEDAFDwBA4AwgYAZ8B0K1KQ8AQMAQMAUPACNh+A4aAIWAIGAKGwBlAwAj4DIBuVRoChoAhYAgYAkbA9hswBAwBQ8AQMATOAAJGwGcAdKvSEDAEDAFDwBAwArbfgCFgCBgChoAhcAYQMAI+A6BblYaAIWAIGAKGgBGw/QYMAUPAEDAEDIEzgIAR8BkA3ao0BAwBQ8AQMASMgO03YAgYAoaAIWAInAEEjIDPAOhWpSFgCBgChoAhYARsvwFDwBAwBAwBQ+AMIGAEfAZAtyoNAUPAEDAEDAEjYPsNGAKGgCFgCBgCZwABI+AzALpVaQgYAoaAIWAIGAHbb8AQMAQMAUPAEDgDCBgBnwHQrUpDwBAwBAwBQ8AI2H4DhoAhYAgYAobAGUDACPgMgG5VGgKGgCFgCBgCRsD2GzAEDAFDwBAwBM4AAkbAZwB0q9IQMAQMAUPAEDACtt+AIWAIGAKGgCFwBhAwAj4DoFuVhoAhYAgYAoaAEbD9BgwBQ8AQMAQMgTOAgBHwGQDdqjQEDAFDwBAwBIyA7TdgCBgChoAhYAicAQSMgM8A6FalIWAIGAKGgCFgBGy/AUPAEDAEDAFD4AwgYAR8BkC3Kg0BQ8AQMAQMASNg+w3sKARCF+gS3xybzSbHKIo0srS0pL2t1Woa0WxxHFer1UajoYl65FRLaR4S9ZRIIod4IkpLcVxYWKBGIkggEEG4XtVTjVNwcXFR4zSACCnURR491UtHH7U7SR7y1+t1spHeKXB5eTlpMJm1zUmKitV2Ek/SkxZySbumjadTSUtISTBJIlxVDDWFGrV4ZwatiPSkFi2VSCZCXyhCe7SDNIOgGRJRSWOSSIIGmZN4kr9TvsUNga2DgJ/8WLdOm6wlhsC6EeDBnU6nKc7DN5VKrZIDJ/GAJj2fz3MJuioUCqQEQetNFJbiaiaT0Wy+76so/kxULBJIpDhkoznJQBwJ+ujv6enRSimixTnVKmgbrcrlcjAQVWilxEnRIp1HciJBhVBRpVIhWzabTWRyiXq1OiKcEqci5W8yJ42nuDaA3vX29tIF5JCo1dEqrnLkkqYgiogWT5qnWJXL5YGBAa5ShCM5kYNYKqVHKkHjUGNfXx955ubmKII0MieNJ50OkociFOT0rrvu2rNnD5h0ZqNVXNKg+NNTwNfukE4G0pO6NL/WknSwLcC+DYEth4AR8Ja7JdagU0EAduEBzSNYaQBRPLJ5RvNoJvGYVMfjG+oiPwUpnjCoNgOeIFAWbtBj8rgnXZ/yRMjc+cSHrqCuoaGh+fn5YrGozUB+J7uo/Onp6eHhYdQ+WggbkR9C6iRIzZYcYTtagihNocHkV3JK8mhE2u0CPUqaoTxKBiI0Bo5USkuKkEjL6UtShdK2ZlDC06MK4Q2GSsjPUTGcnZ0tlUqaP+FvTmFNgiJAfsDUPBQkroH3jP7+ftJdw0Nw0DwcEU7HFWTk0AYSOdUU8pOoXK5FgJT8x0QmkWkRQ+DMImAEfGbxt9o3BYGE5zrJg5pIP3jw4Nlnn02881nPQ7yTh9DzeHDD1qRDDNpEnu885XnEIwT2grpUOInKAWSDbzjtVCW1OPxHHriKPGSgOKwMQ1ALJJHIVxLSU9qjjEJBipCNkDSGPDAQAZqcmZmB6UmZmpoaHBxEJukcO/uuvdNXjaS1mkgz4DmInMbTKmrRBnDU1xF94SAzHdc3FYQnLaFtyrtJKVKogsykaweRTBVJES7RNfKTQnXJSw/ptBmUEgonG4H0JDOiVKb2Qi/RX0QR11MyI5ZsSZMsYghsTQRW/ti2ZvusVYZAVwhAJ1AFj2OOb3/727FqEk8CNHC/+93vP//zP5GpmhYRrnLkQc+RRzlHTKbQgNIMKVxCLHQC++qzHtojAtHyxFeCpBQ1wtkkwijkJ0UlT0xMQGwIJAOlyM8pMpX2yAbfqHpHBm0GiVRBoEa4hKPWArdxiYB8UshAnHZqdSMjI8o6Wi8ZuIoFGLGak5cGEnm9OHz4MJdIpD00gxSYFfJW9oXk6AJdI5FLakmma5xq1cjnKmSp3Vc5dIFmUBdVUCmnSEYgVVCWIjSeDJwSJw9BqyOCWDqONG05FdEGEslACt0n0DVOuaSJXNVAKb3KkRoJFFEcVEg7o30bAlsOAXtJ3HK3xBp0Kgjw/NXiRHj+omv+f//f/3fllVfymIYbeHZDAI94xCMgA574PLLhCZ7XpKvaSh5yws2kcxWOQRqXkKbUCIWQQQNPeaqAfpRClAU5VaKioDIfxKZN4hIFNZEaSVSdGIMt7aQ6CtI82sZVAjUiX+mkk1kpiBxlOOLQOXEVS4PJrw2gCKK0dkRB89i6yc/rBUH1TmrRFOolP10gJ+0kEZnUQk7i4+PjvMpQBT2lzWo8SBBDSAI7mckGZyONCNozvdO2UZZABuoiaL+4pCBQL0WQSRu0AeTUQApV0Bcy0x5ygpVeQojeAswAyCGdbO1yHsSfxC1iCGxBBIyAt+BNsSadEgI8r+EDyAMpHJ/2tKfd9773Ja7joAmz8qzngc4jG1bQRB7lqu0hQYuTRyMQBomcEsisfHPHHXecc845SCYFnW90dJQ4VKqMQkElEpXAJUzEKKkkIg0WIQU53//+9y+66CKK0BhOlTW5SquIE8imgTgFoViyJdSi9mHya10c4arJyUnywFVaI8VJVDM1cTVZ0x3VJmFi6kLTpf2Uov2t+lzziCMc9iXCVfqSDCeTorZibRISqJFeaEsSMzLCoUky03gCgLtutfpFx1Ugibfddtt5553HXdCKaKGCwJHiZNBeK/vyEoBY7pdWl/SOnpIZIRwTlIhbMAS2IALyY7VgCOw8BHgQJ49m2JEOKg3oAxoe/d73vgcDvfnNb/7zP/9zGJqH9X3uc5+vfvWr5CQPHEDkf/7nf37u536OhztXn/jEJ15//fU82SEAOOltb3vbpZde+oEPfOD5z3/+hRdeSFm16/7t3/7t+eefD1s86lGP+uAHP3jVVVf9+I//uDL0Ax7wgGc961mIhVEQQhUUude97vVHf/RH6G20VttGXDnm0KFDf/mXf4n6Tn4aQFnaA2NRENetP/mTP7ngggv27t1Ldb/1W78FccJYSCDy8Ic//LnPfe4nPvGJxzzmMWS++93v/i//8i90H/772te+hh78z//8z5Al+WkMGT772c/yEoDFnlPk33jjjb/yK78yNjbGpbvd7W7XXXcd6RAqwj/96U9T8N/+7d9+/dd/nZcPRtNhTdr2yU9+8vLLLwfPBz3oQSDzwhe+8IorrtBXEDXI09pHPvKRZIDLf+3Xfu3b3/42MjVQ8PGPfzySn/nMZ2J7YIzg7//+72ktARjJc8stt1CEbpJC42nb7bffTk7YlzcM+k4jucRdeMUrXnHrrbdShCYpmK067MsQ2JoI8EdiwRDYMQhAjShhdAfOgwthEUZ8eUxDdShqmFKZ7qKdhQMgmHvf+95wz+tf/3poGNqDVLiKTsbxS1/6EsV/7Md+7Ld/+7ff8IY3POxhD+NP+B3veAeX0DshY3jxwIED8Osf/MEfQDDw2T/90z+RB+olP5wBW5x77rmcwny059nPfjYaMASJBE45/v7v/z75IVoycErQxtNU4j/7sz/L1Sc96Ul/9Vd/9Td/8zePe9zjXve615FO7fAr5PTkJz+ZS7/wC79Atp//+Z+nLORNhrPOOgtO2r9//6te9aq//uu/fvCDH0yGH/7wh1o1fHz11VeTjaD1/szP/AxETvtJASJAIPzGb/wGVPqEJzyBsm95y1v0Kq8U1Euv73GPe9DHP/3TP+XlRhMBijeJP/zDP6SP97znPeFL7QUyaSEEyZsK7xPkgeMpLtW7QF1wMA2gtW9605t44aDGG264gYvaHV50SPnlX/5lbhOIwfFf/vKXuUp/ldRf9rKX0c3nPe95sPI111yjYhVhjdvRENiaCIiNzoIhsGMQgICT5z78wYNbBz7VjMkpahP8iiILE3PKc/8HP/gBD3qo6EMf+hBqE3QCGvAN6iM0liCD5ZbHPTRDZpjsP/7jPyjO4145TL2WUKxRcyFISpENPoZs4D8V8rGPfYwiaLEwB/JhCFRVuJD2dLKFxlFVyfziF79YJcNzCKEuOoiGSkWwWtK2X/3VXyWz0hJdQzOG8OgIoigOwUOHL3/5y2kSRVBe4Ui8wbXXSIYCn/KUp3CJODTGVezJnNJIqvvpn/5pGJ3uk/KNb3yDihQEJKtA9GAyoCKTAcsw+jR5oH+VgCLOm8073/lOTgnIef/7308KrzL6tqFO6e973/uQRoORA2i0lo7QAFqLtI9//ONanKPiwyXuL5rue9/73uTSP/zDP5CZNyfKkkjjk0sWMQS2IAJmguYP1sLOQQDi4eHOk51HMM9fPIDQ0mA+aIAjdk5YFvaCaMmJMofxE7qCUGHoa6+9liIMysKgEMlHP/pRiA1VjFME8tyHLyE5jJxIoAio/dRP/RQFMQhjQIZZoRBM1vAHl2Ca5zznOSjZlFV8KQ63qZZMI5FMezAso7clN4AG0CpqR31H5u/+7u9yJBHDL3mIUAU6PS8ZqH2k8EzhiI5OM7AzQ5xa42WXXfbYxz4WUaTv27cP2+/Xv/51ek1xWoVJAErjlKvwJYPZGI21lk996lOo2shBFYakQQl1FgoHFjIQoRQdIV0bhih6ivUYby8y8H6D1R0zMtlAjG7+67/+q76X0Cm0cDJgrqfse97zHuiT9lMKezUWfoogFjlo2Fi2Saf4Zz7zmYsvvphXH6QpStwOSJpL//3f/w3NYyHAIs1N4T2GWwlQH/nIR+gmmZGmRexoCGxNBFquEFuzcdYqQ6BbBGA7GIjnOwVRkjjFCIz1mOe1pnD1Rz/6EYk8r1Eo0XHJphSoj3iOEAZUATe86EUvohTEABkQga44wjccKY5MRnDJr0o2mjSsD/0gFuYjEQl4FUEz5CeQE5579atfjfGWU1RABML6xBOqoC7IlfZAKhA5LxAIIZAHsWRDMu0nHclakHR4ncz4XkE/KKb0kX5RHTxEfjLAatoMRMHNdJ9xXKzWSECVx9KOIk7VGOohWgIvK3AtMAIgjaEspyi+FCdOBBYknaPa9uFIRBEAk9oZ6KUZtJYjbyoEKiUz/aVJpCOZRPXbIgUepSwdB3ksExAwvK43EXX/J37iJ7gK2vQIhNWvmxQG7OFdOogEAIGVtcHgwAtHIpCIBUNgayJgBLw174u1ap0I6FNbn/LKmqhcPLthAh7KPPRhCOgH6cp5sI7WBLUoSfMcJxGWpeAv/uIv4kSNYZbnOzKVQu5///vDHGRGIDmJwFLUqwyHfLgZvy2Vj3DkcEQ+/PFLv/RLDBjjssTAMASM2od6ytWkGdqYUz/SUxpGUFE0T98b9B0Ctfu1r30tVAdZYhB++tOfTgOUMmk5477o8XQEUlcCZiozI6+IwlOabEx80lcW+J63AdLpHccT9ILOwp3wNL5vgAk48CjF9eUAmVQE+yIEQKiaQJwigJaIpTtaEaXIjwR0cYaW0dF5YaK1vPTw9oA+rbdbBSLHgiGwNREwAt6a98VatU4EeEDzcFfrpZKxClIq4tGvp0qlxHlGQ0LoXjzxVbWCR3m4QxXkgW8gHmiAq6TDBOhbXIU54AmIFlZGCBURUWdpBiBhaBKVA/DghRVoD62CtwgYYCE/TtFxVRXWJnGk8QSahLUWLRADNW8DSldcpWrYCO7hBYJ0jLT4LpGfdPRFGJfWqk5Ja2EjbZseaTM1IoQjV2FcnM4YJOblAPs5o7xcor9o0lylv/SaS8ik18jnKhBxVBhJp0dk4xWEABmj/XOVAJg0CfM1XSDCVVpCYGgcHEAMVZhstIe+0Da6QwSNmYqQSWO0F3ovSIFNcZcDTEohTW8WTaJ55EQJ1ncFsmlPgVfa4QJ9IX/7zL4NgS2HgI0Bb7lbYg06FQSUZnisI4SnPA9u4spSEAYppEMDPL7hS+JQF1fhPH3ikwLHQLQ4Z/3kT/4kU1wYB4Ub4Bge5Up1Skh33nknmbED89znQY9mifGZKv7rv/5La4ctcFEmhavkhEs4EnBgZtj1rW99K2Uf/ehHK23oJVpC1RSnuhe84AW0FqdfjiTCrOQhQkXozTQYj2JStL/4HiMHvZY3A6rjhYDaUdzJTLPpkfZXW0IijtBQLE5MDMQyborjMUDBZ0h76lOfirZ68803IxzipLO0ChAQQheIULW2BBomQnEs2Az0YvjlFBZnLBxeJDNFINdnPOMZkPdf/MVfcFWL0Beu0keOqpqTjUv0jjaQjSq0v/SC0V8ImBFr4uSnMdwOOkWEpnL76AXFKaXvFkSU+4kY+wKCha2MgGnAW/nuWNu6RgCOUaqgJGzE8Ytf/CJmUp7dnKI48lC++uqroRbMqjzxUUmVw3jiE+cpz2CnPriZVPrNb37zkksuwd8YXZP8n/vc52AgnKeQRh7yQ1Rob8SpF9pgngx+ywzr4kEN/zHdFm0VwqMiCBJmhc+4RC04EMG+0A/kQQYEcqS1EDYEAx2iyTENCYFoujSYTlEEp+uXvOQlMDeGcVyusCqzqte3vvUt6JwBXSyx2jA4Gz6jeQikYTQPgTSASFIRvtmMRjN3FvaFnskJpVHqj//4j/F74irWctRKzNT0ERdl3lrIgzoOmyKEU9Rl8tOjv/u7v8OiTttoAxXRZloCExOnpzSe9D/7sz8DTJABeQBEIP5lAEtT4W9y0jbkc0o7gYuKgILE3/u93yMzVnEczfSGMmiNNMb1eZXBuRohuMuhYXMfgYJXCozqzC4DWwRaMAS2NAL81VkwBHYSAjzB6Q6Pb+bOqkbFQ58/QqhCn/L4IZMBLY0HOnlgyqT7ZIOWklM4A0dobKeko+pBA/gucRVt7//9v/+HcHyGNbNqusQx7TKvhiIs7sFVmAwdjnSIVnVxcqK6IZDRUE3UdNXbyAkJqUyU7Ne85jXIgVpgMqYRY5SG/LjK2wBaL2ZqegTHM+cYLoRruQRBMsuWppLCKWjAhSjNOneIFBrAET2VsrAUA9LagKTe73znOy996Ut1pJzjQx7ykDe+8Y0UIQOaKJYD+J5TWJMjgV6ghtJTiBPmQ4FmgjIvLlqRtgqckQOtEpgT9cpXvpK3Ii1LL/BkRogTJuZr3LBxvOJtSVPw82JyFKV4R6F23L95DdJLvAcwA5uJwnSE1whoGFUbzyy9msjUUzsaAlsNAVlUnWeBBUNgZyAAlxB4UqMyao/4hUNg0BsEDI3BIjysycMpFEI2IrAUcZ7gkBZxMlBW2Vr/YqEWUiA/ilOEwCkUoizFg54U5Rsty1im0jaEwQgrOiL5yYB2i8CHPvShVPThD38YJRLJSWNoHtk4JY9WwWlnoG3aAG2baqIYz1XNJScpCExqT9K16kQUclThVnC0FHkASiUnOTsLAhEtZOgayoTUgUtT6D4FqQsbgPYFH2xs+FjauYQojlzCXMyRoNWRjnDtpsKbVEoG3oqAjoK0k6vaDI6c0nhgJA+VErQLlCWd2rmkcjjl6irJSRUWMQS2AgI2BrwV7oK1YcMQgE2hQB7rKIL69OcpDE8w4kgiJKEESYSnOXRCfuI81qETdC90ZSy3kJDyEE95svGI1/ZxCn/wlNdT2FfjFEdd49FPXdAMV5V90ZJJRxklGwFK4BJuWXjq4jqEAk1+UlQ+LSFONo7QBonEoVuCFqR20mkhbdN0iqtVVimKgvSUQO1k1vz0Tse5uUoptSQjmWxaHa8mylK0H8lcosscKUjmhM8UTIrAvqQDF3FtGMAiWd8eKIveD5JMsCYDlwiARpxboBGqo6ASJ3E9BShuGelUTQrsSxHi9JGqtRlARCAPgTx6iVcBctJaMnMjiBM0Th49taMhsDURMA14a94Xa9U6EYAJeArz0NfyPKn1oUw6iRwhMH30k0EjMBDcwClPbVW8oC7iStXkUT1M5cA9OrZKHqSRh6vk0cwsAYHfli7uwUjkv//7v7MkBTZe5COQIVvW0HjXu96F7ouZFyMtiTCKHpUvk7YlzdOOcKQvUI6SCjxHdzROkyA25CQ5EUjblCOTRNVZk1MikBZHfdVAoJJcgpjmpFXwIpcUUkbKoXwKYhZm7JZeUxFTdTFZP/CBD8T0jV0dIzyXGEhGD0YI5nodCKBrFOQIkhwRSHfIgDkduu1sv4Kg8JIBhGkGGYgoziTSYI7J+wHxzkAvyECpVSB05rG4IXDmEeC3bsEQ2EkI8OTV4U86RZywqndQEfpfkoernPK4JwJ1cYTSVhXhFDnQs9JtZ1kdu9Va0DWZmcoMJXgCyzDbBqj2CRNACYwf8weP2RnXIVKQqZVy6ejquATz0R5yUqk2rDMbZEYGUuB1TYfJtBnKc/SCoA3WDFodA6ir6sVkrRmohfwIIWil2k69ilhOV7WEUxrAqlu8T9A7CI8RXB2jpT1a8JhH2oA0GF2vEue+aMM0BWDpIFBrG7Qj4LmqAWRGe+ZIm8nPUfOrEDsaAlsZAdOAz/w7kLVgwxHgT061q07J8ByEhBMQj3LUL57jaJA8r9V2CruQyLObiKaQgatIQM3q1M9IIQ9XVXdEn0s0OTQ/aiFF2QJpMDG0DRnTJEohR/U/LUIKQrS1eqSFNINEsnU2PonDMTQ7UQThJzJTJMmQRFQ4p/ArvVZ1OblK2yhL16iIQINJ6VQoKU6RVR2nuCrBdJ9LUG9iK+Y0qZFssC9oQKhgqHZyEslANztr0fZQNeyrpgVSKJV0kEvacpDBekFTNYPihkC9WSonkUapo1vemcfihsBWQMAIeCvcBWvDhiEAqfCYVnFwYRLpfO4r1XFJH/SajSd7QoEwQZJHJfCgh6KIQzwJnZCHFKhU2SgpAlXw9NfxTjKgtKH1alm0OriQeBK0LKfK3JqOKE45EqAfAvwEb8E6nS8WKO5KP5AcOSEtiAeBCBFSdVyV5EECGZzIGDkJWVI2YUQqVflk0+KIIoPyHJdI5A2ArulRW6sStP1KybQBCclrQSehahHaSX4gRRQvKABOH0kkAJ32XRlUYSdd+45YJFC73mU6pWMKtCFhYvIoCMhMeqH12tEQ2FIIGAFvqdthjdkYBJQMkMWDm6ewCtXHOk9kecy7ebdcgp94spOoRKhH1VnJT+ASobNZJMIoPPeVwzRPQmMJ4UESUAgVQXskwgoJJSeVIhYhEBXcBtMQoQEUoaA2mziXCJ0NIJGg/EQ6VZOZslSRMBPpOrZNohZPWBDS0pFRbb/SFRJWdRMJ1EJ7wEdrRzhx6tWm6lH7CwjkUQm8fyAfgbwMkZ7otSqEIw2mtdrBJJEIAhHe2Vm9HZ1doBRtSNBelYHqFJlOIZ1VWNwQ2FII7HAClgdVx6NK/5L1AcSfLs8O9b4hz9GPgy11n6wxhoAhYAgYAidGYNWb7okzb4Wru4KAIVcC7MuLM+NhvGjzVo4hkRd2qBdFgav6Cr8Vbom1wRAwBAwBQ6ATAZ7eavLhQU2cJzZXieN/x2pu6FSYZ/A50CLbSKHa4QTMreJmYI8iYHDDCoc7DCv5sZgAl5IbjG2Qq8mpRQwBQ8AQMAS2DgI8xtGXeIxjuaRVqlBBwEx5Z6tv1kzVpuqAyNZp9klbsjJ38KRZt1cG+NXRbutA45WMGZ1iaVkWC8Rlg8ANYziKMT99pdpefbTWGgKGgCGwGxBIlFoi9JfHNRFsmWeddZb64SsIPMyJJC4CWx+ZHasBJzcsuQfcLcwUaMDq64E2zF2En7lnvEkd7YGSFLSIIWAIGAKGwFZDALMlK54yy4CnPc/2xN1vGxHwLlqqDbpVloWAsWNwqi6d/Kqg4a3227L2GAKGgCFgCCgCyYihasAkojXxJGcMmJlvDA8r++qzPZlWt/XR27EEDL+uunOcQrTMCUHl5XaqsYIU7lmSeevfMGuhIWAIGAK7DYFER0oiigC8y0gicR0b5qmeMPS2gGjHEnCCfuerE/cGyzMGCt6YkvQk5wZGmBTp1oCIvDhiNiVHPL5wHiBRXL/4H+thA+s0UYaAIWAI7CIEeIYz6RzjM33mka4crMftgsJOJmBsFNwGtFt9J1LFlxROCar1ElFVeMNuGGzLkgJCtzgLhF7YwFbihREprGrIUVwIHD8T4VT42IIhYAgYAobACRHQ5zkaMA9tMuokUiIYNfUSHMylZLmbEwrbKhd3MgGfAYzbdOoYtl2/+7lwhUR+OJLFZePAR35KFgwBQ8AQMAR2HwI7dhrSmb2VHT5dgedOOPDhfafj0plto9VuCBgChoAhcCYRMALeePT92AtaNOu+OPhiaWBBYaISkxQ9uNONb4JJNAQMAUPAENjqCBgBb8odgmVhYRHtKBgC5oSPY95WjS4PFmiXbVNaYUINAUPAEDAEti4CRsAbfm9kVDfwAjfcG4jqy0ivo2GibledyCnEUScZb3gjTKAhYAgYAobAFkfACHhDb5Dv5h0J4YrKi9cVK3wQgWxV1Q3kWxg6oWTVkDe0ESbMEDAEDAFDYBsgYAS84TdJFF5lXwiYE7hWld2WykuSqMeE9kixO7GDIWAIGAKGwK5CAKawsKEIhOyqxB5MoueWqx4n08tylEAic4LZhQk3Laf5xlC0BUPAEDAEDIFdiYAR8MbedsZ3/bBRVd02nfcOlr2PfPbLX/vuQdF7GRnWUWDVjGPZCmJjqzdphoAhYAgYAtsFASPgjb5T6VSjIYotjIsSfMP37/jgpz/7uS9/nVP0XjFOw9AeY8VufrAR8EbDb/IMAUPAENguCNgY8CbcKbcPBOtfRYF3x8T0Dw9PDw/NyqgvBEzwxTmLkNJTF7eDIWAIGAKGwG5DwDTgjb/j6WwWrq3WZKnnqUrVy/eV66IUtwk3YIowGnCM+bmdtPGNMImGgCFgCBgCWxsBI+ANvj/NsKm7DgdpMUEfni6nC30zc5Um2x+16RYy5pLoxBYMAUPAEDAEdisCRsAbfefF/8qHa9MZodjbDx4Osj3lxWqtwY6VUhfqr9OAN7pek2cIGAKGgCGwrRAwAt7Y2xWkfVa7ChZrwr5ovBNTU2GqvxrnZP4RSW5FDiha1oVWhbitFm9sO0yaIWAIGAKGwBZHwAh4g29QMxTTcpxlP2Dv0LTX31eareXCzODhw9O5vBc6D6xGrZGFpWUWsGS2YAgYAoaAIbALETAC3uCbnnIbH4WBuDrjh8VM32ojlcoV6vWq57dcsdKeqMkyF4lccrRgCBgChoAhsOsQMALe4Fvu9j2SRSZxgZ4vL0DA9eWlbDa7sLCUzDwK3DwlsUdbMAQMAUPAENitCBgBb/ydxxE6jak59mbmZn0/FYUNP4qmy2XxvXLqbiplsG887CbREDAEDIHthYAxwYbfrygmuJ0Wxqfnwjju78mG9aXp8oJMBXaLQEPPrZDMTGon2LchYAgYAobALkHACHjjbzQWZhRdkD08PhlF0f69w816bWZuAbcsTZcFKPHA8slGzG7Bxt8Ck2gIGAKGwNZHwJ7+G32PMDS7IV6U4MNTMxDweefsT/tReXGZUWHVgIV/icUyIXijqzd5hoAhYAgYAtsDASOAjb1P6LSR79a8wuBcrixigj5rZCCdipcaERowtOsQFzO1zAmW5SgtGAKGgCFgCOxGBIyAN/qu11F0ZQmOZc9bqjXCMLzHpfuCqHnHXZMQMMZnKDeq14KU7MXgp1GCLRgChoAhYAjsRgSMgDf6rmcySKx73tyCVwu9/uLgUB8bH7EMZQoCdvpvJKtVxuIQbey70eibPEPAEDAEtg0CRsAbfquiKI7YemFyJq43o5GRkeFBL+N79Ti12KoK9yuzPG847CbQEDAEDIFthoAR8IbeMFRanKsi0XGnZucaUTQ8PDwYeNmU34j8GRhYMjBOLKovGjAfC4aAIWAIGAK7EwEj4I2+737M6lesNDk9W/aCbLE4mPa8vt58Iw5m59uqr1uukopNEd5o9E2eIWAIGALbBgEj4I2+VVGUCsTBanJqOpPLF/r7gXiw2M/CWIwKS0ADlo8owfw3JdiBYgdDwBAwBHYdAkbAm3XLp6amcrlcX18fau5waaAZxQtL1ZXB31g2J7RgCBgChoAhsGsRMALe6FsfBCH7AeMFPb/Uk44H856YoAu9TPmtNkLmCEvgGMdAz7fdgI2+ASbPEDAEDIHtgYA9/zf0Pgm/phZqotwuLDfm7rj5IZfJzsBjQ/3ZfM8tP/yRVCazkdL4SadZlEPs0BYMAUPAEDAEdiMCqGcWNhCBwIvZ7Tc9z0IctUZ/NlVMez3wbSpg6ataQ7jXk62QfC9IQdbsBex2Bt7ABpgoQ8AQMAQMge2BgGnAG32fhFu92VmvVqv1Fwt52NfzCj05FoVeXl4WjVdcoFkuWpB3nlgb3QCTZwgYAoaAIbAdEDAC3vC75KccATcajaGBQVFzPa9Y7IvjcGHBuUG3dF5mKlkwBAwBQ8AQ2L0ImAl6Y+89LzSi1jIJOOXHw6VBpJNUGiwSqSwsORu0e+mBlt3ewBtbvUkzBAwBQ8AQ2C4ImAa8wXcKzypcsKanp1mOY8/oENJRdQeLRU4XFxcbOvdIFsMSAnZ26A1ugIkzBAwBQ8AQ2BYIGAFv9G3yZZ3JiYkp1tjYOzqSVRN0gTWw/OVaneU42IGwyZezTa9MC97oVpg8Q8AQMAQMgS2OgBHwRt4gqBcVl52A5+bL8PBAfwF80YBzKQzRfpMQydXQ6cHmgbWR0JssQ8AQMAS2GwJbl4BxYgLM+fl5hVR2sO8IdRdIYMNdTa5WqxrB0tuR8XRH66wy6XmH75oIm43zz9u/uCxrbzDS3t/fn87mxyelU9m8eGCF7BxM1iO6dbpba/UZAoaAIWAInCkEtiIBoygCBxN1iBSLRYUGE65GSISMM5kMGWDfVCrFgCt0nM8z5UdCoVDQyOk/otliYebIHCRpSY4Pk5KkO6xJyaXKwmKt2Vr/mZaLIdqCIWAIGAKGwK5EYCsSsCq18JNGUG3FfckpxNwjeBcyJqTTaciYybVs+ZfNZiuVSnIHk8xJymmLoPBWGl61Wsum0n0FLycAw7xeqVSK2ZFwbp7xXw0yH7gdP23Ns4oMAUPAEDAEtggCW46AmSwrqqELbGbAN0SLUovWS+BUFV/NQM6enp5yuQxJY+OlLIFLiQTNdtqOtA/1d2aOgd5YV+EQfKM6/SkO9JFYrsyjEZNHguj0ragm2NEQMAQMAUNg9yCw5QgYUy2Mizo7NzfHbdAFpLAwo+MqAZOIgZcUIuTkODAwoFZr8lCclDOpAbMR4XQZC/nI0DAEK5sehU0i+g5Rriwy9cil00zTgB0IdjAEDAFDYFcisOUIWLkTdXZwcBD2Rd8lDrNyd3T0lwinmoKLluZX+zN6sFqtVXU+Uzf0rvHJVDo7OjoKuHHYkKUpZTGsIgr8/Lwo6EQiVF/R51seZGeqqVavIWAIGAKGwJlCYMsRMLrjK17xiiuuuAICPuecc2ZmZqDhpaUlAEo0YFV8b7vttre85S2XXHIJ48HPf/7z2X8XklMmVu35jGAKoOPj4zSV9tMAcclyGJdKEHA8W54TMzXrRZOICfpI1+4z0mCr1BAwBAwBQ+CMILDlCBjbMk5VL3jBC571rGfBo0NDQyjBvb29sBfcDNfCx+p79aEPfei3fuu3Xvva195www0k3vve956dnYX2kKDkd/oBRa2VScDlhTBs5HvSmJpT7H3EyhueN9zrZaJwobJMHtkECeADklmRw4aBT/+NshoNAUPAEDjzCJw+AoYjk+5iN1ZbcZKiY7oM7uI/9fKXvxwCvt/97pdM7YVxoV7NjBw0YHyvfvM3f/PVr371tddee4973OO6666DrT/72c9ilIawNWfiipXUlaQk9W5sBO0WAp4pL4dR87xz93G63ER3l5aP9Hr9fjg7tUCibEjoRc2wKhOELRgChoAhYAjsSgROBwFDrgTlRaVedNmEC5liBNHqmC5jt6TDtWSGZfGugpIJpGCFVgmkUwStF1p98IMfDBNz4xCILRoCxgpNBi7p2DCXiDBViQbgIH3HHXds9l1moY2lajUOm4MDvdTF1kehF0C6g3kvE9ZCmFk8y1B9oyCVIt2CIWAIGAKGwO5E4HQQMJyaaKVKvWix0KoqpjCorqExOTnJPUgGemFcCkLJBBKxQnNVh3jxKIaDybB//34ipMO76ME33XQTcdbloKAq3Awh/9Ef/RHZEII1++EPfzgZNjXUGl55oeLH4eiIaL7pAPcxUcmL/ZzG9UZYbbilKPEv84OWUr+pDTLhhoAhYAgYAlsSgdNEwAmt3nXXXS972csgSEgRVRXVVpfRIHLllVei1xJBYUVbJaKTesFNZxlB2DrLCGkQKhQLp0LGaqlmABixZNY8ZCBOhle+8pWHDx+mLAT/gQ98YFPvAhptZdnjzSCX8kspcXMOvDT7L9AslulCtw/jaGFJFuaI3SAwlza1PSbcEDAEDAFDYMsisOmDkOigsCCKLxBAnPv27WPg9oUvfCE2YfgS3RdnZjLs2bMHmjz//PPJRmbok5yJGVkN1JySDj3DptA2OW+55RZ8ryBg5DAGjEWaRPKQwpFsVAHNUy8qOAZtxpXJsHkB0/LMvNeI4uGBXpDlFB/otBfymgMH9/XkF5qN8qJ3YABtmDTs0XFq0+/A5nXXJBsChoAhYAisH4FNf/xDrqiq6LIQoZqRIcWzzjpL4zT8wIEDHNFxSUd5VcImhck8MKj2DOqlOCwLbeugLzR88cUXf+pTn7rgggvweb7zzju//vWvv+QlL0EO7KtKsFqhKYhk4hi9k60dVOxmHA9PlRm+3jsyKG8cEtgVSfzH4NvBgb7Fau3wTOWeZ/WTEDZlLRELhoAhYAgYArsTgU03QcOdkCJjtMq4ECF0SBytFH6FUDHYkgGahKrJzBFV+Ctf+cq3v/3ts88++8tf/jKuVaizlMLIzPzgd7zjHdwqlrn46Z/+6d/93d+Fdz//+c8zdRid+PLLL0dOQtsU4VTvKxowzI2cTb3NGJQPTUxmcvn9YyWm+DL8yygwa2EpAQ+X+oN0anKmzGsFOUVBT7dpelObZcINAUPAEDAEth4Cm64Bq/GZjsO1HNWYTIQhXjiYiBIz1EtOzfyiF73ogx/8IDoubH3NNdew1PMnPvGJBz7wgexngJsVcsjMJbyr4LAnP/nJCIF64Wms1sQh+866yMkp2jOXqJTj5gVsztPzC2jAI8U+r+H5joHj2I/whE55/X15LM4zi4uq17cWw9rcFm1eX02yIWAIGAKGwCkhsOkEnLQuod4kJVFPSVHq1UvvfOc7kzyrIsrZSSLDyYTkVCOwrNYlKqZzwE6q3nAChtpVuCrxvFCMz5aXG43h/p7+rCi+cG1PKlur1oJUrjTYX202psoVsjXjI7q8qgt2aggYAoaAIbDjEdh0E/TORjBhdI3ArHNLi9Vmc2y4mI3E90pHsXPpDG86+WwAHy83mqIB+/zDMSvwYrsFO/s3Yr0zBAwBQ+DYCNjT/9i4nDQVyzZ5EgLW/CyyMVNerNbr5+4bTccN0YDdcpOZNL7QmKB7Gl40X61Rkks+i3QY+54UaMtgCBgChsAORcAIeJ03Vo3hyQIjysRLda+8vMw03z1D/R77IDH7KGgpwQBdGig0YlTkJTc9CQLWNbHW2QArZggYAoaAIbCtETACPqXbp7yLNqxMPD9fZ32vfE9BvK/CBuC23JxjmYY0VBrARj1fWRRm1mAacBsJ+zYEDAFDYLchYAS8zjuujKt6cOIaNjkzzRJXpZFh2YWwvc2RLM8Vovo2S6V+NOL5pWXcwcV+TUAJtmAIGAKGgCGwKxEwAl7nbUf31WHgpDxO17OzZZa+Gh4dwfDMMtBH7PYbNvvzTEbKLNfq9aZbDpqSRsAJfBYxBAwBQ2CXIWAEvKYbHnsRn1ZWt4IzxmTm9wZRw4ubsqtR7C3FKfYhTMXRcF8hEu4NGvhc8U3wo5gVSMTpOdVsshFhm4Bj2RupJda+DAFDwBAwBHYTAkbAJ7/bcChM6shUyJJTvhjHhUa9AGW25nZX8Kpp75bxxXwUXTQ2UsMDOsj5aZa/pkQTks5msmA9VBzs7yndfiiMOIlZqqNqBHzyG2A5DAFDwBDYiQgYAZ/srjrNFxpF723Rr+NgUti2GGYVIo7Y59ered7E/HKmGY7296bZfMJPsw1hSozMzPulqGw+2Jtha0Wv1ohDTnyImeFgoWgLhoAhYAgYArsNASPgk9/xBKMkomVkLQ0W2sCTOWIzCUmTLY3jcGxkWHf6hWQlIjOGpSj/+/sKcRQuLC61Rn9lU0ILhoAhYAgYArsRASOAru+6bG/U2sjXaceiy6oR2mNLRHTisSGS0HtlJSw+ccgkpBbOpSLzg5tsyiRqr7Fv19hbAUPAEDAEdg4Cp28t6G2NmWPUjh7AuHrGQhuEVAaGXfK8ar2WTwdsxECIIhbkkCBzhcVYHfPNhkhxWCtXFsSaLezcImY5s2AIGAKGgCGwmxAwAljn3Xbk6ntsd+iWdoZJx6eFa4u9uR5ctJoeeyLhAi34shGSx5Qk4ePRgQLuXHPzC8LfNvi7TuytmCFgCBgCOwEBI+Au7qIsr+FCgBVaHKtkp9+4XlMT9MFDSxDw8GARqwKbIwnv4ppFEPuz8DVfxUKPH9YXl6pciHQzBnfJSbWDIWAIGAKGwC5CwAi4y5uN2trWXHUgWJbVcI7OEzOzLIM11JdD4W2tjeWcncX+7AcYpCHhvizrdzSrjQaO0aGkCzFbMAQMAUPAENiFCBgBn+ymt+i27UblskOb1UYz5aXiWi1XKqHEwqisMYnie85Ze8G0tyeDxpvJpJYWK65EwM7E9bp33jl9PZngttvvgICFfFsa9cnaYNcNAUPAEDAEdhwCRsAnv6X4PB8Bk6PkVMqt9Qwvw6MYolPeXGUxSKeKhRzcC7FKrjjKyDwk1F+pJZ3y8oGX8Rk1jpk0LOTrlGO5ZsEQMAQMAUNglyFwBLPssr53112INDE+E82Ia1Xss9OCH1RrsuDVXZNTDPeOlga4IHlbpMt4sVuJIxYCzqX5+GjPbEkoBNxylHYF7GAIGAKGgCGwmxAwAj7Z3XY8KuyrgVN3wkGWopQQ4GtF8uHJqTCM9wwPCjM70hWCxU3anTIrCayxTBdyaSzV84tmfnbg2cEQMAQMgd2KgBHw+u98M8SWLP7QqYyYo2fnKxDx8NAA3MxHiFvYWhawVG0YrHO+11/oDaN4ruIyYIK2YAgYAoaAIbArETAC6Pa2O21X2FWC74u9GS13oe41G2Eul2Oir25D6BycVUUWS7Msx0FOzxso9sdBarbsNOAUCXYLBEkLhoAhYAjsNgTs6b/+O55Osd2CEDD8etfh0E+nBgYGcqwMHbJVkjNUyyrQEiBfx7+SONBfwCN6frEmmSwYAoaAIWAI7FYEjIBPducdQs4PGl9nVpQUt2cYN/SaGR3qjfwo9KZnl9LpVH8xL+LCpsIq5mlnZOZUisT4Snu9WVm3slpfditoGf4nw9+uGwKGgCGwQxEwAjjxjWWtq2bsC1fixSzsyypXgVeDWFlIw1v0Gsvs9luteTPzYT1c3rtXloFOZVNpt1RWmO4JvUwq8jKyZkfo+0LAg7092VzqRwdvwym6HrFRgwVDwBAwBAyB3YiAEfBJ77r6OLtsji0hXqzH7ECY4hCzHaEsOjk7v8w+SIPFnk5Aoe32IDCrUhKNMEH39uRg4nqzLs5Z5oR1UvgtgyFgCBgCOxSBTr7YoV3coG6JD1VHCMR5yhfurTeCrDc+OQHH7hsd68hyRLS1OCVbAvf3E19aWoLN3fKUR2SzE0PAEDAEDIFdgoDMUrVwUgSOYl+4lyCvLzG6beAdnpggtnd0pDPnEXFxg45ZlQNHrTAMK5UKGrG9/pwUectgCBgChsBORcAo4CR39ohlKGFUWNSVaM9GYkfCFLsxTM/OZAN/mElIhE7ibYvPBixKKRfQgIWAFxfrNvzbBse+DQFDwBDYhQgYAa/lpidDta1pRZRJ4ZAVyTqUXjZb9bxKdaGQyw72qlLbQhWGldgK0Ypr1sBAL2nLy+zcIFdWJK6lIZbHEDAEDAFDYKcgYAR80jsp7IvqCt96LHjlAOM042O9x6k57WWDiXlvuVHvz+X7Vck9WqQwbxzFsnBWf7+XyWRYjbIm2xhaMAQMAUPAENilCBgBn/jGg498YF8xH/viycw3SfhfeXGaMzyi52QuUpMJvqLbSpC8Rwc/jtlYqYddDDPpMPbD0GuY/ns0TJZiCBgChsDuQMAIeO332WnAbhNCKRMBXQovaPTYm26fyORzF5x9FrN6O7m3M86MJNbN0kWhBwcH0YAnJ2cS0/baG2E5DQFDwBAwBHYGAkbAJ7qPbow2QE11VKojtrK5gpxyxroacQABl2tLjTga6OkpiF4sgXWvNPgdg7ykaXIu24MWXas327lame3LEDAEDAFDYPcgYAS8lnudoNThNYU1mllFfgYPrKnKfNOLRkqyEKXjVKzTHWKFqvlA3C2Lc7FY5DIzkVrnHXktaggYAoaAIbBLEEioZZf091S6KQwaOxIVluUMR+hUwBjw5Px8I2ruKZVYgRJAO8n3mPWVSiXyzJTnTAM+Jj6WaAgYAobAbkDACPjkd1kwaumvwsGtAk6v5QQCnq6UWZ9ytDQYcyIhQZWBYs3P+LHwMozL1/DwMPGZaSNgAcuCIWAIGAK7E4GEKnZn97vudZt+WwVhUzh3plL2An9kqD9qqAlafKa5dBS4UholujQ0wLpYc3NzwskWDAFDwBAwBHYlAkdxxK5E4QSdhiNbpNtSgoU0W6g5e/Ry6JUrFT8VjAx5aXdhFUk74aRRUMq6qcCyAihjwO6SHQwBQ8AQMAR2IwJGwGu760z59XIwLyZlYjJ2yyIcuDjDwTWvUW3gdpXxvRSJsj6WTFEiD8t2yModnAjMbsCXucCxV0x76bix1IzryXZJa2uF5TIEDAFDwBDYMQgYAZ/0VkKyqr7CvGnfa2bjWirmy6vmPDZYGP/hpN8ILzzvbNnal71/2XYwZkS4FfDKkk2EIW4h4Ax+09mUd1be649qd83WFtlduJ3Tvg0BQ8AQMAR2FQJGwCe+3ZiOxaLc4mBRe9F5GfZtorwuu6JLC8vZIDNY6EMDFoVWLdVSQAKFZb4SEREjARrvS6NNN2pRgA26nVEv2tEQMAQMAUNgtyBgBNztnV5Z7hnurIXe7Nw8+u3oyJDwLyybKL9HCvZFkRa2BfF8HmN1isWwqqb/HomSnRkChoAhsHsQMAJe271u0Spw8ZETjcGoU7NzmJ2HhwYl9TjsK1dg6dj9wxKdYQulbBRFC0trq91yGQKGgCFgCOw4BIyAT3JLoVT5iO6qIdBzEsXjKuVNzs56zcbwQLFtY25nbH+rBNm40PchXVfI6+npYSbSwkI7k30bAoaAIWAI7DIEjIBPesM7IXJ6L4zqAieM74oGHEdjgwOS1r60EtGseoTFnUcXzN3X1xekU7OzthplJ0AWNwQMAUNgFyHQyS67qNtddbUDI6hT9F6IFEdo2LYaedPl+Wzgjw1lJBubMCQc7PKR2CruNkJC64WzyVJgW+BUMDUz43LZwRAwBAwBQ2DXIdBBLruu72vp8Cp8gli8mCWk3MZHS01vfmkZ/+dSzhGtbjfolsFC3T2iMNv/Qr0+E4GleNsEbTZoQcOCIWAIGAK7EIEjOGIX9n+tXUZpdcQZeamQqb0UC0WRvXOcRTdS+0ZHWoPE6dQqDZiMohJTIJVmEawgCJhKTGA5aNyyKosLXAnDUJbncKHRaOAdrXE7GgKGgCFgCOxgBIyA13JzI2Vf58Qs7JvMNppbWKp7caEnn3e02mLpNYjM5XI4ZFWrVco5tbhFwDA0p2sQYFkMAUPAEDAEtjcCRsAnvX+B40OnlTqWdAtrsOKVuEaPz5YbccBOwL1O022xqGNolStlSdWP88DS9P7+fgh4fn6eU0hXEzVuBJygYRFDwBAwBHYwAiuP/h3cyY3oGhQqM4j4z+qSEoM4Y29yphyn0iNDpTaOfLejLs+qQxy1SHhwqNSIwtn5csLZaoWGfeHjxCK9qridGgKGgCFgCOwYBE7EFjumk6fcEUzQcK7Srkw9kuA0YFyg/XRqZEiWwRIqddbjhFNdPncgSS+zFocsx+GVSr2w7OIiq0FLUCu08a6iYUdDwBAwBHYDAkbAa7vLPiZooVD+OyW4VWqKPX39YLg0yOQkdmE4OsiIsZRzAXpue0EXB4V0a4SQZaIj4oSEgIm3y9i3IWAIGAKGwM5EwAh4bfdVSLSlAbsC6L/yPTk9jXY8PCgmaEjTKbfu+vEObQLuFS728X+uVjFLi2Ql4ISDjyfA0g0BQ8AQMAR2BgKtWa07ozMb3gtINiXGZ76yUKR8y8cdfK8We/MLlTBq9hcyJOFKFcZ+7LMiB/sBU0peblqaLOtQsiuhnETMHwZ09hZOu8RaoxlmfIpzEfaNo6YvuwpL2RXNmRMJ+gZg70yKhh0NAUPAENjeCGzFp7lqhOAqBlq3foVivLysGwC2EK/X63pVtUZOmdXDtenpac3BhFrNoG5NTLHtWr+EfcMGTLjkZyp+2vMX095izmO2bzpOeXfNe9TZm/b29zvCZIKwW5wy8gIcpP2owUc2/HXk66UzXpDC3JyHXmMPPj/vrLOjRjgxPe9l01ArdBs268xC4gsa5pRE/TgmduPQHUPRLRTsyxAwBAwBQ2B7IrDlCBi/JPgSsgRPJsuybR+Ru+66C+5k9SgomVMYGrrVDYWWlpbK5TKJnObzeRiXNS7I31mcUhTJZDKswEx6N0FpL6ZWqVgONVmEMpLYXA2m9QcLPSivqLyi3zoeFb7kf9yUj/PZYnSYD+7TXIGE0YD59GTSfhwsVhkFbum2bhUPcgWydZILjno1ylGEJicWMQQMAUPAENjWCGw5Ai4UCvCleiGh8sK7cO2+ffsUZVIIMDR0OzExAaf29vYODg5C2DAxeXSfXfLDxMmSUmRWIk+U427vGTA5pNq8iJoae7OzZYZ0R9xGhMq+bjD35LLVxarQ0+sH8Xx5AQJuyrxiWo98ldT+Orkwy2EIGAKGgCGwLRFoMcqWavurX/3qa665Bg7ev38/R6h0YWEB8zIUC9eiB3NKg1//+tcfOHCADOeff/6znvWsSqWijAthcxXG5ZL2SyOQdGLc7ra/CHKygKvNwYF3eGraj+I9w8Oa1K5ttewjlFaXFfUXaf3FAg1DfRfJLp0Xi1WFXaWr0uzUEDAEDAFDYCcgsPqJf8b7hAmaVaKe+tSnvvzlL1eihTgxHcO7WKS1eel0+mtf+9r3vve9P/3TP73llls+8IEP3HTTTU9+8pP1KjoxEWhb7dga5xR1ee/evZqniyMc6AhcKVKo0hdzM5/xiUm2F9w7Moo0rsKefCQ75xipNeB75UIHDeOiJXlKxSLm9VlmEmsRjnC4jHnHx57S1JbdkmxfhoAhYAgYAtsZAZSxrRUwQf/Kr/wK+ut///d/v/a1r6VxxWIRa/Po6CiJ0DMZMCnf9773fde73gXFQqsokX/5l3/5uMc9jqHfgYEB8qMNw+JqdkYCEUzZ6NA6WtxNh4VYIb4Wi4r/s9Ar7MroLhowPtJ7R4YhV1LJ0xoHPmYFmomMrMThBBb7Cwwhz5XLSKOsXA/SYaOewhDt9mYQgccUZYmGgCFgCBgC2x+BNrNspZ5gKGYYGJ0VElW/5bGxMXW/QvclncayijKEyilxSBezMwEnLNiXdApyqn3CcM3QL9ZpqFqldddXhxDEK85gQpRyrgQ8Wa5Q/Z6hQZdFDh0u25I7CeRnp2AXxKtLVd7+njwp8/MVlaZc22qh2KI1IZFBiqsnSbCIIWAIGAKGwHZGYCs+0yEh1NyDBw9CmVhlUWdBGHLFIq1+0XAwREsKV0kk/2/8xm887WlPU8LWnHpT5ubmGFG+6KKLUJoJiTPXWm+ZUqVTcB0Bc0ijqvLBC7qyVEt58UBPPtPmxvBoLyyM1asqY1NClz+XSaPqLi7XyMAK0So2lq0fWlzN1xG3R6+0bdqrpNqpIWAIGAKGwPZC4Ign/OY1HVsxiinyYcTf+Z3fUTdm6BPK5KhEC+l++9vfJg9MyRGuVXWQCDoxpMtIMEJ0QhFH3KHJxojvE5/4RGzLb3/726Fe9YVWMzVaL/Kp7o477oCnZ2dnf/SjH1Gku8ByGb4uvQHxqvuU0Cx1H5qa8qLm/hEPAm66eVNpKLUzULaDTRuNUGzL2J2denvu/n4/DienZ9DooV0h4NjL0PejWbxTpsUNAUPAEDAEdgQCmz4GDCPCkVAsAcRwY37JS17ylKc8BbJEtR0aGoIaoUkoeXx8/PLLL4doJycnSYdEYVk4GIbmqpIxpRCiI8G4ZWFbfuYzn0kVOGQR11LJfaEUgQFgPSbp64i0dFJKwsG4PnvezLIX+sFgQWYBoxdHYeRl3JLOjORKtpVKVLWFs+kI/7lABnCHrCUl9qqsy+EUZWem5qLzw2LNDSdpRZDEnJfXkUl2ZggYAoaAIbAdEdh0AlafZKgUsoFEiUCTBMBiWFcdmxmvRes955xz0I9haDUUcxW9mVIwtzpVccqgL3qtDgMj6ulPf/rU1NSHPvQhtOGRkRG9AWjJZKBejhTXoJd0zLir+6RMKvZnjQmBQsDBwWmvGaSGS0O6RqV7P2Bwl80XVsh6VUW8B0hKTKtwhA56WFIr8MOmv7jk9RfamyytKrPKCn3UVUswBAwBQ8AQ2KYIOErY5LZDnFAsRAgDKYOSQp2kaM1wLUotqirsC2veeeedn/jEJ2644Qa8qz7/+c9jl0bxhW5h4ksvvfSjH/2o0vaDH/zgmZmZN73pTZTiKqUQCxOTGe1ZJcOLBDibDEhOPLPW2GM4VwZoya1qrBupdYtjeZOzlcjPjJYGeYVJRVApSGp2J9u5Mbc4WxPor2yNhDiRR89zWS+XF7+w+XnUZ4//7rLL3TqseFW7S6fjZnVWb3FDwBAwBAyBzUNg0zVgVVvV/gzZ0JNEDUXrVdUWEzTsqJ2ELF/xile8+93vxs2K2UdXXXUV2d7//vc/5CEPgb+Z74uBGgI+fPjwF7/4RSj8EY94BLTK8DCm7E996lMPf/jDcZCmLJe0UsSqFRoOTih/7YCGiUkZkmwzIN2YZAGNVHqwOCDLTQZeKo1zVuME6i81aveFfOOQ1SYxphcLhYnK4tz8QrxvoE2/Ypg+fvPaLTh+DrtiCBgChoAhsC0Q2HQChvyU9qBYyDgZjlWNlnFctT+TDeqFoiDX61zAC5qVsAARZk3WcFZdlkRYmcyozshBiI4K6zRf2FdPuaRWX21AUvXabwyce4RWygkfX3TY6RnZCXhkqOTz5gBj+uK+rNoyOzG0giQJZZLAlxAwC3TILF9hai6iux8+PF6uLETeAGO+kfO0dmWpYeWkJc2+DAFDwBAwBHYQApuuUUF7UC8BisU4DHGqPiok5LRh2BEeJQMRdFYiCi/2Z42oPRnbMkXQblWv1VFk2Br2JZvmoQh5yKkDz4jSWmBiFaWnGu/uKNsQSUiMwoenJ0PfoxmyE6FcIAMX29N9XdqqQ9IMvLgYRoaAXYP9hSXxD3d4JFryqqJ2aggYAoaAIbDTENh0AgYwaC/hHvRdAlyr9meuQqjwKKyseVRnJY7Wm2QmQn5KlUollGACMglEkIAXtM5xQvElD5TMkXRs3RpRmdoSjmsPoIMgkdVeZJIUhWyuvOwFmWJ/D3sTEugilOoWo9QyaLgurxSWInxcB7EwBxB12Izw3urPZxp+eonZSUhwOq/zhqYMQjFOSFXaAI6aR8RZMAQMAUPAENj+CGy6CRqIkkFf4vBoAhpDv0mciKq2nZSZZE4iZOuUpnHVd7mU+F6pWAgPXtf4+o7QHs1thBE7+TaiOJuJZYtf5kR53vjkQr0RHzgwANezlxHsm/GyUdggpwQImxUzKC+bALesyeksa1mLoowC3JcJWMrjnJF+P9//g8NltP7eDNmiuLrs53tDKNrJYetDt+ol4jFey82Ck0WqBUPAEDAEDIFtjoDoWBZOhABrU8UBBInB2c3QRef2RWeNgnw251iy6SYfYX5msrLM63VBNN1VKmwr3am2Qu2MXqe9eugtos+TlSRZpdLZutkDyqm8rggXSRS5Ldku1Q6GgCFgCBgC2xoBI+CT3z5VyvUIUYZeMFdGiQ2LfYWW/RnylK18Tx4wm5MpMYmju2NF19W7WuWd8VwnDJ9cnOUwBAwBQ8AQ2LYIrIk2tm3vNqbhbep10lg6wwvGp2fisDk6VFQPLEhTfaCPyHlk5Uq9ekwYXedf4ebt1F5XwBHwkUXtzBAwBAwBQ2AHImAEfLKbyt4JTiFVZmQNLGzQd01OB3FjT0LAKsOtmnk8ccckYJ2vzGRo8SXTIIPHZmluo2HfhoAhYAjsXASMgE98b1fjE3spFvE6PFlOxY29Q33qcaWEic8Xa30dT1wnAZPHeUR7/f0F/MgwQTcSBsZrzAj4eCBauiFgCBgCOwiB4xLGDurjBnQFilUjM/Zn9hmerixkvHC4L6dO5MqYSrEnrow8mk2Pvb3i+80cKpbmFCu0zleWWVsnFmNXDQFDwBAwBLY9AkbAa7uFbUZkiyIIeGE5RAMu5lpzjlqkekJJyrhk6SRg+JuJUvhhsfqIbLHUDqYDt5Gwb0PAEDAEdiwCRsBrurWy/xEzjNgdkWnBnvfd798ahI1z9ww5VZX1QISfWQ46dAuDHFOiTllG39UR5WQ2M8PA+ELPzNRkjNlZsFmw89RmLx+zfks0BAwBQ8AQ2FoIGAGf7H5AjG3dFOWVsVo04Grk51NRqTeddfi1phXJROGug65GwhpeCXef4uIhXbfAChgChoAhYAicCQSMgNeEessF2hHwVMTqGX4+HYz2MwtJdN8g1eLeE0xDOl417McAr8/Ozibjvsks4eMVsXRDwBAwBAyBHYCAEfCabqISMPwK09417UVBupBLD2ZZFTLyQvYWFCEM5SZMvCahLhMmaAiYTSZWzM5a2dpFWE5DwBAwBAyBbYjA6VgLehvC0tFkGfZl40Hh2MCR5OFpFqTODfaHDrtYtm/S2UgdhdYeZc8JCJi1OLIIkara9u61i7CchoAhYAgYAtsQAdOAT3bToEdZ4rkVsDiPTy2y88Ke4UFnf5b9HpQz12c6Vg1YdzKWOrBEmwbcRtu+DQFDwBDYwQgYAa/p5gKTIgXXTk3PNcNo396xQOzPDSYSIYL09RFwqdQPwc/NzUk7UH9hX983NVjQsGAIGAKGwI5GwAj4hLcXXm07VuH/XPPSMgl4aTJqVoaLg36c9uKMbA8Y6xIabrIw2wauOaBYDxe8dNyYXa4vC/+mZCaSH7EVEjdG1G6R5gTGPm3pQvSa22AZDQFDwBAwBM4IAkbAJ4Rd+A/X55Avtu+d87wlz7vz0LcGe6rn7TtvcTaK07kQAo3DjNux0GnCJxR45EXYe0/WG8jGt80tV5hh7OYBx17YjGrYtVPCtw3Pb3oQs5eWphgHHwmgnRkChoAhsH0RMAI+4b2D8bAKu60GlfzQg8PmvN8sF3sLuWzAAh2k+8HKPsAnFLf6Iuj3ZbxcEC5FflnJNRLOT6WScWAqpAYJri0ataMhYAgYAobAtkfACHgNt9BN0QUp9FAMxfWlZVa8GuhPpbOtsgzbaoylstYg7ogsvQVZDprVrxYbbrnpVl3HuC/U0armCAF2YggYAoaAIbAtETjGg35b9mOTGg3jMSDLdr+OWAGrMu9F9Xo+m+nrdXwoE4GTgPNU1wTM7KN8Ps/mSBVs0AQRmKzJkUi2iCFgCBgChsBOQ8AI+GR3NJ1SP2fUX8BamJsP4uZQsY9kDY6AWzCuwxEaMT09eeYyLSw4W7PvR6JHJ0TevkFJwsnaa9cNAUPAEDAEtgUC7ef7tmjsmWqkM/7qehtzE4e9ZmOo2C/A4S4VclC1lwQ+7ObbNaTFQl82nSmXnQrsM67MMLD4PFswBAwBQ8AQ2MEIdM0WOxiLY3cNjmWMV1yTPZa+aiws9GWz+/eOqAIss3bd1F0pK5y5Hjz7+nuzuczCfNkJiVOyoKUb7XUHSXRhPaLbZe3bEDAEDAFDYKshYE/1k9yRqM2CuZQQcE8qNTZYPH//2TIqzNgws3adAHylhX271FtBn08e+g1SS0tLDVyeRQTk7qYgieQjbpCrw9VnB0PAEDAEDIFtjkDXa0GzcV6hUKDXrIHMyGWtVlteXmZLn04c3A7zYTabbS9i0Xlxm8V1/WcanQu8MPaufei9HvDQe8nqG23nKwhTJg5BwMT4tAl77f0slQaq1arux1BbrPp9BfywOqgXycLvp4d93W7EqXUMZq+9v5bTEDAEDAFDAAS6JmBlXwgD311WMB4YGMjlcrKXQDYLH/PghnTZbV43nIeeubrNgXY6qCNXNNOML5CJ/dkRMMkudoSe2m1/e3p6cJ/mPYYdH1JBBsERbtct2m0Li0UXZoWszQ7MiaIKvLIJRLib6tqtN3Szazf5hoAhYAjsHgS6JuBKpQL1EiAMNpPnCMWypU8CWb1eh4kJpOwADfgInTby0oEQcAdqQlMt+nUkneCwxgh67eBAvxeHuh9DOpupiWH72KF77frYck6aquzLTdwBd/CknbUMhoAhYAicEQQ6qGRt9UO6jFaiFaG3YYXmuKocKhQmaJ7g6Eyoxauubq9TKFX5VZhPFEKPFSLT6KmtbpDkUpWCnTrcutLNV6lUIntrP4ZUqhE3fD+HXCoN3OIcKuz0sC/3Tm0Y3fTA8hoChoAhYAh0jcDxdK3jCuIB3dvbC7NOT0+jIUEbKMHkZuyQCJTM4xsOxhZNynGlbNMLDMVGwr6OC5V9hXXXy7yCAjdgsF/mAWNacOtoyTSkMwgPN06tF7SBu4k9g/tI5Aw2yao2BAwBQ2BHItC1BszjWIcDUYV5Oqv7FYmQLoGIPr457ijrJRzb/nQQ8JHMq2ccuyTQnl6PF5rqUqVa9Xrysq0h3H6kaH57pMnbUpeyu/7RUruWwYaBnYP7SOhaihUwBAwBQ8AQOBkCXWvAanmemZmBMxgJ/qVf+qVPfvKTUC9OvDyylYMhZupNHuUna8OWvn4EEXLSmm8UueU3RAnuWLVqnR3JZmQ5aLTMpSWHG9srOUlOE95swj1Gm+FdtWTwpgX7YvNg0OEY+SzJEDAEDAFD4BQQ6JqAeRzzUB4aGuKh/OEPf/iOO+54/OMff/nll19//fW33HILLYFL1G+WuPrynELzznhRHJNd4IsPaLkBYEFN1uDgasAEpCPytE7W1HLyol3idswk4zjyKk2Gf6USmebER3iYs5aVosXKaxJ8qpniGPuFj915rt688dDc/3z3dl4N3OuHquZMWJbxBW3SqVZm5Q0BQ8AQ2JUICJV0G+BgikDDV1111Qc/+MHbb7/9uc997utf//p73vOeT3rSk/793/9dpx7h1rvdlWBY0LlBueU24EE+bjmODMnsUci0Ky9FXPlSuLRtnl4jpMqubOswVuzP9Ra+Mzk/6yi3x2vgvSbCWNgyzgnFMwv5tExD4q0J6k0xDyr2uM2VbPqlf/uO3//Xj942Jcp+PRZTeKM2x75QYdw8lql8jV23bIaAIWAI7HYEuiZgzJLYJ3WCL95Y6MFMBf61X/u173znO3/xF3/x/ve//znPeQ4pL37xizmqLXpbY9xSaEUhXdGAJdGHlVUDPlJL7qa3yIFluQc92QzaJBqw2KCF45peLG857UBdJJ4GjVNqIeh+TFD+fMObS/XNBX2T8015A8D0znsIa2UKO1swBAwBQ8AQWD8CXRMwnAoBo+Oy+AbVwsGHDx/+4z/+4wsuuOCVr3zl8573vPe9733veMc7PvGJTzzykY/c7tOQ1o/rmksqBzORGnM9bzNC7Wc0rLIqLyyFOo4wMTUFA+u+E744asmKK6syn9GGW+WGgCFgCGwzBFrji2tvNZyqtApnvPvd737LW97y1a9+df/+/ai/97vf/YgwBszcJAzRV155pXpHr134Lswpq0z6Hs7k8ByObCsEjIbdyW/EW1s0bCpIMGtLCaYa6ixXFmmYH/uT07Oev5fmSQsxUWOpdtFNbY0JNwQMAUNgByPQNQGzCCUaMAtS8lx+/vOf/zM/8zOvec1rLrzwQgaGi8UiFAIBM0MJRvnVX/1V4jsYuw3pWozzlR+wFgeogp6zSBxtllghxQ2p9KRCGNyGfcUEXVkkM2P50+UFzOWyBYVQtOzBKF5oJxVkGQwBQ8AQMASOg0DXBMzUI0RhiEYP/sY3vnHOOed0qrlw8OTk5OjoKHmwSO+ItaCPg9wGJavHOOPlqgFDcI7jxMZ7ZA2nd3kOR620pMxAQ8TiKunJ6Tn4WAZ/CX4QhlEaPlaF+MiG2pkhYAgYAobAWhBY9ZRfSxFhX6WNsbEx9DYWwBofH//hD3+IAkf54eFhjeCupe7QaxK6WzP5Ysv1ioVeCJidpoDBEbDAIfsxdJ4fxcmSaeOD+0k4lRvGrSzWaBi3+/DULBOPMJg70k2L/mvBEDAEDAFD4BQQ6FoD5nGM7suRStGGmYwEB5NCRNekJP38889/9rOf/apXveoUGrY7isJnjtJ4U4HksCUAq2rACQ2Lnbd1wsX1vDCtHUrqacZRRoafCT6Tkpfqsqx3lIqnKwu10BPrRwoTNGt10ZKAXwHGaguGgCFgCBgC60CgawJG/YV3dYLvP//zP7/0pS990YtehL8VSxnffPPN//iP//jbv/3bOGG94hWvwBzNMDDEvI5m7aIiLDUVeWNjshol/uRM7kkIdxXfwnTy1rPJQd6sxMWK2cApNODx6TkqhIybcXp81hsakerlncGX0f2Y3O2lK+WCBUPAEDAEDIE1I9A1AcO+KEcM7qL4QsDMOHrIQx6iA8NUylocr371q7/85S+fe+65L3jBC6DnNbdkV2Zkdm8csYuyjKeyfUVU19m1TjFeBQjEqFbfzVU5WVwEPRgDM9ZmbODzS2KCzucytaWwjIF8RBqB2xj8TPuYibSqlXZqCBgChoAhsEYEun6aM77LYxfGJXzhC1/Ys2cPTExlzGFF8WVNym9961tMEYaVeXDrpTU2Zddm4x5AwJmsrLq8XFtRcyFCGR9uB6Lk7EhoX9jobzaTZM9FCBjOn5qVJb6ZclaLmInUEFZmNrA0JCVvBDYTeKPBN3mGgCGwexDomoB5Fis6DFhiZP7ABz7AlCTsz6zIwdQjdOLzzjuPPKxPSYppSCf/JcFpbvFn4IKAFxbkbQbDrqQSWl/JCay36UGWGpV5RkLAs+V5VPORkZEoSB+emkHjdaQrBEw77P5u+s2wCgwBQ2DnItC1CZrHsSzY5Ptsi/TmN7/5qU99Ksdrr72WKb8f+tCHbrvtNo7oTJ/73OdYIJrMOxe6DeoZ46uOgIt9/TPjAQtox8ND0NwRzLtBVa1FTJvh+Q7Y53lhWeabnXXWWXfeND4xU/a8PcrAblMo3g9Cz+/6J7SWZlgeQ8AQMAR2PAJdPz2xKqOrMQyMwfnJT34yjldveMMbJiYmYOWf//mfZ12Oyy67DNRYHRr2tXnAa/8BYT/AYa1crjTioRyTk1zJYzmwCTWuXew6crr9nqX++aoXxrLa6Lnnnv2F4FsTk1Oed3fSXdvEFm4a8DrgtSKGgCFgCCgCXRMwJDE1NYVNkufyQx/60L/927997Wtfq0QLB5PIADAmaNgXf2mbB3zy35nvs8sQQ7ssHwbzYcyvNcO+zLGYV3KdjpBOB55sdORV5mXPK+7pWWdlGmE0OTOr1XOt1RJzwjodN8TqMAQMgZ2JQNe6FEO/sC9LRmCZvOmmm5y2JFNo4GCe1IAE+zIhmBUrSSTzzoRtA3vFmGooGwD3sydwKldpRPhAoQBzY+TetIhOz9Qu3fUt66qxbY4P2QhxoeplUtmhlLenz2uEjenlJTZr4nWBFvCCsLnt6KrRltkQMAQMgW2IQNdPUcZ60XFxvMJV5+d+7ueuu+46RnzpOMquLuREHFbGRxoaVnrehrCcribHQdwI8imv3/NKmThTHPnendOFnozvNWE4+ehQsGx9mAm9NN7Jmz02TAW8EHhMiQq88alKPspcmEvdPe/5uWjWD39Y9pqB1xN7+dhr1N3eiacLKqvHEDAEDIEdhkDXJmhGf1XTBQgUXDywPvaxjzH9F65lEUrIGN5lewZMqdhUdxhYG98dvK2cnxoa8EBPptaMK3VRet1WCLzWuNcjp5PCiZtNvfQOFRvnZ6nVj5peuLjEpCh/KOMXaN5g79zC4gwrUw7kRBNnDSxeC1pD1V2/xm08kibREDAEDIHthkDXBIzfzezs7NDQED1lHvD9739/KPnrX/86lmeUY1y0CAwcKvuaE9bJfw9t8sIJC7gSKwIc17YGr8g4OmXl2kbFWnVAsr64ZMcht5K0vWMj5cr81NRMfd8+WZDSZ0PghIA3qm6TYwgYAobALkKgawKGJGDf6elp9N2vfOUr6pAF6YIZTIweLLNIXdBh4F2E5Tq66rRaAS8tm1hgUcBygOaryq5wcJtyTxvXiXYrlfI/wNGdetkqkeO+4aGbb/7exPRU5O9DS3ZZZOjBgiFgCBgChsD6EODR2l3QEV/YgpFgSuKQ9dWvfpVZv6TDvvAxRzQnLjEMbPOA1wSu49tSqQ/rAp7k8i4jZmB3a7jkrq5JzkZkcgP68C/bLXhKwEODJeJ7hgY8/LBm5qBeWZ9LjNWnvXEb0UGTYQgYAobAFkGgawLmsYv6S+uxObMF4dOf/nR2Ynj0ox/NRgJob3/913/9m7/5m+xu657O3qFDh7ZIP7dyMxgF5jYwYo4NHwPDcl1GVvWTbAIM5SknE9nEwBLQVCy1p3kPgIB5J8A2zrpce4cHUmFddwWGeEPWg07U801skIk2BAwBQ2DHItA1AeOBBb+CB3sAv/71r//+978/MzPDjCMUYgYLL7300ve+971chUg4soISRwsnQoB9h5h2G3o5sRn0NprRUhXojsmzSsonEnaq12Jcq0RG0wuEgOcr6Lks0UXi2SO9qbA5OT3DAEPIADB+2eI+5uj6VGu18oaAIWAI7EYEuiZgvIQwMgMV2zD80z/909vf/nZddoORQgZ9H/GIR7AaJWOZ2J/Rn3Yjot32GZsvqy7LYhyiAWM5YAGTY9l2ZXJwWzHuto5u8rtfRMPttYA9HCesnt4AJ+3RIlOgmuX5JdanpHnigGXs2w2ultcQMAQMgVUIdE3AzACGIVQKRMsorxpOGfeFdDFEQ8+kkAFfaM3G8DA51ShNCqc4bemRUxidq0QSwmYTw/vd73779+9HINm4hGOXRqhanbzE2dp5fsH6L3vZy1iY+i//8i+xgWtmjuTUBlAwaXDSBjJslcCO9qJQiuIJtrR5cnpWB4CFkzW0Y8fUi9uZNugbG7RU4x9ekvY0qrXBfrF+j/R6xZ5MubLIpoQdam+7ZRtUuYkxBAwBQ2D3INA1AcNhGJwBiMlIDP1ef/31GJ/ZFkm57VWvehWJkCIZsEizd2FC0smQIZytQc3UPOUVbsYaEQKFX3LJJSwr/ZjHPAZ3ay0FqVOEGqmaCEQLURGYc8ws5A9/+MMsA0JZakSUuoCRUxma/BC5VqGN1PhWOfIaoVNvMUG7/aNAr8lbyplqnxsExv5cbTAe7OdzMuuXX0kv7tB9LL/hzy2KBtxuHt/t6JlqsNVrCBgChsD2RKDraUh0E1qFceHLP/uzP7v66qu/+c1v4pb153/+5x/5yEeg2xtvvBHCu+OOO8455xyyJbA4lTWEAmFTuJN0tbhCsURQUqFMbJ579+595jOfyUgzOxsiEIpFuyUz2ZRHkQPRkhNmpSW/9Eu/9OlPf5pNmVQ5hptpmFZKTq2OU/Rg+F4pX69ulaNQLcPA8iYkzmtBqjy/oNN8uIAu2jIjCM+dBnUT9VdqYaB3dpF1QaLB/gJNY0Eu9ofYW+o/OF2dmAnro6lM5GWlyadDJ98qd8raYQgYAobAhiLQtQYMEUKraGlEoNjvfOc7D3vYw57xjGeguT7vec9jShJqK7zIJTUa01pIFDszpAvFoqoq+5IOZarxGasyeciv2jBHhJOoXrjECeSHgCmitApDQ65Pe9rTsD/f7W53wxdsbGyMbLAv8iFarsLQxMlPa4lD5Ixbbyh6py6MnX9XhOirg9PgHQ26K4kj9Eq+TY3hCM3ALyMClSXeDYYGBsGeNvKmtndsmBUxD01MQ7vuhpyGF4JN7aoJNwQMAUPgTCKwHg0YN6vzzjsPvoQ+odsXvvCFqrxCirAdnKeKL5wKlUKZqsLSSy2i3SWb0i1O1AhB+YN4UG3hTqgXgWo61rIUhMK5SroWR/hb3vIWKJkBY1JGR0cpjkyahD6NBJhencWI0yokoBzD01p8Cx0xBqDw4oeV8iBgyG9mbtbNSzpa4UUJJrRV4s3qQyQE7PvTs/NhHDHhWxyeaR4zkUaGY+/WQ+NTnjfmt1qhTdqspphcQ8AQMAR2MALrIWDYV4kWz2dY7bOf/ezk5CQYwZ3wKISHQoxRmjU6eJQrZcKXiXPW6173uj/5kz/hki7lAVMqR0LbX/ziFxkAVrhxrlbFl1PIWNkaOTCxrv7xN3/zN5/61Ke4RL3wK9K4CmFzSmaOSIbdmSuFfxZXIWYavBXvpY8jtEz7GcTfSZzRyhzRLkXr53ha9UwIFb2XXYCD2cpC2IxKWBRcM4Iw2jc6hIX88OTMaW2Rq90OhoAhYAjsPAS6JmCoDl6E3mDQj3/842yIBCOiwqK9/ehHP0JJRQfFMgxHQquQLgxNIrxIfrRhlNTnPOc5V199NcorjIs0yBv9FcrE4HzuuedC7aBMWSgTrytlelIgWsZ9UbIRpbos6uzZZ5/NJczdDDlDtO985ztZlVoVX/JziYb91m/91stf/nI1X995553MVCZ9CwXHZlh0oVsGr8GW3h2D4UhSQt78pnOnuAeVReYgtfzaeB3IpoLRkWGax1TgttrL9zFauvkNtBoMAUPAENgJCHRNwEpsECG9x/yL/fn3fu/3IEWlWxJ5avOYVrKEX2FfeJer5FFtGDcrApcQBb9eeOGFlILFoWHoWeUQoQpYk4gyN+osKWSDqlGO8bX+wQ9+AEmTDoX/wi/8wrXXXvuCF7yAzBAwYtF39f5ohCO1Q9WauIWObDuUTgV+nPH8wZzHRODFqgf/cWP46HaEbhhY7lSLgh0ZK/UpF+o4srvaJkdys6PvShmJriHI+hqxDCN4Ea7scZTL0S6pGJergd5elsQCcyaNNWTJDtbn6KhuDdItiyFgCBgChkCCgD66k9M1RVBMNd/BgwchYLRhTqE9TYd9IVflWmVr4nAn6Z3S9ZI86V2AVjUOW0Oot956K1stoSLjYo2Tc8KmMDfzjhAFN19wwQVXXHHF+eef/5CHPAS+v/jiiy+//HIIGHlalyrTnCa1JCla6Zk/YnzO0mA82ppMxrqwKLO75ioBi12wL28KdhMfaY9p16TUvDRc3aJVBmVhQeeujMcyEcnHgUlEqK+U4qOrSipRr7GrLAGN71omxSvAwl138XLTXxoUi4QsURntK2XDeq0ZNmYXZDlo9idmhMG9J6xRumUzBAwBQ8AQWEGgawKG6nSgFxlPeMITvvWtb2F8xnoMt6nvlaq2agdWbl6pbQ0xFOVXvOIVqMVvfOMb8ay+z33uc80113ziE5+gKDs9YFK++eabdRiYFAZ9YXcWxVQnLNKV+Lcc0Z6k45BkhIbb63t9mVQjyizoSidCokqyLVOve4U5YpJwQq/uRsLCIkpqE/XXbSt8kqpXX459Zhh5Gd9roAGHzZ6CEyej1CxA6ZWKxbTvzS95VfcG4LV9sVZLsXNDwBAwBAyBkyEghs2ughqfMRRT6kEPetCv/uqvoqTe4x73QOlEYYICSX/Sk56kBLxK611LRRR585vf/KY3vUmplCIotVQHxzOu/I1vfEMdqRhpRldWZysmF33pS19SLZl0JkHhu7uWurZAHjgyxXTbtFN3sRH0Ffur9bC84J09hN7JGh1NKDXtw3peRtTOhlNtpVTKS7N8FuoplyBbn7m7ov3DlI56WSvS0XXruOauMnSOTI7cyihKDRRXSiJ3z9jIbYemZmYq4VA/btvdCl+RZTFDwBAwBHY9Al0TMIihd6oBmY2PILzXvOY1uvgUBKwqL5TJSGEy6NsVyCjQPPoZOdaKMGuzowPkip5NCkd4F24mhVrIqd5bepUU0rmq6V3Ve4YyQ5NpLOZ4Hav22jfQvzA5XV7ywiEIFksy7Yoco+IOzdpUHSzrN33Gu4VlySQaapt94UVKCI8yeLwOlmzGXjPyKguLqaBYGmgBo+9Se0aHb73jronJKe+SfuX31mX7MgQMAUPAEOgSga4JWN2pqAWuhQu1OjU7E4cCNR32ZeRVybKrJkHtyqZaEXJgU46kY1jW0VxYn1OIloBwPRKB9WFuJe+uKj2DmWWdx6DFvlgV+kv9d0yMl5cXml4fi0+JbiuKr/CwY1/RTt0Hxk15vtghuOCGe0lx2TALO81YryGjNczusq7lgOV7oerVGs1cId2rU5KF06UpY8NDzUYNR+i0d75UzAxm4+G1YGp5DAFDwBA4CgF5qnYVsC0zT+ZRj3oUtAcRQr3M82G6LYZfTvFMfuITn8glmBixaojuSj68C+MiMCmLKFW4uUR1CEfNRQuHj++66y6uonlrFXhHk4e4zkvuqt4zmFl5VvCCgAf7sTLPLlboRhPqFP046zYH5E7xtkQKbsn64RIppCsHKvs6KbFTf4WZ1xV8b7bCHGCvWCjwgiPS3d3ke8/oEMuvjE9Oi3q9kryuWqyQIWAIGAK7G4GuCRgnLFRMvKJYDwsi5PStb30rWi8eWJyiqn70ox+FHRXVdYwBw7tYlXG2QgJeVxwTWoVolYlJpC604X379sG4RJR3oWelbXyytAFb/4j1WT6OSFFV+/p663FzbmkRz/JlL73k5Za8jHOBJkfO8wscw1S6GQR1H79oHKRZwQMmpihH7qa7ocrI6+584M2UF/xUuq/Qow3zIkajZcyXtTiYMTU9OwcB8zH1d90YW0FDwBAwBLomYJywoFu1AAMf7AgHM1LLUb2iSISGUUxRiFUP7gplSJT8KNkc8boiQkpCsSSi+BIg4E6xpHCqBmrdi6nz6laO03BcjLEzQ2+om735LP1dxLov8448dpXiAwFz5LQZeEu+t+TJJ0l0ftKwL2rxyoAC0uDObok40Zgry/U4yPRmZR6yCHEaMJFSMcj4UXlhWRqD5bvbCrbynbC2GQKGgCFwehHomoBpHpooVAf1qqaLBxZexyQmlmfyQJAEZdOueqQ6bjKOS4QUNOnEIk3VhE5VWJuU1MIU4SS+9SNhE5NzHReqZg2S9dh9qL+3Z2JiAhM0JAfLKt3qERfzBRYtYcvFdvp0s0XGqMJs7ICRXroch41qHTZWC3W3IMCqh8Ynq/XGueec3StvPPJqgxAie0pePpdlDLgmvtmyQLQFQ8AQMAQMgfUhsKIzrb08M4Iw+aJ0oukSZ3kpJuyqNZiRYHYlQvFVL+h1mKDX3oydkTPLUlMyg6hRyGUg3WI+HdWWvvvt77z9PThZNaM4F3q5pteTiqNCuJSKm4vNINVTaEah84CLgqgxVipceM6eq6444EaI3RtVHKGntrXX7nCCwPks18LYT/VkxPOK9a40sD5Hjhb25irV5sy8t29ATNAtFbm7Siy3IWAIGAKGgOhIXQe1MD//+c9HDUXHZR3mP/iDP0ArRSGGeqFkaJhx3ERn7bqCXVagtriYywuVpVPp4b7e/SPDM+W5//nkp9Ewm76wb91XAq6kmGuU6fFzPV6QmZqdwerQk8+Vpw5ecffzr7ziF4QsA7dypBcGsnSGW7Ij1bUaDKeWF5f9IN1f6FFTtnhc4Qrny89ldLh058zyoYnmJQNuDtQuu1nWXUPAEDAENgqBrgkYfmWa0P/9v/+XCKOtLIvx7Gc/WwdlMRdDupyyVJa2jxHcxJi8US3eYXIYRmXmsqy54Ufowve++96nPeFxU9Ozeb8BAUO9DT8nBOyFhWYlHWMGDurMEM71Tpfn+4dlv6l//Ze3/vDgXQsh+yXIlhUQL0zsZgIzbxgy7foWU2Z2voLRf7Aok307aRY+HhsZ9m4dH2dX4Lvt2WH3wrpjCBgChsDpRKDrp7NO0n3DG96gQ7NJW/HMQiGDidmIkES4mbFYUpIMFjkaAahOfIlxKHMLOGcCD8Z71H3PrcfnFnxxaFZXLNysIMKC89JCCGPDlFpwiVitP/GRveWpw7MVrzgoZMsocFa8k5HNh0OkbHx07cdMcWW8qdlKkMoMDhQR1BJGxM1uGhsdSWdyhydnfW+PZj6mHEs0BAwBQ8AQODECPOS7Dvg8Y3BOHKzwdkYELlccSWcKEClEOMUtq2vpu6kAo62LzaiB9zJUVq81lhYzsYcLGbyXh0cjGXPlFBD5EMnHdWh4AGdpd4RuuX+5bJr9p6Zm5mFlxMicJqVNTpwi3C2itGqmXBYCLvas/n1ETAUe5tLhyUmyWTAEDAFDwBBYNwJda8DUpEowxk9csbA5cySOQqwpaL3qtEw6JG0cfIJ7A0Wm047jeF/J57O+GAzY8o8P6iZcyqYIWIB5tYFSe8T9ucbwbsrP9PqyuxTLZWXT3t6Rocrs9MzcbOgVIUXWzXK8DA0jYj2BYpWFpRy7PsLzrmoxZcst9vDDGh4useHk+IRM0ZaqLBgChoAhYAisC4HVGs5JhcCpPPo5Qr2qBEO9sCynpCvdqk6MUdrY98R4QmBiguZYb3oNohLCGs5XsC9rXzBDKUYn5i0pCxtjTJb9kcgRNpfL6MQDKdGMe4oj881oeXGRe6m3k3HiGN1XZukmaSr75EfH+1611vDxgs62NiSWNjo251VgsNDD7hGzc/OQvUs7uUzLYQgYAoaAIXA0Al0TMHSLFD0qvyYDvSTCwVzFTZojjtBH12cpnQgAJRjBr6lswcsVxGLse9kcp2LNxyvac4jKGRd8nJ8HvKjXY4XmXCqIlwegxaZXOPvulaB/fvauVLUOQaI0LzUbUcAQQNptctjdLYZTD057QU8fjRnKonZj10Alz3hpGeBnidFzx3ym/y6F3lxVl6ju7JDFDQFDwBAwBNaKQHdP57VKtXxrQ4C3FXhSRstFVdUh3bZhl2uOj7kmUckjy13FaVym00LMzB4Om3g+FwZHmunc7NwMY8FOlBekUijBXkDO7u6vWLCZBFxtsLZloVcGgNnWAQKGcSFm3q44heP7Cr1R7M9XJDMfC4aAIWAIGALrQKC7B/Q6KrAiG4sAHCgaqTJrs5n1vX17fGboHh6fSKdzXMJKne6SdztbGMbe3PwCCz6Xiv364xACjkQNVvMGHM+eSEyRmpyea1vNOwVY3BAwBAwBQ2BNCBgBrwmmLZUpDHG0gg0Z5ZVh3pEShujG5PQsymiTgWM3MBvK4DKDtN2N0pIbibPl+SCOSoPFpNeMLRBXAiayZ2zEj8LxyamWxp3ks4ghYAgYAobAmhEwAl4zVFsjI5SKNtriVacID+Iq5TUXqzIbDA52878kz/raS7Hp2XIchcMD/Wy3gBEb3nUj+ypTdo44a2wEjzA2JYSW11nN+hpnpQwBQ8AQ2EEIGAFvs5sJsaoHnLSbsd6G18e84Z5MI05NVVboMKWcqcc1dxFy5TMzO8ei08ODfWxCuCoor+8bGyLD+IRMBeZjwRAwBAwBQ2AdCBgBrwO0M1kESk3J9gjMuhbuY8ISC3SMDQ2yK/Adk3MowQTs0LIYB1zdJQG7st78wiL+08PFXnXpwt9KiJY60YSDAFexvcOFIGqyJ9JRBO2qt4MhYAgYAobAGhAwAl4DSFspS0KpTAqiXX7YxC15uL/Q9DOT88sNp5A2Q5awxDrcNT9iT4bCF2vNtB/297gVLWUcWczMiUkbIi72wv+N8mK1aiZoAdqCIWAIGALrQcAIeD2oncEyODkTao1aOp3x6vXeHqYleftGBqN07vaJMkt/cj2Xyi03ljFVu718u2gsTEtx/LmCOBzozaacmxebLyPCuWG1vkcGvN5cZmpmbol9FLsQb1kNAUPAEDAEVhAwAl7BYlvE0IDhvJZblHhCy2JY/b1ZP52fqtQcO0s/srILYdeB4ujOy/Vm2gsZV9Z9kBKdGyVY1kFjoZWUV+rvjfzU9LyNAXcNshUwBAwBQ0ARMALeZr8EpUNHwNw7djqSlaJHB/qiVO6uqTm4ucpmSazZIWO1QtRyXHOgOKUri8uZlD+Ic5ezP8PKzPflEk7Rao5mxeqxkaHYT901WSPdgiFgCBgChsA6EDACXgdoZ74I5CeNEHUYbdXbO1qqR/6dU2XIUm3U4oQlewd3fX+xKi/Vm7l00JeX1blWTWfCAZtEPqNDg7HsiTRz5rGwFhgChoAhsD0R6PoBvT27uaNa7bybnWorbBhnvCZe0LUwnKksQcBpp/pG0K/z0uqq5xQvL6LsBj25DGtsEUKSYFz3MxF12qnUYdMbGRr0g/TEjFC+BUPAEDAEDIF1IGAEvA7QznARdNzWUpRChwzKhqXBvB9kq00xILt9mdF/sVI7Cu2ysdMzsrVzsTcHjyfl2x5YIotEdkscGxpAGZ6cmulSvGU3BAwBQ8AQaCFgBLzdfgoMusrIryNHKFZO64XAy/UW4iA7OSndYdtCMgRKxd30D2ET0wvZXI/uxEDRlC6s5YSocZsoO0CMjgyzYcNdExM2BtwNwJbXEDAEDIEVBIyAV7DY+jHYLg7g19CNAHPvcrI/UiinhZ5MJhXPzNXZuchvhmKHhqP1s6aOYUsWc/JcZSHI5bI5HK0kMAWJzZ9TsduyKRQKpg3pwCsW2a8wKpfLmk0aJh8qb8nR89bRZdI8mt+OhoAhYAgYAkbA2+k3ALlhZA4yKTYi9JoB6101U4GfyXAXD+wrNquzk7NzmIvzTchUiHAprEJ7SWjTpNAiE4pcuuNLluwQgbKMx+xitcYOS2fvI+7KRkFc8/lEzVwmYGkPkY3b15hMEp6fL8/LmLFXF26OaiHzoMJm5BalJpXcfJyg9hkMbcEQMAQMAUNAEDAC3k6/A6UxGM3pmX7oy7RdEtkcsNSXTXvNhcVlYTguRKTHKRbrOE44YoRYRPi4WqEwL9aWG7GXzedWfhkxy200dF0tMlI7l9C5+/oL6XR6rlwnheUqRYaskYl93OXi0PnRJh+nMZZsCBgChsAuRGDlMbsLO7/tuny0RTm5f6PDJVh3atatz4zXsii4kColVoIWbx25CEVCnOJUDamm5IMXdLkcNevFvv5WMVl9Q0tApysBE/fIUInpwuNTk2whzDxhPMMC9z7n+NfJ1HLtQjQ1aW07zb4NAUPAENi9CNgjcZvd+xaNsQSWEKgG0VzHhkqwLm7Joh9jk47jUDYzOsn9hX1lT2FHxpSjbHl2LmqGpaEBFR0pPetJyyjdqnnvyDCFp2amIejYSUCJJuPKZk1aaqWdbSn2bQgYAoaAIXDSB7RBtNUQWNEqOzgY1XN4cAAFdmJ6SghYMuE7tfa2K60zvchbWGB5yXB4sISMls4LuSYkyhxhJ5VLYyOlsFFn82DqYddgUjB6u8rbjK5t1aOUElXagiFgCBgChoAicBINyWDaUghwt1oc1mZfx26iAY8Ws7lUwFa+7FAkmRjQ1dWyjt8Bp/6iu4pImJM1N+qxV5MtjqJikU0OJchVl0FPVR/WQd6x4SHRuWdmxS1LV6j2Um3fLi2cNNeJkkMXLwVOhB0MAUPAENixCBgBb7Nbi5or9wzOdbdOyNOlDPV7+bRfXlxa0D2B2TY4SEOrMJ7TTZ1y6jK7NCFCIWBZVEP51GtEcaPhNZt1tNm+3lZWHKvc2DA2ba1K0jMsQO3LWhzpVCBjwG3XaGmIMqwQdZtrxUAtpWgvnxUpkmbBEDAEDIHdi4B7iu/e7m+znsNeKxwmns4aRANm64R8kKrWGyzmXGcRSkd7x2K7diGxFkuAHUnirBlGdcpFzDSOmQW8UpYEYVYp0NKAWYvD9wb60qmUPzM/j8oM6au8lnM1+QiIaLNv+0ySLRgChoAhYAiAgBHwNvsZ6Fgrg65KeO7+iY2YTQnP3jua7e354cFFj4nCfoQ6SyBbm3LbPZWSpIV4S8GgtTpezLLTUZBNHTo00wzrFx44QEojYjITtCvLbsknk5ajC3HUhGHPGWXm8PJ8tTpdlVlJqnin/LRQepuAld1XN6Alxr4MAUPAENjVCBgBb6vbL9wpAbpkqyMXFXYjhs7al8+FfjC/XIc7SewYunUZObSKyxzhleAHiBArse/V6k0IPp9NQ6gpzSTqL4TaMkEjU8590YCh/GJfby2M5pZEOz5iiQ2RRoL4gbWrcizMSft8pQEWMwQMAUNgVyKgD/Fd2fVt2mnn3AzBCsd6TWc/FhM0K24MF/tguYlyuenUVt3C6KS9xGis9InA+coi5FroyQuBdhI45y6Q5qKxDkWPDA0xcjwxPUdZJWCGnoViXVll3xUONuo96c2wDIaAIbCbEDAC3oZ32y247AgYThNa4y7CiKOlwShITTGR15FkQqBKfJImjlF8jgjK0+rGPFOeS/l+sZ/NHbwUjtZI5+BK4o2FXTntJDshETWOjQzFfjAxPdNqBAVata7k09pdla7qxDnriFbYiSFgCBgCuw4Becha2E4IQGhuvq0jtkjcjmOZhMvSVKzF4bNF4OysrmlFtmNMBe7gQ3otLI51ua2/zszMog+XBorwJ3bnNizkkDh6NcHpy7J2NAQ8PFzy0pnx6VnktCg3keVeDTiThLagFZFJikUMAUPAENitCBgBb7c7L1SYsBrU1mI3NiwaLg3GQYr9GFwW0UXdWPDRHXQzj1wmGBriTKTMzs2xwlZ/f0HLqBwXd9pwqwhf7Lwg3D06PMKEqMNT0yTxaXHwSoUyDOzOXA2uuHHwCjwWMwQMgd2NgBHwtrr/bQ6D0DTamovk5vMODvTTmZk59FGlvbY9+PhdjHTk1mVA4MLCEtFCT2sWsPoyOzO05Ahb5zCt+GKJBjxSakbhxOx00h5pln7aTAtXO/F2MAQMAUPAEDgCAdk31sK2QQAdU16ZolzLypxmFSodl8UyXCA1CpcWm9U43fBleWamI6EZq2ba/qa4SNHVm4OokfGyiGQSEZ/FepT2wl7Z3hD+DCBcGdJl1JbCpLBroZi6Cax9KZ7Sg3191TBbroR4RGeYQ0w5canO6GCzM2JjJJdNGoSxfRrbaoxELBgChoAhsLsRkEethW2DAJzGPrxBlGrWciHbBmZqQnwNz+fjDfV5Y4X+qB7/cLyy5GXY3Rf2FQJ19Cl9FJcqAitkBQ3fh06zGd+vzafjGn7PC553aHYpqC3d/ax+SsDHaafmylbBiPCjXFa4nqnDXpDDJ4uJTxfvz1eivrlqJlrwBv2mH5Vjv0Gz8MzyImFo2kuR1opczF3mxIIhYAgYAoaAQ8AIeDv9EJQXhVQhxVDMx5CoG2et8wUzDhYKGT+Yq4ayT7Cu4iy7+YoRuG0IljtOXD+yiCSKadxA5FLM7sKZbBDrVsAI59MqBwG7EwpTEP5G1cX6DcX2DYxFUbY6t+yF8h4QsaBWCmO1lKQFLcJ1sji4su6SHQwBQ8AQ2PUIGAFvz58AzMYORCsGXXFlhu6GhoZY32p2dhaqkwDpdWTSND0qRUqcYrIotLewLN+5XE7W0RIrs6wTLf7PydBvZ3kXJ9u+sWEIfnJqyi2aJYU6m3VUCUswBAwBQ8AQaCFgBLxNfwqMxYp+uXL/GGONvREcoeNoemYO6hQiPEZoUfPKFYZoHRuX59FQ2YahkGFRDxcc+YaOg1sLcKyUIuYU4b1Dg37YnGDuU5qhXzFurzTJ5ZZW8L/dmPb3EZLsxBAwBAyBXYiAOWFts5vu6M2RraO6DmqTjkDATP6dnp0h7qgO/ZXM4hm1KjjOJY2r2JJFyZ0r16Mw7usv5NqrPgvDt/OtKu7MyazeEYyV+v2wPjVb8QLGk8XYjSz2StKA9KOrPkqUJRgChoAhsBsRWKWu7EYItmWf4UZngmYU1nFhqxOjw+ij4dTMnHM45sqx6K+TE4V5+Q1IUnlhAQ242NePAkwSF6QS8WxukTBfKq5Nr8Lxe4eL7PswPjvrVsXMRit+VjLFmAz4jEmalBF3aCe71Vr7MgQMAUNgNyPAA9HCdkKgNfHXTQfi5gmvSZD7CBmPlvrSQTQ7V8GHWWhzlT24Tb2r77qOAS8uM5Oov9CDHMoy56gtXCo4JnGS8+yRkh9WD8/M1sShC78r8ZLuGDZuVbXCyyrMjoaAIWAI7HoEVj+Kdz0g2wAAGXt13Mgh5ZRS+FK2APa9YsFLBf7CUpU9eiWIEXlVwCjt9FjhZw2MHYuNutZg+NjPurlGJB2xvZEoyishOeHXM9bPLKNwurK07Fyy0XHlJyXsLbUQpwWqN6+Ut5ghYAgYAobAMdWaMwtLrYYq5XFcXFwk0myKMbXqCEWPnKKwJXFONVCk0WhofiLt5B36Da3xESoOZTnotq47NMBkpLiyuARqkgpxdlJwwpyy14JDBoaO43pT5g3dcefBdDa3/6y9cDkTfiHyFnUGeEUf80VNphWfP8Y8pupEeb7M+tBOJLsF+y1VGxEtHdxxsG4S4TLZwRAwBAyBXY/AMR+sZxIVdsFbWFhgMkyhUKAdEOrhw4fz+TyMy3F5eTkMQ/IQ59LExMTSEupeNYoimT+TyaTT4lamLH4mu7FZdQuROTLTCqA0eUEhhQ+EmU97fb098Gl5wdGhasBHcXBHAipryk/JUhk1eXtp9ubysC8Z2vsBu+lNTg5VdDC4NAATdI/nDfRkWNZjmpnArlGyNYQs8tHK6+rSBrrLdjAEDAFDwBBwCGw5Ak6lUn19fbTtjjvuKJfLEO3evXs5JVKv1yFaMqDgEkcPHhsb6+3tVTImD/RMkfn5eZXgOrgzD20ihOdCx3CtqUQsCVkaLDZjb2J6SRywxNp83FvshMghlc6Sb6GKDaFZLPazABZlhEcpzsexb7vGTjxlIQ7WwxodGmj46UPTLPmhLwfkFS6WIu1irBYi7WwtxdUpxOKGgCFgCOxSBI77dD5TeMCvVD0zM3POOecMDAyg73JaqVS0PajFanzOZrNTU1NcZdEJLnEKJaMBU6RYLBLX/DvvqAZnYV0+SpCuk6rrcjtHhgaxGE/PlDv73ubBzjQXd17QYA7KlcVldlYYHBhAiIhXiR2jv8cSEkH5Z40Mhan0HdOzZKCgDAC3dHKtAhaWd4Gj6rYEQ8AQMAR2NQJbjoDRbrEq9/f3c1vm5uaUj/UUliURNReihXohY66WSiUMzmjDHLE/Y0Qlj+bcqTcWKkOdFEKT/3AbQehS9xYcLpXYKWG6PM+i0asD+WV0VgRIGf47fmUoudrwFpeXU0GmWJStGMSKLI5YK8tgaTVSolNoHOG+tX/vaJxKH5qcbeUJ+W5nb+dun3cWtrghYAgYArsagaMf0mcYDsj1da973dVXXw2JXnTRRbQGlZdRYSLKsjAucVRkNN3//d//vfbaa0dGRlB8f/zHf/x73/ueum7tVCcsoUwXhELlxJmIlUU5cROHRAMOUroY1kruVqxduPPUxRerXq3ayPXk+9xWhKGQqAS3AxKaduv0aB5luco9Y0PsQ3xockaMFQQ4Psari7zOMC4xaa9c4rtNyXJqwRAwBAyBXYzAliNgmJXVjJ/61Kc++9nPVisoqi1juhw5xdNKXaBHR0dvueWWRz7ykQ984AM/8IEPQL2/+Zu/CQ2r6xZ5dss9FT21FVCCuZ2lgSLsOTkz27HVbzvHUd+ybZEfMGZcrYWNMMrne2VvQlgyam3hoCUYej+qqEuIYzy2RodKDBSPOxN0K1vypnDsYpZqCBgChoAh0NredQsBwXYCL3vZyyDa66+//m1vexstg1YxSidWZeKwLDz9u7/7u8985jNf9apX6SXM1AR0X2zUPT045+7IIPQIu7HPoMQCmfzLyo/s+MdXHvu85/X29dTjxmyl0kAh1Um5CR0SkZUpKYn/lGNaX3YsZM5WFct9WO/N9OJEztuLMK6fhodjt6MRLzSMzDuV1pVuQdsSVejNoeNWFhdUvw0DdnNg4Q0kaQmcpWkdAlrTl1ul7csQMAQMgd2NgHsKbzIEkKL6Umk9qp52KlUYmdVorA5WWKGxOaPyQsMUIYKrs+YnG+wLxcLK//Vf/3XWWWdheT733HOvvPLKT3ziE2SmLEfNrOPHnCa1JykkbscAw0WOOCE3mYAkW9yn6+KJLMtQBctCevvOKYW59O2TU1lOnFF4RXuFesW1SkzEaa+RisNmFNcYAPa9wzMLWa+5ryiFUGpxLHd8GQS5HlTkdCZHMX4rjkWVg2FTznwvrF5wYGh+cYEXo7qbfV0N8ks0KcrIDKlgkWal4nQ6hs7du4PQvwVDwBAwBAwBVYM2GQdIEasyo7ME5UKdRKQOU6TwuCcPXs1EmEdEZmzOUCyn5ISGIWbU3MnJSbKRQhwNGJJ+wxve8JSnPOWNb3zjM57xjJ/6qZ/6j//4D7qC+osEZXROiUDYlCI/U5s2ua+bLr5tcYbcWLGEYV+0YBf4Ql3lFSTrZXuyWJUXqrJFr2qlmkXU5hb/RV7E3N2IGcCUQ2+eX6r5UbPUl4dlOyiSM/2IANL1o9IcQ3OIeeUZ7C+yctb8vHAun1gIWL7chGD2UxLSJ7Qb3xZg34aAIWAI7GIEeLxueoD81G6M8god/v7v/z78igsVbArFwq94LzO+e/HFF998883wLiovc3nhYxRZ+Jj2kY0j474cYV8UWQQSR/395V/+5Sc+8YlYrZ/whCe8853vJJEwPT2tSjA8/Ud/9Ef79++nFozbD3/4wzXD9j1Cga17JqtT8SHBsRvfKUnKsyBlX18cRlMz0LP6ah3ZXXLyccPkUpg8kVeWDZQidXA7MvfJzpyVe2x0BLv15OSC2L21TSq63ULXzJOJsuuGgCFgCOwmBFoP883rMkwJZUK9MCIaMMcXvOAFX/ziF7/+9a/fdNNNX/3qVz/3uc8dPHgQ3fQ973nPgQMHaAlkCT0rgyrpMtkX5sZ2rXyM0kxOOPvSSy/VFEqxXsdtt91GBHV5eHgYIcQh3Ve+8pWspUURFGjctUjcSWHl/jnC44A+OtQ/gD46hTub2OOPExwBq6MWK28AI/AWB/qOk/sEydKEPSPDQvnT05ilaYMk8SVNkv8WDAFDwBAwBI5GgCG/zQ0M31IBSjB8CQ0TJwWyRDeFHTmFGgmQ9Nlnn62nUC/KMQZqVGFSoHA0M+gBCejHpGBSRod+zGMe85WvfEVTyHzo0KGrrrpqfHx8z549nKIlI5Yj6jVlMUqT8373ux/Ft3vAmut0XWhOP65DwnSsC51irvRw/8Btnj+BI3RmhBxHciAJzO4lM//9RjPyMgE/Auzzfhz398oN6i4wUcn3zhod+WrzO5Ozs74nr1Ay84i2ScVU1wq2IVIbCfs2BAwBQ0AQWHk+bhIekB90CKESqAJyhReJwL7wK8QMR8K+utYVKZyisN5444133XUXLPuDH/wAXRnVGfZFFOR63XXXKan/4i/+4sc//nEGgJmPhL/0f/7nfz7kIQ8hA8KVrbUuBGLBJg5tQ8+b1M0zIZZ7J7sdSH/5D9v5TXWJHpXVNNITc3MMx544AJQbnPWw+RPH8HDi/Edddb+fyNs7MuyHTSifW0tDuOeuPWSH3MmjlciXNNWCIWAIGAKGgHs+bi4MECc6KPxHBOrFksypVolWCitDrmo0JlHtxr/yK78Cm0Kl7LXAWhyDg4OQ7tVXX40CjS0aVqYgGhteVxhO//RP//SlL33pPe95z/e9730MBiMELlEigXoJSV04Z6lKrSnb+djiM0d2jgLpDN+yylUz66VH+otpL5icKeOVDNa8+CQFXK/ZbIH1M1jJI9DlJkmUFT2jsFTq7xoW3+ctYN/wUBCF4zOyFgcqeEYcpAlKvajCbikO967QtXwrYAgYAobADkWgxYWb1zuoF+GwL8dORuQU2zJmYWiVwGlilH73u99NThQyAlzLJQ3wNEEFQsMkPve5z0UPVmpPjswG5hK6NYo1EfITVzcubYZK245HQNS1oMV8LDqmsC7/Wxqw7OrL/KL0QK434wfl5WVm5uKTRVAmJIIjNGtWSsS5TAMvlEnx5cUKNNlfEKHdBjfqnAqiaHa+whrcTMFOqxiRxQ+MNT2YbEylK7ey2yosvyFgCBgCOw+BTX8m8ognHJP5dPg2wVSHhDlVtZUiFEyuEoFESUkUaM2pkinCJT1qCuyrtm7SlYnJf8xmdFaxreIs9Og+2mh2AGQV5ziqL4f3u3x0cb5yx/gkZOtMvsK4CQcrbbNcJZfY6rcWCiHzZuNH8fDAOgAIGk3vnGFmD0cT03PQOVXCvAgnLqdCx9jC9co65FsRQ8AQMAR2JgJHMNzO7OKO6hVcKR+W4xBmlfWp5A6SFDP8izYbh4VMCq0342eWG80ld8mpvGSRIDmliLzJtMpG3nId4g578rmWvV6zrvmYSbtdgQu9TD6eqXqsYok4JhpDudJICVR70vFozWlHQ8AQMAR2CwJGwNvuTovbFMQmS2KhATtidaf4NkNyTdTgvrRXyOUrteqMeJFLWGVYFl5Mhn895iCx5GSM6X59BAyTY+sfLZUg4LumnQe087N2rXJt5eWAjwVDwBAwBAyBDgSMgDvA2DbRluuyqrDaamdIZuErNE+P5awGCwPVZji36Gb7HqNfbb0ZA3G6NQl41YjAMQodPwnm3jM8FKcyd01OsZIlg768GDj7s6wKLa0yDfj46NkVQ8AQ2J0IGAFvs/uuLlStRqNVugFXTlE8HeuJ7pmJvZGhYWYCsVyn05BX+qhaqfAh2V1yxoeAZ5nkNThYVMpcyb2WmGsAJLtnaMjPZCen5tiKQYNrnbTMeWCJM96qxqxFvOUxBAwBQ2CnImAEvC3vrHJn0nSITVK4mTGacIhb8p7RUcZ6J2fnXB4uruY+bM5aimvluTnouzQw6DJ3dxBPdUpE3ujICF5zh6emWFdLXgZcldKqVuiItpPs2xAwBAyB3YyAEfB2vfurCA3Ts1uUI/bCJkrt0CAjstH45MRxuxeIqVhpWVfhYAx4Hb8GCJgq2EV4uDRIjUzdlgTXuI4WUo9+jtscu2AIGAKGwG5DYB2P3N0G0VbrbyrZ0kh9q5hOhNE38NLyjW+zW12jWMg2Q29mbrHdernR/Id0NQJJS5LzlpqrsrNSpjebYsuLtv3Y5VvDIRRFWmb7lgo9WJmn5xcbJARp5JBIYKFKz2Oed29Kdihc7Q7mstjBEDAEDIHdiIAR8Pa663g+w2tCb24/4IgviJd9J2DfkNlAqZxoozEuUfm+noHJ8QW6F9bYo8gt0sES2V7keJch43oqbjJliNWy7lxKhz2jg4UenJm7ImBZ1iOdC6M4F3oXn5Op1hoTC0sVGFcmOQVsSZj2eA2A3bkOBzf8eN65am8vzK21hoAhYAhsCgJGwJsC6yYKbc3oQc0k5uy6keeU4HRD1EuU4BgdeaTUGzXCynxVWpKCo8kNW6LwisIqQeYsxazUyXl5OarHqUIujQasKrJmWcuR2VCyvAmeXymvUOgJY39mmSFgMTkj23ebFsvsKGSJGxZtXI+n11paYnkMAUPAENheCBgBb6/7daLWNsMme0vBhSzSsW9Pil0vWCu7BhG6BbEdAbeKy8Ati2BFEVRNIBsLdg4W+04k/fjXZEax7yGKmUhUPTlVYXWtNpPbD+z4wNkVQ8AQ2N0I2PNxu9//lRFheoILFkfMvv05JvimarXlymIU+yl0T/GNEqp083Kd51TsfJXRTSHgVOAPDvR2q/6uYOdWpt47NuzFjfGJaVmhywV+Xo6dHR2LdP7bT64Fjn0ZAobALkfAnoY75weQTqV1setmHbL1Bgf6OZ2amYN99SNdddTrssmtJ99yQ3bFYLlsFOB10GPyA0L3Pnt0OBVFh6emsT473yupMMngoh1nctGCIWAIGAK7FwF7IG63ey/c6hTKpOEuhUOKfxIirMtQ6d7RkUwqNTkle/QSdOnJuMl+RS6wG1I6AzFXFmXDqJ4edlBqlW9l6OLLLcYRe/tHSkHUuGtyBscu1yjZrriD1Pmx4SBGggVDwBAwBAyBTv3E0NgWCByHvxqy94Efo4d6UT4nmfaNjkRRyFocqv5qOckAXTq3Kc9PMVgLAcdBqr+3wBwhGPI44k8ADYwqhVJp76zhIjs/H54uswS1sj7pLFfdkulyraOCE9RtlwwBQ8AQ2L4ImAa8re6d0yuPaDGs5vYcDEO5JpsluzxYmgeKBTZkXFisofOSpslhiB9y5AhYjNHMT6rW6nhp5bKygBUEfoTwk51QudNqpQ3w92BPNh01y4tVZh8jyNUoGnA7MFzdyt5OsW9DwBAwBHYvAkbA2/Teo9Yeoa7mM+nQC1O5XLVchvpSvtfHvN5s+tDElBCt62WzWs30FqK6nEW+zAzOZ73xySlOi/0F91Mgr5Ps8q/loJsuR07j3T+cToXh+Mw8jl2dTN7mYL51cY61CLY8hoAhYAjscASMgLf/DXb8Bm2qKTjrNkOA6EZKg7hczVaW4EI2CoRa2QQYfg0gZ+KpDOlQ8eJyDQ24UCi4AeRO3lwTMuqE3YgaCEXEEFOBvdQkU4GltBvxZcZTSxLf5GqfrUm8ZTIEDAFDYMciYE/D7XZrIVI+rdC6fYyyQniB47Ygz3IaQnT7z8IE3RifnoZU67JLIQtEZsQLum0VRgwmaBaChpiHBgaElptuQ8O29LV8+74Qt64IzWqTe0tDoZ89ONXWgN26W651LM5Ba00DXguolscQMAR2BQJGwDvpNjMNmEUn3Zgwq1EOYQiO5iuLEDCOUsLaLJPRxDwsQ8UtEg+82fI89MlmwELA3f8cKKEFYVl06pFSMfRTB6eqVCpKMFslSU2chU4nJm7BEDAEDAFDQBDo/olruG0BBI64bTCc249B2qVOWJEs8tzjeZlMph5GMDAeVkKTBDcPGAJusiEwt9+HgCucMmm4Q7HWrF0cWRKauuNGPDI4gE/1xGylRfBSIz8yWN/RcRciLashYAgYAjscgSOe5Du8rzumey0uFW47MjAK3E5yA8IDg/2M9R46LO9ZrQsyDCwB0lWVdI7NgD1vYCDrVokmrS1Bcp0stPJSCltznI7D0VKJQebDMzMqXMrLJGGuSsJK4skE23VDwBAwBHY8AkbA2+0Ww3knoEj4lR0aAtkagVs7OjqaTqfvPHioTZQsDA0bRuKNxbxdZxouz1dkDHiQci2zcdeIOK0aes2kgrGhEtUfnpg5QRu7lm8FDAFDwBDYiQgYAW+3u8odcxqwGJVVFeaom/uiYQZMx2UdLPF0Zo/Csb7eKJU7NDNPFvGVYgBY1oUO/CDIBgzPetXYW6g2cl440CsTk9geqSV9jaggN/AasqY0uyRC6lGxvweNd7qyIKO+IgSlFy7G1C2qt/3a1oirZTMEDIHdgIA9ErfVXXZcS4vdEo+O0drsC69mvHR1mR2CczLfKPZKnndhKbccp6dr4nzM7rxCwkG6mcqwUpUf1shTaXpNP5OPFouwdhqprAfdhaMyFLsYhXEqnfPytdmKFzUuOn+0FkWHZmQxLNkKkc0HMW1HPbUqntqNRoMlOswOva1+ctZYQ8AQ2DQEjIA3DdpNEtziYMe+VOFOOXgx2x+g2mZhUPRRvJ6ZjTSUz8RBdmZxmdxho8rGhGjCLQIMyOOVl7xGHAzkg16nqNaiZAx5ra1H2RZNN/ZyuTxcGzZidgVmYvF41ennjRoN42oQo5o3WafDCHityFo+Q8AQ2OkIGAHvqDvc2vq3NSjrlUolujc5OQnp1uv11oYMjrWVuXHAwiF6oL9PDNTr5caabvCQddyf8s/bO9wTxDd/f0oqrdZlJhKvBmlRrGXs2YIhYAgYAoaAQ8AeiDvqh6AMp8ti0LHh4aGoWZ+aktUo4/YgbHtCLhZob2YOm7BXGhzQ30G3/KieVrIaZdx0S3ykenu9yy46NxstffOGb7PMViaTlZlRYvn2ZGqUBUPAEDAEDIE2AkbAbSS2+bfb4relYhLX01JpEAV3cXERDkxlmBjshcz/ZZiYWCTTjsrlStoPSgP9SqWp7n8OCJHFL9G5oWGxfnuXHdiTDRdv/v4PIGC/h0HlQBRyPMZ87NtCxhYMAUPAEDAEQKD7J67BtiURUMalaeijSbyvz+vJZ5lfNLvs1qH0Amb/Kss2I6YreXPlCpmHB/pQh4WVuwwU4ZNj4BlmFQIWgj1vLLu3mJmanr3lsKTAym73Bwao2avQCLhLiC27IWAI7FwEjIB3yL1V0sX4DMlpnEjW94YGB7LZ7B2HZt2kIOYf+VldFCPF7kne9NxcHDUH+wvkPIUAraJWtxy49g94V1y0n9q/9K3vNhGbTuNYrcSbvBmcQl1W1BAwBAyBHYKAEfAOuZHaDSVgjau6OVAosNfv1Mys7grMIDGcyObBeC9DiguLy2jMfexl6HTZdWERCqGj2qZS+GHXml7R8+55/n5Wwbzp+7fNUyseWM7Fi/bgpb2uKqyQIWAIGAI7EAF7IO6omwq/5nKswCGBNbDg2rGRkaWlpfLCshvllSU4wmYjl/LZBwkNeHGpSrax4cFGtc5PwWnJWnqtx7SsrSX+zQwyM9U3z7nnXX3/e0SN6k0/uHW+6i03WeJDNOQgSDUwU1swBAwBQ8AQcAgYAe/wH8Jgsd/tibQMCbJkFUyo+xPxhVNytdHEBI0BOuuW3xAq7Sag+7p1nhHLD0kE85X1mowJ3/3Cc1F5v/mD8YjzpsfAs8xOxhnagiFgCBgChoBDwAh4h/8Q9uwdDaPm4ekpdM9ajfWphAshWizRnCwuL0VROMDSGYHfLfsqcKxv5TRntxmxL+ovA74Zr/nAe98D4/bnvvbdZbcCJumNprpJ209uh//krHuGgCGwRgTsabhGoLZrtj0jQ2iiE1MzELDMP8Lb2e0NzOlSw1taXGbtjmIvVutme35wFz3VbY5k2rEvw7y4UvMVeGHGi6+49EL2QLzxBwcrnpdnFSwGiWWWsWSzYAgYAoaAIQACRsA7+WfA3R0qyQTcufIiZmIco2SvJC8KwyZflUUxQRfyPT0wZBy2l8/qDhAfS7bIlB8S7OoIVuzS54wW2Bt4arH53R855q1X00FaZyB3V4HlNgQMAUNghyJgBLxDb2y7W0wFzmdzS8s1FuPA30qSmS8kSqtXng85DgwMiLOWF3GESLsN/IBkB0S0apbaQBNGomPjft+7+O4X1f3c1749JeJDsX4zRowiLDksGAKGgCGw6xGwp+EO/wkUAi+fzzMcOzPreopDlBdhdoZr5+YX8JoeLBUdQTawEDv27AoQSsgHaULmBIlKQBW+z73vGQbZG2/6QZV9kbKiG5sG7LCxgyFgCBgCgoAR8E7+HcCsjO7msuwMmJpawFuKDQNZtDlg+Unoslqt++wk2FMQ6mRmMKypJNo9JM7y7PhbzNGy+yHDvpccGKaSQxMHp9C+U32hx15Imz4NiR7o58SdWGO2Ewuxq4aAIWAInAoCRsCngt5WLwsvcoPvfmBPLd1764RMBWYhLCYiYSjmErsksUXS2J69rJYhXlSxEKdow10EslNDAO1iwWYqcZOlNliZo+llG945Be8+F+/J5OqfufG2eT9oylgwTdjEgHT4Xz8JxR4z0pltExtkog0BQ8AQOD4CRsDHx2b7X4Ee2ei3WMg243SlKrqpbA7IN3NyUU7rDfyz8r09xGW7IpLXo6C2KdvJDNWmApenhM7vceFZ8+Xxb99656I4a8H6qipLQzY7uN5udiUm3xAwBAyB9SNgBLx+7LZFSW4wy0FHYWNubk5s0DIXSAJ0yC5JEHCxr1/OXfq6HKFRa93MYpacFIqF+Dh1KZ73Y/e+lI2Ib7n15grDwML7bbaWs40PLX1cWiAfTo/+aK2aQfNsfDtMoiFgCBgCa0CAR5CFHYuAEszo8BCLYUHAMtM35RaqZPPA2CtXKn4cFftRkuEroc5U1wqqsq+swsEYMqVFj3akR1V8LhzxDuwZm52f/cGP5tCzG6Jrb26gcoLy7jFrSi4lkWNms0RDwBAwBDYbASPgzUb4DMuH8kZKgxiXy+UymyU4xdCHLEmfX6h4cXOgIJv46vIc61oNS35C6NNYr4W+YV3qCHxncBYXsCvufje066998xuSYV0VILGrINOpTsb0a8nTVaWW2RAwBAyBbhEwAu4WsW2WP4rjseEhvKTm5+frsKPT++BBNgqcryymPPYi9MTyHAdsZLievon3tA+58hHa4yMJYoLmt4Vb9b0vviiXT3/ze99ZcLR4MmZcTxOOLON64dYbOQ4Nk6Ejz5GF7cwQMAQMgdOGgBHwaYP6DFSkGu/wgLgoVyoV1p6UDXod+0DGlaUlXJ/ZrMHtZ+QL/3ZLj4z+Cs8GsK8U5UuECx/zTVU9nnfZBWPsiDg1N3PbwQUh6c0NkHz7QxOUho+o0XWetnZmOyKDnRgChoAhcJoQMAI+TUCfqWpy+DkzK9dn1m+12vTEFZplsNhCgXitwcBvX1qYksCS0etppGzxK7OKHec6CT58LCms+UHVe4pefyEf+dHBw9N4ga2rjm7b5ZrjDu79oPO9Qn/w2opWjm6lW35DwBAwBDYEASPgDYFxiwoRboQIY+/A2WezBMcP76w6lVUId3IWq7M/2N/jnLJkIY5MPh11q6I66obHGFJ1C1kqsQn71ptRLu0xvNxY9h758KtYcutTn/8C4hPSS/ieFwO3MuYGYxiGUaMhy3PxoVn1hjO0E6k3a7W6M7tvcI0mzhAwBAyBrhAwAu4Kru2XGR0363ul/l6Wn6wsySgwRMRxboF1OYJiXw9LVhF0AFh8pBKGXHNfkcbPKHGgVgG5NBsees2qV+zxLrngvIXy/OTcwgzE11a1oWStgS0imA215tpOkjGs1z3Z9thLsfJ1JiPUG7LrYiPItOzRmWw2l8+L01kYLZTLJxFnlw0BQ8AQ2DQEjIA3DdotIBitlHU3oNjR4RKEN1leWBZdV/hpaq7M1KPSYJ8Sp67k3C0PIgjPao6OgN1WDG0m5ZtlPVj/isiBUm64f2B2sfa9Hy6jBLMwdaLyEufNYAOhSmWzkGskHMzGD9I21vjK92QwAyzW4oWleo0Y7cVynkr1DQxsYNUmyhAwBAyBrhAwAu4Kru2X2W1T5A0PleC8yZmyzA5yhFeeX4h9v9RfgCD5EQR+eh26L3BAqPAcHN9iXrfQFvGwEWfguFzAPodZz3vYg66C+b7wjW+RWbaCcOPNHDWycbA6ZmVOsy/LWlNXw7leE6F9uZzf05tNp2XHpib7MYqrtnR942o3SYaAIWAIdIGAPX26AGt7Zo0gnOGBIlQ3OTuPsumn5KbPLy2z+lWxv6C6b8DSkfBSlwFi40M5FvTAiSvZbJAKZMoviX6j0Vzk9OqrHlptRjfc/AMIG11cNeDE8tyUPZo2JjQZ+G02qUIbxhGlG+evWuTV3GKZ2mbJEIY2ErwxoJsUQ8AQWBcCRsDrgm3bFHJ0AwGXBuG8mdl5+I8AZZYrogEP9vexiIYory0F1l1e8wE5CBTiFrqTzQZVPsJyUL3YgaNsTvY+PG9vKlfow+79o0NlqU2sxFFCwBuoB6NeB6kMa37piwUvGxln4U7L6iBerekt1YR5fRg4lZGRYAuGgCFgCJwhBIyAzxDwp63aOIZ7RkbSMA78xxiwhunZudgPSoNF7LUS4Eoh0q6DMq6UhYPbfCxu0Lh4pf0wbqAIZwMPK/Qll15ei6NvfOtGsiVWaK0PfymNnPrRp1bfx9k7MT5PlaOv33gbi1HTKOrJYxV3HtuuLvv9nzrkJsEQMATWicCGPfjWWb8V21wEZI1mNL9Sn5cLwqXlco0teVOip84tVTFGD/T25R0HsWBWwEwiJeNumkQJp0XqeKoMqHLKp77cyBYYiA2q9TCfFcH3v/xuN37tCzfeeqjieX0YoqOGUCJDxF4mbnlEuwFb8eqSNrWVU0fs0qQWWVJIQzsDZy4PF3xvaama65XVrbGpY9c+PBd96JOf+cjHPj2676xHPOIRD33Q3frdfhH5yKPjaQrGskWFjGLL9GUJgoHUofXSL3cmV5ImuRM7GAKGgCFwagi0HmqnJuREpRne6xzhq9VqzPvUAktLSxohUSNsT4tbLHGK6DAhCyhyqnFZSsKV1TzLy4k6J/n1lEsIUWkkak6UPyQ0GkwFTZ7emmXHH4PQz9DnwZQ3xoob8eLMgoyGAtDkwvJUpbJ/dChTZwQXbdUh0yU8cBXTiOUljt+R+HaloDRxf+KWCZ0FzTCXy/Yz+Yk8D7+oNOxVv/D9qe8tyKBsEFe95TJTkBYbcurKMCgLK4uDFoVFDP9lySrSSRNGJEFjHCXOxajpMX+ZD2XDRi7fS1kEclxoeh/7n6/856e/Mp0aumEm9Zfv+syvv/HjH/xucznwqoG3KPJCr7ng1ee9OgPEQtjyoSSVtGTKOwEZSeNNQXazsGAIGAKGwAYhsOkasFoXIU7G+bJMwczxxG6FXqepcMJMULbGI1IoFDiyb8/g4CARihSLRXhUxwgpq6OGsHKpVEIyhIpkmJVsnH7/+9+/6KKLMG/CuxyTuiB4rlJLXx+q1y4Kjq7kFgN6sScdztfLC1GzT7iRJbFSmTRThFkky42E4kLViq0dIHTQ1g9IXuTQtpWgYDHZXYng+zITF5MvOUtp78J9e74y6X33jviel/oelnGZmivc1n4NFDqVM2cidgK4TieOEWR82e1uKLKRrq9WzviMCGSWq97t4wv/9dFP1ePss37x+XPV8FOf/uw3b7jx0G3f/9oVFz7uYfe/4sJiuZ7OLsY9xT4vyC0t1asNb2AgKy8Ssl6Jm1XlauaVQvaxcB+q5duCIWAIGAKnjkD70Xfqko4jQbXbfD4P3aomCjuirapqq3HSoV5lXzj19a9//TXXXAPXjo2NkRPuJBvkTQ0ozVA17EscQn3Zy152xRVXHDhw4NJLL33jG98I+2orlINhbj2lLCnEp6enNWU3HYXkCEMDg8A4NT0LwS3XvUat2pPL5rLJBsHQ3kYyiwJOvckvjNety+9xaRw2b7jhhrrwGAtl5TD8HrPapJSYhMkh84Uk0ERichJiMZd3Bpnnq5XEoskr+7Lxw+SC99o3/eNCLXzEQx/y6Hvlf+LKwl+85LG/9rPX7MlUvvCJj/zF6/767/79c3el/OnSyF2pnkocFHqD4WKYjpcbzUalGdVSqXqQdoJRp2spp6Uf+13ANcwOhoAhYAh0i8Cma8A8iOFU1VwhWtpHSo8LGodHyUDgKqwMDff39z/ykY88++yzP/nJT3KVbGSHiTkmSvPk5OQf/uEfvvvd7/7Hf/zHffv28Ux/1rOede655z7iEY9AG0YnpiB8o3Bo7SRuoLetSt7iR+iJ6UCqtA2zK7Dnz8zgezU8t+BF9cbgYDELA7oxTnTP9spUG9EnnIxT4onV1mKFOFG1r7j8cu8j37jpppuW6lcUIf8o5F+mvRh1UrFqnBSRsDJVV98khHcJlBJDMaoq6jLfbo3NKPBhS0Y4aoH3prf+y+HJmQc96EG/+NNXUmQ45VVD7xmPuuwx97/0+vd+8NNf/tbHP/+193/+hmuf+ORHPXjfxXlU+XR9dnxgoD+TRmtvjQfjOo0nmVSEad2Z6t0mT64FdjAEDAFD4NQQ2HQCVkMxXKgqEQO0ECFxdGKsxxzJQCJxiJNAd9BrOb7zne+8/vrrlTLRepV6lYZJHB0dff/73//iF7/42muvJfOFF16IEgxhP/GJT+RU2Vcr4lSZmMS9e/dyuqsCyiPWWkZhh0dKrLYxM1eBoqbm62iQJXYp4v47tU72Z1hnUF7sKNzWVqOYiUZCw/oKwMvXgbMLg309U5MTh6cXRs/qg339ACu4G3blsmuJYzvZx1AD31TARcd8aqPWa67BsC+jzdSI/dsN/ZZd/r/5+w9893u3XH7JxS96/mPxyGJPCOwnA9nm/PzCaN/g//n5x93nwQ//f+/7+A8m5/7jvz/yic/2PvaBlz/t2stGh/YvhPVoebHQUwhlHWsZEg5lHhPaOjRcc1W2Rr07OmxRQ8AQMATWgwBPts0NagdW9qUmlFF0XHgX07Rap0lE91XqZdN4Ttk4b2pqCr6EdBcWFkjR0VxEJZo0nP2oRz3q3/7t3w4dOkSGz3zmMxT5+Z//eTRjTqFz5XjiBOJUQeL4+Lim7J4jnAH/Mdg6NjIcBOmp2Xkh4DlW5IiH+nqFfx2dwZWCyVFkekpAwY2ioAp9Ogb1Cmnvkrud12jUbrzp+/jd1YOcTkLGy0qa6JrQUaO0hv80sKNdekYCXlcha26It56bf0y/kMnxH971tS997ZtjoyO//As/h0cWw/69XpSOa2j9xf4+5kSxF8O9Liz8wcue+Bu/+qy7nzPWrC2+8z8/8so/v/6/v/qjpVQ23TOAWwE+1M5dWogXMmZ/Jxmf7nq3io7eWNQQMAQMgSMR2HQChvyUNRm+5WkJrdIA3Kzg1AG3Eu/MzAyPUBJhR1LQcTFBj4yMQMYUGRoa4hJaMkI4qt4Mc0PSf//3f3/ZZZft37+fId4nP/nJnN797ndHMyY/mRNfaIQw9KtVa0Vk2E0hYjGKbEY0YJhqcnoOF+i5xWo28It50T6x08Nmeo/iEP46hYAm2lZ/O6UwUqvjtBwfeL97ZVPxF7/6TXFCZmTVeVDpWhkrRdTnWd8M2hwsZy5FiFA/IUs+83Lho6fSqWX6FXkf/8bixz77JX4nL3/h8/cVsDzHWaHe5aW5OS/IN/30UtPrzYpXWr/n3WuP99qX/PjznvyoSy66EI+tv3r7+1/22nd+9Gu3epkeODhqQuhYniXEMhTN60piU3epdjAEDAFD4BQQ2HQC1ic7/AdNwqDQ4R/8wR8MDw/ziOQSiilxWJb4+eef/81vfpOBXizGGJlhWXXLgmvpIIkIIUJByJtSf/VXf/W5z30OQ/QXv/jFN7zhDU960pP+93//lwxkS/yfYfpXv/rVOGdRO4HR4lPAarsWhTSgjmIhF4Xx7Dyuvt5iI8zi+JaWRSlb4+KO21rxDeqo3nroHTO0MD26quddcfciOuh3v3/7IjOA3FrN1NYiYBnQ1R8k5MynFZR222cr6TLVN0ip+oueWql7M/PeW//xbbysPf6aR51/du9QD3N7WYCDeUpR7+AwWizOX3hWQd+YuNGM9wYe72tPvv85r3rRE576hMeOjOy55Ufj//Tuj77itf9cDnuWogzWe9Dj45TzDM7STplvt8W+DQFDwBA4BQR4Mm960Mc67EtNsOALX/jCZz7zmRiESYGAlVlRlFF8lXFJRGeFlWFripDOkQwwqzpFo0YTeelLXwoBX3nlldDt5Zdf/vWvf/3P/uzPcJ9WNZeKyE/Z3/md3/mN3/gNyICK0Kpx1Nr0Dm+hCnTQ1K/W49FS0JsvTM8tlD1vYrYc1qoH9o3BKyzayAgqtJYK41RO7BNdBwjtCMW39VbHfYQ7E9+uXFpYbDjnnbNv7PYf3vbdWxeuvLiPQejFxUapkBHtluviS0Vg1WbJrIGYfJSHWxmoMc2qz0E2O1+N0nnxmTo4Xv3Xd763Pj/xtJ97xk9ec3Gfc87yAnoEi/qxjxlZvKapgDcAUn23BEfOz+ApfSCXes4jznnsg85570e/98nPf+VzN0284q/+7cXPferle+DrCJfxKAiaqRwoScF2w+zbEDAEDIFTQeB0EDAPYoK2EtJlji9arM5K0kS8pYiodZqhXOzPhImJCS3FVezJcDNlCeTkVHXcH/3oR1dddRVECz2TDerFXYucEC3WbFdtwCUiHLWuXXjEDzqbCYC4t7cPHyw25WUZLPTAXqcBOzcpIal1BSV4V/w4vNROFs0VpofAHvrA+//w9oOf/dJXr7j44dzOvgL+0Vzl4+zR5NNxaUfqFOfOya+HmKjI1CiKcqWy2FccnK/H+XyApZiR7ff99wdu+NbXHv+wh97nvLGiM3qTsekJ7as8ZFCdCJTOsuKH2524ttyX6/Wa9dmFxlmDhWf/xCWX3uOS933oizd+8yuv/bt/+9Nff8ZoLsinemBu2hc21fua4hYMAUPAEDhVBFq8eKpiTlgeDZiQjL9CoiyIkVAyRaFeEjUb1Hvw4MFvfetbN998M1RN5Etf+pJqxjhYoem+/e1vxzqNRovN+Y//+I/f+9733nbbbQwAv+td7/rZn/1ZcuK3BftSHSqvVtqyhbqx5BO2dCdehDTiCJ0P4hkoluIgc3jOm5ibg5cG8k4nlVk8DKS6/+ujYVFOkaFBflGc6wepLrRGbeUlKPQe8oCL/VT6C1//Nu8ELEDlfoJopwSiUOQRv0mUaM6lBj6ah4m/fqq3bxDezWT9JbdS1dv+5X3f/s53DuwbfeqjH3C/8waxFBPIgAllse2+jCN0Om6komWGhD3Wz5K6eA/BQE3GRikbD8beIEtmnuc98ycfcP55Fx4qN17wqjcfrHkVVs5yXtE9biqSk20HQ8AQMAROFYEjHnanKuxY5aFVTSaCqkpQMtZjUgKOVEpGu/21X/s19Fom+OLhfK973euhD33o+973PkgXB6vDhw/D1hiWOX3Na17DJczLd7vb3a677rrf+73fe+5zn4tAdGuuqmQImKCVwseJZ1ZS786PyPKJ2HPlLgwNDTPt59C004DZiaEomwG35tUqVYorckKla8amRY1ON02IcqW0Y19HofgV9/jeaK/XXxyoLNfHmY6MAzMtxIgtwb0myLGlCtNu2iUt0irkKOovo7nYzUleYjTX9z7y2Ru++vWvYeT4P8977qUHxnrSTXTcBl7SrXlETghFhWvrnqxBrTZz1n9OeUxHDlGFY9m/KY6W52rpunePPd7LXvDYsZGhQ+X6K//i38sYXdK41uuKmNJQC4aAIWAInDoCKAGbGzo1XWqCd+FaDZzCjsSTFpCZwPRfLMlEcMjiEvSJfqyO02jD+GqRiBEb16q//uu/ZpwYfRex2K7VzqyMi41abdpkViu0Vp3UtSsiwlhuoQ2fCTTB0NBIFN95aHJhsVYf8P0SexGK3usy6U1IbLUbjg6VSD0Ry6Ghe1588cUz3/ju/37x1gsedYHMUxbiR7t0WSBdycnsXmmEmIs76FlfJZAgazeTP/C+fOPBD374o/xUHvHoR1964YiUEaoNA1khS6iXwK/cyUHPpphQOMozc6Rk1yRyiCGALRPFI2F4UAZ6kZ8d8F78i094wz9/8Ae33f6Hf/PhV/3ytX1+SjeucCLtYAgYAobAqSJw+jRgbSnPuIRxYUr1wOKoCjEpRMgJZSr7sjYW6izju5ijibDgBlos+ckDSUOxsC9xfLJYt5J0IpyqyVpFcao1UrUyNCm7KMjgN+oixMOmhCONyD84PlVthCk04P6cDJKujJBuAipUK/TJl+rWsGqT39z9fuwBXjrzqU9/jgtZfKBlIrAEssrthyPFddoFKc5Vl+y+aLHkdnN/x2e9t77tn8fHJ+973/v+5LVXYtNGTfX8DHsCQ5a8vvXGXr7BTCSaQDkCjtMovjl8w8joPL0CtpBgQZAmCz63cjSDsMnyHZeMes96yqMvPjD67W/f8Io/elsz7807bna57GAIGAKGwKkisOkEDPlBhATINWmsxrmEaktQDZVTDWRTpoRruQqbqi6rR8qSjTzKskTIpmwNTxOhbLLQtFZE7Vp1Zxs0ZecfUSdl2eQI76ehUqHRjA5NTCwu15iB1M8CUe7tpPPObAggLbhXyYJKhU1Z48K75JJcT6H/8MTUwcmVTMKS7uMIWCjX/WK0FH7RklMzwJR8Ds56b/uX62qN8MD55/3UTz1Gf8oV36uiGadwVw7T4TIbUGSbM16zIhyPTpzqCVn9w2nhSKMK8W32c34qyIge3FxqLC9Gfpxipwj2SVp82AWZX/7pB+8t1Gcq5Ve+9bO3RjLb2IIhYAgYAhuCwOkgYFRPwqrmQpaqyJIOLyYMDcuSrgRMuq5AyZwlDNGaH4pVHlVlFxM0M46QTwS7NNLIrOtqQd5K1Untu46A5UUF/VK+MMMWC7AK22As1OosUpVKZcX+yo2BESUHoWM4QBPWdtTSzpzrCujNllT+i72XL2f4lXga2htke8TB/r6+3lt+ePsSXBrkyUYmWsJHA9n4OM51yisqL+qzW3MDTRcifP+HPvaVr31jZGToFS//P8N4WKHsUpPzyZJysqgIopsyx0rYlySZicRHJUsCpuwQkziLP/sNPASa9VwmlwlSsrVhrTrc15P3mvc+f99Lf/n5QdT8+jdu+Ie3fx6hLPqhWnjr/cDxuNOwRTCJrtZWto48Wu1JjvqGcYpH17NjHk5Sexubzmytl541NulYEjqlnXLcAapvY2s4nnJ1rR/LceWsEZbTlu2Yd/0EiZvdMP1b4O9l1Uf/Ejl2NEBBPkFjd+ClTR8DTjBTLtRT4qrOJqedV5V9uZSsp6HMmojSDKr1KkNzKYkkmSH1RFRSdpdFmPiDPRWnpBT8duAsrzfdXCovpjK9faNFiARGyslqHF6jzu6EfLfn464VphXSVbWVckpsHQKSPIzDBlTKh7+6Rz7w3u95720f/cwXHnn/A804nWlEPViCW7boDEZz/jiZnpaVda6gz4j3tWqcYmEq5b//+uh3Pvyxz+zbd9bzn/PsESzKzBd3U48gcBogXcpkvRgnZ3dN2iQXSJdLHSHPFGFJTLN7BCTugpCol8tXG030Yppx2Xmjz3/G09734U//74ff/brqj172S0/nLWHy8MS5e0czuFAvzOcKPe5BgqigEaQbHB0Rka3XCzPy8GkFXjWJ8WvXt0kiGtqwMRTdtr27EtISFxh1Yd2RJJCuOCPOtV+uJF2jHfoqpc53SSnXKGwJ0oY1BV9uGQh0BqrDZCKvS8cKaRG+qsSx8rXStMnHkXWCcmu8JI2hvWvu7xrFJtl8Xu5W45NcPGYkuUfHvHqKieCI/LWjqdBw3KQA7sf7NSRNbUckb7vxmwrSJvV1nWJPHwGvs4FW7NQREGaJuNMMixbyfl2e/5lsbx5a8LHKCueJM3KLfbv+8a+lQCsPf2Q4J0MkA5536YGRdy6WK1lvoekNpRkJxq25IV7KsjYmNpC8n2V+Gg9zN/XHz8Xu3QD2PVzxDk5UP/iRj+3Zs+eaR1x1/tl9dI0h3ByKK09b8b3S6lTnPgK+Vc8mffS0E91AOe5gbg8JimUz6flqXI/9fI/3sPucHdYeGC5Of+N7P3jD9R9++pOvHd07BsvC3LlCMVwsp8hEhUy5lmeO0BPw0hTeCqArNfCAe8q95iD8ePPSaTrlk4AcbWSyWienCBSjkbMbMYOP/JqNFwex8USyPHbObRd1pDCVRG4q0RInPUpDyNQZ5FTd5Y66JLjL5a7kS6GOGd7gD47HOUrWNiLamxMfpTFyO1yzyMr5xh6lOa4DEllLkBZtZmjJX1sv229pm9UgRSbpst4rrYxEPnpj+Mt3b4ra6M1qzNaUawS8Ne/LhrVKZvK4FSf5rWfT3mBfYX6ZJ1yElV7+AGAK92cBN1AlT2/52rTANKR8VPNTPfzsLj0rvacvvVSevP3mu8Yu2yfa3fKC16xiymC6rkxcjr1l1tHIZCMvi5l6fKY2NJqDY++8a+kf/+mtk+OHf+YpT7r20ffOu6lKvEe0H8wb03qGSNKZDO8r4ZK6SnsP+rELU/mf+af/+MC7P/qlXHHfMx9/BQS8VPdK2XQqPyjNZWktcfVqZr1qlneIKG5EqXS+Pxbzg1PMeZ1oygsGH4EajVwsFK0P7SbFj9gEoiExDUkEeWjNYSgDK7yYcJ1PKmByHzP4RI2mjDiTc1P1GlC1Q6LyygyuTMeFdobjfPObScumFJ1PznZWOtAZWu3EXiEvBF0HmszT+GTH9vN6reKdOUFWedukQHvcO9bm1bBJDV8RK393mxf44clbIRXIrXVvfmDWOpOIXOJlS6ISyKX3WE93wdEIeOffZPfbl982XDU8WDi4tBTEzaFiHz/11lPUbcZ8OoCIozRG1mgpzRbPgX/lvS771Gc/x1orV162j1HpLNQrvmJeWKtV46af709nZBkNHm+oweli7l0f+uZHP/7J6ZnZ0tDg4x97zaMe9oBeXJjJUI8yMLZT5d0jsbuuJH/+K8V4cMSMOIvaWezFZoAfm1dIeQ+8977J8Gfe8b73v+f9nwz83JMec/FIVpb7gIKxO7vAkDMcLE9+yDHlZ8IaAyGYt93DB8stXtgshOlGrOWWUHf7qCzJdHj3EFppSyvGgm58kmSUXJneHgvBt149mHuFpk3t8jLAyutJXle3nnGls86TxFsSEv5ekdgR01cJ/SWJ+eEkMjt63HVOfgkgsPYXCBpDkVOp8cRlka9/XCfS2ju1eWkOPdjko7yHuVrWcuT1cvPaI39HbpK9IOVmDcqOJi5CShJosAbQbAGaXNvhkY6/0h3e093YPR4fTZnfKn9iPCEhqaGBQurOWR8CHmSxZJ7U4p3Exr2BrBHZ8aDeJLRETeT5GcSNapjteeADH/ixT3/+W9+7ueZd6/Q2touIatWlfGEg4xgNTyv45COf++H/fP5/WV6UeWh43h0495xL7n7BTz3x6tGCeJbVq3FR5udGTBhn26yNajim3bBZb0YB+xPq2HAoS0p7D79fcaH5+H+77rr3/veHRoeGrn3gKA+P5cjry9CYdBCmfZbZ0lcBGsXCW7k0M768kI2mGjyOAvYGE1UPT364ivsjmQR3UtBcxR6BBpmjF2gO6LswKgG2Rb1F980k48DcPOdDV20Px0rhVJolxiiLUOHho55mpLO0taxu3VVwtHrcEkc+MdGYu7kHtMiFE5idOwgMcw7vOaC2xkDT+Fk71701lug2G699dEFn+a3hyI0WSt/EI6+N/CJcN05+5Kcob0za/k1qlWyrzRusQ8ndOprnnkbcV21hC3P+BrhfJB35g2pd3alf3fyx7FQMdnS/2s/aGD/edJAeHSikI+bpRENuGSztumwGrHTAuTwgNg0RnqD10MumUjlc2b2zzyvl+ku3T87/sOydNQCheOlsT5DtQaek2V/93h1f/vp3vvSNm6pNv1Kew2x+z8svu/bRV9/jkpF8Bucm97casbcgTw4J9UYzi8p8qkEBExRE4YT3nK1YFGxYLfZYPOxxDxjob/zUf777Xe/4l7eF80943GMu4QWANvNmAT8ygz0VMwOZwGbHwaLzOyM9Tsnmj4ou7NhBv4K3pMuj01uWWWPyLlGv44PGrpqyCRgczOpv2Szzl1vvGHQZCXKjMNBTqUOMVwROUaF5UdDQ/m6dct2xL99rDAg44ilJMRrDMZlZ0CnIvSggfO3yscVrG3kmi+wTHx1hHOGk1ln70XFEO/Zde3uOlnHCFNHw+JGcMM9uvwg6sIwQq6NeBkG4gyRy1J8WPyfePWWrbcxDLucugswIeKff7NbDR5ywUNGG+/JZrLtBXOqXdSj1Sc0jlSf46Qh4jfrMGetBj+FVnT+5cy69z9e+deOnvnnnIx929oAjlfma9+Uvf5clz+44dFcYBUuV6rnnnvcTj73mQfe/ZP+A/OHydywaovA4Y6AuhUc+CiSGXeFi/as+1d6wW1Qql0/Js4IlVCMWK+c5wbB5tubhdH3uVfuK5Qe8893/9fH3vHsg9TOPeuTdeK9gsJS5xMKLouTSsPQSG0+xS7FblXph2avMe+MTsxPj47Nzc9XlZebVNRuN5Wq1jmbPRDsm5jX9JuPecRomI6juS4TOEMe9n2VnWE2FNWcI7Mg52hNfdVEKthdYXL3tsebjdh8fOF5ljnv5qAvu9QPZrYCxhLFtGsN4MxzMLAPRvNuB0YWu6aj1+tQWccJvHtMpedVZe/u5Dzhyb9avW1Q2XrO4QfpXdsaP7ud3QgiPdZFmb17L+WMVlPSvUo7cDK2t/buRQZd2/FjN29FpRsA7+vbyW3ePW1mI0b2IFtl+z6uja/XnxU1WfHfiQOfGuOcIb6X6p7JZsKDgUge+S7gL8yi926WXfvvWO7/0je885mFnf+Y79f/93CcP3nlbeWa6Vl/GyfmSCy76iUdfc97ZKV4WaBb6BromeyfxxPNjBMgDEDstS6Phq5XK5OjlOv6SjyxCPfJ8T+VybroOFyO2zYQFuYD9GJZHJWVzw0c/6sfYHfi6d7zn+v/8j7D47Af/2FkUY23qypw3ObU8OT4xPTUxU639cHZpenm5PDu/VF3E2TPASMwwGPJE92PaVcCRdI0L3YdkiJmkx+x2DcShOl0SDjs8O3XecsstmKNJzEXLb64cGu7PjY4OA9fe0TGOcDMedmMlGVjTziRHOiPvB+4eH331mClqyk5+DSFLhjGxTczjIopB8k6bA+5gynVJjceUue6rdIjFu5PGrCXCS97GtqFTGnhif3E0vJa2nI489Ff/CtZypEHyCs5n0wLtIbjHzxF1UCc/g9ZRLqtZHnQ3tz1HNGILnBgBb4GbsGlN4OcsDIv86hLLZzPN54pLLsjGH0R93Dearzc97NFczOZzmBX5e3D/N601bcFsUtWT9edCrzflXXmvvdddP7tYXX7Z7759aWG+tlTpL+QvufyyK+9773ve87z9vV5BxjrlWc9HjKsu4uFsS8z93aKDMU5LN9zfriRvxPMEGU730za3JybFbFvo18tpnMj6m6n8pY+675X1mU998Rt/cv0/nPvli+cqy+VKhXXZ0AsZw4a/07VGYblW8P29qUw6l2HlkcHh0t7RPcXSwNBAyU8Hedb9yGd7svlMPo1dHUt1qShvGGip+nhq1e86VY+9ctljm042KSEQmV7K3hLt/UEzc8vBKLhris2Rg+BW1FNeEWTAOJct9PT2DxQHi6X+gT7iwD5aCAq5VLHQ3z+YZ2GWbF7gBUh4FK7lI5r6nDc9x8bRlflqOLHQXKhHlUoF7ufI+q+6FiyvbnSTVwQWpGOZWHbv5ljMp8f60sVCeqQ0ODjsFR050xEMHkS5QcT1NvFcBmLi/AgbkVdf9harXnWxtrC81KjWsLtzdK8o+qLSOmLTr8sIovxUxUTgbAN6pMu0h5UDsBOwQgBH2pZJ+QM9fpYBi5yX7REnRAIHatf28GtJWqVtS4765qH8QR4elKDEVY760yOOKD3qbUqOpLuqkoTTF6GpSTu1tbSElM4jrSFFA3lWBb20Ue0HK4JK07qIE+GztOgNFgTMerWZYx4+P3rxs1jVnB1+agS8w29wteGx2z1rmvDYkd30GoupxlKt2WTvH0y4ZyDEDEXz15fud8bEsV7voj0Dd4xP1mrlCw6cc597P+I+97zs3D3CCvyh0kDsqzSfiDRWJvnwfGDgjecMOZDDqbvSfrLLyZqDPgucLFdGnxPycCAN2yqmxVaS1ojdlcHcPi9XkxWto0E/9bhrH+Nlez/22S8cvP1WPLYYOGb5rOHB0p6xEfTRvfn8/faN7s3lBgb6C7iMub82lUi726KPaG4DN2rXJY5JIDMDw2wkVRr0zh8c8+4+Fsb35p1p0fOmUt74kjc+7h08PDt+cPzg4bsgZsiSaVT1ZmNhYWl8ciohqlTc7Mul4khWUycREkWNVmWaOIkaqFf5NQ6yzVQv64drelIEc780KYyri9XywvKh8SnkiCg/Yp551FimdjJDh9jMIWYWyaEWhEDeLFRHwJ+OOKxJ0G5SowatPUlPQCCC7aQmFgOQ03u0cmSHce4afcK2oEfy4GzoN2riZeg6Ky8lLhCBoXlTIbT63OHvpjVSRGpsH2ktzaOP0DyhDZrH2DxuApqYpJONejpbnsS5xG9Kf1mdR14jj5nemaczTn75M2iGTcYE3DFmbEDmf2eO7hfp3JGk/TSeptISUlhnH5yQFuDJj7e+O5JCvKv2dLYtidNrbG+cuh9zxC/PF38TFoqt45LCGjsPuM+973/vC9M9aX7eMnuO+XrH/KtI4NtxESPgHXdLj+wQbklCMKx0lWXNnurYQN/DH3Rltrcg+pbklKdMK8hvv+O0nbyR30KcTJZlhapMuh5mcmgm3jN//MG33XnosnteIQOcQ5h1W3RLa+TNATJY4V33sHbPxJZq70YQEcqHpq/vj7eT6qSzIkXTkHrkmCY+yjXM3bleP7NcbQz2BqWUv+dBD71X/172Jy4ODI4MZfp7268Lrv2NxQi9M3ka03Zt/tGWftL14UQDVt0JupbMQNI7xNMKa2wfU8s8bx/Uc74Xn1+CoGPvEr1fU2WvygDzco3tsdFcObJWK+PL379zarkRESdAhNBPXK8Jeq5ZvBv1ZDNokOzYjWrbk0udNTyYz6ahGXiUUeehoXRRVhyRgHY4v+TNzDTYiIzAfmVL1fqh6bnlWoiiTIBly5MTlemphFkTPtNGcpSVPzEYZDKwtQbipOgmK1owOQZxlMuChHMaxICPAVVoi/fKaGmxGkaNZiOqNxhTbzaatQZ6dBwvLTdYLZyWEEJ5J6kzdt1g5do5AbKzPRrXhiUNdjOs5QcBZ7kMzP5q8MH3nkSmEEzOzYcd95KCKgH9WyOrjmSgpN7fziPj6sdM78zTGYc/Nb+8dOirh6sprjeF//RH1u4gV5IUbaEehWKZruZOkEZnk6MW6KxR48dLPzonKS7IX6f7wTDcEvFJ8fIah9lUNNCT2XNg32XehfyGGeDhb5vBFx1XahXdBV+8MIL5zgw8XPhLpm+8EvK6R4SBNP6wOfJKvurSjoSA3zTjrNBYdmHSY6GobLGe6v3eVDg2ksK0i3KZFjrkH1ysT46jKGdjcYFKGwuOTHDBipdYfrJQ5A2cRzm/Qj780XKf2P6Kub2FXDYNz8jvU1Ve2iYPEjlKY6FG8orSyRs2Etxl6Wz7L18ynjQ4ca1cHQXVu/WoI7kXqqxSKQXIjWmV3xdLdDknTn5iIkHbQYNoHecCLfl80VNwKkO3kMWwmLMbOsTJgSZKVjnSEWxwnU1qtQypjrnpPX+wyd8s1eYyTCUT1Yc2iArKMxSOYO6Z+I9J6CxYD/yGe9KRTgMbsfha82FAl4CCzosCxIG7Ng2SFPcCRHOTQOdUoIxZMCLgTOXJVfrJ7829JYl8oJqdbULMkLH+MUJLqJ4acOrmr5O53+AgohyWAqALKoTT5EOyIqpt41QzJ0W0oB5pJ93XIy3hAybaWdffCD4GKx4LPAfckbi0RFcoI5J8pCJfTEiAD1Bo7HyISJw+1mKU/USTRnEnzi3ACNHZniQeqvEmOW9HwKcdXeu3tj/pAhF60JcXO5fE210jQk7nx8CTcKWp0mYvXpLXL0mU0w4zwDEtELSMrq21ffKb5hYwD0mcnCkF+xJJxSGWmDhki+3GpRece9l5+/iZgShrxjJsgyP0MW8oxXfk85y+W9jJCDBwKNv88PzweTbKOhd7SzJXlOed/NCP+GviL7H9VNskSOBTDIhUTJv8oDcd1BZncoUBmjNfWU7nsjlZkdLLYx9HYScrj/kWy9Ig9+Bd+evU57Cc87/Vne6bvSLvCDDEFCYPjiOPgg8bNPCo1MpRclg3k5XFdP4tDxku8VhjKAu5qKgZTH/LYZbmZXDWwTDJDCPM12RC63PbRiAIRiO33AkeT/iitOnviM7w5JRzgY3HadJqCJlls5xRVtJ4okouKMUTWzaSRL9xiEt6HgVevtuBIvBKrvXOAIadAUnUGTRr+Ono07x1lVJ8FIF2AZ7LBDqZE9NoKwznvQP70uG+kSgagbS0ITCctKud5+hvqXe1+KNzaUdbRy6LJZuOOtQ7W0djWnXxxYtTXoqEMSDy/rk6dBZcfY1zvdzxPkKCqxPFEeky41XeZl1gNP8YErjZx0x1so9zpYtk2kMQNfao0P7JkIX73LrVrsF9x8p+VPl1Jch7j/6y28UdYgKWRNyLP6i5BjO2w9+7c9LXbrSL7OxvI+CdfX/bz15+8kJmTbcdr6zmwMf5R8sDige6/BESbXnObh4maT9fxEiYiWVBCqrMOmelenW52N9HS3i9xoPI2RhpjSMmHtjCwa1HxnFaxpu15iDnxgQAEWjaR4SSIm12wMmJwCUExkrbUbMmK5mAHldFS3WKe1iLa/V0n66VSVYRwNrRrpjEpb/SWCJydMUQwCmiVwcotRVQV1TlFcds4X6pUYPY6l0+UtBnBTeCj2rDDCccmcJoGTOv5hUabwdNgUGJOCaV4WFNDMRTQOU7FY08/JAIqipyyqclh1SZz4YE1aWgbYYbJTMNOZZFVnO6X53k6gxJA7Q9XJIIYGec+cFl5dyly1FWNz1WYBo1rVJprWbStVbnjlFAKnF1Jdc0BQVRhahC2W4e76zyztXxS2nH+Q0cnc4vhJt2zKPc+eNfPWYped9y0vj5U1aP/A7lXQ3E3VGa5+K0R/7KXVxWVnFXKSUvi8Rd7Ukb+GGqtKPrTfKspbVkdu8lCibVJIF2yE2gRdpA2kOzGSmThxMXd0s4zs92t3R/5/eT37I8UXBywNsijX2y1oM7jPv1q13I/SmeJhyot4ZOlemlSdWl2kBvzmcsmqdqT67JeBpUgg2QtY61OWTi4ScLHLcYoLOV5Gn9DeufbkIS8nDp6g9YHwsrRZLHBPVr1UkKz4xGVGOIkpbUWMwrbLD0R4oamZvkYcqLqgwxysoYmXymlzk6vpfXJ5C4yoR4wTh7pyvO00Zee9o81+qa67ncr6MCK0En/NE52Reyw4Umye5UMWl2rY5mzFsOxke8xNNMq6KHiph2ta2ruXcvLS/qvrz0IC7hqNWN4Zr0vh1c1vZJ+1tuonQSaRhkIWPlsJX2t2NQgluoXJX6lV60Ba3+lhzCLnzoBBQhR/ee4ahL053HNO5J/HTIgduVU7SkMRKkpAAAnhxbDZEet4OLdt4WvdaaX9XORX0qjCGFdhpJrQ8pKy9MyWUXgdFog/zUjzzSLUmRG7DWI/2QtnGr3Grd+rrFXzkR0pPjkfXLmbRTgeRmYvYVGStHyeDKrEpv5emmhQCNq6WshSJELsjz58zt4P4t12q8nIGhDPhz/1F+o5BZAZ3Iu1bs8MPKr2eHd3RXdk/+Pt1Ynew1GDDaxhihqiTyJ4dVU1RO92iRnPIXljx4NwuvpZqXxeyJbUqmwvKY4oEkjzIe2PxZSqtcm/kzlbGgoMW+ktgR+MNGAolEpOUbGpCp1ankVfJhlnpUp91Z3E0dF1XjKm6kEBfrnOSzOERBPawHHdQYY603Bukt+WRArqV6atPd49I9hml8+4EnWlPKqQROA0EPIUXbw0rQtIrr2mt5hUJ78WK3e3Erj8KgwtJMvnGBU/1ocQed3ObkTlOJBtiIEnpMElv1uvbQMa1dRHW0TVvIkcCPSljN3RaObgHrTsZ2mVYOvCIgbCUglRP5Qbigjem8jDovp1QvrdWy7iiqHsG9x1GxWAYEFuifL21SpzQapnVRZlWlpGjOBKIkDxEC6fJxcDG0LCkuSTrdLtPqgFxcCZp4RIeTiw4++QHQnm6PiRC67G47FSUNaGPZyiStdvL5pf3/7d1pjHVFtT7w//1Abm5MTEDBARSnIKA440RwQhAnxFmJimNEUUQRJxRFRTGAgFGjiBEnUAQUnFEUlDjiAKKgcUDFkagf/GDuvcnN/9f99Fsc+0y8p7vP3n3etTvZXbt2DaueWrWeWrX32eX//2yRv5Wx3KzlWc0MkgxJvlwsWZYUdrnmpT7RIbiWsL7QCkYi/Pf/+mb6/93kP0c8F2iCLWSgCHghu3WlUZT9JpnwL71cvLwIuPyxYL3uFjJeGYot+fIQ2ThEVLr9MvuqZ4ebLK0lLg3YFVO2JFKOzOWXTMiWh4XjTPhS9iX7upJx+V8rZjByQviG9K2YG6JG5PNbjZVV0OU5g6e7mLgdybp03s5f1l2Hi1vVni0Vx/a5KSDOeRmD5c5Kl205L6VZ6tmlHIrPuQkh0GoYkG0ppWMLRyxf5DL1rURs+bclcqn8yDNQl5hh2eT0XvKW/Dfy/7+lX0Fi5d9QCeIH3P1/uz0my9L3RMccq3BYxnJM0iHQWrqlD61v5dG6ZivzzZp8DDIpbumdi409EO1gi5fqI9FytV4PW6n+v7Zbot5lSTdcoI1t7laWXgS8lYBtquQUekX3BxbKBkbDv+v6xIG6Lu2+QZ5Rxa2uf/l6deSojCvDefStWWInVjoI2kp4ANJR1U0sbjhDks92Hi5timzDGYZibrwkQ1k3ImIQ/40of+vK3Mq+3brCFyK1/hrRZUO4jUizEM2f0ohttNlTUKnbhUAhUAgUAoXABiNQBLzBAFfxhUAhUAgUAoXAKASKgEehUnGFQCFQCBQChcAGI1AEvMEAV/GFQCFQCBQChcAoBIqAR6FScYVAIVAIFAKFwAYjUAS8wQBX8YVAIVAIFAKFwCgEFpaA25e7BXw9Lm3Pb+dt7WJzMb/7Fing3H74Pwqi/2cnmcQnmT1kBrOknMEEIwvpMLLk7xD8QdVqqjJSkVo3dSjtcNWbXf7hFiUmfZEtocTYm8F53A4E4wrpMH4blJ8Zz1fVYs91lm9pxaQHDVsutiHWYddsVdULS8CNdFmQGBGd5xDv0oZrSWBjFnjZH2kcarLYms3dv//97+ndZBns6ZQvTQuMK23+8SX//DEfrLGpRAu4u0qRqJZIaqazBvP2IdzEboHNJf84DA1/7GtXtAxnn8hmBFa+XD0uT5/it0H5aWCOwX4QE0uOfW1kqQf5VHGrBpP1NrywH+LIzAjuAuydD46ybumt733ve7vttpuBZ8sw+6MZe8LjONhOajvssIO8utnZvqd6196o+jvzrxhT5atLglZvT7q85O+2I6hc0w2S0CIxJu+MhX36qN/2228fYyoZJrYLb7cCr6p9s8u/qjnt8l//+pedSQFuwBr7euGmN73pX//61/BxS9bbwLYmf8w4bRQwUjKIjCOXukxMSJcFtphhjbO3HbdaMC1Z7EOXOLRRD4Vld9lll4ZC9s3OHKpFDgbaKofIWNKb3/zmLYHuT1ighdvdPgRK/s57YVA3BpUkihSlIqRbOqtzaYcF2OzyD7dITLyl0C0mHpmmz5HbsvyDgwgOl19+ucWMxmL//Oc/W7j/gaXtu/usZ+som5aaMV177bWcDC6s1Sfdxn/lI2aReWRdnvjqY1nwt+zM5dVXX33f+973L3/5C/JmMZWgZBROLYQHlWNkgXOOLPnnDPiq6qIbztENekKL6NItbnELKzF77LGH2SEtokv00LJK3zywzS7/qu5ol5zdO9zhDqyB6bgwD9jQhr/2tjR9DmyD8usaR6aDCTvzqeJQcXwNJVa9z702LNvCEnC6arjBYvSTkcYOsobpMJ0XV3g4vf622mOZWoGyCMgr1z/+8Q+2Mi5LbKuU0gyX0G1Myd8t/mqPYtCNLLTQIrMiFt/8z9yO7tEiaQS8mtBPFSKVY5PKP1IBzIGM33RBRrGnS9YkNHNk+r5FlvzpEdYYFMZRTLRxJF63bhYm7uOS17ro+rLFWDEZgwWaMXnYk3U/dlD/6TxHem4wZcIZkDE9clnfwMcY192WRSDhnIcL6TCm5O8Q/Fb1oGIkTIXM4TDu4PMqnTWYsmXvPDAo1WaUfxhA73+wAyy1QZ1XOrCvTslIH07ft5iSPz3CcWq+kyms7jOd2izsqwkL+xZ0uif042xoJWzU6SckKoEpcKg0iUee+SuspFvGqjNzmfVqpaVAkYPhkYV0GFnydwh+q3pQQ1qYIoV9o1rUTGe1LL0KNJlJ1cKbSP5hMI39vHuFfRkBU3A/A9ss7Ks527L8TQPhwP3NqDGIYIKMuVXD3d3bmIUlYGPJkdm6cwvrCYsV4dSEnd0d10NGJi/ZYVaFuT2oE3j961/PdJpqUQUZrWmrop+/48wMg4RUM8rqfNJJJ5n4k1+7yC9Nc2vG4dBVPPzNloI/GUz89R38dVl4S6ReiPxdCTmh3pgD4mlC+oLkjuOOOy7KI68eSQk9bMU4+Y899lgDwXDQKIE2ECZA0dWtVdOaNk6NAk9SSUWRHOYTrUe6EnVkvSPl91bKy1/+8ggc1SK/9bmRJXQYyfIQMnaGGExohBF/6qmnGtpUyHAwBPIgwN00qvXFMKEaJm2kMGvJSAlTcgvksufnPj627BVkhiuuYvRpjADZjAca87e//c2aVfSA3uMJ8y/61Ki9J61gH0lL7007iEStyczu3OxmN9McbaG+rA+x3ZKyJ2I3MchPSMPs+uuv33HHHRM/iLOF3EyGjGG90EZmK6HzAPWAraWXQUnSIwwTmRPf+mgwWR/CI+WPzkA7GsVKGilGRB8EHpSBVJgJzuQ0e2sqJE3AJ7mR6xITULPWHYOFdBieID+pwlsZtn7VxpvvUNQJVRuw7A+EnWNFnV0yOxFeQ4CvCcaynmpkrEyXjEByTahik94qAp7ecRmo1CW/0cReO+20U7KxTSLpkDS0JCQ3vcT5psgkNDodxk39BM7Ev10aBjFG8xVwUm0kzJRWwBDVClMfswfdwfoblsGcbXW3b7OfVQ2LzPEXdQq1caRH6I9wz63MoPzADzeIhDzeMhayor6q1X24HJzcCIM6RKsXiAd2AfL3lsDGyZ/ZD+Uhv5EbS9UHwJsMhi3BAC6mzXWE0yIxxq9fYxvRLUsLSGO893xQNGlnCxQB3yjcmpWkEwyoyxijjNhM3wYHyY0qdF6JEK0B4MxoOsxGWcxBtWZJ2aPe6jrJV80M/AbMz3gafg35vGHX4vsQaDMenro3nyNSM5TspqaZNyRm0EL1QXgyjJOf/lCqIN9gNygySe2J8MSAcMYstXcJajFRfmgD38oE8I2LzFD7I3kkGSc/4bXLL5hNPXv+O2bj10QhIKNbYX3BiuJdM7a25OCSOdURGp6z3nFYwOhbp6yjPL1bclzHtq1LUfRGOXTdma7QBnbHqGBMKRPTIx6BObukLgK9Omg/aYlEbKovwAYxQFpkyu9SpEYRnqk1qnslPGFIRfIYR32hOSKxr5k1tNM75hOJ75v1JyrBNEEgfjxzydBojjmESPIPeu095IBx8usU8lMbZ/oT1eoh/sDPog6cHaYIGcvEFh/ApRHQF36JJL5Xxzj5I3w4OGanh8JDksJrAoPjoC3RE2OBzfSFQRaVdbKmJd4lpXIpnD4yrqNgrct61TXrIkwR8BQYo9wsy5///GdJ+TEeRhrJ1N2ZbomkOuZ0tITGTClu7rfpdJRezVFuAaLS7EwtjYS0kfAxVXOXcVKFMZHORrLh2qykMUxgMZ4bmS9rph4xyCeV1cU9QqYJRFU/Z4W2EDgePLExXJrgLnroQsZJdY6TnwrFp/RERiu0KJPRSWV1cY+eRzcyDTUWMhMii8GbsDa61EE9fIY9Tn6kxSiFnzIueig8VCk8eJsJojNRmxgfg9qYlSAuLwfApf6SPqY1Y0dMF7ozjzoXtmHrBR4tZ/RRVFab3/ve9z7iEY+gMfvvv/+Xv/xlxjReIzLOMF6vetexHOMz2swGaYs5xPve9z4a/9znPjfP7SRwK2nWsd51KYrAoSUj2bB8xzve8chHPtIovdWtbvWGN7xBFfolQ7q3+H/uc5970IMedKc73Qnm559/Ppnjrx911FF3vetdWaJ99933ZS972be+9a1+riWOlF9b6LyvAB5++OFR/sc97nG/+tWv1qXT17EQk5tTTjnl4IMPNrn06asXvvCFX/nKV1I+427SBnmrWZrz5Cc/+fe///06Vr0uRY2TPw9NjWUDhPAPf/jDNeeLX/ziulS6joVkcn/00Uc/+MEPttp/29ve9kUvetGVV17JbLplAmEp6KUvfanh7O7ee+/9sY99TO06SwLDJNMmBmodRepVUUXAU7qDBuh+xp1+f+pTn3r7299OgX7wgx889KEPNapN/+kKbwA3GAbOU4qb++2MzwimCRrypz/9yQ8w7na3uxkMphcaSPL4jhLPXcApFQI/QlpzPv74408++WQ/gPntb3/7nve85/TTT3/zm98sPwJwjjcwpbi532ZEPOgyaXvb297G33JpomNGbx3ll7/85Rvf+Maf/OQnfo/xne9855hjjslkbu4yTqpwnPwUyTdZH/awh9397ne/9NJLf/Ob3xgXzbmcVOJ875mffelLX3rmM59J2k9+8pPc9Oc///nmnUYEjTrhhBNEmmFcccUVxjIOnq9002sbJz/hTUxNHQwQ+iNgIPdQf+gJq3LNNde84AUv+O53v/uFL3yB13vQQQfFqDKehx56KD7+zGc+YzL3jGc847DDDrvsssvgYmIaV1i4h3Zpes/dyBQUsY7JCHCwJGCJ9ttvv2c961lJTNcR2GmnnUafxHiw50xRcrc/Z2JHGLIx/SbUu+6668UXX2zK/MpXvtIwdjcNlCAzif4IPygJc/OEJzzhiCOOiJDMzZOe9CSjVyDJWksHc/UnHFfgq1/9Ks0hVcSGeS6/8Y1vGLC8gf4IvEqSVfK7ayw87WlPSzIN6S3+UXLiCfBxURq0if273/1OmNeYLvjZz36mC77+9a+7ZaSkXc4yanu7nH9gpPyRkNn5xS9+cZvb3Ea7TEC5j8ayh0oRsluxVwFF4SmJSBMdOF9yySVJYNL28Y9/PGGNwruf+MQnIrn0vWrCqhaty2V5wNMnKqZpMY54i8XHuMlz4IEHnnfeeRSI3hjJiIGLOb24+abg3V533XXqJJswlwuN3e9+92PrWZb4jmapEV5gvtJNry3rz3QdznvuuedZZ51lABuZnOBzzz33MY95TJ4P8WyY0enFdZGCeoDalJ8rrDnsKSmILV6PsJsiJeDo99CDJOpI+Vl5+FvUfdSjHrXzzjvf6173+uxnP8vIdgHwpDqJlKURppy20xNzUP6iPHZiEL7LXe4iAQXbfffdLYRakJDScNAj0ojXR/puUh0beW+c/BGPYI9+9KM9F/MsjMxcAsaKImUsuCu7YyMFnFI2AJvCM0HwD5gmDVRI5n322efd7353xq8lRu26xz3uIVcsksR5V3RKNZv2dhHwlK7L1N7ZODSADVFmlH4btH7UT11olbO7VnElm1Lc3G+zJtktxLzhox/9qOfWr3vd6wzR293udjggY0BAiwgv8dwFnFJhrAl4SfiWt7zFQhYPHvhM/5lnnum5o/yxrTGvU4rr4jYDlFkCU8KsxPoTBO9m5V/AWvoBBxwQquhCxkl1jpSfpyLe4qdVaOuHFm89TKVdkwrq4h6Eo97GKRUyAfXc3UFneMCeO2ICclEwE7u99tqLKymlmWi6TH+5iw+6kH2pznHyo1VmxyfhvF5gNStTNw8C8na9XJFZMuEOORjOZGNbgqRBygFAusYvqUyAPv3pT3sh0Rtknmob3RdccMGd73xn+BPbE/q8pNIV+HOot3ce2xzavFVVZL5mfApY3rnqqqtsIWeayWjSHjpEw+I4GrcdKvq4RpHKLarMj2EueS2x8trCAMWMGiFe/2Ge4uuPK6qr+EjlfM4555xxxhmGqCkFT8Wn+LyEcuSRRwZ/9ihmqCs5x9U7SKsx69EZmIeDPff6wx/+4FFllG1cOV3Fj5Tfgi1pPdv2IINgXimwrnv22WdziLuSc2S97D5TTnkQkrf2vv3tb9McKekMVuB4iXfWF2Lyexh9lG6SLDRGtRQysvyNjhwnvxZ9/vOf9wAb6WaAkIQfnLfrNQSlGfvaqF1dCU+koIpcIck8vvrVryaw9w0JllcOvQpq0mNo3/72t9ciDzWsSNMrJre91y1jh03Y2C6GSx2TEcBMEmTl+aKLLhJOjJf3HvKQhySvMWyoTC6n27uerESTmgcWuiKVwcCb6a380I5seNerTKxhkHzta19rLR0HuxtL2i3CE2rPiwLWTjxxzBtAee4uyyGHHGJ7afIjY5OkCYV0eGtYfsJQp3e9610kpz8uX/KSl3hJokMhJ1dNPJrvyUXwpzN56EvzHYm89a1vfeKJJypH70TN0rSmcpOr2NC7q+THSa961atQbGMm2qVHvBxqtk0SjfKiX0RK6zZUvKmF0+3nPOc5pggeWkts7U2MpwCsEK9GDJAdD3zgAy3Rgd3jbWeDIq/XTC1/kyaoJejp8xv+ikTWQi31XHjhhVSHT4AVPvShD+W1SYMh2k8Jphc39xR56+EpT3mKiacx6UVEYwB1eYmJDaLlhrGJqkN47tJNqdDwgzaEYWtenx/zJA/TI8bTd2LDn9HMJGlKifO9TUIVUh5ndtCqiVUHbdEoiuQZ9g9/+MP3v//95O+n+z5Ofs2hQj/+8Y81hP4wlF41GPlBwfnivbo2PGT8PvvZz/brI6+akzCrPnTGUifMP/KRj1gXFeldbuu3CEARVIsHpps0bXWJ870eJz8f3evcP/rRj/z0C4E50y4/DfjgBz+I5KiWRvEgM3ON+s1X8Btq8wUFXPviF7/4a1/7mhehPfwCPpGADHAN5AoLANxxy1ve0q8DJDBbAr4Oag7DDSUuUoiS1TEBgTi7SfCBD3yANniS+vOf/9w0jRpYTqHibYLZQw8m1EUwARNMv0HSFjLz3Q1g4fiOkdxgmABFV7esUKVqv1JgKK1TMTfWonfbbTfrz8yru6i3h+BHbBIiKr+yYF/8jI3ykN8tbxEzPeKZS+zl6GcTRsrPRHr0awh8+MMfZj39PputxHBpcq/OPEVyfvOb3zQTpf9W+6Mzhu1Tn/pUr/x4Nf373/++H6r6HWpuGSmakO4Ih3XYonHyxzRFPCRnJuR5KsmJrXcisIAEnetVXt3wkEUX0BZnC1exPKZBVoD8sFO8NS095W0+wrNFaaA566AR7rAjNqLqpYccdUxGQPe3QWgJ1EKohy6eBPMjQ2+yN42fXFR/7lqq8sPNyBPhOx+lE8AxVkHNYpr3eA/O9Bn+nidxvOSK/BK0dd0JRc3/lp+ZmuzHCzGBYGKsxf36178WyBM7AdzsbIli/uJNrXGk/HIB3K8AvMdkOLChFofCXlMLnGcCugHYLFAJxKM1k44MmuAnwhZReI1eJ0YM4ilbFCnz0W6Vapz8gTrMlLDW6QLyZzhg4j7wlsklkbjjxKMnDgHue7oAthbhPPfl+BoCJkB+5pAuaA1Jc1wu5NHHb0fooToKgUKgECgECoHFRqCeAS92/1brCoFCoBAoBHqKQBFwTzumxCoECoFCoBBYbASKgBe7f6t1hUAhUAgUAj1FoAi4px1TYhUChUAhUAgsNgJFwIvdv9W6QqAQKAQKgZ4iUATc044psQqBQqAQKAQWG4Ei4MXu32pdIVAIFAKFQE8RKALuaceUWIuNgE2EDj/88LTRNxMEfPbB2ccTnH1zILecfTPI2SdHnH3WoMUPfnez5ZLRZxmSxlcmfEUoYV858D2Nllca30Bol8nu0meEnWVs33ZokuSLEG61mJa9AoVAITAbAkXAs+FWuQqBNSFgb4x3vvOdvrB2xzve0X6u2NenHH14OZ8KQrfhUSzr66c+UpYPafncoFp9Ecw5m8lIiUqTyyecEK1vetv2xy57Pr/lC0QSp7T73Oc+coVr861gl3bEcpY9Zfp6cGYDClEU7s+0QMm+IYV6ldkIXsY6CoFCYC0IdPyp8bWIXnkLgc2LwE477RRXkmeJ1RzaYqsALiYu9HFEl2gvLJsPKGI+AZGoGk36np+dKnxDUUo0iTIlFnD48qIPdopH2OFs4aTEtVg/YRXZwt0tDC2L8hWiWPSsCoLlO/itFimJp0COdSQUU0chUAjMjEB5wDNDVxkLgdkR2H///X2L+4lPfKKtJmwUgy95nLgTE9utwZ48Lu95z3v6ir2P1KsG89lG3tfqjz32WKz59Kc/HX/bDdAuqljTp5jtzc5dRpy2vD3mmGPsLqAEl7bHwaB41yYWoXwb4trXS0VI1JeQ8S7SxejPe97zfJXXp/9tlm7XqaOPPhoTc6+xNR+dSy2ZsA0Min1n7/jKWQgMIFAEPABGBQuBeSGA8HAqYsOgJ598sn3luJUo0149Bx54IHq2MYCntuKPP/54Hiq+lMB2NyhQ/EknncQV5oxayr7mmmve9KY32ZvIVkvE32uvvQ477DBnO+QoDcXKwuvNIvYf//jHQw89dMcdd7Rz0WWXXYaMbalppRq5qsIG7zjbhpUnnHCCfdGzVZ80HlefdtppNtO1a42lbKXNC6eqpxBYZARqCXqRe7fa1lsEcKodYCwa80qRMf+Sr4kIX/Oa19iW57jjjos3jGgPPvhgl7jZ1kkc0yOOOKI5oNm+zUqyrZ1tr4Setdd+q0kgfXamE6mi7ER58cUX87Bty5p9mfjKNorGyvail4wnfdRRR1mOxrJnn302krZxEyLnQD/+8Y8nA6l4xqYOvQW2BCsENhECRcCbqLNK1MVBwONVa8sY1wqwp60cUB6qJV9vRfF6UR16Rsk2+7Ow7ECrPODdd98dubpEnxzWc88915tcP/3pTzGit6sUAiBhnjFHFscrU+HSc5dllODKK6+0vi27ZEp4wAMegJttCUceUwFpZMytnXfe2TbGJMTKNm3lRh900EH77ruvJei2u9/i9Ee1pBDoAoFagu4C9apzm0cAuebVKk4qluUEO/Aid5M7yyW99NJLeauXXHJJ3NO8IcVR5oOiTLkuv/xyq8cHHHAAP9XKsJVqdCveoSjJ0LAwBpU+3CwSH3tmLEF6wFo0ekaokonh6WJlh+rECIhEyZj4nHPO8Y4Yj9zG9dait/kOLAAKgXVAoDzgdQCxiigEthYB7MvNlQvJ8TgxJV7Ejve+970tJnsny5F4PMo3lZgHjEdDim55zYpb7OkvWsWRXubi8qZY3MkhFsajqpDYoRDJvMllL3QPcaVxvuiiiwTUJSxBCremjZKJpEDZt9tuO3c9lna89a1vRfNXXXXVrrvuurVNrvSFQCGwCoHygFcBUpeFwDwQsNqMWdXklWPvLWM471KhOj/htQR95JFHekxrjfrCCy98xStegT6llB6tJhcq9UOma6+99oILLpDxrLPOOvPMM3m6kvGtLV/zpLnF+ZlvaFVGfGwB2bNhi8lXX30119kzYGGvVburTJ4xGuYHkwflW4V26fWu008//YorrvA2lgA/WPp5YFR1FAKLjkAR8KL3cLWvlwh45ppl4RNPPJFDaRXae8vYbo899jj//PO9J8XdxH/u7rLLLngRGfNKrVELX3/99drkJ0y42btRhxxyyBlnnOG9ZfQsXhqL2Pvtt59bnhmfcsopsuSJMoLnv5533nmq23PPPR/72Mfuvffep556qly+gcX/RtU+viEZPpbruuuuQ8P4GM3vs88+97///eX1RhhRZamjECgE1ojAfxjzayyishcChcDWIsDFxHB5HIvwZM87U8ZjlqbFIFTk5+1lS8QuOc3INRVl2ErJOY6Dm7vOyuHjikfwLQGHGAcnr7Vlq9PoNvVmwdktMVnBJpsyFeWdLOH43MkbkVJCYupcCBQCMyNQBDwzdJWxEFgrAjgvNCyAjBWH9pAfahTvQMAi88ZWHgBLKQFe9Oy2VZ/HwG6FU/PGVsgy2SX2shU+5vt6IxqRK00CKcU4u8S+aDuMG1JHtGKUmbOiZMHH6F/6VnsFCoFCYDYEahTNhlvlKgTWAQHchs/4rNgX8ykRNSJLzCfG4YUskQLOSBElhyylQbp40fc63PL41lkJ8YydlYC88aX48KgnxLjWLefQp9KEJVAm9hVQBXnCvi5FupSYnKpzKBOLF/sCp45CYO0IlAe8dgyrhEJgqxHAefzavDaVzOgtPJpvL+NOPId6+bU4Dxd6C9qasMRZbR6sUmnNXY4fLEZehcSHzmVzkQXEuIVrswQdx7eVGeZOXh6zx89kcFctpgsuW8oKFAKFwMwIlAc8M3SVsRCYHQHsiH0RIUpTCpLDvmjPpU9eIDnkJ41LaeKeor04uNxf8Qg7eQWklJ6nqyjeqixxUkUKi5Qgb1elBFm8jYV0cbliXcolWRJLI6ODhy0S9TrioLuUPvQsXEchUAisBYHygNeCXuUtBAqBQqAQKARmRKA84BmBq2yFQCFQCBQChcBaECgCXgt6lbcQKAQKgUKgEJgRgSLgGYGrbIVAIVAIFAKFwFoQKAJeC3qVtxAoBAqBQqAQmBGBIuAZgatshUAhUAgUAoXAWhAoAl4LepW3ECgECoFCoBCYEYEi4BmBq2yFQCFQCBQChcBaEPj/irz388K357wAAAAASUVORK5CYII=", "text/plain": [ "" ] @@ -474,9 +488,10 @@ } ], "source": [ - "from PIL import Image\n", - "import io\n", "import base64\n", + "import io\n", + "\n", + "from PIL import Image\n", "\n", "image_bytes = base64.b64decode(vqe_result.convergence_graph_str)\n", "\n", @@ -487,16 +502,8 @@ "image = Image.open(image_file)\n", "\n", "# Muestra la imagen en el notebook\n", - "display(image)" + "# display(image) # uncomment to display" ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "9423b5a6-1b73-4979-a6d5-838af4e8f979", - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { diff --git a/community/QClass_2024/Submissions/HW3/Csaba_Szilard_Racz-HW3_VQE.ipynb b/community/QClass_2024/Submissions/HW3/Csaba_Szilard_Racz-HW3_VQE.ipynb deleted file mode 100644 index 285ec6b5..00000000 --- a/community/QClass_2024/Submissions/HW3/Csaba_Szilard_Racz-HW3_VQE.ipynb +++ /dev/null @@ -1,389 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "id": "fc72d98f-8993-4bd4-a545-23d122f3df71", - "metadata": {}, - "source": [ - "# H₂ Molecule Homework Assignment\n", - "### Quantum Software Development Journey: From Theory to Application with Classiq - Part 3\n", - "\n", - "- Similarly to what we have done in class, in this exercise we will implement the VQE on H2 molecule.\n", - "- This time instead of using the built-in methods and functions (such as `Molecule` and `MoleculeProblem`) to define and solve the problem, you will be provided with a two qubits Hamiltonian." - ] - }, - { - "cell_type": "markdown", - "id": "56eda6d8-76c4-4862-b914-0c4598d67274", - "metadata": {}, - "source": [ - "## Submission\n", - "- Submit the completed Jupyter notebook and report via GitHub. Ensure all files are correctly named and organized.\n", - "- Use the Typeform link provided in the submission folder to confirm your submission.\n", - "\n", - "## Additional Resources\n", - "- [Classiq Documentation](https://docs.classiq.io/latest/)\n", - "- The notebook from live session #3\n", - "\n", - "## Important Dates\n", - "- **Assignment Release:** 22.5.2024\n", - "- **Submission Deadline:** 3.6.2024 (7 A.M GMT+3)\n", - "\n", - "---\n", - "\n", - "Happy coding and good luck!" - ] - }, - { - "cell_type": "markdown", - "id": "d41e969d-f6a7-4ff7-9660-19ce6c97ba6b", - "metadata": {}, - "source": [ - "### Part 1" - ] - }, - { - "cell_type": "markdown", - "id": "f710d6f4-d40b-42d5-b524-c6acb8059fe2", - "metadata": {}, - "source": [ - "Given the following Hamiltonian:" - ] - }, - { - "cell_type": "markdown", - "id": "6ba8a6f1-3259-4492-a1ca-3abde7530cd4", - "metadata": {}, - "source": [ - "$$\n", - "\\hat{H} = -1.0523 \\cdot (I \\otimes I) + 0.3979 \\cdot (I \\otimes Z) - 0.3979 \\cdot (Z \\otimes I) - 0.0112 \\cdot (Z \\otimes Z) + 0.1809 \\cdot (X \\otimes X)\n", - "$$" - ] - }, - { - "cell_type": "markdown", - "id": "736d275c-9a5a-4c08-b891-3078430dc6c1", - "metadata": {}, - "source": [ - "Complete the following code" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "id": "19266c11-6acc-4edb-910f-2d0dfe80a6c8", - "metadata": {}, - "outputs": [], - "source": [ - "from typing import List\n", - "from classiq import *\n", - "\n", - "HAMILTONIAN = QConstant(\"HAMILTONIAN\", List[PauliTerm],\n", - " [PauliTerm([Pauli.I, Pauli.I], -1.0523),\n", - " PauliTerm([Pauli.I, Pauli.Z], 0.3979),\n", - " PauliTerm([Pauli.Z, Pauli.I], -0.3979),\n", - " PauliTerm([Pauli.Z, Pauli.Z], -0.0112),\n", - " PauliTerm([Pauli.X, Pauli.X], 0.1809)]\n", - " ) #TODO: Complete Hamiltonian" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "id": "0bb68899-2076-45c0-8868-131f38aa3b78", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/490774a2-4a81-468f-b28c-680cd171ca48?version=0.42.0\n" - ] - } - ], - "source": [ - "@qfunc\n", - "def main(q: Output[QArray[QBit]], angles: CArray[CReal, 3]) -> None:\n", - " # TODO: Create an ansatz which allows each qubit to have arbitrary rotation\n", - " allocate(2, q)\n", - " U(angles[0], angles[1], angles[2], 0, q[0])\n", - " U(angles[0], angles[1], angles[2], 0, q[1])\n", - "\n", - "\n", - "@cfunc\n", - "def cmain() -> None:\n", - " res = vqe(\n", - " # TODO: complete the missing argument\n", - " HAMILTONIAN,\n", - " False,\n", - " [],\n", - " optimizer=Optimizer.COBYLA,\n", - " max_iteration=1000,\n", - " tolerance=0.001,\n", - " step_size=0,\n", - " skip_compute_variance=False,\n", - " alpha_cvar=1.0,\n", - " )\n", - " save({\"result\": res})\n", - "\n", - "#TODO: complete the line, use classical_execution_function\n", - "qmod = create_model(main, classical_execution_function=cmain)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "id": "0563c1a8-7aec-4da9-9105-6b16c5c24382", - "metadata": {}, - "outputs": [], - "source": [ - "execution = execute(qprog)\n", - "res = execution.result()\n", - "execution.open_in_ide()\n", - "vqe_result = res[0].value #TODO: complete the line" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "id": "de17cfc0-8e64-4493-b4c2-4a97fc9797a0", - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Optimal energy: -1.07021669921875\n", - "Optimal parameters: {'angles_0': -2.7719312634977746, 'angles_1': 4.446680549285845, 'angles_2': 3.477513433640137}\n", - "Eigenstate: {'00': (0.05412658773652741+0j), '10': (0.18221724671391565+0j), '01': (0.19008632907181935+0j), '11': (0.9631896879639026+0j)}\n" - ] - } - ], - "source": [ - "print(f\"Optimal energy: {vqe_result.energy}\")\n", - "print(f\"Optimal parameters: {vqe_result.optimal_parameters}\")\n", - "print(f\"Eigenstate: {vqe_result.eigenstate}\")" - ] - }, - { - "cell_type": "markdown", - "id": "5df11dfc-3e3a-4191-bd47-d522ca3dcbfa", - "metadata": {}, - "source": [ - "Does it similar to the `optimal energy` we calculated in class? \\\n", - "Does it similar to the `total energy` we calculated in class?" - ] - }, - { - "cell_type": "markdown", - "id": "4f0e0bea-b12f-43ad-94e8-100fedf2b57f", - "metadata": {}, - "source": [ - "### Part 2" - ] - }, - { - "cell_type": "markdown", - "id": "66882248-de08-4a6e-b33c-647f015f7d79", - "metadata": {}, - "source": [ - "**Now, we want to have a more interesting ansatz in our `main`.** \n", - "Add **one** line of code to the `main` function you created in Part 1 that creates **entanglement** between the two qubits. \n", - "Which gate should you use?" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "id": "bb39be9e-4994-44e5-84d8-c99bc8b77145", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/bc8784d2-6c13-4f36-840e-ca36485adca6?version=0.42.0\n" - ] - } - ], - "source": [ - "@qfunc\n", - "def main(q: Output[QArray[QBit]], angles: CArray[CReal, 3]) -> None:\n", - " # TODO: Create an ansatz which allows each qubit to have arbitrary rotation\n", - " allocate(2, q)\n", - " U(angles[0], angles[1], angles[2], 0, q[0])\n", - " U(angles[0], angles[1], angles[2], 0, q[1])\n", - " \n", - " # create entanglement between the two qubits\n", - " CX(q[0], q[1])\n", - "\n", - "\n", - "\n", - "@cfunc\n", - "def cmain() -> None:\n", - " res = vqe(\n", - " # TODO: complete the missing argument\n", - " HAMILTONIAN,\n", - " False,\n", - " [],\n", - " optimizer=Optimizer.COBYLA,\n", - " max_iteration=1000,\n", - " tolerance=0.001,\n", - " step_size=0,\n", - " skip_compute_variance=False,\n", - " alpha_cvar=1.0,\n", - " )\n", - " save({\"result\": res})\n", - "\n", - "#TODO: complete the line, use classical_execution_function\n", - "qmod = create_model(main, classical_execution_function=cmain)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "id": "112a1590-283c-4f79-8035-72936561102d", - "metadata": {}, - "outputs": [], - "source": [ - "execution = execute(qprog)\n", - "res = execution.result()\n", - "execution.open_in_ide()\n", - "vqe_result = res[0].value #TODO: complete the line" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "id": "06500e4c-a04b-4cfa-a84d-41f96a0c68eb", - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Optimal energy: -1.84520302734375\n", - "Optimal parameters: {'angles_0': 3.2017515243271615, 'angles_1': -5.448452277177368, 'angles_2': -3.027587294714585}\n", - "Eigenstate: {'11': (0.03125+0j), '10': (0.03125+0j), '01': (0.9990229601966113+0j)}\n" - ] - } - ], - "source": [ - "print(f\"Optimal energy: {vqe_result.energy}\")\n", - "print(f\"Optimal parameters: {vqe_result.optimal_parameters}\")\n", - "print(f\"Eigenstate: {vqe_result.eigenstate}\")" - ] - }, - { - "cell_type": "markdown", - "id": "30a635d7-2f15-4c94-a94b-f4270f17aed8", - "metadata": {}, - "source": [ - "Does it similar to the `optimal energy` we calculated in class? \\\n", - "Does it similar to the `total energy` we calculated in class? \\\n", - "What can we learn about the provided form this result Hamiltonian?" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "id": "a7824e45", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "energy=-1.84520302734375 time=0.4464535713195801 solution=None eigenstate={'11': (0.03125+0j), '10': (0.03125+0j), '01': (0.9990229601966113+0j)} reduced_probabilities={'11': 0.0009765625, '10': 0.0009765625, '01': 0.998046875} optimized_circuit_sample_results=ExecutionDetails(vendor_format_result={}, counts={'11': 2, '10': 2, '01': 2044}, counts_lsb_right=True, parsed_states={'11': {'q': 3.0}, '10': {'q': 2.0}, '01': {'q': 1.0}}, histogram=None, output_qubits_map={'q': (0, 1)}, state_vector=None, parsed_state_vector_states=None, physical_qubits_map={'q': (0, 1)}, num_shots=2048) intermediate_results=[VQEIntermediateData(utc_time=datetime.datetime(2024, 6, 2, 16, 17, 22, 758414, tzinfo=datetime.timezone.utc), iteration_number=1, parameters=[2.591176246955154, -5.62624493452543, -3.026748767095255], mean_all_solutions=-1.6016041015625, solutions=[], standard_deviation=0.378010120085899), VQEIntermediateData(utc_time=datetime.datetime(2024, 6, 2, 16, 17, 22, 773212, tzinfo=datetime.timezone.utc), iteration_number=2, parameters=[3.591176246955154, -5.62624493452543, -3.026748767095255], mean_all_solutions=-1.7835126953124998, solutions=[], standard_deviation=0.3353871483673314), VQEIntermediateData(utc_time=datetime.datetime(2024, 6, 2, 16, 17, 22, 792071, tzinfo=datetime.timezone.utc), iteration_number=3, parameters=[3.591176246955154, -4.62624493452543, -3.026748767095255], mean_all_solutions=-1.7193850585937498, solutions=[], standard_deviation=0.34049937265490965), VQEIntermediateData(utc_time=datetime.datetime(2024, 6, 2, 16, 17, 22, 805220, tzinfo=datetime.timezone.utc), iteration_number=4, parameters=[3.591176246955154, -5.62624493452543, -2.026748767095255], mean_all_solutions=-1.7835126953124998, solutions=[], standard_deviation=0.3353871483673314), VQEIntermediateData(utc_time=datetime.datetime(2024, 6, 2, 16, 17, 22, 818623, tzinfo=datetime.timezone.utc), iteration_number=5, parameters=[4.534289197595433, -5.958717433139357, -3.026748767095255], mean_all_solutions=-1.3073765625, solutions=[], standard_deviation=0.5615424423558852), VQEIntermediateData(utc_time=datetime.datetime(2024, 6, 2, 16, 17, 22, 832066, tzinfo=datetime.timezone.utc), iteration_number=6, parameters=[4.062732722275293, -5.792481183832393, -3.026748767095255], mean_all_solutions=-1.55428916015625, solutions=[], standard_deviation=0.5056342397245829), VQEIntermediateData(utc_time=datetime.datetime(2024, 6, 2, 16, 17, 22, 844981, tzinfo=datetime.timezone.utc), iteration_number=7, parameters=[3.3431392774380595, -5.6575125176232, -3.026748767095255], mean_all_solutions=-1.83837626953125, solutions=[], standard_deviation=0.22633583253549727), VQEIntermediateData(utc_time=datetime.datetime(2024, 6, 2, 16, 17, 22, 857573, tzinfo=datetime.timezone.utc), iteration_number=8, parameters=[3.2268152262568046, -5.436223758042464, -3.026748767095255], mean_all_solutions=-1.8445676757812501, solutions=[], standard_deviation=0.18729033409038648), VQEIntermediateData(utc_time=datetime.datetime(2024, 6, 2, 16, 17, 22, 875596, tzinfo=datetime.timezone.utc), iteration_number=9, parameters=[3.2268152262568046, -5.436223758042464, -2.901748767095255], mean_all_solutions=-1.8445676757812501, solutions=[], standard_deviation=0.18729033409038648), VQEIntermediateData(utc_time=datetime.datetime(2024, 6, 2, 16, 17, 22, 891550, tzinfo=datetime.timezone.utc), iteration_number=10, parameters=[2.9941314913478547, -5.527647384686902, -3.026748767095255], mean_all_solutions=-1.8108190429687498, solutions=[], standard_deviation=0.1971209656563929), VQEIntermediateData(utc_time=datetime.datetime(2024, 6, 2, 16, 17, 22, 904967, tzinfo=datetime.timezone.utc), iteration_number=11, parameters=[3.325497578895095, -5.359498317165451, -3.026748767095255], mean_all_solutions=-1.8361275390624998, solutions=[], standard_deviation=0.21893409874005848), VQEIntermediateData(utc_time=datetime.datetime(2024, 6, 2, 16, 17, 22, 918301, tzinfo=datetime.timezone.utc), iteration_number=12, parameters=[3.2603126158808133, -5.488989039131239, -3.026748767095255], mean_all_solutions=-1.84418837890625, solutions=[], standard_deviation=0.19660479594710784), VQEIntermediateData(utc_time=datetime.datetime(2024, 6, 2, 16, 17, 22, 938686, tzinfo=datetime.timezone.utc), iteration_number=13, parameters=[3.171296302671158, -5.464927401084613, -3.026748767095255], mean_all_solutions=-1.84237646484375, solutions=[], standard_deviation=0.18081708529012178), VQEIntermediateData(utc_time=datetime.datetime(2024, 6, 2, 16, 17, 22, 955445, tzinfo=datetime.timezone.utc), iteration_number=14, parameters=[3.2500212740031085, -5.415294308742584, -3.026748767095255], mean_all_solutions=-1.8430465820312498, solutions=[], standard_deviation=0.19441739923500487), VQEIntermediateData(utc_time=datetime.datetime(2024, 6, 2, 16, 17, 22, 968573, tzinfo=datetime.timezone.utc), iteration_number=15, parameters=[3.2268152262568046, -5.436223758042464, -3.011123767095255], mean_all_solutions=-1.8445676757812501, solutions=[], standard_deviation=0.18729033409038648), VQEIntermediateData(utc_time=datetime.datetime(2024, 6, 2, 16, 17, 22, 984559, tzinfo=datetime.timezone.utc), iteration_number=16, parameters=[3.1986195961055737, -5.449698510002148, -3.026748767095255], mean_all_solutions=-1.84484970703125, solutions=[], standard_deviation=0.18072523940533955), VQEIntermediateData(utc_time=datetime.datetime(2024, 6, 2, 16, 17, 22, 997082, tzinfo=datetime.timezone.utc), iteration_number=17, parameters=[3.2102642410300346, -5.478697902143764, -3.026748767095255], mean_all_solutions=-1.84435537109375, solutions=[], standard_deviation=0.18406340596878584), VQEIntermediateData(utc_time=datetime.datetime(2024, 6, 2, 16, 17, 23, 12864, tzinfo=datetime.timezone.utc), iteration_number=18, parameters=[3.1732342784852783, -5.4314735779222545, -3.026748767095255], mean_all_solutions=-1.84237646484375, solutions=[], standard_deviation=0.18081708529012178), VQEIntermediateData(utc_time=datetime.datetime(2024, 6, 2, 16, 17, 23, 25677, tzinfo=datetime.timezone.utc), iteration_number=19, parameters=[3.185926937295426, -5.440586043962201, -3.026748767095255], mean_all_solutions=-1.843259765625, solutions=[], standard_deviation=0.18078817268061279), VQEIntermediateData(utc_time=datetime.datetime(2024, 6, 2, 16, 17, 23, 38419, tzinfo=datetime.timezone.utc), iteration_number=20, parameters=[3.1986195961055737, -5.449698510002148, -3.018936267095255], mean_all_solutions=-1.84484970703125, solutions=[], standard_deviation=0.18072523940533955), VQEIntermediateData(utc_time=datetime.datetime(2024, 6, 2, 16, 17, 23, 54146, tzinfo=datetime.timezone.utc), iteration_number=21, parameters=[3.2042902102445594, -5.4642582064374015, -3.026748767095255], mean_all_solutions=-1.8441787109375, solutions=[], standard_deviation=0.18407196828067413), VQEIntermediateData(utc_time=datetime.datetime(2024, 6, 2, 16, 17, 23, 66667, tzinfo=datetime.timezone.utc), iteration_number=22, parameters=[3.2053213272750813, -5.445683294493405, -3.026748767095255], mean_all_solutions=-1.8441787109375, solutions=[], standard_deviation=0.18407196828067413), VQEIntermediateData(utc_time=datetime.datetime(2024, 6, 2, 16, 17, 23, 82224, tzinfo=datetime.timezone.utc), iteration_number=23, parameters=[3.194719350789295, -5.449482002414873, -3.026748767095255], mean_all_solutions=-1.84414306640625, solutions=[], standard_deviation=0.18075493904464865), VQEIntermediateData(utc_time=datetime.datetime(2024, 6, 2, 16, 17, 23, 95474, tzinfo=datetime.timezone.utc), iteration_number=24, parameters=[3.199962592591955, -5.453366636158657, -3.026748767095255], mean_all_solutions=-1.84484970703125, solutions=[], standard_deviation=0.18072523940533955), VQEIntermediateData(utc_time=datetime.datetime(2024, 6, 2, 16, 17, 23, 108114, tzinfo=datetime.timezone.utc), iteration_number=25, parameters=[3.2004536591838284, -5.449027011758957, -3.026748767095255], mean_all_solutions=-1.8450263671875, solutions=[], standard_deviation=0.18071738199833995), VQEIntermediateData(utc_time=datetime.datetime(2024, 6, 2, 16, 17, 23, 123912, tzinfo=datetime.timezone.utc), iteration_number=26, parameters=[3.202287722262083, -5.448355513515767, -3.026748767095255], mean_all_solutions=-1.8453796875, solutions=[], standard_deviation=0.18070114803150075), VQEIntermediateData(utc_time=datetime.datetime(2024, 6, 2, 16, 17, 23, 137062, tzinfo=datetime.timezone.utc), iteration_number=27, parameters=[3.204215762026098, -5.448150392901527, -3.026513638475947], mean_all_solutions=-1.8441787109375, solutions=[], standard_deviation=0.18407196828067413), VQEIntermediateData(utc_time=datetime.datetime(2024, 6, 2, 16, 17, 23, 149810, tzinfo=datetime.timezone.utc), iteration_number=28, parameters=[3.2024117660313935, -5.448413069051517, -3.027715708055193], mean_all_solutions=-1.8446025390625, solutions=[], standard_deviation=0.18240355711064926), VQEIntermediateData(utc_time=datetime.datetime(2024, 6, 2, 16, 17, 23, 162686, tzinfo=datetime.timezone.utc), iteration_number=29, parameters=[3.200964098765243, -5.447555772709687, -3.02555581581908], mean_all_solutions=-1.8450263671875, solutions=[], standard_deviation=0.18071738199833995), VQEIntermediateData(utc_time=datetime.datetime(2024, 6, 2, 16, 17, 23, 178398, tzinfo=datetime.timezone.utc), iteration_number=30, parameters=[3.201957976817865, -5.45017117313695, -3.0261089660733367], mean_all_solutions=-1.84520302734375, solutions=[], standard_deviation=0.1807093515480838), VQEIntermediateData(utc_time=datetime.datetime(2024, 6, 2, 16, 17, 23, 191348, tzinfo=datetime.timezone.utc), iteration_number=31, parameters=[3.2017515243271615, -5.448452277177368, -3.027587294714585], mean_all_solutions=-1.84520302734375, solutions=[], standard_deviation=0.1807093515480838)] optimal_parameters={'angles_0': 3.2017515243271615, 'angles_1': -5.448452277177368, 'angles_2': -3.027587294714585} convergence_graph_str='/9j/4AAQSkZJRgABAQEAZABkAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAHgAoADASIAAhEBAxEB/8QAGwABAQACAwEAAAAAAAAAAAAAAAYCBQMEBwH/xABWEAABAwMBAgUQBgcEBwcFAAAAAQIDBAURBhIhExQWMXEHFSIzN0FRVVZhdZOVs9PUIzJSgZHBQlOSobHR4VRicqIXJGRzgpTiJTRjhKPC0kRFZfDx/8QAGAEBAQEBAQAAAAAAAAAAAAAAAAMCBAH/xAAwEQEAAQICCAUEAgMBAAAAAAAAAQIDERIhMTNSYXGhwTJRsdHhBEGBkRMjIkJDYv/aAAwDAQACEQMRAD8A9/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATmqdSVliqLRSW+1x3CquVQ6CNklVwDW7LHPVVdsO7zV7x2LbdbskNXUaitlDaKaBm3wzbjwzcJnaVyqxiNRETnJvqi01PWXzR1PVVEtPA+4yo6WGd0Lm/QPXc9qoqfiNQ2u22zqdasS33KrrFktkyvSpuMlVs4jdjG25dnnXm593gAsKa92msrX0VLdKKerY3bdBFUMdI1vhVqLnG9BV3y0UFZFR1l1oaaqlxwcM1Qxj358DVXKkHW2i32em6nc9vo4aedLhDAssbER7mSU0u2irzrtKiKuedSepLfU3SbV1JX3LTFPPLcahlUy60avqGxqv0bkesrew2NnZVEwmPDkD2Csu9stz9iuuNJSu4NZcTztYuwioiu3rzIqomfOhxSX+zQrSJLd6CNaxqPpUfUsRZ2rzKzK9ki+YgYbNTVGu9GU1wmhuyUlgle2oc1HMncixNSTC5RcouU5/CZULNORau1rHqVlAx7FhbG2rRqIlEkLdlI0X9HO3nZ7/nA9Bgu9tqXUyQXGklWqR606RzNdwqM3OVuF7LHfxzHMlZTOrXUaVEK1TY0ldAj020YqqiOVvPhVRUz5jyKyxOpOo1pfUdO16zWKd1Yu7s3QLK9kzfVucvS1Cx0Fi6yXnVbt6XarVtKv8AssOY4/xVHu/4gKmuuNFa6Zam4VlPSU6LhZaiVsbUXpVUQ42Xi2SW1bky40jqBEytUk7ViRPDt5x+8jdR8Q/0qWPr9wHW3rdPxLjOOC43tszz7trg+bPnwdfV/WTjulM8R5Oddn8c4LY4DhuCdwfCY3fXxnPfxkC6p7xa6y3yXCmuVHPRRo5z6mKdro2oiZVVci4TCc5hTX20VlbxKlutDPVbCScBFUMc/ZVMo7ZRc4wqLk81uXEevWvusXA9buTa8c4tjguNbMuObdtcHjOPNk55bRb7Vpnqd1NFRwwVCXCiaszGIj3JJG5JMu512srnwgemQV1JVQyTU9VBNFG5zHvjkRzWuauHIqpzKioqKneOtNfbRTW2K4z3WhioZURY6mSoY2J6LzYcq4X8TzPUtXPYLpqXS1I5WTamfDLbsfovnVIahfuxt/8AEcuoaGWi6o1ot8FRaKOip7KkNu67U6zRbbX4ejOzaiSbCR+fH3gemLdbc2hjrlr6VKSVWtjnWZvBvVy4aiOzhcquE8KnX5RWPiU1b15t/FIJOCln40zg437uxc7OEXem5fCeWXexR0vU9udG+6W6vp6u/wBK58dtZsQ06vli242ptO2efaxn9LzlHqaitFBrnSEFZTUdPZUSq2GOjayDjOwxI9pPq52Ufs5+4C4o7pb7ir0oq6mqVY1r3JBM1+y12Vaq4Xci4XHhwcdFfLRcqqWlobrQ1VRF2yKCoY97OlEXKHkVXwHB9VbkrsbPF6XHFPq52H8LsY/4847+e+bW1WhlXctNVtPqDScUVLM19K22UawyzMVio6JFWVcorV3pjOU8wHokupLFDKkUt6t0cjpXQIx9UxFWRq4VmM/WRVTKc52a+5UFqpuM3GtpqODOOFqJWxtz4MuVEPLqCx2ur0l1SKqpoYJqiS43JFlkYjnIjUVWoirzYXKpjvrk56SajqNY6Vm1G6F9NJptj6J1YqLGtUqtWVU2t23sbPnxkD0hLtbXW3rklwpFoMbXGkmbwWObO3nH7zKguVDdaZKm3VtNWQKuOFp5WyNz4MtVUPONeJTLU6TS2T2eCy8fn4WSeFJaNtRsLsbbWOamdrbxlfrYybfRtofR6putc682SokqaeJs1HaoeCa1zVdsyObtu3qiqmd2ceYC6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMX5RjlRcLgDIEPpi23u86UtF0qNZXlk1ZRQ1EjY4aPZRz2I5UTMCrjK+E2vJq6+Wt89TR/AAowTnJq6+Wt89TR/AHJq6+Wt89TR/AAowTnJq6+Wt89TR/AHJq6+Wt89TR/AAowTnJq6+Wt89TR/AHJq6+Wt89TR/AAowTnJq6+Wt89TR/AHJq6+Wt89TR/AAowTnJq6+Wt89TR/AHJq6+Wt89TR/AAowTnJq6+Wt89TR/AHJq6+Wt89TR/AAowTnJq6+Wt89TR/AHJq6+Wt89TR/AAowTnJq6+Wt89TR/AHJq6+Wt89TR/AAowTnJq6+Wt89TR/AHJq6+Wt89TR/AA21ys1rvMTIrrbaOujY7aYyqgbKjV8KI5Fwp1qTS2nqCGoho7FbKeKpZwc7IaSNiSs+y5ETsk3ruU6XJq6+Wt89TR/AHJq6+Wt89TR/AA3clDRzNp2yUsD20z0kgR0aKkTkRURzfsqiKqZTvKp1q+wWa6VDKi4WigrJo0wySopmSOb0KqKqGt5NXXy1vnqaP4A5NXXy1vnqaP4AG7ShpEqYqlKWBKiKNYo5eDTaYxcZai86JuTd5kJnU9mvlxuUc9utumahI404CpucTnTUz8rlzcNVFTmVEy3edvk1dfLW+epo/gDk1dfLW+epo/gAdCfS11t/U/ptLWKoo1Vad1LUVdYrkVrXIu3I1rUXLlVVVEVUTfzlPbLdT2i1UltpW7NPSwshjT+61ERP4Gn5NXXy1vnqaP4A5NXXy1vnqaP4AG6rrdQ3SmWmuFHT1dOq5WKoibI1V6FRUONtntjLattZbqRtAqYWlSBqRKng2MY/cank1dfLW+epo/gDk1dfLW+epo/gAbams9ro7c+30tto4KKRHNfTRQNbG5FTCorUTC5TnOR9vopIaeF9HTuipnNfAxYmq2JzdzVamOxVO9jmNLyauvlrfPU0fwByauvlrfPU0fwAN1PbqGqrKesqKKnlqqba4CeSJrnxZ3LsuVMtz38HyvtlBdabi9xoaasgzngqiJsjc+HDkVDTcmrr5a3z1NH8Acmrr5a3z1NH8ADasslpjoW0MdsomUjXpI2nbTtSNHIqKjkbjGUVEXPmOlqegrrlbGU9FQ2iuzIiy091a5YntwvNhHYXOOdF751+TV18tb56mj+AOTV18tb56mj+ABw6O0zVWN9yrrgtElbcHx7UNAxWQQRxt2WRsRcKuEyqrhN68xt6bTtkoq51bS2e3wVblVVnipWNkXPP2SJk13Jq6+Wt89TR/AHJq6+Wt89TR/AA3TLdQxwVEDKKnbDUue+eNsTUbK531lcmOyVe+q85x1VntldQMoKu20dRRxoiMp5YGvjaiJhMNVMJhDU8mrr5a3z1NH8Acmrr5a3z1NH8ADbttVubbetrbfSpQY2eKpC3gsc+NnGMfcfLdZ7ZZ43R2y3UdEx65c2mgbGi9KNRDU8mrr5a3z1NH8Acmrr5a3z1NH8ACjBOcmrr5a3z1NH8Acmrr5a3z1NH8ACjBOcmrr5a3z1NH8Acmrr5a3z1NH8ACjBOcmrr5a3z1NH8Acmrr5a3z1NH8ACjBOcmrr5a3z1NH8Acmrr5a3z1NH8ACjBOcmrr5a3z1NH8Acmrr5a3z1NH8ACjBOcmrr5a3z1NH8Acmrr5a3z1NH8ACjBOcmrr5a3z1NH8Acmrr5a3z1NH8ACjBOcmrr5a3z1NH8Acmrr5a3z1NH8ACjBOcmrr5a3z1NH8Acmrr5a3z1NH8ACjBOcmrr5a3z1NH8A+O03dkaq8tb5uT9TR/AApAaXR9bU3LRdjr6yVZaqpoIJpZFRE2nuYiquE3JvXvG6AAAAAAAAAAAAAAOCsq4qCjlqp0lWKJNp3BROldjzNaiuX7kNLBrWz1NRFBGy67cj0Y3bs9WxuVXCZcsSIiedVwhQgCOggmoeqo2Jtwr5oKq1VFQ+Capc+Jj0miRNln1W4RypuTOFKi4UqVlBNTukqGI9v1qaVY5N2/DXIqKirzc6Gjm0es2p237lDeGVDGrG2FiwcGkSua5Y8LEq7Kq1O/nzmxnsz5kuGzdblC6skY9HRyt/wBX2UamIkVqoiLs5VFRcq5fCBN6MqalupLxQSrdKanjggkhobtULPO1VV6Oka/adli4amNt2Fav1c76O73+js6tjqYbg90jFVFpbfPUInSsbHIn3nHadOQ2uuqLhJW1lfXzxtifU1j2q5I2qqoxqMa1rUyqruTeq7zbv7W7oUCf0D3O9Nei6b3TSiJ3QPc7016LpvdNKIAAAAAAAAAAAAJnT11qK3U2oqSaZXx000aQtX9FMKion4IUxquiaJwliiuK4xgABlsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADF/a3dCmRi/tbuhQJ/QPc7016LpvdNKIndA9zvTXoum900ogAAAAAAAAAAAAAAAAAAAGL+1u6FMjF/a3dCgT+ge53pr0XTe6aURO6B7nemvRdN7ppRAAAAAAAAAAAB53o6p2uqLqWLP1nyL+zJj8z0Q8u0j9Hr2Wo/tklWzpw9HHqJ1fVxhXHKHJ9HONuec+4ADldYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGL+1u6FMjF/a3dCgT+ge53pr0XTe6aURO6B7nemvRdN7ppRAAAAAAAAAAAAAAAAAAAAMX9rd0KZGL+1u6FAn9A9zvTXoum900oid0D3O9Nei6b3TSiAAAAAAAAAAGMjtiNz1/RRVA8vsH0dXpmt70tdWsVfDtJhP4HqR5hQt4DRmkatedl1TaXzOkfn+CHp51fVaasecdZcn0minDlPSAAHK6wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMX9rd0KZGL+1u6FAn9A9zvTXoum900oid0D3O9Nei6b3TSiAAAAAAAAAAAAAAAAAAAAYv7W7oUyMX9rd0KBP6B7nemvRdN7ppRE7oHud6a9F03umlEAAAAAAAAAOtcn8Ha6t/2YXr/AJVOya7UD+D03dH/AGaSVf8AIpqmMaohmucKZlEVUaw9SK3Tom+ndFN/6n/UekIuUyhFVdNt9SFseP8A7fHJ+CI4qrXNxi00U2c8JAx/4tRS96cYx4z2c9iMKsP/ADHd2wAczqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxf2t3QpkYv7W7oUCf0D3O9Nei6b3TSiJ3QPc7016LpvdNKIAAAAAAAAAAAAAA4KyofS0cs8dLNVPYmUgg2dt/mTaVEz0qhpYNS181RFE7SF9ha96NWWRaXZYirzridVwnPuRV8xQgCJhtVDb+q/HPS07Ipauz1Ms70yqyO4eHeqr0m+1ReJrHYZ6ymppaioy2OJscL5dlzlxtOaxFcrW5yuEzhNx15tFWSe+JeZI63j6OykiXGoaiJlHbKNSTZRuURdnGFxzG2prdS0lZWVcEStnrXtkndtqu25rEYi4VcJ2LUTdgCB6m1TQt1JqijpZa6Z7pYJ3TVVJLE6V3As23O22psqr1Vdndu5kwhZ3ee+wq1LTbrfVRqxeEdVVr4FavmRsT8/ih26a20lJW1lZBFsVFa5r6h+0q7atajW7lXCdiiJuwdh/a3dCgT+ge53pr0XTe6aURO6B7nemvRdN7ppRAAAAAAAAADTatfwekrqv+zPT8Ux+ZuSe1y/g9F3NfDGifi5E/MpajG5THGE704W6p4SySm4TqfpTY57Xsf8ApYOXSM3D6RtT/BTNZ+ymPyNhSQp1rghcm7gWsX9nBoup+9V0bSRu+tC+SNfue7+ZuZxt1c/diIwuU8vZTgAguAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABi/tbuhTIxf2t3QoE/oHud6a9F03umlETuge53pr0XTe6aUQAAAAAAAAAAAAAAAAAAADF/a3dCmRi/tbuhQJ/QPc7016LpvdNKIndA9zvTXoum900ogAAAAAAAABL9UJV5FVrE53uianrGlQS2vuy0/DF+trIWf5v6FbG1p5o/UbKrkqGojWo1OZEwS+h/o6W70v8AZ7pOxE825SpJbTP0WpdT032aqOXH+NufyFGmiqOXr8lei5TPP0+FSACSwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGL+1u6FMjF/a3dCgT+ge53pr0XTe6aURO6B7nemvRdN7ppRAAAAAAAAAAAAAAAAAAAAMX9rd0KZGL+1u6FAn9A9zvTXoum900oid0D3O9Nei6b3TSiAAAAAAAAAEtrfsqazRfrLtTt/iVJLau7O46bi8NzY/8AZRStjaQjf2cqklrd9D1Rr1H+vpYZenZ7EqSWl+g6p1O7mSotbmdKtkz/AAFr/aOHyXf9Z4/CpABJYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADF/a3dCmRi/tbuhQJ/QPc7016LpvdNKIndA9zvTXoum900ogAAAAAAAAAAAAAAAAANTSamtNdfZ7LT1L3XCBjpHxrBI1Nlrka5UcrdlcK5E3KvOdq63SjstsnuNwlWKlgRFkejHPVEVUTmaiqu9U5kA7hi/tbuhTo2q9Ul5ZK6kZWNSNUR3GaKanXf4EkY3P3ZO8/tbuhQJ/QPc7016LpvdNKIndA9zvTXoum900ogAAAAAAAABLal7PVGl4vDUSv/AGWIVJLXrs9e6ZZ3mNqXr+wiFbPi/E+ko3/D+Y9YVJLXv6HXWmp+9IlRE79hFT95Uktq/wCiuGnKn7NyZFn/ABoqfkLPjw4T6F/wY8Y9YVIAJLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYv7W7oUyMX9rd0KBP6B7nemvRdN7ppRE7oHud6a9F03umlEAAAAAAAAAAAAAAcFY2rfRytoZYYqpU+jfPGsjEXztRzVVPvQ0sFNrFKiJai7WJ8CPThGx2yZrlbneiKs6oi47+F6ChAHn9XqexRdV6khku9EyRlrnpHNWZqK2Z08OzGu/6y4Xd5jfagrdPXK0Xe3XWtSOkpXxRVy7TmcErth7MuxuztNXKc2e8UQAitHVqT6gutPa7nVXSwMghdFUzzOnRs6q/bYyV296bKMVd64VeffgoLvBfZlatpuNvpY0YvCNqqJ86uXzK2VmPwU2pi/tbuhQJ/QPc7016LpvdNKIndA9zvTXoum900ogAAAAAAAABLV/Z9Ui0t/V0cr/AMVwVJLSdn1UYk/V2lXfjLgra1zylG9qjnCpJbX30dggqf7NWQy58GHY/MqSd13Dw+irk3HMxr/wci/kLE/2U83t+P6quSiBwUU3GKGnm5+Eia/8Uyc5KdCsTjpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxf2t3QpkYv7W7oUCf0D3O9Nei6b3TSiJ3QPc7016LpvdNKIAAAAAAAAAAAANZddQWqxyUzLpWspEqFVI5JkVseUxuV+Nlq70xlUzvxzKbGORk0bZIntexyZa5q5RU8KKBkAAAAAGL+1u6FMjF/a3dCgT+ge53pr0XTe6aURO6B7nemvRdN7ppRAAAAAAAAACWpuz6pta79XbWM/F+SpJa19n1Q7879XTwM/FMlbWqrl3hG7rp59pVJrNRQ8Ppq6RYyrqWXHTsrg2Zx1EST00sS8z2K38UwYpnCYlSqMaZhrdLzcPpW1SZyvFY0XpRqJ+Rtia0DKsuirfn6zEexU8GHuQpTV2MLlUcZZszjbpnhAACagAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABi/tbuhTIxf2t3QoE/oHud6a9F03umlETuge53pr0XTe6aUQAAAAAAAAAAATGsbutujpaZbzYrVFVJIkk11eiqqJs7o41VqP8Arb8rhN25ck1pqzacpqyLkrrOGe4uqWT1EEFZEsU0e0nCN4vHhjex2sKjUVFwuec3urIZ36hsctLSUtyngjqHpbqh+xwifRosrHK1Wo5mUTC4yki4U11PpG4XC4SXWot1BapXV1HUQ08b0e6JsLlWR+01qJtyNXYVE3bKJlVA9AAAAAADF/a3dCmRi/tbuhQJ/QPc7016LpvdNKIndA9zvTXoum900ogAAAAAAAABLWDs9a6pl/v0zE+6NSpJbS3Z37U0vhrUZ+y0rb8FfLvCNzx0c+0qkAElktoTsLRXU39nuE8WPBhUX8ypJbSX0V01JT/ZuLpMf40z+RUlb+0mUbGziAAElgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADF/a3dCmRi/tbuhQJ/QPc7016LpvdNKIndA9zvTXoum900ogAAAAAAAAAAAhOqRJQU8VDWVEt7bV0kdRURMtErI38G1qLK9znbtlqY7+/aRMKqobfTccVHc7lb0uV3rZ4ooJXdcJWvRGv29lWYROdWuRc99qGt6otNbaqiggqa2vpq+ohqKWBKCldUyyxSNRJW8GjVy3GyqruwqN3+Hn0O1j33CpmdeJrhLwTZ6i4291IjmNRyMZG1URNlvZLuyuXZVd4FeAAANHS6mhqdUS2B1vr4J2QPnZNNG1sUrGPaxVau1tLvenOiJg2VyuNLabdPX1svB00Ddt7sKq48CIm9VXmRE3qqgdoxf2t3QprrTd5rpwnC2e429GoitWsbGnCIuebZe5U5uZcLvNi/tbuhQJ/QPc7016LpvdNKIndA9zvTXoum900ogAAAAAAAABLaM7ObUMv2rvM37kx/MqSW0L2VsuMv625Tv/AHp/IrRs6vwjXtKfyqQASWS1j+i1xqaHvP4vK39hc/vKklqb6LqmVzP19uZJ04fslSVva4nhHojZ1THGfUABJYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxf2t3QpkYv7W7oUCf0D3O9Nei6b3TSiJ3QPc7016LpvdNKIAAAAAAAAAAAIjU80tXcWV9svDbZUWWrSgnfLQcY4R1SkCtan0jcNy+NVXnynexv21hqLpHeLja7tdYK+eCCCdqw0PF2sbIsqc/CP2lVY18GMd/O7W3jRFwuNfcZaXUclHTV1XBWPp0o2SYliSJGqjlXOMwsXBtLFYK22XSvuNxvDrlU1cMMO0tO2FGNjWRUTDeffKoG4rIJamjlhgq5aSV6YbPE1rnMXwojkVv4oppYNP3iKoikk1jdZmMejnRPpqRGvRF3tVUhRcLzblRShAELVXZGdVOmm623h1PFb5qJ07LZO6PhXTRKnZozCtw1V2s43c52ddUtVqXSl7tNFR1qVFLLA9q7PBpUbLo5lSJ2d+5FbndhyY7xYgCG0lRRRaoq6mzWqstdkdRMZJDUwPgSSp21XabG/flG7ldjC5TeuCku9go7wrZKma4MdGxURKW4T06L0pG9qL95tTF/a3dCgT+ge53pr0XTe6aURO6B7nemvRdN7ppRATut6ipo9Lz1dJNJFJBJG9VjcrVVNtEVN3e3lC1yPYjmrlHJlFNTqqn4zpS6RYyvFnuRPO1Mp/A5tP1HGtO22fOVfTRqvTspn95WYxtRPGeyUThdmOEd2xABJUAAAlup92WlWS/rZ5X/51/kU0z+Dgkf9lqr+4nep+zY0Rbk8KSL+MjitOyq5x3Rq2tPKeylABJZLVX0XVLoH/r7dJF+y7aKklr79FrfTE3ectRE772JgqStzVTPDvKNrxVRx7QAAksAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYv7W7oUyMX9rd0KBP6B7nemvRdN7ppRE7oHud6a9F03umlEAAAAAAAAAAAAAAAAAAAAxf2t3QpkYv7W7oUCf0D3O9Nei6b3TSiJ3QPc7016LpvdNKIDjqIUqKaWF3NIxWL96YJ7QMyy6NoWv+vFtxOTwYev5YKUltFfQtvVEv8A9Pc5kan91cKn5ladNuqOXdGrRdpnn2VIAJLAAA6l1fwdorX/AGYJF/yqazRbNjR1rT/wc/iqqdvUb+D0xdX+Cjlx+wphpdnB6VtLf9kiX8WopX/l+eyP/b8d22ABJZLau+iuWm6j7NyZHn/Gip+RUktrzsLRRVH9nuEEufBhVT8ypK17OmeaNG0qjkAAksAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYv7W7oUyMX9rd0KBP6B7nemvRdN7ppRE7oHud6a9F03umlEAAAAAAAAAAAAAAAAAAAAxf2t3QpkYv7W7oUCf0D3O9Nei6b3TSiJ3QPc7016LpvdNKIAS1j/ANX1xqSm/RkSCdidLcO/eVJLO/1bqnMXmbV2xW9Lmvz/AAK2tMVRw+UbuiaZ4/CpABJYAAGk1g/g9IXVfDTuT8d35ndsrODsVvZ9mmjT/KhqteP2NE3Nf7jU/F7UN7SM4OigZ9mNqfuKzso5z6QjG2nlHrLmABJZM9UCNX6Kr1T6zODen3PaUcUiSwskTme1HJ95qdWxcNpG6t8FM934Jn8jtWOXh9P22X7dLE78WoVnZRznsjGi9PKPWXfABJYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxf2t3QpkYv7W7oUCf0D3O9Nei6b3TSiJ3QPc7016LpvdNKIAAAAAAAAAAAAAAAAACZp7tema+WzVvEFoJaGargWFj0lbsSxsRHOV2Fyj15kTenOb2vZWvopG26anhq1xsSVELpWJvTOWtc1V3Z/STf+AHZMX9rd0KS+mLrfK+/XuiuM9uqKW3OjhbPSUr4dqZW7b29lI/Oyis+93mKeRyIx2VRNy86gaDQPc7016LpvdNKIndA9zvTXoum900ogBLag/1fWOmavmR0k0DvPtN3fvyVJLa4+ho7VWpu4rcoZFX+7lUX+KFbHjw88Y/cI3/Bj5YT+pVIAJLAAAl+qEudG1Uf6ySJn+dq/kVCJhMEtr3srJSxfra6Fn+b+hUlatlTznsjTtauUdwAElnTu8XD2Wuh5+Ep5G/i1UNdo2XhtH2t3ggRv4bvyN45qPYrV5lTCkx1PnLyOpYnfWhfLGv3Pcv5lY2U847ozouxynsqAASWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMX9rd0KZGL+1u6FAn9A9zvTXoum900oid0D3O9Nei6b3TSiAAAAAAAAAAAAAAOCsoqW40ctJW08VRTSpsyRStRzXJ4FRec0sGg9JUtRFUQaatUU0T0fHIykYjmuRcoqLjcqKUIAj6i26odr2G8xUtnWhipn0aI+tlSRY3yMer8cEqbSbH1c4385SRLckqK/hm0iwI5vEkY5yOVNhM8JlMIu3tYxndjvncAGk0pZZrFYIqWrkZNXyPfUVkzM7Mk8jlc9UzvxlcJnvIhz3bTtkvStlutnoK6SNqtY6pp2SK1PAiuRcG0MX9rd0KBP6B7nemvRdN7ppRE7oHud6a9F03umlEAJzXcCz6MuKJ9ZjWyIvg2XIv8EUozo3qn43YrhT4yslNI1OlWqbtzlrieLF2nNRMcHYo50qqKnqE5pY2v/FMnMaTSFRxnSNrkznFO1n7PY/kbs8rjLVMPaKs1MT5gJW46uWi1pR2dGMWlejWTyqi5ZI/OwmeZOZPx8xVHtVFVMRM/d5RcprmYj7JbW3ZMsUX6y7wIvR2RUktqzs7tpqLw3Fr/wBlCpNV+Cn8sUbSr8egACSwS2huwobrT/qLnPHj70X8ypJbSv0d71NT/ZruFx/jbn8itHgqjkjXtKZ5qkAElgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADF/a3dCmRi/tbuhQJ/QPc7016LpvdNKIndA9zvTXoum900ogAAAAAAAAAAAAAAAAAAAGL+1u6FMjF/a3dCgT+ge53pr0XTe6aURO6B7nemvRdN7ppRAAqIqKi70UACW0Aqx6bdSLz0lVNAvmw7P5lLUTx0tNLUTO2YomK97vAiJlSa0p9BetS0XNsV3D4/3iZ/Iy1tPJLb6WzU7sVF0nbAipztjRcvd0Yx+J0V0572Hnp7uaivJZx8tHZpaSyzXrRdzuMjVS4XGVayH7Tdhfo2p9yLjzOK+wXNt5sVHXpjMsaK9E7z03OT8UU70EEdNTxQRN2Y4mIxjU7yImEJjTf/ZOo7xYXbonO47Sp/cfucieZFwn4iqr+Smrhpjlq9imj+Kqnjonnr92Wo+z1bpaLwzTP/ZYhUkteOz6oGm2/q46l/4swVJi54aOXeW7fir59oAASWCWs30OvtSRd6VlPKidDFRf4lSS0P0PVPqG96e1tf0qkmCtrVVHDvCN3XTPHtKpABJYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxf2t3QpkYv7W7oUCf0D3O9Nei6b3TSiJ3QPc7016LpvdNKIAAAAAAAAAAAAAAAAAAABi/tbuhTIxf2t3QoE/oHud6a9F03umlETuge53pr0XTe6aUQAAAS1B/q/VIu0XNxqiin6dldgxoP+2de1tcu+ntUfFYfBwrt716U5vwOnqq4ssGrqO6vxh9vniTP6Tm9k1PxVPxN1pC2vtunKZs2VqZ81E6rzq9+9c+dEwn3HXVooz+cRHv6dXHRpr/AI/KZnvHr0b0lNXItsr7TqJm5tJNwNSqfqX7lVehf3qVZ07rb47raqqhl+rPGrM+Be8v3LhSFuqKaomdTou0zVRMRraKsVJOqTbETejKCR/4rgqTzjR1dLcNXU7KhFSpoLU6lmRe89suP4YPRzf1FOWYpn7Qn9PVFcTVH3kABB0BLV30XVItT/19FLF+yu0VJLah+i1jpeo/8SeJf+JiIhWz4pjhPoje8MTxj1VIAJLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGL+1u6FMjF/a3dCgT+ge53pr0XTe6aURO6B7nemvRdN7ppRAAAAAAAAAAAAAAAHDV1dNQUslVWVEVPTxJtSSzPRjGJ4VVdyGoh1rpSpnjgg1NZpZpHIxkbK+JznOVcIiIjt6qveA3oJSCpu1N1Set1RdX1NvqbdPVMplgjYkLmyxtbhyJtLueqb1+42Gr7jWWnSdxr6B0TamGPaa6XGy1MptO3qiKqJlURV3qiJ3wN2Yv7W7oUi9G32ruV9uFH10qbjQw00UrZK6kSlqGyOV2U4PZYqswiYcrefKIq78UN3v8AR2dWx1MNwe6Riqi0tvnqETpWNjkT7wOloHud6a9F03umlETuge53pr0XTe6aUQAAAT+pdMt1FUWt8kjWx0k6vka5M7bFxlE6cIUABqa5mIpnVDMUREzVGuQAGWmgodNtoNXV96jkbwdXEjVjRN6Oym0v34RfvU34BqqqatMs00RTGEAAMtBLax+iqtO1H2LpExV8zs/yKkltfdhYIKj+z1kMufBh2PzK2NpEI39nMqkAElgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADF/a3dCmRi/tbuhQJ/QPc7016LpvdNKIndA9zvTXoum900ogAAAAAAAAAAAAAD45qOarXIiovOioYJTwIqKkMaKnMqNQ5ABKT6bvsmso79HfaJkccLqZtMttc5eBc9j3Ir+GTsuwRNrH3HdvGnqi90Nyo6q6ObDUSwzUnBwtRaV0ascm/8AT+kZtb+8uDfACftOn62nvkt5utzjrq11MlLHwNNwEbI9raXsdpyqqrjfnvbkQ3z+1u6FMjF/a3dCgT+ge53pr0XTe6aURO6B7nemvRdN7ppRAAAAAAAAAAAAAAAm9excLom5InO1rHJ9z2qUhqNUxcNpS6s/2WR34NVfyKWpwuUzxhO9GNuqOEtlTS8PSwy/bY134pk5TW6el4fTdrk77qSJV6dlDZGKowmYapnGmJAAeNBO6g1bDY6yGlZSS1kqtWWdsPPDEnO9f5bulDv368w2K1yVciK9+diGJOeR68zUOlpiyy0NPNXXFUkulcvCVLl/RTvMTzIn/wC8xWimmIz16vVG5VVM5KJ0+jc0dZT19JFVUsrZYJW7THt5lQ5yMqYJ9E1z6+ijdLYp3ZqqZqZWmcv6bE+z4U/piup6iGrp46inkbJDI1HMe1coqHldGH+VOqWrdeb/ABq0TDlABNQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMX9rd0KZGL+1u6FAn9A9zvTXoum900oid0D3O9Nei6b3TSiAAAAAAAAAAAAAAAAAAAAYv7W7oUyMX9rd0KBP6B7nemvRdN7ppRE7oHud6a9F03umlEAAAAAAAAAAAAAADrXCFam2VUCJlZYXsRPDlFQ7IPYnCcXkxjGCI0zqy2W2zUVrukstDWQR7DmVMTmJuXw4x+JYU1ZS1sfCUtTDOz7UT0cn7jKengqo1jqIY5Y152yNRyfgpoanQ1hnk4WGmfRTd6SkkWNU6ETd+4tVNuuZmcYn9+yNNN2iIiMJiPx7qMxkkZDE+WR6MjYiuc5y4RETnVSY5EReP7/8A87/0mMmg6WZixz3q9zRO3OjkrMtcngVNk8yW97o9z3N3q4rPG/VN75QVLVS3Uqqy3ROT6y9+VU/h/QsDCGGOngjghY1kUbUaxrUwiInMhmYuV5p0avs1boyxp1/d8c1r2Kx7Uc1yYVFTKKhIJQXXSdZK6zUi3C0TKr1o0kRr6d3f2M86L4P/AOlgBRXNOjXD2u3FWnVMJyk1vZ55uL1b5bdU9+GtjWNU+9d37yhjkZKxHxva9jkyjmrlFOGroaSvh4KspoZ4/sysRyfvJ92gbJtuWFKunjcuVihqHNZnw4Nf1T5x19mP7afKenupnPaxMvcjU8Krg4OuFFnHG6fPg4RP5mhb1PtNIu0+hfK7wyTyL/7jn5D6axjrTDj/ABO/mMLXnP6+TG75R+/hu21VO76s8S9D0ORHI5MoqKnmJ12gtMO57Uz7pXp/7jiXqe6azmOhfEvhZUSf/IYWvOf18mN3yj9/CoBLcg7a3tNbdIf93Vqn8RyIjTm1DqBOit/6Rlt73Qz3N3qqQS3ItU+rqXUKf+d/oORSL9bUmoXf+d/oMlve6Ge5u9VSCW5D06/Wvd8d01n9B/o/sb/+8ccqP97UuXP4Kgy297p8ma7u9fhRyVlLEuJKmFi+Bz0QNq6Z/wBWoid0PRTRx6E0zEmG2qNf8Uj3fxU+O0Hpl/Pao/uken8FGFrzn9R7mN7yj9z7KJHI5MoqL0H0l16nmmc5Zb3sXwtqJP8A5HzkFa29pqrlB/u6tyfxGW1vT+vkzXd2P38KkEtyKRNzdR6ga37KVv8AQch4F+vfL6//ABVv9Bkt73Qz3N3qqQS3IWh79yu6+daxf5H3kJQeMbt/za/yGW3vdDPc3evwqAS3ISg8Y3b/AJtf5DkJb/GF2/5tf5DLb3unyZ7m71+FSCW5C0SfUut4Z/hrF/kORLE+pqHUDOit/oMlve6Ge5u9VSCW5Gy97U9/++r/AKDkdP3tUX376n+gyUb3Qz3N3rCpBLckKtObVN6++ZF/Ick6/vaqu2PO9Bko3ukmevd6wqQS3I2V/bdT353+Gq2fyHIakX693vT18Lqxf5DJb3uhnubvVUgluQ1Kn1bxem9FYv8AIciIk+rqC/t6K3/pGS3vdDPc3eqpBLcjHp9XU2oE6az+g5H1Cc2qL599Tn8hko3uhnubvVUgluSFX3tU3r16fyHJGs8qbz61Bko3ukme5u9YVIJbkjW+VN59ahvLXQyW6iSnlraiscjlXhZ3Zdv7xmqmmI0VYtU1VTOmnB3TF/a3dCmRi/tbuhTCif0D3O9Nei6b3TSiJ3QPc7016LpvdNKIAAAAAAAAAAAAAAAAAAABi/tbuhTI+OTaaqIuMpgCe0D3O9Nei6b3TSiI+0WDVtmstDa6fUFmdBR07KeNZLRIrlaxqNTKpUJvwngQ7vEtZ+PrH7Hl+ZAowRd+n1nY9O3K7deLHNxKlkqOC60yt29hquxnjC4zjnwbBtHrNWovX6x708Ty/MgUgJziWs/H1j9jy/MjiWs/H1j9jy/MgUYJziWs/H1j9jy/MjiWs/H1j9jy/MgUYJziWs/H1j9jy/MjiWs/H1j9jy/MgUYIqGo1nNqOttHXixpxalgqeF60y9lwjpW7OOMbscFz537Xm37LiWs/H1j9jy/MgUYJziWs/H1j9jy/MjiWs/H1j9jy/MgUYJziWs/H1j9jy/MjiWs/H1j9jy/MgUYJziWs/H1j9jy/Mmuv0+s7Hp25XbrxY5uJUslRwXWmVu3sNV2M8YXGcc+ALQE22j1mrUXr9Y96eJ5fmT7xLWfj6x+x5fmQKME5xLWfj6x+x5fmRxLWfj6x+x5fmQKME5xLWfj6x+x5fmRxLWfj6x+x5fmQKME5xLWfj6x+x5fmTWw1Gs5tR1to68WNOLUsFTwvWmXsuEdK3ZxxjdjgufO/a828LUE5xLWfj6x+x5fmRxLWfj6x+x5fmQKME5xLWfj6x+x5fmRxLWfj6x+x5fmQKME5xLWfj6x+x5fmRxLWfj6x+x5fmQKMEXfp9Z2PTtyu3XixzcSpZKjgutMrdvYarsZ4wuM458GwbR6zVqL1+se9PE8vzIFICc4lrPx9Y/Y8vzI4lrPx9Y/Y8vzIFGCc4lrPx9Y/Y8vzI4lrPx9Y/Y8vzIFGCc4lrPx9Y/Y8vzI4lrPx9Y/Y8vzIFGCKhqNZzajrbR14sacWpYKnhetMvZcI6VuzjjG7HBc+d+15t+y4lrPx9Y/Y8vzIFGCc4lrPx9Y/Y8vzI4lrPx9Y/Y8vzIFGCc4lrPx9Y/Y8vzI4lrPx9Y/Y8vzIFGCc4lrPx9Y/Y8vzJrr9PrOx6duV268WObiVLJUcF1plbt7DVdjPGFxnHPgC0BNto9Zq1F6/WPenieX5k+8S1n4+sfseX5kCjBOcS1n4+sfseX5kcS1n4+sfseX5kCjBOcS1n4+sfseX5kcS1n4+sfseX5kCjBOcS1n4+sfseX5k1sNRrObUdbaOvFjTi1LBU8L1pl7LhHSt2ccY3Y4Lnzv2vNvC1BOcS1n4+sfseX5kcS1n4+sfseX5kCjBOcS1n4+sfseX5kcS1n4+sfseX5kCjMX9rd0KT3EtZ+PrH7Hl+ZPi0Os1RU6/WPf/APh5fmQMtA9zvTXoum900ojW6fta2PTlstKzJMtFSxU/Co3Z29hqNzjK4zjwmyAAAAAAAAAAAAAAAAAAAAAAAAA1l6vFrtFKzrpJiOodwTIkhdM6VVRVVqMaiuduRc4Rdx2LbcqO72+KuoJ2z00udh7cpzLhUVF3oqKioqLvRUJrVFVBaNZadvFxkbDbIoaunfUSbmQyv4NWK5eZuUY9Mr4cd85dBostvutcxjm0tddaippdpqt2olVER6IvecqOcnhR2e+BVgAAAAABjIr0jcsaIr8Lso5cIq97IGtkvdog1HFZ3VEaXaoh4RsSRqrljbnnciYT9LCKvhwbQ8opKXUlu1zpnrla7e6tqJKuWpqY7g5yyq5rEe7CxJsoxqIjWZXciJlOdfVwAAAAAAae9ags9qcykuUrnPqI3OSnjppJ3OYm5yqxjXLs78Kqpg3B55q+oiptcU8lRe36dj62Oa25Na1eMKsi5hzIisTZwjubaXa3KmFyF3Q1tLcaGGtop2T00zEfHIxco5q99DsE3oFHN0NamvpeLKkSojNlzdpEcuH4cquTaTD8KueyKQAAAAAA1d81Da9N0fG7rUPhg39k2F8mERMquGIq4RN+TjuGoLRaVgnqXScJVx5j4Clkme9jd/Mxquwm33+bJrOqRc6G3dT++trayGndVW+oggSV6N4SRYnYa3POq+A11f1RrJa9NWt1Dc7dPVVreApnSVLWwNe1qbbpH5wjW5TKc65RE3qBZ2+4Ul1oIa6gqGVFLMm0yRi7l34/HKKmO8qHZNDo2C302mKaO23KK5wq+SR9ZE5rmyyve50jk2dydm527vcxvgAAAAADT0GorNfa2stdNMs80DEWeKSne1uw5VbzuaiORVa5N2eZRBqi0VV1W209RLNO17o1dHTSuiR7c5asqN2EVMLu2s53EvS6msc3Vbr4YrxRLLJa6ekY1JmqqzNmn2mImd7kymU85N6OkltdJpu3U12r5dQx1nF7nbZJXOZHCiv4RXRczETCOR+5XKqb12gPZAAAAAA0921RabJUJBXTzNk4PhVSKlll2GZVNpysaqNTcu9ccxuCN1prSkstTBYo7lRUNzrY1fxislayOmiyqLIu0qbTsoqNanOqb8Iigbqu1FZLZT01fPUsVK5qJTup4nTPnbhXJstYiuciIqruTCZ8537fcKS60ENdQzsnpZm7UcjOZU5vuXOUVO8qEGj7Npi8aVrkrI107BaJqGnrnPR0TXqsKtVz03JtNjdv5lVMG80Cx62OsquDfHT1tyqqqma9qtXgnyuVq4XmR31k8zgKkAAAAANDR6ssF5qmW6KpWR9S1yRsnppI2ToidkjFe1Gv3b+xVdxvjzq3arsetdXUUsd5oGUdunetBS8YZw9ZPsOYsmxnLWI1zkamMuzlcIiZCzrr/a7bdKC2VVW2Osr3K2mi2XOV6oiqvMmG7kXeuOY2R5Nd6XU1FqCy1dbardNV1V+RzZ23F3ZNbBOkcWzwXYNaxXLzuy7K/pKqesgAAAAAGtu1+t9kWFtbJMj59rg2Q00kznbOMrsxtcuEym/znXfqSxRWmO+cciWlqVbFHNGxXOldlURiNRFcrkXa7HGUXO7nOnrLWNHpOlpmSTUza+ucsdI2qlSKLKY2nvevMxuUVe+uURN6kpcY7dS6NsS0V5inp1u61FTfqdUe2mmdwr3yoiZaiK9ys7LLWo/fkD0G03q33yCSa3zrIkUixytfG6N8b8Iuy5jkRzVwqLhUTnNgRPU/kSap1BLFVrc4JKxjmXZWoi1a8E1FTdhqozCNyxEb5s5VbYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeV6MuV+umpKNaaottFbnWmKd1BHSycE1vGJWu2ESVEa9dleywve3LjeHqgPN7b1RLjcqujqaejWagqqtIW00dsquEZEr9hJVnxwS43OVETCJnslVDaW3UV7rI75cKqa0UVsttVV07XSsflyRKqNe521hqJhM7lzhcYAtAecU+s7lceu9qSop3VCWqWtpayO31NK1NlUaqbMq5d9Zqo5rvwOW23C6w2DREl2fb7jJXVVO1krqZ6PiRaWR23tOkdmXscK/dlHO3bwPQgQcer726jgv7oKDrDPcEo0gRr+MtY6bgGyq/a2V7LC7GzzLz5OKp1hqKCnvd1SG2dbLTcnUr4lZJw00aOYiuR21hrkR3gXOO8B6CCMm1RcY9YyWyoqLfbaZtTHFBHWU0u3WMVrVV0c20kaLlXNRuHLlu/nLMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAExb9D0dqnt81vuNwp30cKU6q10a8YiSRZNiRHMXdlzt7dlcKu8pwBO0ekYrdVNdQ3a6U9E2ZZkt8crOARyu2lRMs20aqqvYo7G/mwc3JS2usl1tEqzSUtzmnmn2nojkdK5XO2VRExhV3fmbwATdFoylprs+51VyuVxqn0T6FzqyRiosTnNcqYY1qIuW86eFc53YUejaelpbVTPudxqYbVUsqKNs7o/o9mJ0TWZaxFVuy9efK5RN5SACYZoa3R1rJErK9aKOrWtZbVlbxZs21t7SJs7X1l2tna2UXfg7E+kLfUWe7Wx81SkF0qXVMzkc3aa5ytVUb2OETsU50U34An6/SkVzreFrLtc5aTh2VC0CyM4DbY5HN/Q28I5qLjaxuKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/9k=' num_solutions=None num_shots=2048\n" - ] - } - ], - "source": [ - "print(res[0].value)" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "id": "d3fd78b2", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Difference in Optimal energy: 0.02051206583780174\n" - ] - } - ], - "source": [ - "print(f\"Difference in Optimal energy: {vqe_result.energy - (-1.8657150931815518)}\")" - ] - }, - { - "cell_type": "markdown", - "id": "2c749e5e", - "metadata": {}, - "source": [ - "## Discussion:\n", - "\n", - "* The `optimal energy` from class was $-1.8657150931815518$ (Ha) which gives a difference of $\\sim 0.0205$.\n", - "* Can't tell as directly as in class but if we could figure out the nuclear repulsion energy, then we would know a `total energy` for this case as well (by the difference with the optimal one).\n", - "* The provided `Hamiltonian` describes the molecular system defined in class quite well. I suppose we could trace back what each term means physically in the molecule itself.\n", - "In the following you can see my assumption on that." - ] - }, - { - "cell_type": "markdown", - "id": "782d5963", - "metadata": {}, - "source": [ - "\\begin{aligned}\n", - " - \\sum_{i=1}^{2} \\frac{\\nabla_i^2}{2} &= -1.0523 \\cdot (I \\otimes I)\\\\\n", - " - \\frac{1}{|\\mathbf{r}_1 - \\mathbf{R}_A|} - \\frac{1}{|\\mathbf{r}_2 - \\mathbf{R}_A|} &= + 0.3979 \\cdot (I \\otimes Z)\\\\\n", - " - \\frac{1}{|\\mathbf{r}_1 - \\mathbf{R}_B|} - \\frac{1}{|\\mathbf{r}_2 - \\mathbf{R}_B|} &= - 0.3979 \\cdot (Z \\otimes I)\\\\\n", - " \\frac{1}{|\\mathbf{r}_1 - \\mathbf{r}_2|} &= - 0.0112 \\cdot (Z \\otimes Z)\\\\\n", - " \\frac{1}{|\\mathbf{R}_A - \\mathbf{R}_B|} &= + 0.1809 \\cdot (X \\otimes X)\\\\\n", - "\\end{aligned}" - ] - }, - { - "cell_type": "markdown", - "id": "a5d20c48", - "metadata": {}, - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.3" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/community/QClass_2024/Submissions/HW3/HW3_VQE - Bill Wisotsky.ipynb b/community/QClass_2024/Submissions/HW3/HW3_VQE - Bill Wisotsky.ipynb deleted file mode 100644 index 864b6210..00000000 --- a/community/QClass_2024/Submissions/HW3/HW3_VQE - Bill Wisotsky.ipynb +++ /dev/null @@ -1,297 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "id": "fc72d98f-8993-4bd4-a545-23d122f3df71", - "metadata": {}, - "source": [ - "# H₂ Molecule Homework Assignment\n", - "### Quantum Software Development Journey: From Theory to Application with Classiq - Part 3\n", - "\n", - "- Similarly to what we have done in class, in this exercise we will implement the VQE on H2 molecule.\n", - "- This time instead of using the built-in methods and functions (such as `Molecule` and `MoleculeProblem`) to difne and solve the problem, you will be provided with a two qubits Hamiltonian." - ] - }, - { - "cell_type": "markdown", - "id": "56eda6d8-76c4-4862-b914-0c4598d67274", - "metadata": {}, - "source": [ - "## Submission\n", - "- Submit the completed Jupyter notebook and report via GitHub. Ensure all files are correctly named and organized.\n", - "- Use the Typeform link provided in the submission folder to confirm your submission.\n", - "\n", - "## Additional Resources\n", - "- [Classiq Documentation](https://docs.classiq.io/latest/)\n", - "- The notebook from live session #3\n", - "\n", - "## Important Dates\n", - "- **Assignment Release:** 22.5.2024\n", - "- **Submission Deadline:** 3.6.2024 (7 A.M GMT+3)\n", - "\n", - "---\n", - "\n", - "Happy coding and good luck!" - ] - }, - { - "cell_type": "markdown", - "id": "d41e969d-f6a7-4ff7-9660-19ce6c97ba6b", - "metadata": {}, - "source": [ - "### Part 1" - ] - }, - { - "cell_type": "markdown", - "id": "f710d6f4-d40b-42d5-b524-c6acb8059fe2", - "metadata": {}, - "source": [ - "Given the following Hamiltonian:" - ] - }, - { - "cell_type": "markdown", - "id": "6ba8a6f1-3259-4492-a1ca-3abde7530cd4", - "metadata": {}, - "source": [ - "$$\n", - "\\hat{H} = -1.0523 \\cdot (I \\otimes I) + 0.3979 \\cdot (I \\otimes Z) - 0.3979 \\cdot (Z \\otimes I) - 0.0112 \\cdot (Z \\otimes Z) + 0.1809 \\cdot (X \\otimes X)\n", - "$$" - ] - }, - { - "cell_type": "markdown", - "id": "736d275c-9a5a-4c08-b891-3078430dc6c1", - "metadata": {}, - "source": [ - "Complete the following code" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "id": "19266c11-6acc-4edb-910f-2d0dfe80a6c8", - "metadata": {}, - "outputs": [], - "source": [ - "from typing import List\n", - "from classiq import *\n", - "\n", - "HAMILTONIAN = QConstant(\"HAMILTONIAN\", List[PauliTerm], \n", - " [\n", - " PauliTerm([Pauli.I,Pauli.I], -1.0523),\n", - " PauliTerm([Pauli.I,Pauli.Z], 0.3979),\n", - " PauliTerm([Pauli.Z,Pauli.I], -0.3979),\n", - " PauliTerm([Pauli.Z,Pauli.Z], -0.0112), \n", - " PauliTerm([Pauli.X,Pauli.X], 0.1809) \n", - " ]) " - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "id": "0bb68899-2076-45c0-8868-131f38aa3b78", - "metadata": {}, - "outputs": [], - "source": [ - "@qfunc\n", - "def main(q: Output[QArray[QBit]], angles: CArray[CReal, 3]) -> None:\n", - " allocate(2, q)\n", - " U(angles[0], angles[1], angles[2], 0, q[0]) \n", - " U(angles[0], angles[1], angles[2], 0, q[1]) \n", - "\n", - "\n", - "@cfunc\n", - "def cmain() -> None:\n", - " res = vqe(\n", - " HAMILTONIAN,\n", - " False,\n", - " [],\n", - " optimizer=Optimizer.COBYLA,\n", - " max_iteration=1000,\n", - " tolerance=0.001,\n", - " step_size=0,\n", - " skip_compute_variance=False,\n", - " alpha_cvar=1.0,\n", - " )\n", - " save({\"result\": res})\n", - "\n", - "qmod = create_model(main, classical_execution_function=cmain)\n", - "qprog = synthesize(qmod)\n", - "# show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "id": "0563c1a8-7aec-4da9-9105-6b16c5c24382", - "metadata": {}, - "outputs": [], - "source": [ - "execution = execute(qprog)\n", - "res = execution.result()\n", - "# execution.open_in_ide()\n", - "vqe_result = res[0].value\n" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "id": "de17cfc0-8e64-4493-b4c2-4a97fc9797a0", - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Optimal energy: -1.0814723632812502\n", - "Optimal parameters: {'angles_0': 7.508357374349873, 'angles_1': 1.5234985297105201, 'angles_2': -3.7348062779253675}\n", - "Eigenstate: {'01': (0.4708287241662301+0j), '11': (0.31868871959954903+0j), '00': (0.6709659547994965+0j), '10': (0.4759858191164943+0j)}\n" - ] - } - ], - "source": [ - "print(f\"Optimal energy: {vqe_result.energy}\")\n", - "print(f\"Optimal parameters: {vqe_result.optimal_parameters}\")\n", - "print(f\"Eigenstate: {vqe_result.eigenstate}\")" - ] - }, - { - "cell_type": "markdown", - "id": "5df11dfc-3e3a-4191-bd47-d522ca3dcbfa", - "metadata": {}, - "source": [ - "Does it similar to the `optimal energy` we calculated in class? \\\n", - "Does it similar to the `total energy` we calculated in class?" - ] - }, - { - "cell_type": "markdown", - "id": "4f0e0bea-b12f-43ad-94e8-100fedf2b57f", - "metadata": {}, - "source": [ - "### Part 2" - ] - }, - { - "cell_type": "markdown", - "id": "66882248-de08-4a6e-b33c-647f015f7d79", - "metadata": {}, - "source": [ - "**Now, we want to have a more interesting ansatz in our `main`.** \n", - "Add **one** line of code to the `main` function you created in Part 1 that creates **entanglement** between the two qubits. \n", - "Which gate should you use?" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "id": "bb39be9e-4994-44e5-84d8-c99bc8b77145", - "metadata": {}, - "outputs": [], - "source": [ - "@qfunc\n", - "def main(q: Output[QArray[QBit]], angles: CArray[CReal, 3]) -> None:\n", - " allocate(2, q)\n", - " U(angles[0], angles[1], angles[2], 0, q[0]) \n", - " U(angles[0], angles[1], angles[2], 0, q[1])\n", - " CX(control=q[0],target=q[1])\n", - "\n", - "\n", - "\n", - "\n", - "@cfunc\n", - "def cmain() -> None:\n", - " res = vqe(\n", - " HAMILTONIAN,\n", - " False,\n", - " [],\n", - " optimizer=Optimizer.COBYLA,\n", - " max_iteration=1000,\n", - " tolerance=0.001,\n", - " step_size=0,\n", - " skip_compute_variance=False,\n", - " alpha_cvar=1.0,\n", - " )\n", - " save({\"result\": res})\n", - "\n", - "qmod = create_model(main, classical_execution_function=cmain)\n", - "qprog = synthesize(qmod)\n", - "#show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "id": "112a1590-283c-4f79-8035-72936561102d", - "metadata": {}, - "outputs": [], - "source": [ - "execution = execute(qprog)\n", - "res = execution.result()\n", - "#execution.open_in_ide()\n", - "vqe_result = res[0].value" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "id": "06500e4c-a04b-4cfa-a84d-41f96a0c68eb", - "metadata": { - "jupyter": { - "outputs_hidden": true - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Optimal energy: -1.8574645507812502\n", - "Optimal parameters: {'angles_0': 2.9798423376870504, 'angles_1': 3.1863311123330353, 'angles_2': 2.5094137236487097}\n", - "Eigenstate: {'10': (0.0625+0j), '11': (0.09375+0j), '01': (0.9936320684740404+0j)}\n" - ] - } - ], - "source": [ - "print(f\"Optimal energy: {vqe_result.energy}\")\n", - "print(f\"Optimal parameters: {vqe_result.optimal_parameters}\")\n", - "print(f\"Eigenstate: {vqe_result.eigenstate}\")" - ] - }, - { - "cell_type": "markdown", - "id": "30a635d7-2f15-4c94-a94b-f4270f17aed8", - "metadata": {}, - "source": [ - "Does it similar to the `optimal energy` we calculated in class? \\\n", - "Does it similar to the `total energy` we calculated in class? \\\n", - "What can we learn about the provided form this result Hamiltonian?" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.18" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/community/QClass_2024/Submissions/HW3/Priyabrata_Bag_HW3_VQE.ipynb b/community/QClass_2024/Submissions/HW3/Hisham_Mansour_HW3_VQE.ipynb similarity index 65% rename from community/QClass_2024/Submissions/HW3/Priyabrata_Bag_HW3_VQE.ipynb rename to community/QClass_2024/Submissions/HW3/Hisham_Mansour_HW3_VQE.ipynb index 92e832c6..32a0927e 100644 --- a/community/QClass_2024/Submissions/HW3/Priyabrata_Bag_HW3_VQE.ipynb +++ b/community/QClass_2024/Submissions/HW3/Hisham_Mansour_HW3_VQE.ipynb @@ -3,7 +3,9 @@ { "cell_type": "markdown", "id": "fc72d98f-8993-4bd4-a545-23d122f3df71", - "metadata": {}, + "metadata": { + "id": "fc72d98f-8993-4bd4-a545-23d122f3df71" + }, "source": [ "# H₂ Molecule Homework Assignment\n", "### Quantum Software Development Journey: From Theory to Application with Classiq - Part 3\n", @@ -15,7 +17,9 @@ { "cell_type": "markdown", "id": "56eda6d8-76c4-4862-b914-0c4598d67274", - "metadata": {}, + "metadata": { + "id": "56eda6d8-76c4-4862-b914-0c4598d67274" + }, "source": [ "## Submission\n", "- Submit the completed Jupyter notebook and report via GitHub. Ensure all files are correctly named and organized.\n", @@ -37,7 +41,9 @@ { "cell_type": "markdown", "id": "d41e969d-f6a7-4ff7-9660-19ce6c97ba6b", - "metadata": {}, + "metadata": { + "id": "d41e969d-f6a7-4ff7-9660-19ce6c97ba6b" + }, "source": [ "### Part 1" ] @@ -45,7 +51,9 @@ { "cell_type": "markdown", "id": "f710d6f4-d40b-42d5-b524-c6acb8059fe2", - "metadata": {}, + "metadata": { + "id": "f710d6f4-d40b-42d5-b524-c6acb8059fe2" + }, "source": [ "Given the following Hamiltonian:" ] @@ -53,7 +61,9 @@ { "cell_type": "markdown", "id": "6ba8a6f1-3259-4492-a1ca-3abde7530cd4", - "metadata": {}, + "metadata": { + "id": "6ba8a6f1-3259-4492-a1ca-3abde7530cd4" + }, "source": [ "$$\n", "\\hat{H} = -1.0523 \\cdot (I \\otimes I) + 0.3979 \\cdot (I \\otimes Z) - 0.3979 \\cdot (Z \\otimes I) - 0.0112 \\cdot (Z \\otimes Z) + 0.1809 \\cdot (X \\otimes X)\n", @@ -63,7 +73,9 @@ { "cell_type": "markdown", "id": "736d275c-9a5a-4c08-b891-3078430dc6c1", - "metadata": {}, + "metadata": { + "id": "736d275c-9a5a-4c08-b891-3078430dc6c1" + }, "source": [ "Complete the following code" ] @@ -71,40 +83,78 @@ { "cell_type": "code", "execution_count": 1, + "id": "DQOxbZxjrN5r", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "DQOxbZxjrN5r", + "outputId": "ba3dffa0-ff88-4a89-b76f-a0bd6c05f164" + }, + "outputs": [], + "source": [ + "# !pip install -U classiq" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "jLanwByIe4eJ", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "jLanwByIe4eJ", + "outputId": "dea1c702-533c-492a-f2c7-4406c6fdb7f0" + }, + "outputs": [], + "source": [ + "# import classiq\n", + "# classiq.authenticate()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, "id": "19266c11-6acc-4edb-910f-2d0dfe80a6c8", - "metadata": {}, + "metadata": { + "id": "19266c11-6acc-4edb-910f-2d0dfe80a6c8" + }, "outputs": [], "source": [ "from typing import List\n", + "\n", "from classiq import *\n", "\n", - "HAMILTONIAN = QConstant(\"HAMILTONIAN\", List[PauliTerm],\n", - " [PauliTerm(pauli=[Pauli.I, Pauli.I], coefficient=-1.0523),\n", - " PauliTerm(pauli=[Pauli.I, Pauli.Z], coefficient=0.3979),\n", - " PauliTerm(pauli=[Pauli.Z, Pauli.I], coefficient=-0.3979),\n", - " PauliTerm(pauli=[Pauli.Z, Pauli.Z], coefficient=-0.0112),\n", - " PauliTerm(pauli=[Pauli.X, Pauli.X], coefficient=0.1809)]) #TODO: Complete Hamiltonian" + "# TODO: Complete Hamiltonian\n", + "HAMILTONIAN = QConstant(\n", + " \"HAMILTONIAN\",\n", + " List[PauliTerm],\n", + " [\n", + " PauliTerm([Pauli.I, Pauli.I], -1.0523),\n", + " PauliTerm([Pauli.I, Pauli.Z], 0.3979),\n", + " PauliTerm([Pauli.Z, Pauli.I], -0.3979),\n", + " PauliTerm([Pauli.Z, Pauli.Z], -0.0112),\n", + " PauliTerm([Pauli.X, Pauli.X], 0.1809),\n", + " ],\n", + ")" ] }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 4, "id": "0bb68899-2076-45c0-8868-131f38aa3b78", - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "The current version of 'classiq' has been deprecated, and will not be supported as of 2024-06-27. Please run \"pip install -U classiq\" to upgrade the classiq SDK to the latest version.\n" - ] - } - ], + "metadata": { + "id": "0bb68899-2076-45c0-8868-131f38aa3b78" + }, + "outputs": [], "source": [ "@qfunc\n", "def main(q: Output[QArray[QBit]], angles: CArray[CReal, 3]) -> None:\n", - " # TODO: Create an ansatz which allows each qubit to have arbitrary rotation\n", + " # TODO: Create an ansatz which allows each qubit to have\n", + " # arbitrary rotation\n", " allocate(2, q)\n", + "\n", " U(angles[0], angles[1], angles[2], 0, q[0])\n", " U(angles[0], angles[1], angles[2], 0, q[1])\n", "\n", @@ -112,9 +162,9 @@ "@cfunc\n", "def cmain() -> None:\n", " res = vqe(\n", - " HAMILTONIAN, # TODO: complete the missing argument\n", - " False,\n", - " [],\n", + " hamiltonian=HAMILTONIAN,\n", + " maximize=False,\n", + " initial_point=[],\n", " optimizer=Optimizer.COBYLA,\n", " max_iteration=1000,\n", " tolerance=0.001,\n", @@ -124,29 +174,39 @@ " )\n", " save({\"result\": res})\n", "\n", - "qmod = create_model(main, classical_execution_function=cmain) #TODO: complete the line, use classical_execution_function\n", - "qprog = synthesize(qmod)\n", - "# show(qprog)" + "\n", + "# TODO: complete the line, use classical_execution_function\n", + "qmod = create_model(main, classical_execution_function=cmain)\n", + "\n", + "qprog = synthesize(qmod)" ] }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 5, "id": "0563c1a8-7aec-4da9-9105-6b16c5c24382", - "metadata": {}, + "metadata": { + "id": "0563c1a8-7aec-4da9-9105-6b16c5c24382" + }, "outputs": [], "source": [ "execution = execute(qprog)\n", "res = execution.result()\n", "# execution.open_in_ide()\n", - "vqe_result = res[0].value #TODO: complete the line" + "vqe_result = res[0].value" ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 6, "id": "de17cfc0-8e64-4493-b4c2-4a97fc9797a0", "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 0 + }, + "id": "de17cfc0-8e64-4493-b4c2-4a97fc9797a0", + "outputId": "5b400695-8faf-4aae-e8b8-bdc477e211e1", "scrolled": true }, "outputs": [ @@ -154,9 +214,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "Optimal energy: -1.0646799804687501\n", - "Optimal parameters: {'angles_0': -6.164185814953359, 'angles_1': -5.172941087398459, 'angles_2': -5.722759806197389}\n", - "Eigenstate: {'01': (0.05846339666834283+0j), '10': (0.05412658773652741+0j), '00': (0.9968211192335363+0j)}\n" + "Optimal energy: -1.0619871093750002\n", + "Optimal parameters: {'angles_0': -3.2808520260537106, 'angles_1': 5.294346105087447, 'angles_2': -3.360401698136923}\n", + "Eigenstate: {'10': (0.07967217989988726+0j), '01': (0.08267972847076846+0j), '11': (0.9933863328282708+0j)}\n" ] } ], @@ -166,29 +226,12 @@ "print(f\"Eigenstate: {vqe_result.eigenstate}\")" ] }, - { - "cell_type": "code", - "execution_count": 5, - "id": "97b01b87", - "metadata": {}, - "outputs": [], - "source": [ - "# Optimal parameters: {'angles_0': -3.0292653800801213, 'angles_1': 0.13084292242999915, 'angles_2': -5.614248543217801}\n", - "# Eigenstate: {'10': (0.07328774624724109+0j), '11': (0.07328774624724109+0j), '01': (0.9946144039274718+0j)}" - ] - }, - { - "cell_type": "markdown", - "id": "452ac946", - "metadata": {}, - "source": [ - "The optimal energy is different from what was calculated in class." - ] - }, { "cell_type": "markdown", "id": "5df11dfc-3e3a-4191-bd47-d522ca3dcbfa", - "metadata": {}, + "metadata": { + "id": "5df11dfc-3e3a-4191-bd47-d522ca3dcbfa" + }, "source": [ "Does it similar to the `optimal energy` we calculated in class? \\\n", "Does it similar to the `total energy` we calculated in class?" @@ -197,7 +240,9 @@ { "cell_type": "markdown", "id": "4f0e0bea-b12f-43ad-94e8-100fedf2b57f", - "metadata": {}, + "metadata": { + "id": "4f0e0bea-b12f-43ad-94e8-100fedf2b57f" + }, "source": [ "### Part 2" ] @@ -205,7 +250,9 @@ { "cell_type": "markdown", "id": "66882248-de08-4a6e-b33c-647f015f7d79", - "metadata": {}, + "metadata": { + "id": "66882248-de08-4a6e-b33c-647f015f7d79" + }, "source": [ "**Now, we want to have a more interesting ansatz in our `main`.** \n", "Add **one** line of code to the `main` function you created in Part 1 that creates **entanglement** between the two qubits. \n", @@ -214,24 +261,29 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 7, "id": "bb39be9e-4994-44e5-84d8-c99bc8b77145", - "metadata": {}, + "metadata": { + "id": "bb39be9e-4994-44e5-84d8-c99bc8b77145" + }, "outputs": [], "source": [ "@qfunc\n", "def main(q: Output[QArray[QBit]], angles: CArray[CReal, 3]) -> None:\n", - " # TODO: Create an ansatz which allows each qubit to have arbitrary rotation\n", + " # TODO: Create an ansatz which allows each qubit to have\n", + " # arbitrary rotation\n", " allocate(2, q)\n", + "\n", " U(angles[0], angles[1], angles[2], 0, q[0])\n", " U(angles[0], angles[1], angles[2], 0, q[1])\n", + "\n", " CX(q[0], q[1])\n", "\n", "\n", "@cfunc\n", "def cmain() -> None:\n", " res = vqe(\n", - " HAMILTONIAN, # TODO: complete the missing argument\n", + " HAMILTONIAN, # TODO: complete the missing argument\n", " False,\n", " [],\n", " optimizer=Optimizer.COBYLA,\n", @@ -243,41 +295,48 @@ " )\n", " save({\"result\": res})\n", "\n", - "qmod = create_model(main, classical_execution_function=cmain) #TODO: complete the line, use classical_execution_function\n", - "qprog = synthesize(qmod)\n", - "# show(qprog)" + "\n", + "# TODO: complete the line, use classical_execution_function\n", + "qmod = create_model(main, classical_execution_function=cmain)\n", + "\n", + "qprog = synthesize(qmod)" ] }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 8, "id": "112a1590-283c-4f79-8035-72936561102d", - "metadata": {}, + "metadata": { + "id": "112a1590-283c-4f79-8035-72936561102d" + }, "outputs": [], "source": [ "execution = execute(qprog)\n", "res = execution.result()\n", "# execution.open_in_ide()\n", - "vqe_result = res[0].value #TODO: complete the line" + "vqe_result = res[0].value" ] }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 9, "id": "06500e4c-a04b-4cfa-a84d-41f96a0c68eb", "metadata": { - "jupyter": { - "outputs_hidden": true - } + "colab": { + "base_uri": "https://localhost:8080/", + "height": 0 + }, + "id": "06500e4c-a04b-4cfa-a84d-41f96a0c68eb", + "outputId": "c406023c-627c-468c-d48c-cddf2d234297" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Optimal energy: -1.8396752929687499\n", - "Optimal parameters: {'angles_0': -3.3237005318854607, 'angles_1': 3.9061632465634935, 'angles_2': -0.840172938028935}\n", - "Eigenstate: {'11': (0.07328774624724109+0j), '00': (0.02209708691207961+0j), '10': (0.09375+0j), '01': (0.9926487608917869+0j)}\n" + "Optimal energy: -1.0626466796875\n", + "Optimal parameters: {'angles_0': 6.128115986875437, 'angles_1': -1.2908504032221542, 'angles_2': -0.0016859821535950559}\n", + "Eigenstate: {'11': (0.07654655446197431+0j), '10': (0.07967217989988726+0j), '00': (0.9938777433618282+0j)}\n" ] } ], @@ -287,18 +346,12 @@ "print(f\"Eigenstate: {vqe_result.eigenstate}\")" ] }, - { - "cell_type": "markdown", - "id": "38a85725", - "metadata": {}, - "source": [ - "The optimal energy is close to what was calculated in class." - ] - }, { "cell_type": "markdown", "id": "30a635d7-2f15-4c94-a94b-f4270f17aed8", - "metadata": {}, + "metadata": { + "id": "30a635d7-2f15-4c94-a94b-f4270f17aed8" + }, "source": [ "Does it similar to the `optimal energy` we calculated in class? \\\n", "Does it similar to the `total energy` we calculated in class? \\\n", @@ -307,6 +360,9 @@ } ], "metadata": { + "colab": { + "provenance": [] + }, "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", @@ -322,7 +378,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.9" + "version": "3.11.9" } }, "nbformat": 4, diff --git "a/community/QClass_2024/Submissions/HW3/Jos\303\251_Alejandro_Garc\303\255a_Gonz\303\241lez_HW3_VQE.ipynb" "b/community/QClass_2024/Submissions/HW3/Jos\303\251_Alejandro_Garc\303\255a_Gonz\303\241lez_HW3_VQE.ipynb" deleted file mode 100644 index af5eb304..00000000 --- "a/community/QClass_2024/Submissions/HW3/Jos\303\251_Alejandro_Garc\303\255a_Gonz\303\241lez_HW3_VQE.ipynb" +++ /dev/null @@ -1,292 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "id": "fc72d98f-8993-4bd4-a545-23d122f3df71", - "metadata": {}, - "source": [ - "# H₂ Molecule Homework Assignment\n", - "### Quantum Software Development Journey: From Theory to Application with Classiq - Part 3\n", - "\n", - "- Similarly to what we have done in class, in this exercise we will implement the VQE on H2 molecule.\n", - "- This time instead of using the built-in methods and functions (such as `Molecule` and `MoleculeProblem`) to difne and solve the problem, you will be provided with a two qubits Hamiltonian." - ] - }, - { - "cell_type": "markdown", - "id": "56eda6d8-76c4-4862-b914-0c4598d67274", - "metadata": {}, - "source": [ - "## Submission\n", - "- Submit the completed Jupyter notebook and report via GitHub. Ensure all files are correctly named and organized.\n", - "- Use the Typeform link provided in the submission folder to confirm your submission.\n", - "\n", - "## Additional Resources\n", - "- [Classiq Documentation](https://docs.classiq.io/latest/)\n", - "- The notebook from live session #3\n", - "\n", - "## Important Dates\n", - "- **Assignment Release:** 22.5.2024\n", - "- **Submission Deadline:** 3.6.2024 (7 A.M GMT+3)\n", - "\n", - "---\n", - "\n", - "Happy coding and good luck!" - ] - }, - { - "cell_type": "markdown", - "id": "d41e969d-f6a7-4ff7-9660-19ce6c97ba6b", - "metadata": {}, - "source": [ - "### Part 1" - ] - }, - { - "cell_type": "markdown", - "id": "f710d6f4-d40b-42d5-b524-c6acb8059fe2", - "metadata": {}, - "source": [ - "Given the following Hamiltonian:" - ] - }, - { - "cell_type": "markdown", - "id": "6ba8a6f1-3259-4492-a1ca-3abde7530cd4", - "metadata": {}, - "source": [ - "$$\n", - "\\hat{H} = -1.0523 \\cdot (I \\otimes I) + 0.3979 \\cdot (I \\otimes Z) - 0.3979 \\cdot (Z \\otimes I) - 0.0112 \\cdot (Z \\otimes Z) + 0.1809 \\cdot (X \\otimes X)\n", - "$$" - ] - }, - { - "cell_type": "markdown", - "id": "736d275c-9a5a-4c08-b891-3078430dc6c1", - "metadata": {}, - "source": [ - "Complete the following code" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "id": "19266c11-6acc-4edb-910f-2d0dfe80a6c8", - "metadata": {}, - "outputs": [], - "source": [ - "from typing import List\n", - "from classiq import *\n", - "\n", - "HAMILTONIAN = QConstant(\"HAMILTONIAN\", List[PauliTerm], [ \n", - " PauliTerm([Pauli.I,Pauli.I], -1.0523),\n", - " PauliTerm([Pauli.I,Pauli.Z], 0.3979),\n", - " PauliTerm([Pauli.Z,Pauli.I], -0.3979),\n", - " PauliTerm([Pauli.Z,Pauli.Z], -0.0112),\n", - " PauliTerm([Pauli.X,Pauli.X], 0.1809)]) #TODO: Complete Hamiltonian" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "id": "0bb68899-2076-45c0-8868-131f38aa3b78", - "metadata": {}, - "outputs": [], - "source": [ - "@qfunc\n", - "def main(q: Output[QArray[QBit]], angles: CArray[CReal, 3]) -> None:\n", - " allocate(2, q)\n", - " U(angles[0], angles[1], angles[2], 0, q[0]) \n", - " U(angles[0], angles[1], angles[2], 0, q[1]) \n", - " # TODO: Create an ansatz which allows each qubit to have arbitrary rotation\n", - "\n", - "\n", - "@cfunc\n", - "def cmain() -> None:\n", - " res = vqe(\n", - " HAMILTONIAN, # TODO: complete the missing argument\n", - " False,\n", - " [],\n", - " optimizer=Optimizer.COBYLA,\n", - " max_iteration=1000,\n", - " tolerance=0.001,\n", - " step_size=0,\n", - " skip_compute_variance=False,\n", - " alpha_cvar=1.0,\n", - " )\n", - " save({\"result\": res})\n", - "\n", - "qmod = create_model(main, classical_execution_function=cmain) #TODO: complete the line, use classical_execution_function\n", - "qprog = synthesize(qmod)\n", - "# show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "id": "0563c1a8-7aec-4da9-9105-6b16c5c24382", - "metadata": {}, - "outputs": [], - "source": [ - "execution = execute(qprog)\n", - "res = execution.result()\n", - "# execution.open_in_ide()\n", - "vqe_result = res[0].value #TODO: complete the line" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "id": "de17cfc0-8e64-4493-b4c2-4a97fc9797a0", - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Optimal energy: -1.0703087890625\n", - "Optimal parameters: {'angles_0': -3.0050128659641677, 'angles_1': 5.201094170771723, 'angles_2': 5.307885496575592}\n", - "Eigenstate: {'01': (0.07967217989988726+0j), '10': (0.08267972847076846+0j), '11': (0.9933863328282708+0j)}\n" - ] - } - ], - "source": [ - "print(f\"Optimal energy: {vqe_result.energy}\")\n", - "print(f\"Optimal parameters: {vqe_result.optimal_parameters}\")\n", - "print(f\"Eigenstate: {vqe_result.eigenstate}\")" - ] - }, - { - "cell_type": "markdown", - "id": "5df11dfc-3e3a-4191-bd47-d522ca3dcbfa", - "metadata": {}, - "source": [ - "Does it similar to the `optimal energy` we calculated in class? \\\n", - "Does it similar to the `total energy` we calculated in class?" - ] - }, - { - "cell_type": "markdown", - "id": "4f0e0bea-b12f-43ad-94e8-100fedf2b57f", - "metadata": {}, - "source": [ - "### Part 2" - ] - }, - { - "cell_type": "markdown", - "id": "66882248-de08-4a6e-b33c-647f015f7d79", - "metadata": {}, - "source": [ - "**Now, we want to have a more interesting ansatz in our `main`.** \n", - "Add **one** line of code to the `main` function you created in Part 1 that creates **entanglement** between the two qubits. \n", - "Which gate should you use?" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "id": "bb39be9e-4994-44e5-84d8-c99bc8b77145", - "metadata": {}, - "outputs": [], - "source": [ - "@qfunc\n", - "def main(q: Output[QArray[QBit]], angles: CArray[CReal, 3]) -> None:\n", - " allocate(2, q)\n", - " U(angles[0], angles[1], angles[2], 0, q[0]) \n", - " U(angles[0], angles[1], angles[2], 0, q[1]) \n", - " CX(q[0],q[1])\n", - " # TODO: Create an ansatz which allows each qubit to have arbitrary rotation\n", - "\n", - "\n", - "\n", - "@cfunc\n", - "def cmain() -> None:\n", - " res = vqe(\n", - " HAMILTONIAN, # TODO: complete the missing argument\n", - " False,\n", - " [],\n", - " optimizer=Optimizer.COBYLA,\n", - " max_iteration=1000,\n", - " tolerance=0.001,\n", - " step_size=0,\n", - " skip_compute_variance=False,\n", - " alpha_cvar=1.0,\n", - " )\n", - " save({\"result\": res})\n", - "\n", - "qmod = create_model(main, classical_execution_function=cmain) #TODO: complete the line, use classical_execution_function\n", - "qprog = synthesize(qmod)\n", - "# show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "id": "112a1590-283c-4f79-8035-72936561102d", - "metadata": {}, - "outputs": [], - "source": [ - "execution = execute(qprog)\n", - "res = execution.result()\n", - "# execution.open_in_ide()\n", - "vqe_result = res[0].value #TODO: complete the line" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "id": "06500e4c-a04b-4cfa-a84d-41f96a0c68eb", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Optimal energy: -1.8458964843749999\n", - "Optimal parameters: {'angles_0': -3.3280394699556823, 'angles_1': -3.598660471331964, 'angles_2': 1.6530907975027636}\n", - "Eigenstate: {'11': (0.09882117688026186+0j), '10': (0.09882117688026186+0j), '01': (0.9901862198596787+0j)}\n" - ] - } - ], - "source": [ - "print(f\"Optimal energy: {vqe_result.energy}\")\n", - "print(f\"Optimal parameters: {vqe_result.optimal_parameters}\")\n", - "print(f\"Eigenstate: {vqe_result.eigenstate}\")" - ] - }, - { - "cell_type": "markdown", - "id": "30a635d7-2f15-4c94-a94b-f4270f17aed8", - "metadata": {}, - "source": [ - "Does it similar to the `optimal energy` we calculated in class? \\\n", - "Does it similar to the `total energy` we calculated in class? \\\n", - "What can we learn about the provided form this result Hamiltonian?" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.9" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/community/QClass_2024/Submissions/HW3/Mohammadreza_Khodajou_Masouleh_HW3_QClass2024.ipynb b/community/QClass_2024/Submissions/HW3/Mohammadreza_Khodajou_Masouleh_HW3_QClass2024.ipynb index e4bbf492..fe53d468 100644 --- a/community/QClass_2024/Submissions/HW3/Mohammadreza_Khodajou_Masouleh_HW3_QClass2024.ipynb +++ b/community/QClass_2024/Submissions/HW3/Mohammadreza_Khodajou_Masouleh_HW3_QClass2024.ipynb @@ -1,506 +1,400 @@ { - "cells": [ - { - "cell_type": "markdown", - "id": "fc72d98f-8993-4bd4-a545-23d122f3df71", - "metadata": { - "id": "fc72d98f-8993-4bd4-a545-23d122f3df71" - }, - "source": [ - "# H₂ Molecule Homework Assignment\n", - "### Quantum Software Development Journey: From Theory to Application with Classiq - Part 3\n", - "\n", - "- Similarly to what we have done in class, in this exercise we will implement the VQE on H2 molecule.\n", - "- This time instead of using the built-in methods and functions (such as `Molecule` and `MoleculeProblem`) to difne and solve the problem, you will be provided with a two qubits Hamiltonian." - ] - }, - { - "cell_type": "markdown", - "id": "56eda6d8-76c4-4862-b914-0c4598d67274", - "metadata": { - "id": "56eda6d8-76c4-4862-b914-0c4598d67274" - }, - "source": [ - "## Submission\n", - "- Submit the completed Jupyter notebook and report via GitHub. Ensure all files are correctly named and organized.\n", - "- Use the Typeform link provided in the submission folder to confirm your submission.\n", - "\n", - "## Additional Resources\n", - "- [Classiq Documentation](https://docs.classiq.io/latest/)\n", - "- The notebook from live session #3\n", - "\n", - "## Important Dates\n", - "- **Assignment Release:** 22.5.2024\n", - "- **Submission Deadline:** 3.6.2024 (7 A.M GMT+3)\n", - "\n", - "---\n", - "\n", - "Happy coding and good luck!" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "id": "XvJSENg4UQeh", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "XvJSENg4UQeh", - "outputId": "e25318b0-f308-4e3d-a898-681c900d09b8" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Collecting classiq\n", - " Downloading classiq-0.42.0-py3-none-any.whl (401 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m401.5/401.5 kB\u001b[0m \u001b[31m2.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hCollecting ConfigArgParse<2.0.0,>=1.5.3 (from classiq)\n", - " Downloading ConfigArgParse-1.7-py3-none-any.whl (25 kB)\n", - "Collecting Pyomo<6.6,>=6.5 (from classiq)\n", - " Downloading Pyomo-6.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.7 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m10.7/10.7 MB\u001b[0m \u001b[31m26.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hCollecting black<25.0,>=24.0 (from classiq)\n", - " Downloading black-24.4.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.8 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.8/1.8 MB\u001b[0m \u001b[31m39.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hCollecting httpx<1,>=0.23.0 (from classiq)\n", - " Downloading httpx-0.27.0-py3-none-any.whl (75 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m75.6/75.6 kB\u001b[0m \u001b[31m2.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hRequirement already satisfied: keyring<24.0.0,>=23.5.0 in /usr/lib/python3/dist-packages (from classiq) (23.5.0)\n", - "Requirement already satisfied: matplotlib<4.0.0,>=3.4.3 in /usr/local/lib/python3.10/dist-packages (from classiq) (3.7.1)\n", - "Collecting networkx<3.0.0,>=2.5.1 (from classiq)\n", - " Downloading networkx-2.8.8-py3-none-any.whl (2.0 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.0/2.0 MB\u001b[0m \u001b[31m40.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hRequirement already satisfied: numexpr<3.0.0,>=2.7.3 in /usr/local/lib/python3.10/dist-packages (from classiq) (2.10.0)\n", - "Requirement already satisfied: numpy<2.0.0,>=1.20.1 in /usr/local/lib/python3.10/dist-packages (from classiq) (1.25.2)\n", - "Collecting packaging<23.0,>=22.0 (from classiq)\n", - " Downloading packaging-22.0-py3-none-any.whl (42 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m42.6/42.6 kB\u001b[0m \u001b[31m3.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hRequirement already satisfied: pandas<3.0.0,>=1.4.0 in /usr/local/lib/python3.10/dist-packages (from classiq) (2.0.3)\n", - "Requirement already satisfied: plotly<6.0.0,>=5.7.0 in /usr/local/lib/python3.10/dist-packages (from classiq) (5.15.0)\n", - "Collecting pydantic<2.0.0,>=1.9.1 (from classiq)\n", - " Downloading pydantic-1.10.15-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.1/3.1 MB\u001b[0m \u001b[31m37.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hRequirement already satisfied: scipy<2.0.0,>=1.10.1 in /usr/local/lib/python3.10/dist-packages (from classiq) (1.11.4)\n", - "Collecting sympy<1.11.0,>=1.9.0 (from classiq)\n", - " Downloading sympy-1.10.1-py3-none-any.whl (6.4 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m6.4/6.4 MB\u001b[0m \u001b[31m18.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hRequirement already satisfied: tabulate<1,>=0.8.9 in /usr/local/lib/python3.10/dist-packages (from classiq) (0.9.0)\n", - "Requirement already satisfied: click>=8.0.0 in /usr/local/lib/python3.10/dist-packages (from black<25.0,>=24.0->classiq) (8.1.7)\n", - "Collecting mypy-extensions>=0.4.3 (from black<25.0,>=24.0->classiq)\n", - " Downloading mypy_extensions-1.0.0-py3-none-any.whl (4.7 kB)\n", - "Collecting pathspec>=0.9.0 (from black<25.0,>=24.0->classiq)\n", - " Downloading pathspec-0.12.1-py3-none-any.whl (31 kB)\n", - "Requirement already satisfied: platformdirs>=2 in /usr/local/lib/python3.10/dist-packages (from black<25.0,>=24.0->classiq) (4.2.2)\n", - "Requirement already satisfied: tomli>=1.1.0 in /usr/local/lib/python3.10/dist-packages (from black<25.0,>=24.0->classiq) (2.0.1)\n", - "Requirement already satisfied: typing-extensions>=4.0.1 in /usr/local/lib/python3.10/dist-packages (from black<25.0,>=24.0->classiq) (4.12.1)\n", - "Requirement already satisfied: anyio in /usr/local/lib/python3.10/dist-packages (from httpx<1,>=0.23.0->classiq) (3.7.1)\n", - "Requirement already satisfied: certifi in /usr/local/lib/python3.10/dist-packages (from httpx<1,>=0.23.0->classiq) (2024.6.2)\n", - "Collecting httpcore==1.* (from httpx<1,>=0.23.0->classiq)\n", - " Downloading httpcore-1.0.5-py3-none-any.whl (77 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m77.9/77.9 kB\u001b[0m \u001b[31m3.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hRequirement already satisfied: idna in /usr/local/lib/python3.10/dist-packages (from httpx<1,>=0.23.0->classiq) (3.7)\n", - "Requirement already satisfied: sniffio in /usr/local/lib/python3.10/dist-packages (from httpx<1,>=0.23.0->classiq) (1.3.1)\n", - "Collecting h11<0.15,>=0.13 (from httpcore==1.*->httpx<1,>=0.23.0->classiq)\n", - " Downloading h11-0.14.0-py3-none-any.whl (58 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m58.3/58.3 kB\u001b[0m \u001b[31m3.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hRequirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.4.3->classiq) (1.2.1)\n", - "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.4.3->classiq) (0.12.1)\n", - "Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.4.3->classiq) (4.53.0)\n", - "Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.4.3->classiq) (1.4.5)\n", - "Requirement already satisfied: pillow>=6.2.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.4.3->classiq) (9.4.0)\n", - "Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.4.3->classiq) (3.1.2)\n", - "Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.4.3->classiq) (2.8.2)\n", - "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas<3.0.0,>=1.4.0->classiq) (2023.4)\n", - "Requirement already satisfied: tzdata>=2022.1 in /usr/local/lib/python3.10/dist-packages (from pandas<3.0.0,>=1.4.0->classiq) (2024.1)\n", - "Requirement already satisfied: tenacity>=6.2.0 in /usr/local/lib/python3.10/dist-packages (from plotly<6.0.0,>=5.7.0->classiq) (8.3.0)\n", - "Collecting ply (from Pyomo<6.6,>=6.5->classiq)\n", - " Downloading ply-3.11-py2.py3-none-any.whl (49 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m49.6/49.6 kB\u001b[0m \u001b[31m1.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hRequirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.10/dist-packages (from sympy<1.11.0,>=1.9.0->classiq) (1.3.0)\n", - "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.7->matplotlib<4.0.0,>=3.4.3->classiq) (1.16.0)\n", - "Requirement already satisfied: exceptiongroup in /usr/local/lib/python3.10/dist-packages (from anyio->httpx<1,>=0.23.0->classiq) (1.2.1)\n", - "Installing collected packages: ply, sympy, Pyomo, pydantic, pathspec, packaging, networkx, mypy-extensions, h11, ConfigArgParse, httpcore, black, httpx, classiq\n", - " Attempting uninstall: sympy\n", - " Found existing installation: sympy 1.12.1\n", - " Uninstalling sympy-1.12.1:\n", - " Successfully uninstalled sympy-1.12.1\n", - " Attempting uninstall: pydantic\n", - " Found existing installation: pydantic 2.7.3\n", - " Uninstalling pydantic-2.7.3:\n", - " Successfully uninstalled pydantic-2.7.3\n", - " Attempting uninstall: packaging\n", - " Found existing installation: packaging 24.0\n", - " Uninstalling packaging-24.0:\n", - " Successfully uninstalled packaging-24.0\n", - " Attempting uninstall: networkx\n", - " Found existing installation: networkx 3.3\n", - " Uninstalling networkx-3.3:\n", - " Successfully uninstalled networkx-3.3\n", - "\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n", - "torch 2.3.0+cu121 requires nvidia-cublas-cu12==12.1.3.1; platform_system == \"Linux\" and platform_machine == \"x86_64\", which is not installed.\n", - "torch 2.3.0+cu121 requires nvidia-cuda-cupti-cu12==12.1.105; platform_system == \"Linux\" and platform_machine == \"x86_64\", which is not installed.\n", - "torch 2.3.0+cu121 requires nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == \"Linux\" and platform_machine == \"x86_64\", which is not installed.\n", - "torch 2.3.0+cu121 requires nvidia-cuda-runtime-cu12==12.1.105; platform_system == \"Linux\" and platform_machine == \"x86_64\", which is not installed.\n", - "torch 2.3.0+cu121 requires nvidia-cudnn-cu12==8.9.2.26; platform_system == \"Linux\" and platform_machine == \"x86_64\", which is not installed.\n", - "torch 2.3.0+cu121 requires nvidia-cufft-cu12==11.0.2.54; platform_system == \"Linux\" and platform_machine == \"x86_64\", which is not installed.\n", - "torch 2.3.0+cu121 requires nvidia-curand-cu12==10.3.2.106; platform_system == \"Linux\" and platform_machine == \"x86_64\", which is not installed.\n", - "torch 2.3.0+cu121 requires nvidia-cusolver-cu12==11.4.5.107; platform_system == \"Linux\" and platform_machine == \"x86_64\", which is not installed.\n", - "torch 2.3.0+cu121 requires nvidia-cusparse-cu12==12.1.0.106; platform_system == \"Linux\" and platform_machine == \"x86_64\", which is not installed.\n", - "torch 2.3.0+cu121 requires nvidia-nccl-cu12==2.20.5; platform_system == \"Linux\" and platform_machine == \"x86_64\", which is not installed.\n", - "torch 2.3.0+cu121 requires nvidia-nvtx-cu12==12.1.105; platform_system == \"Linux\" and platform_machine == \"x86_64\", which is not installed.\u001b[0m\u001b[31m\n", - "\u001b[0mSuccessfully installed ConfigArgParse-1.7 Pyomo-6.5.0 black-24.4.2 classiq-0.42.0 h11-0.14.0 httpcore-1.0.5 httpx-0.27.0 mypy-extensions-1.0.0 networkx-2.8.8 packaging-22.0 pathspec-0.12.1 ply-3.11 pydantic-1.10.15 sympy-1.10.1\n" - ] - } - ], - "source": [ - " !pip install -U classiq" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "id": "HryEIcq_UWzG", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "HryEIcq_UWzG", - "outputId": "cba0edbf-73c1-46ea-d967-f020003e3a37" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Your user code: ZCPV-PRDZ\n", - "If a browser doesn't automatically open, please visit this URL from any trusted device: https://auth.classiq.io/activate?user_code=ZCPV-PRDZ\n" - ] - } - ], - "source": [ - "import classiq\n", - "classiq.authenticate()" - ] - }, - { - "cell_type": "markdown", - "id": "d41e969d-f6a7-4ff7-9660-19ce6c97ba6b", - "metadata": { - "id": "d41e969d-f6a7-4ff7-9660-19ce6c97ba6b" - }, - "source": [ - "### Part 1" - ] - }, - { - "cell_type": "markdown", - "id": "f710d6f4-d40b-42d5-b524-c6acb8059fe2", - "metadata": { - "id": "f710d6f4-d40b-42d5-b524-c6acb8059fe2" - }, - "source": [ - "Given the following Hamiltonian:" - ] - }, - { - "cell_type": "markdown", - "id": "6ba8a6f1-3259-4492-a1ca-3abde7530cd4", - "metadata": { - "id": "6ba8a6f1-3259-4492-a1ca-3abde7530cd4" - }, - "source": [ - "$$\n", - "\\hat{H} = -1.0523 \\cdot (I \\otimes I) + 0.3979 \\cdot (I \\otimes Z) - 0.3979 \\cdot (Z \\otimes I) - 0.0112 \\cdot (Z \\otimes Z) + 0.1809 \\cdot (X \\otimes X)\n", - "$$" - ] - }, - { - "cell_type": "markdown", - "id": "736d275c-9a5a-4c08-b891-3078430dc6c1", - "metadata": { - "id": "736d275c-9a5a-4c08-b891-3078430dc6c1" - }, - "source": [ - "Complete the following code" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "id": "19266c11-6acc-4edb-910f-2d0dfe80a6c8", - "metadata": { - "id": "19266c11-6acc-4edb-910f-2d0dfe80a6c8" - }, - "outputs": [], - "source": [ - "from typing import List\n", - "from classiq import *\n", - "\n", - "HAMILTONIAN = QConstant(\"HAMILTONIAN\",\n", - " List[PauliTerm],\n", - " [PauliTerm(pauli=[Pauli.I, Pauli.I], coefficient=-1.0523),\n", - " PauliTerm(pauli=[Pauli.I, Pauli.Z], coefficient=0.3979),\n", - " PauliTerm(pauli=[Pauli.Z, Pauli.I], coefficient=-0.3979),\n", - " PauliTerm(pauli=[Pauli.Z, Pauli.Z], coefficient=-0.0112),\n", - " PauliTerm(pauli=[Pauli.X, Pauli.X], coefficient=0.1809)]) #TODO: Complete Hamiltonian" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "id": "0bb68899-2076-45c0-8868-131f38aa3b78", - "metadata": { - "id": "0bb68899-2076-45c0-8868-131f38aa3b78" - }, - "outputs": [], - "source": [ - "@qfunc\n", - "def main(q: Output[QArray[QBit]], angles: CArray[CReal, 3]) -> None:\n", - " # TODO: Create an ansatz which allows each qubit to have arbitrary rotation\n", - " allocate(2, q)\n", - " repeat (q.len, lambda i: U(angles[0], angles[1], angles[2], 0, q[i]))\n", - "\n", - "@cfunc\n", - "def cmain() -> None:\n", - " res = vqe(\n", - " HAMILTONIAN, # TODO: complete the missing argument\n", - " False,\n", - " [],\n", - " optimizer=Optimizer.COBYLA,\n", - " max_iteration=1000,\n", - " tolerance=0.001,\n", - " step_size=0,\n", - " skip_compute_variance=False,\n", - " alpha_cvar=1.0,\n", - " )\n", - " save({\"result\": res})\n", - "\n", - "qmod = create_model(main, classical_execution_function=cmain)#TODO: complete the line, use classical_execution_function\n", - "qprog = synthesize(qmod)\n", - "#show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "id": "0563c1a8-7aec-4da9-9105-6b16c5c24382", - "metadata": { - "id": "0563c1a8-7aec-4da9-9105-6b16c5c24382" - }, - "outputs": [], - "source": [ - "execution = execute(qprog)\n", - "res = execution.result()\n", - "# execution.open_in_ide()\n", - "#print(res)\n", - "vqe_result = res[0].value #TODO: complete the line" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "id": "XYbvABk_FwQJ", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "XYbvABk_FwQJ", - "outputId": "16644151-f0a9-4995-e6b4-d66e543f118e", - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Optimal energy: -1.062161328125\n", - "Optimal parameters: {'angles_0': 0.13568678083490543, 'angles_1': -5.744986654083372, 'angles_2': 5.700228943470761}\n", - "Eigenstate: {'01': (0.07654655446197431+0j), '10': (0.09375+0j), '00': (0.9926487608917869+0j)}\n" - ] - } - ], - "source": [ - "print(f\"Optimal energy: {vqe_result.energy}\")\n", - "print(f\"Optimal parameters: {vqe_result.optimal_parameters}\")\n", - "print(f\"Eigenstate: {vqe_result.eigenstate}\")" - ] - }, - { - "cell_type": "markdown", - "id": "5df11dfc-3e3a-4191-bd47-d522ca3dcbfa", - "metadata": { - "id": "5df11dfc-3e3a-4191-bd47-d522ca3dcbfa" - }, - "source": [ - "Does it similar to the `optimal energy` we calculated in class? \\\n", - "Does it similar to the `total energy` we calculated in class?" - ] - }, - { - "cell_type": "markdown", - "id": "70pHpqecuObf", - "metadata": { - "id": "70pHpqecuObf" - }, - "source": [ - "*No! The value in the session was derived, according to different contributions, associated with the two-atom H_2 molecule, having taken into account various ways of communication through potential between them (atoms being effectively the qubits). This problem doesn't cover for those. Qubits are not talking to each other!*" - ] - }, - { - "cell_type": "markdown", - "id": "4f0e0bea-b12f-43ad-94e8-100fedf2b57f", - "metadata": { - "id": "4f0e0bea-b12f-43ad-94e8-100fedf2b57f" - }, - "source": [ - "### Part 2" - ] - }, - { - "cell_type": "markdown", - "id": "66882248-de08-4a6e-b33c-647f015f7d79", - "metadata": { - "id": "66882248-de08-4a6e-b33c-647f015f7d79" - }, - "source": [ - "**Now, we want to have a more interesting ansatz in our `main`.** \n", - "Add **one** line of code to the `main` function you created in Part 1 that creates **entanglement** between the two qubits. \n", - "Which gate should you use?" - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "id": "bb39be9e-4994-44e5-84d8-c99bc8b77145", - "metadata": { - "id": "bb39be9e-4994-44e5-84d8-c99bc8b77145" - }, - "outputs": [], - "source": [ - "@qfunc\n", - "def main(q: Output[QArray[QBit]], angles: CArray[CReal, 3]) -> None:\n", - " # TODO: Create an ansatz which allows each qubit to have arbitrary rotation\n", - "\n", - " allocate(2, q)\n", - " repeat (q.len, lambda i: U(angles[0], angles[1], angles[2], 0, q[i]))\n", - " CX(q[0], q[1])\n", - "\n", - "\n", - "@cfunc\n", - "def cmain() -> None:\n", - " res = vqe(\n", - " HAMILTONIAN, # TODO: complete the missing argument\n", - " False,\n", - " [],\n", - " optimizer=Optimizer.COBYLA,\n", - " max_iteration=1000,\n", - " tolerance=0.001,\n", - " step_size=0,\n", - " skip_compute_variance=False,\n", - " alpha_cvar=1.0,\n", - " )\n", - " save({\"result\": res})\n", - "\n", - "qmod = create_model(main, classical_execution_function=cmain)#TODO: complete the line, use classical_execution_function\n", - "qprog = synthesize(qmod)\n", - "# show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "id": "112a1590-283c-4f79-8035-72936561102d", - "metadata": { - "id": "112a1590-283c-4f79-8035-72936561102d" - }, - "outputs": [], - "source": [ - "execution = execute(qprog)\n", - "res = execution.result()\n", - "# execution.open_in_ide()\n", - "vqe_result = res[0].value #TODO: complete the line" - ] + "cells": [ + { + "cell_type": "markdown", + "id": "fc72d98f-8993-4bd4-a545-23d122f3df71", + "metadata": { + "id": "fc72d98f-8993-4bd4-a545-23d122f3df71" + }, + "source": [ + "# H₂ Molecule Homework Assignment\n", + "### Quantum Software Development Journey: From Theory to Application with Classiq - Part 3\n", + "\n", + "- Similarly to what we have done in class, in this exercise we will implement the VQE on H2 molecule.\n", + "- This time instead of using the built-in methods and functions (such as `Molecule` and `MoleculeProblem`) to difne and solve the problem, you will be provided with a two qubits Hamiltonian." + ] + }, + { + "cell_type": "markdown", + "id": "56eda6d8-76c4-4862-b914-0c4598d67274", + "metadata": { + "id": "56eda6d8-76c4-4862-b914-0c4598d67274" + }, + "source": [ + "## Submission\n", + "- Submit the completed Jupyter notebook and report via GitHub. Ensure all files are correctly named and organized.\n", + "- Use the Typeform link provided in the submission folder to confirm your submission.\n", + "\n", + "## Additional Resources\n", + "- [Classiq Documentation](https://docs.classiq.io/latest/)\n", + "- The notebook from live session #3\n", + "\n", + "## Important Dates\n", + "- **Assignment Release:** 22.5.2024\n", + "- **Submission Deadline:** 3.6.2024 (7 A.M GMT+3)\n", + "\n", + "---\n", + "\n", + "Happy coding and good luck!" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "XvJSENg4UQeh", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, - { - "cell_type": "code", - "execution_count": 42, - "id": "06500e4c-a04b-4cfa-a84d-41f96a0c68eb", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "collapsed": true, - "id": "06500e4c-a04b-4cfa-a84d-41f96a0c68eb", - "jupyter": { - "outputs_hidden": true - }, - "outputId": "51f2aa86-143f-4e92-a3b3-3b900e42fd83" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Optimal energy: -1.8525221679687498\n", - "Optimal parameters: {'angles_0': 3.00289263258954, 'angles_1': -3.506224563747043, 'angles_2': -4.715418449895681}\n", - "Eigenstate: {'11': (0.06987712429686843+0j), '10': (0.05846339666834283+0j), '01': (0.995840960570512+0j)}\n" - ] - } - ], - "source": [ - "print(f\"Optimal energy: {vqe_result.energy}\")\n", - "print(f\"Optimal parameters: {vqe_result.optimal_parameters}\")\n", - "print(f\"Eigenstate: {vqe_result.eigenstate}\")" - ] + "id": "XvJSENg4UQeh", + "outputId": "e25318b0-f308-4e3d-a898-681c900d09b8" + }, + "outputs": [], + "source": [ + "# !pip install -U classiq" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "HryEIcq_UWzG", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, - { - "cell_type": "markdown", - "id": "30a635d7-2f15-4c94-a94b-f4270f17aed8", - "metadata": { - "id": "30a635d7-2f15-4c94-a94b-f4270f17aed8" - }, - "source": [ - "Does it similar to the `optimal energy` we calculated in class? \\\n", - "Does it similar to the `total energy` we calculated in class? \\\n", - "What can we learn about the provided form this result Hamiltonian?" - ] + "id": "HryEIcq_UWzG", + "outputId": "cba0edbf-73c1-46ea-d967-f020003e3a37" + }, + "outputs": [], + "source": [ + "# import classiq\n", + "# classiq.authenticate()" + ] + }, + { + "cell_type": "markdown", + "id": "d41e969d-f6a7-4ff7-9660-19ce6c97ba6b", + "metadata": { + "id": "d41e969d-f6a7-4ff7-9660-19ce6c97ba6b" + }, + "source": [ + "### Part 1" + ] + }, + { + "cell_type": "markdown", + "id": "f710d6f4-d40b-42d5-b524-c6acb8059fe2", + "metadata": { + "id": "f710d6f4-d40b-42d5-b524-c6acb8059fe2" + }, + "source": [ + "Given the following Hamiltonian:" + ] + }, + { + "cell_type": "markdown", + "id": "6ba8a6f1-3259-4492-a1ca-3abde7530cd4", + "metadata": { + "id": "6ba8a6f1-3259-4492-a1ca-3abde7530cd4" + }, + "source": [ + "$$\n", + "\\hat{H} = -1.0523 \\cdot (I \\otimes I) + 0.3979 \\cdot (I \\otimes Z) - 0.3979 \\cdot (Z \\otimes I) - 0.0112 \\cdot (Z \\otimes Z) + 0.1809 \\cdot (X \\otimes X)\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "id": "736d275c-9a5a-4c08-b891-3078430dc6c1", + "metadata": { + "id": "736d275c-9a5a-4c08-b891-3078430dc6c1" + }, + "source": [ + "Complete the following code" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "19266c11-6acc-4edb-910f-2d0dfe80a6c8", + "metadata": { + "id": "19266c11-6acc-4edb-910f-2d0dfe80a6c8" + }, + "outputs": [], + "source": [ + "from typing import List\n", + "\n", + "from classiq import *\n", + "\n", + "HAMILTONIAN = QConstant(\n", + " \"HAMILTONIAN\",\n", + " List[PauliTerm],\n", + " [\n", + " PauliTerm(pauli=[Pauli.I, Pauli.I], coefficient=-1.0523),\n", + " PauliTerm(pauli=[Pauli.I, Pauli.Z], coefficient=0.3979),\n", + " PauliTerm(pauli=[Pauli.Z, Pauli.I], coefficient=-0.3979),\n", + " PauliTerm(pauli=[Pauli.Z, Pauli.Z], coefficient=-0.0112),\n", + " PauliTerm(pauli=[Pauli.X, Pauli.X], coefficient=0.1809),\n", + " ],\n", + ") # TODO: Complete Hamiltonian" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "0bb68899-2076-45c0-8868-131f38aa3b78", + "metadata": { + "id": "0bb68899-2076-45c0-8868-131f38aa3b78" + }, + "outputs": [], + "source": [ + "@qfunc\n", + "def main(q: Output[QArray[QBit]], angles: CArray[CReal, 3]) -> None:\n", + " # TODO: Create an ansatz which allows each qubit to have arbitrary rotation\n", + " allocate(2, q)\n", + " repeat(q.len, lambda i: U(angles[0], angles[1], angles[2], 0, q[i]))\n", + "\n", + "\n", + "@cfunc\n", + "def cmain() -> None:\n", + " res = vqe(\n", + " HAMILTONIAN, # TODO: complete the missing argument\n", + " False,\n", + " [],\n", + " optimizer=Optimizer.COBYLA,\n", + " max_iteration=1000,\n", + " tolerance=0.001,\n", + " step_size=0,\n", + " skip_compute_variance=False,\n", + " alpha_cvar=1.0,\n", + " )\n", + " save({\"result\": res})\n", + "\n", + "\n", + "qmod = create_model(\n", + " main, classical_execution_function=cmain\n", + ") # TODO: complete the line, use classical_execution_function\n", + "qprog = synthesize(qmod)\n", + "# show(qprog)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "0563c1a8-7aec-4da9-9105-6b16c5c24382", + "metadata": { + "id": "0563c1a8-7aec-4da9-9105-6b16c5c24382" + }, + "outputs": [], + "source": [ + "execution = execute(qprog)\n", + "res = execution.result()\n", + "# execution.open_in_ide()\n", + "# print(res)\n", + "vqe_result = res[0].value # TODO: complete the line" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "XYbvABk_FwQJ", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "XYbvABk_FwQJ", + "outputId": "16644151-f0a9-4995-e6b4-d66e543f118e", + "scrolled": true + }, + "outputs": [ { - "cell_type": "markdown", - "id": "j4jmzMoL186t", - "metadata": { - "id": "j4jmzMoL186t" - }, - "source": [ - "*Evidently, the value of the optimal energy here bears a striking resemblence to the value of the problem discussed in the session. Almost surprisingly so, even though running the cell more than once introduces minimal differences. The entangling two-qubit gate CNOT is responsible for the conversation between the qubits, and that is the reason behind this similarity in values. Nevertheless, it's quite surprising admittedly to be able to simulate the impact of those sophisticated potential terms + the solid ansatz by a CNOT!*" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "Optimal energy: -1.0736828125\n", + "Optimal parameters: {'angles_0': 6.723999211067887, 'angles_1': -4.787549480657028, 'angles_2': 0.01835345840038345}\n", + "Eigenstate: {'11': (0.05846339666834283+0j), '01': (0.2275034340400162+0j), '10': (0.18619336387207788+0j), '00': (0.9540210951546092+0j)}\n" + ] } - ], - "metadata": { + ], + "source": [ + "print(f\"Optimal energy: {vqe_result.energy}\")\n", + "print(f\"Optimal parameters: {vqe_result.optimal_parameters}\")\n", + "print(f\"Eigenstate: {vqe_result.eigenstate}\")" + ] + }, + { + "cell_type": "markdown", + "id": "5df11dfc-3e3a-4191-bd47-d522ca3dcbfa", + "metadata": { + "id": "5df11dfc-3e3a-4191-bd47-d522ca3dcbfa" + }, + "source": [ + "Does it similar to the `optimal energy` we calculated in class? \\\n", + "Does it similar to the `total energy` we calculated in class?" + ] + }, + { + "cell_type": "markdown", + "id": "70pHpqecuObf", + "metadata": { + "id": "70pHpqecuObf" + }, + "source": [ + "*No! The value in the session was derived, according to different contributions, associated with the two-atom H_2 molecule, having taken into account various ways of communication through potential between them (atoms being effectively the qubits). This problem doesn't cover for those. Qubits are not talking to each other!*" + ] + }, + { + "cell_type": "markdown", + "id": "4f0e0bea-b12f-43ad-94e8-100fedf2b57f", + "metadata": { + "id": "4f0e0bea-b12f-43ad-94e8-100fedf2b57f" + }, + "source": [ + "### Part 2" + ] + }, + { + "cell_type": "markdown", + "id": "66882248-de08-4a6e-b33c-647f015f7d79", + "metadata": { + "id": "66882248-de08-4a6e-b33c-647f015f7d79" + }, + "source": [ + "**Now, we want to have a more interesting ansatz in our `main`.** \n", + "Add **one** line of code to the `main` function you created in Part 1 that creates **entanglement** between the two qubits. \n", + "Which gate should you use?" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "bb39be9e-4994-44e5-84d8-c99bc8b77145", + "metadata": { + "id": "bb39be9e-4994-44e5-84d8-c99bc8b77145" + }, + "outputs": [], + "source": [ + "@qfunc\n", + "def main(q: Output[QArray[QBit]], angles: CArray[CReal, 3]) -> None:\n", + " # TODO: Create an ansatz which allows each qubit to have arbitrary rotation\n", + "\n", + " allocate(2, q)\n", + " repeat(q.len, lambda i: U(angles[0], angles[1], angles[2], 0, q[i]))\n", + " CX(q[0], q[1])\n", + "\n", + "\n", + "@cfunc\n", + "def cmain() -> None:\n", + " res = vqe(\n", + " HAMILTONIAN, # TODO: complete the missing argument\n", + " False,\n", + " [],\n", + " optimizer=Optimizer.COBYLA,\n", + " max_iteration=1000,\n", + " tolerance=0.001,\n", + " step_size=0,\n", + " skip_compute_variance=False,\n", + " alpha_cvar=1.0,\n", + " )\n", + " save({\"result\": res})\n", + "\n", + "\n", + "qmod = create_model(\n", + " main, classical_execution_function=cmain\n", + ") # TODO: complete the line, use classical_execution_function\n", + "qprog = synthesize(qmod)\n", + "# show(qprog)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "112a1590-283c-4f79-8035-72936561102d", + "metadata": { + "id": "112a1590-283c-4f79-8035-72936561102d" + }, + "outputs": [], + "source": [ + "execution = execute(qprog)\n", + "res = execution.result()\n", + "# execution.open_in_ide()\n", + "vqe_result = res[0].value # TODO: complete the line" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "06500e4c-a04b-4cfa-a84d-41f96a0c68eb", + "metadata": { "colab": { - "provenance": [] + "base_uri": "https://localhost:8080/" }, - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.9" + "id": "06500e4c-a04b-4cfa-a84d-41f96a0c68eb", + "outputId": "51f2aa86-143f-4e92-a3b3-3b900e42fd83" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Optimal energy: -1.8497781249999998\n", + "Optimal parameters: {'angles_0': -2.9205748677970176, 'angles_1': -0.5854301692243206, 'angles_2': -3.1640158800495723}\n", + "Eigenstate: {'11': (0.11048543456039805+0j), '10': (0.12303137303143455+0j), '01': (0.9862333648787187+0j)}\n" + ] } + ], + "source": [ + "print(f\"Optimal energy: {vqe_result.energy}\")\n", + "print(f\"Optimal parameters: {vqe_result.optimal_parameters}\")\n", + "print(f\"Eigenstate: {vqe_result.eigenstate}\")" + ] + }, + { + "cell_type": "markdown", + "id": "30a635d7-2f15-4c94-a94b-f4270f17aed8", + "metadata": { + "id": "30a635d7-2f15-4c94-a94b-f4270f17aed8" + }, + "source": [ + "Does it similar to the `optimal energy` we calculated in class? \\\n", + "Does it similar to the `total energy` we calculated in class? \\\n", + "What can we learn about the provided form this result Hamiltonian?" + ] + }, + { + "cell_type": "markdown", + "id": "j4jmzMoL186t", + "metadata": { + "id": "j4jmzMoL186t" + }, + "source": [ + "*Evidently, the value of the optimal energy here bears a striking resemblence to the value of the problem discussed in the session. Almost surprisingly so, even though running the cell more than once introduces minimal differences. The entangling two-qubit gate CNOT is responsible for the conversation between the qubits, and that is the reason behind this similarity in values. Nevertheless, it's quite surprising admittedly to be able to simulate the impact of those sophisticated potential terms + the solid ansatz by a CNOT!*" + ] + } + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" }, - "nbformat": 4, - "nbformat_minor": 5 + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + } + }, + "nbformat": 4, + "nbformat_minor": 5 } diff --git a/community/QClass_2024/Submissions/HW3/Noah_Nzeki_William_HW3_VQE.ipynb b/community/QClass_2024/Submissions/HW3/Noah_Nzeki_William_HW3_VQE.ipynb old mode 100755 new mode 100644 index 80563254..49c257c6 --- a/community/QClass_2024/Submissions/HW3/Noah_Nzeki_William_HW3_VQE.ipynb +++ b/community/QClass_2024/Submissions/HW3/Noah_Nzeki_William_HW3_VQE.ipynb @@ -76,15 +76,20 @@ "outputs": [], "source": [ "from typing import List\n", + "\n", "from classiq import *\n", "\n", - "HAMILTONIAN = QConstant(\"HAMILTONIAN\", List[PauliTerm], #[...]) #TODO: Complete Hamiltonian\n", - " [ \n", - " PauliTerm([Pauli.I, Pauli.I], -1.0523),\n", - " PauliTerm([Pauli.I, Pauli.Z], 0.3979),\n", - " PauliTerm([Pauli.Z, Pauli.I], -0.3979),\n", - " PauliTerm([Pauli.Z, Pauli.Z], -0.0112),\n", - " PauliTerm([Pauli.X, Pauli.X], 0.1809)])\n" + "HAMILTONIAN = QConstant(\n", + " \"HAMILTONIAN\",\n", + " List[PauliTerm], # [...]) #TODO: Complete Hamiltonian\n", + " [\n", + " PauliTerm([Pauli.I, Pauli.I], -1.0523),\n", + " PauliTerm([Pauli.I, Pauli.Z], 0.3979),\n", + " PauliTerm([Pauli.Z, Pauli.I], -0.3979),\n", + " PauliTerm([Pauli.Z, Pauli.Z], -0.0112),\n", + " PauliTerm([Pauli.X, Pauli.X], 0.1809),\n", + " ],\n", + ")" ] }, { @@ -105,15 +110,16 @@ "@qfunc\n", "def main(q: Output[QArray[QBit]], angles: CArray[CReal, 3]) -> None:\n", " # TODO: Create an ansatz which allows each qubit to have arbitrary rotation\n", - " \n", - " allocate(2, q) \n", - " U(angles[0], angles[1], angles[2], 0, q[0]) \n", - " U(angles[0], angles[1], angles[2], 0, q[1]) \n", + "\n", + " allocate(2, q)\n", + " U(angles[0], angles[1], angles[2], 0, q[0])\n", + " U(angles[0], angles[1], angles[2], 0, q[1])\n", + "\n", "\n", "@cfunc\n", "def cmain() -> None:\n", " res = vqe(\n", - " HAMILTONIAN, #.TODO: complete the missing argument\n", + " HAMILTONIAN, # .TODO: complete the missing argument\n", " False,\n", " [],\n", " optimizer=Optimizer.COBYLA,\n", @@ -125,7 +131,10 @@ " )\n", " save({\"result\": res})\n", "\n", - "qmod = create_model(main, classical_execution_function=cmain) #TODO: complete the line, use classical_execution_function\n", + "\n", + "qmod = create_model(\n", + " main, classical_execution_function=cmain\n", + ") # TODO: complete the line, use classical_execution_function\n", "qprog = synthesize(qmod)\n", "show(qprog)" ] @@ -139,8 +148,8 @@ "source": [ "execution = execute(qprog)\n", "res = execution.result()\n", - "#execution.open_in_ide()\n", - "vqe_result = res[0].value #TODO: complete the line" + "# execution.open_in_ide()\n", + "vqe_result = res[0].value # TODO: complete the line" ] }, { @@ -212,16 +221,17 @@ "@qfunc\n", "def main(q: Output[QArray[QBit]], angles: CArray[CReal, 3]) -> None:\n", " # TODO: Create an ansatz which allows each qubit to have arbitrary rotation\n", - " \n", - " allocate(2, q) \n", - " U(angles[0], angles[1], angles[2], 0, q[0]) \n", - " U(angles[0], angles[1], angles[2], 0, q[1]) \n", - " CX(q[1],q[0])\n", + "\n", + " allocate(2, q)\n", + " U(angles[0], angles[1], angles[2], 0, q[0])\n", + " U(angles[0], angles[1], angles[2], 0, q[1])\n", + " CX(q[1], q[0])\n", + "\n", "\n", "@cfunc\n", "def cmain() -> None:\n", " res = vqe(\n", - " HAMILTONIAN, # TODO: complete the missing argument\n", + " HAMILTONIAN, # TODO: complete the missing argument\n", " False,\n", " [],\n", " optimizer=Optimizer.COBYLA,\n", @@ -233,7 +243,10 @@ " )\n", " save({\"result\": res})\n", "\n", - "qmod = create_model(main, classical_execution_function=cmain) #TODO: complete the line, use classical_execution_function\n", + "\n", + "qmod = create_model(\n", + " main, classical_execution_function=cmain\n", + ") # TODO: complete the line, use classical_execution_function\n", "qprog = synthesize(qmod)\n", "show(qprog)" ] @@ -257,7 +270,7 @@ "execution = execute(qprog)\n", "res = execution.result()\n", "# execution.open_in_ide()\n", - "vqe_result = res[0].value #TODO: complete the line" + "vqe_result = res[0].value # TODO: complete the line" ] }, { diff --git a/community/QClass_2024/Submissions/HW3/Otmane_Ainelkitane_HW3_VQE.ipynb b/community/QClass_2024/Submissions/HW3/Otmane_Ainelkitane_HW3_VQE.ipynb index d9fc502d..c1bee5d6 100644 --- a/community/QClass_2024/Submissions/HW3/Otmane_Ainelkitane_HW3_VQE.ipynb +++ b/community/QClass_2024/Submissions/HW3/Otmane_Ainelkitane_HW3_VQE.ipynb @@ -1,419 +1,382 @@ { - "cells": [ - { - "cell_type": "markdown", - "id": "fc72d98f-8993-4bd4-a545-23d122f3df71", - "metadata": { - "id": "fc72d98f-8993-4bd4-a545-23d122f3df71" - }, - "source": [ - "# H₂ Molecule Homework Assignment\n", - "### Quantum Software Development Journey: From Theory to Application with Classiq - Part 3\n", - "\n", - "- Similarly to what we have done in class, in this exercise we will implement the VQE on H2 molecule.\n", - "- This time instead of using the built-in methods and functions (such as `Molecule` and `MoleculeProblem`) to difne and solve the problem, you will be provided with a two qubits Hamiltonian." - ] - }, - { - "cell_type": "markdown", - "id": "56eda6d8-76c4-4862-b914-0c4598d67274", - "metadata": { - "id": "56eda6d8-76c4-4862-b914-0c4598d67274" - }, - "source": [ - "## Submission\n", - "- Submit the completed Jupyter notebook and report via GitHub. Ensure all files are correctly named and organized.\n", - "- Use the Typeform link provided in the submission folder to confirm your submission.\n", - "\n", - "## Additional Resources\n", - "- [Classiq Documentation](https://docs.classiq.io/latest/)\n", - "- The notebook from live session #3\n", - "\n", - "## Important Dates\n", - "- **Assignment Release:** 22.5.2024\n", - "- **Submission Deadline:** 3.6.2024 (7 A.M GMT+3)\n", - "\n", - "---\n", - "\n", - "Happy coding and good luck!" - ] - }, - { - "cell_type": "markdown", - "id": "d41e969d-f6a7-4ff7-9660-19ce6c97ba6b", - "metadata": { - "id": "d41e969d-f6a7-4ff7-9660-19ce6c97ba6b" - }, - "source": [ - "### Part 1" - ] - }, - { - "cell_type": "markdown", - "id": "f710d6f4-d40b-42d5-b524-c6acb8059fe2", - "metadata": { - "id": "f710d6f4-d40b-42d5-b524-c6acb8059fe2" - }, - "source": [ - "Given the following Hamiltonian:" - ] - }, - { - "cell_type": "markdown", - "id": "6ba8a6f1-3259-4492-a1ca-3abde7530cd4", - "metadata": { - "id": "6ba8a6f1-3259-4492-a1ca-3abde7530cd4" - }, - "source": [ - "$$\n", - "\\hat{H} = -1.0523 \\cdot (I \\otimes I) + 0.3979 \\cdot (I \\otimes Z) - 0.3979 \\cdot (Z \\otimes I) - 0.0112 \\cdot (Z \\otimes Z) + 0.1809 \\cdot (X \\otimes X)\n", - "$$" - ] - }, - { - "cell_type": "markdown", - "id": "736d275c-9a5a-4c08-b891-3078430dc6c1", - "metadata": { - "id": "736d275c-9a5a-4c08-b891-3078430dc6c1" - }, - "source": [ - "Complete the following code" - ] - }, - { - "cell_type": "code", - "source": [ - "!pip install -U -q classiq" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "collapsed": true, - "id": "imjx_MjrLbGs", - "outputId": "41671177-4fd4-4eef-d299-b5edab53a274" - }, - "id": "imjx_MjrLbGs", - "execution_count": 2, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m398.1/398.1 kB\u001b[0m \u001b[31m3.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m10.7/10.7 MB\u001b[0m \u001b[31m25.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.8/1.8 MB\u001b[0m \u001b[31m33.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m75.6/75.6 kB\u001b[0m \u001b[31m4.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.0/2.0 MB\u001b[0m \u001b[31m26.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m42.6/42.6 kB\u001b[0m \u001b[31m2.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.1/3.1 MB\u001b[0m \u001b[31m41.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m6.4/6.4 MB\u001b[0m \u001b[31m41.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m77.9/77.9 kB\u001b[0m \u001b[31m4.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m58.3/58.3 kB\u001b[0m \u001b[31m4.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m49.6/49.6 kB\u001b[0m \u001b[31m5.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25h\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n", - "torch 2.3.0+cu121 requires nvidia-cublas-cu12==12.1.3.1; platform_system == \"Linux\" and platform_machine == \"x86_64\", which is not installed.\n", - "torch 2.3.0+cu121 requires nvidia-cuda-cupti-cu12==12.1.105; platform_system == \"Linux\" and platform_machine == \"x86_64\", which is not installed.\n", - "torch 2.3.0+cu121 requires nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == \"Linux\" and platform_machine == \"x86_64\", which is not installed.\n", - "torch 2.3.0+cu121 requires nvidia-cuda-runtime-cu12==12.1.105; platform_system == \"Linux\" and platform_machine == \"x86_64\", which is not installed.\n", - "torch 2.3.0+cu121 requires nvidia-cudnn-cu12==8.9.2.26; platform_system == \"Linux\" and platform_machine == \"x86_64\", which is not installed.\n", - "torch 2.3.0+cu121 requires nvidia-cufft-cu12==11.0.2.54; platform_system == \"Linux\" and platform_machine == \"x86_64\", which is not installed.\n", - "torch 2.3.0+cu121 requires nvidia-curand-cu12==10.3.2.106; platform_system == \"Linux\" and platform_machine == \"x86_64\", which is not installed.\n", - "torch 2.3.0+cu121 requires nvidia-cusolver-cu12==11.4.5.107; platform_system == \"Linux\" and platform_machine == \"x86_64\", which is not installed.\n", - "torch 2.3.0+cu121 requires nvidia-cusparse-cu12==12.1.0.106; platform_system == \"Linux\" and platform_machine == \"x86_64\", which is not installed.\n", - "torch 2.3.0+cu121 requires nvidia-nccl-cu12==2.20.5; platform_system == \"Linux\" and platform_machine == \"x86_64\", which is not installed.\n", - "torch 2.3.0+cu121 requires nvidia-nvtx-cu12==12.1.105; platform_system == \"Linux\" and platform_machine == \"x86_64\", which is not installed.\u001b[0m\u001b[31m\n", - "\u001b[0m" - ] - } - ] - }, - { - "cell_type": "code", - "source": [ - "import classiq\n", - "classiq.authenticate()" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "UjUn859jLcaS", - "outputId": "1d9eb96e-fefe-42c3-c71d-cd24bfb5d4cb" - }, - "id": "UjUn859jLcaS", - "execution_count": 3, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Your user code: JPTW-QDSJ\n", - "If a browser doesn't automatically open, please visit this URL from any trusted device: https://auth.classiq.io/activate?user_code=JPTW-QDSJ\n" - ] - } - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "id": "19266c11-6acc-4edb-910f-2d0dfe80a6c8", - "metadata": { - "id": "19266c11-6acc-4edb-910f-2d0dfe80a6c8" - }, - "outputs": [], - "source": [ - "from typing import List\n", - "from classiq import *\n", - "\n", - "HAMILTONIAN = QConstant(\"HAMILTONIAN\", List[PauliTerm],\n", - " [PauliTerm([Pauli.I, Pauli.I], -1.0523),\n", - " PauliTerm([Pauli.I,Pauli.Z], 0.3979),\n", - " PauliTerm([Pauli.Z,Pauli.I], -0.3979),\n", - " PauliTerm([Pauli.Z,Pauli.Z], -0.0112),\n", - " PauliTerm([Pauli.X, Pauli.X], 0.1809)])" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "id": "0bb68899-2076-45c0-8868-131f38aa3b78", - "metadata": { - "id": "0bb68899-2076-45c0-8868-131f38aa3b78" - }, - "outputs": [], - "source": [ - "@qfunc\n", - "def main(q: Output[QArray[QBit]], angles: CArray[CReal, 3]) -> None:\n", - " # Create an ansatz which allows each qubit to have arbitrary rotation\n", - " allocate(2, q)\n", - " U(angles[0], angles[1], angles[2], 0, q[0])\n", - " U(angles[0], angles[1], angles[2], 0, q[1])\n", - "\n", - "\n", - "@cfunc\n", - "def cmain() -> None:\n", - " res = vqe(\n", - " HAMILTONIAN,\n", - " False,\n", - " [],\n", - " optimizer=Optimizer.COBYLA,\n", - " max_iteration=1000,\n", - " tolerance=0.001,\n", - " step_size=0,\n", - " skip_compute_variance=False,\n", - " alpha_cvar=1.0,\n", - " )\n", - " save({\"result\": res})\n", - "\n", - "qmod = create_model(main, classical_execution_function=cmain)\n", - "qprog = synthesize(qmod)\n", - "# show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "id": "0563c1a8-7aec-4da9-9105-6b16c5c24382", - "metadata": { - "id": "0563c1a8-7aec-4da9-9105-6b16c5c24382" - }, - "outputs": [], - "source": [ - "execution = execute(qprog)\n", - "res = execution.result()\n", - "# execution.open_in_ide()\n", - "\n", - "vqe_result = res[0].value" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "id": "de17cfc0-8e64-4493-b4c2-4a97fc9797a0", - "metadata": { - "scrolled": true, - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "de17cfc0-8e64-4493-b4c2-4a97fc9797a0", - "outputId": "695489b1-dcff-431b-8f8a-b90daaa26ff5" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Optimal energy: -1.06546357421875\n", - "Optimal parameters: {'angles_0': 6.139678585190387, 'angles_1': 4.976498216901541, 'angles_2': -4.571133358645985}\n", - "Eigenstate: {'01': (0.06629126073623882+0j), '10': (0.07328774624724109+0j), '00': (0.9951052080056662+0j)}\n" - ] - } - ], - "source": [ - "print(f\"Optimal energy: {vqe_result.energy}\")\n", - "print(f\"Optimal parameters: {vqe_result.optimal_parameters}\")\n", - "print(f\"Eigenstate: {vqe_result.eigenstate}\")" - ] - }, - { - "cell_type": "markdown", - "id": "5df11dfc-3e3a-4191-bd47-d522ca3dcbfa", - "metadata": { - "id": "5df11dfc-3e3a-4191-bd47-d522ca3dcbfa" - }, - "source": [ - "Does it similar to the `optimal energy` we calculated in class? \\\n", - "Does it similar to the `total energy` we calculated in class?" - ] - }, - { - "cell_type": "markdown", - "id": "4f0e0bea-b12f-43ad-94e8-100fedf2b57f", - "metadata": { - "id": "4f0e0bea-b12f-43ad-94e8-100fedf2b57f" - }, - "source": [ - "### Part 2" - ] - }, - { - "cell_type": "markdown", - "id": "66882248-de08-4a6e-b33c-647f015f7d79", - "metadata": { - "id": "66882248-de08-4a6e-b33c-647f015f7d79" - }, - "source": [ - "**Now, we want to have a more interesting ansatz in our `main`.** \n", - "Add **one** line of code to the `main` function you created in Part 1 that creates **entanglement** between the two qubits. \n", - "Which gate should you use?" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "id": "bb39be9e-4994-44e5-84d8-c99bc8b77145", - "metadata": { - "id": "bb39be9e-4994-44e5-84d8-c99bc8b77145" - }, - "outputs": [], - "source": [ - "from typing import List\n", - "from classiq import *\n", - "\n", - "\n", - "@qfunc\n", - "def main(q: Output[QArray[QBit]], angles: CArray[CReal, 3]) -> None:\n", - " # TODO: Create an ansatz which allows each qubit to have arbitrary rotation\n", - " allocate(2, q)\n", - " U(angles[0], angles[1], angles[2], 0, q[0])\n", - " U(angles[0], angles[1], angles[2], 0, q[1])\n", - " CX(q[0], q[1])\n", - "\n", - "\n", - "\n", - "@cfunc\n", - "def cmain() -> None:\n", - " res = vqe(\n", - " HAMILTONIAN, # TODO: complete the missing argument\n", - " False,\n", - " [],\n", - " optimizer=Optimizer.COBYLA,\n", - " max_iteration=1000,\n", - " tolerance=0.001,\n", - " step_size=0,\n", - " skip_compute_variance=False,\n", - " alpha_cvar=1.0,\n", - " )\n", - " save({\"result\": res})\n", - "\n", - "qmod = create_model(main, classical_execution_function=cmain)\n", - "qprog = synthesize(qmod)\n", - "# show(qprog)" - ] + "cells": [ + { + "cell_type": "markdown", + "id": "fc72d98f-8993-4bd4-a545-23d122f3df71", + "metadata": { + "id": "fc72d98f-8993-4bd4-a545-23d122f3df71" + }, + "source": [ + "# H₂ Molecule Homework Assignment\n", + "### Quantum Software Development Journey: From Theory to Application with Classiq - Part 3\n", + "\n", + "- Similarly to what we have done in class, in this exercise we will implement the VQE on H2 molecule.\n", + "- This time instead of using the built-in methods and functions (such as `Molecule` and `MoleculeProblem`) to difne and solve the problem, you will be provided with a two qubits Hamiltonian." + ] + }, + { + "cell_type": "markdown", + "id": "56eda6d8-76c4-4862-b914-0c4598d67274", + "metadata": { + "id": "56eda6d8-76c4-4862-b914-0c4598d67274" + }, + "source": [ + "## Submission\n", + "- Submit the completed Jupyter notebook and report via GitHub. Ensure all files are correctly named and organized.\n", + "- Use the Typeform link provided in the submission folder to confirm your submission.\n", + "\n", + "## Additional Resources\n", + "- [Classiq Documentation](https://docs.classiq.io/latest/)\n", + "- The notebook from live session #3\n", + "\n", + "## Important Dates\n", + "- **Assignment Release:** 22.5.2024\n", + "- **Submission Deadline:** 3.6.2024 (7 A.M GMT+3)\n", + "\n", + "---\n", + "\n", + "Happy coding and good luck!" + ] + }, + { + "cell_type": "markdown", + "id": "d41e969d-f6a7-4ff7-9660-19ce6c97ba6b", + "metadata": { + "id": "d41e969d-f6a7-4ff7-9660-19ce6c97ba6b" + }, + "source": [ + "### Part 1" + ] + }, + { + "cell_type": "markdown", + "id": "f710d6f4-d40b-42d5-b524-c6acb8059fe2", + "metadata": { + "id": "f710d6f4-d40b-42d5-b524-c6acb8059fe2" + }, + "source": [ + "Given the following Hamiltonian:" + ] + }, + { + "cell_type": "markdown", + "id": "6ba8a6f1-3259-4492-a1ca-3abde7530cd4", + "metadata": { + "id": "6ba8a6f1-3259-4492-a1ca-3abde7530cd4" + }, + "source": [ + "$$\n", + "\\hat{H} = -1.0523 \\cdot (I \\otimes I) + 0.3979 \\cdot (I \\otimes Z) - 0.3979 \\cdot (Z \\otimes I) - 0.0112 \\cdot (Z \\otimes Z) + 0.1809 \\cdot (X \\otimes X)\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "id": "736d275c-9a5a-4c08-b891-3078430dc6c1", + "metadata": { + "id": "736d275c-9a5a-4c08-b891-3078430dc6c1" + }, + "source": [ + "Complete the following code" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "imjx_MjrLbGs", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, - { - "cell_type": "code", - "execution_count": 16, - "id": "112a1590-283c-4f79-8035-72936561102d", - "metadata": { - "id": "112a1590-283c-4f79-8035-72936561102d" - }, - "outputs": [], - "source": [ - "execution = execute(qprog)\n", - "res = execution.result()\n", - "# execution.open_in_ide()\n", - "vqe_result = res[0].value" - ] + "id": "imjx_MjrLbGs", + "outputId": "41671177-4fd4-4eef-d299-b5edab53a274" + }, + "outputs": [], + "source": [ + "# !pip install -U -q classiq" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "UjUn859jLcaS", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, - { - "cell_type": "code", - "execution_count": 17, - "id": "06500e4c-a04b-4cfa-a84d-41f96a0c68eb", - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true - }, - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "06500e4c-a04b-4cfa-a84d-41f96a0c68eb", - "outputId": "32d0ab57-094e-495d-fe1e-6be7c916b9d8" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Optimal energy: -1.8593486328125\n", - "Optimal parameters: {'angles_0': -3.344661707239267, 'angles_1': 2.9341114783374493, 'angles_2': -2.868211044897404}\n", - "Eigenstate: {'11': (0.10126157341262282+0j), '10': (0.11481983169296148+0j), '01': (0.9882117688026185+0j)}\n" - ] - } - ], - "source": [ - "print(f\"Optimal energy: {vqe_result.energy}\")\n", - "print(f\"Optimal parameters: {vqe_result.optimal_parameters}\")\n", - "print(f\"Eigenstate: {vqe_result.eigenstate}\")" - ] + "id": "UjUn859jLcaS", + "outputId": "1d9eb96e-fefe-42c3-c71d-cd24bfb5d4cb" + }, + "outputs": [], + "source": [ + "# import classiq\n", + "# classiq.authenticate()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "19266c11-6acc-4edb-910f-2d0dfe80a6c8", + "metadata": { + "id": "19266c11-6acc-4edb-910f-2d0dfe80a6c8" + }, + "outputs": [], + "source": [ + "from typing import List\n", + "\n", + "from classiq import *\n", + "\n", + "HAMILTONIAN = QConstant(\n", + " \"HAMILTONIAN\",\n", + " List[PauliTerm],\n", + " [\n", + " PauliTerm([Pauli.I, Pauli.I], -1.0523),\n", + " PauliTerm([Pauli.I, Pauli.Z], 0.3979),\n", + " PauliTerm([Pauli.Z, Pauli.I], -0.3979),\n", + " PauliTerm([Pauli.Z, Pauli.Z], -0.0112),\n", + " PauliTerm([Pauli.X, Pauli.X], 0.1809),\n", + " ],\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "0bb68899-2076-45c0-8868-131f38aa3b78", + "metadata": { + "id": "0bb68899-2076-45c0-8868-131f38aa3b78" + }, + "outputs": [], + "source": [ + "@qfunc\n", + "def main(q: Output[QArray[QBit]], angles: CArray[CReal, 3]) -> None:\n", + " # Create an ansatz which allows each qubit to have arbitrary rotation\n", + " allocate(2, q)\n", + " U(angles[0], angles[1], angles[2], 0, q[0])\n", + " U(angles[0], angles[1], angles[2], 0, q[1])\n", + "\n", + "\n", + "@cfunc\n", + "def cmain() -> None:\n", + " res = vqe(\n", + " HAMILTONIAN,\n", + " False,\n", + " [],\n", + " optimizer=Optimizer.COBYLA,\n", + " max_iteration=1000,\n", + " tolerance=0.001,\n", + " step_size=0,\n", + " skip_compute_variance=False,\n", + " alpha_cvar=1.0,\n", + " )\n", + " save({\"result\": res})\n", + "\n", + "\n", + "qmod = create_model(main, classical_execution_function=cmain)\n", + "qprog = synthesize(qmod)\n", + "# show(qprog)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "0563c1a8-7aec-4da9-9105-6b16c5c24382", + "metadata": { + "id": "0563c1a8-7aec-4da9-9105-6b16c5c24382" + }, + "outputs": [], + "source": [ + "execution = execute(qprog)\n", + "res = execution.result()\n", + "# execution.open_in_ide()\n", + "\n", + "vqe_result = res[0].value" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "de17cfc0-8e64-4493-b4c2-4a97fc9797a0", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "de17cfc0-8e64-4493-b4c2-4a97fc9797a0", + "outputId": "695489b1-dcff-431b-8f8a-b90daaa26ff5", + "scrolled": true + }, + "outputs": [ { - "cell_type": "markdown", - "id": "30a635d7-2f15-4c94-a94b-f4270f17aed8", - "metadata": { - "id": "30a635d7-2f15-4c94-a94b-f4270f17aed8" - }, - "source": [ - "Does it similar to the `optimal energy` we calculated in class? \\\n", - "Does it similar to the `total energy` we calculated in class? \\\n", - "What can we learn about the provided form this result Hamiltonian?" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "Optimal energy: -1.0636766601562502\n", + "Optimal parameters: {'angles_0': -3.0998518759918956, 'angles_1': -4.166656695234214, 'angles_2': -3.433961156376651}\n", + "Eigenstate: {'01': (0.03125+0j), '10': (0.03125+0j), '11': (0.9990229601966113+0j)}\n" + ] } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.16" - }, + ], + "source": [ + "print(f\"Optimal energy: {vqe_result.energy}\")\n", + "print(f\"Optimal parameters: {vqe_result.optimal_parameters}\")\n", + "print(f\"Eigenstate: {vqe_result.eigenstate}\")" + ] + }, + { + "cell_type": "markdown", + "id": "5df11dfc-3e3a-4191-bd47-d522ca3dcbfa", + "metadata": { + "id": "5df11dfc-3e3a-4191-bd47-d522ca3dcbfa" + }, + "source": [ + "Does it similar to the `optimal energy` we calculated in class? \\\n", + "Does it similar to the `total energy` we calculated in class?" + ] + }, + { + "cell_type": "markdown", + "id": "4f0e0bea-b12f-43ad-94e8-100fedf2b57f", + "metadata": { + "id": "4f0e0bea-b12f-43ad-94e8-100fedf2b57f" + }, + "source": [ + "### Part 2" + ] + }, + { + "cell_type": "markdown", + "id": "66882248-de08-4a6e-b33c-647f015f7d79", + "metadata": { + "id": "66882248-de08-4a6e-b33c-647f015f7d79" + }, + "source": [ + "**Now, we want to have a more interesting ansatz in our `main`.** \n", + "Add **one** line of code to the `main` function you created in Part 1 that creates **entanglement** between the two qubits. \n", + "Which gate should you use?" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "bb39be9e-4994-44e5-84d8-c99bc8b77145", + "metadata": { + "id": "bb39be9e-4994-44e5-84d8-c99bc8b77145" + }, + "outputs": [], + "source": [ + "from typing import List\n", + "\n", + "from classiq import *\n", + "\n", + "\n", + "@qfunc\n", + "def main(q: Output[QArray[QBit]], angles: CArray[CReal, 3]) -> None:\n", + " # TODO: Create an ansatz which allows each qubit to have arbitrary rotation\n", + " allocate(2, q)\n", + " U(angles[0], angles[1], angles[2], 0, q[0])\n", + " U(angles[0], angles[1], angles[2], 0, q[1])\n", + " CX(q[0], q[1])\n", + "\n", + "\n", + "@cfunc\n", + "def cmain() -> None:\n", + " res = vqe(\n", + " HAMILTONIAN, # TODO: complete the missing argument\n", + " False,\n", + " [],\n", + " optimizer=Optimizer.COBYLA,\n", + " max_iteration=1000,\n", + " tolerance=0.001,\n", + " step_size=0,\n", + " skip_compute_variance=False,\n", + " alpha_cvar=1.0,\n", + " )\n", + " save({\"result\": res})\n", + "\n", + "\n", + "qmod = create_model(main, classical_execution_function=cmain)\n", + "qprog = synthesize(qmod)\n", + "# show(qprog)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "112a1590-283c-4f79-8035-72936561102d", + "metadata": { + "id": "112a1590-283c-4f79-8035-72936561102d" + }, + "outputs": [], + "source": [ + "execution = execute(qprog)\n", + "res = execution.result()\n", + "# execution.open_in_ide()\n", + "vqe_result = res[0].value" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "06500e4c-a04b-4cfa-a84d-41f96a0c68eb", + "metadata": { "colab": { - "provenance": [] + "base_uri": "https://localhost:8080/" + }, + "id": "06500e4c-a04b-4cfa-a84d-41f96a0c68eb", + "outputId": "32d0ab57-094e-495d-fe1e-6be7c916b9d8" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Optimal energy: -1.83778330078125\n", + "Optimal parameters: {'angles_0': 3.1609114395373816, 'angles_1': 1.6474535058684903, 'angles_2': -6.267889810614212}\n", + "Eigenstate: {'01': (1+0j)}\n" + ] } + ], + "source": [ + "print(f\"Optimal energy: {vqe_result.energy}\")\n", + "print(f\"Optimal parameters: {vqe_result.optimal_parameters}\")\n", + "print(f\"Eigenstate: {vqe_result.eigenstate}\")" + ] + }, + { + "cell_type": "markdown", + "id": "30a635d7-2f15-4c94-a94b-f4270f17aed8", + "metadata": { + "id": "30a635d7-2f15-4c94-a94b-f4270f17aed8" + }, + "source": [ + "Does it similar to the `optimal energy` we calculated in class? \\\n", + "Does it similar to the `total energy` we calculated in class? \\\n", + "What can we learn about the provided form this result Hamiltonian?" + ] + } + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" }, - "nbformat": 4, - "nbformat_minor": 5 -} \ No newline at end of file + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/community/QClass_2024/Submissions/HW3/Samyak_Jain_HW3_VQE.ipynb b/community/QClass_2024/Submissions/HW3/Samyak_Jain_HW3_VQE.ipynb index 43f2a6cf..15bc864b 100644 --- a/community/QClass_2024/Submissions/HW3/Samyak_Jain_HW3_VQE.ipynb +++ b/community/QClass_2024/Submissions/HW3/Samyak_Jain_HW3_VQE.ipynb @@ -76,13 +76,20 @@ "outputs": [], "source": [ "from typing import List\n", + "\n", "from classiq import *\n", "\n", - "HAMILTONIAN = QConstant(\"HAMILTONIAN\", List[PauliTerm], [ PauliTerm([Pauli.I, Pauli.I], -1.0523),\n", - " PauliTerm([Pauli.I, Pauli.Z], 0.3979),\n", - " PauliTerm([Pauli.Z, Pauli.I], -0.3979),\n", - " PauliTerm([Pauli.Z, Pauli.Z], -0.0112),\n", - " PauliTerm([Pauli.X, Pauli.X], 0.1809)]) #TODO: Complete Hamiltonian" + "HAMILTONIAN = QConstant(\n", + " \"HAMILTONIAN\",\n", + " List[PauliTerm],\n", + " [\n", + " PauliTerm([Pauli.I, Pauli.I], -1.0523),\n", + " PauliTerm([Pauli.I, Pauli.Z], 0.3979),\n", + " PauliTerm([Pauli.Z, Pauli.I], -0.3979),\n", + " PauliTerm([Pauli.Z, Pauli.Z], -0.0112),\n", + " PauliTerm([Pauli.X, Pauli.X], 0.1809),\n", + " ],\n", + ") # TODO: Complete Hamiltonian" ] }, { @@ -99,10 +106,12 @@ " allocate(2, q)\n", " U(angles[0], angles[1], angles[2], 0, q[0])\n", " U(angles[0], angles[1], angles[2], 0, q[1])\n", + "\n", + "\n", "@cfunc\n", "def cmain() -> None:\n", " res = vqe(\n", - " HAMILTONIAN, # TODO: complete the missing argument\n", + " HAMILTONIAN, # TODO: complete the missing argument\n", " False,\n", " [],\n", " optimizer=Optimizer.COBYLA,\n", @@ -114,7 +123,10 @@ " )\n", " save({\"result\": res})\n", "\n", - "qmod =create_model(main, classical_execution_function=cmain) #TODO: complete the line, use classical_execution_function\n", + "\n", + "qmod = create_model(\n", + " main, classical_execution_function=cmain\n", + ") # TODO: complete the line, use classical_execution_function\n", "qprog = synthesize(qmod)\n", "# show(qprog)" ] @@ -129,7 +141,7 @@ "execution = execute(qprog)\n", "res = execution.result()\n", "# execution.open_in_ide()\n", - "vqe_result =res[0].value #TODO: complete the line" + "vqe_result = res[0].value # TODO: complete the line" ] }, { @@ -202,7 +214,7 @@ "@cfunc\n", "def cmain() -> None:\n", " res = vqe(\n", - " HAMILTONIAN, # TODO: complete the missing argument\n", + " HAMILTONIAN, # TODO: complete the missing argument\n", " False,\n", " [],\n", " optimizer=Optimizer.COBYLA,\n", @@ -214,7 +226,10 @@ " )\n", " save({\"result\": res})\n", "\n", - "qmod =create_model(main, classical_execution_function=cmain) #TODO: complete the line, use classical_execution_function\n", + "\n", + "qmod = create_model(\n", + " main, classical_execution_function=cmain\n", + ") # TODO: complete the line, use classical_execution_function\n", "qprog = synthesize(qmod)\n", "# show(qprog)" ] @@ -229,7 +244,7 @@ "execution = execute(qprog)\n", "res = execution.result()\n", "# execution.open_in_ide()\n", - "vqe_result =res[0].value #TODO: complete the line" + "vqe_result = res[0].value # TODO: complete the line" ] }, { diff --git a/community/QClass_2024/Submissions/HW3/Razeen_Ud_Din_HW3_QClass2024.ipynb b/community/QClass_2024/Submissions/HW3/Yasir_Mansour_HW3_VQE.ipynb similarity index 59% rename from community/QClass_2024/Submissions/HW3/Razeen_Ud_Din_HW3_QClass2024.ipynb rename to community/QClass_2024/Submissions/HW3/Yasir_Mansour_HW3_VQE.ipynb index fb58bad5..274c8e70 100644 --- a/community/QClass_2024/Submissions/HW3/Razeen_Ud_Din_HW3_QClass2024.ipynb +++ b/community/QClass_2024/Submissions/HW3/Yasir_Mansour_HW3_VQE.ipynb @@ -3,7 +3,9 @@ { "cell_type": "markdown", "id": "fc72d98f-8993-4bd4-a545-23d122f3df71", - "metadata": {}, + "metadata": { + "id": "fc72d98f-8993-4bd4-a545-23d122f3df71" + }, "source": [ "# H₂ Molecule Homework Assignment\n", "### Quantum Software Development Journey: From Theory to Application with Classiq - Part 3\n", @@ -15,7 +17,9 @@ { "cell_type": "markdown", "id": "56eda6d8-76c4-4862-b914-0c4598d67274", - "metadata": {}, + "metadata": { + "id": "56eda6d8-76c4-4862-b914-0c4598d67274" + }, "source": [ "## Submission\n", "- Submit the completed Jupyter notebook and report via GitHub. Ensure all files are correctly named and organized.\n", @@ -37,7 +41,9 @@ { "cell_type": "markdown", "id": "d41e969d-f6a7-4ff7-9660-19ce6c97ba6b", - "metadata": {}, + "metadata": { + "id": "d41e969d-f6a7-4ff7-9660-19ce6c97ba6b" + }, "source": [ "### Part 1" ] @@ -45,7 +51,9 @@ { "cell_type": "markdown", "id": "f710d6f4-d40b-42d5-b524-c6acb8059fe2", - "metadata": {}, + "metadata": { + "id": "f710d6f4-d40b-42d5-b524-c6acb8059fe2" + }, "source": [ "Given the following Hamiltonian:" ] @@ -53,7 +61,9 @@ { "cell_type": "markdown", "id": "6ba8a6f1-3259-4492-a1ca-3abde7530cd4", - "metadata": {}, + "metadata": { + "id": "6ba8a6f1-3259-4492-a1ca-3abde7530cd4" + }, "source": [ "$$\n", "\\hat{H} = -1.0523 \\cdot (I \\otimes I) + 0.3979 \\cdot (I \\otimes Z) - 0.3979 \\cdot (Z \\otimes I) - 0.0112 \\cdot (Z \\otimes Z) + 0.1809 \\cdot (X \\otimes X)\n", @@ -63,7 +73,9 @@ { "cell_type": "markdown", "id": "736d275c-9a5a-4c08-b891-3078430dc6c1", - "metadata": {}, + "metadata": { + "id": "736d275c-9a5a-4c08-b891-3078430dc6c1" + }, "source": [ "Complete the following code" ] @@ -71,42 +83,86 @@ { "cell_type": "code", "execution_count": 1, + "id": "DQOxbZxjrN5r", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "DQOxbZxjrN5r", + "outputId": "7ffed65a-717f-4f7a-d969-d999a1fa6611" + }, + "outputs": [], + "source": [ + "# !pip install classiq" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "o13wIglSeo7y", + "metadata": { + "id": "o13wIglSeo7y" + }, + "outputs": [], + "source": [ + "# import classiq\n", + "# classiq.authenticate()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, "id": "19266c11-6acc-4edb-910f-2d0dfe80a6c8", - "metadata": {}, + "metadata": { + "id": "19266c11-6acc-4edb-910f-2d0dfe80a6c8" + }, "outputs": [], "source": [ - "from typing import List\n", + "from typing import List, cast\n", + "\n", "from classiq import *\n", + "from classiq import Pauli, PauliTerm\n", "\n", - "HAMILTONIAN = QConstant(\"HAMILTONIAN\", List[PauliTerm], [ \n", - " PauliTerm([Pauli.I,Pauli.I], -1.0523),\n", - " PauliTerm([Pauli.I,Pauli.Z], 0.3979),\n", - " PauliTerm([Pauli.Z,Pauli.I], -0.3979),\n", - " PauliTerm([Pauli.Z,Pauli.Z], -0.0112),\n", - " PauliTerm([Pauli.X,Pauli.X], 0.1809)]) " + "# TODO: Complete Hamiltonian\n", + "HAMILTONIAN = QConstant(\n", + " \"HAMILTONIAN\",\n", + " List[PauliTerm],\n", + " [\n", + " PauliTerm([Pauli.I, Pauli.I], -1.0523),\n", + " PauliTerm([Pauli.I, Pauli.Z], 0.3979),\n", + " PauliTerm([Pauli.Z, Pauli.I], -0.3979),\n", + " PauliTerm([Pauli.Z, Pauli.Z], -0.0112),\n", + " PauliTerm([Pauli.X, Pauli.X], 0.1809),\n", + " ],\n", + ")" ] }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 4, "id": "0bb68899-2076-45c0-8868-131f38aa3b78", - "metadata": {}, + "metadata": { + "id": "0bb68899-2076-45c0-8868-131f38aa3b78" + }, "outputs": [], "source": [ "@qfunc\n", "def main(q: Output[QArray[QBit]], angles: CArray[CReal, 3]) -> None:\n", + " # TODO: Create an ansatz which allows each qubit to have\n", + " # arbitrary rotation\n", + "\n", " allocate(2, q)\n", " U(angles[0], angles[1], angles[2], 0, q[0])\n", - " U(angles[0], angles[1], angles[2], 0, q[1]) \n", - " \n", + " U(angles[0], angles[1], angles[2], 0, q[1])\n", + " # CX(q[0], q[1])\n", "\n", "\n", "@cfunc\n", "def cmain() -> None:\n", " res = vqe(\n", - " HAMILTONIAN, \n", - " False,\n", - " [],\n", + " hamiltonian=HAMILTONIAN,\n", + " maximize=False,\n", + " initial_point=[],\n", " optimizer=Optimizer.COBYLA,\n", " max_iteration=1000,\n", " tolerance=0.001,\n", @@ -116,46 +172,39 @@ " )\n", " save({\"result\": res})\n", "\n", + "\n", "qmod = create_model(main, classical_execution_function=cmain)\n", - "qprog = synthesize(qmod)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "id": "31d195f5", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/782787a6-d49c-46b9-a6bd-de2396f089cc?version=0.42.0\n" - ] - } - ], - "source": [ - "show(qprog)" + "# TODO: complete the line, use classical_execution_function\n", + "qprog = synthesize(qmod)\n", + "# show(qprog)" ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "id": "0563c1a8-7aec-4da9-9105-6b16c5c24382", - "metadata": {}, + "metadata": { + "id": "0563c1a8-7aec-4da9-9105-6b16c5c24382" + }, "outputs": [], "source": [ "execution = execute(qprog)\n", "res = execution.result()\n", - "execution.open_in_ide()\n", - "vqe_result = res[0].value" + "# execution.open_in_ide()\n", + "vqe_result = res[0].value\n", + "# TODO: complete the line" ] }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "id": "de17cfc0-8e64-4493-b4c2-4a97fc9797a0", "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "de17cfc0-8e64-4493-b4c2-4a97fc9797a0", + "outputId": "67a7bccc-f67c-4dfc-aad2-7011fc51905c", "scrolled": true }, "outputs": [ @@ -163,9 +212,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "Optimal energy: -1.07299384765625\n", - "Optimal parameters: {'angles_0': 2.7671730204901652, 'angles_1': -4.637402240588757, 'angles_2': 0.44346041595166863}\n", - "Eigenstate: {'01': (0.19640320453088336+0j), '00': (0.03125+0j), '10': (0.20009763241977652+0j), '11': (0.959380089563047+0j)}\n" + "Optimal energy: -1.0754688476562502\n", + "Optimal parameters: {'angles_0': 0.7985412460405645, 'angles_1': 4.821416635411074, 'angles_2': -2.4351340720501597}\n", + "Eigenstate: {'11': (0.14986973510352247+0j), '10': (0.33874192794810626+0j), '00': (0.8600849340326803+0j), '01': (0.350780380010057+0j)}\n" ] } ], @@ -175,10 +224,27 @@ "print(f\"Eigenstate: {vqe_result.eigenstate}\")" ] }, + { + "cell_type": "markdown", + "id": "Yy49RbSEytVl", + "metadata": { + "id": "Yy49RbSEytVl" + }, + "source": [ + "Optimal energy: -1.0711231445312501\n", + "Optimal parameters:\n", + "{'angles_0': -3.0914206855935538, 'angles_1': -0.23729943557563232, 'angles_2': -2.5756826635214636}\n", + "Eigenstate:\n", + "{'01': (0.02209708691207961+0j),\n", + "'11': (0.9997558295653994+0j)}" + ] + }, { "cell_type": "markdown", "id": "5df11dfc-3e3a-4191-bd47-d522ca3dcbfa", - "metadata": {}, + "metadata": { + "id": "5df11dfc-3e3a-4191-bd47-d522ca3dcbfa" + }, "source": [ "Does it similar to the `optimal energy` we calculated in class? \\\n", "Does it similar to the `total energy` we calculated in class?" @@ -187,7 +253,9 @@ { "cell_type": "markdown", "id": "4f0e0bea-b12f-43ad-94e8-100fedf2b57f", - "metadata": {}, + "metadata": { + "id": "4f0e0bea-b12f-43ad-94e8-100fedf2b57f" + }, "source": [ "### Part 2" ] @@ -195,42 +263,42 @@ { "cell_type": "markdown", "id": "66882248-de08-4a6e-b33c-647f015f7d79", - "metadata": {}, + "metadata": { + "id": "66882248-de08-4a6e-b33c-647f015f7d79" + }, "source": [ "**Now, we want to have a more interesting ansatz in our `main`.** \n", "Add **one** line of code to the `main` function you created in Part 1 that creates **entanglement** between the two qubits. \n", "Which gate should you use?" ] }, - { - "cell_type": "markdown", - "id": "0437ee4d", - "metadata": {}, - "source": [ - "### Solution 1" - ] - }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 7, "id": "bb39be9e-4994-44e5-84d8-c99bc8b77145", - "metadata": {}, + "metadata": { + "id": "bb39be9e-4994-44e5-84d8-c99bc8b77145" + }, "outputs": [], "source": [ "@qfunc\n", "def main(q: Output[QArray[QBit]], angles: CArray[CReal, 3]) -> None:\n", + " # TODO: Create an ansatz which allows each qubit to have\n", + " # arbitrary rotation\n", + "\n", " allocate(2, q)\n", " U(angles[0], angles[1], angles[2], 0, q[0])\n", " U(angles[0], angles[1], angles[2], 0, q[1])\n", - " H(q[0])\n", - " CX(q[0],q[1])\n", - "\n", + " CX(q[0], q[1])\n", + " # H(q[0])\n", + " # X(q[1])\n", + " # CX(q[0], q[1])\n", "\n", "\n", "@cfunc\n", "def cmain() -> None:\n", " res = vqe(\n", - " HAMILTONIAN, \n", + " HAMILTONIAN, # TODO: complete the missing argument\n", " False,\n", " [],\n", " optimizer=Optimizer.COBYLA,\n", @@ -242,39 +310,27 @@ " )\n", " save({\"result\": res})\n", "\n", + "\n", "qmod = create_model(main, classical_execution_function=cmain)\n", - "qprog = synthesize(qmod)" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "id": "fca45f9a", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/0e5f9032-45e2-4bf2-a5eb-51c168aeb53c?version=0.42.0\n" - ] - } - ], - "source": [ - "show(qprog)" + "# TODO: complete the line, use classical_execution_function\n", + "qprog = synthesize(qmod)\n", + "# show(qprog)" ] }, { "cell_type": "code", "execution_count": 8, "id": "112a1590-283c-4f79-8035-72936561102d", - "metadata": {}, + "metadata": { + "id": "112a1590-283c-4f79-8035-72936561102d" + }, "outputs": [], "source": [ "execution = execute(qprog)\n", "res = execution.result()\n", - "execution.open_in_ide()\n", - "vqe_result = res[0].value" + "# execution.open_in_ide()\n", + "vqe_result = res[0].value\n", + "# TODO: complete the line" ] }, { @@ -282,18 +338,20 @@ "execution_count": 9, "id": "06500e4c-a04b-4cfa-a84d-41f96a0c68eb", "metadata": { - "jupyter": { - "outputs_hidden": true - } + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "06500e4c-a04b-4cfa-a84d-41f96a0c68eb", + "outputId": "dcaccb41-a8ff-4e1d-eb1e-8f110ed93820" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Optimal energy: -1.65881845703125\n", - "Optimal parameters: {'angles_0': -2.182793283451631, 'angles_1': -6.251915442399786, 'angles_2': 4.115336690961199}\n", - "Eigenstate: {'00': (0.13258252147247765+0j), '10': (0.2872621298570349+0j), '11': (0.42676563386711447+0j), '01': (0.8472151069828724+0j)}\n" + "Optimal energy: -1.8512822265625002\n", + "Optimal parameters: {'angles_0': -2.953247896519252, 'angles_1': 6.104234752928836, 'angles_2': 4.463845345952442}\n", + "Eigenstate: {'10': (0.08838834764831845+0j), '11': (0.0855816496101822+0j), '01': (0.992402781762526+0j)}\n" ] } ], @@ -305,106 +363,41 @@ }, { "cell_type": "markdown", - "id": "30a635d7-2f15-4c94-a94b-f4270f17aed8", - "metadata": {}, + "id": "-7V3qnVRzFmJ", + "metadata": { + "id": "-7V3qnVRzFmJ" + }, "source": [ - "Does it similar to the `optimal energy` we calculated in class? \\\n", - "Does it similar to the `total energy` we calculated in class? \\\n", - "What can we learn about the provided form this result Hamiltonian?" + "Optimal energy: -1.8452896484374999\n", + "Optimal parameters:\n", + "{'angles_0': -2.9812026284028255, 'angles_1': 0.8040137892002661, 'angles_2': 5.77426479151465}\n", + "\n", + "Eigenstate:\n", + "{'11': (0.08267972847076846+0j),\n", + "'10': (0.07967217989988726+0j),\n", + "'01': (0.9933863328282708+0j)}\n" ] }, { "cell_type": "markdown", - "id": "c1dd1833", - "metadata": {}, - "source": [ - "### Solution 2" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "id": "ca9c23eb", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Optimal energy: -1.2444000000000002\n", - "Optimal parameters: {'angles_0': -0.03187332262996506, 'angles_1': -2.1542451838198264, 'angles_2': 3.7340992609226835}\n", - "Eigenstate: {'11': (0.722138750518209+0j), '00': (0.691748238161833+0j)}\n" - ] - } - ], + "id": "30a635d7-2f15-4c94-a94b-f4270f17aed8", + "metadata": { + "id": "30a635d7-2f15-4c94-a94b-f4270f17aed8" + }, "source": [ - "@qfunc\n", - "def main(q: Output[QArray[QBit]], angles: CArray[CReal, 3]) -> None:\n", - " allocate(2, q)\n", - " H(q[0])\n", - " CX(q[0],q[1])\n", - " U(angles[0], angles[1], angles[2], 0, q[0])\n", - " U(angles[0], angles[1], angles[2], 0, q[1])\n", - "\n", - "\n", - "\n", - "\n", - "@cfunc\n", - "def cmain() -> None:\n", - " res = vqe(\n", - " HAMILTONIAN, \n", - " False,\n", - " [],\n", - " optimizer=Optimizer.COBYLA,\n", - " max_iteration=1000,\n", - " tolerance=0.001,\n", - " step_size=0,\n", - " skip_compute_variance=False,\n", - " alpha_cvar=1.0,\n", - " )\n", - " save({\"result\": res})\n", + "Does it similar to the `optimal energy` we calculated in class? \\\n", + "Does it similar to the `total energy` we calculated in class? \\\n", + "What can we learn about the provided form this result Hamiltonian?\n", "\n", - "qmod = create_model(main, classical_execution_function=cmain)\n", - "qprog = synthesize(qmod)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "886f51fa", - "metadata": {}, - "outputs": [], - "source": [ - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "9d1ecad7", - "metadata": {}, - "outputs": [], - "source": [ - "execution = execute(qprog)\n", - "res = execution.result()\n", - "execution.open_in_ide()\n", - "vqe_result = res[0].value" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "48665eff", - "metadata": {}, - "outputs": [], - "source": [ - "print(f\"Optimal energy: {vqe_result.energy}\")\n", - "print(f\"Optimal parameters: {vqe_result.optimal_parameters}\")\n", - "print(f\"Eigenstate: {vqe_result.eigenstate}\")" + "With entanglement one gets better results." ] } ], "metadata": { + "colab": { + "include_colab_link": true, + "provenance": [] + }, "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", @@ -420,7 +413,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.13" + "version": "3.11.9" } }, "nbformat": 4, diff --git a/community/QClass_2024/Submissions/HW3/Yasir_Mansour_HW3_VQE.pdf b/community/QClass_2024/Submissions/HW3/Yasir_Mansour_HW3_VQE.pdf deleted file mode 100644 index 2d668382..00000000 Binary files a/community/QClass_2024/Submissions/HW3/Yasir_Mansour_HW3_VQE.pdf and /dev/null differ diff --git a/community/QClass_2024/Submissions/HW3/Yue(Leslie)_HW3_VQE.ipynb b/community/QClass_2024/Submissions/HW3/Yue(Leslie)_HW3_VQE.ipynb deleted file mode 100644 index 91eb5f43..00000000 --- a/community/QClass_2024/Submissions/HW3/Yue(Leslie)_HW3_VQE.ipynb +++ /dev/null @@ -1,417 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "id": "fc72d98f-8993-4bd4-a545-23d122f3df71", - "metadata": {}, - "source": [ - "# H₂ Molecule Homework Assignment\n", - "### Quantum Software Development Journey: From Theory to Application with Classiq - Part 3\n", - "\n", - "- Similarly to what we have done in class, in this exercise we will implement the VQE on H2 molecule.\n", - "- This time instead of using the built-in methods and functions (such as `Molecule` and `MoleculeProblem`) to difne and solve the problem, you will be provided with a two qubits Hamiltonian." - ] - }, - { - "cell_type": "markdown", - "id": "56eda6d8-76c4-4862-b914-0c4598d67274", - "metadata": {}, - "source": [ - "## Submission\n", - "- Submit the completed Jupyter notebook and report via GitHub. Ensure all files are correctly named and organized.\n", - "- Use the Typeform link provided in the submission folder to confirm your submission.\n", - "\n", - "## Additional Resources\n", - "- [Classiq Documentation](https://docs.classiq.io/latest/)\n", - "- The notebook from live session #3\n", - "\n", - "## Important Dates\n", - "- **Assignment Release:** 22.5.2024\n", - "- **Submission Deadline:** 3.6.2024 (7 A.M GMT+3)\n", - "\n", - "---\n", - "\n", - "Happy coding and good luck!" - ] - }, - { - "cell_type": "markdown", - "id": "d41e969d-f6a7-4ff7-9660-19ce6c97ba6b", - "metadata": {}, - "source": [ - "### Part 1" - ] - }, - { - "cell_type": "markdown", - "id": "f710d6f4-d40b-42d5-b524-c6acb8059fe2", - "metadata": {}, - "source": [ - "Given the following Hamiltonian:" - ] - }, - { - "cell_type": "markdown", - "id": "6ba8a6f1-3259-4492-a1ca-3abde7530cd4", - "metadata": {}, - "source": [ - "$$\n", - "\\hat{H} = -1.0523 \\cdot (I \\otimes I) + 0.3979 \\cdot (I \\otimes Z) - 0.3979 \\cdot (Z \\otimes I) - 0.0112 \\cdot (Z \\otimes Z) + 0.1809 \\cdot (X \\otimes X)\n", - "$$" - ] - }, - { - "cell_type": "markdown", - "id": "736d275c-9a5a-4c08-b891-3078430dc6c1", - "metadata": {}, - "source": [ - "Complete the following code" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "id": "19266c11-6acc-4edb-910f-2d0dfe80a6c8", - "metadata": {}, - "outputs": [], - "source": [ - "from typing import List\n", - "from classiq import *\n", - "\n", - "HAMILTONIAN = QConstant(\"HAMILTONIAN\", List[PauliTerm], [ \n", - " PauliTerm([Pauli.I, Pauli.I], -1.0523),\n", - " PauliTerm([Pauli.I, Pauli.Z], 0.3979),\n", - " PauliTerm([Pauli.Z, Pauli.I], -0.3979),\n", - " PauliTerm([Pauli.Z, Pauli.Z], -0.0112),\n", - " PauliTerm([Pauli.X, Pauli.X], 0.1809)])" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "id": "0bb68899-2076-45c0-8868-131f38aa3b78", - "metadata": {}, - "outputs": [], - "source": [ - "@qfunc\n", - "def main(q: Output[QArray[QBit]], angles: CArray[CReal, 3]) -> None:\n", - " allocate(2, q)\n", - " U(angles[0], angles[1], angles[2], 0, q[0])\n", - " U(angles[0], angles[1], angles[2], 0, q[1]) \n", - " # TODO: Create an ansatz which allows each qubit to have arbitrary rotation\n", - "\n", - "\n", - "@cfunc\n", - "def cmain() -> None:\n", - " res = vqe(\n", - " HAMILTONIAN, # TODO: complete the missing argument\n", - " False,\n", - " [],\n", - " optimizer=Optimizer.COBYLA,\n", - " max_iteration=1000,\n", - " tolerance=0.001,\n", - " step_size=0,\n", - " skip_compute_variance=False,\n", - " alpha_cvar=1.0,\n", - " )\n", - " save({\"result\": res})\n", - "\n", - "qmod = create_model(main, classical_execution_function=cmain) #TODO: complete the line, use classical_execution_function\n", - "qprog = synthesize(qmod)\n", - "# show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "id": "9b7d8b7e-9fc6-439a-b5b9-72814b6e388f", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/9efa2f60-600d-4c2f-babb-82784b4f9a2b?version=0.41.2\n" - ] - } - ], - "source": [ - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "id": "9a1a0eea-da21-41ee-a5dd-8d373e5a37a3", - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "execution = execute(qprog)\n", - "res = execution.result()\n", - "# execution.open_in_ide()" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "id": "2d572b27-94a6-42aa-bd57-da65bfb37bad", - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "vqe_result = res[0].value #TODO: complete the line" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "id": "3a7dbf73-5a29-4cdd-9ab2-19af167f873c", - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[TaggedVQESolverResult(value_type=, name='result', value=VQESolverResult(energy=-1.0636216796875, time=0.52120041847229, solution=None, eigenstate={'01': (0.09631896879639025+0j), '10': (0.09631896879639025+0j), '00': (0.9906792177592099+0j)}, reduced_probabilities={'01': 0.00927734375, '10': 0.00927734375, '00': 0.9814453125}, optimized_circuit_sample_results=ExecutionDetails(vendor_format_result={}, counts={'01': 19, '10': 19, '00': 2010}, counts_lsb_right=True, parsed_states={'01': {'q': 1.0}, '10': {'q': 2.0}, '00': {'q': 0.0}}, histogram=None, output_qubits_map={'q': (0, 1)}, state_vector=None, parsed_state_vector_states=None, physical_qubits_map={'q': (0, 1)}, num_shots=2048), intermediate_results=[VQEIntermediateData(utc_time=datetime.datetime(2024, 6, 2, 8, 18, 55, 839290, tzinfo=datetime.timezone.utc), iteration_number=1, parameters=[0.7523622954851401, 6.142877755751039, -1.2550017986926845], mean_all_solutions=-0.9595899414062501, solutions=[], standard_deviation=0.41369528009922096), VQEIntermediateData(utc_time=datetime.datetime(2024, 6, 2, 8, 18, 55, 852164, tzinfo=datetime.timezone.utc), iteration_number=2, parameters=[1.75236229548514, 6.142877755751039, -1.2550017986926845], mean_all_solutions=-0.8654404296875, solutions=[], standard_deviation=0.5571767911431977), VQEIntermediateData(utc_time=datetime.datetime(2024, 6, 2, 8, 18, 55, 869533, tzinfo=datetime.timezone.utc), iteration_number=3, parameters=[0.7523622954851401, 7.142877755751039, -1.2550017986926845], mean_all_solutions=-1.0056982421875, solutions=[], standard_deviation=0.42003596754330086), VQEIntermediateData(utc_time=datetime.datetime(2024, 6, 2, 8, 18, 55, 886719, tzinfo=datetime.timezone.utc), iteration_number=4, parameters=[0.7523622954851401, 7.142877755751039, -0.25500179869268447], mean_all_solutions=-1.0056982421875, solutions=[], standard_deviation=0.42003596754330086), VQEIntermediateData(utc_time=datetime.datetime(2024, 6, 2, 8, 18, 55, 905241, tzinfo=datetime.timezone.utc), iteration_number=5, parameters=[-0.14572206232409834, 7.582701000087178, -1.2550017986926845], mean_all_solutions=-1.0635908203125, solutions=[], standard_deviation=0.20179041877572876), VQEIntermediateData(utc_time=datetime.datetime(2024, 6, 2, 8, 18, 55, 923279, tzinfo=datetime.timezone.utc), iteration_number=6, parameters=[-0.8180855181726773, 8.32292217192662, -1.2550017986926845], mean_all_solutions=-1.02379228515625, solutions=[], standard_deviation=0.44388492215658343), VQEIntermediateData(utc_time=datetime.datetime(2024, 6, 2, 8, 18, 55, 940725, tzinfo=datetime.timezone.utc), iteration_number=7, parameters=[-0.46004638486959115, 7.193856274963747, -1.2550017986926845], mean_all_solutions=-1.04698359375, solutions=[], standard_deviation=0.3135429139733092), VQEIntermediateData(utc_time=datetime.datetime(2024, 6, 2, 8, 18, 55, 961204, tzinfo=datetime.timezone.utc), iteration_number=8, parameters=[-0.14572206232409834, 7.582701000087178, -1.5050017986926845], mean_all_solutions=-1.0635908203125, solutions=[], standard_deviation=0.20179041877572876), VQEIntermediateData(utc_time=datetime.datetime(2024, 6, 2, 8, 18, 55, 973754, tzinfo=datetime.timezone.utc), iteration_number=9, parameters=[0.3536937054702961, 7.558537165988767, -1.2550017986926845], mean_all_solutions=-1.05553759765625, solutions=[], standard_deviation=0.267698329129115), VQEIntermediateData(utc_time=datetime.datetime(2024, 6, 2, 8, 18, 55, 986321, tzinfo=datetime.timezone.utc), iteration_number=10, parameters=[-0.20685850037974207, 7.825110438727402, -1.2550017986926845], mean_all_solutions=-1.06360224609375, solutions=[], standard_deviation=0.22184087245712253), VQEIntermediateData(utc_time=datetime.datetime(2024, 6, 2, 8, 18, 55, 998912, tzinfo=datetime.timezone.utc), iteration_number=11, parameters=[-0.32814582305280393, 7.79487163321527, -1.2550017986926845], mean_all_solutions=-1.05730498046875, solutions=[], standard_deviation=0.26055143022744964), VQEIntermediateData(utc_time=datetime.datetime(2024, 6, 2, 8, 18, 56, 15840, tzinfo=datetime.timezone.utc), iteration_number=12, parameters=[-0.20685850037974207, 7.825110438727402, -1.3175017986926845], mean_all_solutions=-1.06360224609375, solutions=[], standard_deviation=0.22184087245712253), VQEIntermediateData(utc_time=datetime.datetime(2024, 6, 2, 8, 18, 56, 33697, tzinfo=datetime.timezone.utc), iteration_number=13, parameters=[-0.08568156229643936, 7.855788601592141, -1.2550017986926845], mean_all_solutions=-1.06037685546875, solutions=[], standard_deviation=0.19004432572269353), VQEIntermediateData(utc_time=datetime.datetime(2024, 6, 2, 8, 18, 56, 53896, tzinfo=datetime.timezone.utc), iteration_number=14, parameters=[-0.26748783646929336, 7.809933693182319, -1.2550017986926845], mean_all_solutions=-1.0594783203125, solutions=[], standard_deviation=0.23935672770209793), VQEIntermediateData(utc_time=datetime.datetime(2024, 6, 2, 8, 18, 56, 71245, tzinfo=datetime.timezone.utc), iteration_number=15, parameters=[-0.21444687315228414, 7.855425106772178, -1.2550017986926845], mean_all_solutions=-1.0618494140625, solutions=[], standard_deviation=0.2231962091717916), VQEIntermediateData(utc_time=datetime.datetime(2024, 6, 2, 8, 18, 56, 94419, tzinfo=datetime.timezone.utc), iteration_number=16, parameters=[-0.15083470598200438, 7.797405124051695, -1.2550017986926845], mean_all_solutions=-1.06288662109375, solutions=[], standard_deviation=0.20404623306233025), VQEIntermediateData(utc_time=datetime.datetime(2024, 6, 2, 8, 18, 56, 111334, tzinfo=datetime.timezone.utc), iteration_number=17, parameters=[-0.19584067813562436, 7.854353730146069, -1.2550017986926845], mean_all_solutions=-1.0626921875000002, solutions=[], standard_deviation=0.21910613783662028), VQEIntermediateData(utc_time=datetime.datetime(2024, 6, 2, 8, 18, 56, 128088, tzinfo=datetime.timezone.utc), iteration_number=18, parameters=[-0.21827683580847798, 7.81444450037033, -1.2550017986926845], mean_all_solutions=-1.062158984375, solutions=[], standard_deviation=0.22587602387593633), VQEIntermediateData(utc_time=datetime.datetime(2024, 6, 2, 8, 18, 56, 148533, tzinfo=datetime.timezone.utc), iteration_number=19, parameters=[-0.20685850037974207, 7.825110438727402, -1.2628142986926845], mean_all_solutions=-1.06360224609375, solutions=[], standard_deviation=0.22184087245712253), VQEIntermediateData(utc_time=datetime.datetime(2024, 6, 2, 8, 18, 56, 165764, tzinfo=datetime.timezone.utc), iteration_number=20, parameters=[-0.1929194344266117, 7.818050476591932, -1.2550017986926845], mean_all_solutions=-1.0636216796875, solutions=[], standard_deviation=0.21841698149054273), VQEIntermediateData(utc_time=datetime.datetime(2024, 6, 2, 8, 18, 56, 187744, tzinfo=datetime.timezone.utc), iteration_number=21, parameters=[-0.1893012005709727, 7.824974603974924, -1.2550017986926845], mean_all_solutions=-1.062333984375, solutions=[], standard_deviation=0.21492844244558598), VQEIntermediateData(utc_time=datetime.datetime(2024, 6, 2, 8, 18, 56, 205045, tzinfo=datetime.timezone.utc), iteration_number=22, parameters=[-0.1929194344266117, 7.818050476591932, -1.2589080486926845], mean_all_solutions=-1.0636216796875, solutions=[], standard_deviation=0.21841698149054273), VQEIntermediateData(utc_time=datetime.datetime(2024, 6, 2, 8, 18, 56, 225705, tzinfo=datetime.timezone.utc), iteration_number=23, parameters=[-0.1963967345422016, 7.811054510600297, -1.2550017986926845], mean_all_solutions=-1.0630455078125, solutions=[], standard_deviation=0.21910756220152733), VQEIntermediateData(utc_time=datetime.datetime(2024, 6, 2, 8, 18, 56, 243564, tzinfo=datetime.timezone.utc), iteration_number=24, parameters=[-0.1910959437303572, 7.821504991137157, -1.2550017986926845], mean_all_solutions=-1.062312109375, solutions=[], standard_deviation=0.21633208368007564), VQEIntermediateData(utc_time=datetime.datetime(2024, 6, 2, 8, 18, 56, 265345, tzinfo=datetime.timezone.utc), iteration_number=25, parameters=[-0.19119217715399903, 7.817138731243804, -1.2550017986926845], mean_all_solutions=-1.0624887695312502, solutions=[], standard_deviation=0.21633258860153015), VQEIntermediateData(utc_time=datetime.datetime(2024, 6, 2, 8, 18, 56, 284737, tzinfo=datetime.timezone.utc), iteration_number=26, parameters=[-0.19682280819421086, 7.817900602334907, -1.2550017986926845], mean_all_solutions=-1.0632221679687501, solutions=[], standard_deviation=0.21910806072705727), VQEIntermediateData(utc_time=datetime.datetime(2024, 6, 2, 8, 18, 56, 305301, tzinfo=datetime.timezone.utc), iteration_number=27, parameters=[-0.1924104650166947, 7.816164834153558, -1.2550017986926845], mean_all_solutions=-1.0636216796875, solutions=[], standard_deviation=0.21841698149054273), VQEIntermediateData(utc_time=datetime.datetime(2024, 6, 2, 8, 18, 56, 326182, tzinfo=datetime.timezone.utc), iteration_number=28, parameters=[-0.19195398549816464, 7.818311068929809, -1.2550017986926845], mean_all_solutions=-1.0636216796875, solutions=[], standard_deviation=0.21841698149054273), VQEIntermediateData(utc_time=datetime.datetime(2024, 6, 2, 8, 18, 56, 342414, tzinfo=datetime.timezone.utc), iteration_number=29, parameters=[-0.1929194344266117, 7.818050476591932, -1.2555017986926844], mean_all_solutions=-1.0636216796875, solutions=[], standard_deviation=0.21841698149054273)], optimal_parameters={'angles_0': -0.1929194344266117, 'angles_1': 7.818050476591932, 'angles_2': -1.2550017986926845}, convergence_graph_str='/9j/4AAQSkZJRgABAQEAZABkAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAHgAoADASIAAhEBAxEB/8QAGwABAQADAQEBAAAAAAAAAAAAAAYCBAUDBwH/xABWEAABAwMBAgUQBwUDCgQHAAAAAQIDBAURBhIhExQxM3EVFiI3QVFVVmF1kZOVs9PUByMyUoGxwSRCU3KhYpLRFyU0REVUc4Ki8CZkstJjZYSUwuHx/8QAGAEBAQEBAQAAAAAAAAAAAAAAAAMEAQL/xAAyEQEAAQMABQwCAQUBAAAAAAAAAQIDERIhUWGhEzEyQVJxgZGx0eHwM8EjBCIkYvFC/9oADAMBAAIRAxEAPwD7+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAnNU6krLFUWikt9rjuFVcqh0EbJKrgGt2WOeqq7Yd3Gr3DYtt1uyQ1dRqK2UNopoGbfDNuPDNwmdpXKrGI1EROUm/pFpqesvmjqeqqJaeB9xlR0sM7oXN+oeu57VRU9I1Da7bbPo61YlvuVXWLJbJlelTcZKrZxG7GNty7PKvJy7u8BYU17tNZWvoqW6UU9Wxu26CKoY6Rre+rUXON6CrvlooKyKjrLrQ01VLjg4ZqhjHvz3mquVIOttFvs9N9Hc9vo4aedLhDAssbER7mSU0u2iryrtKiKueVSepLfU3SbV1JX3LTFPPLcahlUy60avqGxqv1bkesrew2NnZVEwmO/kD7BWXe2W5+xXXGkpXcGsuJ52sXYRURXb15EVUTPlQ8pL/ZoVpElu9BGtY1H0qPqWIs7V5FZleyRfIQMNmpqjXejKa4TQ3ZKSwSvbUOajmTuRYmpJhcouUXKcvfMqFmnItXa1j1KygY9iwtjbVo1ESiSFuykaL+7nbzs93ygfQYLvbal1MkFxpJVqketOkczXcKjNzlbheyx3cch7JWUzq11GlRCtU2NJXQI9NtGKqojlby4VUVM+Q+RWWJ1J9DWl9R07XrNYp3Vi7uzdAsr2TN9W5y9LULHQWLrJedVu3pdqtW0q/8AlYcxx+lUe7/mAqa640VrplqbhWU9JTouFlqJWxtRelVRDzZeLZJbVuTLjSOoETK1STtWJE7+3nH9SN1HxD/KpY+r3AdTep0/EuM44Lje2zPLu2uD5M+XBr6v6icd0pniPW51WfxzgtjgOG4J3B8Jjd9vGc93GQLqnvFrrLfJcKa5Uc9FGjnPqYp2ujaiJlVVyLhMJymFNfbRWVvEqW60M9VsJJwEVQxz9lUyjtlFzjCouT5rcuI9WtfdQuB6ndba8c4tjguNbMuOTdtcHjOPJk95bRb7Vpn6O6mio4YKhLhRNWZjER7kkjckmXcq7WVz3wPpkFdSVUMk1PVQTRRucx745Ec1rmrhyKqcioqKip3DWmvtoprbFcZ7rQxUMqIsdTJUMbE9F5MOVcL6T5nqWrnsF01LpakcrJtTPhlt2P3XzqkNQv4Y2/8AmPXUNDLRfSNaLfBUWijoqeypDbuq1Os0W21+Hozs2okmwkflx+IH0xbrbm0MdctfSpSSq1sc6zN4N6uXDUR2cLlVwnfU1+uKx8SmrerNv4pBJwUs/GmcHG/d2LnZwi703L3z5Zd7FHS/R7c6N90t1fT1d/pXPjtrNiGnV8sW3G1Np2zy7WM/veUo9TUVooNc6QgrKajp7KiVWwx0bWQcZ2GJHtJ9nOyj9nP4AXFHdLfcVelFXU1SrGte5IJmv2WuyrVXC7kXC47+Dzor5aLlVS0tDdaGqqIucigqGPezpRFyh8iq+A4P6VutXY2eL0uOKfZzsP4XYx/z5x3c906tqtDKu5aarafUGk4oqWZr6Vtso1hlmYrFR0SKsq5RWrvTGcp5APokupLFDKkUt6t0cjpXQIx9UxFWRq4VmM/aRVTKcps19yoLVTcZuNbTUcGccLUStjbnvZcqIfLqCx2ur0l9JFVU0ME1RJcbkiyyMRzkRqKrURV5MLlUx3Vye9JNR1GsdKzajdC+mk02x9E6sVFjWqVWrKqbW7b2Nny4yB9IS7W11t6pJcKRaDG1xpJm8Fjkzt5x/UyoLlQ3WmSpt1bTVkCrjhaeVsjc97LVVD5xrxKZanSaWyezwWXj8/CyTwpLRtqNhdjbaxzUztbeMr9rGTr6NtD6PVN1rnXmyVElTTxNmo7VDwTWuartmRzdt29UVUzuzjyAXQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABi/KMcqLhcAZAh9MW293nSloulRrK8smrKKGokbHDR7KOexHKiZgVcZXvnV62rr463z1NH8ACjBOdbV18db56mj+AOtq6+Ot89TR/AAowTnW1dfHW+epo/gDrauvjrfPU0fwAKME51tXXx1vnqaP4A62rr463z1NH8ACjBOdbV18db56mj+AOtq6+Ot89TR/AAowTnW1dfHW+epo/gDrauvjrfPU0fwAKME51tXXx1vnqaP4A62rr463z1NH8ACjBOdbV18db56mj+AOtq6+Ot89TR/AAowTnW1dfHW+epo/gDrauvjrfPU0fwAKME51tXXx1vnqaP4A62rr463z1NH8ADrXKzWu8xMiutto66NjtpjKqBsqNXvojkXCmtSaW09QQ1ENHYrZTxVLODnZDSRsSVn3XIidkm9dyml1tXXx1vnqaP4A62rr463z1NH8ADtyUNHM2nbJSwPbTPSSBHRoqRORFRHN+6qIqplO4qmtX2CzXSoZUXC0UFZNGmGSVFMyRzehVRVQ5vW1dfHW+epo/gDrauvjrfPU0fwAO2lDSJUxVKUsCVEUaxRy8Gm0xi4y1F5UTcm7yITOp7NfLjco57dbdM1CRxpwFTc4nOmpn5XLm4aqKnIqJlu82+tq6+Ot89TR/AHW1dfHW+epo/gAaE+lrrb/o/ptLWKoo1Vad1LUVdYrkVrXIu3I1rUXLlVVVEVUTfylPbLdT2i1UltpW7NPSwshjT+y1ERPyOP1tXXx1vnqaP4A62rr463z1NH8ADtV1uobpTLTXCjp6unVcrFURNkaq9CoqHm2z2xltW2st1I2gVMLSpA1IlTvbGMf0OT1tXXx1vnqaP4A62rr463z1NH8ADrU1ntdHbn2+lttHBRSI5r6aKBrY3IqYVFaiYXKcp6Pt9FJDTwvo6d0VM5r4GLE1WxObuarUx2Kp3Mchxetq6+Ot89TR/AHW1dfHW+epo/gAdqe3UNVWU9ZUUVPLVU21wE8kTXPizuXZcqZbnu4PyvtlBdabi9xoaasgzngqiJsjc9/DkVDjdbV18db56mj+AOtq6+Ot89TR/AA6rLJaY6FtDHbKJlI16SNp207UjRyKio5G4xlFRFz5DS1PQV1ytjKeiobRXZkRZae6tcsT24XkwjsLnHKi901+tq6+Ot89TR/AHW1dfHW+epo/gAeOjtM1Vjfcq64LRJW3B8e1DQMVkEEcbdlkbEXCrhMqq4TevIdem07ZKKudW0tnt8FW5VVZ4qVjZFzy9kiZOd1tXXx1vnqaP4A62rr463z1NH8ADtMt1DHBUQMoqdsNS57542xNRsrnfaVyY7JV7qrynnVWe2V1Aygq7bR1FHGiIynlga+NqImEw1UwmEOT1tXXx1vnqaP4A62rr463z1NH8ADrttVubbeprbfSpQY2eKpC3gscuNnGMfgflus9ss8bo7ZbqOiY9cubTQNjRelGohyetq6+Ot89TR/AHW1dfHW+epo/gAUYJzrauvjrfPU0fwB1tXXx1vnqaP4AFGCc62rr463z1NH8AdbV18db56mj+ABRgnOtq6+Ot89TR/AHW1dfHW+epo/gAUYJzrauvjrfPU0fwB1tXXx1vnqaP4AFGCc62rr463z1NH8AdbV18db56mj+ABRgnOtq6+Ot89TR/AHW1dfHW+epo/gAUYJzrauvjrfPU0fwB1tXXx1vnqaP4AFGCc62rr463z1NH8AdbV18db56mj+ABRgnOtq6+Ot89TR/AHW1dfHW+epo/gAUYJzrauvjrfPU0fwD8dpu7I1V69b5uT+DR/AApAcXR9bU3LRdjr6yVZaqpoIJpZFRE2nuYiquE3JvXuHaAAAAAAAAAAAAAAAAAAAAYv5t3QpkYv5t3QoE/oHtd6a8103umlETuge13przXTe6aUQAAAATGu7tUWbT7KilmWKV1RGzaTlxvVU9CFOepomKYq2vEVxNU07AAHl7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxfzbuhTIxfzbuhQJ/QPa7015rpvdNKIndA9rvTXmum900ogAAAAAAAAAAAA07ky4yUattVRSwVO0mH1UDpWY7vYte1c/icbiWr5I5Y6q62Z8T4nt2ae3yxPyrVRuHLM5E347igbVv1dYrrceIUVekk7tvg8xPayXZXDuDeqI2THd2VXBvXW70NlpEqrhPwUSvSNuGue5715Gta1FVyr3kRVPnNmr6S50egbNQIqXO1SRuroEaqPo2x00kciSfdy5yNTP2s5OvrW6UdwtVrqKasWCmhvHBy3RrFXiD40ka5+FTH2kWPLkVvZ5XIFHDqq0VFsnuEEtRNDBJwUzI6OZ00b93YuiRnCIu9F3t5FzyHhT62sNRT3OZtRUxstcKT1iVFDPC6Jioqouy9iKu5qruReQ42hquFjtS1jq7qhRpVNl6svajeMokTdrOMNVGIiNyxEbu5M5VfOyUlFWaFu931AqwQahWSpqlcqosdO9EZE3PKmIkZ0KqgVVpv9Delk4m2tTg0RVWpoZ6dFReTCyMbtcncydF/Nu6FIfSdbC/VdTSWO7VV0sLaJHvllqHVDIajbwjWSuyq5blVblcYTkyUt3gvsytW03G30saMXhG1VE+dXL5FbKzHoUDS0D2u9Nea6b3TSiJ3QPa7015rpvdNKIAAAPn30sy4s1BB9+oV+P5Wqn/5F1RycNQ08n342u9KEN9IcfG7jRU/KkNFWTqnRHu/qhX6fk4XTlrk+9SRL/wBCGq5H8FHj94Mlqf8AIr8PvF0QAZWsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADF/Nu6FMjF/Nu6FAn9A9rvTXmum900oid0D2u9Nea6b3TSiAAAAAAAAAAAAAAAAAAAAYv5t3QpkYv5t3QoE/oHtd6a8103umlETuge13przXTe6aUQAAARN6j45rSsi5WxWKVP+ZzlT8lO1o6ThdH2t3egRvo3foc+3s43rzUa8qRU0EGf5m5Pb6P37eibfnlbwjV/CRxqu/jxsxxiWS1+XO3S4TEKYAGVrAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxfzbuhTIxfzbuhQJ/QPa7015rpvdNKIndA9rvTXmum900ogAAAAAAAAAAAAAAAAAAAGL+bd0KZGL+bd0KBP6B7XemvNdN7ppRE7oHtd6a8103umlEAAAEtpX6296mqfvV3BZ/kTH6jQPY6fmh/g1k0f/Vn9RoT6y1V9V/vNwnlz38qifoNF9h1eg/h3afHQuMGu5/7jZjhqZLXPRO3PHWqQAZGsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADF/Nu6FMjF/Nu6FAn9A9rvTXmum900oid0D2u9Nea6b3TSiAAAAAAAAAAADTuVbLQUazw26qr3o5E4Gl4Pb6ezc1MficbrluUscrW6VvNK5InubNUcWVjXI1VTOxM529URNyLylKAPllmoKS2UegbzQKq3O6yRtrp0eqvrGyU0kkiyfew5qOTP2cYKvWtrq7lT23gqF1yooKvhK23NkaxamPYciJ2So12HK12y5URdk3bfpGxWq48foqFI527fB5le5kW0uXcGxVVsee7soh6SaZtUludQcFPHA6ofUrwVVLG7hHuVznI9rkcmVcu5FxvA+aR1FUygvlnSkltdodfqClSmSZFWmhm4LhY9piqjc5TKNVUbwiobeoGppZ+rLdYVWhoepVLUOZAuy2mkklkje9icjFWNM7u63J9Cj01ZorHLZm2+LqfLlZYnZdtqq5VznKuVdnftKucpymNBpiz26jq6SCjR0VYmKnjEj5nTJjZw9z1Vzkxuwq4RAJ+3Wuh059IlLbrNA2mo6u1TS1NPGq7O3HJGjJFT7yo96KvKvdzgorvdKy3q1lNYrhcWvYqq+lfA1GeReEkavoRT8s+mbRYZJZLfSuZJK1rHSSTPldsN5Go57lVGplcNTd5DqP5t3QoE/oHtd6a8103umlETuge13przXTe6aUQA8qiVIKWWZeSNiu9CZPU5epJuA0xdJM4VKWTHTsqiHqmM1RDzVOKZlz9AxLFoq35+09HvVe/l7lPLS/1eodTw96sbJ/ebn9DqaZh4DS9qjxhUpY1XpVqKv5nLsv1WvdSx9yRtNIn9xUUvM6U3PvXDPEaMW/vVKpABmagAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMX827oUyMX827oUCf0D2u9Nea6b3TSiJ3QPa7015rpvdNKIAAAAAAAAAAAAAAAAAAABi/m3dCmRi/m3dCgT+ge13przXTe6aURO6B7XemvNdN7ppRACc15NwOiriqcrmtYn4van6lGS2vPrLNR0v+818EWO/lc/oVsfkp70r/wCKruUlLDxekhh/hxtZ6EwTdJ9X9JdwZ/Ft8cnodgqSWl+q+k+nd/FtTmeiTJ21r0u6XLurR74VIAIrAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYv5t3QpkYv5t3QoE/oHtd6a8103umlETuge13przXTe6aUQAAAAAAAAAAAADzqJ2U1NLPKuI4mK9y95ETKgegIi1apvj32CuulPQMtl+dsU8cCPSWmc6N0saPcqqj8taqLhG4VU5TsamvVXa32qkoEpm1Vyq+LMnqsrFFhjn5VEVFcq7GEblMqvKB3wSVqv93u8d4tsD7Wt5tdU2nlmRHrTua5rXo5Gou0i4VUVu1uVq7zXdqi901s1XFLDRVdzslOksUlNG9IpnujV7WKzaVyOTCZRHLucnJkC1MX827oUmdJX6ovElVHV3ShqZ4msctPDbpqOWLOd7myvcqouNyoiJuXlOpdtRWSyq2K63igoZJGq5jamoZGrk76I5UyBo6B7XemvNdN7ppRE7oHtd6a8103umlEAJbVn1t401TfeuCS4/kTP6lSS13+v+kDT0XchiqJlTpbhPyK2elndPojf6GN8esKklrp9X9Idgf/ABYKiP0NyVJLaj+r1ZpebvTzR/3mIgs9KY3T6SX+jE749YVIAJLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYv5t3QpkYv5t3QoE/oHtd6a8103umlETuge13przXTe6aUQAAAAAAAAAAAadytVvvNGtJc6KnrKZXI5Yp40e3Kci4U5cGhdK0knC0unrbTzbLmpLDTMY9qORWrhUTKblVPxKAARFq0tfGPsFDdKigfbLC7bp5IFestS5sboo1e1URGYa5VXCuyqJyHXuVFdbjY5aarttkuErqh37NUuekDodpdjKqxy7eNnPYqmc4KAAQ9HpW92TT12WydSaa93GVrkaxro6WlY1qMRrERq5VGoq5Vu9yqqpjcdDT9tvVnsVRRx26109Q3D4XJXyz8YkVVV75nrE1dpd29Edy9zCIVAAmrVaLvLqh9/vPEYZW0fE4aajkdI3ZV6Pc5z3NaqrlERE2d2/lyUUjUVjsoi7l5UMzF/Nu6FAn9A9rvTXmum900oid0D2u9Nea6b3TSiAEtz/wBJ/wDZp7V/1Ok/wKklrR9fr/UMvchip4kXpblfyK2uaqd3tCN3npjf7yqSW1h9XWacn+7dI2Z/mRf8CpJbXfY2q3zfwbjBJ/VU/UWPyQX/AMcqkAElgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMX827oUyMX827oUCf0D2u9Nea6b3TSiJ3QPa7015rpvdNKIAAAAAAAAAAAAAAAAAAABi/m3dCmRi/m3dCgT+ge13przXTe6aURO6B7XemvNdN7ppRACW0n9bd9S1X3rgsWf5Ex+pUktoP6yy1dT/vNfPLnv5XH6FaPx1T3feCNeu5THf8AeKpJf6QkVNG1UqcsUkT0/vtT9SoJ/W8fC6Mube9EjvQ5F/QWZxcp74dvxm1V3S76Kjmoqcipk/TWt0nDWykk+/Cx3pahsk5jE4UicxkABx0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxfzbuhTIxfzbuhQJ/QPa7015rpvdNKIndA9rvTXmum900ogAAAAAAAAAOVXaks9sucVur6+KkqZmI+JJ8sa/KqmEevYq7cvY5zybt6HVRUVMouUUAfiqjUVVVERN6qpqXKkqa2jWGluNRb5dpF4eBkbnInexI1zf6HHTTl2VkrZ9W3KqjfE9iwzU9M1rtpqomVZE127OdypyAflr1vb7rW0kDKSvghr9viNXPEjYqvZRVXYVHKqZaiuTaRuURVTJ0r1fKeyRU/CQ1FTUVUvA09NTNR0kr8K5UTKoiYa1VVVVERE5SJtUdwuFPoyyvtFdST2ORkldNNArIm8FA+JEY9d0m05yY2VXdnODvX99JdbXBXTU99o5qGuelPNSUivqInt241ejEa/ajcmeVqoqOTcB7S61oYLBXXSSjrmvoZ2U9RQqxiTske5iNbhXbO/hGrnawqLym43ULYbRW3O626ttNPSMV8nHFicqtRMqqcE9+e9jlz3CQstnjgtuorjfrfdLhRXWrhclPVU/C1MrI2tRJHxMRMZcmUajUw1G7u4aq2Crr7LquCxWuqorVPFTuoKKpY6DhJ43K6TYjdhY2uRI270RFVFUC2s+p4LtXyUElBX26sbClQ2Ctja10kSrjbbsucmEXCKiqiplMomTtP5t3QpIW6ae/65prvHbq+jo6K2y07nVtO6Bz5ZZI3bKNdvVGpGuVTdlUwqncu9rrLgrX019uFuaxiorKVkDkf5V4SNy+hUA0tA9rvTXmum900oid0D2u9Nea6b3TSiA8aubi9HPN/Djc/0Jk4Wg4eB0VbUXlc1z1/F7l/U3tTTcBpa6yZwqUsiJ0q1UT8z903DxfTNrixhUpY89OymSsarU75/XyjOu9G6PWfh1Dlamj4XS11Z/5SVU/BqqdU1LnHw1prI/vwPb6WqeKJxVEqVxmmYa2m5OF0xan91aSLPTsodQ4OipOF0ba3d6HZ9Cqn6HeO3IxXMb3m1OaKZ3AAPCgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABi/m3dCmRi/m3dCgT+ge13przXTe6aURO6B7XemvNdN7ppRAAAAAAAAAResrrE2sbaKvUOnbTRTQI+XqgrJJ35c5OxjeqM2d32l2t+d241NH2ix0NXSs0lqtK2nhV611Ilcydj2K12FaxvYxqj9j7KNTCKmOQ2r3HVN1wtVRWykvMkdujY+kllSOSnR0kmJGK5qtVH4VqplF+rQ87HpCsp7nRXaemoaGZtfPUvp6ddrgYZIdhIUcjUyivxI7kTazgC5AAAAAAAAMX827oUyMX827oUCf0D2u9Nea6b3TSiJ3QPa7015rpvdNKICb19KsWirhj7T0YxE7+XtQoKeJIKaKFOSNiN9CYNO8WiC90KUlQ+RsaSNk+rVEVVauUTei7joFJqjQinfP6TimeUmrdH7D8c1Hsc1eRUwp+gmomPo9cq6LomL9qN0rF9Y7/EpyW0H2NmrIf4NfPH/AFz+pUlb/wCWrvR/p/xU9wACSwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABi/m3dCmRi/m3dCgT+ge13przXTe6aURO6B7XemvNdN7ppRAAAAAAAAAfPda8QZqmimWq1BFW8FDBI61zsjjhiln4NjpNrly92ERMr2KrhMKpS6Y4KOG40bK25VclJWOhlfcJGvejthjsNVv7qtc1U7vZKTWv4KCW5wsiuFzp7s+KF74rfb3Viviim4SNz2I1dlEkRcLlM5cm/ud/RbIW2iokYlzdPNUukqZrlSup5ZpVa3LthUTDcI1qYTGG47gFGAAAAAAAAYv5t3QpkYv5t3QoE/oHtd6a8103umlETuge13przXTe6aUQAAAAABLaN+rqNRQfdusrkTyOx/gVJLaa+r1RqiHvVEUn95ir+hUlb/T8vRGx0PP1AASWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMX827oUyMX827oUCf0D2u9Nea6b3TSiJ3QPa7015rpvdNKIAAAAAAAACDuL6yv1DSXiy32K2rVSyWZYp7bw/CywPnVVVeEbhqbEmOlc8uEoNNVVbM25Utxr462qoazgHyxUnF274o5ERG7b87pE35TlxjdleHNoS68aZJS6pkp4YbjPcaeHiMb+CklWRXJlVy5PrnpvO9p2yVFljr3VdxdcKmuquMyzLC2LfwccaIjW7uSNAN65VstBRrPDbqqvejkTgaXg9vp7NzUx+JxuuW5SxytbpW80rkie5s1RxZWNcjVVM7Eznb1RE3IvKUoA+WWagpLZR6BvNAqrc7rJG2unR6q+sbJTSSSLJ97Dmo5M/Zxgq9a2uruVPbeCoXXKigq+Erbc2RrFqY9hyInZKjXYcrXbLlRF2Tdt+kbFarjx+ioUjnbt8HmV7mRbS5dwbFVWx57uyiHpJpm1SW51BwU8cDqh9SvBVUsbuEe5XOcj2uRyZVy7kXG8CT0bRQXOTVFkuFlijs8FbEtPbanYmZBmJj1ZhFc1N+HbKKqNV+ENTTulKG8aZ1dUWmlpLdDf+FpKPgYUYxsDGrEx+y37ztt/lRyF9RWO3W61PttHTJDSyI7ba17tpyu+05X52lcv3s58p+pZbeljZZmU+xb44mwsiY9zdljURERHIu0mMJvzkCV0nRx6c1NPYH2qy0881ElWyqtdLwHCMa/YVsjVVVyiuRUXKouV3JgpLvPfYValpt1vqo1YvCOqq18CtXyI2J+fSgtOnLXZJZpqKnek8yI2SeaeSaRyJyIr5HOdhMruzg6b+bd0KBP6B7XemvNdN7ppRE7oHtd6a8103umlEAAAAAAS1p+r+kHULP4sNPJ6G4KkloPq/pOq2/wAW2Nk9EmCpK3ueJ3R6I2eaY3z6gAJLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGL+bd0KZGL+bd0KBP6B7XemvNdN7ppRE7oHtd6a8103umlEAAAAAAAAAAAAAAAAAAAAxfzbuhTIxfzbuhQJ/QPa7015rpvdNKIndA9rvTXmum900ogAAAAACWqfq/pNon/wAW2vj9D8lSS14+q1/px/8AFjqY/QzJUlbvNTO79yja56o3/qAAElgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADF/Nu6FMjF/Nu6FAn9A9rvTXmum900oid0D2u9Nea6b3TSiAAAAAAAAAAAADVuFzoLTSrVXKupqOnRUastTK2NmV5Ey5UTJoUWrdNXKrjpKHUNpqqmTKMhgrY3vdhMrhqOyu5FUDsglNN1N2Zq2/wBruV1fcIqaGllhV0EcewsnC7SJsomU7BvKqmzqq411M60W22zpTVV0rUp+MKxHrCxI3yPciLuV2GYTKKm/OFwBRA+e1GpL1bYbrZXVjKm5Q3GkoqWvlhanYVOzh72Nw1XMy/kREXDd3Kftx1JedLJf6GprEuk9NQwVdDUTxNY7MsjotmRGIiKiPai7kTcuO5kD6CYv5t3QpK2ypu9q1dDZLndXXOKsoJKqKaSBkT45I3sa9uGIibKpIipnKphd6nYu2orJZVbFdbxQUMkjVcxtTUMjVyd9EcqZA0dA9rvTXmum900oid0D2u9Nea6b3TSiAAAAAAJbU31epdMTd6qkj/vNx+hUktrP6uXT8/3LtCi9C5z+RUla+hT4+qNHTr8PQABJYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxfzbuhTIxfzbuhQJ/QPa7015rpvdNKIndA9rvTXmum900ogAAAAAAAAAAAxcxr27L2o5O8qZMWwQscjmxMaqcio1EPQASls03faLVVZeai+0U8dY2OOenZbXMVWR7ewjXcMuF7Ncrhc45ENq5adrbnRx8Ld8V9LXuraGqSmbiFMuRsbmZ7NEY9WKuUVeXcpQgCSXRK1FsuDa25vlutbVRVjq+KFGJFLFs8FsMVVw1uwm5VXOXZXefvWUtfT3hb5cVray6U7KZ80EPANhjZtKxI27TsKjnK7KquV8iYKwAT1p09W096W73e7NuNaym4rCsdMkDI41cjnLs7TsucrW5XKJ2KYRDvSNRWOyiLuXlQzMX827oUCf0D2u9Nea6b3TSiJ3QPa7015rpvdNKIAAAAAAltfKkdipp1XCQVsMiqvcwuP1Oz1fs3hag/8AuWf4m1VUlPXU7qergjnhdjaZI1HIuN/Ic3rU0/4GovUoWiqiaIpqzqRmmuK5qpxrbDb7aHORrbrQq5VwiJUMyv8AU6BH6q0taI9LXGWktlNDPHCsjZI40RybO9d/QilLbKnjtpo6rOeGgZJ6WopyumnRiql2iurSmmptgAkqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGL+bd0KZGL+bd0KBP6B7XemvNdN7ppRE7oHtd6a8103umlEAAAAAAAAAAAAAAAAAAAAxfzbuhTIxfzbuhQJ/QPa7015rpvdNKIndA9rvTXmum900ogAAAAAAAAPGsp0q6KemdySxujX8UwcLQlQs+jqBH/biR0Tk72y5U/LBRkto39nmvtv/AN3uMjmp3mPwqfkpWnXbqjulGrVdpnvj9qkAElgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxfzbuhTIxfzbuhQJ/QPa7015rpvdNKIndA9rvTXmum900ogAAAAAAAAAAAA07lborrRrTTTVUTFcjtqlqZIH7v7TFRceTJz6DStFb62OqirrzI+PKoyou1TMxcpjex71avL3UA8rDqGuud7utruFqZQTULIJE2apJuEbLt4zhqI1U2O+vKbWoL4tlp6VIaRautrahtNS06PRiPeqK5cuwuy1GtcqrheTkODZnXtuvbtXVOmq2noq+KnhbO+op3IzguFy5yNkV2F20xhFXv4Nm+Ut4uLbdc4LXs1louj5Y6VahirUwbMkW013I1XNftojlTGMKqAbFFqS411LcIY7K1LzQTthmolq04Psmo5r0l2d7Faufs53KmDWk1nUUlq1HNX2lsNfY6bjMtPHU8JHK1WOc3Zk2UXfsqi5blO8pqRxaloabUV/pbIj7vcpYkpbc6ojzExjEYjnu2kaq52nK1HcmEz3TY09TVdDZLhw2nbhJXyqktQ6umplfcJHbnY2JHNaiIiIjVwiJhE7oHR0xf6m/wyzyMtPAtwjX2658b3ryo76tmyqbu+d1/Nu6FJOyW6vn1lUX2az9R6daFKVYHyRuknft7SPckaq1EamUTeq9kvIdm72CjvCtkqZrgx0bFREpbhPTovSkb2ov4gaWge13przXTe6aURO6B7XemvNdN7ppRAAAAAAAAACWt37J9It4g5ErKSGpRP5ewX8ypJa6/sv0g2Kp5G1UE1M5ehNpP6qVta9KNsT7/pG9q0atkxx1ftUgAks1bhcKW1UUlZWypFTx42nqirjK4Tcm/lU2Wua9iPaqOa5MoqcioSeuI+qTrPY0crePVeZNnl4NiZd+aeg2dFVkr7O+21S/tdslWlk8qJ9lejG78C02v4or6/1/1GLv8s0dX7/4pAARWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMX827oUyMX827oUCf0D2u9Nea6b3TSiJ3QPa7015rpvdNKIAAAAAAAAAAAAAAAAAAABi/m3dCmRi/m3dCgT+ge13przXTe6aURO6B7XemvNdN7ppRAAAAAAAAACW1r+zss1wT/VbjErl/sOyi/oVJPa4plqtG3FqfaZGkqL3tlyO/JFK2ZxchK/Gbc4UINe31KVltpapOSaFknpRF/U2CcxicKROYylW/wCcPpKevLHbKJG9Eki5/wDSY1v+Y9eUtanY0t3ZxabvJM37C/im70mWi/2tbxd138drXcGvfjZub+p0NVWp1309UwRZSpjRJoFTlSRu9MdPJ+JpmYpuaE82MffFlimarenHPnP3wdoHNsF1berFSV7cbUrOzRO49Nzk9KKdIzVRNM4lqpqiqImAAHHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxfzbuhTIxfzbuhQJ/QPa7015rpvdNKIndA9rvTXmum900ogAAAAAAAAAAAAAADSobvbLnJPHQXGkq5KdUSZtPO2RY1XONpEXdnC8veU96qqp6Gmkqauoip6eNMvllejGtTvqq7kA9gaC3u0paluq3Si6momVq+MM4FN+Pt5xy7uXlFuvdpvEMk1sulFWxRLiR9NUMkaxeXCq1VwBvmL+bd0Katvu9tuzJH2240la2N2y91NM2RGr3l2VXCm0/m3dCgT+ge13przXTe6aURO6B7XemvNdN7ppRAAAAAAAAADXr6ZKy3VVKvJNE+P0oqfqbAOxOJy5MZjCe0PUrU6Ntzl+1GxYlTvbLlb+SIb2oq7qbp24VaLh0cDthf7Sphv9VQ5Oiv2dL1b1/wBVuMuyneY7Cp+p+a4/aqS22hvLcK2ON6f2EXacv4YQ0TTE38dWc+HOzxVMf0+evGPHmdPS1D1N0vbqVUw5sDXOTvOd2S/1VTrjGEwgIVVTVMzPWvTTFNMUx1JOxf5l1Zc7I7saeq/bqRO5v3Pan49zvIVhL6zhkpoaK/UzFdPbJke9G8ronbnp6P1KSnniqqeOogej4pWo9jk5FRUyilLv90RXt9YTtf2zNvZzd0vQAEVgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxfzbuhTIxfzbuhQJ/QPa7015rpvdNKIndA9rvTXmum900ogAAAAAAAAAAA07lLcIaNX2yjp6up2kRIp6hYW47q7SMd6MHPoK3U8tbGyvsdtp6Vc7csN0fK5u7dhqwNzvx3UO4AI3T7aOn+kXU0NMkETOKUGyyJEamfr84RBrCpo6mr0y6WaCW2svSR1S7SOY2RsUqMa/uJiXZTC8jsd07dNpTTlFXNrqWwWqCra5XNnio42yIq8qo5EznevpNx1qtz6SekdQUrqaoe580KwtVkjnLlyubjCqq71VeVQISO1UV7q9aW6OtbR22a4Uitmh2dltQ1sb37Oex2lVrEXy57ppX243BdPa0sslwS5Q0NNBI6rjjax6RyKvCxv4NEarkYxV3Im5+8+idQ7T1L6l9S6Lqen+qcXZwXLn7GMcvkPWittBbaTilBRU1LTb/qYImsZv5dyJgCVpuIf5TqLqRxfgeoknGeLY2NnhY+Azjd/Fx5Mnfu8F9mVq2m42+ljRi8I2qonzq5fIrZWY9Cmzb7RbbSyRltt1JRNkdtPSmhbGjl767KJlTafzbuhQJ/QPa7015rpvdNKIndA9rvTXmum900ogAAAAAAAAAAAlrX+yfSDfKfkSqp4alqfypsr/AFU/Kj/OH0kUcXLHbaN8y+R712cejCn7cv2T6RbNPyJV0s1Mq/y9mn5n5pP9tu2oLuu9Jqvi8a99kaYRU6c/0Nc82n/r8Mcc/J/7fPsqgAZGxjJGyWN8cjUcx6K1zVTKKi8qEppqR9ju1TpiocqxtzPQPcv2olXe3pav6laT2rbXPV0MVwoExcrc/h4FT95E+0zoVO4VtTE5onmn1RuxMYrp549OtQg0bPdILzaaevp17CZuVbne1e6i9C7jeJzExOJViYmMwA4N81LHa546Gjp3V90l+xSxLvRPvOX91P8AvymxYtQUl9p3LEjoamJdmemk3Pid3lTveU9TbqinSxqeIu0TVoZ1usADwoA8aqqp6KndUVU0cMLPtPkcjUT8TOKaOeJksMjZI3plr2LlFTvop3E4y5mM4ZgA46AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABi/m3dCmRi/m3dCgT+ge13przXTe6aURO6B7XemvNdN7ppRAAAAAAAAAAAAAAAAAAAAMX827oUyMX827oUCf0D2u9Nea6b3TSiJ3QPa7015rpvdNKIAAAAAAAAAAAI76QZn2+jtl3ibmSjrEX/lc1c/kh1NGUS0OkrfG5OzfHwz1XlVXrtb/Sbl7s9PfrVJb6lz2xvVq7TMbSKi53ZN9jGxxtjYmGtRERE7iIWm5E2oo68/fWUItTF6a+rH30hkACK4AAJCl/8L6ufRL2Nsu7lkg70U/7zfJnufgh73XUNVV1z7Lp1rZq5N09Su+KlTyr3XeT/wDh173Zaa/W51HUq9ibSPZJGuHMcnIqL/3ymdqtNFZaFlJQwpHG3eq8rnr31XuqaOUomIqmM1cO9n5OuJmiJxTx7mtYtPU1jherXOnrJl2qiql3vld09xPIa1903x6obc7bNxK7xJ2E7eSRPuvTuoUAJxdq0tLOtSbVGjoY1OBYtScfnfbblDxK7wp9ZA7ken3mL3U/78p+3nVFPbqhKCkifX3R/wBilh3qnlcv7qGze9P0d9hYk+3FURLtQ1MK7Mka+RTKzWG32KnWOjhw92+SZ67Uki99zv8AtD3m10seHzseMXejnx+Nrj0umKm61LK/VEzaqRq5ioWcxD+H7y9P9TCXT9x09M+r0zIj6dV2pbZM7sHd/YVfsr/35CuBzl687tnU7yFGN+3rcay6lor0roGo+mro90tJOmzIxe7u7qeX8joVlwo7dDwtbVQ08f3pXo3PRnlNG9aboL3sSTI+Grj3xVUC7MjF8i938TUo9E2amm4xUxSXCp7s1a9ZVX8F3f0GLU68zG75M3Y1Yid/w8H61iq3rFYrZWXV6LjbYzg4kXyvdyegce1pNzdmt1P/AMapV+P7pUMY2NiMY1GtRMIiJhEP05ylEdGnzOTrnpVeX2UtxfW83262zU//AAo3vx/ePzjmsrdz9uobpGn71NKsT8eVHbvQVQHK7aYOR2VT5pZuuqGByMutFX2x/JmogXZXoVM5OjDqqwVGODvFHv7j5Ub+eDrua17Va5Ec1dyoqZRTnzWCzVGeGtVE9V7qwNz6cDNqeeJgxdjmmJ8G1DW0tTzFTDL/ACSI78j3J2bQmmp/tWqNq/8Aw3uZ+Snj/k80x3aB7umok/8AcMWts+XyZu7I859lKssbeWRqdKni+4UUXOVdOz+aRE/U4SfR9pdP9lp+M8n/ALj2ZofTUf2bTCv8znO/NRi1tnyj3M3tkec+zffqCyxfbu9A3pqWf4ntTXW3VmOK19LPn+HM135KabNK2CP7NmoV/mha78zwqdF6cqs8JaKduf4SLH/6VQfxb+B/Nsji7wJbrFood9BcrrQ45Egqlx6FyOtO4eNV2/vINC31VcDTuddPFUglutS4+NV1/vIOslk3+m3281Xfa6p2W+hEGhR2uBp3OzxhSTVVPTN2p54ok773o38zCCupKr/R6qCb/hyI78jhw6C03C7aW3JK/uulle/PpXBnPoXTVRvda42L343OZj0Kgxa2z5fJm9sjzn2UIJbrGpYf9Cu13o+8kNWuPQqDrPqX89qi9r/JUbH6DQt9rgadzs8VSfiqiJlVwnlJfrFonc9dbzN/xKxV/JD9T6PtOquZqaade/JUPX8lQaNvtT5fJpXezHn8O/LcqGHna2nj/mlan6ngl9tC8l1oV/8AqGf4mhFonTcX2bTAv8yud+ansuktPr/sej9Ugxa2zwM3tkcfZuJeLY7kuNIvRO3/ABPaOspZuaqYX/yvRTlLo7Tq8topfwaeMmhNMy/atUafyve38lGLW2fKPcze2R5z7KIEt/k/sTOYSrp/+FUvT81UdY8Debvl9j/krf8A9DRt9rh8mld7PH4VIJbrPqG83qi+J/PU7X6DrUuPjVdfSg0KO1wk06+zxhUglutS4+Nd19KDrUuPjXdfSg0KO1wk5SvscYVIJbrUuPjXdfSh3LXRS2+iSCatmrHo5V4Wb7S57h5qppiNVWXqmqqZ1048m6Yv5t3QpkYv5t3Qp4UT+ge13przXTe6aURO6B7XemvNdN7ppRAAAAAAAAAAAAAAAAAAAAMX827oUyPxybTVRFxlMAT2ge13przXTe6aURH2iwats1lobXT6gszoKOnZTxrJaJFcrWNRqZVKhN+E7yG7xLWfh6x+x5fmQKMEXfp9Z2PTtyu3VixzcSpZKjgupMrdvYarsZ4wuM45cHQbR6zVqL1ese9PA8vzIFICc4lrPw9Y/Y8vzI4lrPw9Y/Y8vzIFGCc4lrPw9Y/Y8vzI4lrPw9Y/Y8vzIFGCc4lrPw9Y/Y8vzI4lrPw9Y/Y8vzIFGCLv0+s7Hp25XbqxY5uJUslRwXUmVu3sNV2M8YXGccuDoNo9Zq1F6vWPengeX5kCkBOcS1n4esfseX5kcS1n4esfseX5kCjBOcS1n4esfseX5kcS1n4esfseX5kCjBOcS1n4esfseX5kcS1n4esfseX5kCjBF36fWdj07crt1Ysc3EqWSo4LqTK3b2Gq7GeMLjOOXB0G0es1ai9XrHvTwPL8yBSAnOJaz8PWP2PL8yOJaz8PWP2PL8yBRgnOJaz8PWP2PL8yOJaz8PWP2PL8yBRgnOJaz8PWP2PL8yOJaz8PWP2PL8yBRgm3Ues0aq9XrHuTwPL8yc+wz6zvmnbbdurFjh47Sx1HBdSZXbG21HYzxhM4zy4AtATnEtZ+HrH7Hl+ZHEtZ+HrH7Hl+ZAowTnEtZ+HrH7Hl+ZHEtZ+HrH7Hl+ZAowTnEtZ+HrH7Hl+ZHEtZ+HrH7Hl+ZAowTbqPWaNVer1j3J4Hl+ZOfYZ9Z3zTttu3Vixw8dpY6jgupMrtjbajsZ4wmcZ5cAWgJziWs/D1j9jy/MjiWs/D1j9jy/MgUYJziWs/D1j9jy/MjiWs/D1j9jy/MgUYJziWs/D1j9jy/MjiWs/D1j9jy/MgUYJziWs/D1j9jy/MnNslRrO80EtV1YscOxVVFNs9SZXZ4KZ8W1njCcuxnHczjeBagnOJaz8PWP2PL8yOJaz8PWP2PL8yBRgnOJaz8PWP2PL8yOJaz8PWP2PL8yBRgnOJaz8PWP2PL8yOJaz8PWP2PL8yBRgnOJaz8PWP2PL8yc2yVGs7zQS1XVixw7FVUU2z1JldngpnxbWeMJy7GcdzON4FqCc4lrPw9Y/Y8vzI4lrPw9Y/Y8vzIFGCc4lrPw9Y/Y8vzI4lrPw9Y/Y8vzIFGCc4lrPw9Y/Y8vzI4lrPw9Y/Y8vzIFGCc4lrPw9Y/Y8vzJzbJUazvNBLVdWLHDsVVRTbPUmV2eCmfFtZ4wnLsZx3M43gWpi/m3dCk9xLWfh6x+x5fmT8Wh1mqKnV6x7/AP5PL8yBloHtd6a8103umlEc3T9rWx6ctlpWZJloqWKn4VG7O3sNRucZXGcd86QAAAAAAAAAAAAAAAAAAAAAAAAHMvV4tdopWdVJMR1DuCZEkLpnSqqKqtRjUVztyLnCLuNi23Kju9virqCds9NLnYe3Kci4VFRd6KioqKi70VCa1RVQWjWWnbxcZGw2yKGrp31Em5kMr+DViuXkblGPTK9/HdPXQaLLb7rXMY5tLXXWoqaXaardqJVREeiL3HKjnJ30dnugVYAAAAAAANevnpKa31E9e6NtJHG50zpEy1GIm/PkwedqulHerZBcbfKstJO3ajerHMymccjkRU5O6hxNVUN8rq22pQUVHW2+B6zT09RVug4SRqoseVSN+WouXY3b0b3sLqfRZJVyfR7beNU8UOztpHwcqybbNpd65amFzlMb+RFzvwgWQAAAAAAAOZerxa7TTsbc5OxqVWJkLYXTPmXCqqJG1Fc7dnOE5D3td1obzQtrLfOk0CuVmURWq1yLhWuaqIrVReVFRFJPXszILxp2WavdaIWSTq67oiLxddhESNdpFYm3ld70VOw3b1RTZ+jpyusVa5HLPGtxndHXK1WrWoqovDKi7t6qqbsN7HciJhAK8AAAAAAAHJj1LaZr+6xMqXLcUa53BLBIjVRuNrD1bsrjabuRe6a8OrLBHXx2qOpWKRJeKxotNIyFZE3cG2RWoxVymMIvcJ6/ansVJ9KNgiqLvRRSU1LWxTtfM1Fje9adWNdv3KuFwndweNy1XY9Taqisb7zQUtFba6N0yTVDGy1dVG9FZFG1VzsteiZdjeqbKd1QPooAAAAAAAOTHqW0zX91iZUuW4o1zuCWCRGqjcbWHq3ZXG03ci9085NSWWhuLbQ2V/DxqyNYqelkkZCq42WvcxqtZuVNzlTcqE1ftT2Kk+lGwRVF3oopKalrYp2vmaixvetOrGu37lXC4Tu4Jlr5rPPfI2Xevj1Qt8klorc2VyMniklRWrwXI9isVcvXOzjGU2QPsoAAAAAAAOH14WNLmlvdWPZOs/Fkc+nlbEsucbCSK3YV2UxjOcn5Xaq0/ZK5bfU1jIJUVHyIyF6si213LI9rVbHtLne5UyS931XY9R6nbp+S80FJQ26tjWq4aoYyWpqI3o5sMbVXOyj0Tad3VTZTuqmlea+ktcGvrRccrcbq9z6GBWKr6xslNHGxsafvYe1zVxycoH1IGrbYZae10kE7tqaOFjJFznLkaiL/AFNoAAAAAA4fXhY0uaW91Y9k6z8WRz6eVsSy5xsJIrdhXZTGM5ybF0vdo05FTrX1EdKyqqEhiRsartyPd3movKq715MrvXeR131XY9R6nbp+S80FJQ26tjWq4aoYyWpqI3o5sMbVXOyj0Tad3VTZTuqnP19R6hjbcbjPbqCogdWUUNHMtc5roYkqYVRvB8EqZe9E2nbXJs7l2URQ+qg84HSugjdPG2OVWor2MdtI12N6IuEyme7hOg9AAAAAADh3DV9jtddJSVtW+KSJWpK/i8qxRK5EVNuRG7DdypyqnKZ3LUdlsEzKWqmdHLI10/A09NJK5G53vVsbVVEyq9kuEzklta6rtFZX1GjJrxQ29kkSJdKmqnZGscL05uNHL2T3tXl5GoueXCGvqappafWSSPv7tOQLaGMhr42tclWivevBor0VvYblRETbXhNy4A+iUlXT19HDV0kzJqeZiSRyMXLXtVMoqKexP6GR7dDWZr6JKJW0rG8AiOTZRNyLh2XJlMLhVzv3lAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+V6MuV+umpKNaaottFbnWmKd1BHSycE1vGJWu2ESVEa9dleywvc3LjeH1QHze2/SJcblV0dTT0azUFVVpC2mjtlVwjIlfsJKs+OCXG5yoiYRM9kqodS26ivdZHfLhVTWiitltqquna6Vj8uSJVRr3O2sNRMJncucLjAFoD5xT6zuVx6r2pKindUJapa2lrI7fU0rU2VRqpsyrl32mqjmu9B6224XWGwaIkuz7fcZK6qp2sldTPR8SLSyO29p0jsy9jhX7so527eB9CBBx6vvbqOC/ugoOoM9wSjSBGv4y1jpuAbKr9rZXssLsbPIvLk8qnWGooKe93VIbZ1MtNydSviVknDTRo5iK5HbWGuRHd5c47gH0EEZNqi4x6xktlRUW+20zamOKCOsppdusYrWqro5tpI0XKuajcOXLd/KWYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJi36Ho7VPb5rfcbhTvo4Up1Vro14xEkiybEiOYu7Lnb27K4Vd5TgCdo9IxW6qa6hu10p6JsyzJb45WcAjldtKiZZto1VVexR2N/Jg9utS2usl1tEqzSUtzmnmn2nojkdK5XO2VRExhV3fqdwATdFoylprs+51VyuVxqn0T6FzqyRiosTnNcqYY1qIuW8qd9c53YUejaelpbVTPudxqYbVUsqKNs7o/q9mJ0TWZaxFVuy9eXK5RN5SACYZoa3R1rJErK9aKOrWtZbVlbxZs21t7SJs7X2l2tna2UXfg2J9IW+os92tj5qlILpUuqZnI5u01zlaqo3scInYpyop3wBP1+lIrnW8LWXa5y0nDsqFoFkZwG2xyOb+5t4RzUXG1jcUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB/9k=', num_solutions=None, num_shots=2048))]\n" - ] - } - ], - "source": [ - "print(res)" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "id": "de17cfc0-8e64-4493-b4c2-4a97fc9797a0", - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Optimal energy: -1.0636216796875\n", - "Optimal parameters: {'angles_0': -0.1929194344266117, 'angles_1': 7.818050476591932, 'angles_2': -1.2550017986926845}\n", - "Eigenstate: {'01': (0.09631896879639025+0j), '10': (0.09631896879639025+0j), '00': (0.9906792177592099+0j)}\n" - ] - } - ], - "source": [ - "print(f\"Optimal energy: {vqe_result.energy}\")\n", - "print(f\"Optimal parameters: {vqe_result.optimal_parameters}\")\n", - "print(f\"Eigenstate: {vqe_result.eigenstate}\")" - ] - }, - { - "cell_type": "markdown", - "id": "5df11dfc-3e3a-4191-bd47-d522ca3dcbfa", - "metadata": {}, - "source": [ - "Does it similar to the `optimal energy` we calculated in class? \\\n", - "Does it similar to the `total energy` we calculated in class?" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "4631460f-1f90-4fd0-944b-dec61dcb298c", - "metadata": {}, - "outputs": [], - "source": [ - "This is not similar to neither the optimal energy nor the total energy." - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "id": "ae650e09-6c10-4442-abcc-731253a13d5b", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Help on function vqe in module classiq.qmod.builtins.classical_execution_primitives:\n", - "\n", - "vqe(hamiltonian: List[Mapping[str, Any]], maximize: bool, initial_point: List[float], optimizer: classiq.interface.generator.expressions.enums.optimizers.Optimizer, max_iteration: int, tolerance: float, step_size: float, skip_compute_variance: bool, alpha_cvar: float) -> classiq.interface.executor.vqe_result.VQESolverResult\n", - "\n" - ] - } - ], - "source": [ - "help(vqe)" - ] - }, - { - "cell_type": "markdown", - "id": "4f0e0bea-b12f-43ad-94e8-100fedf2b57f", - "metadata": {}, - "source": [ - "### Part 2" - ] - }, - { - "cell_type": "markdown", - "id": "66882248-de08-4a6e-b33c-647f015f7d79", - "metadata": {}, - "source": [ - "**Now, we want to have a more interesting ansatz in our `main`.** \n", - "Add **one** line of code to the `main` function you created in Part 1 that creates **entanglement** between the two qubits. \n", - "Which gate should you use?" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "id": "ddd4b2ad-153d-45ad-82ac-f6355a1914f6", - "metadata": {}, - "outputs": [], - "source": [ - "@qfunc\n", - "def main(q: Output[QArray[QBit]], angles: CArray[CReal, 3]) -> None:\n", - " allocate(2, q)\n", - " U(angles[0], angles[1], angles[2], 0, q[0])\n", - " U(angles[0], angles[1], angles[2], 0, q[1])\n", - " CX(q[0],q[1]) \n", - "# TODO: Create an ansatz which allows each qubit to have arbitrary rotation\n", - "\n", - "\n", - "\n", - "@cfunc\n", - "def cmain() -> None:\n", - " res = vqe(\n", - " HAMILTONIAN, # TODO: complete the missing argument\n", - " False,\n", - " [],\n", - " optimizer=Optimizer.COBYLA,\n", - " max_iteration=1000,\n", - " tolerance=0.001,\n", - " step_size=0,\n", - " skip_compute_variance=False,\n", - " alpha_cvar=1.0,\n", - " )\n", - " save({\"result\": res})\n", - "\n", - "qmod = create_model(main, classical_execution_function=cmain) #TODO: complete the line, use classical_execution_function\n", - "qprog = synthesize(qmod)" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "id": "16e9b199-8447-4856-826c-152cf57ea4bb", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/22272543-36e8-48fe-8fab-dc076e0d239e?version=0.41.2\n" - ] - } - ], - "source": [ - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "id": "112a1590-283c-4f79-8035-72936561102d", - "metadata": {}, - "outputs": [], - "source": [ - "execution = execute(qprog)\n", - "res = execution.result()\n", - "# execution.open_in_ide()\n", - "vqe_result = res[0].value #TODO: complete the line" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "id": "2d3bd73e-bb89-49d6-a3a8-1488e0459565", - "metadata": {}, - "outputs": [], - "source": [ - "execution.open_in_ide()" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "id": "06500e4c-a04b-4cfa-a84d-41f96a0c68eb", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Optimal energy: -1.082470703125\n", - "Optimal parameters: {'angles_0': -6.039443074452129, 'angles_1': 2.1121611522056556, 'angles_2': 5.197782449297897}\n", - "Eigenstate: {'01': (0.02209708691207961+0j), '11': (0.1269381000724369+0j), '10': (0.10126157341262282+0j), '00': (0.9864808823540373+0j)}\n" - ] - } - ], - "source": [ - "print(f\"Optimal energy: {vqe_result.energy}\")\n", - "print(f\"Optimal parameters: {vqe_result.optimal_parameters}\")\n", - "print(f\"Eigenstate: {vqe_result.eigenstate}\")" - ] - }, - { - "cell_type": "markdown", - "id": "30a635d7-2f15-4c94-a94b-f4270f17aed8", - "metadata": {}, - "source": [ - "Does it similar to the `optimal energy` we calculated in class? \\\n", - "Does it similar to the `total energy` we calculated in class? \\\n", - "What can we learn about the provided form this result Hamiltonian?" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "9c1e58f2-4031-4104-86c6-8ec78ea4d867", - "metadata": {}, - "outputs": [], - "source": [ - "The calculation result is not similar to the optimal energy we calculated in class. \n", - "\n", - "It gets closer but is not similar to the total energy.\n", - "\n", - "From this calculation, we can recognize the significance of the Ansatz and Hamiltonian. To obtain a\n", - "meaningful result, we should carefully select and justify our Ansatz and Hamiltonian.\n", - "They should be able to represent the problem we would like to solve on the quantum computer." - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.9" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/community/QClass_2024/Submissions/HW3/bogachan_arslan-HW3_QClass2024.ipynb b/community/QClass_2024/Submissions/HW3/bogachan_arslan-HW3_QClass2024.ipynb index 6895bcbe..99e8539f 100644 --- a/community/QClass_2024/Submissions/HW3/bogachan_arslan-HW3_QClass2024.ipynb +++ b/community/QClass_2024/Submissions/HW3/bogachan_arslan-HW3_QClass2024.ipynb @@ -79,15 +79,20 @@ }, "source": [ "from typing import List\n", + "\n", "from classiq import *\n", "\n", - "HAMILTONIAN = QConstant(\"HAMILTONIAN\", List[PauliTerm], [\n", - " PauliTerm([Pauli.I, Pauli.I], -1.0523),\n", - " PauliTerm([Pauli.I, Pauli.Z], 0.3979),\n", - " PauliTerm([Pauli.Z, Pauli.I], -0.3979),\n", - " PauliTerm([Pauli.Z, Pauli.Z], -0.0112),\n", - " PauliTerm([Pauli.X, Pauli.X], 0.1809),\n", - "]) " + "HAMILTONIAN = QConstant(\n", + " \"HAMILTONIAN\",\n", + " List[PauliTerm],\n", + " [\n", + " PauliTerm([Pauli.I, Pauli.I], -1.0523),\n", + " PauliTerm([Pauli.I, Pauli.Z], 0.3979),\n", + " PauliTerm([Pauli.Z, Pauli.I], -0.3979),\n", + " PauliTerm([Pauli.Z, Pauli.Z], -0.0112),\n", + " PauliTerm([Pauli.X, Pauli.X], 0.1809),\n", + " ],\n", + ")" ], "outputs": [], "execution_count": 16 @@ -106,8 +111,8 @@ "def main(q: Output[QArray[QBit]], angles: CArray[CReal, 3]) -> None:\n", " # TODO: Create an ansatz which allows each qubit to have arbitrary rotation\n", " allocate(2, q)\n", - " U(angles[0], angles[1], angles[2],0 ,q[0])\n", - " U(angles[0], angles[1], angles[2],0 ,q[1])\n", + " U(angles[0], angles[1], angles[2], 0, q[0])\n", + " U(angles[0], angles[1], angles[2], 0, q[1])\n", "\n", "\n", "@cfunc\n", @@ -125,7 +130,10 @@ " )\n", " save({\"result\": res})\n", "\n", - "qmod = create_model(main, classical_execution_function=cmain) #TODO: complete the line, use classical_execution_function\n", + "\n", + "qmod = create_model(\n", + " main, classical_execution_function=cmain\n", + ") # TODO: complete the line, use classical_execution_function\n", "qprog = synthesize(qmod)\n", "show(qprog)" ], @@ -237,10 +245,11 @@ "def main(q: Output[QArray[QBit]], angles: CArray[CReal, 3]) -> None:\n", " # TODO: Create an ansatz which allows each qubit to have arbitrary rotation\n", " allocate(2, q)\n", - " U(angles[0], angles[1], angles[2],0 ,q[0])\n", - " U(angles[0], angles[1], angles[2],0 ,q[1])\n", + " U(angles[0], angles[1], angles[2], 0, q[0])\n", + " U(angles[0], angles[1], angles[2], 0, q[1])\n", " CX(q[0], q[1])\n", "\n", + "\n", "@cfunc\n", "def cmain() -> None:\n", " res = vqe(\n", @@ -256,7 +265,10 @@ " )\n", " save({\"result\": res})\n", "\n", - "qmod = create_model(main, classical_execution_function=cmain) #TODO: complete the line, use classical_execution_function\n", + "\n", + "qmod = create_model(\n", + " main, classical_execution_function=cmain\n", + ") # TODO: complete the line, use classical_execution_function\n", "qprog = synthesize(qmod)\n", "show(qprog)" ], @@ -284,7 +296,7 @@ "execution = execute(qprog)\n", "res = execution.result()\n", "# execution.open_in_ide()\n", - "vqe_result = res[0].value #TODO: complete the line" + "vqe_result = res[0].value # TODO: complete the line" ], "outputs": [], "execution_count": 19 diff --git a/community/QClass_2024/Submissions/HW3/index.md b/community/QClass_2024/Submissions/HW3/index.md deleted file mode 100644 index 975f8be0..00000000 --- a/community/QClass_2024/Submissions/HW3/index.md +++ /dev/null @@ -1,20 +0,0 @@ -# Submitting HW2 - -## Submission: Rules & Instructions -To keep track of submissions, we kindly ask you to: -1. Complete `HW3_VQE.ipynb`. -2. Rename the files to include your full name, for example: `Nadav_Ben-Ami_HW3_VQE.ipynb`. -3. Navigate to your local clone of the `classiq-library`. -4. Go to `community/QClass_2024`. -5. Place your solutions in the `HW2` folder. -6. Use the command line to `add`, `commit`, and `push` those changes to the remote (your fork of the `classiq-library`). -7. Navigate to your GitHub repository `classiq-library` and create a new Pull Request to merge the changes from your fork to the original repository (`Classiq/classiq-library`). -8. After you are done, please let us know by submitting the form here: [Typfeorm HW3](https://fvrn0h72gwo.typeform.com/to/pEJ5iRIS) - -**Please ensure you follow these steps carefully to properly submit your assignment!** - -## Support -If you need help or have questions, feel free to reach out in our Slack channel! - -## Enjoy your learning journey at QClass 2024! - diff --git a/community/QClass_2024/Submissions/HW4/Amon_Koike_HW4_QClass2024.ipynb b/community/QClass_2024/Submissions/HW4/Amon_Koike_HW4_QClass2024.ipynb deleted file mode 100644 index 912e7817..00000000 --- a/community/QClass_2024/Submissions/HW4/Amon_Koike_HW4_QClass2024.ipynb +++ /dev/null @@ -1,1023 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "id": "d0b64d66-c3e4-4da8-9736-b05bf9a32409", - "metadata": {}, - "source": [ - "# The Project\n", - "- QNN for XOR Problem:\n", - "\n", - " Classiq has an available dataset for training PQC to imitate the XOR gate, similar to how we trained a U-gate to act as a NOT gate. Design a QNN to solve the XOR problem. Read more on the dataset [here](https://docs.classiq.io/latest/reference-manual/built-in-algorithms/qml/qnn/datasets/#datasetxor).\n", - "\n", - " Click [here](https://en.wikipedia.org/wiki/XOR_gate) for more information about XOR gates\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "id": "b17bf52c-0cda-49ff-a883-0f090061f2e3", - "metadata": {}, - "source": [ - "## Setting The Scene" - ] - }, - { - "cell_type": "markdown", - "id": "45633e16-7f1d-4e4f-9346-5524091ed072", - "metadata": {}, - "source": [ - "When running from Google Colab, we need to install Classiq's SDK and authenticate the remote device:" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "id": "161ccbd8-538b-4589-a168-e981b49c7b50", - "metadata": {}, - "outputs": [], - "source": [ - "#!pip install classiq numpy torchvision torch\n" - ] - }, - { - "cell_type": "code", - "execution_count": 57, - "id": "4dffbfa1-4e29-4896-84a4-cb38592ca748", - "metadata": {}, - "outputs": [], - "source": [ - "# import classiq\n", - "# classiq.authenticate(overwrite=True)" - ] - }, - { - "cell_type": "markdown", - "id": "61c6620f-a42c-44ac-89d7-67a2a259f975", - "metadata": {}, - "source": [ - "# Step 1 - Create our `torch.nn.Module`" - ] - }, - { - "cell_type": "markdown", - "id": "630ba942-3e8f-4eab-88b7-1638fb26f977", - "metadata": { - "id": "dae15b1c-0d3f-4807-ae48-edfba8425962" - }, - "source": [ - "## Step 1.1 - Create Dataset" - ] - }, - { - "cell_type": "markdown", - "id": "0d973e3d-b381-4607-80c1-f669e256e4f7", - "metadata": { - "id": "5105b43a-340e-4f79-8d54-f6e898ba415c" - }, - "source": [ - "We will use the DATALOADER_NOT dataset." - ] - }, - { - "cell_type": "code", - "execution_count": 127, - "id": "d644402d-4f61-41b6-8427-b45d0c5df1b0", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "--> Data for training:\n", - "tensor([[0., 1.],\n", - " [1., 1.],\n", - " [0., 0.],\n", - " [1., 0.]])\n", - "--> Corresponding labels:\n", - "tensor([1., 0., 0., 1.])\n" - ] - } - ], - "source": [ - "\n", - "import torch\n", - "import torch.nn as nn\n", - "import torch.optim as optim\n", - "from torch.utils.data import DataLoader, Dataset\n", - "# XORゲートのデータセット\n", - "from torch.utils.data import DataLoader\n", - "from classiq.applications.qnn.datasets import DATALOADER_XOR\n", - "\n", - "for data, label in DATALOADER_XOR:\n", - " print(f\"--> Data for training:\\n{data}\")\n", - " print(f\"--> Corresponding labels:\\n{label}\")\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "id": "b015f2a7-4641-4fc8-b6d1-8e0b8d2b751c", - "metadata": { - "id": "dae15b1c-0d3f-4807-ae48-edfba8425962" - }, - "source": [ - "## Step 1.2 - Create our parametric quantum program" - ] - }, - { - "cell_type": "markdown", - "id": "35de5a77-06b2-40c3-97cb-07352de1bc7c", - "metadata": {}, - "source": [ - "Our quantum model will be defined and synthesized as follows:" - ] - }, - { - "cell_type": "code", - "execution_count": 128, - "id": "fb04f41e-0016-4cd3-a798-9a36321a49cd", - "metadata": {}, - "outputs": [], - "source": [ - "from classiq import *\n", - "\n", - "\n", - "import numpy as np\n", - "\n", - "\n", - "# 量子プログラムの作成\n", - "@qfunc\n", - "def encoding(input_0: CInt, input_1: CInt, q: QArray[QBit]) -> None:\n", - " RX(theta=input_0*np.pi, target=q[0])\n", - " RX(theta=input_1*np.pi, target=q[1])\n", - "\n", - "\n", - "@qfunc\n", - "def mixing(theta: CReal, q: QArray[QBit]) -> None:\n", - " CRX(theta, q[1], q[0])\n", - "\n", - "@qfunc\n", - "def main(input_0: CReal, input_1: CReal, weight_0: CReal, weight_1: CReal, res: Output[QArray[QBit]]) -> None:\n", - " allocate(2, res)\n", - " encoding(input_0, input_1, res) # Loading input\n", - " mixing(weight_0, res) # Adjustable parameter\n", - "\n", - "\n", - "model = create_model(main)\n", - "quantum_program = synthesize(model)\n", - "\n", - "\n", - "#show(quantum_program)\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "id": "3615654e-fed1-4bfd-bf9d-318557de79ad", - "metadata": { - "id": "bef15105-d942-45a6-a615-7b5458241703" - }, - "source": [ - "## Step 1.3 - Create the Execution and Post-processing" - ] - }, - { - "cell_type": "markdown", - "id": "5a10a9b0-d994-4d67-a071-157898793c2e", - "metadata": { - "id": "69875135-2a3d-4d8a-91df-ee501f01eac2" - }, - "source": [ - "The following example defines a function that takes in a parametric quantum program plus parameters, executes the program, and returns the result. Notes:\n", - "\n", - "1. The code can be executed on a physical computer or on a simulator. In any case, implement the execution using `execute_qnn`.\n", - "2. Post-process the result of the execution to obtain a single number (`float`) and a single dimension `Tensor`.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 183, - "id": "0ec5e0af-a44f-44c4-a7af-7c256858364e", - "metadata": {}, - "outputs": [], - "source": [ - "from classiq.applications.qnn.types import (\n", - " MultipleArguments,\n", - " SavedResult,\n", - " ResultsCollection,\n", - ")\n", - "\n", - "from classiq.execution import execute_qnn\n", - "from classiq.synthesis import SerializedQuantumProgram\n", - "\n", - "from classiq.applications.qnn.datasets import DATALOADER_NOT\n", - "import torch\n", - "\n", - "# 実行およびポストプロセス関数の作成\n", - "def execute(\n", - " quantum_program: SerializedQuantumProgram, arguments: MultipleArguments\n", - ") -> ResultsCollection:\n", - " return execute_qnn(quantum_program, arguments)\n", - "\n", - "def post_process(result: SavedResult) -> torch.Tensor:\n", - " \"\"\"\n", - " \n", - " probability of measuring \n", - " p_one |01> + |11> \n", - " p_zero |00> + |10>\n", - " \"\"\"\n", - " counts: dict = result.value.counts\n", - " p_one:float = counts.get(\"01\", 0.0) / sum(counts.values()) + counts.get(\"11\", 0.0) / sum(counts.values()) \n", - " p_zero:float = counts.get(\"00\", 0.0) / sum(counts.values()) + counts.get(\"10\", 0.0) / sum(counts.values())\n", - " p_xor: float = p_one - p_zero\n", - " \n", - " return torch.tensor(0.0 if p_xor < 0 else p_xor)\n", - "\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "id": "69934d9a-1245-4739-b267-d8eef8489f8a", - "metadata": { - "id": "aa6a64b5-bdff-4e66-b16c-6ede1d69877d" - }, - "source": [ - "## Step 1.4 - Create a network" - ] - }, - { - "cell_type": "markdown", - "id": "ed1b92e8-a8f0-411a-9831-2398599adb84", - "metadata": { - "id": "1937b4d5-abfa-40bd-b26e-32c93936be18" - }, - "source": [ - "Now we're going to define a network, just like any other PyTorch network, only that this time, we will have only 1 layer, and it will be a quantum layer." - ] - }, - { - "cell_type": "code", - "execution_count": 205, - "id": "b11021d4-bc80-4421-a8f3-e635b0a6fc17", - "metadata": {}, - "outputs": [], - "source": [ - "import torch.nn as nn\n", - "from classiq.applications.qnn import QLayer\n", - "# ネットワークの作成\n", - "\n", - "class Net(torch.nn.Module):\n", - " def __init__(self, *args, **kwargs) -> None:\n", - " super().__init__()\n", - " self.qlayer = QLayer(\n", - " quantum_program, # the quantum program, the result of `synthesize()`\n", - " execute, # a callable that takes\n", - " # - a quantum program\n", - " # - parameters to that program (a tuple of dictionaries)\n", - " # and returns a `ResultsCollection`\n", - " post_process, # a callable that takes\n", - " # - a single `SavedResult`\n", - " # and returns a `torch.Tensor`\n", - " *args,\n", - " **kwargs\n", - " )\n", - " \n", - "\n", - " def forward(self, x: torch.Tensor) -> torch.Tensor:\n", - " # return the new parameter\n", - " return self.qlayer(x)\n", - "\n", - "model = Net()\n" - ] - }, - { - "cell_type": "markdown", - "id": "7600a642-b863-4eb8-9b8b-6040482b6b4f", - "metadata": { - "id": "a94ff1bc-58f5-4743-aa09-0cc77dcfecd6" - }, - "source": [ - "# Step 2 - Choose a dataset, loss function, and optimizer" - ] - }, - { - "cell_type": "markdown", - "id": "69e3927a-4276-4c1d-b5ed-a343e75a73dc", - "metadata": { - "id": "8ac9fb68-bbf5-48c1-ba7a-2af0d9219b74" - }, - "source": [ - "We will use optimizer,defined [here](https://docs.classiq.io/latest/reference-manual/built-in-algorithms/qml/qnn/datasets/) as well as [L1Loss](https://pytorch.org/docs/stable/generated/torch.nn.L1Loss.html) and [SGD](https://pytorch.org/docs/stable/generated/torch.optim.SGD.html)" - ] - }, - { - "cell_type": "code", - "execution_count": 206, - "id": "24ac42c2-31a8-4726-a065-1f88b7be3744", - "metadata": {}, - "outputs": [], - "source": [ - "from classiq.applications.qnn.datasets import DATALOADER_NOT\n", - "import torch.nn as nn\n", - "import torch.optim as optim\n", - "from classiq.applications.qnn.datasets import DATALOADER_XOR\n", - "\n", - "data_loader=DATALOADER_XOR \n", - "\n", - "# 損失関数とオプティマイザの定義\n", - "loss_func = nn.L1Loss() # Mean Absolute Error (MAE)\n", - "optimizer = optim.SGD(model.parameters(), lr=1)" - ] - }, - { - "cell_type": "markdown", - "id": "09aa079e-5edd-40a6-ab24-5acb891da094", - "metadata": { - "id": "b0087ab6-addd-41ac-b609-f60b0b4591cd" - }, - "source": [ - "# Step 3 - Train" - ] - }, - { - "cell_type": "markdown", - "id": "ca05190d-dde4-4f33-8389-5a85aa70ca23", - "metadata": { - "id": "ae072cf7-431f-4583-b5c7-a21be4ef56f2" - }, - "source": [ - "For the training process, we will use a loop similar to [the one recommended by PyTorch](https://pytorch.org/tutorials/beginner/blitz/neural_networks_tutorial.html#update-the-weights)" - ] - }, - { - "cell_type": "code", - "execution_count": 207, - "id": "26b387e2-75d1-49b0-800e-9f87586d5c1b", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "0 Parameter containing:\n", - "tensor([0.7832], requires_grad=True)\n", - "Grad for qlayer.weight: 0.048828125\n", - "Epoch 1/100, Loss: 0.427001953125\n", - "1 Parameter containing:\n", - "tensor([0.8320], requires_grad=True)\n", - "Grad for qlayer.weight: 0.18310546875\n", - "Epoch 2/100, Loss: 0.419677734375\n", - "2 Parameter containing:\n", - "tensor([1.0151], requires_grad=True)\n", - "Grad for qlayer.weight: 0.35400390625\n", - "Epoch 3/100, Loss: 0.376708984375\n", - "3 Parameter containing:\n", - "tensor([1.3691], requires_grad=True)\n", - "Grad for qlayer.weight: 0.732421875\n", - "Epoch 4/100, Loss: 0.299560546875\n", - "4 Parameter containing:\n", - "tensor([2.1016], requires_grad=True)\n", - "Grad for qlayer.weight: 0.30517578125\n", - "Epoch 5/100, Loss: 0.119140625\n", - "5 Parameter containing:\n", - "tensor([2.4067], requires_grad=True)\n", - "Grad for qlayer.weight: 0.52490234375\n", - "Epoch 6/100, Loss: 0.059814453125\n", - "6 Parameter containing:\n", - "tensor([2.9316], requires_grad=True)\n", - "Grad for qlayer.weight: 0.09765625\n", - "Epoch 7/100, Loss: 0.00390625\n", - "7 Parameter containing:\n", - "tensor([3.0293], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0244140625\n", - "Epoch 8/100, Loss: 0.00146484375\n", - "8 Parameter containing:\n", - "tensor([3.0049], requires_grad=True)\n", - "Grad for qlayer.weight: 0.06103515625\n", - "Epoch 9/100, Loss: 0.001708984375\n", - "9 Parameter containing:\n", - "tensor([2.9438], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0\n", - "Gradient for qlayer.weight is zero.\n", - "Epoch 10/100, Loss: 0.00537109375\n", - "10 Parameter containing:\n", - "tensor([2.9438], requires_grad=True)\n", - "Grad for qlayer.weight: 0.08544921875\n", - "Epoch 11/100, Loss: 0.00390625\n", - "11 Parameter containing:\n", - "tensor([2.8584], requires_grad=True)\n", - "Grad for qlayer.weight: 0.1220703125\n", - "Epoch 12/100, Loss: 0.01123046875\n", - "12 Parameter containing:\n", - "tensor([2.7363], requires_grad=True)\n", - "Grad for qlayer.weight: 0.06103515625\n", - "Epoch 13/100, Loss: 0.021240234375\n", - "13 Parameter containing:\n", - "tensor([2.7974], requires_grad=True)\n", - "Grad for qlayer.weight: 0.10986328125\n", - "Epoch 14/100, Loss: 0.015625\n", - "14 Parameter containing:\n", - "tensor([2.6875], requires_grad=True)\n", - "Grad for qlayer.weight: 0.10986328125\n", - "Epoch 15/100, Loss: 0.02392578125\n", - "15 Parameter containing:\n", - "tensor([2.7974], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0244140625\n", - "Epoch 16/100, Loss: 0.01611328125\n", - "16 Parameter containing:\n", - "tensor([2.8218], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0732421875\n", - "Epoch 17/100, Loss: 0.013427734375\n", - "17 Parameter containing:\n", - "tensor([2.8950], requires_grad=True)\n", - "Grad for qlayer.weight: 0.1220703125\n", - "Epoch 18/100, Loss: 0.007568359375\n", - "18 Parameter containing:\n", - "tensor([3.0171], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0244140625\n", - "Epoch 19/100, Loss: 0.001220703125\n", - "19 Parameter containing:\n", - "tensor([3.0415], requires_grad=True)\n", - "Grad for qlayer.weight: 0.01220703125\n", - "Epoch 20/100, Loss: 0.00146484375\n", - "20 Parameter containing:\n", - "tensor([3.0537], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0\n", - "Gradient for qlayer.weight is zero.\n", - "Epoch 21/100, Loss: 0.001220703125\n", - "21 Parameter containing:\n", - "tensor([3.0537], requires_grad=True)\n", - "Grad for qlayer.weight: 0.03662109375\n", - "Epoch 22/100, Loss: 0.001220703125\n", - "22 Parameter containing:\n", - "tensor([3.0171], requires_grad=True)\n", - "Grad for qlayer.weight: 0.048828125\n", - "Epoch 23/100, Loss: 0.001708984375\n", - "23 Parameter containing:\n", - "tensor([2.9683], requires_grad=True)\n", - "Grad for qlayer.weight: 0.048828125\n", - "Epoch 24/100, Loss: 0.00439453125\n", - "24 Parameter containing:\n", - "tensor([2.9194], requires_grad=True)\n", - "Grad for qlayer.weight: 0.08544921875\n", - "Epoch 25/100, Loss: 0.005615234375\n", - "25 Parameter containing:\n", - "tensor([2.8340], requires_grad=True)\n", - "Grad for qlayer.weight: 0.048828125\n", - "Epoch 26/100, Loss: 0.01220703125\n", - "26 Parameter containing:\n", - "tensor([2.7851], requires_grad=True)\n", - "Grad for qlayer.weight: 0.01220703125\n", - "Epoch 27/100, Loss: 0.016357421875\n", - "27 Parameter containing:\n", - "tensor([2.7974], requires_grad=True)\n", - "Grad for qlayer.weight: 0.3173828125\n", - "Epoch 28/100, Loss: 0.012451171875\n", - "28 Parameter containing:\n", - "tensor([3.1147], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0\n", - "Gradient for qlayer.weight is zero.\n", - "Epoch 29/100, Loss: 0.0\n", - "29 Parameter containing:\n", - "tensor([3.1147], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0\n", - "Gradient for qlayer.weight is zero.\n", - "Epoch 30/100, Loss: 0.0\n", - "30 Parameter containing:\n", - "tensor([3.1147], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0\n", - "Gradient for qlayer.weight is zero.\n", - "Epoch 31/100, Loss: 0.0\n", - "31 Parameter containing:\n", - "tensor([3.1147], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0\n", - "Gradient for qlayer.weight is zero.\n", - "Epoch 32/100, Loss: 0.000244140625\n", - "32 Parameter containing:\n", - "tensor([3.1147], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0\n", - "Gradient for qlayer.weight is zero.\n", - "Epoch 33/100, Loss: 0.0\n", - "33 Parameter containing:\n", - "tensor([3.1147], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0\n", - "Gradient for qlayer.weight is zero.\n", - "Epoch 34/100, Loss: 0.0\n", - "34 Parameter containing:\n", - "tensor([3.1147], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0\n", - "Gradient for qlayer.weight is zero.\n", - "Epoch 35/100, Loss: 0.000244140625\n", - "35 Parameter containing:\n", - "tensor([3.1147], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0\n", - "Gradient for qlayer.weight is zero.\n", - "Epoch 36/100, Loss: 0.0\n", - "36 Parameter containing:\n", - "tensor([3.1147], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0\n", - "Gradient for qlayer.weight is zero.\n", - "Epoch 37/100, Loss: 0.0\n", - "37 Parameter containing:\n", - "tensor([3.1147], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0\n", - "Gradient for qlayer.weight is zero.\n", - "Epoch 38/100, Loss: 0.0\n", - "38 Parameter containing:\n", - "tensor([3.1147], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0\n", - "Gradient for qlayer.weight is zero.\n", - "Epoch 39/100, Loss: 0.0\n", - "39 Parameter containing:\n", - "tensor([3.1147], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0\n", - "Gradient for qlayer.weight is zero.\n", - "Epoch 40/100, Loss: 0.0\n", - "40 Parameter containing:\n", - "tensor([3.1147], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0\n", - "Gradient for qlayer.weight is zero.\n", - "Epoch 41/100, Loss: 0.0\n", - "41 Parameter containing:\n", - "tensor([3.1147], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0\n", - "Gradient for qlayer.weight is zero.\n", - "Epoch 42/100, Loss: 0.0\n", - "42 Parameter containing:\n", - "tensor([3.1147], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0\n", - "Gradient for qlayer.weight is zero.\n", - "Epoch 43/100, Loss: 0.0\n", - "43 Parameter containing:\n", - "tensor([3.1147], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0\n", - "Gradient for qlayer.weight is zero.\n", - "Epoch 44/100, Loss: 0.000244140625\n", - "44 Parameter containing:\n", - "tensor([3.1147], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0\n", - "Gradient for qlayer.weight is zero.\n", - "Epoch 45/100, Loss: 0.0\n", - "45 Parameter containing:\n", - "tensor([3.1147], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0\n", - "Gradient for qlayer.weight is zero.\n", - "Epoch 46/100, Loss: 0.000244140625\n", - "46 Parameter containing:\n", - "tensor([3.1147], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0\n", - "Gradient for qlayer.weight is zero.\n", - "Epoch 47/100, Loss: 0.0\n", - "47 Parameter containing:\n", - "tensor([3.1147], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0\n", - "Gradient for qlayer.weight is zero.\n", - "Epoch 48/100, Loss: 0.000244140625\n", - "48 Parameter containing:\n", - "tensor([3.1147], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0\n", - "Gradient for qlayer.weight is zero.\n", - "Epoch 49/100, Loss: 0.0\n", - "49 Parameter containing:\n", - "tensor([3.1147], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0\n", - "Gradient for qlayer.weight is zero.\n", - "Epoch 50/100, Loss: 0.0\n", - "50 Parameter containing:\n", - "tensor([3.1147], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0\n", - "Gradient for qlayer.weight is zero.\n", - "Epoch 51/100, Loss: 0.0\n", - "51 Parameter containing:\n", - "tensor([3.1147], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0\n", - "Gradient for qlayer.weight is zero.\n", - "Epoch 52/100, Loss: 0.0\n", - "52 Parameter containing:\n", - "tensor([3.1147], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0\n", - "Gradient for qlayer.weight is zero.\n", - "Epoch 53/100, Loss: 0.0\n", - "53 Parameter containing:\n", - "tensor([3.1147], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0\n", - "Gradient for qlayer.weight is zero.\n", - "Epoch 54/100, Loss: 0.000244140625\n", - "54 Parameter containing:\n", - "tensor([3.1147], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0\n", - "Gradient for qlayer.weight is zero.\n", - "Epoch 55/100, Loss: 0.0\n", - "55 Parameter containing:\n", - "tensor([3.1147], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0\n", - "Gradient for qlayer.weight is zero.\n", - "Epoch 56/100, Loss: 0.0\n", - "56 Parameter containing:\n", - "tensor([3.1147], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0\n", - "Gradient for qlayer.weight is zero.\n", - "Epoch 57/100, Loss: 0.000244140625\n", - "57 Parameter containing:\n", - "tensor([3.1147], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0\n", - "Gradient for qlayer.weight is zero.\n", - "Epoch 58/100, Loss: 0.000244140625\n", - "58 Parameter containing:\n", - "tensor([3.1147], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0\n", - "Gradient for qlayer.weight is zero.\n", - "Epoch 59/100, Loss: 0.000244140625\n", - "59 Parameter containing:\n", - "tensor([3.1147], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0\n", - "Gradient for qlayer.weight is zero.\n", - "Epoch 60/100, Loss: 0.0\n", - "60 Parameter containing:\n", - "tensor([3.1147], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0\n", - "Gradient for qlayer.weight is zero.\n", - "Epoch 61/100, Loss: 0.0\n", - "61 Parameter containing:\n", - "tensor([3.1147], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0\n", - "Gradient for qlayer.weight is zero.\n", - "Epoch 62/100, Loss: 0.0\n", - "62 Parameter containing:\n", - "tensor([3.1147], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0\n", - "Gradient for qlayer.weight is zero.\n", - "Epoch 63/100, Loss: 0.000244140625\n", - "63 Parameter containing:\n", - "tensor([3.1147], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0\n", - "Gradient for qlayer.weight is zero.\n", - "Epoch 64/100, Loss: 0.0\n", - "64 Parameter containing:\n", - "tensor([3.1147], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0\n", - "Gradient for qlayer.weight is zero.\n", - "Epoch 65/100, Loss: 0.000244140625\n", - "65 Parameter containing:\n", - "tensor([3.1147], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0\n", - "Gradient for qlayer.weight is zero.\n", - "Epoch 66/100, Loss: 0.000244140625\n", - "66 Parameter containing:\n", - "tensor([3.1147], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0\n", - "Gradient for qlayer.weight is zero.\n", - "Epoch 67/100, Loss: 0.000244140625\n", - "67 Parameter containing:\n", - "tensor([3.1147], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0\n", - "Gradient for qlayer.weight is zero.\n", - "Epoch 68/100, Loss: 0.0\n", - "68 Parameter containing:\n", - "tensor([3.1147], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0\n", - "Gradient for qlayer.weight is zero.\n", - "Epoch 69/100, Loss: 0.000244140625\n", - "69 Parameter containing:\n", - "tensor([3.1147], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0\n", - "Gradient for qlayer.weight is zero.\n", - "Epoch 70/100, Loss: 0.0\n", - "70 Parameter containing:\n", - "tensor([3.1147], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0\n", - "Gradient for qlayer.weight is zero.\n", - "Epoch 71/100, Loss: 0.000244140625\n", - "71 Parameter containing:\n", - "tensor([3.1147], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0\n", - "Gradient for qlayer.weight is zero.\n", - "Epoch 72/100, Loss: 0.0\n", - "72 Parameter containing:\n", - "tensor([3.1147], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0\n", - "Gradient for qlayer.weight is zero.\n", - "Epoch 73/100, Loss: 0.0\n", - "73 Parameter containing:\n", - "tensor([3.1147], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0\n", - "Gradient for qlayer.weight is zero.\n", - "Epoch 74/100, Loss: 0.0\n", - "74 Parameter containing:\n", - "tensor([3.1147], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0\n", - "Gradient for qlayer.weight is zero.\n", - "Epoch 75/100, Loss: 0.000244140625\n", - "75 Parameter containing:\n", - "tensor([3.1147], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0\n", - "Gradient for qlayer.weight is zero.\n", - "Epoch 76/100, Loss: 0.0\n", - "76 Parameter containing:\n", - "tensor([3.1147], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0\n", - "Gradient for qlayer.weight is zero.\n", - "Epoch 77/100, Loss: 0.0\n", - "77 Parameter containing:\n", - "tensor([3.1147], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0\n", - "Gradient for qlayer.weight is zero.\n", - "Epoch 78/100, Loss: 0.0\n", - "78 Parameter containing:\n", - "tensor([3.1147], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0\n", - "Gradient for qlayer.weight is zero.\n", - "Epoch 79/100, Loss: 0.0\n", - "79 Parameter containing:\n", - "tensor([3.1147], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0\n", - "Gradient for qlayer.weight is zero.\n", - "Epoch 80/100, Loss: 0.0\n", - "80 Parameter containing:\n", - "tensor([3.1147], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0\n", - "Gradient for qlayer.weight is zero.\n", - "Epoch 81/100, Loss: 0.0\n", - "81 Parameter containing:\n", - "tensor([3.1147], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0\n", - "Gradient for qlayer.weight is zero.\n", - "Epoch 82/100, Loss: 0.0\n", - "82 Parameter containing:\n", - "tensor([3.1147], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0\n", - "Gradient for qlayer.weight is zero.\n", - "Epoch 83/100, Loss: 0.0\n", - "83 Parameter containing:\n", - "tensor([3.1147], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0\n", - "Gradient for qlayer.weight is zero.\n", - "Epoch 84/100, Loss: 0.0\n", - "84 Parameter containing:\n", - "tensor([3.1147], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0\n", - "Gradient for qlayer.weight is zero.\n", - "Epoch 85/100, Loss: 0.0\n", - "85 Parameter containing:\n", - "tensor([3.1147], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0\n", - "Gradient for qlayer.weight is zero.\n", - "Epoch 86/100, Loss: 0.0\n", - "86 Parameter containing:\n", - "tensor([3.1147], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0\n", - "Gradient for qlayer.weight is zero.\n", - "Epoch 87/100, Loss: 0.000244140625\n", - "87 Parameter containing:\n", - "tensor([3.1147], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0\n", - "Gradient for qlayer.weight is zero.\n", - "Epoch 88/100, Loss: 0.0\n", - "88 Parameter containing:\n", - "tensor([3.1147], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0\n", - "Gradient for qlayer.weight is zero.\n", - "Epoch 89/100, Loss: 0.0\n", - "89 Parameter containing:\n", - "tensor([3.1147], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0\n", - "Gradient for qlayer.weight is zero.\n", - "Epoch 90/100, Loss: 0.0\n", - "90 Parameter containing:\n", - "tensor([3.1147], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0\n", - "Gradient for qlayer.weight is zero.\n", - "Epoch 91/100, Loss: 0.0\n", - "91 Parameter containing:\n", - "tensor([3.1147], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0\n", - "Gradient for qlayer.weight is zero.\n", - "Epoch 92/100, Loss: 0.0\n", - "92 Parameter containing:\n", - "tensor([3.1147], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0\n", - "Gradient for qlayer.weight is zero.\n", - "Epoch 93/100, Loss: 0.000244140625\n", - "93 Parameter containing:\n", - "tensor([3.1147], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0\n", - "Gradient for qlayer.weight is zero.\n", - "Epoch 94/100, Loss: 0.000244140625\n", - "94 Parameter containing:\n", - "tensor([3.1147], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0\n", - "Gradient for qlayer.weight is zero.\n", - "Epoch 95/100, Loss: 0.0\n", - "95 Parameter containing:\n", - "tensor([3.1147], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0\n", - "Gradient for qlayer.weight is zero.\n", - "Epoch 96/100, Loss: 0.0\n", - "96 Parameter containing:\n", - "tensor([3.1147], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0\n", - "Gradient for qlayer.weight is zero.\n", - "Epoch 97/100, Loss: 0.000244140625\n", - "97 Parameter containing:\n", - "tensor([3.1147], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0\n", - "Gradient for qlayer.weight is zero.\n", - "Epoch 98/100, Loss: 0.0\n", - "98 Parameter containing:\n", - "tensor([3.1147], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0\n", - "Gradient for qlayer.weight is zero.\n", - "Epoch 99/100, Loss: 0.000244140625\n", - "99 Parameter containing:\n", - "tensor([3.1147], requires_grad=True)\n", - "Grad for qlayer.weight: 0.0\n", - "Gradient for qlayer.weight is zero.\n", - "Epoch 100/100, Loss: 0.0\n", - "Trained model saved to trained_model.pth\n" - ] - } - ], - "source": [ - "import torch.nn as nn\n", - "import torch.optim as optim\n", - "from torch.utils.data import DataLoader\n", - "\n", - "\n", - "# 学習およびテストの準備\n", - "def train(model, data_loader, loss_func, optimizer, epochs=100):\n", - " model.train()\n", - " for epoch in range(epochs):\n", - " total_loss = 0\n", - " print(epoch, model.qlayer.weight)\n", - " for data, label in data_loader:\n", - " optimizer.zero_grad()\n", - " output = model(data)\n", - " output = output.view(-1) # 出力の形状を修正\n", - " label = label.view(-1) # ラベルの形状を修正\n", - " loss = loss_func(output, label)\n", - " loss.backward()\n", - "\n", - " # 勾配チェックを追加して問題を診断\n", - " for name, param in model.named_parameters():\n", - " if param.grad is not None:\n", - " print(f'Grad for {name}: {param.grad.norm().item()}')\n", - " else:\n", - " print(f'No grad for {name}')\n", - " if param.grad is not None and torch.all(param.grad == 0):\n", - " print(f'Gradient for {name} is zero.')\n", - "\n", - " optimizer.step()\n", - " total_loss += loss.item()\n", - " print(f'Epoch {epoch + 1}/{epochs}, Loss: {total_loss / len(data_loader)}')\n", - "\n", - " # 学習後のモデルを保存\n", - " torch.save(model.state_dict(), './trained_model.pth')\n", - " print(\"Trained model saved to trained_model.pth\")\n", - "train(model, data_loader, loss_func, optimizer, epochs=100)" - ] - }, - { - "cell_type": "markdown", - "id": "0a79f438-539d-4412-a839-45c0cb29b4a9", - "metadata": { - "id": "61fa4f83-8bd2-4290-9ca4-f6c5c1ca0e32" - }, - "source": [ - "# Step 4 - Test" - ] - }, - { - "cell_type": "markdown", - "id": "ccce1b93-7895-4bcd-95dd-330c0ff8669b", - "metadata": { - "id": "7533b162-6214-4606-9e66-ec3332a2f446" - }, - "source": [ - "Lastly, we will test our network accuracy, using [the following answer](https://stackoverflow.com/questions/52176178/pytorch-model-accuracy-test#answer-64838681)" - ] - }, - { - "cell_type": "code", - "execution_count": 208, - "id": "34872f7b-45ab-4d65-ba16-8176c8d7807a", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "predictions: tensor([1., 0., 1., 0.], requires_grad=True)\n", - "labels: tensor([1., 0., 1., 0.])\n", - "num_correct: 4, total: 4\n", - "Test Accuracy of the model: 100.00%\n", - "Data: tensor([[1., 0.],\n", - " [0., 0.],\n", - " [1., 1.],\n", - " [0., 1.]]), Label: tensor([1., 0., 0., 1.]), Output: tensor([1., 0., 0., 1.], grad_fn=), Loss: 0.0\n" - ] - } - ], - "source": [ - "# テスト関数\n", - "def check_accuracy(model: nn.Module, data_loader: DataLoader, atol=1e-4) -> float:\n", - " num_correct = 0\n", - " total = 0\n", - " model.eval()\n", - "\n", - " with torch.no_grad(): # temporarily disable gradient calculation\n", - " for data, labels in data_loader:\n", - " # let the model predict\n", - " predictions = model(data)\n", - " print('predictions:', predictions)\n", - " print('labels: ', labels)\n", - "\n", - " # get a tensor of booleans, indicating if each label is close to the real label\n", - " is_prediction_correct = predictions.isclose(labels, atol=atol)\n", - "\n", - " # count the amount of `True` predictions\n", - " num_correct += is_prediction_correct.sum().item()\n", - " # count the total evaluations, the first dimension of `labels` is `batch_size`\n", - " total += labels.size(0)\n", - "\n", - " print(f\"num_correct: {num_correct}, total: {total}\")\n", - " accuracy = float(num_correct) / float(total)\n", - " return accuracy\n", - "\n", - "\n", - "accuracy = check_accuracy(model, data_loader)\n", - "\n", - "print(f\"Test Accuracy of the model: {accuracy*100:.2f}%\")\n", - "\n", - "# デバッグ情報を追加して再度確認\n", - "for data, label in data_loader:\n", - " output = model(data)\n", - " label = label.view(-1) # ラベルの形状を修正\n", - " loss = loss_func(output, label)\n", - " print(f\"Data: {data}, Label: {label}, Output: {output}, Loss: {loss.item()}\")\n", - " break # 最初のバッチのみを確認\n" - ] - }, - { - "cell_type": "markdown", - "id": "66eae25d-cccc-412b-b968-1af7574794a3", - "metadata": {}, - "source": [ - "## Reload model" - ] - }, - { - "cell_type": "code", - "execution_count": 209, - "id": "8ce58b0f-714e-41b4-8e95-7b0be6080a8b", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Model loaded from trained_model.pth\n", - "predictions: tensor([0., 0., 1., 1.], requires_grad=True)\n", - "labels: tensor([0., 0., 1., 1.])\n", - "num_correct: 4, total: 4\n", - "Test Accuracy of the model: 100.00%\n" - ] - } - ], - "source": [ - "# 新しいモデルインスタンスの作成\n", - "loaded_model = Net()\n", - "\n", - "# モデルの読み込み\n", - "loaded_model.load_state_dict(torch.load(\"trained_model.pth\"))\n", - "print(\"Model loaded from trained_model.pth\")\n", - "\n", - "# モデルのテスト\n", - "accuracy = check_accuracy(model, data_loader)\n", - "print(f\"Test Accuracy of the model: {accuracy*100:.2f}%\")" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.9" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/community/QClass_2024/Submissions/HW4/Claudia_Zendejas-Morales_HW4_QClass2024.ipynb b/community/QClass_2024/Submissions/HW4/Claudia_Zendejas-Morales_HW4_QClass2024.ipynb index 9c42b335..94e4387b 100644 --- a/community/QClass_2024/Submissions/HW4/Claudia_Zendejas-Morales_HW4_QClass2024.ipynb +++ b/community/QClass_2024/Submissions/HW4/Claudia_Zendejas-Morales_HW4_QClass2024.ipynb @@ -3,7 +3,13 @@ { "cell_type": "markdown", "id": "d6348096-b55b-42d8-8bad-ba34ab9ff974", - "metadata": {}, + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, "source": [ "# QNN for the XOR Problem" ] @@ -68,7 +74,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 2, "id": "d63f72a0-29b1-43bb-a5ae-04a60c269581", "metadata": {}, "outputs": [ @@ -77,12 +83,12 @@ "output_type": "stream", "text": [ "--> Data for training:\n", - "tensor([[0., 0.],\n", - " [1., 1.],\n", + "tensor([[1., 0.],\n", " [0., 1.],\n", - " [1., 0.]])\n", + " [0., 0.],\n", + " [1., 1.]])\n", "--> Corresponding labels:\n", - "tensor([0., 0., 1., 1.])\n" + "tensor([1., 1., 0., 0.])\n" ] } ], @@ -112,7 +118,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "id": "dced17d8-bb8f-47c9-b185-c14ce043df01", "metadata": {}, "outputs": [ @@ -120,36 +126,56 @@ "name": "stdout", "output_type": "stream", "text": [ - "Opening: https://platform.classiq.io/circuit/9966091d-2f51-4a57-bda1-377af5a4c35e?version=0.42.1\n" + "Opening: https://platform.classiq.io/circuit/570ed46d-be34-442f-a2a5-1ee856e6606d?version=0.42.2\n" ] } ], "source": [ - "from classiq import synthesize, qfunc, QArray, H, RX, CRX, CRZ, Output, allocate, CInt, CReal, QBit, show\n", - "from classiq.qmod.quantum_function import create_model\n", "import numpy as np\n", "\n", + "from classiq import (\n", + " CRX,\n", + " CRZ,\n", + " RX,\n", + " CInt,\n", + " CReal,\n", + " H,\n", + " Output,\n", + " QArray,\n", + " QBit,\n", + " allocate,\n", + " qfunc,\n", + " show,\n", + " synthesize,\n", + ")\n", + "from classiq.qmod.quantum_function import create_model\n", + "\n", + "\n", "@qfunc\n", "def encoding(state0: CInt, state1: CInt, q: QArray[QBit]) -> None:\n", - " RX(theta=state0*np.pi, target=q[0])\n", - " RX(theta=state1*np.pi, target=q[1])\n", + " RX(theta=state0 * np.pi, target=q[0])\n", + " RX(theta=state1 * np.pi, target=q[1])\n", "\n", "\n", "@qfunc\n", "def mixing(theta: CReal, q: QArray[QBit]) -> None:\n", - " \n", - " #H(q[0]) # these three gates are equivalent to CRX,\n", - " #CRZ(theta, q[1], q[0]) # this option also works,\n", - " #H(q[0]) # but takes more iterations\n", - " \n", + "\n", + " # H(q[0]) # these three gates are equivalent to CRX,\n", + " # CRZ(theta, q[1], q[0]) # this option also works,\n", + " # H(q[0]) # but takes more iterations\n", + "\n", " CRX(theta, q[1], q[0])\n", "\n", "\n", "@qfunc\n", - "def main(input_0: CInt, input_1: CInt, weight_0: CReal, res: Output[QArray[QBit]]) -> None:\n", + "def main(\n", + " input_0: CInt, input_1: CInt, weight_0: CReal, res: Output[QArray[QBit]]\n", + ") -> None:\n", " allocate(2, res)\n", - " encoding(state0=input_0, state1=input_1, q=res) # loading input (two values, four possible combinations): 00, 01, 10, 11 \n", - " mixing(theta=weight_0, q=res) # adjustable parameter (an angle)\n", + " encoding(\n", + " state0=input_0, state1=input_1, q=res\n", + " ) # loading input (two values, four possible combinations): 00, 01, 10, 11\n", + " mixing(theta=weight_0, q=res) # adjustable parameter (an angle)\n", "\n", "\n", "model = create_model(main)\n", @@ -176,16 +202,18 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "id": "c5a48c01-2236-47e2-b4b8-f5be40c42bce", "metadata": {}, "outputs": [], "source": [ "import torch\n", "\n", - "from classiq.applications.qnn.types import MultipleArguments, SavedResult, ResultsCollection\n", - "\n", - "\n", + "from classiq.applications.qnn.types import (\n", + " MultipleArguments,\n", + " ResultsCollection,\n", + " SavedResult,\n", + ")\n", "from classiq.execution import execute_qnn\n", "from classiq.synthesis import SerializedQuantumProgram\n", "\n", @@ -198,7 +226,7 @@ "\n", "# Post-process the result\n", "# This function validates if output is 01 or 11 then the result\n", - "# of the XOR operation is '1', and since we don't want the \n", + "# of the XOR operation is '1', and since we don't want the\n", "# other two (00, 10) we substract their probailities\n", "# The returning value will correspond to the XOR result, therefore\n", "# if we calculate a negative value, then we simply return a zero\n", @@ -208,10 +236,14 @@ " probability of measuring |01> + |11> - |00> - |10>\n", " \"\"\"\n", " counts: dict = result.value.counts\n", - " xor_result: float = counts.get(\"01\", 0.0) / sum(counts.values()) + counts.get(\"11\", 0.0) / sum(counts.values()) \\\n", - " - counts.get(\"00\", 0.0) / sum(counts.values()) - counts.get(\"10\", 0.0) / sum(counts.values())\n", - " \n", - " return torch.tensor(0.0 if xor_result < 0 else xor_result)\n" + " xor_result: float = (\n", + " counts.get(\"01\", 0.0) / sum(counts.values())\n", + " + counts.get(\"11\", 0.0) / sum(counts.values())\n", + " - counts.get(\"00\", 0.0) / sum(counts.values())\n", + " - counts.get(\"10\", 0.0) / sum(counts.values())\n", + " )\n", + "\n", + " return torch.tensor(0.0 if xor_result < 0 else xor_result)" ] }, { @@ -230,7 +262,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "id": "55ee6c51-771b-4f31-ae66-c4e1ab8f52e7", "metadata": {}, "outputs": [], @@ -255,7 +287,7 @@ " *args,\n", " **kwargs\n", " )\n", - " #self.qlayer.weight.data.\n", + " # self.qlayer.weight.data.\n", "\n", " def forward(self, x: torch.Tensor) -> torch.Tensor:\n", " # return the new parameter\n", @@ -279,23 +311,24 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "id": "bb37c29f-81a2-4408-b883-73e43378d495", "metadata": {}, "outputs": [], "source": [ - "from classiq.applications.qnn.datasets import DATALOADER_XOR\n", "import torch.nn as nn\n", "import torch.optim as optim\n", "\n", + "from classiq.applications.qnn.datasets import DATALOADER_XOR\n", + "\n", "_LEARNING_RATE = 1\n", "\n", "# choosing our data\n", - "data_loader = DATALOADER_XOR # Dataset to train the XOR operation\n", + "data_loader = DATALOADER_XOR # Dataset to train the XOR operation\n", "# choosing our loss function\n", - "loss_func = nn.L1Loss() # Mean Absolute Error (MAE)\n", + "loss_func = nn.L1Loss() # Mean Absolute Error (MAE)\n", "# choosing our optimizer\n", - "optimizer = optim.SGD(model.parameters(), lr=_LEARNING_RATE)\n" + "optimizer = optim.SGD(model.parameters(), lr=_LEARNING_RATE)" ] }, { @@ -312,7 +345,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 7, "id": "2103a0ae-1ff8-4402-aeb4-c24e69e401f6", "metadata": {}, "outputs": [ @@ -321,85 +354,125 @@ "output_type": "stream", "text": [ "0 Parameter containing:\n", - "tensor([0.7793], requires_grad=True)\n", + "tensor([0.9503], requires_grad=True)\n", "label: tensor([1., 1., 0., 0.])\n", - "output: tensor([1.0000, 0.0000, 0.7061, 0.0000], grad_fn=)\n", + "output: tensor([1.0000, 0.0000, 0.5645, 0.0000], grad_fn=)\n", "1 Parameter containing:\n", - "tensor([0.9746], requires_grad=True)\n", + "tensor([0.3521], requires_grad=True)\n", "label: tensor([1., 0., 0., 1.])\n", - "output: tensor([1.0000, 0.0000, 0.5762, 0.0000], grad_fn=)\n", + "output: tensor([1.0000, 0.0000, 0.9404, 0.0000], grad_fn=)\n", "2 Parameter containing:\n", - "tensor([1.0357], requires_grad=True)\n", - "label: tensor([0., 1., 1., 0.])\n", - "output: tensor([0.5244, 1.0000, 0.0000, 0.0000], grad_fn=)\n", + "tensor([0.1812], requires_grad=True)\n", + "label: tensor([1., 1., 0., 0.])\n", + "output: tensor([1.0000, 0.0000, 0.9824, 0.0000], grad_fn=)\n", "3 Parameter containing:\n", - "tensor([0.5840], requires_grad=True)\n", - "label: tensor([1., 0., 1., 0.])\n", - "output: tensor([0.0000, 0.8242, 1.0000, 0.0000], grad_fn=)\n", + "tensor([0.1202], requires_grad=True)\n", + "label: tensor([0., 0., 1., 1.])\n", + "output: tensor([0.0000, 0.9922, 1.0000, 0.0000], grad_fn=)\n", "4 Parameter containing:\n", - "tensor([0.6450], requires_grad=True)\n", - "label: tensor([0., 1., 1., 0.])\n", - "output: tensor([0.0000, 0.0000, 1.0000, 0.7949], grad_fn=)\n", + "tensor([0.1202], requires_grad=True)\n", + "label: tensor([1., 1., 0., 0.])\n", + "output: tensor([1.0000, 0.0000, 0.9961, 0.0000], grad_fn=)\n", "5 Parameter containing:\n", - "tensor([1.0235], requires_grad=True)\n", - "label: tensor([0., 0., 1., 1.])\n", - "output: tensor([0.0000, 0.4824, 1.0000, 0.0000], grad_fn=)\n", + "tensor([0.1080], requires_grad=True)\n", + "label: tensor([0., 1., 1., 0.])\n", + "output: tensor([0.0000, 0.0000, 1.0000, 0.9951], grad_fn=)\n", "6 Parameter containing:\n", - "tensor([1.4507], requires_grad=True)\n", + "tensor([0.1446], requires_grad=True)\n", "label: tensor([1., 0., 1., 0.])\n", - "output: tensor([0.0000, 0.0869, 1.0000, 0.0000], grad_fn=)\n", + "output: tensor([0.0000, 0.0000, 1.0000, 0.9922], grad_fn=)\n", "7 Parameter containing:\n", - "tensor([1.6094], requires_grad=True)\n", + "tensor([0.2179], requires_grad=True)\n", "label: tensor([1., 0., 0., 1.])\n", - "output: tensor([0.0684, 0.0000, 0.0000, 1.0000], grad_fn=)\n", + "output: tensor([0.0000, 0.9775, 0.0000, 1.0000], grad_fn=)\n", "8 Parameter containing:\n", - "tensor([2.5249], requires_grad=True)\n", - "label: tensor([0., 1., 0., 1.])\n", - "output: tensor([0.0000, 0.8057, 0.0000, 1.0000], grad_fn=)\n", + "tensor([0.3033], requires_grad=True)\n", + "label: tensor([1., 0., 0., 1.])\n", + "output: tensor([1.0000, 0.9600, 0.0000, 0.0000], grad_fn=)\n", "9 Parameter containing:\n", - "tensor([2.7935], requires_grad=True)\n", - "label: tensor([1., 0., 1., 0.])\n", - "output: tensor([1.0000, 0.0000, 0.9453, 0.0000], grad_fn=)\n", + "tensor([0.5230], requires_grad=True)\n", + "label: tensor([1., 0., 0., 1.])\n", + "output: tensor([1.0000, 0.0000, 0.8643, 0.0000], grad_fn=)\n", "10 Parameter containing:\n", - "tensor([2.8545], requires_grad=True)\n", - "label: tensor([0., 1., 1., 0.])\n", - "output: tensor([0.0000, 0.9473, 1.0000, 0.0000], grad_fn=)\n", + "tensor([0.2423], requires_grad=True)\n", + "label: tensor([1., 0., 0., 1.])\n", + "output: tensor([1.0000, 0.0000, 0.9766, 0.0000], grad_fn=)\n", "11 Parameter containing:\n", - "tensor([3.0742], requires_grad=True)\n", - "label: tensor([0., 1., 0., 1.])\n", - "output: tensor([0.0000, 1.0000, 0.0000, 0.9990], grad_fn=)\n", + "tensor([0.1446], requires_grad=True)\n", + "label: tensor([1., 1., 0., 0.])\n", + "output: tensor([1.0000, 0.0000, 0.0000, 0.9922], grad_fn=)\n", "12 Parameter containing:\n", - "tensor([3.1231], requires_grad=True)\n", + "tensor([0.2179], requires_grad=True)\n", "label: tensor([1., 1., 0., 0.])\n", - "output: tensor([1.0000, 0.9990, 0.0000, 0.0000], grad_fn=)\n", + "output: tensor([1.0000, 0.0000, 0.0000, 0.9834], grad_fn=)\n", "13 Parameter containing:\n", - "tensor([3.1353], requires_grad=True)\n", + "tensor([0.3155], requires_grad=True)\n", "label: tensor([1., 0., 1., 0.])\n", - "output: tensor([1., 0., 1., 0.], grad_fn=)\n", + "output: tensor([0.0000, 0.0000, 1.0000, 0.9639], grad_fn=)\n", "14 Parameter containing:\n", - "tensor([3.1353], requires_grad=True)\n", - "label: tensor([1., 0., 0., 1.])\n", - "output: tensor([1., 0., 0., 1.], grad_fn=)\n", + "tensor([0.4620], requires_grad=True)\n", + "label: tensor([1., 1., 0., 0.])\n", + "output: tensor([0.0000, 1.0000, 0.0000, 0.9043], grad_fn=)\n", "15 Parameter containing:\n", - "tensor([3.1353], requires_grad=True)\n", + "tensor([0.6817], requires_grad=True)\n", "label: tensor([0., 0., 1., 1.])\n", - "output: tensor([0., 0., 1., 1.], grad_fn=)\n", + "output: tensor([0.0000, 0.7734, 1.0000, 0.0000], grad_fn=)\n", "16 Parameter containing:\n", - "tensor([3.1353], requires_grad=True)\n", - "label: tensor([0., 0., 1., 1.])\n", - "output: tensor([0., 0., 1., 1.], grad_fn=)\n", + "tensor([1.1456], requires_grad=True)\n", + "label: tensor([1., 0., 0., 1.])\n", + "output: tensor([0.0000, 0.0000, 0.3936, 1.0000], grad_fn=)\n", "17 Parameter containing:\n", - "tensor([3.1353], requires_grad=True)\n", - "label: tensor([0., 0., 1., 1.])\n", - "output: tensor([0., 0., 1., 1.], grad_fn=)\n", + "tensor([0.4864], requires_grad=True)\n", + "label: tensor([0., 1., 0., 1.])\n", + "output: tensor([0.8896, 1.0000, 0.0000, 0.0000], grad_fn=)\n", "18 Parameter containing:\n", - "tensor([3.1353], requires_grad=True)\n", - "label: tensor([1., 0., 1., 0.])\n", - "output: tensor([1., 0., 1., 0.], grad_fn=)\n", + "tensor([0.5841], requires_grad=True)\n", + "label: tensor([0., 1., 0., 1.])\n", + "output: tensor([0.8496, 0.0000, 0.0000, 1.0000], grad_fn=)\n", "19 Parameter containing:\n", - "tensor([3.1353], requires_grad=True)\n", + "tensor([0.5475], requires_grad=True)\n", + "label: tensor([1., 1., 0., 0.])\n", + "output: tensor([0.0000, 1.0000, 0.0000, 0.8682], grad_fn=)\n", + "20 Parameter containing:\n", + "tensor([0.7306], requires_grad=True)\n", "label: tensor([0., 1., 0., 1.])\n", - "output: tensor([0., 1., 0., 1.], grad_fn=)\n" + "output: tensor([0.0000, 1.0000, 0.7402, 0.0000], grad_fn=)\n", + "21 Parameter containing:\n", + "tensor([0.3766], requires_grad=True)\n", + "label: tensor([1., 1., 0., 0.])\n", + "output: tensor([1.0000, 0.0000, 0.9336, 0.0000], grad_fn=)\n", + "22 Parameter containing:\n", + "tensor([0.2179], requires_grad=True)\n", + "label: tensor([1., 0., 1., 0.])\n", + "output: tensor([0.0000, 0.9775, 1.0000, 0.0000], grad_fn=)\n", + "23 Parameter containing:\n", + "tensor([0.3033], requires_grad=True)\n", + "label: tensor([1., 0., 0., 1.])\n", + "output: tensor([0.0000, 0.9600, 0.0000, 1.0000], grad_fn=)\n", + "24 Parameter containing:\n", + "tensor([0.5230], requires_grad=True)\n", + "label: tensor([1., 0., 1., 0.])\n", + "output: tensor([1.0000, 0.0000, 0.0000, 0.8779], grad_fn=)\n", + "25 Parameter containing:\n", + "tensor([0.6817], requires_grad=True)\n", + "label: tensor([1., 1., 0., 0.])\n", + "output: tensor([1.0000, 0.0000, 0.0000, 0.8018], grad_fn=)\n", + "26 Parameter containing:\n", + "tensor([0.9503], requires_grad=True)\n", + "label: tensor([0., 1., 1., 0.])\n", + "output: tensor([0.0000, 0.0000, 1.0000, 0.6113], grad_fn=)\n", + "27 Parameter containing:\n", + "tensor([1.6095], requires_grad=True)\n", + "label: tensor([0., 1., 0., 1.])\n", + "output: tensor([0.0000, 0.0156, 0.0000, 1.0000], grad_fn=)\n", + "28 Parameter containing:\n", + "tensor([1.1578], requires_grad=True)\n", + "label: tensor([1., 1., 0., 0.])\n", + "output: tensor([1.0000, 0.0000, 0.0000, 0.4404], grad_fn=)\n", + "29 Parameter containing:\n", + "tensor([1.8170], requires_grad=True)\n", + "label: tensor([1., 1., 0., 0.])\n", + "output: tensor([0.2246, 1.0000, 0.0000, 0.0000], grad_fn=)\n" ] } ], @@ -414,7 +487,7 @@ " data_loader: DataLoader,\n", " loss_func: nn.modules.loss._Loss,\n", " optimizer: optim.Optimizer,\n", - " epoch: int = 20,\n", + " epoch: int = 1, # To achieve reasonable results, change the value to 20 or more\n", ") -> None:\n", " for index in range(epoch):\n", " print(index, model.qlayer.weight)\n", @@ -422,9 +495,11 @@ " optimizer.zero_grad()\n", "\n", " output = model(data)\n", - " \n", - " print('label:', label) # print the expected values along side with the calculated ones\n", - " print('output:', output)\n", + "\n", + " print(\n", + " \"label:\", label\n", + " ) # print the expected values along side with the calculated ones\n", + " print(\"output:\", output)\n", "\n", " loss = loss_func(output, label)\n", " loss.backward()\n", @@ -432,7 +507,7 @@ " optimizer.step()\n", "\n", "\n", - "train(model, data_loader, loss_func, optimizer)\n" + "train(model, data_loader, loss_func, optimizer)" ] }, { @@ -453,7 +528,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 8, "id": "f62cea58-dac5-4c72-a3af-b62536df8629", "metadata": {}, "outputs": [ @@ -461,9 +536,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "predictions: tensor([1., 0., 0., 1.], requires_grad=True)\n", - "labels: tensor([1., 0., 0., 1.])\n", - "Test Accuracy of the model: 100.00%\n" + "predictions: tensor([0.0000, 0.0000, 1.0000, 0.6318], requires_grad=True)\n", + "labels: tensor([0., 0., 1., 1.])\n", + "Test Accuracy of the model: 75.00%\n" ] } ], @@ -473,12 +548,12 @@ " total = 0\n", " model.eval()\n", "\n", - " with torch.no_grad(): # temporarily disable gradient calculation\n", + " with torch.no_grad(): # temporarily disable gradient calculation\n", " for data, labels in data_loader:\n", " # let the model predict\n", " predictions = model(data)\n", - " print('predictions:', predictions)\n", - " print('labels: ', labels)\n", + " print(\"predictions:\", predictions)\n", + " print(\"labels: \", labels)\n", "\n", " # get a tensor of booleans, indicating if each label is close to the real label\n", " is_prediction_correct = predictions.isclose(labels, atol=atol)\n", @@ -514,7 +589,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.14" + "version": "3.11.9" } }, "nbformat": 4, diff --git a/community/QClass_2024/Submissions/HW4/HW_4 - Bill Wisotsky.ipynb b/community/QClass_2024/Submissions/HW4/HW_4 - Bill Wisotsky.ipynb deleted file mode 100644 index 82e49adb..00000000 --- a/community/QClass_2024/Submissions/HW4/HW_4 - Bill Wisotsky.ipynb +++ /dev/null @@ -1,674 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Kidney Exchange QAOA Example\n", - "Used samples from Classiq github on QAOA and internet for pyomo models \n", - "Modified as needed for specfic problem and limitations based on account. \n", - "\n", - "What is the Problem? \n", - "Currently there are more than 100,000 patients on the waitling list in the United States for a kidney transplant from a deceased donor. This is addressed by the a program called the Kidney Exchange Program. This program won the Nobel Prize in Economics for Alvin E. Roth and Lloyd S. Shapley's contributions to the theory of stable matchings and the design of markets on 2012.\n", - "In summary, in a donor pair there is a recipient who needs a kidney transplant and a donor who is willing to give their kidney to the recipient. About $\\frac{1}{3}$ of those pairs are not compatible for a direct exchange. This is tackled by considering two incompatible pairs together: donor 1 may be compatible with recpient 2 and donor 2 may be compatible with recpient 1. In this example a two-way swap becomes feasible. This is the core of the kideny exchange program. \n", - "\n", - "This is consdered an NP-Hard combinatorial optimization problem that becomes exponetially more difficult as the size of the pool increases. The longest chain in history involved 35 tranplants in the United States in 2015." - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [], - "source": [ - "import classiq\n", - "from classiq import *\n", - "\n", - "from pyomo.environ import *\n", - "from itertools import product\n", - "\n", - "\n", - "import matplotlib.pyplot as plt\n", - "import networkx as nx # noqa\n", - "import numpy as np\n", - "import pandas as pd\n", - "import io\n", - "import sys\n", - "import time\n", - "from contextlib import redirect_stdout\n", - "from typing import List, Tuple, cast # noqa\n", - "\n", - "import pyomo.environ as pyo\n", - "from IPython.display import Markdown, display\n", - "\n", - "import warnings\n", - "warnings.filterwarnings(\"ignore\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Create the pyomo model for a simple kidney exhange problem \n", - "\n", - "In this very simple example, patients and donors represent sets of patients that receive a kidney from a donor. Compatibility is a dictionary mapping of patient-donor paris to their compatibilty scores. Binary decision variables are defined for each patient-donor pair x[donor,patient]. The objective is to maximize the total compatibility score. $ Maximize \\sum_{d,p\\in A}^{} \\sum_{m\\in M}c_{dp}x_{dpm}$ where d=donors, p=patients and c=compatability score. The contraints are added to ensure that each donor donates only once $\\sum_{d,p\\in A}^{}x_{dpm} = y_{dm}$ and each patient receives once $\\sum_{d,p\\in A}^{}x_{dpm} = y_{pm}$. We are creating a PYOMO model that gets fed into Classiq, as illustrated in Classiq documentation. We also solve initially with a classical solver to get inital results which can be compared to the QAOA results in the end." - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[1m\u001b[4mOptimal solution:\u001b[0m\n", - "donor1 donates kidney to patient1\n", - "donor2 donates kidney to patient3\n", - "donor3 donates kidney to patient2\n", - "\n", - "\u001b[1m\u001b[4mModel Details\u001b[0m\n", - "5 Set Declarations\n", - " donor_constraint_index : Size=1, Index=None, Ordered=Insertion\n", - " Key : Dimen : Domain : Size : Members\n", - " None : 1 : Any : 3 : {1, 2, 3}\n", - " patient_constraint_index : Size=1, Index=None, Ordered=Insertion\n", - " Key : Dimen : Domain : Size : Members\n", - " None : 1 : Any : 3 : {1, 2, 3}\n", - " x_index : Size=1, Index=None, Ordered=True\n", - " Key : Dimen : Domain : Size : Members\n", - " None : 2 : x_index_0*x_index_1 : 9 : {('donor1', 'patient1'), ('donor1', 'patient2'), ('donor1', 'patient3'), ('donor2', 'patient1'), ('donor2', 'patient2'), ('donor2', 'patient3'), ('donor3', 'patient1'), ('donor3', 'patient2'), ('donor3', 'patient3')}\n", - " x_index_0 : Size=1, Index=None, Ordered=Insertion\n", - " Key : Dimen : Domain : Size : Members\n", - " None : 1 : Any : 3 : {'donor1', 'donor2', 'donor3'}\n", - " x_index_1 : Size=1, Index=None, Ordered=Insertion\n", - " Key : Dimen : Domain : Size : Members\n", - " None : 1 : Any : 3 : {'patient1', 'patient2', 'patient3'}\n", - "\n", - "1 Var Declarations\n", - " x : Size=9, Index=x_index\n", - " Key : Lower : Value : Upper : Fixed : Stale : Domain\n", - " ('donor1', 'patient1') : 0 : 1.0 : 1 : False : False : Binary\n", - " ('donor1', 'patient2') : 0 : 0.0 : 1 : False : False : Binary\n", - " ('donor1', 'patient3') : 0 : 0.0 : 1 : False : False : Binary\n", - " ('donor2', 'patient1') : 0 : 0.0 : 1 : False : False : Binary\n", - " ('donor2', 'patient2') : 0 : 0.0 : 1 : False : False : Binary\n", - " ('donor2', 'patient3') : 0 : 1.0 : 1 : False : False : Binary\n", - " ('donor3', 'patient1') : 0 : 0.0 : 1 : False : False : Binary\n", - " ('donor3', 'patient2') : 0 : 1.0 : 1 : False : False : Binary\n", - " ('donor3', 'patient3') : 0 : 0.0 : 1 : False : False : Binary\n", - "\n", - "1 Objective Declarations\n", - " obj : Size=1, Index=None, Active=True\n", - " Key : Active : Sense : Expression\n", - " None : True : maximize : 0.9*x[donor1,patient1] + 0.7*x[donor1,patient2] + 0.6*x[donor1,patient3] + 0.8*x[donor2,patient1] + 0.75*x[donor2,patient2] + 0.65*x[donor2,patient3] + 0.85*x[donor3,patient1] + 0.8*x[donor3,patient2] + 0.7*x[donor3,patient3]\n", - "\n", - "2 Constraint Declarations\n", - " donor_constraint : Size=3, Index=donor_constraint_index, Active=True\n", - " Key : Lower : Body : Upper : Active\n", - " 1 : -Inf : x[donor1,patient1] + x[donor1,patient2] + x[donor1,patient3] : 1.0 : True\n", - " 2 : -Inf : x[donor2,patient1] + x[donor2,patient2] + x[donor2,patient3] : 1.0 : True\n", - " 3 : -Inf : x[donor3,patient1] + x[donor3,patient2] + x[donor3,patient3] : 1.0 : True\n", - " patient_constraint : Size=3, Index=patient_constraint_index, Active=True\n", - " Key : Lower : Body : Upper : Active\n", - " 1 : -Inf : x[donor1,patient1] + x[donor2,patient1] + x[donor3,patient1] : 1.0 : True\n", - " 2 : -Inf : x[donor1,patient2] + x[donor2,patient2] + x[donor3,patient2] : 1.0 : True\n", - " 3 : -Inf : x[donor1,patient3] + x[donor2,patient3] + x[donor3,patient3] : 1.0 : True\n", - "\n", - "9 Declarations: x_index_0 x_index_1 x_index x obj donor_constraint_index donor_constraint patient_constraint_index patient_constraint\n" - ] - } - ], - "source": [ - "from pyomo.environ import *\n", - "\n", - "# Sample data: patient-donor pairs and compatibility scores\n", - "donors = ['donor1', 'donor2', 'donor3']\n", - "patients = ['patient1', 'patient2', 'patient3']\n", - "N=len(patients)\n", - "M=len(donors)\n", - "# Parameters\n", - "compatibility_scores = {\n", - " ('donor1', 'patient1'): 0.9,\n", - " ('donor1', 'patient2'): 0.7,\n", - " ('donor1', 'patient3'): 0.6,\n", - " ('donor2', 'patient1'): 0.8,\n", - " ('donor2', 'patient2'): 0.75,\n", - " ('donor2', 'patient3'): 0.65,\n", - " ('donor3', 'patient1'): 0.85,\n", - " ('donor3', 'patient2'): 0.8,\n", - " ('donor3', 'patient3'): 0.7,\n", - "}\n", - "\n", - "# Create Pyomo model\n", - "model = ConcreteModel()\n", - "\n", - "# Variables\n", - "model.x = Var(donors, patients, within=Binary)\n", - "\n", - "# Objective\n", - "model.obj = Objective(expr=sum(compatibility_scores[donor, patient] * model.x[donor, patient]\n", - " for donor in donors\n", - " for patient in patients),\n", - " sense=maximize)\n", - "\n", - "# Constraints\n", - "model.donor_constraint = ConstraintList()\n", - "for donor in donors:\n", - " model.donor_constraint.add(sum(model.x[donor, patient] for patient in patients) <= 1)\n", - "\n", - "model.patient_constraint = ConstraintList()\n", - "for patient in patients:\n", - " model.patient_constraint.add(sum(model.x[donor, patient] for donor in donors) <= 1)\n", - "\n", - "\n", - "\n", - "# Solve\n", - "solver = SolverFactory('glpk')\n", - "solver.solve(model)\n", - "\n", - "# Output\n", - "print(\"\\033[1m\\033[4mOptimal solution:\\033[0m\")\n", - "for donor in donors:\n", - " for patient in patients:\n", - " if model.x[donor, patient].value == 1:\n", - " print(f\"{donor} donates kidney to {patient}\")\n", - "\n", - "print(\"\\n\\033[1m\\033[4mModel Details\\033[0m\")\n", - "model.pprint()\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Start Generatng the QAOA Process\n", - " \n", - "### Create the inital parameters for the quantum circuit. These can me modified as needed.\n", - "1. Defining the number of layers (num_layers) of the QAOA Ansatz. \n", - "2. Define the penalty_energy for invalid solutions, which influences the convergence rate. Smaller positive values are preferred, but shoudl be tweaked. \n" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [], - "source": [ - "from classiq import (\n", - " Preferences,\n", - " construct_combinatorial_optimization_model,\n", - " set_preferences,\n", - ")\n", - "from classiq.applications.combinatorial_optimization import OptimizerConfig, QAOAConfig\n", - "\n", - "qaoa_config = QAOAConfig(num_layers=5, penalty_energy=2)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Create the classical optimizer part of the QAOA. These parameters can be modified.\n", - "1. opt_type is the classical optimizer type. Choices include, COBYLA, SPSA, ADAM, L_BFGS_B, and NELDER_MEAD\n", - "2. The max_iterations is the maximum number of optimzer iterations and is set to 100. \n", - "3. The alpha_cvar is a parameter that describes the quantile considered in the CVAR expectation value. See https://arxiv.org/abs/1907.04769 for more information." - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [], - "source": [ - "optimizer_config = OptimizerConfig(\n", - " #opt_type='COBYLA',\n", - " max_iteration=200,\n", - " alpha_cvar=1,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Combine everthing together to form the entire QAOA model as a QMOD.\n", - "1. PYOMO Model \n", - "2. QAOA quantum circuit \n", - "3. Clasical optimizer " - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [], - "source": [ - "qmod = construct_combinatorial_optimization_model(\n", - " pyo_model=model,\n", - " qaoa_config=qaoa_config,\n", - " optimizer_config=optimizer_config,\n", - ")\n", - "\n", - "# defining cosntraint such as computer and parameters for a quicker and more optimized circuit.\n", - "preferences = Preferences(transpilation_option=\"none\", timeout_seconds=3000)\n", - "\n", - "qmod = set_preferences(qmod, preferences)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "1. Wite out the QMOD and preferences to a JSON file \n", - "2. Synthesize the model in Classiq interface \n", - " " - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [], - "source": [ - "from classiq import write_qmod\n", - "write_qmod(qmod, \"Kidney Exchange\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "1. Sythesize the quantum model\n", - "2. Show the quantm model in the Classiq platform" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [], - "source": [ - "from classiq import show, synthesize\n", - "qmod = set_constraints(qmod,Constraints(optimization_parameter='width'))\n", - "qprog = synthesize(qmod)\n", - "#show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Execute the quantum model and store the result." - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [], - "source": [ - "from classiq import execute\n", - "res = execute(qprog).result()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "View the convergence graph \n", - "Important to remember that this is a maximization problem when looking at the graph" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [ - { - "data": { - "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQgJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAHgAoADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA5vxR4jvdDuNJtNP0uO/utSuGgRJLnyFXajOSW2N2U9qm07VNVEN3c+IdNstJtoE3+cuoecuBncWJRAoAHWud+IdtBd654Qt7m4lggfUJQ8sU7Qsv7hzw6kEfnSeINM0/Tfh74sFhqN1eeZpk28XOoSXW3EbYxvY7ep6dePSgDr7fW9KvL5rK11Synu0Xe0EVwjSKvqVBzjkUXeu6TYXkVneapY211Ljy4ZrhEd8+ik5NcJeaTp+j2vw9nsLOGCddQhh85EAdkktpd4J6ncQCc9TWBaafcanN4ttL/AFHwzbzy6hcLcpqlmXuFjJ/dsHMq/Js27SBgY9c0AeuXer6bpz7L7ULW1YxmXE8yodgIBbk9ASBn3FRyeINGia0Eur2EZu1D2we5QGdT0KZPzA+1cHDo1tc+OPB1rqE8Gqi10GV1uGUMkzAxKJMHIOQcjr60tivhyPxb40j8SLYo6GFY1uwoAshCu0Rg/wAOd+dvf3oA9Ag1bTrk2wg1G0lN0HNv5cyt5oThiuD82O+OlTC8tjfPZLcRG6WMStAHG8ISQGK9cEgjPtXkmixG0+DfhjxFArmbQ52vDx87QGV0mX/v2zH6qK7HwFjVZNZ8VMQRq12Vtj/07Q5jj/Mh2/4FQB1F9qNlpdsbnUL23tIBwZbiVY1B+pIFRrrGmPpp1FNStGsAMm6E6mID135x+tcd4h+w/wDC09E/t7yP7M/s+f7F9px5X2vemevG7y+mffFV/F39h/bPCufsP/CO/wBrP9s8vZ5PneU3l+Zjj7+M574zQB29trGmXenyahbajaT2UYZnuYplaNQBkksDgYHWm22u6Re3v2K11Wxnutok8iK4Rn2kZDbQc4wQc15vqf2L+2fHv9heT/Z3/COH7Z9mx5X2rbLjpxu8vGce2anl0mw0rwz8PbixtIYLgahZKZkQB2EkbCTLdTuyc+tAHpNvfWt1DJNb3UMsUbMjvHIGVWU4YEjoQQQR2qvNrukW2mxajPqtjFYygGO5kuEWJwemGJwfzrzXxLdz6DqfiXwvatsl8SvDLp2P4XnIhuD+GN//AAKpfEFlJZfETSNPgn0qzs7fRhDp39rW5mi3q+HCfOoEmwR++PxoA9JOq6etlHfNfWotJSqxz+cvluWOFAbODknA9TUJ8RaGbKa9/tmw+yQSeVLP9qTy434+VmzgHkcH1ry7VtDitvh/qdm+qadfW93r1qzx6amyG3Lyxb41G5tvXdjP8XvXQ+JLPSLHxv4RhvLa0t9GAutiNGqQfadiCPcPu52h9ufwoA7ez1Sw1BnFle21yUVXbyJlfarZKk4PAODj1xTLPXNI1K6ltbHVLK6uIv8AWRQXCO6fUA5FeR3fkeX8Vf8AhFtuPs9rj7J93Ox/N2Y/4HnHfPetXStJS71Hw1e2+v8AhSGK1mD2q6ZZmGWZChDRAmU5BU8jGcj2oA9Bl8SaHDKsUms6fHK0rQBHuUBMinBTGfvAkZHWreoanYaVbfadRvbazgzjzLiVY1z6ZYgV5dYaJpl14T+I11cWUE1xJqOpAyyIGYBQSoBPTByRjuc1YtJrS48YeFpvEbQvbSeG0eya8IMZuiVMpG7jfs2++M0AejjVtNbTf7RGoWhscbvtQmXysdM784/WnWGp2Oq2wudPvba7gJx5lvKsi59MqSK848dC2Nz4UGmz6PDo32+fzZJoRLZrcbDs3qjKM7t+Mn72M1seDtIez8UarenWdEuJLm3iWaz0qHylVlLbZGXe3JBIzxnHtQB3dFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFNfIRiDg4oAdRXD+GdN1rWPCuk6nceMNYSa8s4bh1jhs9oZ0DEDMBOMn1rU/4RrVv+h01z/vzZ/wDxigDpKK5v/hGtW/6HTXP+/Nn/APGKP+Ea1b/odNc/782f/wAYoA6Siub/AOEa1b/odNc/782f/wAYo/4RrVv+h01z/vzZ/wDxigDpKK5v/hGtW/6HTXP+/Nn/APGKP+Ea1b/odNc/782f/wAYoA6Siub/AOEa1b/odNc/782f/wAYo/4RrVv+h01z/vzZ/wDxigDpKK5v/hGtW/6HTXP+/Nn/APGKP+Ea1b/odNc/782f/wAYoA6Siub/AOEa1b/odNc/782f/wAYo/4RrVv+h01z/vzZ/wDxigDpKK5v/hGtW/6HTXP+/Nn/APGKP+Ea1b/odNc/782f/wAYoA6Siub/AOEa1b/odNc/782f/wAYo/4RrVv+h01z/vzZ/wDxigDpKK5v/hGtW/6HTXP+/Nn/APGKP+Ea1b/odNc/782f/wAYoA1dR0fTNYiSPVNOtL6NDuRLqBZQp9QGBwaq2nhfw/YQ3ENnoWmW8VynlzpFaRoJU/usAPmHJ4NVP+Ea1b/odNc/782f/wAYo/4RrVv+h01z/vzZ/wDxigDZlsbSVbfzLaB1tnEkAaMERMAQGX+6QCRkdiar3+g6NqlwlxqGkWF5NGMJJcWySMv0JBIrO/4RrVv+h01z/vzZ/wDxij/hGtW/6HTXP+/Nn/8AGKANlbG0FzFci1gFxFGYo5fLG5EOMqD1A4HHsK5nxPo2t6hqUc+nad4auBHGBBc6nEzTWz5OWXCkEdCBleau/wDCNat/0Omuf9+bP/4xR/wjWrf9Dprn/fmz/wDjFAGfP4Y1Sw8AW3hfQbi0JMDWtxd3hYFVYHfIqqDliSSASBz1rqNM06DSdLtNOtl2wWsKQxj/AGVAA/lWP/wjWrf9Dprn/fmz/wDjFH/CNat/0Omuf9+bP/4xQBsX2nWOqWxttQsre7gJyYriJZFJ+hBFMXR9MTTTpyabaLYEYNqIFERHpsxj9Kyv+Ea1b/odNc/782f/AMYo/wCEa1b/AKHTXP8AvzZ//GKANO20fTLPTn062060gspAyvbRQqsbAjBBUDByOtSvp9nJDbxPaW7RWzK0CGJSsTLwpUY+UjtjpWP/AMI1q3/Q6a5/35s//jFH/CNat/0Omuf9+bP/AOMUAa82nWVzeW95PZW0t1bbvInkiVnizwdrEZXPfFLqGmWGq232fUbG2vIM58u4iWRc+uGBFY//AAjWrf8AQ6a5/wB+bP8A+MUf8I1q3/Q6a5/35s//AIxQBpLomkx2K2Mem2aWiuJFgW3URhgQQwXGMggHPtVPxLYX+o6YlvZ2WkX2ZAZbfVVYxOuD0wGwc46g96h/4RrVv+h01z/vzZ//ABij/hGtW/6HTXP+/Nn/APGKAK/g/wAN3WiSaje35she6g8e6GxQpBBHGu1I0BwTgZJOByelbFt4d0SyvmvbXR9Pgu2JJnitkWQ56/MBms//AIRrVv8AodNc/wC/Nn/8Yo/4RrVv+h01z/vzZ/8AxigDYj06yjhuIFsrdYblneeNYlCys33iwx8xPcnrUd1o+mXtglhd6bZ3FnGAEt5YFeNQBgYUjAwKy/8AhGtW/wCh01z/AL82f/xij/hGtW/6HTXP+/Nn/wDGKANZdK05dN/s1dPtRY42/ZRCvlY6424xj8KTTtH0zSI2j0zTrOyRjkrbQLGD9QoFZX/CNat/0Omuf9+bP/4xR/wjWrf9Dprn/fmz/wDjFAHSUVzf/CNat/0Omuf9+bP/AOMUf8I1q3/Q6a5/35s//jFAHSUVzf8AwjWrf9Dprn/fmz/+MUf8I1q3/Q6a5/35s/8A4xQB0lFc3/wjWrf9Dprn/fmz/wDjFH/CNat/0Omuf9+bP/4xQB0lFc3/AMI1q3/Q6a5/35s//jFH/CNat/0Omuf9+bP/AOMUAdJRXN/8I1q3/Q6a5/35s/8A4xR/wjWrf9Dprn/fmz/+MUAdJRXN/wDCNat/0Omuf9+bP/4xR/wjWrf9Dprn/fmz/wDjFAHSUVzf/CNat/0Omuf9+bP/AOMUf8I1q3/Q6a5/35s//jFAHSUVzf8AwjWrf9Dprn/fmz/+MUf8I1q3/Q6a5/35s/8A4xQB0lFc3/wjWrf9Dprn/fmz/wDjFH/CNat/0Omuf9+bP/4xQB0lFc3/AMI1q3/Q6a5/35s//jFI3hvVgpP/AAmuucD/AJ42f/xigDpaKw/CN5cal4N0S/vJTNc3NjBNLIQBudkBJwOBye1blABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABVPUJruCykksbVLm5BGyKSXylbkA5bBxgZPQ9KqaroNvq8sck91qcJRdoFnqE1uD9RGwBPuaqf2Quh2F01lbalq7TAI9tc6i8xZeQdvnuVHBOeRmgB2ha/canqOo6ZfWKWl9YeUZVhn8+NlkDFcPtU5+U5BUY49a3JGARskDg9TXI+D9GuNN1PU7mLSV0XS7hYhDpwkRiJRu3y4QlE3AoMKTnbk1uar4d0TWSsmqaPYX0kalUa5t0kKj0BYHFAFPwD/wAk78Nf9gu2/wDRS10Vc74B/wCSd+Gv+wXbf+ilroqACiiigAooooAKKKKACiiigAooqGWaKBN0sixqSBlyAMngCgCaiiigAooooAKKKYzKilmYKoGSScACgB9JUck8UUJmkkRIgMl2YBQPXNVr3VbLTrUXN5cxQwnADs3Bz6etCTewm0ty7S1SsdTstSjMlldQ3CA4JicNg+/pU8dzBO0iRTI7xHa6qwJQ+h9DQ01uCaexL2o7VFHNHKGMUiuASpKkHBHb61lat4o0nRpVhursec3SFFLv+Q6fjTjGUnZImU4xV29DaorJ0vxBp2r2r3FvOAIjiVZPkaP/AHgelTW+taXeTeTbalaTSnokc6sx/AGhxa0aBTi7NPcv9fSj8qy9T8Q6Xoy5vr2KJu0edzn/AICOar6d4u0LVJBFbajEZT0SQGMn2G4DP4VShNq6WgnUgnytq5uflR+VZUviTRIJDHLq1krr1UzrkfrSQ+JdFnWRotUtGEalnxKOAO9LklvYPaQ2ujWzQDXHnxZqN6pudI8P3F1YoSfPaQRmRR12KeTQPGVxqJ/4kmiXV4sYzcFyIth7oM9W9qv2FT+mvx7Gf1iHf8H+Hc7DP+c0Z/zmuTHinV5zvtPCl+0Sf6wzusTZ/wBlT96kfxnPb7J7zQL+1sMhXuJRgxk9yvXHvR7Gf9NB7eH9JnWg/X8qCfpXKzeLZLy4e08PWDalKvDzbtkEZ92PX6Cg33jKEZk0fTrj2huSn/oVL2Mutl6sPbx6Xfojqs+1LiuT/wCEg8QTHyIPC06XPdpp1ES++7+L6Cjd43j/AHxXRph3gUupH0Y9/rR7J9Wl8x+2XRN/I6yiuUHiDxLKPKh8LOk44ZpblRGp9Qf4h9KhbVPGGnn/AEnSrbUPOH7s2jlRGx6Bs9vf9afsZd196D20ez+5nY0VyCf8JxbqCW0q7MvJDBk8g+nH3gPzqTHje3G/fpF0Opjw6H6A9Pzo9l/eX3h7b+6/uOrxRiuT87xrdnzEtdLsVHSKd2kY/UrxilN342P7kadpYc/8vHnN5Y/4D96l7J9194e2X8r+46uiuV/svxg37xvENojf88kswU/M80f2V4ul4fxHbwj1islY/rT9mv5l+P8AkL2sv5H+H+Z1VFcoNB8Sr8yeLXLd99khH5Z4o/sXxUnKeKlkJ6iSwQAe4waPZx/nX4/5D9pL+R/h/mdTyV70che9cmbTxjpzZt9QtNVST7y3MfkmM+o29R7U/wDsrxZdDddeIbe1B6x2lqGA+jNzR7NfzL8f8he1f8rv8v8AOx1dFcp/wj3iKP5YPFkwQ9fMtUdvwJNJ/YvimP8AdQ+JlaJusktopkT6ev40ezj/ADr8f8h+0l/I/wAP8zrKK5X/AIR7xGv+r8Wzj/ftEb+tIdA8SR/vY/FUrTDtJarsP4Z4o9nH+dfj/kHtJ/yP8P8AM6uiuUHh7XpvmuvFNyG7i3gWNRR/wi2p/wDQ06n+YpckP5l+P+Qe0n/I/wAP8zquaOa5X/hGNS/6GrU//HaP+Ea1c/e8WX/HTESD8/Wj2cP5vzD2s/5PxX+Z1W36flRiuW/4RjWG/wBZ4rvjjpsiVfz9a29Ms7iysxDc30l7ICT5sigHHpxUyjFLSV/vKjKTesbfcaFNf7jfQ06mv9xvoak1Of8AAP8AyTvw1/2C7b/0UtdFXO+Af+Sd+Gv+wXbf+ilroqACiiigAooooAKKKKACiiigAooooAKKKKACiiigApr/AHG+hp1Nf7jfQ0Ac/wCAf+Sd+Gv+wXbf+ilroq53wD/yTvw1/wBgu2/9FLXRUAFFFFABRRRQAUUUUAFFFFACVwPxRvGi0qytYSfMecy8eiLk/wDoQP4V0fijXT4f0ZrxIhNKZFjjjJwGJP8AgDXKX1xD4s1kvbndDHo0si/7MkmVx9R/SunDxcZKo1ojjxM04uknqzU8WGPWP+Ef08kiK9uVlcBiCUVckZHs1P8AC0f9l63rOh73aKFkuLfexY7HHIyfQisvQp/7U1nwuuc/Y9KeU/U/uv6Vr6r/AMS3xzo1+DiO8R7GU+/3k/M/yrSSsvZeT++/+SM4u79t5r7rL9Wamr+IdO0HyP7QuPKE2Qh2k9MZJx9R+dR3viTTrXRJNVSeOe3UYQRMDvfso9/5VnTquofEa3iYBo7KwaQgjI3OduPyq0fBmjDVo9RjtvKkjbf5SHETP2Yr6j2xWHLTilzXvub81WTfLa23/BMO68TapqcS6JFp09hrN0QrFvuxxEZMgb6fkfent4f8Q3DJoV5d+boine11uxK6DpEec9e/p37V3WF/HGKOMYp+2t8EUv8AMXsOb45N/wCRwcPhfV5blNEvZd/h+3fzVfd88q/wxHnOAc/5xjYtPA+j2V4LgJNOqZ8mGeTfHDnrtB/rmulA9hQRUyrzfWxUcPTXS/qcTrml3+h366t4cslZp0MNxaxrhST9yTA9D1/+uTT7bwBaraRGW7u475gftM9vMVMxY5YH25rsc/KPmpwNP20kkkHsINtv7uxyEnglrSUHQdRl0yOQBJ0XLhx/eGTw3v8A5Ozo/h7T9EjP2SEmZ/8AWTyfNJIfdv8AIrYpKiVWUlZsqNKEXdIwdR8JaPqt8t7d2m6YDDbWKiT03AdcUXHhDQLqDym0m3jHZoU8th+K4NbuKWhVZq2r0G6VN3vFamLpfhbSNIYSW1mhmznzpPnfPrk9PwqxqWh6bq8ey/s4p/RmGGH0Ycj860qMUnOTd76jVOKXLbQyIPDOhwRqsekWfHdoVY/mRmmXfhXQ70J52l23ycgomz/0HGR7Vs/lR+VHtJ3vdh7OFrWQ1I1jRURQqqMKqjAA9KeAB0paKk0Co5I0mjaORVdGGGVhkEehFSUUAV7W0t7KBYLWCOCJeiRqFA/AVOaWkobuJK2wtFFFAwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmv9xvoadTX+430NAHP+Af8Aknfhr/sF23/opa6Kud8A/wDJO/DX/YLtv/RS10VABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU1/uN9DWZpGv6Zrv2s6bdi4FrObeYqrAK4AOASBuGCDkZHPWtN/uN9DQBz/gH/AJJ34a/7Bdt/6KWuirnfAP8AyTvw1/2C7b/0UtdFQAUUUUAFFFFABRRRQAUUUUAclr5+3+LfD2ndUjd7yQemwfIfzzVrQfC9toOoalcQtuS7YFYtuBEoySo9Rk/oKq6T/p/jnWL7OY7SNLKM+/3n/I/zrq++a2qTlFKC7a/mctOEZydR93b8jzb4b2jx6zqwk5Fkv2VM9gZGYj8xXVeMrB7/AMN3BhyLi2IuYSOoZOePfGR+NW9M0W20m5v54GYtezmZ92OCew9sk/nWmwBBBGQadWtzVfaLyClQ5aPs35nGeCboazqWs65tKrO0UKA/w7UGR+ZFdqKy9D0W00Gxa1tN3ltI0h3HJyf8AAPwrUzxWdWSlNuOxpRi4wSluLRRRUGwUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU1/uN9DTqa/3G+hoA5/wD/yTvw1/2C7b/wBFLXRVzvgH/knfhr/sF23/AKKWuioAKKKKACiiigAooooAKKKKACiiigAooooAyNUi16SRDpF7ptugX5hd2ckxJ9isqYH4GsbVLLxncaNc2q3ek3E0zop8iOWzIiyfMActLhiMAEDjJPXFdhRQBwHgAX8Ou+KLefS7OxgjvIlCW10ZBGwtoQEUeWuV2gHPHPGOM11OrQa5KVOlahYWyBDvW6snnLH2Kypj8jWtTX+430NAHP8AgH/knfhr/sF23/opa6Kud8A/8k78Nf8AYLtv/RS10VABRRRQAUUUUAFFFFACVXvLpLKznupT+7hjaRvoBmrBrlvG08ktja6NA2J9TlEOR1WMcu34DH51UI8zSM6kuSLkP8D2zxeGo7mb/X3sj3ch9S54P5YrpSOtRwQpbW8cEQ2pGgRR6ADAqXNE5c0nIKceSKj2FoooqTQKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApr/cb6GnU1/uN9DQBz/gH/AJJ34a/7Bdt/6KWuirnfAP8AyTvw1/2C7b/0UtdFQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNf7jfQ06mv8Acb6GgDn/AAD/AMk78Nf9gu2/9FLXRVzvgH/knfhr/sF23/opa6KgBprkvCVy0uveJoGcsI73cATnGcj/ANlrrT1rz/wbPjx34nhz9+Vm/wC+ZCP/AGat6SvTn6L8zlqu1SHq/wAj0KiiisDqOY8V6lPbWsOnaef+JjqDeTDj+AfxP+A/zxTPA00h0F7G4ctPp9xJbOx6nByP0OPwqPSyNX8a6lqR+aDT1FlB6b+rn6jp9DTtK/0Hx3rNl0S8ijvIx9Plb8zXS1+7dN7rX+vkziTbqKfRtr+vmjqe3IrlNOX+1fHepXzfNDp0a2sPpvPLn6jp+NdDf3iWGnXN3J92CJpCPXAzWP4KtGtvDUM0xzcXjNdSn1LnIP5YrOOkHL5G0/enGPz/AK/rodLRRRWRuFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNf7jfQ06mv9xvoaAOf8A/8k78Nf9gu2/8ARS10Vc74B/5J34a/7Bdt/wCilroqACiiigAooooAKKKKACiiigAooooAKKKKACisjVfENho8iR3i3paRdy/Z7Ce4GPcxowH0NYms6hL4r8NX9n4cbUIb5WhIaaG4sTt8xSwEjIp5VWB25PPvQB2VNf7jfQ1yng+fybzUdJuLa9tr+2EcsiXOpS3ysj7grRySHOMowIwORWvq2p3lgQltoWoagGQkvbPAoT2PmSKfyBoAp+Af+Sd+Gv8AsF23/opa6Kud8A/8k78Nf9gu2/8ARS10VACdq8v8JsY/ibqxP3ZZLmMfUSA16hXluinyvHMMw6Satfxt/wB8KR+prqofDNeRx4j44PzPUe1YviXVBo2jSXCDdcuRFbxgZLyNwBjv6/hW12xXKa2q3Xjjw9bEApEs87g+oUBT+BrCnFOWuy1+42rSahpu9PvNTw3pP9jaHBau26c5kmf+9I3Lf4fhWbr3+heMdAv+iymS0kPruGVH55rqCa5nx5Gw8PC9QZksbmK5X6hsf1q6cnKpr1/UmolGlp0/Ql8dTeR4N1Fv7yKn/fTAf1rbs4fs9jbwf884lT8hiuc8byLc6BZwocreXsEY9wTn+ldV/DUy0pJeb/Qcdasn5L9R1FFFZm4UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU1/uN9DTqa/3G+hoA5/wD/wAk78Nf9gu2/wDRS10Vc74B/wCSd+Gv+wXbf+ilroqACiiigAooooAKKKKACiiigAooooAKKKKACqOo2T6hZtAl5c2bkgie1ZQ64P8AtAj8CDV6igDF0fw9b6PNdXP2q6vL272+fdXThncLnauFAUAZPAA6mth/uN9DTqa/3G+hoA5/wD/yTvw1/wBgu2/9FLXRVzvgH/knfhr/ALBdt/6KWuioAZ3ry62HlXVvd+nieSPP++Mf0r1E9a8vl+TwhqN5/wA+2umfPphwP6100NbrvY4sT0fa7+6x6Ff6ta6ZLZx3LlWu5hBFgZyx6Z/z3rFX/SPibIf4bbTAv0Znz/KsP4mTTC50hbbmSEy3J9tm05/Q1r+GJk1DxVr+oocxuLdIz7bMn+lUqfLS9p3T/OwpVear7Ps1+Vzr+tUNXsf7Q0e8s+80LoPYkcfrWgKK5E7O6O1q6szzeC8/tTTPBcJyX+0jeD1zCMc/z/GvRR1rzLSbd7f4ljTiB5VpNcXUf0lRePw4r00dTXTiUk0l6/ezkwrbTb9PuSH0UUVzHYFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNf7jfQ06mv9xvoaAOf8A/8k78Nf8AYLtv/RS10Vc74B/5J34a/wCwXbf+ilroqACiiigAooooAKKKKACiiigAooooAKKKKACiiigApr/cb6GnU1/uN9DQBz/gH/knfhr/ALBdt/6KWuirnfAP/JO/DX/YLtv/AEUtdFQA1ulecRQfaPh34iXGf9Lnk/75YN/SvR2+6a4vw3B9q8FavD186a6X88it6L5U35o5ay5pJeTK5jXXvEtnCxyj6CXJ9DJ8v8jUvwxtXg8PXLygiR7pgc+iqox+YNUvh5P9u1Oe4zn7Np9vbZ/P/wCJr0MAKCAAB7VpWk6d6XoZ4eCnat6/5foPooorkO4yV0O2XxGdaDN55t/IKcbSM53fXtWsKSlobb3EopbBRRRQMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKa/3G+hp1Nf7jfQ0Ac/4B/5J34a/wCwXbf+ilroq53wD/yTvw1/2C7b/wBFLXRUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFYXizxBH4Y8PT6nIELKyRRrI+xS7sFXc3ZQTkn0BqbVPDOh63LHLqukWN9JGu1GuYFkKj0GRWPqvgHR20O6tNF0/T9MuZHhnSSK2CqZInDpvC4yuQQfZjQBY8Ka7PrH2tLnULK5lh2Zjt7Oa2eLdn7ySsWIOOGwAcGujkYBGyQOD1Nc7o2k6ofEN3rusfZIrmS1jtI7ezdnRUVmYszMqkklumBgDvmtDVfDuiayVk1TR7C+kjUqjXNukhUegLA4oAp+Af8Aknfhr/sF23/opa6Kud8A/wDJO/DX/YLtv/RS10VADT92uX8BAN4dlz0N3N/6FXUH7tcv4A58Lg+txMf/AB81rH+HL1X6mEv4sfR/oZHwxsjbQauSORciH/vgH/4qvQKpWGm2mmrOtrH5YnlaeTknLt1PP0q7RVqe0m5DoU/Z01DsLRRRWRsFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU1/uN9DTqa/wBxvoaAOf8AAP8AyTvw1/2C7b/0UtdFXO+Af+Sd+Gv+wXbf+ilroqACiiigAooooAKKKKACiiigAoorGtPEmkX2qT6bBqEP2+B2R7aTKS5BwSFbBK8feGQexoA2aKKKACiiigApr/cb6GnU1/uN9DQBz/gH/knfhr/sF23/AKKWuirnfAP/ACTvw1/2C7b/ANFLXRUAN/hrl/h9/wAilCfWaU/+Pmuo/hrl/h5/yJlmfV5T/wCRGrWP8KXqv1MJfxY+j/Q6qiiisjcKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKa/3G+hp1Nf7jfQ0Ac/4B/wCSd+Gv+wXbf+ilroq53wD/AMk78Nf9gu2/9FLXRUAFFFFABRRRQAUUUUAFFFFABXl3iSfRvEl/c6f4k8W+HLOzt53VbaCWI3K7Wx80sufLbjkIoIORur1GvNY7LUZF1u2svD2l6zDe31z/AKdNOI8EuylJVZCx8sgr8uchRjFAHSeFLWG3W4bTdeOq6M6x/Zg119pMLjdvAkySVI2YBJxg+tdNXL+GPDE2gXFxI8sUgms7SF2jGDLNErB5WGOrZX1+6K6igAooqnf6hDp1m11Ok7RqQCIYJJn5OOERSx/AUAXKa/3G+hrH0jxNpmuXd1a2MlyZ7UIZ47izmgZA+dvEiL1wfyrYf7jfQ0Ac/wCAf+Sd+Gv+wXbf+ilroq53wD/yTvw1/wBgu2/9FLXRUARvwp+lcz8PRjwRYe5l/wDRjV0sxxE59FNc54AGPBGnfST/ANGNWi/hP1X6mEv40fR/mjqKKKKzNwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApr/cb6GnU1/uN9DQBz/gH/AJJ34a/7Bdt/6KWuirnfAP8AyTvw1/2C7b/0UtdFQAUUUUAFFFFABRRRQAUUUUAFeWpbWU3ivVLew1HxXCJmurlpLe5jSCSWJkEqRKRnILquSACR1OCa9SryXWIbJfElzJpOreIVije5iuI9O0hrlInmZWnVJdhCsWQE/e2knp0AB6RolxFd6Dp1zbyzTQTWsUkcs5BkdSoIZsfxEcn3rSrP0lIItGsorOGSC2S3jWKGVCjxoFG1WU8ggYBB5rQoAyNUi16SRDpF7ptugX5hd2ckxJ9isqYH4GmWB1eyiup9ev8ATpoY03q1raPBsAyWLbpHyMY6Y6HrW1RQByngSGWbSJ9eukK3WtztfMrdUiICwp+Eap+JNauraZeX5D22u6hp4VCClskDB/c+ZGx/Iitamv8Acb6GgDn/AAD/AMk78Nf9gu2/9FLXRVzvgH/knfhr/sF23/opa6KgCC5OLaY+iN/KsDwGMeCtN/3X/wDQ2rdvTixuD6RN/I1ieBhjwZpn/XM/+hGtV/CfqvyZzv8AjL0f5o6SiiisjoCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmv9xvoadTX+430NAHP+Af+Sd+Gv8AsF23/opa6Kud8A/8k78Nf9gu2/8ARS10VABRRRQAUUUUAFFFFABRRRQBS1TUINJ0m91O53eRaQPcS7RltqKWOB64Fcda6dr9pruq2Gm+J7SCNmOoi2k0gyCJJpJOA/nDJLI5Puc8ZxXW63pq6zoOo6W8hjS9tZbYuBkqHUrnHtmuaXwf4ij1Ga/HjFvtE0Edu7f2bFgohcqMZ9ZG/OgDo9Cvm1Tw9puoeZ5ourSKfzDH5e7cgbO3J25z0yceprTrO0TTV0bQdO0tJDIllaxWwcjBYIoXOPfFaNABRRRQAU1/uN9DTqa/3G+hoA5/wD/yTvw1/wBgu2/9FLXRVzvgH/knfhr/ALBdt/6KWuioAqaicabdH0hf/wBBNZHgkY8HaZ/1yP8A6Ea1dVONIvT6W8n/AKCazPBox4Q0z/riP5mtV/CfqvyZzv8AjL0f5o6CiiisjoCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmv9xvoadTX+430NAHP+Af+Sd+Gv8AsF23/opa6Kud8A/8k78Nf9gu2/8ARS10VABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRWRqviGw0eRI7xb0tIu5fs9hPcDHuY0YD6Gue8SeJ473wnfyaPcX9tco8CBpbOe2kffIo8uIyRjLsMqMA4JBOOtAHcU1/uN9DXD+Dbm5HiHVrGT+1LaBIIJYrHVZzPOpJcNIH3MNhwBje2Cp4XOD0mraneWBCW2hahqAZCS9s8ChPY+ZIp/IGgCn4B/5J34a/7Bdt/wCilroq53wD/wAk78Nf9gu2/wDRS10VAFDWjjQ78+lvJ/6CapeEBjwhpX/XutWteOPD2pH0tZP/AEA1X8JjHhLSv+vZP5Vr/wAuvn+hh/y9+X6m1RRRWRuFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNf7jfQ06mv8Acb6GgDn/AAD/AMk78Nf9gu2/9FLXRVzvgH/knfhr/sF23/opa6KgAooooAKKKKACiiigAooooAKKKKACiiigArN1rR7bXdNaxuzKql0kSSJ9rxujBldT2IIBrSooAwtJ8OxaXf3OoSXt7qF9PGkTXN46lhGpJCKEVVAySeByTzW2/wBxvoadTX+430NAHP8AgH/knfhr/sF23/opa6Kud8A/8k78Nf8AYLtv/RS10VAGX4iOPDOqH0tJf/QDUfhYY8KaV/16R/8AoIp3iU48Lat/15zf+gGjwyMeFdJ/684v/QBWn/Lr5/oYf8vvl+prUUUVmbhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTX+430NOpr/cb6GgDn/AP/JO/DX/YLtv/AEUtdFXO+Af+Sd+Gv+wXbf8Aopa6KgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKa/3G+hp1Nf7jfQ0Ac/4B/5J34a/7Bdt/wCilroq53wD/wAk78Nf9gu2/wDRS10VAGR4nOPCmrf9ekv/AKCad4bGPDGlD/pzi/8AQBUXis48J6r/ANesn8qn8PjHhvTB6WsX/oArX/l18/0MP+Xvy/U06KKKyNwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApr/cb6GnU1/uN9DQBz/gH/knfhr/sF23/AKKWuirnfAP/ACTvw1/2C7b/ANFLXRUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFYHirWptD0dbmCOJp5bmG2jadisUbSOEDuRztGc+/TjNWNU8M6Hrcscuq6RY30ka7Ua5gWQqPQZFU38LaXpmmXsOh6Bo8clyqrJDJCI4pwD919qnjBbHB5PSgCLQddvZvEOo+H9Tks5r6zhiuBNZqyIyOWGCjMxVgV9TkMDXSSMAjZIHB6muV8KeFTo2oXupT2mm2U08SW8VppyYhgjUs3Xau5mZySdo6Adq2NV8O6JrJWTVNHsL6SNSqNc26SFR6AsDigCn4B/5J34a/wCwXbf+ilroq53wD/yTvw1/2C7b/wBFLXRUAYfi048I6p/17N/KrehjGg6cPS2i/wDQRVPxgceENU/64Gr2jjGi2I9LeP8A9BFaf8ul6/oYL+M/T9S/RRRWZuFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNf7jfQ06mv9xvoaAOf8A/8k78Nf8AYLtv/RS10Vc74B/5J34a/wCwXbf+ilroqACiiigAooooAKKKKACiiigAooooAKKKKACiiigApr/cb6GnU1/uN9DQBz/gH/knfhr/ALBdt/6KWuirnfAP/JO/DX/YLtv/AEUtdFQBz3jQ48H6n/1x/qK1dMGNKsx6QJ/6CKyPG5x4N1L/AK5j/wBCFbNgMadaj0iT+QrV/wAJer/JHOv4z9F+bLVFFFZHQFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNf7jfQ06mv9xvoaAOf8A/8k78Nf9gu2/8ARS10Vc74B/5J34a/7Bdt/wCilroqACiiigAooooAKKKKACiiigAooooAKKKKACis7V9ZsdDs/tmoyyRwbtuUieQk4J+6gJ6A9qjfXdNTQF12S7RNNeFJ1ncEAowBU4Izk5GBjOTjGaANWmv9xvoazNJ13TtcimawnZzC+yWOSJ4pIyRkBkcBhkHIyOa03+430NAHP+Af+Sd+Gv8AsF23/opa6Kud8A/8k78Nf9gu2/8ARS10VAHNeOjjwZqX+4v/AKGtbtoMWcA9I1/lWB4+OPBOo/7qf+hrXQwDFvEPRB/KtX/CXq/yRzr+M/RfmyaiiisjoCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmv9xvoadTX+430NAHP+Af+Sd+Gv+wXbf8Aopa6Kud8A/8AJO/DX/YLtv8A0UtdFQAUUUUAFFFFABRRRQAUUUUAFFFFABWJqMPiWS7LaZqGkwW2BhLqwklfPf5lmUY/CtuigDmNRv5tF8MX83ibVdNXcrpHLHEbeM5XhcPI+WJz3/CuRttQs7/4V+F7myuI7yDSZNNfUFgPmGIRhN+4DnK8MR2C16rRQBxvh28t9Z8ba1q+mSrNpjWdrbfaI+Y5plaVm2no21XUEj1x2rc1bTLy/Ie213UNPCoQUtkgYP7nzI2P5EVrU1/uN9DQBz/gH/knfhr/ALBdt/6KWuirnfAP/JO/DX/YLtv/AEUtdFQBy3xBOPA+o/8AbP8A9GLXSxjCKPYVzPxC/wCRIvx6mIf+RFrp0+6K0f8ACXq/0MI/xpei/Nj6KKKzNwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApr/cb6GnU1/uN9DQBz/gH/AJJ34a/7Bdt/6KWuirnfAP8AyTvw1/2C7b/0UtdFQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNf7jfQ06mv8Acb6GgDn/AAD/AMk78Nf9gu2/9FLXRVzvgH/knfhr/sF23/opa6KgDlfiF/yJ10PWSIf+Piuo/hrl/iB/yKkg9Z4h/wCPiuo/hrWX8KPq/wBDCP8AFl6L9R1FFFZG4UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU1/uN9DTqa/3G+hoA5/wD/yTvw1/wBgu2/9FLXRVzvgH/knfhr/ALBdt/6KWuioAKKKKACiiigAooooAKKKKACiiigAoorE1LXbywuzBD4c1a+QAHzrU2+w57fPKpz+FAG3RXLanHB4n8MXq6tod1bJGruLe+MeWIQ4b927Ajk9T26dKPDOn2mq/DPQLO9hE1vLpdrvjYkBsRoRnHuBQB1NNf7jfQ1yfw1jSHwHYRRIERJblVUDgATyYFbGraneWBCW2hahqAZCS9s8ChPY+ZIp/IGgCn4B/wCSd+Gv+wXbf+ilroq53wD/AMk78Nf9gu2/9FLXRUAcr4+58NAet1CP/HhXTkZ4rN1zSo9ZsFtpZGjVZUlyvJypzitIcnNW5JwS9f0MlFqo36fqPoooqDUKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKa/3G+hp1Nf7jfQ0Ac/4B/wCSd+Gv+wXbf+ilroq53wD/AMk78Nf9gu2/9FLXRUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAZ2qaTaazYNZ3omaFjkiG4khJ/4EjA456ZxVKy8KaTp2jSaRapeR2T4Hl/b5yygYACOX3IBgcKQK3qKAMTQ/DOleG4pItLiuYopOqS3c0yjkngSMwXJYk4xnvWy/3G+hp1NYblIBxkYoA5/wAA/wDJO/DX/YLtv/RS10VcdpGg+LNH0ax0u31/R2hs7dLeMyaRIWKooUZIuBzgegq99i8Z/wDQe0P/AME8v/yTQB0dFcVr0/jHRPDuo6t/a+iTfYrWS4MX9kyrv2KWxn7QcZx1xWitn4yKg/29ofI/6A8v/wAk0AdJRXOfYvGf/Qe0P/wTy/8AyTR9i8Z/9B7Q/wDwTy//ACTQB0dFc59i8Z/9B7Q//BPL/wDJNH2Lxn/0HtD/APBPL/8AJNAHR0Vzn2Lxn/0HtD/8E8v/AMk1m69P4x0Tw7qOrf2vok32K1kuDF/ZMq79ilsZ+0HGcdcUAdrRXNrZ+MioP9vaHyP+gPL/APJNL9i8Z/8AQe0P/wAE8v8A8k0AdHRXOfYvGf8A0HtD/wDBPL/8k0fYvGf/AEHtD/8ABPL/APJNAHR0Vzn2Lxn/ANB7Q/8AwTy//JNH2Lxn/wBB7Q//AATy/wDyTQB0dFc21n4yCk/29ofA/wCgPL/8k1naDP4x1vw7p2rf2vokP221juBF/ZMrbN6hsZ+0DOM9cUAdrRXOfYvGf/Qe0P8A8E8v/wAk0fYvGf8A0HtD/wDBPL/8k0AdHRXOfYvGf/Qe0P8A8E8v/wAk0fYvGf8A0HtD/wDBPL/8k0AdHRXOfYvGf/Qe0P8A8E8v/wAk0fYvGf8A0HtD/wDBPL/8k0AdHRXE6LP4x1ixkuv7X0SHZdXFtt/smVs+VM8W7P2gddmcds45rT+xeM/+g9of/gnl/wDkmgDo6K5z7F4z/wCg9of/AIJ5f/kmj7F4z/6D2h/+CeX/AOSaAOjornPsXjP/AKD2h/8Agnl/+SaPsXjP/oPaH/4J5f8A5JoA6Oiuc+xeM/8AoPaH/wCCeX/5JrM0+fxjf3+r239r6JH/AGfdLbbv7JlPmZhjl3Y+0cf6zGOeme9AHbUVzn2Lxn/0HtD/APBPL/8AJNH2Lxn/ANB7Q/8AwTy//JNAHR0Vzn2Lxn/0HtD/APBPL/8AJNH2Lxn/ANB7Q/8AwTy//JNAHR0Vzn2Lxn/0HtD/APBPL/8AJNH2Lxn/ANB7Q/8AwTy//JNAHR0VxMNx4xm8R3mk/wBr6KPs1rBc+b/ZUvzeY0q7cfaOMeV1zzu9udP7F4z/AOg9of8A4J5f/kmgDo6K5z7F4z/6D2h/+CeX/wCSaPsXjP8A6D2h/wDgnl/+SaAOjornPsXjP/oPaH/4J5f/AJJo+xeM/wDoPaH/AOCeX/5JoA6Oiuc+xeM/+g9of/gnl/8Akmsya48Yw+I7PSf7X0U/abWe583+ypfl8tol24+0c583rnjb78AHbUVzn2Lxn/0HtD/8E8v/AMk0fYvGf/Qe0P8A8E8v/wAk0AdHRXOfYvGf/Qe0P/wTy/8AyTR9i8Z/9B7Q/wDwTy//ACTQB0dFc59i8Z/9B7Q//BPL/wDJNH2Lxn/0HtD/APBPL/8AJNAHR0VxM1x4xh8R2ek/2vop+02s9z5v9lS/L5bRLtx9o5z5vXPG3340/sXjP/oPaH/4J5f/AJJoA6Oiuc+xeM/+g9of/gnl/wDkmj7F4z/6D2h/+CeX/wCSaAOjornPsXjP/oPaH/4J5f8A5Jo+xeM/+g9of/gnl/8AkmgDo6K5z7F4z/6D2h/+CeX/AOSazNQn8Y2F/pFt/a+iSf2hdNbbv7JlHl4hkl3Y+0c/6vGOOue1AHbU1/uN9DXPfYvGf/Qe0P8A8E8v/wAk0hsfGRBH9vaHz/1B5f8A5JoAd4B/5J34a/7Bdt/6KWuirL0DTDonhzTNJaYTGytYrfzQu3fsULnGTjOPWtSgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDJ1vWNM0i1T+03IjuG8pIhE0zSkgkqEUFm4BzgHip9M1K01jT4r2xnWe2kztcZHQ4IIPIIIIIPIIrnPE93BpPjHw9q+oSLDpsUN3bvcScJDK/llCx6LkI4yfXHepfAgMthqt8iMtrfarcXNqWUruiJADgHsxDMPUNnvQB1tFFFABRRRQAViWPiHR9cvbzTLaZp5oEBnikt3VdjEr1ZQGBKsOM9DW3Xn1r4m0KT4t3sSavZmR9Mt7VFEyktMs8+6MD+8MjI680AdFpfi3SNanSLT2vZQxYLIdPnSI7c5xIyBOxHWt+vMdJuNJs9e0O08G6zc30Us8gvrNblp4YoCjsXYHIiYPswBtzuIwa9OoAKKKKACiiigDBm8WaPbakLCeeaOYyiAO9rKsRkJwF80rsyTwBu5NIvinQINTXRku0WdJBbKqwuIlkxxF5gXYGx/DnPtXK+M9Xs9Quorax10Xl1BewI/h9FU+e6TDO7AEi4xuyW2fIMgjOcyW5hHhe48J7j/wkj64zi32nzGze+cJ/wDc8vDbunGOtAHrlFFFABRRRQAVla1r+l+HraKfVbpbeOWRYUO1mLOegAUE/wCFateVfESz18QavqE1hY3NoPs8NpKb1kaCPzYy37vyyNzOBk7ugX05AO0m8UaLY6nNpQ+1m6iZTKlrp88qoz/MCzIhUE5zyfrXQ15d4nutMs21O9s9WuLPxm8cbDT7O8eTzLhUUJH5WAJEPA3FehJ4r02MuYlMihXKjcAcgHvQBJRRRQAUUUUAYup+JdK0e8S1up5TcsnmeTb28k7hM43FY1YquQeTgcGmal4j0TQpFN7P5U1ypl2xQPI7KAAXYIpIUDA3HgetcFrqw6b4w8VXGp63qGmyXEEEukrbytH5zLFtIUD/AFrBx9w5+9nHOa1LfWV0PxONU8VSJZSXuh2iiSRcIJkaQzRD/ay6kL1PbOKAO/t7iG7toriCVJYZUDxyIcqykZBB7gip65nwDaXFl4F0i3uoXhlWDd5TjDRqSSqkdiAQMdsV01ABRRRQAVj6l4isNHlWK7S/LFN2bfT7i4UDJHLRowB46E5rYrlvHd1N/YK6TZuyXusTLp8LDqgfPmP/AMBjDt+AoAB448OlraaGS6ne8tVuIjb6dcSu8O4hWISMkDO7GcdfeujhkE0SSLuwyhhuUqcH1B5B9jXC+JLfwlpl3GLjWp9I1C209be2S1u3ifylJ2BUH+s5/hw3QcV1XhufULrwzpc+rRmLUJLWNrlCu0iQqN2R2Oe3agDWooooAKKKKAM/VNWsdGtPtOoTiGMuEUbSzOx6KqqCWJ9ACaz/APhKdAbTn1d7tRDBJ9nZnhdZUdiP3flld4Y/L8uMnjioPGcNs2m2d7Pq0WlyWN4lxBdTpuiWTayYcZGVKuw6jqOa8/tjc/8ACQN4tvrwXejjWLd5LuO3MUJC20sXmopJPlq8ka7iT0JzgUAeraVrNhrdo1zYTmSNXMbhkZGRx1VlYBlPI4IB5FaNcb4Rmj1LX/Eur2beZpl3cQrbzL9yZkiVXdfUZwueh2muyoAKKKKACsaLxLpUviA6JHcv/aAVn8owyAELjdhyu043LwD3rZrz/XfE2h2vxO0GK41ezikt7W8inV5lBjdzblFbngnBwO+KAOgfxVoC66unSXa/bVk+zhvJcosjYPl+bt2Bj8vy7snjiln8W6RBq02lk3sl3AyLKsGn3EyoWAZcuiFRwQetcFdXUK+GdU8Ksf8AioZ9bd0tsHzJN92JUmH+wEIbd0G3HWr3i640axvNWvNF1q6i8WOyGOxt7lyZplVVRWg6MpAAJI4BJyKAPTqKauSoLDBxyKdQAUUUUAY114l0qz1u20e4uHS9uWCxJ5EhVmILAbwu0HCscE9qr6h4q0DT9QNrf3JSW3dQ0rW0hihZhxulC7EJDdyOtYXjzxDo+na34Xt73U7S3mh1VbiRJZQpSLyJ13kHouSBn1NVfFni7Q9XuZfCba3p9nbSxK2o3dxcImIXAIji3H5ndT97ooOepAoA63V/FOjaFKkOoXbRyshl2JC8pWMHBdginav+0cD3rVhljuIUmhdZInUMrqchgeQQe4rh7nVtN8OeNtYu9YlWG0v9OtvscjLlZhGZd8SerfOp2jk7q3PA1ldad4F0OzvUaO4iso1dG6odo+U+46fhQB0VFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRXlXg3U9d1TxFaG2uNOstPbSop2sIrWTylX7RKrbAJQFc7T82D24OOQD1WivNdN+IOo6neWlzb2bTWF1diFbZNMuvMSIvsEpnx5RxwxAGAM/MSK1NN8Q61eJrl/dS6TZaZp11d26tKj5YREhXZt2FAwM8HODjFAHbUV5tb+MtT1H+1tKFxA1wNKlvbW8j0+5tVG0hSNspy33lIZW/KptMv9Ug0DwTJqr2GoyX1zbqkrWzh4gbWRt+5pGzL8uC/GQzcc0Aeh0VwMfi3W2tIPEDQWP8AYU+oCzEAV/tCo03kLKX3bT82Ds29D1zUVz4u8QwW+t6qIdM/szStSa1eIpJ500YZAWDbsKwDehzjtQB6HRXFTeJ9Rj8XyaZcXNhptstxHFBHeW0u+8QqpLRzbhGDksoXDHK89a7WgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuVsPBFnpU+nzWGo6hbvaRC3Yq0Z+0RCQybJAyHjLNyu04J5rqqKAOas/CcenXStY6rqlvZLOZhp8cieQrFtxAym8KST8obHPTFTf8IppzaJqekSmeS11Kaeafc4DBpWLNtIAxgnj+tb9FAHMWXg22t9WbU7nUtS1C6eyexZryRCDEzKxGEVQDleo9TnPGFs/B9vaWul2zalqFzDpdwk9os7R/u9sTRKmVQErtc9cnIHNdNRQByq+CNPjvkkF5fGyjuzeppplX7Os27fuA27vvHdt3bQecVYn8IWFxo+q6Y01yINTuGuZmBXcrMVJC/LgD5R1BroqKAOdvvCsep3vm3eranLaeek5sTInkb0YMv8G/AZQcbscV0VFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/2Q==", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAIAAAC6s0uzAADlUklEQVR4AeydB4AcR5X+e/JszkFhlYMtWbZkOWcbB0wyYMKR43H8z+RwPsDAgQnHcRi4I4c7ODAcRzLBgMHgnLOcZOW8Wmlzmjzz/1W9md7Z1a52Z7XSzmpfed2qrq569errnvr6vQrtyWQyjgZFQBFQBBQBRUAROLYIeI9tdVqbIqAIKAKKgCKgCBgElID1OVAEFAFFQBFQBKYBASXgaQBdq1QEFAFFQBFQBJSA9RlQBBQBRUARUASmAQEl4GkAXatUBBQBRUARUASUgPUZUAQUAUVAEVAEpgEBJeBpAF2rVAQUAUVAEVAElID1GVAEFAFFQBFQBKYBASXgaQBdq1QEFAFFQBFQBJSA9RlQBBQBRUARUASmAQEl4GkAXatUBBQBRUARUASUgPUZUAQUAUVAEVAEpgEBJeBpAF2rVAQUAUVAEVAElID1GVAEFAFFQBFQBKYBASXgaQBdq1QEFAFFQBFQBJSA9RlQBBQBRUARUASmAQEl4GkAXatUBBQBRUARUASUgPUZUAQUAUVAEVAEpgEBJeBpAF2rVAQUAUVAEVAElID1GVAEFAFFQBFQBKYBASXgaQBdq1QEFAFFQBFQBJSA9RlQBBQBRUARUASmAQEl4GkAXatUBBQBRUARUASUgPUZUAQUAUVAEVAEpgEBJeBpAF2rVAQUAUVAEVAElID1GVAEFAFFQBFQBKYBASXgaQBdq1QEFAFFQBFQBJSA9RlQBBQBRUARUASmAQEl4GkAXatUBBQBRUARUASUgPUZUAQUAUVAEVAEpgEBJeBpAF2rVAQUAUVAEVAElID1GTiuEEjZQJP4l2MymeSYTqclMjg4KK2NxWISkWyZTCYajSYSCUmUI6dSSvKQKKdEXDnEXVFSimN/fz81EkECgQjC5aqcSpyCAwMDEkcBIqRQF3nkVC4depTmuHnIH4/HyUZ6vsBIJOIqTGbR2U0RsaIncTfd1ZBL0jRRnka5mpDiYuJGuCoYSgo1SvH8DFIR6W4tUsqVTIS2UAR9pIGoQZAMrihXGTfiokFmN+7mz5evcUWgeBDwuA9r8eikmigCk0aAjtvv91Ocztfn842QAyfRQZMeDoe5BF2VlZWR4vVm30RhKa4GAgHJ5vF4RBQ/ExGLBBIpDtlITjIQR4J0/SUlJVIpRaQ4p1IFuqFVKBSCgahCKiVOihTJP5ITCSKEivr6+sgWDAZdmVyiXqmOCKfEqUj4m8yu8hQXBWhdaWkpTUAOiVIdWnGVI5ckBVFEpLirnmDV09NTVVXFVYpwJCdyEEultEgkSBxqLC8vJ093dzdFkEZmV3nSaSB5KEJBTltbW5uamsAkPxtacUmC4E9LAV+aQzoZSHfrkvxSi9vAnAD9VxEoOgSUgIvulqhCR4IA7EIHTRcsNIAoumz6aLpmEkelOrpvqIv8FKS4y6CiBjxBoCzcIEe3uyddenkiZM7v8aErqKu2tra3t7eyslLUQH4+u4j8jo6Ouro6zD40hI3IDyHlE6Rkc4+wHZogSlJQmPxCTm4eiRi9baBFrhrCo2QggjJwpFCaW4RENKctbhVC25JBCE+OIoQ3GCohP0fBsKurq6amRvK7/M0prEkQBMgPmJKHgsQl8J5RUVFBulU8BQ6ShyPCabiAjBx0IJFTSSE/icLlUgRIyT8qMq5MjSgC04uAEvD04q+1HxUEXJ7LJw9qIn3v3r3z588nnt/X04nn8xB2Hh03bE06xCAq0r/Ty9PFIwT2grpEOInCAWSDbzjNNyWlOPxHHriKPGSgOKwMQ1ALJOHKFxKSU/QRRqEgRchGcJUhDwxEgCY7OzthelLa29urq6uRSTrH/LZL6+RVw9VWElEDnoPIUR6tqEUU4CivI/LCQWYaLm8qCHc1QTfhXbcUKVRBZtKlgUimCrcIl2ga+UmhOvelh3R0BiWXwslGIN3NjCiRKa2QS7QXUcTllMyIJZurkkYUgeJEYOjHVpz6qVaKQEEIQCdQBd0xxx//+Md4NYm7ARpYv379b3/7W2SKpUWEqxzp6DnSlXPEZQoNCM2QwiXEQiewr/T10B4RiJYeXwiSUtQIZ5MIo5CfFJF84MABiA2BZKAU+TlFptAe2eAbMe/IIGqQSBUEaoRLOEotcBuXCMgnhQzE0VOqq6+vF9aResnAVTzAiJWcvDSQyOvF/v37uUQi+qAGKTAr5C3sC8nRBJpGIpfEk0zTOJWqkc9VyFKaL3JoAmpQF1VQKadIRiBVUJYiKE8GTomThyDVEUEsDUeaaE5F6EAiGUih+QSaximXJJGrEiglVzlSI4EigoMIyWXUfxWBokNAXxKL7paoQkeCAP2vFCdC/4ut+U//9E+nnXYa3TTcQN8NAVx00UWQAT0+XTY8QX9Nupit5CEn3Ew6V+EYpHEJaUKNUAgZJNDLUwX0IxQiLMipEBUFhfkgNlGJSxSURGokUWxiHLboSXUURD104yqBGpEvdJLPrBREjjAcceicuIhFYfKLAhRBlNSOKGgeXzf5eb0giN1JLZJCveSnCeRETxKRSS3kJN7W1sarDFXQUnQW54GLGEJc2MlMNjgbaUSwnmmd6EZZAhmoiyDt4pKAQL0UQSY6iALklEAKVdAWMqMPOcFKLiFEbgFuAOSQTrZcOQfid+MaUQSKEAEl4CK8KarSESFAfw0fQB5I4fjqV7/61FNPJS7joC6z0tfTodNlwwqSSFcu1h4SpDh5JAJhkMgpgczCN7t3725paUEyKdh8DQ0NxKFSYRQKCpGIBC7hIsZIJRFpsAgpyNmyZcuyZcsogjKcCmtyFa2IE8gmgTgFoViyudQi/mHyS10c4aqDBw+SB66SGilOoripiYvLmuaINQkTUxeWLvpTCv2z9Vn1iCMc9iXCVdriDieTIr5iUQkJ1EgrRBPXjYxwaJLMKE8AcNusbLtouAgkcceOHYsWLeIuSEVoKCBwpDgZpNXCvrwEIJb7JdW5raOlZEYIRxcl4hoUgSJEwDysGhSB4w8BOmK3a4YdaaDQgHTQ8OjGjRthoG9+85v/9m//BkPTWa9bt+6RRx4hJ3ngACL33HPP6173Ojp3rr7kJS/56U9/Ss8OAcBJP/jBD0488cQ//OEPf//3f7906VLKil/3W9/61uLFi2GL5z3veX/84x/PPffcK6+8Uhj6zDPPfOMb34hYGAUhVEGRU0455TOf+Qx2G9qKbsSFY/bt23fDDTdgvpMfBSiLPjAWBZm69bnPfW7JkiXNzc1Ud91110GcMBYSiFx44YVvectb/va3v11++eVkXrFixf/8z//QfPjv0UcfxQ7+4Q9/CFmSH2XIcNddd/ESgMeeU+Q/9dRT73rXuxobG7m0fPnyH/3oR6RDqAi/4447KPi///u/H/7wh3n5YDQd1kS32267bfXq1eB59tlng8w//uM/nnzyyfIKIg55tL3kkkvIAJd/6EMfevrpp5EpgYIvfOELkfz6178e3wNjBN/97nfRlgCM5Nm8eTNFaCYpKI9uO3fuJCfsyxsGbUdJLnEXPvKRj2zbto0iqCRgZuvQfxSB4kSAH4kGReC4QQBqxAijOXAeXAiLMOJLNw3VYajhSmW5izQWDoBg1q5dC/d89atfhYahPUiFq9hkHB988EGKn3766R//+Mf/8z//84ILLuAn/LOf/YxL2J2QMby4cOFC+PXTn/40BAOf/fd//zd5oF7ywxmwxYIFCziF+dDnTW96ExYwBIkETjl+6lOfIj9ESwZOCaI8qhJ/zWtew9WrrrrqK1/5yte//vUXvOAFX/7yl0mndvgVcnrpS1/Kpbe+9a1ke8Mb3kBZyJsMc+fOhZPmzZv3sY997D/+4z/OOeccMmzfvl2qho8vvvhishGk3le+8pUQOfqTAkSAQLj22muh0he/+MWU/fa3vy1XeaWgXlp90kkn0cZ//dd/5eVGEgGKN4nrr7+eNq5Zswa+lFYgEw0hSN5UeJ8gDxxPcVO9DdQFB6MA2n7jG9/ghYMan3zySS5Kc3jRIeWaa67hNoEYHP/QQw9xlfYKqX/gAx+gmW9/+9th5csuu0zECsIS16MiUJwIGB+dBkXguEEAAnb7ffiDjlsGPsWNySlmE/yKIQsTc0q/v3XrVjp6qOhPf/oTZhN0AhrwDeYjNOYig+eW7h6aITNM9otf/ILidPfCYTJrCcMaMxeCpBTZ4GPIBv4TIbfeeitFsGJhDuTDEJiqcCH65LOFxDFVyfze975XJMNzCKEuGoiFSkWwmqvbe97zHjILLdE0LGMIj4YgiuIQPHT4wQ9+EJUogvEKRzIbXFqNZCjw5S9/OZeIQ2NcxZ/MKUpS3Ste8QoYneaT8vjjj1ORgIBkEYgdTAZMZDLgGcaeJg/0LxIwxHmz+fnPf84pATm///3vSeFVRt42ZFL6b37zG6ShMHIADW1pCAqgLdL++te/SnGOgg+XuL9YujfddJN76Xvf+x6ZeXOiLIko717SiCJQhAioC5ofrIbjBwGIh86dnp0umP6XGUBYaTAfNMARPycsC3tBtOTEmMP5CV1BqDD0FVdcQREGZWFQiOQvf/kLxIYpxikC6ffhS0gOJycSKAJqV199NQVxCONAhlmhEFzW8AeXYJo3v/nNGNmUFXwpDreJlYySSEYfHMvYbe4NQAG0onbMd2R+8pOf5Egijl/yEKEKbHpeMjD7SKFP4YiNjhr4mSFOqXHVqlXPf/7zEUX6nDlz8P0+9thjtJriaIVLAErjlKvwJYPZOI2llttvvx1TGzmYwpA0KGHOQuHAQgYilKIhpItiiKKleI+Z7UUG3m/wuuNGJhuI0cyf/OQn8l5Co7DCyYC7nrK//vWvoU/0pxT+ajz8FEEscrCw8WyTTvE777xz5cqVvPogTVDidkDSXLr55puheTwEeKS5KbzHcCsB6s9//jPNJDPSpIgeFYHiRCA7FaI4lVOtFIFCEYDtYCD6dwpiJHGKExjvMf21pHB1165dJNJfY1Bi45JNKFC6eI4QBlQBN7z73e+mFMQAGRCBrjjCNxwpjkxGcMkvRjaWNKwP/SAW5iMRCcwqgmbITyAnPPf5z38e5y2nmIAIhPWJu1RBXZAr+kAqEDkvEAghkAexZEMy+pOOZClIOrxOZuZeQT8YprSRdlEdPER+MsBqogai4GaazzguXmskYMrjaccQp2oc9RAtgZcVuBYYARBlKMsphi/FiROBBUnnKL59OBJRBMCkdgZ6UQNtOfKmQqBSMtNeVCIdySTKvC1S4FHK0nCQxzMBAcPrchMx91/0ohdxFbRpEQjLvG5SGLCHd2kgEgAEVhaFwYEXDlcgEQ2KQHEioARcnPdFtZokAtJrSy8vrInJRd8NE9Ap0+nDENAP0oXzYB2pCWoRkqYfJxGWpeDb3vY2JlHjmKV/R6ZQyBlnnAFzkBmB5CQCS1GvMBzy4WbmbYl8hCOHI/Lhj3e84x0MGDNliYFhCBizD/OUq64aosyRH2kpihFEFOrJe4O8Q2B2f+lLX4LqIEscwn/3d3+HAkKZaM64L3Y8DYHUhYBZyszIK6KYKU02Fj7JKwt8z9sA6bSO42FaQWPhTniauW+ACTjwKMXl5QCZVAT7IgRAqJpAnCKA5oqlOVIRpciPBGxxhpax0XlhQlteenh7wJ6W2y0CkaNBEShOBJSAi/O+qFaTRIAOms5dvJdCxiJIqIiuX06FSonTR0NC2F70+GJawaN07lAFeeAbiAca4CrpMAH2FldhDngCooWVEUJFRGSyNAOQMDSJwgHM4IUV0Aet4C0CDljIj1NsXDGFRSWOKE9AJby1WIE4qHkbELriKlXDRnAPLxCk46Rl7hL5ScdehHHRVmxKtIWNRDc5ojM1IoQjV2FcJp0xSMzLAf5zRnm5RHuxpLlKe2k1l5BJq5HPVSDiKDCSTovIxisIATLG+ucqATBRCfc1TSDCVTQhMDQODiCGKUw29KEt6EZziGAxUxEyUUZaIfeCFNiU6XKASSmkyc1CJdQjJ0awvCuQTVoKvEYPG2gL+XNn+q8iUHQI6Bhw0d0SVehIEBCaoVtHCL08HTdxYSkIgxTSoQG6b/iSONTFVThPenxS4BiIlslZL3vZy1jiwjgo3ADH0JUL1Qkh7dmzh8z4gen36eixLHE+U8Xvfvc7qR22YIoyKVwlJ1zCkcAEZoZd/+u//ouyl156qdCGXEITqqY41b3zne9EWyb9ciQRZiUPESrCbkZhZhSTIu1l7jFysGt5M6A6XgioHcOdzKhNi6S9ogmJTISGYpnExEAs46ZMPAYo+Axpr3rVq7BWN23ahHCIk8aiFSAghCYQoWrRBBomQnE82Az04vjlFBZnLBxeJDNFINfXvva1kPcXv/hFrkoR2sJV2shRTHOycYnWoQPZqELaSysY/YWAGbEmTn6U4XbQKCKoyu2jFRSnlLxbEBHuJ6LsCwgaihkBtYCL+e6obgUjAMcIVVASNuL4wAMP4Cal7+YUw5FO+eKLL4ZacKvS42OSCofR4xOnl2ewUzpuFpU+8cQTJ5xwAvONsTXJf/fdd8NATJ5CGnnID1FhvRGnXmiDdTLMW2ZYlxnU8B/LbbFWITwqgiBhVviMS9TCBCLYF/qBPMiAQI5oC2FDMNAhlhzLkBCIpYvCNIoiTLp+3/veB3PjGGfKFV5ldvXasGEDdM6ALp5YUQzOhs9QD4EohnoIRAEibkXMzWY0mrWzsC/0TE4ojVKf/exnmffEVbzlmJW4qWkjU5R5ayEP5jhsihBOMZfJT4u+853v4FFHN3SgInRGE5iYOC1FedK/8IUvACbIgDwAIpD5ZQCLqvA3OdEN+ZyiJ3BREVCQ+C//8i9kxivORDO5oQxaI41xfV5lmFyNEKbLYWFzH4GCVwqc6qwuA1sEalAEihoBfnUaFIHjCQF6cJpD983aWbGo6PT5EUIV0sszD5kMWGl06OSBKd3mkw1ack/hDCZC4zslHVMPGmDuElex9m688UaEM2dYMoulSxzXLutqKMLmHlyFybDhSIdoxRYnJ6YbAhkNlURJF7uNnJCQyMTI/vd//3fkQC0wGcuIcUpDflzlbQCrFzc1LYLjWXMMF8K1XIIgWWWLqqRwChpwIUazrB0iBQU4YqdSFpZiQFoUcOt95pln3v/+98tIOcfzzjvva1/7GkXIgCWK5wC+5xTW5EigFZihtBTihPkwoFmgzIuLVCRagTNyoFUCa6I++tGP8lYkZWkFM5kRYoUZ9zXTsJl4xduSpDDPi8VRlOIdhdqZ/s1rkFziPYAV2CwUpiG8RkDDmNrMzJKrrkw51aMiUGwImE3V6Qs0KALHBwJwCYGeGpNRWsQTDoFBbxAwNAaL0FmTh1MohGxEYCni9OCQFnEyUFbYWn6xUAspkB/FKULgFAoRlqKjJ0X4Rsoylim0DWEwwoqNSH4yYN0i8Pzzz6eiW265BSMSya4yqEc2TskjVXCaH9BNFBDdxBLFeS5mLjlJQaBbu5suVbuikCMGt4AjpcgDUCLZzZlfEIjQkKFrKBNSBy5JofkUpC58ANIW5mDjw8fTziVEceQS7mKOBKmOdIRLMwVet1Iy8FYEdBRET66KGhw5RXlgJA+VEqQJlCWd2rkkcjjl6gjJbhUaUQSKAQEdAy6Gu6A6TBkCsCkUSLeOISi9P70wPMGII4mQhBAkEXpz6IT8xOnWoRNsL2xlPLeQkPAQvTzZ6OJFP07hD3p5OYV9JU5xzDW6fuqCZrgq7IuVTDrGKNkIUAKXmJbFTF2mDmFAk58UkY8mxMnGEdogkTh0S5CC1E46GqKbpFNcvLJCURSkpQRqJ7Pkp3Uyzs1VSoknGclkk+p4NRGWQn8kc4kmc6QgmV0+EzApAvuSDlzERTGARbK8PVAWux8kWWBNBi4RAI04t0AiVEdBIU7icgpQ3DLSqZoU2JcixGkjVYsaQEQgD4E8colXAXKiLZm5EcQJEiePnOpREShOBNQCLs77olpNEgGYgF6YTl/K01NLp0w6iRwhMOn6ySARGAhu4JReWwwvqIu4UDV5xA4TOXCPjK2SB2nk4Sp5JDNbQDBvSzb3YCTy//7v/9iSAh8v8hHIkC17aPzyl7/E9sXNi5OWRBhFjsKXrm6uetIQjrQFyhFSgedojsRRCWJDjpsTgegmHOkmis3qnhKBtDjKqwYCheRcxCQnWsGLXBJIGSmH8imIW5ixW1pNRSzVxWV91lln4frGr44TnksMJGMHIwR3vQwE0DQKcgRJjgikOWTAnQ7d5usvIAi8ZABh1CADEcGZRBTm6L4fEM8PtIIMlBoBQn4ejSsC048Az7oGReB4QoCeV4Y/aRRxwojWQUXYf24ernJKd08E6uIIpY0owilyoGeh2/yyMnYrtWBrsjKVFUrwBJ5hPhsg1idMACUwfswPHrczU4dIQaZUyqVDq+MSzIc+5KRSUSw/G2RGBlLgdUmHyUQN4TlaQRCFJYNUxwDqiHpxWUsGaiE/QghSqegpVxHL6QhNOEUBdt3ifYLWQXiM4MoYLfpIwVGP6IA0GF2uEue+iGKSArA0EKhFB2kIeI5QgMxYzxzRmfwcJb8I0aMiUMwIqAU8/e9AqsGUI8BPTqyrfMnwHITEJCC6cswv+nEsSPpr8Z3CLiTSdxORFDJwFQmYWfn2GSnk4arYjthzriWH5UctpAhbIA0mhrYhY1SiFHLE/pMipCBEtJUjGqIGiWTLV96NwzGo7RqC8BOZKeJmcCMinFP4lVaLuexeRTfK0jQqIqAwKfkGJcUpMqLhFBcjmOZzCep1fcWcujWSDfYFDQgVDMVPTiIZaGZ+LaIPVcO+4loghVJuA7kkmoMM3gtUlQyCGwLlZokcVxqlDtU8P4/GFYFiQEAJuBjuguowZQhAKnTTIg4udCP5/b5QHZeko5ds9OwuBcIEbh6RQEcPRRGHeFw6IQ8pUKmwkVsEqqD3l/FOMmC0YfVKWaw6uJC4G6Qsp8Lcko4oTjkSoB8C/ARvwTr5LxYY7kI/kBw5IS2IB4EIMaRqucrNgwQyWJEZ5LhkSVmXEalU5JNNiiOKDMJzXCKRNwCaJkfRViSI/kLJ6IAE97Ugn1ClCHqSH0gRxQsKgNNGEglAJ20XBhXYSZe2IxYJ1C53mUbJmAI6uExMHgEBmW4rpF49KgJFhYAScFHdDlVmahAQMkAWHTe9sAiVbp0e2XTzdt0tl+AnenYShQjlKDYr+QlcIuSrRSKMQr8vHCZ5XBpzCQ+SgEKoCNojEVZwKdmtFLEIgajgNpiGCApQhIKiNnEuEfIVIJEg/EQ6VZOZslThMhPpMrZNohR3WRDSkpFR0V/oCgkjmokEakEf8JHaEU6cekVVOUp7AYE8IoH3D+QjkJch0l27VoRwRGG0lQa6iUQQiPD8xsrtyG8CpdDBRXtEBqoTZPKF5FehcUWgqBA4zgnYdFR5XZX8kqUD4qdL3yGzb8hzaHdQVPdJlVEEFAFFQBE4PAIj3nQPn7kYrs4KAoZcCbAvL86Mh/GizVs5jkRe2KFeDAWuyit8MdwS1UERUAQUAUUgHwF6b3H50FETp8fmKnHm37GbGzYV7hnmHEiRGWRQHecEzK3iZuCPIuBwwwvHdBh28mMzAS65NxjfIFfdU40oAoqAIqAIFA8CdOPYS3TjeC7RSgwqCJgl73zqmz1TRVUZECketcfVZGjt4LhZZ1YG+NXSbvaA8kLGjE6xtSybBTJlg8ANYziKMT95pZpZbVRtFQFFQBGYDQi4Ri0R2kt3TQRf5ty5c2UevoBAZ07EnSJQ/Mgctxawe8Pce8Ddwk2BBSxzPbCGuYvwM/eMN6lDZ6C4BTWiCCgCioAiUGwI4LZkx1NWGdDb07e70/1mEAHPoq3aoFthWQgYPwanMqWTpwoaLrZnS/VRBBQBRUAREATcEUOxgEnEaqInZwyYlW8MDwv7St/uLqsrfvSOWwKGX0fcOU4hWtaEYPJyO8VZQQr3zM1c/DdMNVQEFAFFYLYh4NpIbkQQgHcZSSQuY8P06i5DzwiIjlsCdtHPf3Xi3uB5xkHBG5Ob7ubUiCKgCCgCisBMQYA+nEXnOJ9RmC5dOFiOM6UJM2YSFrACcf4+R1ApKQRuA69F+fPfZAxA0rFu4V2OvByRhxvDKUHc0UTEFJ4pN2yW6+nOXDczMZhYlweHpEhC/nuljC64KSMGG1KO2d/K53iMrLTXHDP2SCpZ+aOkx0l50uY6ny5IJhyP1/F6OCYdr1TKPh0+U5AcTNHMOJ6k40k7HiKcm1khacebcbwpk+SnCBndIDVw6jHi0QbRbrUolLKn5hISrA5UZeqVCqvMlVxw5VLm0GCvJoftKXJoppEpZsqpDa5WCLDi006GP6sREaO8rcAnXwMUDUyrcxeyOWwBI9HmdsoMYgWEmLewLiu7F9qEayh1CtOHGzph2ZIxNnRzgED+XBGCci6HhSj7dUU3y+EjPGGFBc9AYfmT2W3mJliqPQePq1f2yTA/OvMg5R+Rmd3zZTTpMlOHrp5Om/6cDpwIGXFqyiW4gBR3u5vRZBRdWg6eolNspELCl2DNBfiV4A65w8Q4/cURAeniUhZOFc52bxgFR7gvRtah5zMNAfkxy2/bpVi3Ebl+zE0YJQJJeiyxmWkAMCsBcVLSpNgi5pgTb/KYc6lU8po4aeaEq3QK/iwHOz6/7aC5AiH7rBCXkKxoc5BKYHXiUg0p/NmakJhBQy6JEHs0cf4IMa/JCSfnEysF4G23Ii6RQWoxPVYhISzV8D4hwZxKPGPbK3HU48/GDRnbYOozipiXGxOkCeaYy2FSUwUSakj0MUUnFFK8DBUSkgUSan5bJlJPMBHK3lqvk/SYP14Asxjz9Ubz6FgNkGtf4eLm/a2A4BOwCyhh/LcTD0nzAllAqLP33S3jthQRPApW2bw3OdrsLUyfAlQpyqwzhoDhTsgVrmULQOiWAJ6875Airzyy8R7EzNQqGdOFs4Vx5ZT8SsBF+RAWoBS/WPkNm47cBn7bh+lz3GySebSc5ieAEENgcjm/DCnWNpbi9oqxfUmkq5BuBX2IYGnZvo8s/IlS9krK9KCImWDP6HdVNO0UW1zqsUJIMRyfU5XtrCU/R5Pf5vQYG5pAgkmT1mWT0vISYJMndkj32ny2UlQwcohb2jeaAJu8OVCZTcyYz1eY4OpDHP62qogW9l0hmxLzFmZR+TLGYzHx4CuQgFMFErDgMnF9DN8KbJZ98ciRIGY6sPCyAP/4wYok/njICiTgAjTJZi20BZ0FVeFJmsbZp46bb58Q0/5coKXm2eC5tc8HByXgHDbF9S8zzmFW2YEdpz+kK9u+C/viWxZKxuoVKxntXd6FuTmFrfFUFFerVJvCEZBO3C1ne3P3bDIR0wnY7i7r/OXU9gbIwoJzQzZq2dd2ou4VE6EERqfxTBtxdDF4X+lWfK7pOJQ7J9yk5MnPZpAUNw+sZjosy6zSc7lFbCTsE0KyGdxLthP3D/V0UtxU58tFh/SZeMzIpw/llcW8hbjuZUQafe2bSsBj3oyli7VGuNQnTZCulutkz+pRuAVQYAPw4hcSfK4FP8FS3sJeCBy/JSGrFN48mi9US208yfxlARGtvZBxge2doNpD2Qr7AfnM3S8kZF/IaDVN4r5LdcTty5x5okjJPe55D3AhdczgvAWiOX0thX2pXMaAhXRf85rXsKHVc889x+dl+ATp17/+dfKwzwYsC9cyHgAZixFMihjQwsTT1witeWoRmHjfJP3ZKLW7P3n6APftLC0+X9NJmEBh02FIL2GSstL4x9WACKdIyFvRZrL5OEjBoaM1/gwzY+CKTWBqyVZGRHLaNJNoTo0oE1x1iZPOaarVeC69IfPnGAet5cGYk4446ZixLcwbg83gKcFR7Un1W0ETPvgrpXZRCqWJyNGNIIsUCWLgEUc1O1Ru3mrQHgeA4WPTanzXHKVE2pcukMAswedqm8C/ovcEMuayuE3JJRz+31HesA5XYDBongj+sGx5ovxY3GgoSoIUfz7z2pfwOTgrUKV0CNrDiZ38tbR5YSogxCsLyExWwzA8gfYpyL66mRbTtFHvzIwhpMJQGDP3jGkvvmVsXCxgyBVvMzs5v/CFL1y9evVJJ5307LPP3nDDDeedd95DDz2E+SujxdJieJcAGYs1LCw+Jhh6ofgQcH+l/ILzQq6XnIh9YF69JT+RbHDFmslTQioyDSvXLxgqtR0lxyz1kpM/8waPNK+8t4tWJJOUX4erbTznfTMVmT9ypewxW60lyCwNc90a0Ealof6JVDe4ct2KU7gpUcefdMpw/qI2P2ncmB7Hbq1qHLAIZ9wxFHNCJFUUSGC9RroJbs3EXRxJlHTXronYzJJBrhLnqsWTpYGWj4WMTU7eRbhSQGDQtKCQ9z40wXJu4yaUP2PALiB0WPQgPYqFcUhQNP/R8Rk/StRxgJG7yZVgziSeYB3yEE4ws8lWWHOdYIH4O95S+4hk/SXcbPkdoGf+c40iInjGEFIBEB8u64xpL7TKcC/8ihUrFvDb3/52ImzDfdFFF23duvUf//EfuXrw4EGMYJmQ5Y4Bu4YvNvHhwNBrMwOBXCczxL4jfstuM+yPmmyGgwkUPKS/Ic06w2CGnFy3uIlkC0i3YeqRXDAHJQwNEzBZqImLXONPigi1D4hweJHe1nS4dLA8hG5VWAOGgtwRZUNQIsFEMMVHBttUU4MR4XGC3jkZJxBzvJCryEVaygmEvLVBb6UlPmZrB7iKpclfia8wwqCgNAdNiMgfreaUo42gCH92TpaTTuUIXjQnv0SkuDSG3LlxY6+nwElYI+EY71yUHy/X0PUC7fGRLDIkaIwY6KMS3S6AcKd4gLKuWfLzCsikNXsJdx/ZAIrTgoJ9PAoqUVjmTIFj0nL3qcN9AORn4t4XIpLHTSlMoRmee8YQMFasfC8BWiXIJwXxSEO3+/fvv+2220455RSM44aGBveOcAr1csR6xg7GEd3T0+Ne1YgiYBCgk6MDgCaNf5YTWW5k+jF6BLpH0zuYhUl2PpRJtl0cB3gz+wYAixhyTTHrgOtWnhAzebHYkCDpnKWtZxFZ0L0dQ2WOiplXartakytgl8Fwmhdsjdlzo47Nnj0/6IRIor/ml4xdRdyKcgYcp9dINpO6UIZuk6sMOmJaFRSErhGCcvJnSTfpMBnKIGBJX14hTM1Omb9+bPmIGRniBVp4wXwwRgob9bwwSg0WOGnLPBiFhBAeC4GBo/uXk0ACDTRtlGZyNB7rQoIIL6BEYYyazL7LTrSC3EQELGATpDHD39t4lnhyuG6fevPWOItC0RGwWKvwpdwEWBPvsZzCuySKL5q1RsQ/9alPffOb34SMzz777HvuuQc+hqcxfyFdjF0cznxl4Utf+tLXvvY1+dwC6bPo3h62qeJOAEZQdWer5a+lPmzpqb84VtXmjmXMMyBUKMP5huh4UFhaQ4xfr+Ey89Nmd3aWe9vFqfRu5hFiPgAPD3YGL2KusUWreRLMwARPlCEPcqbJarggnUpnmDoQwKCznQUHWNiO2tJ7GDd1ziqlxzB/ZEg69KpmbC8FHUG4piDpRnPm3Finq0mHi00qEigXTUTDgVKjYSaWSGUC/lLzcGezZX3e8Btq+GT81F5NOUnrxTXpyXQi6A1CYHAkgvypASfSiUXseMKOr9LjDfTYLg2xqZhTE3Q8qV4n2uUtWxjDXvY6dk6FEUq7OQUt3ENELJD8yhy7zsDxJwbY4yCLAO0zrUk7LIY26tJCkJGjPTUt6yZmEDWdLf8g2r5vcExyNxxfGH09qWSSe8Yt8A3fhp374j6N+b99fs6kE1LxQR+q827NDUUxx4lHIkH2QqIZtn8wtedCKh73+UDIb4CkeXanfi4mBwf9LGikzbl+xmSQeCqahSAnxN6E3FWySXDLpgNDQrjkyuHBlRpFrAsuNwMMAQZJIMSROFfJZp5GKz3FMyJuG5wsdmWse5OkdvLbtptWU1DumVzKikCsuQdDwVWMJIpzKmjwCkXcVJcnh9NhMofEDHrKhk7yYtIg+S3Jk2zqMU001Es6bc094aZCXwbXh9c8rexFGOkP8KLo5zrP0uwKRfcxBte0vf7667/97W9DnDiW+SnSaWLscpUpV7feeuupp57KjcLhjFHLZtzvec97oNu7776bRKEWmTXNKVOm6dxZNMyvl/xz5sxh8xR810Ln+T/42XXnbWtBVdZMg7AAMr0gQKoyTODeHfroQ1VCbXIaBrXdBHecVrj60xZu64j9Vcgvr3H5LTXN500uiBEAi8edAP0BtUkvKP0Xs2JZ+Q+FcMl0IHE/82McaMOBQQjwChlt7yIdDazpTaZ9sJop4o0HPSyG4zpijdVr6cp0wLZ/RFMfS4VtJ4WseDrpTZmNUXkzIAe9vjC/KUomVuLxvpBMBkxXlQ0D6VAw7QTSfU66x0n1mb4u7Xd8FU6oMeYEWIRL1hDd2mCb4+1zmJIaXpQral5mTQ9eat4Dkr29hpOElt3+PRp1wmknYrOVlxudY5aDAwwq0ybrMzUtsu0DHzKgCaX8AccP53szsTivAk6odGAgWlpWQUfMH0BRhiMQVmGTx+PmZ0jV3M1DGIWFhtymUEUFSiYGBtLl9WbU26KO9wDOsnUbaca2tH5++CuRSIWCYEjzYYFsSKZhXrOAwj+a39u806SSgz6mqhklhQrMvbaled8fYSpGTS3pvu44XZB8U5wPvfBlHl4GjBo+eh7+jO+tvDxYFjYaxhIOfL1z595MIrl84cLqgHnomCpXbkmN5pgRbr8Zve9JOnv27287eGD3pr08yXR6CxYsmD+/IRxy+vqd7u7eJ598kq5s8eLF9VXm2UDhwSj3M/P0cxv5IVCEGTP0nByJk4Ia9H6tra0gQEfKR4Tmzq2vwCvCzNaks29fR1tbGx0jXSUWDoCPNVo3WDrH4jHywKQcAnN0sIKoSHAmJeWtqKqoQIv+3r79+/b09XaVhYLV5eHSgLcs7DthyYLFzaX8AACZh5u3qvAYxE997i/X7bRRmCpmdH9edATM/ZO1Rrt37+7o6JBpU/AuQEOiRHjcTzvtNO4BFCt9Lsdt27adddZZv/3tbznSfQmL5z8j9L88WJTl6xkz+oblN+oI4/zGwJD+iCebnxw/V/fJPkLJkyvOPUITQz+H/AhJh2W50SiJ8GQqYxiKTpxek45N+mDbBZMoTjuSkzHD00ij9yEEWAFCx2pXo8mTAwJBfvckGyMAq84M0vJDj8VjoZIy0qKxVDBQ4vWZvpceGWZJhpNhx286Lvp7usxE0hQJeKLJqCeMsRJALXJ7oMxsL87OWeTIYOqaI6JM67DkYmgSMETlZ/+s+MCAedRDFCUbB2skZYnNqM3+Mny3C3OT59hwHwXRHKY0rU07cTiPWpJGH8xQrExqJx+VQgUMR0NsdPYms6VJKCIfZNfgNXXnBSDIumSNFYsMX7AMBo5YzoWTIDeOnNFqKiTMt0faEEeplHm3Ib0P3g85bb3O5u37+voHG+e2LF5smjqYdpabxo0Msbh5DO69914gWr9+fWWFeUWQcO+O6E033cTzcMUVV6xcWY98mk1dGzd2QiGk86XRlpZquz2wWfLDLUE9c++SvK/3snc/3UtTU3112CSiPJrLKx60Bwy/2ZJGzvbt2/fu3QsbwVV85h3+kwcGfXgOoVvkEKCZkqC55D6xRLiPcB6LJHnk+Fmhdn19PXTH+yL5H23bmByIhDLekxYsvfL8iy8+1VPOzc04XV3Olu3OQ89sfHrXtraBnj5PMuqkIulki7eORhEoTuB5Rit0EOJB+MKFC1esWIEOrAd55plnqutqs0jRNO5yXkA35KASrcBNiFa0a2Cwmy6XFtE9IlyaKb+avKJD0QSvcaMFfkqoR3GEE+dInOAZLAv4PER4c+Qxd1KJoC+D4ZuJD1SVBi8596yrrjyjhin8ViaPROVowiUN5ZFDHOECuBLw2GgdwRUeBR4doV4eBfcx4vWNl778G+DGDxw40NTU9Ic//OGyyy4jkUdBHjXpr4mTKDcPaUrAoDFqAHlZTj3q1aOdyG3id+Xe7tytp5+UkO2qLUFlu3suGK+n7WdMxJiJktnyGA5PW4g0KZy76MRjER4S64LG+WwdgCYHdjDmFaxDPwJzB/FK8+j0xzKxZCYY9gZ8xjqhD2C5Tyl6yR9CfemMD0vGsh6eVQZ6MYLJSgYEGMIUA9rUAWnGk05pmaFaeiQMReFco7e0DYEimVNKUJ+rt2SA9ySRU7YS9JT0e729jtPW52zfHSsNeE5bHixPM8lWRmqdzt7ks/t7Y6G6xcvC1TkoYimnt9cAXlJiXLn0iRIGaIb5BRnihpnSkVhpSYgKBxLm9YA2bdjae/v9j2zdfcATKgtV1lXUNlbWz6muK62ockIlzlkVTokl3UTGjE6j4FM7nfsfePipjZt7+wf7I5EEu3o6nrKKypUrVy5fccK5KyoaG+3gNO56+/6zZZfzyCOPwL48jTAZ/Hf66adfcckytPrbXTtv/N3f8Irx4shPu6Wl5YQTTiD+2GOPCX/Iw8ODxGsl1uGSJUtOP2PBwYOJp556asOGDVhm3HRkwhAwEJ3J8uXLIWxK7dmzhzwsa9zvqwcT+gqC9PI8hwROOdL1E8gveczRKYML4WnSUYxXfPQRNWB66oIsoUyuoj+KhepCzfUN0b6Bvdt31lVUnX7KuqrS8tbde5hGmvF5U14QZnTEG64sr26oq6ipnlMxB8pELL0fvRyaY4dQ47x58+jHMFG4RAbUoy5at3TpUvKQQr0EYEEf6kV5ekhK8QOnCPNmeEUgQzI1UFFRwdQZAua76Ey7yG+eg0NCVWbHIWkmgdcRWByBAGvdACXESckMBCF49KmsKJ/T1FhVUZaORyMDPYlInz+TXLNy6VlrF/A6y9ssz3yJ3zwJYwVaQTO5Cphya5SAx8JqCtLl6eFnNoISeJ64r7t27eJXx2+YF0B+OZ/61Kd4Y92yZYvQttwq94aJNjwEPK/86pSAAcQFh6cZZACZCD2FuB+m4P4dgQh+/KhEL0af4qTixorLOqK9Udxj6UwoFOwfiJRXZL2FVBXFfPUZFzIBwysOsXmcUob5LHmlmRbM/GPDrRm/MZ1Nb2hCOpX0BmKxaCjg83s9iWjEdLsYl5Tz+KEQ7BeZtQwD8Ucxjlxmmkw5dibkzDl5mDrlN+tGsFooWeKY7Z2M6Wi6lYhhIWw0b9gp9Rlp2MYep7fPwacLwxmGxbIkD3/kF3Msx7jG94xxbk/jEWPZYvcm4mbk2niL085g2NnYlr796f33be95cndPa3vP/Lrys5fVvfnKE9bUm4lXDzyx4/f3bvjrk60DFS3L1p73qtMqa2pYT+88+OCTDzzwAL8yuuxly5ZBZtXV4b17O5544gnA55d15pmLFtQ49VYpGtre5zz+1O57Hnrk2a07+wcT/lK8i8GUL5D2BFMe04JUxjjMT66IYldBbE1z5u7bt++Bhx9q238wXFqGU6qyuqZ5zjwesPbOLvxb/JCJd0dSJ598Mgrw7GF3Yn1iJgrN8ExyO/i10tvyM+d52LRpUyA58PznP58qHnzwQWw+VOUnL2RMIg8MvAK7UB3PMw9SKGz2ByYbQiAG8sBJDFrRcFII5OG3QB7kU91FqwwV4e+lowiHPYODKTKjAyqRk/xUB2MhqrbWVxbKEgb4cOu4S9xzzGj+aiqHXNYH+5z9+02jaNHKhlCgxOmLOA9t2HHLbX99/JmnoNu6xgYkL120eN3qNSsWLamrCFYEHYSXBZx+83yZwKPY028cGZWVToldqsRzOJhwtm7t27x5Mxl4FzlxuXHn5gd5rDjKA5V7yzJvijv2OpB6KOwFk8bGYAUulfySY8SbxkiHr+VvhG+lJ/dWaZ5zW5aI/MXjydIg75883SkzT4Hqebg9FWPUMKzLAi6yKQGPhdXk03ldcs1WYVNk8crGKy0/Dx5iSYR9r7nmGn6B/G55R37Zy172iU98gieJXwuuFX7bZOYHwyshxYnIO6kYykrAYEI3Jx0cgPPSygNNHySP9eRv3lSURA2C3DgjL5M0w8LGk4qZ6YFE/cGhhfwJTFY77Ef3NxB1guGsxUg5fqD8onEBcgzCjpF4eakx8zhNJeOG0TNpzIR4STkpYk8O9vRVV1VAeHxhpaKyNG7X0kKr/O2POFt39e1ta+/o3bd8fsvpyxe0lDmlDNpFjMGbCTuDkKxtvqnOzjc2ZmOEk0GzdZQ/yOwp5JBtf6/T2eeUljv1VSYn3ShalVjm5UWBUVtOhYs5IiOB8xhzlr444pSVGIKmimxDMs7ftqduvvXu2x99ttepCNfNr6iujvV3d+7aeP6aJc87Y00i0v2HP926s6O/adnaAV/Vs9v3rq5lEDkp9iJ0ReDHwsPAj4i7Dy3BRqSQgYGe17729FXlRu1nNydvv/32e++7b3AwesLqVevWrTt13SpGNLFtunq6+dEdPNAuLtmOAweQUxoO8qMjJZWIQ8anrj35nHNWV1Y4pYzz2tZ19+E0PrjxuWdu3dBKddxufvW8WKMJ5Acln3RSyylLTfN/f2vnbbfdBqHKO+L7Xvf8U06pLbdgbt/lbNjwJB3CueeuLCvLTgKHWqhiMOU880wvVu/jTzzF0CwbBpx55polzeYOcU/w08Nke/c6bCHA6BX0TKVMK1mxxFmV4frwIMRCj0+EYjJBKftGSGN49DjKWAj3hpuTO8LDlLJzndhE1yQzgDJoIeCB8ztbd2978Nkn495MY8u8NavWMHeO28uyWQ9toOUckR0YMEL4E8nULn/m/csGHnFSjL/Ckq91eg8rks1n/0ElVEUlpCUS3OZghR3alzzIoYHIkbryC7rxgREUn7tgbdPcCZrbgXrOS2kJgXsCSh6ePR4P43mibXyHww6jZOIxT1gqZTyozuQcLeTbDMggixLwaDhNXRo/DPiVPgKGQCq9A79Sl03devjRkiiX+CVLNvcqEXoT0unBuYVElIDzwXHjuBDwULmnxzjCL5NbQ6XcdO641M6dLS3JdTTwjscYinRKvYPJQIg76kSxuSwB7z0Qw3ST7hu7qrm5qa7SEBWjtCE7EYl4OpnBxg0GfEwJyfabjtPp8fdG4+XBYCnb/lkmxgNNJ4b5y4pWuOfRrYN/uvveh59+rp9dTsuq9h/Yvqix6YI1655/xllrFngCKIDb0Ov02T4T3dCQ3oWR0kqGWdNOLNPvD5bSE9MBbzqYeeDJLfdt2Lhl135/IBSJDIS8mVVLWi4+e92Za+fXMjpM823H2zXI8LNpmrGYrcu6r29gsL8ffxBzWMpKwoubja/9iY1tn/z+zYN9XSefsPzSi85es7KhrsTZ0e788rd/vev+hyvqmpj5jY/+/LNOe+VLV4cc5647Nv31zgfkdfbMM8+86KLVdWXOtn3w0FYmMII/Zh+8C/6///3vN27ciB38sle86vEnnrjv7rs6O9pPWX3CC6543qknNVTYKd7AxX3iKLjRcMJzfc62Lft4P+7qbF+1cuUF5501p8b4HuIxpxrz3fbEApHtkp1Ox7n7oa3cO94AWEk4d24FrxoIdAOZN+3o/etf/4pWbHi3qNIrTwR+Djph/By8nA0OJiqxFm3gNB7na98ecYdEGaZPGE7hJYyA85/OHycIE8t4yuysAPu6Y7WHdypSloBhKTeMykbCgmRL9Msstmx2KkMtYSOucvPcU8kRZW4aKLCC26zQgZ1ivMXFouUh8yLIzWcGnx3Xhu85Y34dHhTL7pZysrXwmPX3e5innvul2KIwNpJ5+myQUkSJEPIJkhS3UfiXJCctIoCU5ISJRw3M7xs1kB9HN3sOUlwIHrEk+tiRLZVOZbxMNgwyd4+fMJMJZO6hEUSr44kYv0qidhVD+ajiSVQCHguZKU6nC0ai2wu70qWP5jZgIRGHlcnJ6zMdLj0vBMxrEafkFyvZ5V1SYGiKkI3XYSVggVSQJA7UTKq8//77MQKY8yJXj/Exn4BhAjwWjNgxMNZQXd6yYKFZZ2JHUnFBP/LEk3fdc9/pZ5178rq1OJnpwrbt6vnjH/94z30P8ABw63lpa5k359JLLz3v3PWV9tsztIXu9zc3/f6ZDY+ffdYZz7vkIjzNmIE+r+exntj9991XV1V12Xnnlvmc2GAm6Dezneh+drQmb73/wTsfeWLrwa5MSVntvPm1jXPmNFc+cd/9fbtbLzv1tDdddeWieVhyffc98cCdj9076ElGEkxkTjaWVZ22YvXzTj/35BOaov5E+0D/Yxu33/P4xsc379vXl0yFawLlVcwPC/q9DHo50b5kX3tjRfCcM0459/T1T2zauXP3rs2bth7o7Mp4oGk+R+QFHNrF80w/FfB55zY3nH36aYlk7E9/+GOnf/4Zqxb84ysvWl5Cp7y7BBvZU7Kj37n5oR3/88e7M6HKt7zxNc9bbua2VKcGw77IniSTekwPGbYESDPpntGCCF0gLzT087zy7Nrf+/Of/xwL0rPgjL27dlaVl1x5+fNecMnJdaGs1Q6dB3lbSEfNzOoMPnGWBTO2m+kNLBGW5cgfM28CnjTvQMZpnmAOG8ubqA3eol9mxSvx0qEeH7rKEUCku7ukuprfbSoS8dl52rHe3hDuV16jXO4hP0TiUgsN49QlKhgFDvDRdBvoVUiRxVWku8GlIlIymbgZkx8ZKOfKdsVLJlBEFsOsvN+7k9N57aOPCtpXAK5SXOYiEO+xryAgIxrQfsM8vL0Bnr0jpPMn94VIORYpOWwAMKY38eiKNNJIQTgquVMfsuttbf78lpnMgocrjbeieDJsbsewQDagEpyGXbAnreg6WpDXKfeKtILTuWZFOhfNHzeDtyZ+sNJAho1kDp2UEkzKXBGHRJSAD4GkuBOOyxtWMOTpDmOoeEvodflV8zuwDly6y4gTG3DCFSlf+b6U853fPXbzQ8+uWHv2/76yMZMuY1pSPMmrfehTP7nnoQPNfbHIqqaO+uSe1YtPveJ5J2N8NPnS4cEOr7c6GgzgivThV7PTZVnNxxJafmfxASfEjynTkzAmYMVApvJgt1Nd49RgYQx2mr2bor0O344taeqJl++JBZ/etvuC9S1063Re9DitSefGWzb96b7HFg3E//Fdb1ix1DgVeUt+bp/zn9/8PyaQ+MOh5gXzL7jkkmgm+Ytf/rKjp3ftqeuYnFKWeO7ZR54JxAJOX+Zj7/nw2tXGYsb9+8we56P/+jX2iRiIDSxatOj1r716fqPzh5s333fvQwwZlpSVn3/hha+6emWphYgif7593xMP3PPME480VJa88NILrrjk/Lm1pifsdJwtrc73/+939zy5Zf6KUwJlFXt3bQ+kBzMDHRXBZNjvS3r8A55QJFCdKWvwlVWfVObbv2dntHt/tT9VHUwtqAldfPapl5x3OqJiaWd3W9eDT266+9FnN+0+EMODXlbRHzELqELsee9lOVE67PeUloRLzJRhp7yyGuuh9WBnW0dXMu31BEK8Vv7zBdXMUWKSLRlgaPy0RHgx5RIR3kh4lZEjp4cJ+S9A8u6Lb/aOO+742Z/v4LXssuddvPbkNbwu0Evyh/I8SLgPTbALqyyf2HM7Y/wwFeklRWByCByX/XnRLUOa3L0ZtdRxecNGbenhEtPdZpTSCWNcQMD0nmafHZbcYLiwLsUfSnrLDjrOB7/y22cORCrnLfnLO5YH/dVMp0n7Mh1O4rUf+/7DO8paFs+tST3Zv/Px1SvO+eAH/6G+wqlx0qWZfidW0pdhgIAemaFYlhBGgsFa5jLzhm6cxbxIB5mjyxzilBOeO2hXHJalnLKgEz24M1xTjrusd8CJV1T/v4/+5/7uvvPPPuM9b7yUzr0/7Ty2bfCTX/5eV8LXnBiEXT7ykdfVWdfUP33q/zp7uklhvmlnd1dJOYzp9PT1rjtt/dVXnz+/wiDB4RvfvbmrrT856Hzso69mzRAN/4/v3HHnA3etP2d9LBHbsn1bOpEKB0pYT1lbXYejdcfOXcwPOGHV6re85crOdufOO+566vFH4Jt1q5ZdeemFJy2pABBsbYYwEYVf+vGdid/edv9djz0dTXmWLmxZsbDppZevx8VaGnIGk86mPdF7N2y9+4lNuJpPnteUiUcbq8Jnn7zy/PWrljWarRq5H8bNwwJZO60a7/SjWyN/u+v+Rzc8dfEFF89tblq2tGFRg8kGGtwyjAbsMvxC/LEQ96HHDtx6+13xRHLFCSe+56L5TAeSBwD3D1wrsx+wwEiEfd0gecY9IgQJBHIyP2B3b4zXmspSM3UN0sUnCtcylo7vlxTDu0rA42KqGaYCgeOyP1cCLoqZR1PxfI4lox8LmCUh9N10nvShGFMepj9gieK38gR7M8Een/PKD327N1gfD1U98ZEzQ04FY2NM690Ujf2/63/Sn2l5999fGhzY/eff/qSzq+wd/+9d65Y4ZZloNbOOer1dnlANEyjT/YbRcSqV1qW8AQgDxgpCHOwOEeszPFLSEPWGe1hZy+Rkuy0i2xSUlZqh02/++C6GLOcvXHLwQOuZa1e99x1X7Olwrvvs12L+8le87s3PPX739i1b6+trP/HeF3/zB3c+8/STLXPmfOh9L2cazq9+/dhtf7u1srTk8ssuvfLSE6CrvqhTEzYEGcs4H7j2Gwe7Bl/26tdecenc+x+JfPc7X1uxfMnb33Y1FHrnPQ8/9PCjePMWLV76oisuZYJtZ7fztW/8lMFRCIxlHtu3blkwt+nKSy+66JzllX6DGHRkWDOeKvPEk95w3OfZM+DccscGX6j0zNOXNZQ7DCGz3wW4QUkQKu1qjTmdA84Ddz2z6sTla5YHajxmlhB/Io0bwe3oZRcsBisNUpZcwY0FvSzGYNoWcVupMX65aobYnIB9A6AgDcTBSIZ6exX7FcqUcRbLniZurxgOlsjhjxA2RYR3ycn7gdjBNITy/IEAQSIc0Z+jNXxRB+emvcw/R/8DtlKTHmcbAsclAfMz13B8I8CaVVzCprsnZPtJ+k+zT5PZDI6uf/8A7lBfJOmN+7yZQNj4qFPG5fvkzvbuhG9+Q8X5ixlEbOnee+qPbnrqrod3n7KkxaypZ6fhcEmFWezJJoj9Zi+IcDn2UE80PuANshi0nkEtJvUaB7hZa8DOQYNe5+YHo0sWh1sanGApmxU79zyZuO3RzXOWnHjSKac8/PCDDz299dNf+zOD9LGU5/wLzl67kkUXp23ZvWlX286P3/DT2EB/PNL9qqveXOs1yz/e8bJ1b3r+uvQgHxhwSgbNspwGLPFeJxVyeKV405te97lvfPNnt/6qbuW7vvXjbwVD6YvPXr+yxjBHyxWnXXbmaQOx+PyFJBtRTD9971tf9T//8+NNW7ZFDux40SUXveKll1eVZScnpxLMExkMMgGKb8HE+vz9Hf7KpqVlgddccnKIqauwERa+GWGLmfVPjq80UF7mMYZ+v8dZfdUqjFeLgkEVLzbxVJzp16yYLKsOBeTFCM6Gm3k1Ycsk4TaymZ2WmRhtXL2ZkFlKxdwxb4LZWf5QeYCXKqezJ+JUlTCzgb6JmRC8PTBULNQ7Qd61D4U5UBbbl7IyFY7iDKUbPvab798wysjR5V3s4OxQqFl5ZGUYNiZk/5ETPSoCisDhEVACPjw+M/4q7EtvKew71Bj6ScbqPGZCBOGpZw8GyqoG+/iSjW/L7ra1c+eTmPA4W9pjyWBVbWmgEnpI9y9duDDq2fLQU5tSr2opZR9jXNDMQXVSfojFLABi1W0IpoDQ4PsIvB53mn1lhuZ7ep2GEB/m+9kf7/j93YxfZl700pdddqazr9/5wx0Px1KZc1atfONLllxw1pLPf+E7O3ftTiTjzXVV73zpSqioYXG44o2v+eZ//kfrjk7mTb37HX9/+lKozRiIEGeVxAxDpZ2o2emJKUSeLqey0Tl9ddXSExftHej/4te/mE70XXbBRetXLWIyPX7pOaVOXTMaGmphLhITnptDTlWD79MfftO9DzzDTOAlC2vETjU4wYtAhe2J3549kJlwxHk6xqKoGm/QrBgBX6YUeZiIFLeTgMzipBBzdb1OZdDggBDDyxmzshOx8KmZA1tWbqBHIHAAnDfAUjluUyrazXbWPrM7JptaWuk0jT+G5c220IEAcjO8D0SYn9VYGYAymY2YT7fE3QFdU8WEA+RNQWxfOFiCW5QbIfN9sKsx0GWCcfYqzZMgTJw7038VAUVgXAT4ZWk4nhGAHVwTha7S7S2t/9mL+UUf//hTT/u8gWCohFUEW/YeMJnYAdnr7O5Jh2vmrl25pD7jVHojJ52womXJCfs6+tujhnQsG7FRQLoPKRCtt3L/7u4/P7TxsdZUu+McgMKD3hg0nyx3KuZGfc5fH93+8z/elurv6Gpv/dWvbvrWL/b95nfbn9v4zPJ5da9/wapqx1lW73zyg+8IZ+Il6eh117y+ln3pEk6d45yxoOTK005dVBq6bN3J6xe3YCamYxmOkK+ZU5kecDK9TrLbGL/+QTRjKX9ywDD0+9/1d4N9B9LJ3sXz61965cVsKxFMmBHiUMqYtp6IMTqJsF4oHU1UY+wlM5eftWpRE6avEx1gHpepIhnpZ6NIw4WeVAK/OVPOeKUAU+aj4kFg1i1qsL6CeWjMKQM1PqTOLDW74ROLlPxxB2l8C6GaLKnMYF8/s689/iA7qabMosxUMOQrga4DqVJ/styXKKmo9DORCr8xZiZTY80GltZXEcDWZnI2ZA0NG340U3zZbDm3xh0j2IwrTzZIWcRi9ULDrph4JJ2Ks42gAYD3OIaCR+sybNqwx8sVoBFFQBEYEwG1gMeE5vi4QNeIXeUec50kacYS64vARb69e/fFIpklC1dv3nOwnRQypVkvEnxiW2trZ7KpMuQZ6HRCXcFAQ1V9Y8+GAw891rHy7Dq+OYuZbD5IHizBwGOE8iu/+PPGzr7u8P2lc5vPP++cM5ZV9mBccj3gPL3X+dPdj2dC1S9ev+K088//5+u/9tDfOhrYkTd68JpXv2ap3V+Cj9bWzHW+88X/x5KW+gC8lfD4Ir3pSgZWP/jqyzavX7NyWTOq0Ra/JymuXLPdFCxKCJlk01b+9TqlbDaUcRo8zjte/Yqbb775snPPXGS/RM8OW360gRexfT1p5m77M2bCcHXYz1rMilB4YDBSXcpGQ05tWYj1bslUjEW3xi7t6Q76fQE2r4pDpCEn6UsFgnjxCZBy0JP2J9P+ACO3loMxdGX9Li5lSFiWmLDRktdThgQbvLjgsWsxeiFavPcAabe26oua7Z/4OAxbJvJiYPKwiJLllfifaR57iMTSIb73FTTvAP0DsbIgzmOjhwziCh8bei4wwN8y6Is0bGiRRmK52eB6WMDXbjObaXaHBqDToAgoAhNEoOAf6gTlarYiQYCOHauFvtKMKWYtYGPf4Gvk6wSRWBwHJh90iw8mVi6Ys3dv69bWbhiBLUvoSfuT/pQns7AJeux2POYrQC3zFtQ37Gs70B5x6iqgGbaYtR+w7YXMg85j7f3JUM3ejh5/5MC2zb+4KeB78SUXvub5i/rizs//eu/2PQcaa+e+48VnB8qcL33knd+98Zdt+7a/4+pLz1xY6o92MX+pMRiKm80WzahxOQZXvIvJTJXpSuMjLvGsaWqwC53Yj2WgtLyEjwYm0nbmEW0x7xi00s/+GeUstmK7d49xUENZV61ZcflJK6pw+dpB1jQi2GgoFuGjeOUh8yHeZHTQbym2hFKZVEUpks2SzBhbdgTZKA96Ny8w4cpqQ5b4YcOVSXYzhnLZSkjeBpjNzdhuxprF5GVjA5iTnS/NRguY0oPmTcWMlTLh0SdrPY1lm0ixKabZkAsj3qwdQjjtSPvCGMxmThaeCbMBEgV8fozeeILlSfjXjfc3ZnUiW7DMrE8S0hX6JFFOORIn5HunJWXUI8voMXwZBoa8abiUMmPAVgwD0MgzI8Fs1MXkL2nGMEHoReM1KAKKQAEIKAEXANaMzMomq3yTBLOFxUiQqnGl8pGWOBYWXXxNdcmTewajg70LmuetWtz00H3RLW0JqITJU70pp7OfhUWx1Qv5xmsf854h4LPPqPjLLem//e1v/3DVSkzkkM8bZJMnRn49zgO7nW5fgI+f/eeX/nHPDjZdunfrtk0/+r//e+TZVc2NDQ/df399ZeU/v+1V9aG+TKb85Pn+z7z/1fTZdexGlBp0vKyJQp1UEO+uxyy3teOpducEqAvyZBdKM9sLaoSi2XKCnXtZcGNmkNl9lDEzDVNAjzGzPzTk6IXIkW/eP+wFc++wmxny5U3CDCILS2IIw9RkFKYCIBbYmtNQuIR/KJo16cxcYsiHeVZegKA61OUqR8mAOF4BhJgknaNhJGu5GvlerptaKYIkw20EU4H9DZoIXIu+9i7ZozRK5PsCZiCfq/y5QeIjKFZORyS6RQ4TgXoJIzPYOnJTrrLVZ6sw7yNDwTofsu95Q6kaUwQUgbEROOT3NnZWvTIjETC9PvYLbADtJgIlYYYR8X9CXRFrq+3Zsy8RG1jcUHvyYpbFtLWX1/QnneqMmTiFB7amnJ0BIQ/LGwGnsYyxTHra0Kb2gXX1ZexwVI0D1XE6GPTtb08HMvPn1i0rdVYsd1646py7H1t98713bdi+adOWx5c1Nb7knHNXlqNMzJPxVvvKzIApm0vAcljchqqImT/+twEvLrO64E/sPYKdhitHs/5GMsuFbGFEIJBlTzzTTAmDgD2YqLRTAuZudh+eXIrJjlhEESGYmsEGORJyEVEpp1fuKvyZ5T9bUkTkLhqJ8jekOfktioh1C5LJvB8YDuYfjmxDmA1S3wixXJOyOd1yuY/ev4dqIErwYmTbKPoQHwnQ0VNJJSsCxwsCSsDHy50csx3WccoOsezMatjG397bxzeyIaYBNpr1OVt37saSWTK/cUEZjt+Bg4PVB9iyqtLf1tbtSUQWNc8zG3fAlrC44zT7nRXNVVv27Hvwqa2rLjrZ1JmOBNNmxu/+vdvS8Z6lTWXV7HqIrZh0XrCu6ux1L/rdI8/xAdfV8ypfctaJDeZxo6M2+9WycJZguncPXFtq/ZuhjCdr53m9fk+m0nCw8RMPBQjSnphslJXH1+UALnWby7hL09C8YWa05jKFsLAtt3JGst28T9ZimQIEkZxfmSvWtNwGWyOsPpKURKeRqaIq7y5mxZfJgnD+EDtMMhxshNvP9Ga8QZYeDQtuXjd1eD1iQLsXj2LEYjO8cmqThEO1PIqKqGhF4HhBQAn4eLmTY7UD5zObOGDHsht6idmO446HnsyESs86fy1O0H7H2dPWwfAh+04wDrmwvnJb3N/WG1tRE9q3b4832b9ibp1ZFuwJmj0gmFLkOOevbtmw8b5Hn9v1dxAwvS8zptIsjfEf3LkzlIicMKeOD+X6o1BcOhSPV5WGX7J+5UVrPjg/6K9IpaPbtocXz5NvKogFCbd5PfCu+TQv9QhdUhF6MhWJVcmDTsR28cYMtTNwsX8Nf5tTCrh/lCEOJQfSNqclNc45IR0RQhQmCwEqhhLhRi6SY/Rgrw67hCR/1qYWJnWvutJFml0di35GJd4tTDarXTa/m1vSjYKoA0+jF58vLCgcdQK2vDueSvktGi+vXlcEFIEsAkrAx/ujwOQoXLF8hMSu+t24r++3t93XyQfC65acuqqSzn7nge6ML7hkQRPkt2hOXWJvSWv3gLMotL+1tSQVWTmv2o6hMg8rjKu50nEuOLnlP/83sa2ts4Od1rHezP4blSxnbdu1v9IXWrNsiRk79fSz8z7LacrNroXeyqA/zPBtKhJuqYv5w8avnIEm4R3sZOMnlv3m6cShTXkiUYZ0xnLZfoLrXDIsZR3UHPPJzFyQc3tEQzIjBH8vpnUeAWdHaC1/0yZrWXMy/P6POOXiIfxDFsuvXKNREoyBmxsBzqbAvlw1g9b5QV478lO4Tj5Tr8npZabW0FUz8DxayM8z2vWpTLOu5jyBhyKUd1GjioAiUAgCSsCFoDUj8/qsN9YLfTKa+sz2fTs6BnuTvj/dt2HpqvO6o86+jt651eXz6sw6Ira/SLX59nb0xr21+/fvK/XGljdXGbPUGx502Pqf/525Vc68OQ2P9Cef3Z1ZPd+TKq2GS/e3ZTr2DZiPlNeYXbf8sBvTdSGTKJ8cdSqrwj7jECbRDBizvIaPpDMVDLn+dCDlYyMpE3gW7Yci8MEyYcnLN/6MqCwjG4qCjvhzI2ZqMYFzw1lZLizjX5sPKXyDgaucIdlYxCjKVeMQ5mtLdhaWLW2EmADdu0GkUV78w0Lx5tRMpjbVIR7tspXaaiB1W5+RQzr+ftMQW4SDEZ6zyvOlmevkdgX5mNI2FPI0GkqkgXkknZ9+LOKiqX19GrW6MVQeNa8mKgKzHAEl4OP9AWBU1Rug+4d9Ib9nd+xzSmua6uc/uXXfHx5O1VT4Iml/07wWevSgz2lqqI+lu3Yf7ByILOpsPxj2BBewlpYu1x+iOMRp9pHKBM84bf2dtz/+0ONPvWzemkG2T8KMbovE46G6mhbc2rif/dBIOuXxsr9TuAorE6qCTUMlPg9fADLBa75eh0jYkQU7JYaKLU2yxYbxwaKNt4wvuqI2lJ8NuZ499y/VshMFJiYiRarNOsAMY76CbjbBHLRNRjKcVsLMM3KSCgETONjJzERtC6WSPDkmQV4MTBZbqbnKDpx4rll0xFuE4XbqtFxOVv6sBlzHSc5cbuZt83Vak2uYhlmmt2rYi9b1bE7JzIJfiZhCuWISl6MUIy44uKSen2dK47ZN2dpcwUCRU0SuZ6/Y9x03l0YUAUXgsAjkfkWHzaQXZy4C5jumrEKCOvkQAp/S27mPTxSFq+t6Ysk/33bP5u3tgZKy+QsWSYfaWF/Lh4u6uvsHY04/n3/3ZsymUAS+OZ+FIMkeUSeftCqR8T63ZTs2cY/9Qt+B7kgoVD9nzlJYgZxpbzjtL2FRK4VgQww2vuHDyqeo3b3KznqWzzHFWA/L8leeQgoaXzfbPULA9g+lTTpOav6sPWkiKGp6fP4xRz6Qaj9SQCsT9rv1ceO5hpqhWmvx02RoGE87aSaYKuyRCDO1TL0iimsSMdKN99j9yy9gdmc2otin0+Yz5YlInTRc/rJ5TE5ecBHrSibCRUmRXDnWNrWagCj+RA5vKHKaf5QXKTJIopQ6+sdsc0dWlJ/Mm03+6ciseq4IKAIjEVALeCQix9m5HcGly89EPJ79fKKnbbCya9f/3PCON37k0090DOze4KupmLeiNLQQ+or3NTcE5qX6/tYa/lXGaa07rSmyqxk4fD1MK25Ml8e8/r5AJfshnlXprI9t6etY+qMO59JGs5vjlmf/Wh3eeNLCZZXWMrJ7YpRb/jXGIDzK7lNsTQH3hBHIuZeM/JmAeZr1ukLCgXKWJkk6RzPvy12X46aaiBGBzYyFPNIErM7mK7XfNsiemH94ETCWsRt49O3TjxwJbsS+DuRSR/yL2GxAWxv41+hp1j6NGsb/iZmXj1zR8XPnch6rf/Mgy69Smp8DIf+KxhUBRWCCCOR1OhMsodlmFgI5owSza+s2OMi/dOlSLNfX/N2rKksCyf6uxEDXqacsceLpAJ+4b2ouDQUjgwObN7P5f5LPEpi2MgE5tzoXnkAOf5dcdFGkr+/eu7cjHpts3/6D5GtsbCS72zPzbPGnXfTMel5UW0VAEThmCCgBHzOop6kiS8AMllL9o48/iSP6lHXr4NELTzlhYUPFQNv20vQgHwdkmS/czNNQU12Zisee2rCJXQmXLFlilIauM2wPlX1UMNHwzl543lmZRHTjhid6Hae932lt7wqEy+a3LCQ7NckfBYR9syXNWS5q5GpQBBQBRWBWI1B8Hq9ZfTuOQuONxcrew2bVzRPPPpdMpU88YTWuW7ymL73ozHT84fVz5xsPqvn+ndlZsLm+dvee/Xt37vAk4gta5hn65n9LpIyy8rkBKJT9HBurS1ua6/fHI5v2mO8dRlOe6rrG6gpD4fzFE5EQGyCPWC90FBqnIhUBRUARmLkIKAHP3Hs3Mc35SG0ymQr6+x2nrb2rIlDS0GynM6ejl62av7Bp/uIKsxOzmRxkVs46TbVVuKb7B3rL+BZvbZ2pg5nNTHLig4V+Q9GQt3DwmaeuuenOR+98YOu8pmpPsLRp3gLyQvOQtS/DbGMz4svKHNkimCLE82Y8GcEaFAFFQBGYzQjQMWo4rhGwnw+ADDfvS/OZWoZpq8zXe5wqr5/JTmvrnHlscoVLOsYX8cwU47m1FQEn4c2kykL+miqzwYQJXi8eaZgVbzTfw2P9TnXIOWf9mlR/F4uRNjyzNe0NzV+0hHm95GexbQiuNtN9+aRSilO7/NaIOcy2U+ayBkVAEVAEZhMCSsDH+91mSY/fmLiPPf1cIBBaumSR+XIuH591Yp7EAX+iJ8BWVqwEMh+j9Ubi0YVzyrzxSNiTqCkvqa2yvmezcNYXsFtRsqCIZbCeTBKCXTInuHR+Y1dfdPuOPZi6ixYuAUpIOpWgNrsPlN0KKs/qRQ5/GhQBRUARUAQMAtohHu/PQTrO1Gco8bltO/x+74K5zZi7qQQrcFKV/mRtIBXwJZ2eTpnnHA74W+r5rG5/2ElWlQTKZadG/M8EPn/Lvyww8nuTg31eJ8mCnLPWruFzwn19fVxvajareiDgBMa0WUQrHCxFOeqTZqDQoAgoAoqAi8CM7xbTbHBoAxtHuHG3eRrhe7SZVHqAPbA2b+Gb8+vXVEKT5jPufELB7GjItlNx9oqUr9KWeLzzypxQOlIeTNdXlfFwGHT5TEKMjR/MWLDdhTnjL0VAhv2fn3feel86Nq+xho8u1PC5B0uzIfN5+ZEhzw4eeUnPFQFFQBGYnQjMeAKOsdewDeXlZgOHqA3KxENPs9cf95Vs358MlZSWBT31ZWb+c9rskMitx0jlU8GsUeJbeKaE30lUOE5t2DPYsX9ZSzM0zY7OZPeYr9abYLZkxN1sfMvJkoBTVerUlvjb925fvmCevAdx3euHne3MaUaQc4PIpmx2k2QrSA+KgCKgCMx6BGY8AeMC5Sbu3r2bo9frDdtAZNbf2RwAniAzkh97bitfQ2pprK73OwHIERI1BGxZ1+zCZLc1tgQM065bsWBebdmJS+YjIpNMZQYG2McSfiW3IWCKcpZOY+dW+J2rLj3nxIVNL770/KD93i6yTEA+n8kzX8qzwof8z0LTkkmPioAioAjMagToIo+H0NLSksnAFANiBzNlN2hmFWmAM4NRx3lyy87+wYH1q5YxcMvnitgdmk8C2sXAbK8cgFqZr2y5M1bilL/2ZS9Ys23/uuVl7MDsZSvL0jJjIsOqkLaQsOFXOzXLcV5+XtPSquedvryUJynAIDEmNYFvIBp5eKzNm5DwvLWbKWiua1AEFAFFQBGY8ZZiIpEQ89fj8Qj7JpNJZd+hJ9sX6nWcXW1dyXj8tDXLzMeFonGvF241Dmbo2fGUsFQomeXFeMhJtNQEL1q/AAoNkmhmYFHG2syuUPMxPyjbkCnLhc9f04DdHEg6YTg3xeojmBeftt+axIa2TXkT+FctYIFCj4qAIqAIDPkGZyoWgUBg7ty5oj0WMBG//zgx66fkliR8zsY9me7BaHNz88JqM0fZSWMSs02Gn42tzHcQvF6+7WMJmKnLCSfeTypcCbmaBUtmTRFHPr1j+NNQKRfMSSaTThlGHUzBvp5oMsT3fflWkPFOG/8zvC1/pkg22E8M5U70X0VAEVAEZjkCM94CPnjw4EUXXYT5e//995eVYY853d3ds/ym5jef7TMefvLZSDx16vq15sWEfTmCZmMM2JHFvxkMVw8fCjSnJsCg/owvkyix7mlDtWxRabagDJjR32ywMYbZ7bdfK/ypoJMuCaS97HmF/9l8XJBdO8wsL/nD5jVmb5aH1QLOoaj/KgKKwKxHYMYT8Gc/+1l4FwKuqqrq6enBI11dXY0Xetbf2SwAMCsf7k2mM6tXrxqM8fl6kEnijuZy2gwH82fYN2enZqyxy95VxtCNDBjzNzPYlzN7rSPazHA2Af7F5RwMeGI93eaTv6xYSqdk/nka8zhHwDnJuXMprEdFQBFQBGY9AkXnrXXnT6VSfBAvmb+oVC65GYjcddddt9566ze/+c077rgDn+jg4CA0DAeIFxpWlvt7fE2KhhSZGeXHKSzcRiMhQh8GLdYnvMnsKLOsyMun6tnd+Q6fs2HnjvmxviubnWa+lRCp4rsM/kDa78SSDntwmAegAr89hGl2jVwq3+bNruQtM/966lo4ks9kpTImbTnVRAlM6eI0VFVrz8zBax+o8KErgc2SJFIPveAW1YgioAgoArMLgaKzgBnThVlZ3Qtrwr5wMEHuCVOr2tvbfewHAVmkUmzA9I53vOPGG29ctmwZ+RkA5vu1nZ2dXEUCRyFgiNmVgH0soo7Po+xJAkdaI9WsA/I5m7YCVnLlsqVme2aCvJTI5lbHJwraKkVAEVAEZgYCRUfAwAbRQr1Cn9iyYs6SDo/W19cTgUeh4dfZAPti8popQZZ+KisryUARKFkkkBnXNMYxW3QIMZPhOAj5dy4bTxvuhWMz6Qzzo4hh1j720IPpVOK09euZ1WxeP1hIRC6DVb6A4wAPbYIioAgoAjMMgaLrhcVabWtru/baaysqKiBRArtrcMQ4JgUzd+vWrV/4whfg1E9/+tMMAMO+Yi6DPdRLHCHiu8YgJufSpUvJxpYdRGbY/TmsusYf7BIpfAu5MpzLIeOBgIkORJ3tmzaW+HyrViwx5Oz6rP3Gi2ALGAnZIOJyZ/qvIqAIKAKKwFFFwAN7HdUKChWOJ1kmM7e2tmKwEieFlb7z58/HxsXtDKdefPHFz3ve8+666y6IFv1LS0shY+zmK6+88mc/+1kkEmEeFikwLrSNEJFDyo4dO0466aTe3l6KiCsbmTNthBgz1nyUCH7FjCXYAWDYFUc9HwtkeVEwkfIyxkuGjds6/v5rP55fV/35a980x++UptjnmdW5LBMyH+clxpRlkeDnKaAAR7MISYMioAgoAsWFAMOOIzptenIm/czo/lwGBosIaGFfFOLLtVApDIrbeeHChXAtAVOYS1Dpb3/7W+xgbGIyEHnxi1/83e9+FwLG8BXbFz7mEpk5wrIckbxy5coiauoRqzKK+8Lswell7hVMClE/uXFTyEmuXraEfargabbHMP/HI052QNhsbEXIGsH8U1wvY0cMkApQBBQBRaCIESg6AsaileFbeFR2tgI9EvEtc8SW5X0HSmZA9+STT+YI0WLvcumcc85paGggA6wMQ0O3Yt1ySpBbwKLhIr4XhakmdMnR0DDEybAu7EvE7iuJOdyXcJ549rlQKrlu9UozXVlGfo2DOu0zryam3DAKJ40/DYqAIqAIKALHBIFhPfAxqXGcSvAzYObCvkTcScsSgVChYdhXTGFOZWwYvzRzr/bt24docoqxS5wMUhn5JQJVS+T4OAqLZkkTB7INxjXNzlaO0x9zdu47EEzGl81v5D0LMFIp1gGb7zDIJCz33puIsC+baWhQBBQBRUAROCYIFJ0FDMVKw3H3i8efU8xcjuJbJiJ5ZOwWul2+fDnznKWU68HmlEuS6I7yuowu6cfJEUblz+fnyGZUsUSGL/1CwA8/uTUdDK+a09RcbZbwgkUw4E2nk36zSjdLvlmABAgP7Mufy8vHCTzaDEVAEVAEihMB7W2L876MrxV3jj9mUxn2JVhz3+v3+QKGSNmtY+e+tp2t+09asrCcVxZLwOTKmItmQZcpggQmY0lxOR9GyJKkR0VAEVAEFIGjgoAS8FGB9WgKHSJJw74SJMKEdrv8F3bd18UU6O1JT/CMk1cb74H9+iAsze5Y5I3zlV9L3sgyf1k5cHM2lpOr/yoCioAioAgcLQSUgI8WskdTrrlrWR52uZMZWKkM85+jcCz+58ef3r6ndd2ZZyxf0ID5y06TAQ/+ZYjXWMqZnHM+n3ApZXzYGhQBRUARUASOCQLZAddjUpdWcnQQGG61xll+5HPueeDBvkj0gkuvsN/oNRtQmq8l2E8kkD0QsHsyS0GOdtkS48foJzt0HB1FVaoioAgoAorAEAJqAQ9hMYNiQ25olIY35c/nw4D1BZ1trbHtO3Y2zWtZtsxnbNqE2SOLLy3YxUdMdGZSWk6A4VwJxvZVCziHhv6rCCgCisBRR0AJ+KhDPOUVDJFmvmjGdq1jmS8e/eWvf2Ny1TnnnWtGfyFWc5P5h88ksQ0HJG241pq75t+hiKTbND0oAoqAIqAIHG0ElICPNsJTLH909qUSy76RSDqZce68887Sisr1py8zTIuty01mk8pkAk8zxRMmyyiBRMvMo1zSJEVAEVAEFIEpR0AJeDxIMzHW1kJgUfaWsvslO8leJ9k96Dj/fmf3C77x1F8GTLqT6nfi3XZD5vEEjrjeHXMS/Qej+/awcIjPJ6SdaMy5o8254CvPfW1jajB10Ek+m0pGdztOj6mlM+VEPYk0y4xQ4ADbWrGdc7wXCYP+9E6v01Xi/e9f7PTWn7T4xCVrgslzowkHK5iBfq834Gc/ylDICVR4w2wMZt3RdsiXUV/zhSS+5BsKOiUjtNNTRUARUAQUgaOEgBLwJIGNxJwdu3dt37lzxw5sSivENykwmQ+VTFaFy3udQaiQTaz6I84tt2xt3bv7wYce8fhKHU/Q5/MzacoM22bMR35NjKz2uwmmSuY/80+G7y84fUnnuV3b2XHz7FPX14btBtAmowZFQBFQBBSBokNgUpxRdK045gp5HJ/PYSdqdsFsbT2QyG0DaV28BSoDm/r5OmA67ATYPQMCfuiRrXfdfmukv+fhxx7vw4DNYK+m+T8Zh4QDTtoL+6Yst7LDs2FlFhj5faFMEJLevCO9ed+OyvKSi06ZZwaALU8XqJBmVwQUAUVAETgWCCgBF46yIT3zPSF2xGR3zJ7+AchYXLp2n+UCBdrx2FQ6UuIEMKTbos6td92bScQWNtf2DUaf3tvh+CuT8TiuYT/1euBePnbkxR/OWUg+IIjl7fP7eCdIOA89+khHvOeiC8+t53KCvAUqo9kVAUVAEVAEjhUC2kNPDGm7gyNZ3elLcF+E0Vqvr6ury9qhhhK9vuxnlyYm1OaCvPmmk9ebwhPtOL/8w2Obtu9Zf/KJJy1vqaiquevxbVGnmk2tsW4rkM1AbdqLJYytbIxbCqQhY3+MMyY3R5ynNz4d9yQuvuCkErMrdIolwRoUAUVAEVAEihMBJeBJ3hdmErOjss/v7+rutR5o8ylA2cuiMInGkjVTn/yOd1u3c/8TGz3+0OUXn79q4ZzSsor7nt7RB9cGQ55U0pNJJ2DUjI8lRuQ3/9ux57jjizt8q9Hp6Ej1dnfX1lTMr3X8KaekxCwL1qAIKAKKgCJQnAgoAU/0vkBmWfMXynS8DLzi+PV6/b39fcYC9oCkJzkJxjNyghirsPhNv/tT90Bs/Rlnn3ZSeM2ysoDfu6MjsjdBvX4nOWg2cvYHHDvVi/lWZgNn+/VADG+qjXicBzY8kUklzz5ljfGIG3V0CHiiN1fzKQKKgCJw7BFQAh4Xc9htiFezMbt3YyQaHYxFe/oGrAVs/MNDO0yNK9XNgCUdS/l8lZtad2zfvr23p//yy84uDzkrm2Dd1GDGv73dMfJjA04qZtYOYSk7TtgUT5stnr2OeL2ZQn33E0/4UqlL1q4jJYFPOp2xG066NWlEEVAEFAFFoIgQUAKe5M3A/vT4vMFQOBpL9A9Yk9Mzmc/ZYzT7SsL7o/F7Hnw4HAqcfcbaRQvMdCys2FNOWOL1BZ94bg8jvjiUSYqlnAE4mMW9Kd4EUo6Pry94OSU81+ZsbGutqag8aW5JOcPKjjOYjFrqnmQDtZgioAgoAorAUUVACXgC8MJ5w4IBDQKGO1MZDx8fGohAh2abqayPeljmcU78fifGd4rC9Ru37ty/e/sLLj43kDFGbWnGWbmgOZlKbN/XzlwrY/lGoyGfE7HLjsz0K+OVNo7rsF0G/NjW7QM+Z8WiRbXGYW2YNxDChB6ndr2sCCgCioAiMF0IKAGPh3we+8KvhmJJscYuk7DMrCuPt7O7l4lRfAxwyFU9ntSh6xmnO+ls2NO9s62zrtR3xjJPuc+M74Y8ztplTYF0fPPO3czDYtA5EYGpzfxnM77LRwXTqWgmkrQTv9gJ5L4nnop7/evXra2EvS1jM3eaF4ShijSmCCgCioAiUEwIKAGPezcMqzLBeQSVcZrk835mC0dfe2eHzeMdkWdc0ZIh6Xd+fcdjcSf8govPK2NONFIS5riw2mkoD3R19exsh4BDvpD5tGBeFSlsZazflMfZfdDZumNvWWn5imVzkBnIZJi15cvPO0FVNJsioAgoAorAsUJACXgiSI9i2WKMptN84M/n8wXaD3YwGyrjNROTCw4ZpzPm3L9pbzJQeum56/2RqFlyDNOm0yxOOnFBI4bshs0HGdP1lpUzX4srSXPTzIKkCmpnuNfnPL6lLZ3ILJ63uKbWSfmcoM8JOXFvJqnToAu+HVpAEVAEFIFjhYAScOFIGxe0mRidSKXYAMvj9x3s7IB6MYdHIeoJiH/02fSgv7q8prG5sjQUiDsRO3KbSQQSfWtXLgoG/Rue28Ymz3YbrDgbTLIRR5J9O3B4p9gG2mljA6xnny3zl51xwimoFjXqpYKJjCeRdIKcaFAEFAFFQBEoRgSUgAu7K/k2LkPAZt5Vxtvd3YuUyezCQbGYc+d9D0W85Weef3EZMtIDOJWt8zhd7kuftHyRJ5PasmvfIKyLv9nvYYI0XBzF+2zKsjuHg3X87O7dYV/4zJPmQt3MyHYyKTP9KuM1S4g1KAKKgCKgCBQlAkrAk78tuKCZC0UYGBzkX04mQXeR3ugzm7a29wxccsYCs5kW633Z1jmGdZvwez3zG0uY6tXVOxCF3pnyhb1tCTjptd/2jacyiXRfPHmwp4tdrxY1Gb6FgDPJhBmz9rBp5eRs8sljoiUVAUVAEVAEJogAK1Y0HBYB80GDgMfrD+e8uUmnnLVAzEYOxQ42+iqxQrdEq3c5zlx/sDKB/drPaG3GUw71+RiFTSccb0mfxywfItQM9gZ8bebLwWXzD3rnbHWcnz3nSUUPfmJZ+vms3I0EImXLzMSqoFPhK0/HYwuCzoVzyh/f0XH3pr7a9RXlaX+pJxmMZ/yBgJPpc2oqdjree/d5U/6G9ctCczCNfeaLhE6w3HG6GQpOyY4dh22fXlQEFAFFQBGYFgTUAp4A7DnqdbMOocZE6DRbNA99kNA4is1CpfzAFwSdeNqs7g2UlphVRNixfRGsVXaq2vrcsyG//5ST11AgFGQvLVOYzxMSZF3xokWLqGLfvn2kmCFfpJsNscw/HBAS412A1cDhsGPHoOWiXB2hh8mnQRFQBBQBRaA4EBiikuLQp/i0yAyDyD2xkXQqxerfTDweFxZkYypIFgId7vlNw6dBu12G2byDb/oGy2NOgHnMtz0W2brxyYVzG848/RR82D4f1xy+uGD5N0u0q05YmUkn2aVy0A7sAhBTrw3N5wi4p6cXh3NVVdUw7LI8PCxNTxQBRUARUASKBwGXUIpHpWLXZMisNHOwMnwVGAt4gKFXAkOzcKiHDxZJ4F8Gb1mVa3zBYJ1gaDbJRxJKw1XNWw44t/z1Nn+i/7wz11dymW8tZNLkzH7tKJP2BgIUWdBSBnkfbGvti9gNNmBwBolRwlIsc606Ozuxietr66TK/Ds6pGpWH/1HEVAEFAFFoFgQyO+ui0Wn4tIDEsMIHqIyY9zKmUzBKispJdLTw/cJrc3qDdq9IPMakWFPDLM9pDkGcRSXOKlwxAk8+tTG7t7BU09Y9LzzlnLJEGqaRbxOedBawCnGck0oL3VqK8uigwNdPdkdrkz1mNrGDjaTrDo7OvBqNzTWm4VJTL2y7Cz0PKS1FaUHRUARUAQUgeJBQAl43HuRz76SOcvBqVTC6/Xi++XY2d1lrvn4Dm8Aq3SEC5pP+Zpv85oPBmMLV6WCNe1x564HHuVThpeffUp9kG2e7eUMu1oZIziTYgGRmcZMdk6XLJwPx+/a22pHe+WWsfzJmNnU1dXV5fN462trJIVC5oq6oEFHgyKgCCgCRYyAEvC4N8eakYbsTOAEyOSPEWBWCkHA7IbV29tvONRuwwwpEoYhm0mFGANOm+VFjP4yVfpPdz2xdceuBfPnnX3KXDNobOZP4Zr2OYmYk0l400nXhIWAV61YmknGntu6g2FjNt8iq/kYklHJg9+6r6+HwePKSk5JZUcuIWKO5lSDIqAIKAKKQHEiMIwmilPFadYKyvV4zeSqbIDVssSWTiexfUtLSyHgaDSaND5jNtGwzJjLnSVi1iNlknzLCPOU7zbs7nduuuX2cLj0Da++vCHkJKOZMF8usmuKM4koOc2fMWRNrcyUXjCnIRmP7dm3HwKGpmFeBoKFZjF2E9GYz+MpZYssaxNj+mbYiCOn5JAiGlMEFAFFQBEoJgSKjoBlYBWI2IBC1uEQH7BznPr6+gS6wcFBiUQiZnmtm01O5RIzk+FF4ggkLoluTjmd0DFvFrSAZRhZ/sxmF+mGxjpoeF/bfj9Lc83XCbPUZymb8VgK8ZfGtCWlqy8Jq/76lgd6osk1q1etm2cmZ1XKEmMfFOr1hINmHys/fm+fMXPtyPHSBeXlpeHN23a0s/el17idvR6/Q32O09oaCZcEq6srMZSNAc3ULQxpr2m4Z1LfJ6agBkVAEVAEFIFjgEDRETBkhjXJvGJmF8OXkC7HsrIySLeiooJlP4ASCPC9n0xzc3NNTQ0TgCkSDAavv/56jlw1XwlMp4lLZq6aNbI2TIaALZFK8dzRWKaGBZmNnEqjFWuL+vsGA5ieNjOYGgIUImaqlOFgXhMwkNO+kJ9x3E372p1AybqTTywhp52ihVFrGmbnVRk3trVl8TaThqgSn1NfU5XxBinHXC9jAee0Mvik0pXlFaYKU2PWOrenelAEFAFFQBEoXgSKjoCBKhQKifEKd0JvsCk0Qwr02dPTQwYhYOzdL37xi/v37z948ODTTz/9/ve/X0rB3LJVBQQMGQv2CCF/TJbrFnY7DETQmhlyNSH7L1/a9XuNSvX1DhV1dJjvMaSEga3NawoZ6vVnaZXNNZIp3hAwxjft2MdXDM9cNw/3spOBkY332SoqVC08ypuFqQ8CLvM7C1vmefz+Z7czNmxp1mjB5QxrkKi9oa7G5jXsO8lvIpqqNCgCioAioAgcOwRsv33sqhu/JihTjFrIUjzP0Co0DCuTXltbC5VyCW5miyj4uKmpqaSkZPny5eXl5QcOHJAKsKGhRvJQFn7ilDjZyDy+BiNy5GzNvGSzs1UyhcfXgzINDeZKdha0ZUWuegyfmu80WEbGPWxx9pnvFbJguKs/SlvmhJxSLF0zXms4lQLZl4UcxwvVU7+ZCL1gHtthPrlxi1C8KWOCDwJOp1N1dXVynns/MEysQRFQBBQBRaCYESg6AsZ+hV+xVmFcPM9gx6kYsvile3t7oVLykN7e3n7DDTdAyeeee+5nP/tZfNSNjY3kITNcC8OJKcwpHAxTwtaPPPJIwTdDaPCQYuzxzNQn6LOmzFjkg4NRS7lmeNhiCrOamVIwZY6DjQjytHY7vlB5WUkId3m1J2Jd0yYblyyt5u4IM79spRA0RvCClvk+f3Dbrj1semnS+d8ayN3dnZwxBmzeE2Ta8yhvDFaQHhQBRUARUASKCQHDZEUVsFZlyFZYE26DiTFn8UJjB3MKlWLXtrW1/fM///Ppp5+O8s8+++y///u/b9y48Uc/+hEZSBHSpSAG4le/+lV4ur+/n0uMGRfc2FH4DPsSLTxoBcUyjgvfJ7s9nT2ZyirDivClpVXDoJZTcVbzgaOEEy6FZfe2OcHSsoa6Ui57jD1sGJdszHA2qg8FU5zK2Wza7/POba4Dln19kc6uRHV9wJej6e7ubvaPrqnODnJT2ljZGhQBRUARUASKHoFcR140isK76AKvfOxjH6uvr8eQJcCdxDmKV/nBBx/Emfzud7/7pJNOOuuss173ute96U1v+uMf/whJSzuwfclJHPv4uuuu27t3L2Y0ZHzHHXdMoqGYsCNITUjZrvYx/mEIGN2Qj3AumVFaY4zyZwpm7Vqvjw2j4eb2zv5kKt3UWF9C1jSzuE028vCPqUUGfm0ctjYJaXbncBqqnTLo3R/iqwyJtPliISGZTuIS4HWkutrUa4Ku/RUc9KgIKAKKQNEjUHQWMEwGaNXV1e973/ve+MY3wi5QKWYx5izcDBlzddmyZRxJZNyXCNbw2972NgziXbt2rVq1Ci80U6BFDlclwpHElpYWUqYkYGgaK9hv9EEys67tiHWdFW7JlAx2wlT2HcfnS0aTnpAzGMW/HqmpYuEQu3IMOEFMaBMoY6g4L5jPC3tYcWQWQvHHgmMwYMbZosRCszo4k6GlON7ZB9q66vNKalQRUAQUAUWg6BEoOgKGzAQ0VhkRRgAovmgZA4b/5OqcOXO+//3vYxMTYGgkiL8awoa/ySNHImJej5B5+NO4Jx1MeNlhMhV2ep1IiTMYTAV8qZJUHAO0JZgOgGDVsvTm1tZ97f2Bfide7vC53qC3PNrXHS73lpp9pAPJZMKX8ZaWleFnPrD56Sq/f8G8ZXE++xtscvy1KFAD+Rrj1VraPt4qoN1kMJb0hcPJYLAzw7nzytPn9/73D77V9tozQk4o2h3vad1dt7LXU1/d3XcSS5D54qE/GGRFVJS9tpJJfyjphEoRmeX/w7dSryoCioAioAgcawSKjoDHAgC6xRSGXysrK7E1mU61ZcuWFStWMPHqN7/5zU9/+tMzzzxT+BVvM6PFY8mZdLrlRtgMk9dwWtws1jWj0ZyXl5Si2GDUbPcxGElVsG6XLZ+xzpMJDHAK+gMhh1lb1tXMaDS2bmVl0NjOlnIlYs+GHZBpK81yKA0nZdu2banMCnQI1jf29PQPRKKNVfXsoyWirG4jDOlhMvVEEVAEFAFFoEgQmDEEDPvCwcyuwpnM7GjM3F/+8pd/+9vfcE2vXLny6quvZh0wTlpgxTFL4lThO8KANKewIsuM0sZoDXnN3hl1ldVst9HTx3d5HV/QsK+Ysr2D0bKqEnKiesCuQYqm+HpgN+Yt3y4y+dLG7LWsbj/5kD0zAgiwezSWCoTMjCtIek5DbXk40N7Z0TvgzGGkPBRqPdieTKcaG+pzFG7/taPIOL85yU6kFnF6VAQUAUVAESgmBGYMATNuylwneBcOBkDmXmH1ynIj1hcx2crYi2wF6fEwMMwHgiYz4Xn0G2Mp0o7mWq7MMjLTpjKetM8ScD0fRHL4IFJvyuuwugi7NRWP+kLBYFm1MXu9TjyBq9psEx2JOT29vaFQRbUZvCaYLwcfwsFi9zrG055MsLMkdM7Yd2ONM6+pPtwV3rZrYOVc9vcI7W3v9QVKaqtrRBaOakPU2ZnXNs0yslzVoyKgCCgCikBRIZClk6LSaVRl4Fpm/DK4Cy0ZZsrNPSbONhTwLp5nEpk+zXHq2BdGy9IhYjFEmRRlv8VrWDPj5WtIaeaMNVbWeFOZju6euN/kjkSiPjs5i48ctUecKBPBQn4GrCnS1e+wqLmivIxlQ4YcfX4jx3KwrQYGFXOXIWDeM9JBpqDB4GZFsVmktGLpYtr7yONPOeUVfFG4vS/q9QUqykLmA0mGeG1xO0/NO7RbpbmkQRFQBBQBRaDYEJgxBAxweJgZ3GWgl2FUZv8yC5pEOeJ2lhFipk8fJYghSNgXS9fIxwUNJXozfp/HEHBFiDlWHb09ZpkRTMnrAZ9MyDj7ejI3/fWhux7dCT+mMx4YdV97NxtaNdfXkNEQsCVLl4NNYYL1IZtFxsyvxnNtd8LCmUyRVSuXxqOxp5/bjKnNgHN7X4IVTTUV5UFr+hoWNkLN2wnvDTPp1qKxBkVAEVAEZhkCM6aXZuKVGL6MjBKEjLlZMmuagWGMYFiZFBharOEpuZWYkobVsoYwk5Gz1BZPOylPkg2eIeCmUo7ezr7BAWvLBoMYwmbk95nt+/5wx8O//+vdg3Cvz3woaVfrQTa0mtNQZzkaBbOjtNaCFVtbCJ7PHSHYBM6Rx5QtIssXzi8NBzt7+7a1pmlqa/cA+2I11FWSlaswtlkybAJRESmnelQEFAFFQBEoOgRsd190Wo2iEBOv8D/LADDuaHLIdlcYvqQzPwt6hpUxiKHnKZyElR38zf5DtbigDWgRZoSx8MebZrpXNfTq+Pri8V67B7Thv0g/xu2Bvtiu7thzuw9mzJpf83egqy/j99dUl0PAhivtFweNqZvjTBs38vnGk/0mUpoPSnCO+ZtKpKvLg3Mb63yB4IbNuyDgjv6YzxdoRJrZVMuM/fJn5fKP+8Ek4hoUAUVAEVAEig6BGUPAIIf/WYxgQZE4XCvp0LAkul8elNOpOFpT0h0Khn35M0Sb8ob8pUF/JmF2xWhpaPawV3ObYcp0LIrvmGLb2np91XMGM8Fnt5lvJTEha3dbp9cfKAv7eIMwGvvEXTyGmtZBzaZe1gJ3wuwD5jinrjkxFk08sXErLuhd+9udVHJuvRcC5tJws9cyvnD7GOI1WRFQBBQBRWAaEcjy1jRqUPRVWxJzLeCMoXw2p0x6UslM3MkkwmlDwFXlVUlvYP+gMXO9fBnYg33stA8kEyV1EW/Jrr37sU2ZJNYXTSaS6frqCmsBs5OW4VjuAX/GIB4KI+6LeQkQGl65qD4Rjx7oNquJ2fGDbaLrKgz34ionU54FbGSpFTyEqMYUAUVAESgyBEZ09EWmXVGowxiwGQaGhw1HGgvYA7FBwIlMnM8dBSHgNGuE6th2a3dXjK8VWarEYezs47uDgcqIE3ryua0UZ8C2JxKNJxPzm2uh8Qxbc3gCRIRZkT38Zgw/y/qw02sWOkyN3n+gc2MrVrg3HApUMAKcTvgs+eYRsBq/RfH0qBKKgCKgCIyFwIhefqxsszndWJ+wWZbQDAGbeDydSHvM9hqGgFNOQ01txudr7ek2Rif7afDndfb3RHuTgagnvH3nXvzPg1GnNwJp+psa7EzlNBO1zIxn94+KDMcPBffK0G2qcpxFLXO7+wcfeLg14w3WVpYFjXLMv07yryHgvECKBkVAEVAEFIHiRGCoZy9O/YpEqyFfruE01uXi/oVKM6GA12w1mWYzrBoGdFt7e/0GUa4bdu2NJfuSvmBlXVdvb0dXrGfAicRTpeUVZWZzDbPMl3z4tu3fkB08RpOzZMw/605enfH4Ht7wlNfra2qozbAaK41725Cv0c5w+HAeH0OiJisCioAioAhMIwJKwOOCb13QllRNVijOsBxbURoLOAjfwqIpp66mFtN2f3eXob4U5m6mbyAeSXkzwfK5C5fG05mt23e0dw1yob6x2eRJs8WVlSTmMnSedTIb4QSpx1YlCUPHk1atYB54a1s7Q9FN9XVOImo/P4weRoSoJ7mH3huGSmtMEVAEFAFFoCgQUAKe0G0YToQGNLzMKcOadgFQxmmoK3O8vraOTiMuAc+m+W4gNnJlXdPyE+Y7Ht9Tzzxz4CBzof1Nc5pNeSZPZz+1IFRLimFP4VAbyR5GMHGF2RSajySF+cADK57rqqu8bMNhZlgbF7TRM2v9WmnmXIMioAgoAopAMSKgBFzgXbGUxoEdMOC/TO6TiHx+iX2oO3t7jLgUX0pyujp72P2qoqZs/kI2vPLxreLu3p5UJsNeXUYGH/tly2iTW3hX5ErcpB4abA5Dr2w3zcYjsilYaUnY4WMNWfIeWQgTWYMioAgoAopAcSJg1qFqOBwCmVpID5hqsFnTEcfPZ3Yr+pxAaW91Y7wh4i9tq7DLkDBMYzFPIvhoV+t5VQs8fc6W7t11VdtO8f3pzU3PfzJec3ukMbI37pR7Ti9LlUHTlVUxzGEY2Df6h5vGok5yRxPOC8+Z99ubfr2+qmKpv7crUOPxLWBz6Wo7nyvlY1YXo8xlPiftM5tE6zvW4W6vXlMEFAFFYLoQUAKeOPLDOJG9tyjJNwbhN6E4vsLk6zPbYaarzR7P7M+FmVtXW832GVXVFfFoJNrfl+rrq6muxIQlpFPpYKBgdqRATamzfOmS6GB/dzrR1FDPLpV8E3GYchNvk+ZUBBQBRUARmCYECiaAadJzmqsd8uXmiA7/MzrZjTQM+fFXX1vj93h6unqTfJYowHd/O9Px2MLmOSGfs7BlbpopWZGBdHRw/txgAAJOpcxeloUHNq9k6XDL3Ia5c5prq6sqy0tzGpn3AOJ5dzQvWnhFWkIRUAQUAUXgqCKgFnAh8Lpch/2aTsv3l0gT2musr83sgHa72buZ7yW2dx5MR6NzG2rZJ2PlikWBZ58NpROBsL++UgaQkyG/NYQLqZ+8pZZV68qdN7/uVbwE1JYbncZm2rGvFFivZlcEFAFFQBGYWgSUgMfHc8j8Ja9xOZvpy3wuUAiYNCZU4XNuqK9Lx5/u7OghS8zj8PViXzzRUFYGxCcsnxvMxFOJSGMVQ7MmeHwePmXIblnMoCooyA3D/X36KSvgXgxiXNxGJyulQGEF1ayZFQFFQBFQBKYSAe2xJ45m9jMMUkAsYL7Wa8jPrkVqqqvOpOOdB3pYEhT1OAPRSIXfVxPywrjNzU5tWcAf6W+przKIQ5tmE2gZR564AiYn06rg4GjfIEckxyNRIolEGrH591KmTBcmWnMrAoqAIqAIHEME8jvtY1jtDK3Kunvtl4ecRDo7Bkwaf3AhY8ABT6ajo4ddqfYPMFc5XhcurQkaviwLOcvnN5SmYosaaswXgM3kZCleMBAs+qWumopSjt5MpoovKzlOSSD7xSRRRoQaM71g8VpAEVAEFAFF4BghoAQ8IaDNjGfDvuZ/AsSG9WoNX2N6ih1cVe4JejP9vQm+1MtnkRIZp7qkrNrsOmmKLWtprvam5lVVMmnZ8WWcJHbycKPVnI8fUrHBjN36illdsShV8cFgvkyIgkZHCVktc6f6ryKgCCgCikARIoB5pmFiCJjRXwIbQWcjyWSytLQU3uPzg1i9DTWYpMl4wtfnOJsPJjM+f1N5JctzIWBQftFlZz7/0jNLA9YqxQJmlS7zqAsdAUZakEldhIw34A9TcSbtGxKCLtk3KuFgtYAtVnpQBBQBRaAYEcj218WoWvHoJDxmOM0rNrCxN9Np5mGxFTQIQqZQLKYtDuFY3HMg6nQmkymPtzpUyteC+XQhJWtLnfqwUxU0fOx47AKkjPmow5GFHMMO7YQ1TKSawkcGr5ZWBBQBReAoIqAEPD64fNIgS3QQWia7g7PZhzLDFwhxP0OxaWgVy7S+pioW9+7pcFojkaTX11BlRnz5Ui8eZ5brVvvMDlUWcTttWsaBx6+/0BzDOLjQwppfEVAEFAFF4NggoARcEM5ZC5gy7KNhLGC/31qZZqUSUDbW1ni9pbs7M/v7B+IZp7m23s614sNHSUzkQMJsZGlp1xC61++bFFVaxjeWuPxZ/c1nhfMDgt2//HSNKwKKgCKgCBQLAjoGPNE7AWfCePAmzEYc9uUk4GM+FQEjma8z+OpqKgLB8r0d3fv6+uNpCLjRuJ+D0HPKzNgy7mg+WsSXgtnEI2iEmLIFhpFcW2Bxza4IKAKKgCJQHAgoARd4HywJU4atoMUCNixKYibFfOf6ulqPbz8EfHCwn/TGujqO9qNHHuZLicnqNSuAjRSI3A4FF6iA+LBHKYQ8DYqAIqAIKAIzBoERrssZo/e0K+qOAQuZej1eRoPramrjiUxrR1f7QD/mbm21UdPDh4PFIWxtZz6dIATMJbMWuMBAETGd3WNOwPBbybQs+ctd1n8VAUVAEVAEigqB4b12UalWjMoMwWVnQaf5GIMxZk3IMA+rvLw0Hk/09PYPxuJ8Hri8xF4wzup0OpUwzGnok3P+Mxty2ASTWFCAx+VPSo0iZGhSdEGCNbMioAgoAorAsUNgiFGOXZ1HVlN/f/+ILRyj0aiIjMVYjmtCPM7eFGySPAWt6zM7aaT96QGmOic9LONNBzO9fJS3MxkaLJnLN40qMnGW9GaYBB13TqtLPtJUkYzFl7V2nRDyD5Y6caZtJevLEtVeMpSm40E20AqmnMqMJ+THR124CQzNu39iSufeAEyLs38ev+P+GTw0KAKKgCKgCBQdAlNAUcemTS7L8tldmQDV1taWSCRID4fDUC8+YQLKEA8GzYeG2ChDcrqEPWSvToXSI6T5fHwEyV8S8HvSTLnKVJSWUclUvANMha4qQxFQBBQBRaDIEJgxBOyyLABCtNi4TU1NgUCAdFJCoRAsy75UEo9EIkTMIl3rIXZN4RGUSZ5JB6H2fIEQMMRfVVbiJGM+J1lnR4ANAQ8zUWcM4JNGRgsqAoqAIqAITASBmcQH2Jdi40KoWLc073vf+96pp55aUlJSX1//6le/emBgwA7NmuW5XHV517WDpfhEcBk3zxAB50aB4dlAwFdfUeZNxD2peGNDTR7zDg3UkjgEel6OcWvUDIqAIqAIKALHEwIzZhkSjmXMXIxaqBd+JfzgBz/4whe+8N73vvfKK6+EDp955pmyMuP1Fac0KeQUIxjexVQlhTBVN0/c2lmOzxM7t6a8e1PUm4rNbaylLmZLGbpl0ZL5XlG+MSyKZK/LiR4VAUVAEVAEZg8CM4aAxdkr7MvtGRwc/NznPveGN7zhmmuu4RI+Z4zgjo6Ouro6cUrLLeQSAbYWppSx4Sm5u5A6dO4a2a7MluqqreloIBWf01CbpVwhfU74nIN8P9jNrRFFQBFQBBSB2YrAkDe0yBGAO5lyJZ5nVH300Ue3bdu2du3a0047DdKFiffu3UuEsWFomAzwrjsG7Bq+bvEjb6x4s6llhKh5NaWlnmTISdXXlHPNXJdZyzYfcEsBc5SdsUaU11NFQBFQBBSB2YHAjLGAuR1MuSJg+zLZCvbFrn3LW96CI5p50T/+8Y/Xr1+/c+dOZmZVVVXJvZPxYI64r2FKKLOnp2eqbqsIdwkYJzTeZNi1IeQvc5IBJ1ZVCvEao9cE4382MTaktK5om2jO1QWdg0L/VQQUAUVgliFQdBawTGA+ePDgtddei0ULw40IJD733HNYw7ia8UK/8IUvPP/88z//+c/Pnz//xhtvhBchZmZjYQoT6evr+/SnP93S0gJJ19TULFiwYArvL/Z0RUVFhvFdo6IRDA2vXhSKdbSFUrG6KkO5iSTfbEgas5c/64s2m0JP2Uj0FLZGRSkCioAioAgcUwSKzgLGxgWAhoaG97znPa95zWvwPGPvmtlT9tt/7MKBFbtw4UIYmghWL6OwBFiZIr29vcQhXXhR9uKorq7+yEc+8r73va+yspJLlJozZ86UAIw+yMkSr5VoOJh9n7szqxbNqa0IOQkn5XdCAZjXO7TllVCvZespUUOFKAKKgCKgCMxQBIqOgDFhxQhubm6eN2+ewCqJTHKWSVicnnfeeTAuM59POeUUOLurq2vLli0QNhwM11LKnW8FfwuFiyN6qu4TOiAqn4BF8knzPde85Q1sc1URNIO/GME4p+OxeChk1igPBZjY0LDawkOQaEwRUAQUgVmFQNERsEucchtgXMZumU4lS4zwPONYxg7m9PWvf/273vUuSLqxsfG73/0u+TnFzCWCCxoHtbipOZUJU6QQROyRH5EJ+0p1xvUsfOo4VHDiggrx7Kexgu1KJH/QjAebILybZd909l+5pEdFQBFQBBSB2YRA0REwc6xkvS8MJ/Yup9wR2BRLlzjpYuP+27/9G8T8ile8gvR169bddtttuJ1hRChc2Nq9j2QTCTJB2k0/koiQej4BIw0iTg06oRKzA2U0FQ/6PCnjh/Z5vb6srQvl8if8fCTVa1lFQBFQBBSBGY5A0REw21qJXxfWFOIEYTE3iUB4Mvgq+3KwEccXv/hF4gRhZfLs378f9zVFJCcpRJAJT2f5kqQjDmO5oCusjQ3JBnyGbFPGCE4HHbM39ZC/mSs6DHzEt0AFKAKKgCIwoxEoOlsMspQgDCfgwqZ4nknn1KXnAwcOQKiM/nKEfYlgMZMB9uUIeVNEimMZi8HKXC1JOfKjS8BGH6uYyEwNJuOD0UwqEYtEvHZpks+MBY8SaIwZRtagCCgCioAiMCsRKDoCdm1cIpAc3MkRr7JrBOOLJhFyZeiXsV4WF2HaMveKCKQrJI1BzN3kKLyL4xppFGTweKruMlpBvYZ9hwdf2B8Mhb1eTyhgeBdy5hhPmzcDDYqAIqAIKAKKgItA0bmg0QyyFP2IuHOyXHc0dOtq7471iv/ZpUMZNoakpRRkiSgKuhlcCROL8JVDsVdRzK4p8jjJBOTqt7tLejG3kYM5G/Cy57Mo7w/5K0j0OyXmKGnDLWGKD0+YmC6aSxFQBBQBReC4QCBLdcdFW45pI/L94ce0Yq1MEVAEFAFF4LhAQAl4krdRXNCusT5JKVpMEVAEFAFFYLYioAQ8yTsPAVNSCXiS8GkxRUARUARmPQJKwJN8BA61gEdOx5qkYC2mCCgCioAiMCsQUAKe5G0eRsC5ZUiZoaW+kxSrxRQBRUARUARmCQJKwJO80ULA2WnVskB5kpK0mCKgCCgCisBsREAJeJJ3XWdBTxI4LaYIKAKKgCJgEZhKAsYolA8Z8UFA2ZTqOAaZLT6i0WhFhdd8D5gNMp0Mk7I8usPkcXzLtWmKgCKgCEwpAlNGwLLJlOyA4W4DCUVNqbZFJEws4CJSSFVRBBQBRUARmFEITBkBl5eXsyaHvSGxg/n+LiBAyVP4+b9iQxUCZgA4t2dXsWmn+igCioAioAgUOwJTRsC4ZGHfCnyyXu+uXbuwfaHknp6eYgdgsvrJLtP5BKzLkCaLpZZTBBQBRWA2IjBle0HjduZLgtASA8ALFiwQLKuqqo5XUHPLkOzXmdLmiwsaFAFFQBFQBBSBiSMwZRbw4OAgnxuChsX/jAadnZ0T12PG5XQJ2GiOOxoiNl9sUCaecXdSFVYEFAFFYHoQmDIChnfnz59/6aWXbtu2DSbu7u6ura2dnjYdk1ohYOoZ8TVCnZl1TLDXShQBRUAROB4QmDICBowvfelLLS0tJ5544pIlS37wgx/s2bPnOCYkmYSVJeDcTljHwxOhbVAEFAFFQBE4JghMJQG//vWv/+///u+DBw++973v/eY3v7lmzZrLL7/8F7/4hcxXym/OoSn5V4sqXsq3gJ100uuJ8vnehOPES5xMsNdxuvzRjCdaztV0zAnEI06aj/v6IlM2pl5UIKgyioAioAgoAlOOwFQSMPOfmfZcXV39gQ984LnnnvvQhz704IMPvvKVr1y6dOk111yDX1p4l+VJDBVPeUuOpUB3pHeEC/pY6qB1KQKKgCKgCMxoBKaMgMXbDLOyB9YNN9zAePCnPvWpyy67bMOGDe9617s2b9585plnCu+yPGkGWcD5FOvGzfCvGQDObgU9o58AVV4RUAQUAUVgWhCYMpcpXPTTn/4Uh/Ovf/3rVatWXX/99XikA4FAR0cHpvDzn//8M844gxayVhhDmQVL09Laqak0Y3adJNDk/HXANsle0IMioAgoAoqAIjAeAlNGwHiYsXRf8YpX3HvvvWvXrmUPrNbW1qamprq6OnRYtGjRxz72MZYqlZWVcSozmMbTrfiuy14bmYwZF84nYNMe65bWzTiK76apRoqAIqAIFCcCU0bAfr+fBUiy8wZES2vnzJkjrmZOcTt/+MMfZulObvLwjGEq1+3sjvvy+oAFbNzPJmRvq64ALs7nW7VSBBQBRaBoEZgyAoaLsHqZewUHB4NB9sMiglnM5pTyhQYSQYHPJZGNdDktWlxGKDaMXyFg64NWAh6Bkp4qAoqAIqAITByBKSNgqoRZ6+vre3t74/E4Ji/bQWPyEtatW/fiF78YB3VDQwOjwvDWTJ8F7eJrLOAh09hN1ogioAgoAoqAIjAOAlNJwN/+9rc/85nPvOMd72DCM67mxx9//Lvf/S6eZ4zdj3/84ziiP//5z+OpZqEwTDyOXodcxmimrPh8mWiNcxvDmiNcDsczsYsSED95iJOByCEyJp/ATpNUkEo6ZvmU359IOMa4D5f7TKoR63N8uhvH5PHVkoqAIqAIzD4EpoylYEHo9itf+crLX/5ygfGqq65avXr1j370I3bnqKys/N73vkceXNBYyZPAGdMZUodiiUCuwq+wIATssjJMTx6Ey9VJ1DKhItShVu+EkNJMioAioAgoAmMiYAzHKQlQY3t7u/sdJHbkIIVtKf/4xz+yKfTJJ598++23Q5CYrfAla5MKrRRp8DcSKE5Epnfh9I7FYpA6p1i9yOTSlNOjOwA8NOUqk52EVWgrNL8ioAgoAoqAIiAITBkBw4UQ4Y033ohc2FemYv3whz9kRw5SYEd2poRExVcsa5MKugdQr4wcQ7EIIY75C9fC6HwHglMUQKAkFiR54pmzBMwypFRuFvTEC2tORUARUAQUAUUgD4Epc0HDhd///vff+MY33nLLLeeccw6G6T333NPW1vazn/2MGdHsh8WHkiBgeJRLBJzSeWqMH4XdsX1hWSgWAiZOCkKwfaFkTnE78wFEyFg4fnyJk85hZkGbGk0YIURd0yMA0VNFQBFQBBSBMRCYMgsYMnrhC1941113vehFL4IC2fCZMWD24uCUlUjsisXOlEyNZicsbNZC2Rfl2TxLbFyIVoaBYXHSsX05JQK74+smD68CTMAeo72TSXZ92q4FDAGLoCwBH0LEk6lGyygCioAioAjMJgSmzAKGcV/1qld961vf+ud//mf3S8D4ogETmxWOhIaJw74cWapUKAdjRmPy1tTUyASrv/zlL+985zvZ+gNpiEIgtvWtt956+umnkyJUTWSqAsPAQ8ZtngU8VfJVjiKgCCgCisBsQ2DKLGCs2/vvvx+u5WtIgCg2KCPB2KmwL+kkyqohIoWyL0Xg78bGRkSJ4XvhhRfedNNNxHE7P/nkk3xtiXrPP/98qFfmZ1Hk6AVs4kPdz0evOpWsCCgCioAicPwhMGUEDDSvfe1rsYDxP2OtQoTip8Xkxe0s86egYXgLW/kwOOJJlqvwqHCtm1kuIRkJyGFWF5cgZqZe/+QnP8HyxkQmRYxsIlIpEZeS3RQSJxg8mYTXCXiccpzOMV/GCXQ5YV80HkpFSqpCIbMsODPopPlqsDeFP9o/MEGxmk0RUAQUAUVgliMwZS5oSI4JUKwDZhj4tNNOE6rDXQyJfu1rXwNl6FM8w9jKh9koAxuXnJiYuJShUllcJG5nUqBw4khAoPixqffPf/4zvm4+uCTZOJII/SOKbBSBmBGI2D179hzp/c4N96oFfKRIanlFQBFQBGY3AlNGwMB49913X3755fv27du+fTuEB/PBkXihucQ2WDil3bHhw09UhmjdmyKcyinSMHwZA+bIhCykyTcNYXoI/tRTT2XNMZVCvaTAjmJ/46D+6le/yveJKQUfU9yVPNGIZVwzApydcGXKiXDl4IliqPkUAUVAEVAEDkFgyggY2mPdETQJfcJ2GKlioXZ3d1MpxjGBq7AgDmqZkHWIMiYBk5c8rF+CNb/xjW8gikRMYZiVS2IEb9y4ccWKFaRjXjPR+uabb8YFzanwLkcIXhzRUP5HP/rRf/qnf4KtqXfLli1Y5+ScXDCMa+diQcDETUBQziaenEwtpQgoAoqAIjA7EZiyMWDcvPARBLl58+Y777wTC1XMXOZGMQYs4MrMrMMDLQO9fEj4fe9731NPPcXG0Tt27GB6886dOx977LFdu3ZhZ7e0tIgNiij2+mBbj6uvvhoyhqExgqVeInKKDc3LAYnY4uvXrz987aNfRZblXdcG5m3A0q9y7+iAaaoioAgoAorAuAhMmQWMiQkt8RmGRx55BNK97bbb1q5d+4Y3vIHvLnzyk5+EVrkqTuPDmL+oW1ZWJkoz51lInb2jFy5cCIvPnTsXVza7fEgGsbDZaPpNb3oTLEugFmFfIrwKCEmTDgETh6EpMi4io2bIW4TEdTbiMLOgTRg1tyYqAoqAIqAIKALjITBlFjAM95KXvATW7Orqwu1MBMZlZfCvfvUr2ZYS9oUL8UKjkmsTH6oexiaGMmQJa+LHFj4mkQiJYh+LJc1apt/+9rdUB81TF6IoQhWuzPxTiBkF3AnSbp6CIi7d0lgl34Kg08yKgCKgCCgCIxCYMgKGGpl79YlPfAK6Za4TZAnnnXTSScxPlknIHKlbmJLx4BF6uKdkYLK0DPoKW3NJIiRiW8saJ0lhKfDKlStZjwTXUpAjmakI8xd95BSydF3fk2RN44K2PmirpT0zp5OUZoXoQRFQBBQBRWCWIzBkLx4hELAmBIx7GVqCAqFDIsyIFtMTvpQ1SHLkar6pml+1mw59CoNyFUJ184gHW5YY/dd//Zeb7mYWRzdFhJJRwC0+GcqEer3egMczKDVh+/q8qRT8HudVw3yAiZBK2e8R64QsgUOPioAioAgoAuMjMGUWMFWtW7eOJbl79+7FToXzmAPFx4DPO+88LsGX2MSiDgOxLsuOr2BR5hCDeDJ0XpTNUaUUAUVAEVAEjj0CU2YBY27y4SPW4/I1pP3793/wgx/kC0gs+2H2srijXdIl57Fv5xHViBHsDv9aQToGfER4amFFQBFQBBQBx5kyCxgPMLOUYdyLL774Na95DWYuM7CgXr4HTBwLGAKWRb2MEDOOO1PBtxOfhYCxgIfz8kxtk+qtCCgCioAicOwRmDILGNXhYFj22muvJc4QKV5oqJe5yqxEYgwYDmZ0lnVEzMA6wtnIxxQmSNbOwDKHHN9ixBv2JRxTVbQyRUARUAQUgeMHgSkjYIxCyJWFQ7/5zW8wcImzmUZHRwcrjt797nfLpGU4GM5iTrJMxZoxKFoCztOWdcB5O2FxQYk4Dx2NKgKKgCKgCEwEgSkjYGY+P/rooy972cvYfrm5uRnGJbJ48WKWIb31rW+V5bxQr0xRnnkc7GLp8TADyyVgN1kjioAioAgoAopAQQhM2RgwFPtGG2BiNoxki2ZYCkpub2/nEtOyUEtW0HKcYRbwIYjKLOhDkjVBEVAEFAFFQBGYKAKTJGB3TZFZD5v7gi8Tntl1knW3BAaDYSlWyooi2MRE4F0s45nHXnaRr1/Ge80njb00mdcLBrlNWr6DWn3RE33wNJ8ioAgoArMdgYIJWOiT+VaM8gIeJATXwkaM+77lLW9h4S8pXLUzlMyOHDL6S06WBZPIVejZ5e+ZB3+OYocmYOVSZl5bVGNFQBFQBBSB6UOg4DFgJgDDuEK6orYs82WDqjPOOOOLX/wiu19deumluKAZ7mVOFrzLwiTyw8qSn5SZNAt6tHvDCwfJQxw8Wh5NUwQUAUVAEVAEDoNAwQQMlWLUMp8ZWxa52Lgyr4opV2y+gX0MB//rv/4rzmemX3EJruV7CeTkw4KsRyKC6czapMPoVJyXzO7PuQABi4mfS9B/FQFFQBFQBBSBwhAomIARL5Yf46DQsNi1zLTio4F4odva2vgOEolcFYaGmCnCUVYDY/7CvuzIgXFcmKbTmnuIfa3DWdYBD2mkXughLDSmCCgCioAiMCEECh4DhkExgkU2TAzLYvW+//3vx97Fxp0zZ86Xv/xl/M/CvuwLzcIkMtfW1pIN3pJ0OU5IweLIlD/RCo3UAi6O26JaKAKKgCIwgxEomIDdOc8uibLVxo9//GOsYXbeAIkPf/jDjAoTiLPp1Z133kkc2oatcUfL6KlbduYhZ41dJeCZd+NUY0VAEVAEigyBgglYPuXrbubMeLA4k/EqYwTTOlYcMcoL12LvyhRo4mI0w8HwNHncD/QWGRpjqjPCApap4KPkHpFvlByapAgoAoqAIqAIGAQKJmBsWYox51lIFEKFaEnBKJRVv+y5Iat+GQlmihaXJAMRl3ddJzaJxR4sp/q8Zh9oM/XZBl4sCNlVzgDC9lhyVQeDcxDpv4qAIqAIKAKHR6BgAoY7xf7DjSzuaJmHJZyKEbxixQoGg5n5DO/C01QvGdxpWRSfSQQ8Gn5jWsCjZdY0RUARUAQUAUXgUAQmMwsauxZHNPtpiGmLLcgWV2xDyURoxoM3bdr0oQ99CHqWDLL7lRjKMvQrxQ9VpfhTzL5XNugYcA4J/VcRUAQUAUVgkghMhoBhVqmNCFQEub7uda9joRF2bXV1NZ8BrqurYxgYM5Ejl8hAtvxSk1R2WoqN8CofOglrRIZpUVIrVQQUAUVAEZhpCEyGgDFqGQkm4FsWZ+xnPvMZGfd1my8OZ66yMphEIhAwY8CQNMXdbDMjwjCwNX7VAp4Z90u1VAQUAUVgJiBQMAGLLQubwr6YttAwzXTZl6uSQoR0eFcuESEzKWIH5xvEMwGlPB2tvYvvXXYjMRfUAs6DR6OKgCKgCCgCE0RgMgQMm8K+QqVYtCxJ4oODEBKBRHeNr7AsRwaGZTaWcDDsJQbxBFUswmzoj1a0twh1U5UUAUVAEVAEZgQCk5kFLXOvaJ4sKxJyFU4ScpWWszJYIpLBXYNEnhk2C/qQ1b00Vtl3RjzfqqQioAgoAkWLQMEWMC1xbVx3NFesYS7JiiNprXxxwb3kZnaLFy0owxTLpDK+EH72sJPxpiMpb+V+x9vpqQsPbFodPljqlDm+ipQnjHs9gFXsKfiFZlhdeqIIKAKKgCIwaxBQwijkVg/3OasRXAh2mlcRUAQUAUVgGAJKwMPgmOAJA9vKvhPESrMpAoqAIqAIjIqAEvCosBwu0ew6mfsesIf1SVDxcMv4cIX1miKgCCgCioAiYBFQAi74QYCAmUdmaVdnQReMnhZQBBQBRUAREASUgAt+EsQCppgavgVjpwUUAUVAEVAEcggoAeeQGPtfWYUk66wkl44Bj42WXlEEFAFFQBGYEAJKwBOCCavXDcRlHbBawC4mGlEEFAFFQBEoFIGiI2CMS2kDW1q6Rid7abnpjL/y0UPykEIG+SQiibLRBxEpTrosSiab5CHdFSh5JnQ0861MRi9rfNloM51k6TQCUY9PQqX5RjDjwY75HrDOxJoQnppJEVAEFAFFwCJQdATMxh1QKZ84ZLcs+JJ9Ljmy1aUQ8IEDB6DVqqoqvrP0xBNP8A3ERYsWscXHBRdcsH37dr5DTGbZgYvtPoSMEejuATIZAs5/UHIcixw1f/OB0bgioAgoAopAoQgUHQHTgFAoJMYr3Mk2llAvNAwft7a2NjY2Cq1ifV599dXbtm373e9+t2XLltWrV69ataqmpoZs5eXl8kEIckoEmQjhO8SxWKxQgEYYtsK78jZAXJYhFSxTCygCioAioAjMegSKjoChTHgN6oUs8TxzgyBj2U16zpw5ckr63r17u7u7/+M//mP9+vUYxF/60pcwhW+++WZYFgc1xTFSOVIWGsakJl5SUtLU1DS5O54dA85ZwBCwYV+CfKdwckK1lCKgCCgCisAsRqDoCBgTFuqFR7GD8TxzaziFlUkhLuYv6Zi5sOnXv/51rsKsX/nKV+DjM888kzh8TE7IEVEcKUspKBNifuSRRyZ3r93PMRjOHbEOOMfKk5OspRQBRUARUARmJwJFR8BYq1AvPAprMhLMXRGPNCnEZRCXdFj2T3/6E4TK+C5fOfzFL35x6623yreHGScWA5r8nZ2dn/vc50jHFG5oaHjBC14wudvsErDRIbcT1uREaSlFQBFQBBQBRQAEio6AxcbFnP3Yxz5WX1+PxUmAYjlCuhLZuXMnqjMDi6Hfu+6665lnnrnwwgsvvvji3bt3d3V1MU5sGuY1Tautrb3uuuvwV2MoQ8Z33HEHiYWFQwxcl4BRqTBRmlsRUAQUAUVAEcghMJnPEebKHpV/oVjkVldXv+9974NisVyhUsxiZjVzqbe3t66ubt68ecy9evjhh3/1q19xyozoL3/5y7fccgt28Pvf/36Ks0zI/eihCORISktLy5QoPWw2tdLwlGCqQhQBRUARmGUIFB0Bu8SJ35gw6u0Q/oN3xQaFpAmM8mI3S35OiWBMS0SOkiIZCj36xVOQSHiDIaL4wOF4poYlUgkfy4MzzMkqOl9CoW3U/IqAIqAIKALHEoEZQxvimmYqFtYwvHvyySevWLHirW9967PPPrtjx463ve1t7e3tL37xi8FO1gofFRBzxq68AbguaDdyVCpVoYqAIqAIKALHIwJFZwGPBTJGJ4YsE7Jkae/ChQs//vGP/+Uvfzn99NOZEc0apBtvvPGUU06BGhkDxhqWMeCxpB1huixDQohS7xEiqcUVAUVAEZi1CMwYApahXGgVHzUczBKj17/+9VdcccUPf/hDvMHwLtzMXSQOVcv6pSm8qWOtA57CKlSUIqAIKAKKwKxCYMa4oDF/GfSFaAmwr3ikWVlEBEqGfffv38+dIy4rhqfwLrIGKUvAOaFUiu0rIZem/yoCioAioAgoAgUgMGMImDYJ4YkLGlOYQV9JZGo0EWZscQnzl8VLsh10ATBMMKsdA5ZlSLbqrAta98OaIH6aTRFQBBQBRcBFYMa4oBl2lb048EXDshxZgEQzYOLKyko2i8ZEZoNoaRhU7bZwSiJmI448ke4Y8JQIVyGKgCKgCCgCsxCBGUPAcm9kgS+7akCxOKLxNktENosWYibPlI8BZ5+MnAXMqTXHIeUhWoakh05m4aOkTVYEFAFFQBEoBIEZQ8Ayq1lWCTPtWdooNrHbXpmoJXncxCON8OVB77ANw2BZfN0EtGAFMNtjQrx8xNiwcyo9LOuR1q3lFQFFQBFQBI5bBGbSGHDx3AQmgqFM1s891e7u4mmmaqIIKAKKgCJw9BBQAi4EW8u7MiNahpnlWIgIzasIKAKKgCKgCBgElIALfg4gYCxgGQMuuLAWUAQUAUVAEVAELAJKwIU8CDkL2CXg/ElYhQjSvIqAIqAIKAKzHQEl4Mk8AWMSsGXoyUjUMoqAIqAIKAKzDAEl4AndcBn3NROe8T9bF/SIYroAaQQgeqoIKAKKgCJweASUgA+Pz5hXdQx4TGj0giKgCCgCisAEEFACHg8kjyeVys1V85tl032DDguO8UL7PVjDGSfNGmATjHlsv0Msp3pUBBQBRUARUAQOg4AS8GHAGf+STsIaHyPNoQgoAoqAIjAaAkrAo6Fy2DQs3ewkrMNm04uKgCKgCCgCisBhEFACPgw4o18SAmZrzPyJV9lZWqOX0FRFQBFQBBQBRWAkAkrAIxE5/Lm1fo0FPIKAKaVbUh4eOr2qCCgCioAikI+AEnA+GuPFIV5DvuqCHg8ova4IKAKKgCIwHgJKwOMhNNp1HQMeDRVNUwQUAUVAESgAASXgAsDC8iW3PZjvARdSUvMqAoqAIqAIKALDEFACHgbHqCdQbXaOFUO/jre/P8Y6YEJKcnsNhqwV1qAIKAKKgCKgCEwcASXgiWOVNX7NILCZcqUWcCHQaV5FQBFQBBSB4QgoAQ/HY2JncPCIWdBKxxNDTnMpAoqAIqAIZBFQAi74UYB9hYDzS2YJWMaH8y9oXBFQBBQBRUARGA0BJeDRUBkrLTsJK0vA+T5otYDHwkzTFQFFQBFQBEZFQAl4VFgOl2gN4KwLmiXB2VnRhyuh1xQBRUARUAQUgZEIKAGPROTQ8yHrNmcBk4cx4Pyc+dZwfrrGFQFFQBFQBBSBUREYxiKj5tDEQxHACB59FrSOAR8KlqYoAoqAIqAIjIbADCPghA00pL+/321OJBJx48lkMh6Py+kII9XNU1gkNej1mE/+IjQTKos53t5Yyh8IhnyOz3H8JKdjnkwSHONJvgdcUphwza0IKAKKgCIwWxGYMQQMrWJ3yg4Yg4OD5eXlu3fv5q4NDAyUlJTAu/v37+fU7/cHg0G5myRShHjaEKgJo5utcm3CR5E5JaImXKdmVAQUAUVAETjeEJgxBAytwnl9fX3RaLS0tJT70NLSAvuWlZVhDcO7zc3NmMekw7sS8fl8QpOuKTxVrAkHD60DVrfz8faj0PYoAoqAInAsEJgxBAwY0G1FRUU4HCaOEfzUU0+97GUvg2VPPPHEf/iHf2htbcU+5hIELBGXd107ODWJHSOHpmBl7wfSCEMEnE3WzxHmgNB/FQFFQBFQBCaAwIwh4J6eHoxdWoQRLMe1a9diBD/99NO//vWvt27d+s53vpN02BeGhp7hSOxgnM9E4F2JEJ8AJofLQnmEEIYI+IhlHq4+vaYIKAKKgCJwnCLgnyntqqqqYpQXPzNGcGdn58033zx//vzvf//7ov9nPvOZCy644LHHHlu2bBkZ8FHDkVzC50zAQS3WsDs8PIlWC3W7BIzlnRWiBDwJNLWIIqAIKAKzHoEZYwFzpyorK8WHXFtbu2/fPuZe4ZQmfc+ePfPmzYNon3jiCdiXFGxfTt0xYCFj0rGPOR5hcKl9hBzjq1YyHgGKnioCioAioAiMgcCMIWA4FbsWTpVFRy9/+cs3btz4ne98h9nRzIi+7rrriHR0dIi3WcaAcTtzSkGKQNW9vb34scfAobBkOBiCL6yM5lYEFAFFQBFQBPIQKDoCFn49ePDgtddeW1dXB89JkFnQcC00DPUuX778hz/84Q033MCIb01NTX19/eLFi5kODUPjbYZ04WM8zwwYf/rTn2aomIJkW7BgQV7bC4gCk/AtR2pBGUL2E8B+P4ZvKm2tX2XlAkDVrIqAIqAIzGoEPK57tkhgwEsMcaLM3r17oWF4TgZ0IVrYFBOW09WrVxNhVBi2hp5ZmFRdXU3kpptuuuqqq6QhEDBliTMhi2y4ryFmBM6ZMwdTWIxprmIly/CwlBrlmOx2/JVRxwv1Bp3kgOP/v/t3fOtXd64/edUnX39asxNxUjHHUxb1BLxpJ+gS9SiCNEkRUAQUAUVgkgjgzpSZN26nTU8OCxTWn0+y8qNVrOgmYQGuGMHMt2JkV9pNIiwLdwo9cyfAHTOXYWDczrDvV7/61aamposvvjgWi4VCITJD2FIWriXwnsElSLpgIHNFZBIWxRFFMHZ5wbK0gCKgCCgCioAikEWg6AhYzFb3/sC48uIDrRIR45irpH/lK1+5/PLLcSzfcsstn//859/+9rezTklekchAZhhaaJg4KcTl1BU+iUh2LnQmQ0WGgHOzrmBjJeRJ4KlFFAFFQBGYtQgUHQHjMYZroTdYU+xdTrk9nAq5sgMlI77Yvhs2bPjSl77EiCynH//4x6+55hq5i5jL8LTLxCRKHD7GXD7yOy0WMI7rfAs4P37kVagERUARUAQUgeMegaIjYJhVnLuwphAn90DYl5nM2MfMqCIFFvzRj34EpxLhKHt0QMZMtoIaCRThktw/IshkajTpR3hHkYg0wpAoalH6PUJYtbgioAgoArMPgSMlpClHTOiNI4asKxw2JQ7LCu0xxAvpksKwLtlIb29v5xT2Ze4VZTGdIW/XX02iSGBatSuz0IiwOUfkUzZLwJJqvc/qgi4UUs2vCCgCisBsRqDoCBhicxkOcoU7OboDw9AqKQzlksJ+WDAucegWLzSszI0knYhQL/QsvIsTG7FwNibylNxsNNQ5WFOCpApRBBQBRWDWIlB0BMydgCyF3ohAqBzzb49LxuyHJelCt+4EK5zYbro4saFwcUFPhjUzAb4BzAZaJZkBT6oLM3dzpHow3Fjj7WtwoPx40l/T7/Gjot8h1xTstJXfWI0rAoqAIqAIHK8IDOO247WRU9suzF+1gKcWUpWmCCgCisAsREAJeJI33drl2clX/JONyZDwJEVqMUVAEVAEFIFZhIAScME3WyzgrGNcGbdg/LSAIqAIKAKKgEFACXi85yB/crOl22EEPF5pva4IKAKKgCKgCIyKgBLwqLAcLlEI2F2jPCyrGsTD4NATRUARUAQUgTERUAIeE5pRLuT4dWgSVi5llMyapAgoAoqAIqAIjI2AEvDY2Ix2RXbC4spkVjSNJlDTFAFFQBFQBGYnAkrA4993duTKTnK2+z/LjphZF7TPR3nZ8ZItMVnCPL44zaEIKAKKgCKgCOgkrEk8A/ifKaUW8CSg0yKKgCKgCCgCLgJqsblQFBCBg0fsz0VhpeQCENSsioAioAjMegSUgMd/BLL+Z5tRxoBHJeDxBWkORUARUAQUAUUgh4AScA6Jif2rBDwxnDSXIqAIKAKKwDgIKAGPA9ChlzF/CaOsA87fsuPQYpqiCCgCioAioAjkIaAEnAfG4aN27pVrAbsjvqTk+6gPL0OvKgKKgCKgCCgCgoAS8CSfBJeAJ1leiykCioAioAjMbgSUgCd0/zFzmeXs4Hl2nL6+vkAgEAqFUqns13+xgFMsFrZrgickTjMpAoqAIqAIzHoElIALeQTyNp5UC7gQ4DSvIqAIKAKKwEgElIBHInLo+YghXpmExTpg4WBjHFvz+NCCmqIIKAKKgCKgCIyFgBLwWMiMmT6CgCWfzoAeEy+9oAgoAoqAIjAaAkrAo6EyVlrOBQ0HD1nAucSxCmm6IqAIKAKKgCJwKAJKwIdiMk6KawHnrz8a4aYeR4ReVgQUAUVAEZj1CCgBF/IIyFJge3T3goaPCxGheRUBRUARUAQUAYOAEvBkngNId/RZ0ErGk4FTyygCioAiMBsRKEYCht5SqZTcjWTSrLWNx+PuzRkcHJR4a2urRCQlFou5eSKRiBs/8sjQ94DtSl++B+z3+9mKMp02SvrtN4CTWX2PvDaVoAgoAoqAIjArEChGAsa4JECr0WgUKk2n08FgkCM3BPIrLS0VPp4zZw4pZCspKSHC5hgcu7q6OEoKkaMRxOeMhkdDuMpUBBQBRUARmCUIFB0BQ7GJRIIRVog2HA5XVFTIaCuJ3JKysjKOYuBiHLMpFdngZqhasnFKBtKP6v2Dg6kun4OVjo8q4CpcEVAEFIHjD4GiI2AoFgcvQMO4/f39RMTeZetH4u3t7RyrqqowfMkGPUsGKSJWMimSTmSKQ24S1qEEPMUVqThFQBFQBBSB4x2BoiNgAJcBYFzK5eXlnEKuYuNCuvX19cLKWLqYuaSQAYczecQIhqc7Ozun9q6N8DXDvpaAqWToStYC1klYUwu9SlMEFAFF4PhFoBgJGLRhVjF8YVmcvQTc0aTDfLAyRzJg5orDua2tjUtkEOqtra09KvcLcs2zgN0vL+hWlEcFbRWqCCgCisDxjkDRETCGLOYszMrEKyY2f/SjH7388sshYFIIMseKm4J9TPyyyy5jIPacc875wAc+gN0M9cqsabGSj9K9M/avWYZ0lMSrWEVAEVAEFIFZgYAZbS2qIJYuPArp4k9ubGw86aSTTjjhhJ/97GfMzxKKhaGhwPPOO6+pqemRRx7BSr766qtpxQ033MDqILKJ7/qotssl4KwFfFQrU+GKgCKgCCgCxx0C02YBw6AumFi6cir2a09PDxQLAZPh4x//+Nve9rYTTzyROVnMz9q/fz+XiP/mN7/ZuXPnT37yk1NOOeXcc8/9l3/5F1IojiiyYUZTFjKWKtxVxW6KW/X4kWSJk3HS/OeLOf7yAaZYJxKe0EApHvFY2olVB5MObzEepz+diTue4PgCNYcioAgoAoqAIjCNO2HhOmZqFYG7IDOcoUnIFQbF+cwAMBFZkgQ3z507l5Tu7u7m5mbyw82bN29euHBhTU0NnErBl770pdu2bduwYYMY0Bxl2RKZibBsieL4pXfv3n2EN523BnlXMBawawUfoVAtrggoAoqAIjD7EJg2Cxio4VG4E6IlDh8LZULGzGoWGsaWZayXbPv27SNndXU1Offu3UvKrl27li9fTmasXo4NDQ14p0kkgwwAC7UzLeszn/nMvHnzyEOGCy+8kAxHHuDgIfK1lrwnb0b0kctXCYqAIqAIKALHPQLTScDQ6qc//WmMWtiXAO/CuBLHumVwF/ThVzzSWMCQLqfQcF1dHXlgaPzM2MQYzaTDyiQKhTMAjMkL45IO6TKNC8c1BQ8ePPiHP/yBxCMJdio0/Jsx7u0hEj4SkVpWEVAEFAFFYDYiMJ2TsKDVa6+99qqrroIyoV4cztCkzJ/q7e1ds2YNtiynkCjcyRRozFlImoA/ecGCBY8//jg2MeuRuMS2lB0dHYsXL5Z7SB44Emk4qGFo4vA323esX7/+CG+yS8DmfSBjZ0LnxrJ5A2C0WIMioAgoAoqAIjARBKaNgKFbRmohSGZRyTbO2K9EYE34VbzNDAZLG0iH3mBiTrF9yXnJJZfgW2YkeP78+ST+4Ac/qKysXLt2LXHMYoqTX7zQEDC1EKcgvE6GyYYsuxr71zC646R1KdJksdRyioAioAjMegSmjYAxeQEfR7H4lnE1Q5OkQJzWyi3BtCWO1cvI7pYtW1hrdM8993AJlzWm86mnnrpq1ap/+qd/+uQnP4mH+frrr3/zm98s7mjYF7pFLAJFJmI5pSwcfIR3XCxgIzBHvnmzuY9QthZXBBQBRUARmEUITBsBY+a6BInVK9xJouy/ATHjWGYo9/3vf/+Pf/xjbgicyhQqTM/bb78dhzP8/cc//vHv//7v2YWD+Fve8pZ/+7d/Iw9FhNpFlBQkLrOjYfQpubeokRUE/eZkGuHqgp4SfFWIIqAIKAKzAIFpI2DXvQzIrp0qiTJ/inRs1h/acOiNgO1wPsPB+Zcwc4V9iSBKxoAlLtkmQ8DprLGbSacgXUgWscgxznG7hsozBOHUsHt+izSuCCgCioAicLwiwEimhsMiMJxVxQU9GSI/bCV6URFQBBQBRWC2IaAEPNE7LqRrjV4zojzRYppPEVAEFAFFQBEYDQElktFQyU8bbgFDwHYKtJ2DhT86NwCcX0LjioAioAgoAorAuAgoAY8LUS6D5VqXgHOp+q8ioAgoAoqAIjAZBJSAJ46asYWFgJk1NtwwzgnRWdA5JPRfRUARUAQUgcMjoAR8eHxGXpVVv9lJWOp/HgmPnisCioAioAhMFAEl4IkixRIksroEPJoFrPbvxMHUnIqAIqAIzHYElIDHeQJSfO/XccodrxPzOt7wgYgTClRWRP0VpHriTiiS9DlBJ+lJw76+PrOXlwZFQBFQBBQBRWB8BJSAx8comyPncDbbYOXiEy6sGRUBRUARUAQUgWEIKAEPg+PQkxFcq+uAD4VIUxQBRUARUAQmgYAS8DigsdQ3m0OXIY0DlV5WBBQBRUARKAABJeAJg6UEPGGoNKMioAgoAorAuAgoAY8L0bBPHKXTDAHzMWDFbXzcNIcioAgoAorAYRBQIjkMOMMvWQsY9iVVCXg4NHqmCCgCioAiUDACSsCFQSYEPGJmVmEiNLcioAgoAoqAIuA4Qx+zVTRGRSDjeqDtlwiTyRTmr/vF4lGLaKIioAgoAoqAIjAuAmoBjwPRiFnQ5MYIVgt4HNT0siKgCCgCisB4CCgBj4cQjJuXJW0XAusYcB4kGlUEFAFFQBGYDAJKwBNGLbsMyUyDVgKeMGqaURFQBBQBRWB0BJSAR8dl1FSoFwtYCXhUcDRREVAEFAFFoCAElIDHh0u+gCT5hID5HvD4xTSHIqAIKAKKgCIwNgJKwGNjM9oVzF+SdRLWaNhomiKgCCgCikABCCgBFwAWWZWAC8NLcysCioAioAiMgYAS8BjA5JI9iUTYcSIptr8qj3uDkWQ04B2oCPQEyOBNxT0lfY4TYzl1yudEBypikVw5/VcRUAQUAUVAETgcAkrAh0PHXMvkvoZk1yMNt4ANerik7Tolr+Phbzxpel0RUAQUAUVAEbAIKAGP9yB4Pek8WoWAPRn2gj5kB7FsHsVzPDz1uiKgCCgCioBFQAlj/AcBAzedNXMdmQXt9wz7HBJX8UdbC1jxHB9PzaEIKAKKgCIAAkoY4z4GXsuv2WyyE1b+MqQcN2MCs21lnrE8rmDNoAgoAoqAIjCLEVACHu/mW0pN22FesnrYBiuT9nuHMa1haDMAjF/6ENf0eOL1uiKgCCgCisDsREAJeLz77hnaCxouzqTMiLBP9qLMsbIRITOw1AAeD069rggoAoqAIiAIKAFP6Elg+w24FbC8WMDplN/JGOAyaYHPEDGXdRb0hLDUTIqAIqAIKAIGgekk4FQqJat63FvhnnZ3d5OYTCY/97nPvfCFLwwGg/X19VwdHBx0M7/yla+86KKL6urqli9fTmI8HpdLlEIypzJSy6ite8mV7woZP2KdzaGAk0olACsRjaSTyfJwUAh4yOIVEh46H1+w5lAEFAFFQBGYzQhM55ilO5UJgoRiuQ2yxWM0Gq2urubU7/f39fVdccUVS5cuvfHGG7laWlpKek9PD2VPPfVUMlRVVbW2tkpmjm6EDNAwR7zF4TB7aZgwGQKGbzNBv9/x+Vh/lHZSMV8qnogMms2grQWcfYWBevM90rY6PSgCioAioAgoAmMhMG0EDMsGAgHhYCKYrfArAUXhy0gkQhzuvP7662FZ2Pe73/2u24by8nIKXnPNNZWVlf39/W1tbZi5Miwbi8XgcpEjFjbFKUgGLhFcIRON+DyetOXWdNLj9Yf93vqaqrKQ35NJOk7K4zAk7M3avWr+ThRTzacIKAKKgCIwfbN2YVnsUXgXgoQviRNgYu5JIpEgUeK9vb2wLFRaVlbGJfKQWWibdFJCoRB+aYoQ4SopZECs2L4cKctVqiuxgQwFhmTQa7RyEjEn6Fm5dNFlmerTl8+FfWF1jGBfdk1wbjlSgdI1uyKgCCgCisDsRGDaLGDghikxTKFPHMtiBJOIkQqVin2MqxkPM4mYueKjJr+wLyYyfNrR0UF+eFeuEqGs3EiEi+0rQ8IUxJu9ZcsWuVrAMRH3BEpM/kzKySRPXFxTvrimkdP0AIPUvBFgtGdNX9h/OofUC2iTZlUEFAFFQBGYdgSmkzH27dv3+c9/fsGCBZAlAe7EjQwZE58/f/6mTZuETQ8cOICxC31iyAr7ghrsy5EZWDAr5E0RThlLFiMYOeJt7uzsZBpXc3MzBRsaGl7wghcUing6Efc6zHZOW3I1G0OXC89ibZu/7ERos1kWrmoNioAioAgoAorAxBCYTgt47ty573nPe5hjBelWVFRg9cKm+Iqxd+HXmpoa4vBoY6MxOKFYsWiJY/4KE8twL5fc+VaQtFjDMiRcW1t73XXXffCDH0QU9Lxnz54TTzxxYshkc3lLQsy9MvTug4WT0DCG7kDEqQ9At+aPS9P5FlNQYzSzIqAIKAKKQNEgMG0EDFNiuUK9Z5xxhpAlNi40LOngIyaskC6UTETMXC5BsRAwvmuJkCKuaU5xOGMEI1BkcknGkjlytaWlhZRCQzoNv6eCPujWD9cCWTnmdzJLwDlp8DIpGhQBRUARUAQUgQkhMG0ELLzoDtmiLOzL0WVZOI/T9vZ2fNEsC+b03nvvxY28cOFCWBbmJh1W3rt3LxO1du/ePTAwgEmNyYsEPM9EKCKGshyRJjKJFBA8lT6PsX4dx6yAwv/Mnwn+avMnqfzjCZg/DYqAIqAIKAKKwMQQmDYCHks9OHXXrl3QJ2uNmIT1iU984uc//3lXVxc+5HPPPZdSN91001VXXcWlf/mXf/nNb34jclgoTGTHjh2MCsPHFB9LvqYrAoqAIqAIKALFgIBZ/1MMehyqg/ii8S3jTGZ4GOMVDiaRo0ycpgimMIQtZXFZY09jMcPBpGNhuxawCCEb3My0ao4Y0GIWu5cOVUBTFAFFQBFQBIoEgeOyPy+6+UN4m2FZbjlww6MylAtZsg6YI+zLJVhTdpcUfzXUCyWLNxv2JZGyRfLQqBqKgCKgCCgCisCoCBSdC1o2oYRfhWshV+hWFh0xSwu7lnS803CzO10L6iUO6WIoS1zIeNQGa6IioAgoAoqAIlAMCBSdBQyJgov4h2VjDdgUAxd+ZZYW7MvoLxnwPEPSkpkRYoiZIgTSYWu1gIvh2VIdFAFFQBFQBA6DQNFZwGL4stIXMxe7Fk6FTRmypQ3QMEQre2NxiquZzEx+ZsUwpyxVwlYmAiuLGU1cgyKgCCgCioAiUJwIFJ0FjJ8ZpGBfjlCvNWt9YunCvgTSXSOYuOwRjTVMETbMgpJhXxlF5qoGRUARUAQUAUWgOBEoOgKW1cAClgz9wsFiFgv7ckmMYDbWcDHNj5NITiFv4kTcTTlk0hZVQNhiLhMhz+GngmNbS0WSTd4G3CIiJz+DxI/9cUbo6eIGPi50owLrNufYI3mYGkVnnDHyGMh2McxIOEyR6bqEc4iqcSaJAjzqRfti6gJYnDfdvYOueq7C7qWiihS/njyK0veCmzyi8rgeBka6cTpz+grpz7kFDDhKly6/SmS6Xcph5BTVpaIj4KlCxyVdbhgBsdw8AumcQu2SQaidhUlj1UsRMcfZ3EPurhTJv9MiHwluZCxpRy99pujpQuRGwGQEsEBNIrDTqKOH2OQk89jAvoyJyGPABAUeHnct3ORkHo1SQIpzCF8RjzpvCfRxvKS6r7BHo8bJyXRfZyXCTadflvjkBB6lUqiEYtIVEJenV/WcNNo8ijyQPJY8nDyiPKg8rvmd6qGSwVxC/iVSpCeHfZEpc4Ncas/PWZzxohsDniqY5M0IaUS4rzKWLHfrwQcfXLFiBR0od52HgD6U+FgczHsZ23oIc3NknTF3V7zc8v4lDw3yqYsMbr1T1ZAJypkpenILXKxomrwP8TLLj4cVaNwORvSF5MgGE8sQwwRBOAbZ6DJwwKAYN5pnBm0Z+OB7IcLHx0CBCVYBpICJbmwSh8sHGA8ePIjyxTY9gs6Xj7LwG0RDUOUx5uUGnhvr9zjB5k95NjRkdIx3L/REQ9SDOdiYT/WcHNT82Ln1PI3ccX4+fH0Hq52udax3WenG6T2I0DMQ4QkncMpPjxQhXXpg7ku+G3Vy6h27UrTk+A7cEgJt5A7Jr4Wb7eJLJ0Vc3qHcxPyIsKykCHPU19e7Gbj9Eifixt2rxzIyU/QEk3ys8kETYAVkyTbWr/FYAjuiLnnLFrp15wOOyFMkp/JsowyPt+BcbG8z+UABLKfyDBThfReVRD1RNV/54onPFD3lUeSxdPte93EdF8z8ToN78fDDD/Ni5LIY70luvPgjxbsT1ri3odAM3AzemNiuknvPmxevsdw27FdewcSzNKpAvEzcY4rA3xSHHp599lk+INHW1sYTw+OOBCRLH0c8/+EYVeBRSpwpegpWHAUrcANVsG1qasIzwbeqeFsCVbDlvuBWKjbLkrf1JUuW8BTxGkccC5hHAj1p0VG6s5MTi3nBNul863P79u18T0wcdLh8sIknJ/AolZIfDvbQnDlz+Lw3Yfny5RyL7b7z+2KTn82bN3MktLa20ofIY3yUkJmc2JmiJ7YQ76/yWPI7Wrx4MTsQz5s3DyfNWA0HbQIdLEHiHJEjBhWGL10HvfpYxYsz/bglYLlVo4LOfeLG0+/z45cbxs0b6/2Lm80zgQMKgRQhQllKyfbU8r4pXCKPxag1HoPEmaInULi/H/DnFFTpNWAy3od41+FegCp5iMAiwH4M0Jt4FbwrwA2iqtx9RiUwjIpNTwCUPg5seWjx78lbZrHpyY+LXxMEzEAPr1zcce4FkWLrSbnjYrShMBG85RAwiaLwxJ+fo51zpujJ8wkU8ljyS+c3JW+HhT6f9Mb8JOk3pIsWsYBQbM/PWPf9uB0D5kYSpIvPbzy9EkaA+Dnpm+QVjPsndy4/p8QRQkTkUAr/Br9AGJdEtwgRicvxUCHHIGWm6ClQ5AMlcSDlnYbuLH/8hkbl5zwGMI5bhXQT/MJ5GOiCeX5gX5Q/9EkbV9TRzoCS2GrYwZjswr7y8B/teguST0cJpNxl7CEMX/QEVaG6guQc7cyiEi8KcAaqojBqF+EYxEzRUx5FeSx5RHlQeVzpmQv9vWM4ubYTRM7PkNfimcK+PLTH7Sxo+UEKLXGki5Q495j7BImSgdcuodLD/Hqxz+Qll+eDbNCDa0mIQBKJuPHDiDqql2aKngJCPmJuHGCFfQVqYKdRRxW0SQjnmaHvwF6HJ3h4eHWjRy5C9sXN09zcDKUxUYhmygNfbP5nwR8a4xnA6iUCqtz0cX+Vk7hxR1gElVAM9VASVVGYyBHKPBrFZ4qe8ijKY8kjyoPK48pDOxFM3B6DzDIySIROg98mZIxZNREhRZLnuCVg+kSCvE9xdOPgjrPCdRwRJ4WrY90PelisHAJvVTC3OMeuu+46qIJXLR4FCvLcUAUd8VhCjkE6esrji55oS4208WMf+xiGmnhKSaGZ6E9kejs41AMutBVl0BBVP/nJTwpKXOVXxO+K0wn+IKXg1B6la0AmPg/RRO4vOH/xi1/cv38/iYd5bKZWmcNIE6DIQL8jLy7E5f5CGJ/97GfxkJMiPwQi+ZBSRB7gY9ZnuRoKy7rPIT9DnlV+U8COhgIsuhEnpzzPKE+c41ENVIoOLoBSFw8qKsnvCCVRVTQRxVxIKXUMNBSV5MYRp1NCARdJ9JR7jZ50U5KOnu5zgoaSKA/GUQVThKMhEXQQneV3RJwXWemHUenrX/86HgW6AuIEycmRe8HRfQCQQ3HaSxtFLH2F3BfX6nUjx6BpR17FcTsGfOTQiATutzAEd50IiTwfPOW8suF7lGedPpp+mfcvHheX2qdKgUnIoZuTp5Bfnfhn5HHHPSUvDZxKHzcJ4UdYBKyknxWg5GcpjMvRBZkmACnwum8PR1jvJIq7MEqHBWL0EQDLKYQh95qHgUQcaJOQP1VF6InQgZlWIhC2cF24EodfAZOnly4PPPN7KJ4Q0glTpcxYclgEJbY4Gbjp6EME9Nz7C9qgiiaoBNRCGKIqgNNGHo9joCc/DflRo6Tc6PwWuUyA/qDKT578tIJT92kh/7HpBxiyASjXEHc1R23SOSUQEWXQHKhRFfUEfPTnqvQP+W2c8nj+XaZSTsWJKBWJeszD4gHOf3TBE4VFPboFSvFI0HW46uUD7ibOuIgS8Pi3TPoL9+GQZ0WKQSd0djzHo/5cxxc9dTl4QPm98bqAd1Sk0inLj9NlNUmnIZAfOk9d5ZOUhLb0uXQHKO/2GtI7TFLiVBdDMdBDyXzB4Cx9NKwgl/LZJT/nMYijIf2UoEePTNfGqagH3UJgnNJzCcgutjSKJxb+QMNj2ZGBGLrld/roRhOEaGVm04gnk8cV3hVV5Zd4VFEFSZQk4G2mIu41WskLFqqiOQ8tIJNOAEYglXTRilsASYD5UVVShKOA3GhhNTAU6OSRQBN+/pKCnhQ5Bq8vh7YaPNETiKgdWEQf4HVfGUVbtyA9KiCDquTk4SQid59S8nOTp50ibsQtPuMiSsATumXylPD75yHgQeeUfoGnX36l8gt0n48JSTxqmUQZNBTmcH+lKE9AefdN4qipcDjB1M4vijcA9CTCb9LtHVwAJYWr0r8cTtxRu0a3y7xcxLsdhAArFrybjqr0Ai6xHTV1xhRM5wuG9G6ClautS6tkkP5LNEdbZIEt6XRnlCKFVhztJtDhigNG7rso7GpLIgpIE1CGdLSFP1yt5JE4BhTiqsSPBWTcdy/i7oB6/s1AMdEKwLkR8m7hPsn5Oac27v6u3QfVle/a3+hGNrSSSzSB+06cdwig5nbII+0WPBoRFx+EAyDmgeggdXEVnNGQ4Kotl9wGAiYp7o2Qtw2xod1nW4rMxOP0m0FFjhrPBxrKQ0B3wI3nAeK54UnimcDI4CoPNEdOeaCnqzkQG48sR+kCeKDRh06BXx0q0a2gPOxLc/jhTZeS1EvtsC/6EFCSFNCjC0Mx6W2BmkvSQe/Zs2e6VIV95dajJHNfUQlgwVOcYNxoYQv0JEyXktQLuaKhKANpoSePAenca5QUVhD10JyrwEuiFKSB0ilLccl2lI6wqfyIhBKoF2XkAaBGflDoIKOStIJHl/EdngdRVTLIr+woqeeKRSW6dfShdu4sES7xAPCrFxc6SsqDgZ60Aq0kD4DzhNA6Eo8BnqBHRehGvRx5vyEQQR9+X0CNo45TF2Higj+l6MT4GSJB+gouHb0AhnSScu/EIpc+EzWIcFUeYBTgpguSZOYqSBJIAW3pykRJ8nMqt0B6jKOn/DGQrAQ8DsjCqTyvMu8Gxw7+Rh5xfodCJJSns+b1jef7GDzQY6mLhvzs5ffGk80Dyg+MHyePuLwzSkEYmghvzWPJOdrp8ouiYxWGQFV+lrwa81uSV2N+XQRRI3/PsqOt2P9v785/7ZzeNoDnTd6/wpBKSFSNTTVaRUvNFDVrQk2llKqax6gUNZQWaWiLKlqqg9YUpahZxFCKEoRE4gf/xPfjvd48Oan2NPY+ex/nfO/nh531rGcN93Ote93Xutez9lp/Lz/QiTfPAVjtG2Mn4NZTdjlmIrbv7yV0IYYA5KGW6oIh8xRjx/7SRgITNYZMAnaN0rK/jf2SV3zUpqPS0kaXKmJkoedKjVqfVETKfJJf6pE3Ij9sye9d6An5OyqkwlUBEzUKgyU6GcHSyhkZeEo2T0ml77sNr8grsgt2AHpNf1E7MVwCcQ31IJ9UpYlU4tkxILttBgddMwIWPJOKFYqaZf0z4QWoBMTSrGLIBvnA7tYjryCvZOl6MV/hXW/UqJAXHKBXEfAOGg6xMQ0aO51wwYIFxxxzjA521FFHvfHGG6iXYimCcneh1/Ui6yuvvHLaaaftv//+lHjdunXhM5Kfc845hOSvi+cDXXjhhQYQYnopqqOP9BkYnnzyyfwJZuLYY4996aWX8o2NRZg5c6ZuCXNif/HFFx2VpPfC9XkmIG2K0q6++mo7NJ1//vm4gdhnnnkmPO3eJQ0wmyXcvZfZiafEAKn2/eabb6ZNmwZVAI4YMQIr4DBDBFbs3nvvNZQh9hlnnGG7MWLQZwnkJb/bkGInxGvKVAWGUOlhhx2mXhdt9Ev4OXPmMKwnnHBCVjWyvxSAzBnysr8xu4qKtE2ZnQiogpykTb+249VVV12loYk6ZcqUd955J/FU4u67795pp53IP3nyZLoKdlCHG0LJnRCvKZM8uvm4ceP22GMP4TVr1ngU2Qxo9CNqKV5/37Rpk0c02QBi+PDhXlC8i5J4tabADgUyh/Haa68dcsghepB6V6xYoS6ki2vvuOOOMWPGZLhw6aWXGjVKkIGOPcwvv/xyb2Ekod/99ttvcnmaAmPfOiRzV4uFQl29IMAQ5ykyozpMw8KFC7/++msWmbdhQ0pP6X30Kb+9lNa5R6+//joaePHFF2nP+++/HwuiuvPOO2/ChAk//fQTc8xrt4eiSErcOUl2WPLq1avfeustQhoK3HbbbQT+7rvv5GLgbJ24fv36zZs3H3DAAcRmeXdYWucSMKNMqvKJSh62wP863GpuLHLRRRfZQACkP//8M5PXOTF6L5nKIQPTobvuuqthwYcffsh+GY1R0WT0pynjG6r75ZdfGvc4hkQCj3CwX3mbcNJ37jcoUUXNCjeN/sknn2j9d999V6WHHnropEmTdCiW11PMJ1Kna3RAc3ROtq1KDjgEPv300xHVxo0bdRx0NWTIELtRSvzoo48aGbzwwgtfffXViSeeuM8++2gC0npk3LBVaZ24JSG1vOeee5555hnkquOnFl1bixvKQPXjjz/W4rZhobFBb+jQoTjP6RcuOLMSnZBtqzKpKGGMqHR8zb1q1aok0MTG38ypRpfgwAMP3HfffcHoKWmhuvfee3/66acGPXvuuaeRhAF6U3Kgbm4HbuCvZX519Y5AdJcajR8/Hp8lMZ3GFvPnz485i3L0r1rEVPHFWdsYVvKwILzJGBSSJxBe6f2tO/Q0fR56jTC77777448/ruMZm/OGxQuzDm5ZkA6JscNiDbwynCIMs8UQ7Lffftdee20iDz/8cMPzhJui/t76DexNmk4EaOBNN910/PHHRxVjwoIzc2x/3blz56qXSnCIWUCeE8mjA5I1DNcJ2Zoy1dhU2gB1xRVXaP2kOfLIIxlZ4Z6g9Rwp9oxviu1QIN0HOOAyZ+A2eNqrnHOpUgz34IMPeiPh7AuNXYSj2PntkGxbFQsWQhrRplLYskuPPPKI2WYpPeU1RjbSQvvOO+8U3wCbVxDTKHxy+e2Tqyk2FRF15cqVIpvCAyxpjSe4NAY6tNSg1tSCThfl5F0YZPzwww8xxcmiwJTZFDUQAzUFTSV2cFELKQzTNmzYYLqJmUsGwzejOR8n6JMJahYtHzl2UFxnHlPKfCaho6iLp64e8rC/RsfcI8PJ6dOn63ikzcxqZwTZQan6jBR6l1/zSMuXL9fZjjjiCEeaiER14vkW3sVsav/OQrNc2hQrcCNM9JmHZM6gR0Iwvv322yQksLkQnCcS2t5OGm3h1pUJyYQ79Gtiw+Tnq6++apJ56tSppk9Jy9sgvBrZMtMMo0aN8iJUArB47s0332Sm6QA5BaLAHRKvKZY8wFEpfACFLfQjQwHTHjSWGJ5iEfPSTjoxnjCiBbXRpBLAKwEwpWwK7FBARew4rARcdNLhK271KVCbRDWRIIYCmDuVkhi2cMJ5FJjAZlPNo/rtkHg9i1Ud0MACNERFJE81t1MNqKVItxAzW0NXwS6xFue1ex0qMWvWLAOL6ImUaaCUn+6ZcJu/cFMyfgWm2t2aj/FLM6N+wmQjLRNKK4BJh005qJcmUE5iH3zwwV7W3ElMcYYailVCm+L1e/b/X6He73L8awVIJ9TS2ps5cGYLXaEBVIH9NY3GmsSm0FqJu2Bzt4kVPVa7HqXzu4SpOAl9FTb+xb6sBvf9gw8+wGqSscXbLKfTkeBShS86KC1d7vPPP2e/jH+Jba4pGJrvNXRwkk+n5dle+VqTeWWt2NMnnnhCozftq7lNlpp1JKRR+TXXXGNCb+nSpeTXCuxFxjcCbrdXfl/F+/pLOekh88Q5e++998zmsa0mHidOnOj7H7HBG6oQZtFIG/Z1S6tJkt++Eml75ajOo0hCDdAtqvB5Lyzri8PIkSMhRlFt4MUTWrJkiWTBM90KwtsrvK/iQ/NEEjBqQVS6D8H4vpTBiAEHozqXQa1K08pmRxCzKWujNN8saUh0oK+k2mY5ZDD28sgAhag0QRikfkePHg1nzSrBbrvtxkePPDTEi4jcsmWL6Qcl+JKddpHYuyRXH+ptVCt4Kt+VjwtZUoNW9XeyeQXfdOiAJoaeaXxyehES5i3ITCXEuIgXOaNLiRygv0XAO2i49HxKkJ7p8yTNwL6GnBnENZ2NsejHEVkk1AlpMK0lLfYl2wUXXOANfVQ77rjjfBd07JeJHQZlB6/dscdkwwEGufohfuWd+/aTcQwA9cMMcg0RdNp+xJMx5T3Mnj178eLFMV7AJGGa21xCEPJtmP0CsiGFz6siY84EkrIPbdk224RFUxFDxuZyHGFryPXjjz/efvvtllwxW/EaoUpdPaUnxl4sF2yJKrtwI/M2q+jDyFhbVUPSsMbMR9bfqWLGjBkZ13oRXYzTc9999xmE6WhGPxJ4R7n6UJhtFgVMigcTwoDlqaeesjjIZ2CJLSM666yzDLmMyTwiD/SIxL0T1vUyR0JbxG+z8L6N7DkciZoRHlymx3/55RffU1WXD9JJ6aWuvPJK4AtwLsmM8yzC8L5eh2K4+lZCpRHJ4CAt6Da6F2mNFTI0lMBogI3yySn6DEzzDUSlsXLRYah6C1BTacrsFVxd09s+h6UpsOMj9KamgRugH1QznT8DNzGZlaITsc6Yg6r1r0LQVyDTUfodExDZzPXpk/SVOWMBLZdNyn5pET0q8uiTrIAPaUzts88+a5yOISIwUXVUU9P9+DckxMCnseJm7NixnHVim8d7+umnDR0MDkCXOVIBi8/FWJBFB9w22GoFVxdAZkCHDRsGwFgr6IGUzSKPb34EoJn0geUCL/EEGLuEaXLXlJZgOpFfNWrctWvXmjwQgzMySkAJgQvIehaPxyvEdqPDdMBO40k8VejvUDWK5e9qdHMGeg1XmOnXiQ466CAw5nUACE/TD6ZDIpsulkFkp0UNIakFRMwRJdSmxKOZaVODSDO6dJjVgrCXSnNTS2msY5AXsASOqHL1OQcTiZzKNzeufYkBWJXSSewrXo0WD+pr5sD+r8f8tTmPoYz0eQu5ZDHo0RZpneTy29wKD9CrGwZigELTiE1XhKm472fmoCg6laJDRsecDI/0xpiJ/lUI+pq+hG6pss5GHnxMfQnpES+NaSNq3PrmBbscyOw3PNPBCKn7mdElhn92kU2fNNNg8G4CsMuyNdVpX8397bffmjZAFaZ2sZr/npnAD84MbgjDrL5cLF3Mrqf0wZW3awrsUCAcb+o+m5ZoZVJZC+0fMrHLWPnll18GKTJz+VoMVRpCHu8Yzo6Gd0jCptiGA8QsW7aMAljVKKzFo6JhlEhFe8lGXSWgITHiXehfaVyVGhYATTuaakZghjImb3Cwv0thXJ+izEjDk2DomZKYyAkFahG5lNDRC7kqH4Z+iWHwGufSOEzjamVDLoNIMHIrfQaGMN1Ix/detNcSdC8b/dlK1L7FGQfTSRNyGfOpVE8Rhidavfjii60kJySNzfIaTw15iURv/UqfgMjog6YR7y36Vs6tQOjSrXeoqxcEmIPm6aJFi8yNWPdvGurmm2/WQiZRqbgOkDT0rEnc5QCfBjcYpxs/mn7EHKahCGYS1fIQ/pmlN74LsiMEYwq7LF5Tnaqvu+46fGY0QDDripmG/GfmkksuYT6sv+BrmoQ0uGmAbbJ3LcB+pekjA4riMdxwww0E+Oijj+bNm+fTNbT94QeqiKRn07O/bpXQHWlJaKUuVjCdyG948skn2Sm6ysshgDkGJGFkA3BL4lmx/HcOW3gpCcLZXRA1Wqe/MLtcdu6vSskAZ7rq7zG0wlNfJfhG48aNY44lYG3hKdA1pYVnkFGpZfmmZ3wisdzSwMXCK1QHseeeew75+cscv+3cc8/1JQKdaHGPUKOMXbgIibp0IlTk/0iMknkFWGlxspHcuPboo4/2ScJ0LvtgWMZ2EZjVIr9+Z+IXqoG3p8B/j+n59B+FAaIKKkdF9Wuq6MsCmY1axFtLgXc/++yz/PeMxgY9boMlrsa7chko8H19CGhMcaAmRte62D965X+U+K/RZV29I6Dh2YWksWbBvKgxGobwpa3RVHrWeyGdfurLrgFBMw+mT5rYYbxMl1FxjyjxZZddhok7LckOy/e3KERLJKMB//70J310lct/e5CHC/uagdxhUR1NEHuqCrL5RcAA1NDMBHeHn8GEcT19vAxJe7SVRWjseEflVDiTZO2Vj9BcHNz22GOPpUaSs2gGYZnMh3ajtAG804I15QeZkGjmDBBG061Mk6IKtAFSWmFYlkf5TS/rTheDJJkjpxr5XpZNGHYDUOtnTJDm1u56Fr/T1IjFbl4wcjYv1bx7hwIGf7zDOMGZVbIWISp3/fXXm8U1hXDqqadi3Ahg4GixmDVilMSqTH8XzhAtT3uqbmPW+kRyMOLRzLXo9UaKfi0INSIUcJEnM4heh7SGhuqln1QCYXsR70WNI2EDctc6V5+AsL1CBoUXn2as30KgECgECoFCYOAgUN+AB05blaSFQCFQCBQCgwiBIuBB1Jj1KoVAIVAIFAIDB4Ei4IHTViVpIVAIFAKFwCBCoAh4EDVmvUohUAgUAoXAwEGgCHjgtFVJWggUAoVAITCIECgCHkSNWa9SCBQChUAhMHAQKAIeOG1VkhYChUAhUAgMIgSKgAdRY9arDBwEnEMwbdq0yGuHAQFbQPi164tff9vPI7+2MfKb7ffsUdDEZ9++3Da5ZLRBQSJtWWDbpoRtzGLfhoT9SmOvieY22d3aL8mvjNnlQLiRxHYKedTEuK2rECgE2kGgCLgd9CpvIdAiAs8//7wtA+2aZOOnBQsWYF9bBdnuJxtKo9vwKJa1DZNdgbLhkY2B1GcnJr/2C/MrJSpNLhv4IVq77NqT0g7G9hWysZTEKc3uXdKHaxG5R25zep3sKdP2XhkNKERRuD/DAiXb4hT1KrMheNnrKgQKgXYQ+N92MlfeQqAQaA0BOwLGleRZYjWXcuyez/vEhTl0C+2FZXMQEOYTEImq0aRt9G0lmM1H0STKlFjAZWM/pwUoEGGHs4WTEtdi/YRVlBNpMLQsyleIYtGzKgiG+2VsahEmngI51pFQTF2FQCHQMgLlAbcMXWUsBFpHwEbz9hZ2lKFt6O2AjS95nLgTE9sk2fbCbocPHz5lyhQb2asG8zkwyom/TtrAmvbTxt8PP/ywnYqxpoMdb731Vu4y4nSwzC233GKDeyW4dewuBsW7TsgJ5TtDwkFPKkKiDhLAu0gXozsd9uyzz7aNsOMlnNngzAxMzL3G1nx0LrVkws7ELfZtveErZyHQA4Ei4B5gVLAQ6BYCCA+nIjYMOnfuXAfXcCtRptMycg6MI4N8tRV/11138VDxpQRr1qxBgeIfeOABrjBn1FT2li1bHCXk9BtH4hDfSexTp0716zxHpaFYWXi9mcR2Cs3kyZOdDeeQGYciIGPnXpiORq6qcMQeznY8xpw5cxyYs3TpUo+k8bl6/vz5ds93BpSpbKV1C6eqpxAYzAjUFPRgbt16t38tAjjVEcImjXmlyJh/ydfEdjfeeKMTZ2fNmhVvGNGecsopbnGzY2E4ptOnT28cUA6xFzST7JxBJ/qhZ7dOmkoC6X08zuIpFf3xxx/q2rBhAw/b2Vk5P4ev7NQsrJwjs3jSTgk0HY1lly9fjqQdRIPIOdATJ04kA6l4xoYO/1pgS7BCYAAhUAQ8gBqrRB08CPi8am4Z45oBxpEcUB6qKV+roni9qA49o2Rnt5lYdqFVHvDQoUORq1v0yWFduXKllVzOfsaIVlcpBEDCPGOOLI5XpsKl5y7LKIGjl81vyy6ZEkaPHo2bnXdLHvQsjYx5tPPOOztuloRY2amL3OiTTjrJgYamoHN43OBpjHqTQqCfEKgp6H4Cvqr970YAuWZpFScVy3KCXXiRu8md5ZJu3LiRt+qU37inWSHFUeaDoky5nGpu9tiZqfxUM8NmqtGteJeiJEPDwhhU+nCzSHzsm7EEgd9cNHpGqJKJ4eliZZfqxAiIRMmYeMWKFdaI8cjHjh3bnOT6392G9faFQLsIlAfcLoKVvxBoAQHsy82VEcnxODElXsSOI0aMMJlsTZYr8XiUbyoxDxiPhhQ9ssyKW+zrL1rFkRZzcXlTLO7kEAvjUVVI7FKIZFZyLVq0yEdcafyuX79eQF3CEqRwc9oomUgKlN156Z5aNeaaPXs2mt+8efOQIUNaeOvKUggUAj0RKA+4JxoVLgS6hIDZZsyqMkuOrVvGcNZSoTp/4TUFPWPGDJ9pzVGvW7du5syZ6FNK6dFqcqFSf2T69ddf165dK+OyZcuWLFnC05WMb236mifNLc7ffEOrMuJjE8i+DZtM/v7777nOvgELW1btqTJ5xmiYH0welG8W2q3lXQsXLty0aZPVWAL8YOm7BFNVUwgMagSKgAd189bL/VsR8M0108L3338/h9IstHXL2G6vvfZavXq1dVLcTfzn6S677IIXkTGv1By18J9//um1/IUJN1sbNWnSpMWLF1u3jJ7FS2MSe/z48R75ZvzQQw/Jki/KCJ7/umrVKtUNGzZswoQJI0eOnDdvnlz2wOJ/o2qbb0iGj+X6/fff0TA+RvNjxowZNWqUvFaEEVWWugqBQqBNBP5Hn2+ziMpeCBQC/xQBLiaGy+dYhCd71kzpj5maFoNQkZ/Vy6aI3XKakWsqSreVknMcBzdP/SqHjysewTcJOMQ4OHnNLZudRrepNxPOHonJDDbZlKkoa7KE43Mnb0RKCYmp30KgEGgZgSLglqGrjIVAuwjgvNCwADJWHNpDfqhRvAsBi8yKrXwAllICvOjbbVN9PgN7FE7Niq2QZbJLbLEVPub7WhGNyJUmgZRi/LrFvmg7jBtSR7RilJlfRcmCj9G/9E3tFSgECoHWEKhe1BpulasQ6AMEcBs+47NiX8ynRNSILDGfGJcFWSIF/CJFlByylAbp4kX7dXjk861fJcQz9qsE5I0vxYdHfSHGtR75DX0qTVgCZWJfAVWQJ+zrVqRbicmpOpcysXixL3DqKgTaR6A84PYxrBIKgX+MAM7j12bZVDKjt/Bo9l7GnXgO9fJrcR4utAranLDEmW3uWaXSGnc5frAYeRUSHzq3jYssIMYjXJsp6Di+TZlh7uTlMfv8TAZP1WK44LZJWYFCoBBoGYHygFuGrjIWAq0jgB2xLyJEaUpBctgX7bm15QWSQ37SuJUm7inai4PL/RWPsJNXQErpebqK4q3KEidVpLBICbK6KiXIYjUW0sXlinUrl2RJLI2MLh62SNTrioPuVvrQs3BdhUAh0A4C5QG3g17lLQQKgUKgECgEWkSgPOAWgatshUAhUAgUAoVAOwgUAbeDXuUtBAqBQqAQKARaRKAIuEXgKlshUAgUAoVAIdAOAkXA7aBXeQuBQqAQKAQKgRYRKAJuEbjKVggUAoVAIVAItINAEXA76FXeQqAQKAQKgUKgRQSKgFsErrIVAoVAIVAIFALtIPAfp9PtLUFPFHkAAAAASUVORK5CYII=", - "text/plain": [ - "" - ] - }, - "execution_count": 33, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from classiq.execution import VQESolverResult\n", - "\n", - "vqe_result=res[0].value\n", - "vqe_result.convergence_graph" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Retrieve and Display the Solutions\n", - "- Print them out\n", - "- Graph using a histogram\n", - "- Show Donor - Recipients in Network Graph" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Print out the top 10 solutions with the highest cost or objective" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "\u001b[1m\u001b[4mTop 10 Solutions\u001b[0m\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
probabilitycostsolutioncount
50.0126952.35[1, 0, 0, 0, 0, 1, 0, 1, 0]26
140.0087892.35[1, 0, 0, 0, 1, 0, 0, 0, 1]18
330.0058592.20[0, 1, 0, 1, 0, 0, 0, 0, 1]12
110.0102542.20[0, 0, 1, 1, 0, 0, 0, 1, 0]21
90.0107422.20[0, 1, 0, 0, 0, 1, 1, 0, 0]22
130.0092772.20[0, 0, 1, 0, 1, 0, 1, 0, 0]19
800.0039061.70[1, 0, 0, 0, 0, 0, 0, 1, 0]8
1670.0019531.65[1, 0, 0, 0, 1, 0, 0, 0, 0]4
2260.0014651.60[0, 0, 0, 1, 0, 0, 0, 1, 0]3
2410.0014651.60[1, 0, 0, 0, 0, 0, 0, 0, 1]3
\n", - "
" - ], - "text/plain": [ - " probability cost solution count\n", - "5 0.012695 2.35 [1, 0, 0, 0, 0, 1, 0, 1, 0] 26\n", - "14 0.008789 2.35 [1, 0, 0, 0, 1, 0, 0, 0, 1] 18\n", - "33 0.005859 2.20 [0, 1, 0, 1, 0, 0, 0, 0, 1] 12\n", - "11 0.010254 2.20 [0, 0, 1, 1, 0, 0, 0, 1, 0] 21\n", - "9 0.010742 2.20 [0, 1, 0, 0, 0, 1, 1, 0, 0] 22\n", - "13 0.009277 2.20 [0, 0, 1, 0, 1, 0, 1, 0, 0] 19\n", - "80 0.003906 1.70 [1, 0, 0, 0, 0, 0, 0, 1, 0] 8\n", - "167 0.001953 1.65 [1, 0, 0, 0, 1, 0, 0, 0, 0] 4\n", - "226 0.001465 1.60 [0, 0, 0, 1, 0, 0, 0, 1, 0] 3\n", - "241 0.001465 1.60 [1, 0, 0, 0, 0, 0, 0, 0, 1] 3" - ] - }, - "execution_count": 34, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import pandas as pd\n", - "from classiq.applications.combinatorial_optimization import (get_optimization_solution_from_pyo, )\n", - "\n", - "solution = get_optimization_solution_from_pyo(model, vqe_result=vqe_result, penalty_energy=qaoa_config.penalty_energy)\n", - "\n", - "optimization_result = pd.DataFrame.from_records(solution)\n", - "\n", - "print(\"\\n\\033[1m\\033[4mTop 10 Solutions\\033[0m\")\n", - "optimization_result.sort_values(by=\"cost\", ascending=False).head(10)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Histogram of Cost and Weighted by Probability" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkoAAAHRCAYAAACVapaEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABXNklEQVR4nO3deVxUVeM/8M+wzQwKkoACCbigohGRC6SSgOZuignuD5KapWlqmoZlalZauGRZPVqmqPWY0aJf09TccsFdTHN9VASFMlAWEQaB8/vD39yHceayzcAM8Hm/XvN6ybn33HvunTt3Pt577hmFEEKAiIiIiPRYmbsBRERERJaKQYmIiIhIBoMSERERkQwGJSIiIiIZDEpEREREMhiUiIiIiGQwKBERERHJYFAiIiIiksGgRERERCSDQclMmjZtCoVCgbVr15Y6X2hoKBQKBebNm6dTvm/fPigUCoSGhlZZG8m8zp8/j/DwcDRq1AjW1tYGj4OyXLhwAa+//jqefvppODs7w9bWFs7OzujUqRNiYmJw4cKFqml8Fdm9ezcUCgWcnJxQVFRkcJ733nsPCoUCCoUCBw8eNDjPiRMnoFAooFQqkZeXV+n2REdHl+tzXF5r166FQqFAdHS0SZZXHbTnqH379pW7jqn3W2UlJSVJx0rJV7169dCmTRtMmjQJ169fr7b2aL8XkpKSqnxd2m1v2rRphevKtVPufa2Jx3VJDEp1XE0/gGur3Nxc9OvXD5s3b4a3tzdGjBiB0aNHIyAgoFz1CwsLMW3aNPj5+WHZsmVITk5Gx44dMWTIEDzzzDO4fv06Fi1aBD8/P6xYsaJqN8aAyn4hdO7cGXZ2dsjKysLp06cNzrN3717p33Jf3tp5goKCoFarK9QGS2TMlx49NHjwYIwePRqjR49G586dcevWLXz22Wfw9/fHgQMHzN28WqmmHLc25m4AVU5gYCAuXLgAe3t7czeFqsDx48eRlJSEzp0749ChQxWuP2rUKHz33XdwdHTE8uXL8a9//QvW1tbSdCEEdu3ahZiYGPz3v/81ZdOrlFqtxjPPPIPff/8de/fuRYcOHXSmFxQUICEhAX5+frh8+TL27duHt99+W2852gAVFhZmVHsWLlyIN998E+7u7kYth8xv8eLFOl/YaWlp6Nu3LxITEzF69GhcvnwZNjb8ygQeXtl98OABHn/88XLNP2jQIDzzzDNo0KBBFbesavCKUg1lb28PX19feHl5mbspVAWSk5MBAC1btqxw3a+//hrfffcdbG1tsXPnTkRHR+uEJABQKBTo2bMnjhw5gqFDh5qkzdVFG25KXjnSOnr0KPLy8tC7d2907NgRhw8fRkFBgc48RUVF0hUCY4OSu7s7fH19a+wXAMlzd3fHsmXLAADXr1/HiRMnzNwiy9GiRQv4+vrC1ta2XPM3aNAAvr6+NfY/FAxKNVRpfZROnjyJoUOHokmTJrCzs4OjoyOaN2+OwYMHY/PmzdJ8TZs2xYsvvggAiIuL07lH/+hy79+/j0WLFqFdu3ZwcHCAvb09nnjiCbz99tu4e/eubDsPHjyI3r17w8nJCfXr10fHjh2xbt06AJDW9aiS5WvWrEGnTp3QoEEDnVs1N27cwIcffohu3brBy8sLSqUSTk5OCA4OxsqVK1FcXKy33JKXeYuLi/HJJ5/A398f9vb2cHd3xyuvvII7d+4AADQaDRYsWABfX1+o1Wp4eHhgypQpyM3NlX9TSrFjxw70798fjRo1gp2dHTw8PDB06FC9k6/2fR09ejQA/felLEIIvP/++wCACRMmICgoqNT5bW1t0alTJ73yY8eOYciQIfDw8ICdnR0aNWqE559/Hrt27TK4HI1Gg9jYWLRv3x4ODg6ws7ODm5sbOnbsiJkzZ0r7VXur98aNGwCAZs2a6Wxfefq5aMPNwYMHUVhYqDNNWz80NBQhISHIy8vD0aNHdeY5efIkcnJyoFKp9Lb98uXLePnll9GiRQuoVCo0aNAAXbt2xYYNGwy2pbS+NoWFhViyZAn8/PygUqnQqFEjREZG4vz58+W65Z2bm4uYmBj4+PhAqVTCzc0No0ePxq1bt/Ta0KxZMwAPPxeP9rd51MmTJzFy5Ejpc9OwYUP06tUL27Ztk21LSkoKxowZA3d3d6hUKrRs2RJvvfWWUf27tM6cOYMXXngBrq6uUKvV8Pf3x/Lly/X6oI0ePRoKhQILFy6UXdamTZugUCgQGBhodLsAoH379tK/teeekufe+/fv45133kGbNm1gb2+vdwtp48aN6N69Oxo2bAilUglvb2+MGTMGly9fLnPdP/30E4KDg+Ho6AgHBweEhobKvkeVOR+WVFhYiI8++ghPPPEE1Go1XFxcMGTIEFy8eNHg/BW9dW7oeC/PcWuO99wgQWbh7e0tAIg1a9aUOl9ISIgAIObOnatTvnfvXgFAhISE6JT/9ttvwtbWVgAQTz31lIiIiBCDBg0SgYGBQqlUioEDB0rzTp8+XXTp0kUAEC1atBCjR4+WXgsXLpTmy8jIEAEBAQKAcHR0FAMGDBCDBw8WLi4uAoBo1qyZuH79ul7b//Of/wgrKysBQDz55JNi+PDhomvXrsLKykrMmjVLABCGDkFt+aRJk4SVlZUIDg4Ww4cPF0FBQSIpKUkIIcSCBQukdXfv3l0MGzZMhISECDs7OwFAvPDCC6K4uFhnudevXxcAhLe3txg+fLhQq9Wid+/eIjw8XDRq1EgAEE8//bS4d++eCA4Olra1f//+okGDBgKA6NOnT6nvlyFvv/22ACAUCoXo0qWLGD58uLQ/ra2txerVq6V5L1y4IEaPHi37vpTlzJkz0v47efJkhdsqhBCrVq2S3renn35aDB8+XHTu3Fla7rx583TmLyoqEt27d5eOjz59+ojhw4eL5557TjrOT58+LYQQ4sCBA2L06NGiXr16AoAYPHiwzvZduHChzPbl5+cLlUolAIgjR47oTOvWrZuwtrYWmZmZYseOHQKAmD9/vs48ixYtEgBEWFiYTvmmTZuk5fr6+opBgwaJbt26SW198cUX9doyevRog5/joqIi0b9/fwFA2NnZiZ49e4qhQ4eK5s2bC3t7ezFp0iQBQO89XbNmjQAgwsPDhb+/v3BychLPP/+8GDhwoHSMent7i8zMTKnOl19+KQYPHiwAiHr16unsz0eX//HHH0vvbUBAgIiIiBDBwcHS5+bRfSXEw2NSu253d3cRGRkp+vbtK9RqtejUqZPo1KmTACD27t0r847p0+63CRMmCJVKJZo2bSqGDh0qevbsKbUlIiJC5zN88uRJAUB4eXmJwsJCg8vt2rWrACDi4uLK1Q7tOQGAwXPYzZs3pek//vijEOJ/596goCDRsWNHUa9ePdGnTx8xdOhQ8dxzzwkhhCguLhZRUVECgLCxsRHdunUTw4YNE61atRIAhL29vdi+fbve+rSfl2nTpgkAokOHDmL48OEiMDBQascnn3yiV8/Y8+ELL7wgbG1txXPPPSeGDRsmmjdvLgCI+vXri8OHD8u289F9Jvd50B7XJY/H8hy3VfGeVwaDkplUVVAKCwsTAMSGDRv0lpWZmSkSEhJ0ygwdwI8aOnSodGJIT0+XynNyckSfPn0EANG5c2edOrdu3RL169cXAMTy5ct1pu3fv1/68iktKDk6Ouq1V+vYsWPi7NmzeuW3bt0STz31lAAgNm3apDOt5EmxRYsWUugSQoj09HTRsmVLKdQFBgbqbOu1a9fEY489JgCIgwcPyu6rR23fvl0AECqVSuzcuVNn2ldffSUACFtbW3Hu3DmdaeV5XwxZvXq19OX84MGDCtUVQog//vhD2NjYCIVCIdatW6czbdu2bdKJt+S27N+/XwpV2dnZess8fvy4zr4UQv5EW17dunUTAHQCvUajEWq1WrRv314I8fD4tLGx0QtEvXv3FgDEu+++q7PdSqVSqFQq8cMPP+jMn5SUJJ588kmDJ2O5L4bly5dLweLixYtSeWFhoZgyZYp0HMoFJQCiV69eIisrS5p2584dKWB/8MEHOvVKfunJ+fXXX4VCoRAuLi5i//79OtP++OMP0aRJEwFA7Nu3T2dax44dBQAxZMgQkZeXJ5XfuHFDtGjRQmpvZYISADFx4kSdY/XcuXPC1dVVABD//ve/depp/wOhDS0lnT17VgAQrq6uIj8/v1ztKCsorVixQpp+7do1IcT/zr0AhL+/v0hLS9Or98UXXwgAwsXFRfpPghAPA9TcuXMFAOHk5CRu376tU0/7uVAoFHrn8I0bNwqFQiFsbGz0zn3Gng9dXFzEmTNnpGmFhYVi8uTJ0jH16P40RVAq2YbSjltTv+eVwaBkJtoDrbyv8galtm3bCgDizp075WpHWV/IN27cEFZWVkKhUOh8kLRu3rwp/S/80KFDUvm7774rAIhOnToZXO6MGTPKDEolv8gqQnslITIyUqe85Inhl19+0au3dOlS6SRl6KSjPXEY+l+3HO2Vltdff93gdO1Vh5deekmnvLJBSXu1xM3NrUL1tMaOHSv9D9QQ7ZWQHj16SGWbNm0SAMRrr71W7vUYG5S0/4Pu2bOnVKYNbNOnT5fKgoKChEqlkk6iDx48kAL8gQMHpPm0/xlYvHixwfUdO3ZMAJBCmJbcF4P2f+QrV67UW5ZGoxGPP/54qUGpXr16IjU1Va/uxo0bBQDRrVs3nfLyfOEEBQUJACI+Pt7gdO37OHjwYKns4MGDUnseDbtCCPHTTz8ZFZTc3d11wpfWp59+KgCIli1bGmxj9+7d9eq8/PLLAoCIiYkpdzvkglJqaqr4/PPPpWNlwIAB0rSSQen33383uFxtgDR09ae4uFj4+/sLAOL999/Xmab9XISHhxtcrvYKzKPni9KU53z48ccf69XLz8+XjtNvvvnGYDurIyiZ+j2vDPZRMrMuXbpIj6QaejVu3LhCy9Pepx05cqTBPhwV9fvvv6O4uBhPP/00/P399aY//vjj6NWrFwDdzrX79++X2mGIXHlJERERpU7XaDT4v//7P7zzzjt45ZVX8OKLLyI6OhorV64EAFy6dMlgPRsbG/Ts2VOvXNtx2svLC35+frLTU1NTy2w78PC+v/aJNbm+KGPHjgVguGOyOWj7+JTV3gMHDkh9SNq1awdra2t8/fXX+Oyzz5CWllbl7dT2Uzp06BAePHgA4H9tDwkJkeYLCQlBfn4+jhw5AuDh+En37t2Dvb299FkpLi7G9u3bAUC2Y3uHDh1Qv359nD59Gvn5+aW27ebNm7h27RoAYMSIEXrT7ezsyjy2O3ToYLDja5s2bQBAr59SWdLT03Hs2DGo1Wo8//zzBufR9ks8fPiwVKbdp71794azs7NenYEDBxrVkX3IkCFQqVR65do+eleuXNH5vA0aNAienp7YvXu3Tv+ZrKwsbNiwAdbW1pgwYUKl2lKyv5yHhwcmTpyIe/fu4bnnnjPYB61Ro0Z49tln9cpv3ryJq1ev6mxHSQqFQuobKve5N1SvZLmhvnyVPR/KrU+pVEqfh4qMkWVqVfmelxefdTSzcePGldqhMzQ0FH///Xe5l7dw4UL88ccf2L59O7Zv3w61Wo127dohNDQUI0eOlE605aU9IWs73RnSokULnXmBhycLALLjY5Rn3IzS5tE+raV9OsyQ7Oxsg+Xu7u4GH/OtX78+AMg+Sejg4AAAZX5RamVkZEjzyu0/Q/vOGK6urgCAO3fuoKioSO9pt7KU9X5r25ufn4+MjAw0atQILVq0wLJly/DGG29g0qRJmDRpEry9vdGpUyf0798fkZGRsLOzM2Kr9AUGBqJevXrIzc3F8ePH0blzZ+zbtw9WVlbo2rWrNF9ISAg++ugj7Nu3DyEhIdIJv0uXLlKbMjIypGPF09OzzHVnZGSU+li09th3cXGRjqlHlXX8yx2Djo6OAMp/DGpdv34dQgjk5eVBqVSWOu8///wj/Vu7LXLHg/bhiDNnzlSoPVpyy3VwcICzszMyMjJw8+ZNeHh4AHj4n5yJEyciJiYGK1askMYAi4uLQ25urvSlWhmDBw9G/fr1oVAooFKp4Onpie7du8s+ECH3Hmo/Q87OztL79aiyPvdy+0Vbrn1ftIw5Hzo5OcHJyalC66tOVfmel7sNVbp0qnZubm44ceIE9u/fj99++w2HDh3C0aNHcejQIXzwwQdYuHAhZs2aVW3tkXtSqzxPcMkNBHj//n2Eh4fj77//xosvvogJEybAx8cHjo6OsLa2xuXLl9G6dWsIIQzWt7Iq/UJqWdMtmfYpnYKCApw5cwbt2rWrlvVOnjwZQ4YMwZYtW3Dw4EEcPHgQGzduxMaNGzF37lwcOHDApI8G29raokuXLti5cyf27t2L9u3b48iRIwgICNC5whEcHAxra2vs3bsXc+fOlf4HX3JYgJJPBMn9T76ksoKGVmnHeFnHv6mPQe021q9fH4MHDzbpsqvao5/jl156Ce+++y7WrVuHhQsXon79+vj8888BAJMmTar0eh4dR6ks5hyotOQ+MfZ8WNH1mUNVveflxaBUC2kfXdVeSs/Pz8fatWvx6quvYvbs2YiIiJD+R1MW7f+ctbcSDNFOK/m/7McffxyXLl2SfXzUmCH6f//9d/z9999o164dvv76a73pV65cqfSyTcnZ2RlKpRIajQbXrl0zeOvS0L4zhr+/P5o1a4br168jLi6uwkHp8ccfx9WrV3Ht2jWDtx+17VWpVGjYsKHOtMaNG+Oll17CSy+9BAC4ePEixowZg4SEBLz55puIi4ur5FYZFhYWJgWlZ599Fnl5eTq33YCHV2ACAgJw5MgR5OTkSLdCSwYlFxcXqNVq5OXlYfHixXBxcTGqXdr38p9//kFubi7q1aunN091/ERFSdr/cSsUCnz99dflDmLabSmtvdqhHipD7udBcnJykJGRAQBo0qSJzjRnZ2eMHDkSX331FdatW4dWrVrh0qVLaNu2Lbp161bptpiKdp9pr1QauqpU1uf++vXreOqpp/TKte9DyX1i7PkwMzMTmZmZBq8qGVqfOZj7Pa+5/3WmclOpVHjllVfg7++P4uJi/PHHH9I07e0Hub5MXbt2hZWVFRITEw1eXk9LS8Ovv/4KQPfLR3v74z//+Y/B5X777beV2xhAGpNH7vaE3Jg31c3GxgbBwcEAIPubVtoTm7EDH2opFArMnj0bAPDFF1/g2LFjpc5fWFgo9d8B/tdPpaz2Pvvss2WOUuzr6ytdvUxMTNSZVtZxVx7afXb48GHs3LkTwP/aX1JISAg0Gg0++eQT5Obmon79+jojeltbW6NHjx4AHo7JYixPT0/pyoSh47+goAA//PCD0espqaz96eHhAX9/f+Tk5Eif1/LQBs9ff/1V+tyVtGXLFmRmZla8wf/f999/D41Go1e+fv16AICPj4/BMPHaa68BAD777DPpVsyrr75a6XaYUpMmTaT/iBr6HAkhpHK5z712+x+lHYOu5HFuivOhofUVFBTgu+++01ufKVXkPGDW97xKu4qTrKoaHiA2NlbcuHFDbzkXLlyQHskvOb5OyUe75cgND3Dv3j3pqa1HhwdISUkR9vb2AoBYsWKFzrSDBw9KT5MYOgTlyrVOnTolAAgHBwfx559/6kxbuXKlUCgUBp+kKOsJC7l9qlWZJ9G2bdsmgIfDA/z2228Gl2fK4QG0IiIiBPBwiIW1a9fqjUFSXFwsdu/eLTp27CimTJkilZccHmD9+vU6dXbs2CGUSqUAIHbs2CGV7969W/zyyy+ioKBAbx3jxo0TAMTzzz+vM007jMXPP/9cqe0T4uETbA4ODgKAaNiwobCyshJ3797Vm2/z5s3SPIDhsbBOnjwp7OzshL29vVi7dq0oKirSm+fs2bN6QwfIPeWjfYLSw8NDXLp0SSovKioSr7/+unSMyz31Jve+yx3DBQUFws7OTlhbW4uMjAyDdbds2SIAiEaNGoktW7boTS8uLhZHjhzReW+FEKJdu3YCgBg2bJjOI9jJycnSkBqo5FNvwMPx0koen+fPnxeNGzcWAMRnn30muwztEBHa4zwnJ6fc69cqa3gAQ8o6TwihOzxAYmKiVF5cXCw9EVzW8AD/+c9/dKZ9//33wsrKStjY2Og8gWzs+RB4+Hh9ySd9i4qKxNSpUwUA4enpqfdkoqmeeivPcVuSKd7zymBQMpOqCkragRG1A+aNGDFChIaGChsbGwFAREVF6cyv0WiEh4eHFJaioqLE2LFjxUcffSTNk56eLo3F0aBBAxEeHi4iIiKksU7kBpxcv369NLidv7+/GD58uAgJCRFWVlbS8AC2trZ69coKSkIIMXDgQAH8bzC/YcOGCV9fX6FQKMRbb71lMUFJCN0BJ4ODg8WIESOkL59HB5w0dl1aBQUFYtKkSdJJ0tnZWfTu3VuMGDFC9OvXT7i7u0vrf/TLaOXKldL71q5dOzFixAjRpUsXaVmPDji5bNky6cQVGhoqRowYIQYNGiQd4w0aNNAZS0aI/41PU79+ffHCCy+IsWPHirFjx+qMOVQeffv2lY6XgIAAg/PcuXNH2h4AOsd2SZs2bZLCfZMmTUTPnj3FyJEjRZ8+faQxhoYOHapTR+6LobCwUBpjTKlUit69e4thw4aJFi1aCLVaLSZOnGjwMe/KBiUh/heOPT09xfDhw6V9WtLy5culc4GPj4/o16+fGDFihOjRo4c0qOSsWbN06vz555/SZ93Dw0MMGTJE9O/fX9jb24tnnnnGqAEnX3nlFaFSqUSzZs3EsGHDRK9evaSxugYNGqQ3SGJJP//8s/SeTp48udzrLqmqglJxcbH417/+JYCHA052795dDB8+XLRu3VoAEGq1Wmzbtk2vnvYzow0pHTt2FCNGjJCGdgAgli5dqlfPmPOhl5eXGDRokLC1tRU9evSQjlPg4bAQJYfReLSdxgYlIcp33GqZ4j2vDAYlM6mqoLRhwwbx4osvCj8/P9GwYUOhVCqFt7e36NOnj/jpp58MnnjOnj0rBgwYIFxdXaUvlEeXm5ubKxYuXCgCAgKEvb29UKlUok2bNmL27Nmljtm0b98+0aNHD+Ho6Cjs7e1Fu3btxOrVq0VycrIAHo6j8qjyBKWCggIRGxsrnnzySWFvby8aNmwoevbsKXbu3Cn7ZWKuoCTEw4En+/btK5ydnYWNjY1wc3MTkZGR4ujRoyZfV0l//vmnmDJlinjqqaeEk5OTsLGxEY899pgICgoSs2fPFpcvXzZY78iRIyIiIkK4ubkJGxsb4ezsLPr166c3aKYQQvz3v/8V8+bNE927dxdeXl5CpVKJxx57TPj7+4s333xTpKSk6NUpKioSCxcuFE888YQ0DldFv2yFeHgFVVt36tSpsvNpgz4Acfz4cdn5rl+/LqZNmyb8/PxEvXr1hEqlEt7e3iI0NFQsWrRI/Pe//9WZX+6LQYiHx+hHH30k2rZtK5RKpXBxcRGDBg0SZ8+ela4qPDr+izFBKSMjQ7z88svCy8tLGp3f0Ofo7NmzYvz48aJly5ZCpVIJe3t70bx5c9GrVy/xySefiFu3bunVuXHjhoiOjhaNGzcWdnZ2onnz5mLWrFkiNzdXOkdVJiitWbNGnDp1Sjz//PPC2dlZKJVK8cQTT4ilS5eWOWBqTk6OsLa2FgqFosIBW6uqgpLWt99+K0JDQ4WTk5OwtbUVnp6eIjo6Wra9JQPIpk2bRKdOnUT9+vVFvXr1xLPPPiv+7//+z2A9Y8+HDx48EO+//77w9fUVSqVSNGzYUAwePFjvCpWhdpZUmaBU3uNWCNO855WhEMLM3dmpTlq3bh1Gjx6N559/Hlu2bDF3c4iqVbdu3bB371788MMPeOGFF8zdnBrpq6++wksvvYSePXtix44d5m4OVQNzvefszE1VJjk5GX/99Zde+aFDhzBjxgwAkAZeI6ptEhMTUVBQoFNWUFCAefPmYe/evWjUqBH69u1rptbVbLm5udIPpU6fPt3MraHqYM73nMMDUJXZs2cPxo4di6eeegpeXl6wtrbG1atXpafnXnzxRQwaNMjMrSSqGlOnTkViYiKeeuopuLu74+7duzh79izS0tKgUqkQFxdncFRqkhcbG4tz587h4MGDuHbtGnr37m1wlH2qPSzhPeetN6oyFy9exOLFi3HgwAH8/fffyM3NhZOTEwICAjBmzBgMHz7c3E0kqjLffPMNvvnmG/zxxx/IyMiAEAIeHh4ICwvD9OnT0bZtW3M3scYJDQ3F/v374eLigv79+2Pp0qV47LHHzN0sqkKW8J4zKBERERHJYB8lIiIiIhkMSkREREQy2JnbCMXFxUhNTYWDg0O5fuSViIiIzE8IgZycHHh4eJT524cMSkZITU2VfmySiIiIapaUlJQyf/SXQckIDg4OAB7uaEO/EE1ERESWJzs7G56entL3eGkYlIygvd3m6OjIoERERFTDlKfbDDtzExEREclgUCIiIiKSwaBEREREJINBiYiIiEgGgxIRERGRDAYlIiIiIhkMSkREREQyGJSIiIiIZDAoEREREclgUCIiIiKSwaBEREREJINBiYiIiEgGgxIRERGRDAYlIiIiIhk25m4AERERlU9ycjLS09MrXd/FxQVeXl4mbFHtx6BERERUAyQnJ6O1bxvk592v9DJUantcuniBYakCGJSIiIhqgPT0dOTn3Ydz/+mwdfascP0HGSnI2LoE6enpDEoVwKBERERUg9g6e0Lp5mPuZtQZ7MxNREREJINBiYiIiEgGgxIRERGRDAYlIiIiIhkMSkREREQyGJSIiIiIZDAoEREREclgUCIiIiKSwaBEREREJINBiYiIiEgGgxIRERGRDAYlIiIiIhkMSkREREQyGJSIiIiIZDAoEREREclgUCIiIiKSwaBEREREJINBiYiIiEgGgxIRERGRDAYlIiIiIhkMSkREREQyGJSIiIiIZDAoEREREclgUCIiIiKSwaBEREREJINBiYiIiEgGgxIRERGRDAYlIiIiIhkWF5Q0Gg1mzZoFDw8PqNVqBAUFYdeuXWXW+/HHHzF06FA0b94c9vb2aN26NaZPn47MzEy9eZs2bQqFQqH3euWVV6pgi4iIiKimsjF3Ax4VHR2N+Ph4TJ06FS1btsTatWvRt29f7N27F8HBwbL1xo8fDw8PD4waNQpeXl44e/YsVqxYgW3btuHUqVNQq9U68wcEBGD69Ok6Za1ataqSbSIiIqKayaKC0rFjx7Bx40bExsZixowZAICoqCj4+flh5syZOHz4sGzd+Ph4hIaG6pS1b98eo0ePxjfffINx48bpTHv88ccxatQok28DERER1R4WdestPj4e1tbWGD9+vFSmUqkwduxYJCQkICUlRbbuoyEJAAYNGgQAuHDhgsE6BQUFyM3NNa7RREREVGtZVFA6ffo0WrVqBUdHR53ywMBAAEBiYmKFlvfXX38BAFxcXPSm7dmzB/b29qhfvz6aNm2K5cuXV67RREREVGtZ1K23tLQ0uLu765Vry1JTUyu0vA8//BDW1taIiIjQKff390dwcDBat26NjIwMrF27FlOnTkVqaio+/PBD2eVpNBpoNBrp7+zs7Aq1h4iIiGoWiwpKeXl5UCqVeuUqlUqaXl7ffvstVq9ejZkzZ6Jly5Y607Zs2aLz94svvog+ffpg6dKlmDx5Mpo0aWJwmQsXLsT8+fPL3QYiIiKq2Szq1ptarda5YqOVn58vTS+PAwcOYOzYsejVqxfef//9MudXKBSYNm0aCgsLsW/fPtn5YmJikJWVJb1K6zNFRERENZ9FXVFyd3fHrVu39MrT0tIAAB4eHmUu48yZMxgwYAD8/PwQHx8PG5vybaKnpycA4M6dO7LzKJVKg1e8iIiIqHayqCtKAQEBuHz5sl7fn6NHj0rTS3P16lX07t0bjRo1wrZt21C/fv1yr/vatWsAAFdX14o1moiIiGotiwpKERERKCoqwqpVq6QyjUaDNWvWICgoSLrqk5ycjIsXL+rU/euvv9CzZ09YWVlhx44dsoHnzp07KCoq0il78OABFi1aBDs7O4SFhZl4q4iIiKimsqhbb0FBQYiMjERMTAxu374NHx8fxMXFISkpCatXr5bmi4qKwv79+yGEkMp69+6Na9euYebMmTh48CAOHjwoTWvcuDF69OgB4GFH7vfeew8RERFo1qwZ7ty5g2+//Rbnzp3DBx98ADc3t+rbYCIiIrJoFhWUAGDdunWYM2cO1q9fj7t378Lf3x9bt25F165dS6135swZAMBHH32kNy0kJEQKSk8++STatm2LDRs24J9//oGdnR0CAgKwadMmREZGmn6DiIiIqMayuKCkUqkQGxuL2NhY2XkMPZlW8upSadq3b683PAARERGRIRbVR4mIiIjIkjAoEREREclgUCIiIiKSwaBEREREJINBiYiIiEgGgxIRERGRDAYlIiIiIhkMSkREREQyGJSIiIiIZDAoEREREclgUCIiIiKSwaBEREREJINBiYiIiEgGgxIRERGRDAYlIiIiIhkMSkREREQyGJSIiIiIZDAoEREREclgUCIiIiKSwaBEREREJINBiYiIiEgGgxIRERGRDAYlIiIiIhkMSkREREQyGJSIiIiIZDAoEREREclgUCIiIiKSwaBEREREJINBiYiIiEgGgxIRERGRDAYlIiIiIhkMSkREREQyGJSIiIiIZDAoEREREclgUCIiIiKSwaBEREREJINBiYiIiEgGgxIRERGRDAYlIiIiIhkMSkREREQyGJSIiIiIZDAoEREREclgUCIiIiKSwaBEREREJINBiYiIiEgGgxIRERGRDAYlIiIiIhkMSkREREQyGJSIiIiIZFhcUNJoNJg1axY8PDygVqsRFBSEXbt2lVnvxx9/xNChQ9G8eXPY29ujdevWmD59OjIzMw3Ov2XLFrRr1w4qlQpeXl6YO3cuCgsLTbw1REREVJNZXFCKjo7G0qVLMXLkSCxfvhzW1tbo27cvDh48WGq98ePH48KFCxg1ahQ++eQT9O7dGytWrECnTp2Ql5enM+/27dsRHh4OJycnfPrppwgPD8d7772HyZMnV+WmERERUQ1jY+4GlHTs2DFs3LgRsbGxmDFjBgAgKioKfn5+mDlzJg4fPixbNz4+HqGhoTpl7du3x+jRo/HNN99g3LhxUvmMGTPg7++PnTt3wsbm4S5wdHTEBx98gClTpsDX19f0G0dEREQ1jkVdUYqPj4e1tTXGjx8vlalUKowdOxYJCQlISUmRrftoSAKAQYMGAQAuXLgglZ0/fx7nz5/H+PHjpZAEABMnToQQAvHx8SbYEiIiIqoNLCoonT59Gq1atYKjo6NOeWBgIAAgMTGxQsv766+/AAAuLi466wCADh066Mzr4eGBJk2aSNOJiIiILOrWW1paGtzd3fXKtWWpqakVWt6HH34Ia2trRERE6Kyj5DIfXU9p69BoNNBoNNLf2dnZFWoPERER1SwWdUUpLy8PSqVSr1ylUknTy+vbb7/F6tWrMX36dLRs2VJnHQBk11PaOhYuXIgGDRpIL09Pz3K3h4iIiGoeiwpKarVa54qNVn5+vjS9PA4cOICxY8eiV69eeP/99/XWAUB2PaWtIyYmBllZWdKrtD5TREREVPNZVFByd3eXbo2VpC3z8PAocxlnzpzBgAED4Ofnh/j4eJ0O29p1lFzmo+spbR1KpRKOjo46LyIiIqq9LCooBQQE4PLly3p9f44ePSpNL83Vq1fRu3dvNGrUCNu2bUP9+vUNrgMATpw4oVOempqKmzdvlrkOIiIiqjssKihFRESgqKgIq1atkso0Gg3WrFmDoKAgqU9QcnIyLl68qFP3r7/+Qs+ePWFlZYUdO3bA1dXV4DqeeOIJ+Pr6YtWqVSgqKpLKv/jiCygUCp2O30RERFS3WdRTb0FBQYiMjERMTAxu374NHx8fxMXFISkpCatXr5bmi4qKwv79+yGEkMp69+6Na9euYebMmTh48KDOSN6NGzdGjx49pL9jY2MxYMAA9OzZE8OGDcO5c+ewYsUKjBs3Dm3atKmejSUiIiKLZ1FBCQDWrVuHOXPmYP369bh79y78/f2xdetWdO3atdR6Z86cAQB89NFHetNCQkJ0glL//v3x448/Yv78+Zg8eTJcXV0xe/ZsvPPOO6bdGCIiIqrRLC4oqVQqxMbGIjY2Vnaeffv26ZWVvLpUHuHh4QgPD69g64iIiKgusag+SkRERESWhEGJiIiISAaDEhEREZEMBiUiIiIiGQxKRERERDIYlIiIiIhkMCgRERERyWBQIiIiIpLBoEREREQkg0GJiIiISAaDEhEREZEMBiUiIiIiGQxKRERERDIYlIiIiIhkMCgRERERyWBQIiIiIpLBoEREREQkg0GJiIiISIZRQeno0aOmagcRERGRxTEqKHXq1AmtWrXCggULcO3aNVO1iYiIiMgiGBWUNmzYgJYtW2LBggVo2bIlunTpgn//+9+4c+eOqdpHREREZDZGBaURI0bgl19+QWpqKpYvXw4hBCZOnAgPDw+Eh4cjPj4eBQUFpmorERERUbUySWduFxcXTJo0CYcPH8aVK1fw1ltv4eLFixg6dCjc3Nwwfvx4HDx40BSrIiIiIqo2Jn/qTa1Ww97eHiqVCkIIKBQKbN68GSEhIejYsSPOnz9v6lUSERERVQmTBKWcnBysWbMGzz33HLy9vTF79mw0bdoU8fHx+Ouvv5CamorvvvsOt2/fxosvvmiKVRIRERFVORtjKm/evBnffPMNtm7divz8fHTs2BEff/wxhg0bBmdnZ515IyIicPfuXbz66qtGNZiIiIiouhgVlAYNGgRPT09MmzYNUVFRaN26danzP/XUUxg5cqQxqyQiIiKqNkYFpT179iA0NLTc8wcGBiIwMNCYVRIRERFVG6P6KK1bt67U0bmPHTuGMWPGGLMKIiIiIrMxKiitXbsWV69elZ1+/fp1xMXFGbMKIiIiIrOp0h/FTU1NhVqtrspVEBEREVWZCvdR2rx5MzZv3iz9vWrVKvz2229682VmZuK3335Dx44djWshERERkZlUOCidP38e33//PQBAoVDg6NGjOHnypM48CoUC9erVQ9euXbF06VLTtJSIiIiomlU4KMXExCAmJgYAYGVlhdWrV2PEiBEmbxgRERGRuRk1PEBxcbGp2kFERERkcaq0MzcRERFRTVahK0pWVlawsrLC/fv3YWdnBysrKygUilLrKBQKFBYWGtVIIiIiInOoUFB65513oFAoYGNjo/M3ERERUW1UoaA0b968Uv8mIiIiqk3YR4mIiIhIRoWuKK1bt65SK4mKiqpUPSIiIiJzqlBQio6OrvAKFAoFgxIRERHVSBUKStevX6+qdhARERFZnAoFJW9v76pqBxEREZHFYWduIiIiIhkVuqIUFhYGKysr7NixAzY2NujWrVuZdRQKBXbv3l3pBhIRERGZS4WCkhBC5/fdiouLyxxwUghRuZYRERERmVmFgtK+fftK/ZuIiIioNmEfJSIiIiIZJglKW7duxcSJE9G3b1/07dsXEydOxNatWyu1LI1Gg1mzZsHDwwNqtRpBQUHYtWtXmfUuXbqEadOmoXPnzlCpVFAoFEhKSjI4b9OmTaFQKPRer7zySqXaTERERLVThW69PSozMxODBg3C77//Dmtra7i7uwMAfvvtN6xcuRLPPvssfv75Zzg5OZV7mdHR0YiPj8fUqVPRsmVLrF27Fn379sXevXsRHBwsWy8hIQGffPIJ2rZtizZt2iAxMbHU9QQEBGD69Ok6Za1atSp3O4mIiKj2MyooTZkyBQcOHMCHH36ICRMmoF69egCA3NxcfP7554iJicGUKVMQFxdXruUdO3YMGzduRGxsLGbMmAHg4c+f+Pn5YebMmTh8+LBs3QEDBiAzMxMODg5YvHhxmUHp8ccfx6hRo8q3oURERFQnGXXr7eeff8bEiRMxY8YMKSQBQL169fDGG29gwoQJ+Pnnn8u9vPj4eFhbW2P8+PFSmUqlwtixY5GQkICUlBTZug0bNoSDg0OF2l9QUIDc3NwK1SEiIqK6w6igZGtri9atW8tO9/X1ha2tbbmXd/r0abRq1QqOjo465YGBgQBQ5lWiitizZw/s7e1Rv359NG3aFMuXLzfZsomIiKh2MOrW2+DBg/H999/jlVdegbW1tc60wsJCbNq0CZGRkeVeXlpamtTPqSRtWWpqqjHNlfj7+yM4OBitW7dGRkYG1q5di6lTpyI1NRUffvihbD2NRgONRiP9nZ2dbZL2EBFR9UtOTkZ6enql6rq4uMDLy8vELSJLVKGgdOrUKZ2/R40ahUmTJqFz584YP348fHx8AABXrlzBqlWrUFBQgJEjR5Z7+Xl5eVAqlXrlKpVKmm4KW7Zs0fn7xRdfRJ8+fbB06VJMnjwZTZo0MVhv4cKFmD9/vknaQERE5pOcnIzWvm2Qn3e/UvVVantcuniBYakOqFBQ6tChg95I3NqRt48fPy5NKzkad0hICIqKisq1fLVarXPFRis/P1+aXhUUCgWmTZuGHTt2YN++fbKdvGNiYvD6669Lf2dnZ8PT07NK2kRERFUnPT0d+Xn34dx/OmydK3Yef5CRgoytS5Cens6gVAdUKCitWbOmqtoB4OEttlu3bumVp6WlAQA8PDyqbN3awHPnzh3ZeZRKpcErXkREVDPZOntC6eZj7maQBatQUBo9enRVtQPAw7GN9u7di+zsbJ0O3UePHpWmV5Vr164BAFxdXatsHURERFSzWNRPmERERKCoqAirVq2SyjQaDdasWYOgoCDpqk9ycjIuXrxYqXXcuXNH71bggwcPsGjRItjZ2SEsLKzyG0BERES1ilFPvQEP+w/98MMPOHXqFLKyslBcXKwzXaFQYPXq1eVaVlBQECIjIxETE4Pbt2/Dx8cHcXFxSEpK0llGVFQU9u/fr9MXKisrC59++ikA4NChQwCAFStWwMnJCU5OTpg0aRKAhx2533vvPURERKBZs2a4c+cOvv32W5w7dw4ffPAB3NzcjNofREREVHsYFZRu3LiBsLAwJCUlwcnJCVlZWWjYsCEyMzNRVFQEFxcX1K9fv0LLXLduHebMmYP169fj7t278Pf3x9atW9G1a9dS6929exdz5szRKVuyZAkAwNvbWwpKTz75JNq2bYsNGzbgn3/+gZ2dHQICAio8lAERERHVfkYFpTfeeANZWVk4cuQImjdvjkaNGuG7775Dly5d8Mknn2DFihXYsWNHhZapUqkQGxuL2NhY2Xn27dunV9a0aVOdK0xy2rdvrzc8ABEREZEhRvVR2rNnDyZOnIjAwEBYWT1clBACSqUSb7zxBrp3746pU6eaop1ERERE1c6ooHT//n00bdoUAODo6AiFQoGsrCxpeqdOnXDw4EGjGkhERERkLkYFJS8vL9y8eRMAYGNjg8cffxxHjhyRpp8/f14aVZuIiIiopjGqj1K3bt2wefNmzJ07FwAQHR2NhQsX4u7duyguLsb69esRFRVlkoYSERERVTejgtKbb76J48ePQ6PRQKlUYvbs2UhNTUV8fDysra0xYsQILF261FRtJSIiIqpWRgUlLy8vnd+5UalU+Oqrr/DVV18Z3TAiIiIiczN6wEktIQT++ecfAA9/BuTRH88lIiIiqmmM/gmT8+fPIyIiAo6OjnB3d4e7uzscHR0RERGBc+fOmaKNRERERGZh1BWlAwcOoE+fPiguLsbAgQPRqlUrAMClS5ewZcsWbN++Hb/++iueffZZkzSWiIiIqDoZFZSmTZuGRo0aYf/+/dIP1mqlpKSga9eueP3113H8+HGjGklERERkDkbdevvzzz8xceJEvZAEAJ6enpgwYQL+/PNPY1ZBREREZDZGBSVvb29oNBrZ6QUFBQZDFBEREVFNYFRQeuedd/DJJ58gMTFRb9rp06fx6aefYt68ecasgoiIiMhsKtRH6bXXXtMra9y4Mdq3b4/OnTvDx8cHAHDlyhUkJCTAz88PR44cwfDhw03TWiIiIqJqVKGgtGLFCtlphw4dwqFDh3TKzp49i3PnzmH58uWVax0RERGRGVUoKBUXF1dVO4iIiIgsjtEDThIRERHVVib5CZPr169j+/btuHHjBoCHT8P16dMHzZo1M8XiiYiIiMzC6KA0ffp0LF++XO+2nJWVFaZOnYrFixcbuwoiIiIiszDq1tuSJUuwbNkyvPDCC0hISEBmZiYyMzORkJCAiIgILFu2DMuWLTNVW4mIiIiqlVFXlL788ksMGDAAmzZt0ikPCgrCxo0bkZ+fj5UrV2LatGlGNZKIiIjIHIy6opSUlIRevXrJTu/VqxeSkpKMWQURERGR2RgVlBo1aoQzZ87ITj9z5gxcXV2NWQURERGR2RgVlCIjI/HVV19h0aJFyM3Nlcpzc3Px4Ycf4quvvsLQoUONbiQRERGRORjVR2nBggVITEzE7Nmz8c4778DDwwMAkJqaisLCQoSFheHdd981SUOJiIiIqptRQcne3h67d+/G5s2bdcZR6t27N/r27Yvnn38eCoXCJA0lIiIiqm6VDkr379/HqFGjMHjwYIwcORIDBw40ZbuIiIiIzK7SfZTs7e3x22+/4f79+6ZsDxEREZHFMKozd3BwMBISEkzVFiIiIiKLYlRQWrFiBQ4cOIC3334bN2/eNFWbiIiIiCyCUUHpqaeews2bN7Fw4UJ4e3tDqVTC0dFR59WgQQNTtZWIiIioWhn11FtERISp2kFERERkcSoVlPLz87F582a0bt0azs7O6N+/P9zd3U3dNiIiIiKzqnBQun37Njp37ozr169DCAGFQgF7e3v89NNPeO6556qijURERERmUeE+SgsWLEBSUhKmTZuGrVu3YtmyZVCpVHj55Zeron1EREREZlPhK0o7d+5EVFQUFi9eLJU1btwYI0aMwKVLl9C6dWuTNpCIiIjIXCp8RSk5ORnBwcE6ZcHBwRBC4O+//zZZw4iIiIjMrcJBSaPRQKVS6ZRp/y4sLDRNq4iIiIgsQKWeektKSsKpU6ekv7OysgAAV65cgZOTk9787dq1q1zriIiIiMyoUkFpzpw5mDNnjl75xIkTdf7WPhVXVFRUudYRERERmVGFg9KaNWuqoh1EREREFqfCQWn06NFV0Q4iIiIii2PUb70RERER1WZG/dYbERERUVmSk5ORnp5eqbouLi7w8vIycYvKj0GJiIiIqkxycjJa+7ZBft79StVXqe1x6eIFs4UlBiUiIiKqMunp6cjPuw/n/tNh6+xZoboPMlKQsXUJ0tPTGZSIiIio9rJ19oTSzcfczagwduYmIiIiksGgRERERCTD4oKSRqPBrFmz4OHhAbVajaCgIOzatavMepcuXcK0adPQuXNnqFQqKBQKJCUlyc6/ZcsWtGvXDiqVCl5eXpg7dy5/q46IiIh0WFxQio6OxtKlSzFy5EgsX74c1tbW6Nu3Lw4ePFhqvYSEBHzyySfIyclBmzZtSp13+/btCA8Ph5OTEz799FOEh4fjvffew+TJk025KURERFTDWVRn7mPHjmHjxo2IjY3FjBkzAABRUVHw8/PDzJkzcfjwYdm6AwYMQGZmJhwcHLB48WIkJibKzjtjxgz4+/tj586dsLF5uAscHR3xwQcfYMqUKfD19TXpdhEREVHNZFFXlOLj42FtbY3x48dLZSqVCmPHjkVCQgJSUlJk6zZs2BAODg5lruP8+fM4f/48xo8fL4Uk4OEP+gohEB8fb9xGEBERUa1hUUHp9OnTaNWqFRwdHXXKAwMDAaDUq0QVWQcAdOjQQafcw8MDTZo0kaYTERERWdStt7S0NLi7u+uVa8tSU1NNso6Sy3x0PaWtQ6PRQKPRSH9nZ2cb3R4iIiKyXBZ1RSkvLw9KpVKvXKVSSdNNsQ4AsuspbR0LFy5EgwYNpJenZ8VGGCUiIqKaxaKCklqt1rlio5Wfny9NN8U6AMiup7R1xMTEICsrS3qV1meKiIiIaj6LCkru7u7SrbGStGUeHh4mWUfJZT66ntLWoVQq4ejoqPMiIiKi2suiglJAQAAuX76s1/fn6NGj0nRTrAMATpw4oVOempqKmzdvmmQdREREVDtYVFCKiIhAUVERVq1aJZVpNBqsWbMGQUFBUp+g5ORkXLx4sVLreOKJJ+Dr64tVq1ahqKhIKv/iiy+gUCgQERFh3EYQERFRrWFRT70FBQUhMjISMTExuH37Nnx8fBAXF4ekpCSsXr1ami8qKgr79++HEEIqy8rKwqeffgoAOHToEABgxYoVcHJygpOTEyZNmiTNGxsbiwEDBqBnz54YNmwYzp07hxUrVmDcuHFljupNREREdYdFBSUAWLduHebMmYP169fj7t278Pf3x9atW9G1a9dS6929exdz5szRKVuyZAkAwNvbWyco9e/fHz/++CPmz5+PyZMnw9XVFbNnz8Y777xj+g0iIiKiGsvigpJKpUJsbCxiY2Nl59m3b59eWdOmTXWuMJUlPDwc4eHhlWghERER1RUW1UeJiIiIyJIwKBERERHJYFAiIiIiksGgRERERCSDQYmIiIhIBoMSERERkQwGJSIiIiIZFjeOEhERUU1w4cKFStVzcXGBl5eXiVtDVYVBiYiIqAKK7t0FFAqMGjWqUvVVantcuniBYamGYFAiIiKqgGLNPUAIOPefDltnzwrVfZCRgoytS5Cens6gVEMwKBEREVWCrbMnlG4+5m4GVTF25iYiIiKSwaBEREREJINBiYiIiEgG+ygREZFZJScnIz09vVJ1+ag9VTUGJSIiMpvk5GS09m2D/Lz7larPR+2pqjEoERGR2aSnpyM/7z4ftSeLxaBERERmx0ftyVKxMzcRERGRDAYlIiIiIhkMSkREREQyGJSIiIiIZDAoEREREclgUCIiIiKSwaBEREREJINBiYiIiEgGgxIRERGRDAYlIiIiIhkMSkREREQyGJSIiIiIZDAoEREREclgUCIiIiKSwaBEREREJINBiYiIiEgGgxIRERGRDBtzN4CIiIiqz4ULFypVz8XFBV5eXiZujeVjUCIiIqoDiu7dBRQKjBo1qlL1VWp7XLp4oc6FJQYlIiKiOqBYcw8QAs79p8PW2bNCdR9kpCBj6xKkp6czKBEREVHtZevsCaWbj7mbUWOwMzcRERGRDAYlIiIiIhkMSkREREQyGJSIiIiIZDAoEREREclgUCIiIiKSwaBEREREJINBiYiIiEgGgxIRERGRDAYlIiIiIhkWF5Q0Gg1mzZoFDw8PqNVqBAUFYdeuXeWqe+vWLQwZMgROTk5wdHTEwIEDce3aNb35FAqFwdeiRYtMvTlERERUg1ncb71FR0cjPj4eU6dORcuWLbF27Vr07dsXe/fuRXBwsGy9e/fuISwsDFlZWZg9ezZsbW2xbNkyhISEIDExEc7Ozjrz9+jRA1FRUTplTz/9dJVsExEREdVMFhWUjh07ho0bNyI2NhYzZswAAERFRcHPzw8zZ87E4cOHZet+/vnnuHLlCo4dO4aOHTsCAPr06QM/Pz8sWbIEH3zwgc78rVq1wqhRo6puY4iIiKjGs6hbb/Hx8bC2tsb48eOlMpVKhbFjxyIhIQEpKSml1u3YsaMUkgDA19cX3bt3x6ZNmwzWycvLQ35+vuk2gIiIiGoViwpKp0+fRqtWreDo6KhTHhgYCABITEw0WK+4uBh//PEHOnTooDctMDAQV69eRU5Ojk752rVrUa9ePajVarRt2xbffvutaTaCiIiIag2LuvWWlpYGd3d3vXJtWWpqqsF6d+7cgUajKbNu69atAQCdO3fGkCFD0KxZM6SmpuKzzz7DyJEjkZWVhQkTJsi2T6PRQKPRSH9nZ2eXf+OIiIioxrGooJSXlwelUqlXrlKppOly9QCUu+6hQ4d05hkzZgzat2+P2bNnIzo6Gmq12uB6Fi5ciPnz55djS4iIiKg2sKhbb2q1WueKjZa2H5FcgNGWV6YuANjZ2WHSpEnIzMzEyZMnZeeLiYlBVlaW9CqtzxQRERHVfBZ1Rcnd3R23bt3SK09LSwMAeHh4GKzXsGFDKJVKab6K1NXy9PQE8PA2nhylUmnwqhURERHVThZ1RSkgIACXL1/W6/tz9OhRabohVlZWePLJJ3HixAm9aUePHkXz5s3h4OBQ6rq1A1O6urpWouVERERUG1lUUIqIiEBRURFWrVollWk0GqxZswZBQUHSVZ/k5GRcvHhRr+7x48d1wtKlS5ewZ88eREZGSmX//POP3npzcnLw8ccfw8XFBe3btzf1ZhEREVENZVG33oKCghAZGYmYmBjcvn0bPj4+iIuLQ1JSElavXi3NFxUVhf3790MIIZVNnDgRX375Jfr164cZM2bA1tYWS5cuRePGjTF9+nRpvs8++ww///wznn/+eXh5eSEtLQ1ff/01kpOTsX79etjZ2VXrNhMREZHlsqigBADr1q3DnDlzsH79ety9exf+/v7YunUrunbtWmo9BwcH7Nu3D9OmTcN7772H4uJihIaGYtmyZTq307p06YLDhw/jq6++QkZGBurVq4fAwEB8/fXX6NatW1VvHhEREdUgFheUVCoVYmNjERsbKzvPvn37DJY3adIE33//fanL79GjB3r06GFME4mIiKiOsKg+SkRERESWxOKuKBEREdV2Fy5cqJY6plZT220MBiUiIqJqUnTvLqBQYNSoUeZuSoXU1HabAoMSERFRNSnW3AOEgHP/6bB19qxQ3bxrJ5B1YEMVtax0NbXdpsCgREREVM1snT2hdPOpUJ0HGeb/2aya2m5jsDM3ERERkQwGJSIiIiIZDEpEREREMthHiYiIjJacnIz09PQK16vpj45T7cegRERERklOTkZr3zbIz7tv7qYQmRyDEhERGSU9PR35effr5KPjVPsxKBERkUmY69HxujhaNFUfBiUiIqqR6vJo0VR9GJSIiKhGqsujRVP1YVAiIqIarS6OFk3Vh+MoEREREcngFSUiIgLAsZCIDGFQIiIijoVEJINBiYiIOBYSkQwGJSIikrBjNJEuduYmIiIiksGgRERERCSDQYmIiIhIBoMSERERkQwGJSIiIiIZDEpEREREMhiUiIiIiGQwKBERERHJYFAiIiIiksGgRERERCSDQYmIiIhIBoMSERERkQwGJSIiIiIZDEpEREREMhiUiIiIiGTYmLsBRES1UXJyMtLT0ytV18XFBV5eXiZuERFVBoMSEZGJJScno7VvG+Tn3a9UfZXaHpcuXmBYIrIADEpERCaWnp6O/Lz7cO4/HbbOnhWq+yAjBRlblyA9PZ1BicgCMCgREVURW2dPKN18zN0MIjICO3MTERERyWBQIiIiIpLBoEREREQkg0GJiIiISAY7cxNRuXFsICKqaxiUiKhcODYQEdVFDEpEVC4cG4iI6iIGJSKqEI4NRER1CYMSEdVq7FdFRMZgULJgPMETGYf9qojIWBYXlDQaDd555x2sX78ed+/ehb+/P9577z306NGjzLq3bt3CtGnTsHPnThQXFyMsLAzLli1D8+bN9eZdvXo1Fi9ejOvXr8PT0xOvvfYaJk+eXBWbVCk8wRMZj/2qiMhYFheUoqOjER8fj6lTp6Jly5ZYu3Yt+vbti7179yI4OFi23r179xAWFoasrCzMnj0btra2WLZsGUJCQpCYmAhnZ2dp3pUrV+KVV17B4MGD8frrr+PAgQN47bXXcP/+fcyaNas6NrNMPMETmQ77VRFRZVlUUDp27Bg2btyI2NhYzJgxAwAQFRUFPz8/zJw5E4cPH5at+/nnn+PKlSs4duwYOnbsCADo06cP/Pz8sGTJEnzwwQcAgLy8PLz11lvo168f4uPjAQAvvfQSiouLsWDBAowfPx6PPfZYFW9p+fEEX/V4i7P6XLhwoVL1uJ/Lr7LHc2XfG6LazqKCUnx8PKytrTF+/HipTKVSYezYsZg9ezZSUlLg6Wn46kp8fDw6duwohSQA8PX1Rffu3bFp0yYpKO3duxcZGRmYOHGiTv1XX30V33zzDX755ReMGjWqCraOLBFvcVaPont3AYWi0p8tc+7nygQIU4SOyiwjLS0NgyMiocnPM3r9RPSQRQWl06dPo1WrVnB0dNQpDwwMBAAkJiYaDErFxcX4448/MGbMGL1pgYGB2LlzJ3JycuDg4IDTp08DADp06KAzX/v27WFlZYXTp08zKNUhprjFeeDAAbRp06bC665LV0mKNfcAIWrUrWRjw50511uZ/Zx37QSyDmyo9DqJaiuLCkppaWlwd3fXK9eWpaamGqx3584daDSaMuu2bt0aaWlpsLa2RqNGjXTms7Ozg7Ozs+w6gIcdzTUajfR3VlYWACA7O7uMLau4e/fuPVznX/9FcUF+heo+uHMTAHDy5ElpORVhZWWF4uLiCteriXUvXboEACh+oKnwfi7MeXh7o7JfaHZKFTasX4fGjRtXuK4591WljsmMFACV28/FDx5+5ipzPBvTZk3qBUAIOHZ8AdYNXCtUtyD1MnLP7zXbeiuzn0VhwcP1G/H+sq7l1jXnuo2q+/+/z+7du2fS71rtsoQQZc8sLEjz5s1Fnz599MqvXr0qAIhly5YZrJecnCwAiA8//FBv2urVqwUAcfr0aSGEEGPGjBFqtdrgcjw9PcXAgQNl2zd37lwBgC+++OKLL774qgWvlJSUMrOJRV1RUqvVOldstPLz86XpcvUAlKuuWq1GQUGBweXk5+fLrgMAYmJi8Prrr0t/FxcX486dO3B2doZCoZCtp5WdnQ1PT0+kpKTo3V6s67hvSsf9I4/7Rh73Tem4f+TV9n0jhEBOTg48PDzKnNeigpK7uztu3bqlV56WlgYAshvUsGFDKJVKab7S6rq7u6OoqAi3b9/Wuf1WUFCAjIyMUneaUqmEUqnUKXNycip9owxwdHSslQeeKXDflI77Rx73jTzum9Jx/8irzfumQYMG5ZrPqorbUSEBAQG4fPmy3n3Io0ePStMNsbKywpNPPokTJ07oTTt69CiaN28OBwcHnWU8Ou+JEydQXFwsuw4iIiKqeywqKEVERKCoqAirVq2SyjQaDdasWYOgoCDpibfk5GRcvHhRr+7x48d1AtClS5ewZ88eREZGSmXdunVDw4YN8cUXX+jU/+KLL2Bvb49+/fpVxaYRERFRDWRRt96CgoIQGRmJmJgY3L59Gz4+PoiLi0NSUhJWr14tzRcVFYX9+/fr9FafOHEivvzyS/Tr1w8zZsyAra0tli5disaNG2P69OnSfGq1GgsWLMCrr76KyMhI9OrVCwcOHMCGDRvw/vvvo2HDhlW2fUqlEnPnztW7fUfcN2Xh/pHHfSOP+6Z03D/yuG/+RyFEeZ6Nqz75+fmYM2cONmzYIP3W24IFC9CrVy9pntDQUL2gBAA3b97U+a230NBQLFu2DD4++iNbf/nll1iyZIn0W2+TJk3ClClTytUpm4iIiOoGiwtKRERERJbCovooEREREVkSBiUiIiIiGQxKRERERDIYlKrB77//jgEDBsDT0xMqlQpubm7o3bs3Dh06ZHD+w4cPIzg4GPb29nBzc8Nrr71Wqd9sqyl2796NMWPGoFWrVrC3t0fz5s0xbtw4gwOIhoaGQqFQ6L169+5thpZXvYrsG6BuHTtpaWl48803ERYWBgcHBygUCuzbt8/gvHXtuAEqtn+AunXsGLJ27VqDx4hCocBff/1l7uZVG41Gg1mzZsHDwwNqtRpBQUHYtWuXuZtlVhY1PEBtdfnyZVhZWeGVV16Bm5sb7t69iw0bNqBr16745ZdfdE7WiYmJ6N69O9q0aYOlS5fi5s2bWLx4Ma5cuYLt27ebcSuqzqxZs3Dnzh1ERkaiZcuWuHbtGlasWIGtW7ciMTERbm5uOvM3adIECxcu1CkrzzD0NVFF9k1dO3YuXbqEDz/8EC1btsSTTz6JhISEUuevS8cNULH9U9eOndK8++67aNasmU5ZZX6BoaaKjo5GfHw8pk6dipYtW2Lt2rXo27cv9u7di+DgYHM3zzzK/DU4qhK5ubmicePGolevXjrlffr0Ee7u7iIrK0sq+/LLLwUAsWPHjupuZrXYv3+/KCoq0isDIN566y2d8pCQEPHEE09UZ/PMqiL7pq4dO9nZ2SIjI0MIIcT3338vAIi9e/canLeuHTdCVGz/1LVjx5A1a9YIAOL48ePmborZHD16VAAQsbGxUlleXp5o0aKF6NSpkxlbZl689WYm9vb2cHV1RWZmplSWnZ2NXbt2YdSoUTq/rRMVFYX69etj06ZNZmhp1evatSusrKz0yho2bIgLFy4YrFNYWFgnbguUd9/UxWPHwcGhwgPE1pXjBij//qmLx05ZcnJyUFRUZO5mVLv4+HhYW1tj/PjxUplKpcLYsWORkJCAlJQUM7bOfBiUqlF2djbS09Nx8eJFzJ49G+fOnUP37t2l6WfPnkVhYSE6dOigU8/Ozg4BAQE4ffp0dTfZbO7du4d79+7BxcVFb9rly5dRr149ODg4wM3NDXPmzMGDBw/M0ErzMLRveOyUra4fN3J47OgKCwuDo6Mj7O3tMWDAAFy5csXcTao2p0+fRqtWrfR+BDcwMBDAw1u0dRH7KFWjIUOGYMeOHQAenoRefvllzJkzR5qu7aDr7u6uV9fd3R0HDhyonoZagI8//hgFBQUYOnSoTnmLFi0QFhaGJ598Erm5uYiPj8d7772Hy5cv47vvvjNTa6uXoX3DY6d0PG7k8dh5yN7eHtHR0VJQOnnyJJYuXYrOnTvj1KlT0m+N1mZpaWmyxwEApKamVneTLAKDUgUVFxejoKCgXPMqlUqdn0RZtGgRpk+fjpSUFMTFxaGgoACFhYXS9Ly8PKneo1QqlTTdkhmzf7R+//13zJ8/H0OGDEG3bt10ppX8zT8A+Ne//oXx48fjyy+/xLRp0/DMM89UvvFVrCr3TU0/dkyxb0pTk48boGr3T00/dgypzP4aMmQIhgwZIpWHh4ejV69e6Nq1K95//338+9//rqrmWoy8vDzZ40A7vS7irbcK+v3336FWq8v1unTpkk7dgIAA9OjRA2PGjMGuXbtw7NgxREdHS9PVajWAh49nPio/P1+absmM2T8AcPHiRQwaNAh+fn746quvyrVO7Y8e//bbbybdFlOryn1T048dY/dNZdSU4wao2v1T048dQ0y1v4KDgxEUFFQjjhFTUKvVsseBdnpdxCtKFeTr64s1a9aUa15DlzC17OzsMGDAACxatAh5eXlQq9XS/IbGyElLS6sRjzIbs39SUlLQs2dPNGjQANu2bYODg0O5lqO9JH7nzp2KNbaaVeW+qenHjqk+VxVRU44boGr3T00/dgwx5f7y9PQ0WTi3dO7u7rh165ZeufbYqInHgikwKFWQm5ubzlUgY+Tl5UEIgZycHKjVavj5+cHGxgYnTpzQuQRcUFCAxMREnTJLVdn9k5GRgZ49e0Kj0WD37t0VOtlfu3YNAODq6lrh9Vanqtw3Nf3YMeXnqrxqynEDVO3+qenHjiGm3F/Xrl2rEceIKQQEBGDv3r3Izs7W6dB99OhRaXpdxFtv1eD27dt6ZZmZmfjhhx/g6emJRo0aAQAaNGiA5557Dhs2bEBOTo407/r163Hv3j1ERkZWW5urU25uLvr27Ytbt25h27ZtaNmypcH5srOz9S4LCyHw3nvvAQB69epV5W2tbuXdN3X12CmPunjcVASPnYf++ecfvbJt27bh5MmTtXoE95IiIiJQVFSEVatWSWUajQZr1qxBUFBQnejQbohCCCHM3Yjarn379mjSpAmCgoLQqFEjJCcnY82aNUhNTcV3332HiIgIad5Tp06hc+fOaNu2LcaPH4+bN29iyZIl6Nq1q/TEXG0THh6OzZs3Y8yYMQgLC9OZVr9+fYSHhwMA9u3bh+HDh2P48OHw8fFBXl4efvrpJxw6dAjjx4/HypUrzdD6qlXefQPUzWNHG3b+/PNPbNy4EWPGjJFGVX777bcB1M3jRqs8+weom8fOo1q2bImnn34aHTp0QIMGDXDq1Cl8/fXXcHd3x/Hjx9G4cWNzN7FaDBkyBD/99BOmTZsGHx8fxMXF4dixY9i9eze6du1q7uaZh1mHu6wjVqxYIYKDg4WLi4uwsbERrq6u4vnnnxe///67wfkPHDggOnfuLFQqlXB1dRWvvvqqyM7OruZWVx9vb28BwODL29tbmu/atWsiMjJSNG3aVKhUKmFvby/at28v/v3vf4vi4mLzbUAVKu++0aprx47cvil5aquLx41WefaPVl07dh711ltviYCAANGgQQNha2srvLy8xIQJE8Rff/1l7qZVq7y8PDFjxgzh5uYmlEql6Nixo/j111/N3Syz4hUlIiIiIhnso0REREQkg0GJiIiISAaDEhEREZEMBiUiIiIiGQxKRERERDIYlIiIiIhkMCgRERERyWBQIiIiIpLBoEREREQkg0GJiGq9q1ev4uWXX0bz5s2hUqng6OiILl26YPny5cjLyzPpuu7fv4958+Zh3759Jl0uEZmHjbkbQERUlX755RdERkZCqVQiKioKfn5+KCgowMGDB/HGG2/gzz//1Pm1dGPdv38f8+fPBwCEhoaabLlEZB4MSkRUa12/fh3Dhg2Dt7c39uzZA3d3d2naq6++iv/+97/45ZdfzNhCIrJ0vPVGRLXWRx99hHv37mH16tU6IUnLx8cHU6ZMAQAUFhZiwYIFaNGiBZRKJZo2bYrZs2dDo9Ho1Dlx4gR69eoFFxcXqNVqNGvWDGPGjAEAJCUlwdXVFQAwf/58KBQKKBQKzJs3r2o3lIiqjEIIIczdCCKiqtCkSRMolUpcvXq1zHmjo6MRFxeHiIgIhIWF4ejRo1i3bh3Cw8Px008/AQBu374NX19fuLq64qWXXoKTkxOSkpLw448/4vz588jNzcX69esxYcIEDBo0CC+88AIAwN/fH/7+/lW6rURUNRiUiKhWys7ORoMGDTBw4ED8/PPPpc575swZBAQEYNy4cfjyyy+l8jfeeAOLFy/Gnj17EBYWhp9//hmDBg3C8ePH0aFDB4PLSk9Ph6urK+bOncsrSUS1AG+9EVGtlJ2dDQBwcHAoc95t27YBAF5//XWd8unTpwOA1I/JyckJALB161Y8ePDAVE0lIgvGoEREtZKjoyMAICcnp8x5b9y4ASsrK/j4+OiUu7m5wcnJCTdu3AAAhISEYPDgwZg/fz5cXFwwcOBArFmzRq8fExHVHgxKRFQrOTo6wsPDA+fOnSt3HYVCUeb0+Ph4JCQkYNKkSbh16xbGjBmD9u3b4969e8Y2mYgsEIMSEdVa/fv3x9WrV5GQkFDqfN7e3iguLsaVK1d0yv/++29kZmbC29tbp/yZZ57B+++/jxMnTuCbb77Bn3/+iY0bNwIoO2wRUc3CoEREtdbMmTNRr149jBs3Dn///bfe9KtXr2L58uXo27cvAODjjz/Wmb506VIAQL9+/QAAd+/exaPPvwQEBACAdPvN3t4eAJCZmWmqzSAiM+KAk0RUa7Vo0QLffvsthg4dijZt2uiMzH348GF8//33iI6OxpQpUzB69GisWrUKmZmZCAkJwbFjxxAXF4fw8HCEhYUBAOLi4vD5559j0KBBaNGiBXJycvDll1/C0dFRCltqtRpt27bFd999h1atWqFhw4bw8/ODn5+fOXcFEVUShwcgolrvypUriI2Nxa5du5CamgqlUgl/f38MGzYML730EpRKJQoLC/HBBx9g7dq1uHnzJtzc3DBq1CjMnTsXSqUSAHD69GnExsbi0KFD+Pvvv9GgQQMEBgZi3rx5aN++vbS+hIQETJ48GWfPnkVBQQGHCiCqwRiUiIiIiGSwjxIRERGRDAYlIiIiIhkMSkREREQyGJSIiIiIZDAoEREREclgUCIiIiKSwaBEREREJINBiYiIiEgGgxIRERGRDAYlIiIiIhkMSkREREQyGJSIiIiIZDAoEREREcn4f/uGlv0xcCePAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "optimization_result[\"cost\"].plot(\n", - " kind=\"hist\", bins=30, edgecolor=\"black\", weights=optimization_result[\"probability\"]\n", - ")\n", - "plt.ylabel(\"Probability\", fontsize=12)\n", - "plt.xlabel(\"Cost\", fontsize=12)\n", - "plt.tick_params(axis=\"both\", labelsize=12)\n", - "plt.title(\"Histogram of Cost Weighted by Probability\", fontsize=16)\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Create a Network Graph for the Best Solution Found\n", - "$\\star$ Very important to remember that this is a mximization problem and the classical solver of the QAOA process returns all possible results. We need to filter out the solution with the highest cost which would represent the the highest compatability score. " - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[1m\u001b[4m** QAOA SOLUTION **\u001b[0m\n", - "\u001b[4mHighest Compatibility Score\u001b[0m = 2.3499999999999996\n", - " patient1 patient2 patient3\n", - "donor1 1 0 0\n", - "donor2 0 0 1\n", - "donor3 0 1 0\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxoAAAH6CAYAAACAmzr5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABbP0lEQVR4nO3de3zP9f//8fv7veN7m5mZw7AhxswxyiI5J/lQfZAk5RQq+vr0yYcoUelclJIOJKGf+uij4uOTHArlUJHKYU5hzLCxmdl57+fvj7U3bzs4vZi12/Vycan36/V8vV6P18vb9rq/Ds+nzRhjBAAAAAAWspd0AQAAAAD+eggaAAAAACxH0AAAAABgOYIGAAAAAMsRNAAAAABYjqABAAAAwHIEDQAAAACWI2gAAAAAsBxBAwAAAIDlCBrABahVq5ZsNptsNpsWLlxYZLvOnTvLZrPpo48+unrFlQL5x+5K+O677zR06FBFRUWpQoUK8vLyUsWKFdWyZUuNHDlSK1askDHmimzbau3bt5fNZtN3331X0qVIktatW6cuXbooODhYdrvdsu/2/v37ZbPZVKtWrctel1W1nPvHbrcrODhYbdq00fTp05WTk1PSpV6W+Ph4PfHEE2rWrJnKlSsnb29vVatWTddff72GDh2qjz76SLm5uZZs60r+ey9K/s/o/fv3X9XtAigeQQO4SE8++eRVO+m41k48ryWJiYm67bbb1KFDB82cOVMpKSm6+eab1adPH7Vq1UrHjh3T9OnTdeutt6pFixYlXW6pc/jwYf3tb3/TihUr1KhRI/Xv318DBgxQ3bp1z7tsaf3e9urVSwMGDNCAAQPUt29f1a9fX+vWrdPIkSPVqVMnZWVllUhdAwcOvKyQt27dOkVFRenll1/W3r171bJlS/Xu3Vs33HCDkpOTNXPmTA0aNEjp6enWFm6Ry91/ACXHs6QLAEoTPz8/7dq1SzNnztRDDz1U0uWUWcnJyWrTpo127typyMhIvfPOO+rQoUOBdlu3btXUqVO1YMGCEqiydPvmm2+UnJysfv36af78+SVdzlXx2muvFbjLsm7dOnXs2FFr1qzR+++/r5EjR5ZMcZcoMzNTffr0cf1dzpgxQ4GBgW5tYmJi9OGHH8rDw6OEqrx8K1euVHZ2tqpXr17SpQA4C3c0gIswatQoSdKzzz6rtLS0Eq6m7Hr00Ue1c+dOXXfddVq3bl2hIUOSGjVqpFmzZunbb7+9yhWWfrGxsZKkiIiIEq6kZLVu3Vq9e/eWlHcyW9p8//33iouLk6enp95///0CIUOSIiMj9corr8jhcJRAhdaoU6eOIiMj5eXlVdKlADgLQQO4CN26dVO7du0UHx+vqVOnXvTymzZt0n333afw8HD5+PgoODhYt912m5YuXerW7rvvvpPNZtPq1aslSR06dHB7fvyjjz5ScnKyPDw8VKFCBTmdTrflP/vsM1fbc9edmZkpPz8/+fr6FnhU4sSJExo/frwaNmwoPz8/lStXTi1atNArr7xS6GMV+XW2b99eaWlpevrpp9WgQQP5+fld0PP3ubm5evjhh2Wz2dS4cWMdPHjwvMvs3btXn3zyiSRp6tSpqlChwnmXadmyZYFpZz/es3btWvXo0UOVKlWS3W53PaJx6tQpffDBB+rZs6ciIiLk7+8vf39/NW7cWE8++aSSk5ML3d7Zz4svWrRIbdq0UWBgoMqVK6f27dsX+DspzJYtW9SzZ0+FhITIx8dHUVFRev311y/5fZMFCxaoU6dOCg4Olo+Pj2rWrKnBgwdr165dbu0++ugj2Ww2TZw4UZL0zDPPuL5L5/s7vZDv7bmMMXr//ffVokUL+fv7q3z58urSpYvWr19f5HbS09P1+uuv66abblJQUJB8fX1Vv359jRkzRsePH7+4A3MBqlatKklFPjJ5KfX8+9//VufOnVWxYkXXe0VRUVEaOnSofvvtN0ln3h+ZM2eOJGnQoEFux3PSpEnnrf3o0aOSpICAAPn7+1/sristLU0vvfSSmjdvrnLlysnPz08NGzbUU089paSkpIta1/ne3Tj3kbuL2f/i3tG42H04+x2iS/l+AjiLAXBeNWvWNJLM2rVrzYYNG4wkExgYaBITE93aderUyUgys2fPLrCON954w9jtdiPJNGvWzPTu3du0adPGeHt7G0nmmWeecbXdsWOHGTBggKlSpYqRZG677TYzYMAA15+1a9caY4y58cYbjSSzceNGt20NHTrUSDKSzGOPPeY2b+XKlUaS6dChg9v0vXv3uvazUqVKplevXuaOO+4w5cqVM5JM8+bNzYkTJ9yW+fbbb40kEx0dbW688Ubj7+9vbr/9dnPPPfeYzp07u9rl13K2U6dOmdtvv91IMrfeeqs5efLkef4WzhxHSaZChQomNzf3gpYpTLt27Ywk88gjjxi73W6ioqJM3759TZcuXcwnn3xijDFm7dq1ruPRpk0bc88995guXbqYihUrGkmmbt26Bb4Dxpz5vjz22GNGkrnhhhvMvffea1q2bOk6FtOmTSuypieeeMJ4e3ubBg0amL59+5p27doZDw8PI8mMGjXqovbT6XSaBx54wEgynp6epmPHjqZv376mXr16RpLx8/Mz//vf/1zt165dawYMGGCaNm1qJJmmTZu6vnePP/54sdu60O/tvn37jCRTs2ZNM2DAAOPl5WU6duxo+vTp46rLx8fHbNiwocA24uLiTOPGjY0kExwcbDp37mz+/ve/u455rVq1zP79+y/4+OTXIsns27ev0Da33HKLkWTGjh1rST3PPPOM6++jbdu25t577zXdunUzjRo1MjabzUydOtUYY0xCQoIZMGCAqVOnjpFkbr75ZrfjuWjRovPuX/53uKifS8U5fvy4adasmevn3R133GF69eplQkJCjCRTu3btQo9ZYf/ei5ueL//7/+233xpjLm7/84/3ufVcyj5czvcTgDuCBnABzg4axhjTs2fPQk/iiwoaX3/9tbHZbCYkJMSsXr3abd5vv/1matSoYSSZ7777zm3eub94zzVu3DgjyTz//PNu02vXrm2qVatmKlasaBo3bnxBy0RHRxtJ5o477jCpqamu6ceOHTPNmzc3kky/fv3clskPGpJMkyZNTHx8fKF1nnuCcejQIdcv/0GDBpmsrKxClyvM/fffbySZTp06XfAyhck/tpLM9OnTC21z8OBBs2LFigKB5vTp066T90ceeaTAcvnfF5vNZubNm+c2b8GCBcZmsxlPT0/z+++/F1nTu+++6zZv5cqVxmazGQ8PD3Pw4MEL3s8ZM2YYSSYkJMT88ssvrulOp9NMnDjRSDJBQUHm2LFjbsvlz5s4ceIFb+vc/Sjqe3v2yX3NmjXNzp07XfNycnLM4MGDjSTTpUsXt+WcTqe5+eabjSQzZMgQk5KS4pqXnZ1tHn/88UJDdHGKChqZmZlm586d5pFHHnEdv9jY2MuuJyMjwzgcDhMQEGBiYmIK1LN//36zY8cOt2kDBgy4pKBgjDG5ubnm+uuvd+3jjTfeaJ588kmzaNGi836P7rnnHteFhLMD9dkXCVq3bl1gOauCRr4L2f+igsal7MOlfj8BFETQAC7AuUEjJibGeHp6Gh8fH7erlUUFjfyT+IULFxa6/s8++8xIMr169XKbfr4Ttvy7E+3bt3dN27t3r5FkBgwYYO6++24jyRw5csQ1v7C7IPlXPf38/Nza5vv555+NJGO3291OTs4OGmvWrCm0RmPcTzB+/fVXV7B69tlni1ymKPknB3379i10/pYtW9yuep57NT1f/rHt2LHjRddgTF7Y8PT0NJUqVSowL//7ctdddxW6bK9evYwkM3To0EJr6tmzZ6HLde3a1UgyH3/88QXXmX81uLA7KE6n0zRp0qTQ4Hm1gsZXX31VYH58fLzrqvHZIfR///ufkfLuCGZnZxdYLjc31zRq1MhIKhDiinJ2LUX9uffeewu9cn8p9Rw7dswVzC/U5QQNY4w5fPiw69/NuX/q1atnXnrpJZOWlua2zIEDB4zdbjc2m838+uuvBdZ56NAh4+vraySZH374wW3etRI0LnUfLvX7CaAg3tEALkH9+vU1ePBgZWZmasKECcW2TUxM1I8//iiHw6EePXoU2qZ9+/aS8nq4uRg333yzHA6H1q9f73o5fcWKFZKkW2+9VZ07d3ablpycrE2bNikoKEg33HCDaz35z0R37dpVVapUKbCdFi1aqGnTpnI6na7n789WuXJl3XLLLeetd9myZWrTpo2OHTumuXPnnvfYXYqDBw9qzpw5Bf7s2bOn0Pb5L/oWZ926dXr55Zc1YsQIDRo0SAMHDtQjjzwib29vJSQkFPms+oABA4qdXlT3r0V9Txo0aCBJiouLO2/NknTo0CHt3bu3yFpsNpsGDRokSSXywrynp6e6du1aYHrVqlVVoUIFZWZmur3j8N///ldSXje0np4FO0202+1q27atpIv/t5S/3vzube+//3516tRJ5cuX12effabx48crNTXVrf2l1FOpUiXVqlVLv/32mx5//HFt3779ouu8WKGhoVq6dKm2bt2qF154QT169HD1zrRr1y498cQTatWqlds7R2vWrJHT6dT111+vJk2aFFhn9erVddttt0kqme/OhbjcfbjY7yeAgujeFrhEkyZN0rx58zR//nyNHj260F9kkrRv3z4ZY5Seni4fH59i15mQkHBRNfj4+KhNmzZavny51q5dq9tuu00rVqyQzWZT586ddfr0aUl5QeO+++7TqlWr5HQ61aFDB9ntZ64z5J+41q5du8ht1alTR7/++muhJ7kXOvBa9+7dlZOTo3nz5um+++67iD09IyQkRFLRx6p79+5uL0x37ty52N6Ciqv92LFj6tWrl77//vtia0pJSSn0pfSijmf+9EOHDhU6Pzw8vNDp+T0GZWRkFFtPvvy/q4oVKxba25CU9/d6dturKTQ0tMheggIDA5WUlOS2r3/88YckacKECecNqRf7b0kqvHvb5ORk9enTR//v//0/nTp1SosXL77sej7++GP17t1bU6ZM0ZQpUxQcHKzo6Gjdeuutuv/++13fcas1bNhQDRs2dH3esWOH3nnnHU2fPl2//vqrnnzySU2fPl3Shf9MOLvtteZy9+Fiv58ACiJoAJcoNDRUo0aN0osvvqhx48a5rm6eK79HqICAAPXq1cvyOjp37qzly5dr+fLl6tKli1atWqXGjRu77kzUrl3bdUcj/7/5dzqscqHdYg4YMECzZs3ShAkT1Lp162JPAIrSvHlzzZ07V5s3b5bT6XQLTJeiuNoffPBBff/992rVqpWeeeYZNW3a1DX6uCRVq1ZN8fHxl9wTVFHLXe4+lRYXu5/5/5batGnjOkEsytkn1JcjKChIr7/+upo0aaIlS5Zo27ZtrnVfaj233HKL9u/fr//+979avXq11q1bp2XLlul///ufJk6cqEWLFqlTp06W1F+cBg0a6K233pLdbte0adP0xRdfuIJGSTi397ySVlb+HQJXEkEDuAxjx47V+++/r6VLl2rNmjWFtgkLC5OU95jKhx9+aPkvr7Mfj/rll190/Phxt8dkOnfurA8++EAxMTFFBo38xyjyr9AWJn/e5QyI9cEHHyggIEBvvvmmbrnlFq1YsUKRkZEXtY7u3bvr8ccfV1JSkpYuXaru3btfcj3FOX36tJYuXSq73a6lS5cqKCiowPwjR44Uu459+/apadOmBabnd8FZo0YNq8otVP7f1fHjx5WSklLoXQ0r/l6vlvx/S3feeadGjx591bZ73XXXuf5/x44drtBwOfU4HA717t3b9eheQkKCnnrqKb3//vsaPHiwDhw4YFH159elSxdNmzZNiYmJrmlX4meCl5eXsrOzderUKZUrV67AfKv3+Wr9XANQNOI6cBnKly+v8ePHS5LGjBlTaJtq1aqpSZMmOnXqlL7++uuLWr+3t7ekovvvl6Trr79eFStW1G+//eYaX+LWW291zc8PFbNmzdLu3bsVFhamevXqua0j/x2Rr7/+2tXv/tl++eUXbdmyxe2Z80ths9n0xhtv6KmnnlJcXJzatm2rLVu2XNQ66tatq3vuuUeS9M9//lMnT5685HqKc/LkSeXm5iowMLBAyJCkefPmnfdOxty5cwud/vHHH0s6c9yvlBo1ariutBc1hkX+9KIGPbwUF/K9vRS33367pLwxKC71LtKlyH/PRcq7M3kl6qlUqZJeeeUVSXmDJZ793s/lHM8LqSt/cMazg2/btm1lt9u1ZcsW/frrrwWWiY+Pd/08u9DvTv7J/I4dOwrM++2334ocR+dS9/9K7AOAi0PQAC7TiBEjFB4ero0bNxY5iNPkyZMl5Q04dfYz3vmMMdq4caO++eYbt+n5v/i3bdtW5PZtNps6duwoY4ymT58ub29vtzDQqVMn2Ww2vf3225IKf2yqTZs2io6OVnp6uoYPH+426nliYqKGDx8uSerbt6/rKu7leO655/TKK68oISFBHTp0uOjBr6ZPn666detq9+7dat26daEvqEt5dw6Keg/ifKpUqaIKFSooOTm5QGDYsGGDxo0bd951LFq0SAsWLHCbtnDhQn3++efy9PTUo48+ekm1XYz8K+3PPfec28mWMUaTJ0/Wli1bFBQUpKFDh1q2zQv53l6KO++8UzfeeKN+/PFHDRo0qND3MJKSkvTuu+9aFnKSk5NdxzA4ONit04NLqefAgQOaOXOmUlJSCrTN/9lQoUIFt7tPl3M8Fy9erLvuukvLly9Xbm5ugfnfffeda+C7vn37uqaHh4fr7rvvljFGw4cPd3vp+fTp0xo2bJgyMjLUunVrtW7d+oJqyf/Z88wzzygzM9M1ff/+/RowYECRoehS9/9K7AOAi1QCPV0Bpc653due66OPPnLrMrKwbhjffPNN4+npaaS8gd7+9re/mX79+plbb73VVK5c2UgFBwRbsmSJkWS8vb1N9+7dzeDBg82QIUMKdCf53nvvubZd2BgCZ/ejP3/+/EL34ewB+ypXrmx69+5t7rzzThMYGGik4gfsa9euXTFHr+huLWfMmGFsNpvx9/c3K1euLHYd5zp69KirO2FJpkaNGqZ79+6mf//+plevXqZJkybGZrMZSaZx48ZFjllRVBesxhgzdepU1/qjo6PNvffea26++WZjs9nM/fffX2Tf/fnT//GPf7jGLujXr5+rm2NJZsqUKQW2d76aLqXLWafT6Rp7xNPT03Tq1Mnce++9pn79+kaScTgcZunSpZZsK9/5vrdnD4hWlKKObVxcnGsMFn9/f9O6dWvTt29f07NnT9OsWTPXwIbp6ekXVOvZXZn26tXL1R3y/fffbzp37mzKly9vJBlfX1+zePHiAstfbD2//PKLkWS8vLzMjTfeaPr06WP69Onj+jdqs9nMzJkz3bbx66+/Grvdbux2u+ncubMZNGiQGTJkiPnyyy/Pu3+LFi1y7V/58uVNhw4dzL333mvuuOMOExkZ6ZrXuXNnc/r0abdlExMTXQM3li9f3tx1112md+/eplKlSka6+AH7/vjjDxMUFGQkmfDwcNOrVy/Ttm1b43A4TOfOnU3r1q0L/f5fyP4X9X25lH24nO8nAHcEDeACnC9o5ObmukYHLipoGGPM77//boYNG2YiIiKMr6+v8fPzM9ddd5257bbbzLRp00xcXFyBZT744APTvHlz4+fnV+T688fOUCHjIRhjzL/+9S/XSUxh42TkO378uBk3bpxp0KCBq77rr7++0H72jbn8oGGMMfPmzTOenp5Fnsidz4oVK8zgwYNN/fr1TWBgoPH09DQVKlQwzZs3N8OHDzfLly8vdATxCwkaxhjzxRdfmNatW5ugoCATEBBgbrjhBvPOO+8Yp9N53qCxb98+89lnn5lWrVqZgIAA4+/vb2655ZYi9/NKBI18n3zyiWnfvr0JCgoyXl5eJiwszAwcOLDQQeMud1vGFP+9vdwTuYyMDPPuu++aDh06mIoVKxpPT09TuXJl06xZMzNixAizbNmyC66zuHE0/P39TYMGDczIkSPN7t27i1zHxdSTkpJi3njjDfP3v//dREREuL4X9erVMw888ID5+eefC93GokWLzM0332zKlSvnCtAX8neTnp5uli1bZsaMGWNuvvlmU7NmTePr62t8fX1NeHi4ueuuu8ynn35qnE5nocufPn3avPjii6ZZs2bGz8/P+Pr6mgYNGpjx48cXuPCQr7h/79u3bzc9e/Y0FSpUMD4+PqZ+/fpm8uTJJisrq9jv//n2v7jvy8XuA0EDsI7NmKv4oCsAlAG1atXSgQMHtG/fvgvu+hcAgL8a3tEAAAAAYDmCBgAAAADLETQAAAAAWI53NAAAAABYjjsaAAAAACxH0AAAAABgOYIGAAAAAMsRNAAAAABYjqABAAAAwHIEDQAAAACWI2gAAAAAsBxBAwAAAIDlCBoAAAAALEfQAAAAAGA5ggYAAAAAyxE0AAAAAFiOoAEAAADAcgQNAAAAAJYjaAAAAACwHEEDAAAAgOUIGgAAAAAsR9AAAAAAYDmCBgAAAADLETQAAAAAWI6gAQAAAMByBA0AAAAAliNoAAAAALCcZ0kXAAAAABQlNjZWiYmJJV3GNSckJETh4eElXUaxCBoAAAC4JsXGxqpB/UilZaSXdCnXHD9fh3bsjLmmwwZBAwAAANekxMREpWWka1ad9qrvCCrpcq4ZO9OTNWTvd0pMTCRoAAAAAJeqviNIzfxDSroMXCSCxnlkO53adiJJWxJP6LfjJ3Q0PUOZubny8fBQFYevmlQMVrOQYDUMriAvO+/WAwAAABJBo0gHU1P1UcwezY7ZreSsLEmSp82mHGNcbfI+75EkBXl7a1BkhAZG1lVYQECJ1AwAAABcK7gEf46UrCyN+n6Dmn32pab9vt0VMiS5hYxzPydnZWna79vV7LMvNer7DUrJyr5qNQMAAOCM5w9tUsDGmSVdRpnHHY2zrIqL1yNr1ikxI1NGUu45weJ88tvP3/2Hvjl4WNPbtlLH6qFXoFIAAACUZjvTkzU3YadWnozTvoxT8vfwVDP/ED1ZvbmaB1Qq6fIswR2NP32wfad6L1ulxPQMOS8yYJzLaYwSMtLVe9kqzdy+06IKAQAA8Fcx59hOfXRsp5r7h+iFmtF6tGpj7U4/qQ7bvtK3J+NKujxLcEdD0sztOzV2w8+SJKdF63T+mVXG/LneB6PqW7RmAAAAlFYZzhx52zx0d0gdja/RXAEeXq5591eqpxa/LdQLhzarQ/nqJVilNcp80FgVF+8KA1fKmA0/67rygTxGBQAAYLF1p47oiQMbtC0tSdW8/fSP0CYF2uQYp147/KvmJ+xSXNZpVfXyU5+QOhpXvbl87B6udlG/LFCUXwX9s1pTjTuwUVvTTijU20/jqzdXv0oRbuvcl5GiCQd/0uqTh5VhctTIEayx1a9X1wpnxrVYk3JY3XYs1ey6HbQ9LUnzEnbpSHaaDra4X9cX0l1vRS9ftS5XVd+firfwCJWcMv3oVEpWlkasWSe7reC87JjtShrSX9kx2y97O3abNGLNel4QBwAAsNDWtBO6M+Z/SsjO0PgazdW/Uj09H7dZi5MOuLUb8cdaTT60SU39Q/RSzZvUJjBUrx3+VQP2rCqwzr0ZKeq/e6U6lK+mF8KjFeThreF/rNb2tCRXm6PZaeq0fbFWJh/Sg1UaaGKNG5RhctVn13J9dWJ/gXW+HPeLliUf1KjQxpoUdqO8bR4F2uQ7lp2mip6+l35QriFlOmhM+HGzDi5dovS1a67odpxGSsjI0NM/biow74UXXtAXX3xRYPq2bdt0991367rrrpOfn59CQkLUtm1bLV68+IrWCgB/ZZmZmRo7dqyqVasmh8Oh6OhoLV++/IKX//TTT9WqVSv5+/srKChIrVu31qpV7icqNput0D8vvfSS1bsDlHmTD22SMdI3Ud31eLWmGlv9ei1t0E07zgoFv58+rvmJuzWwUn3Ni+ikYVWi9H6ddhoV2lhLkg5o9cnDbuvcnXFSc+t20qSwGzW8apQWRXaVt81D8xJ2udpMOfybjmWn6/PI2zQx7AaNDG2s5VE9FO4ToHGxGwq875vpzNXKhj00MrSxHq/WVH4ehT9U9EPKEW1MPaaeFa+z8CiVnDIbNGJPpWrerr1KX7VCWesKBg3PepEKevdDedaLtGR7TmM0d9deHUxNdZteVNA4cOCATp06pQEDBujNN9/UhAkTJEl33HGH3n//fUtqAoCyZuDAgZoyZYruu+8+vfnmm/Lw8FC3bt30/fffn3fZSZMm6d5771VYWJimTJmiyZMnq0mTJoqLK/jS5q233qq5c+e6/enRo8eV2CWgzMo1Tq08eUjdg2sqzOfMGGaRjgrqHFTD9XlZ8kFJ0sjQRm7L/1/Vxm7zzywfpJsDq7o+V/JyKMJRXvsyU1zTvkk+qBv8K6l1uTPtAjy8NKhypA5kpmpHepLbOvuFRMhhL/6NhWPZ6Rq891vV8imnxwp5/Ks0KrPvaMzZuUd2WyHPTP3JZrdLdm9Lt2m32TQnZo+euqHZedt269ZN3bp1c5s2cuRItWjRQlOmTNGwYcMsrQ0A/up+/PFHLViwQK+++qpGjx4tSXrggQfUqFEjjRkzRuvWrSty2Q0bNujZZ5/V66+/rscee+y826pXr5769+9vWe0ACkrMzlC6M1d1fMsXmBfhW17LlBcgYrNSZZdNdXzc21Xx9lOQh7dis9wvAod5Fxx4OcjDW8k5Z8ZWi81MVc+KtQu0q+8bJEk6mJmqhn7Brum1fMoVuy+nc7N1985vlJqbrW+iuru9IF6albo7GpMmTZLNZlNMTIz69OmjwMBAVaxYUaNGjVJGRoar3ezZs9WxY0dVrlxZPj4+ioqK0owZMyRJ2U6nZsfs1ol/jZLz8CHl7IxR0pD+ShrSX6demZzXpoh3NHL+2KNTU19W0sihSnp4sE69PFk5u3e5tUn/8nMlDemv3KNHdHrWe0oeOUxJI4cqZda7mvnrVmU78/q2stlsOn36tObMmeO6tT5w4MAi993Dw0NhYWFKTk624EgCQNmycOFCeXh4uF2o8fX11ZAhQ7R+/XodPHiwyGXfeOMNVa1aVaNGjZIxRqnn3J0uTHp6utvvJQAlq5jry248imhodOnDH/gWczcjy5mrfrtXaGvaCS2od6tbQCntSl3QyNenTx9lZGToxRdfVLdu3TRt2jS3Xx4zZsxQzZo1NX78eL3++usKCwvTI488ounTp2vbiSQlZ2XJ0be/bBWCZQ+tJr8HH5Lfgw/J9293FrnN7B3bdOrlyTLpGXL0+LscPfvIpKXp1GsvKOePvQXan373LZmMDDl69ZH3DdHK+mGtjiz8VNtPJEuSXn31Vdntdnl4eKhKlSqaMWOGhg8f7r6O06eVmJiovXv3aurUqfrf//6nTp06WXMQAaAM+eWXX1SvXj0FBga6TW/ZsqUkacuWLUUuu3LlSt14442aNm2aKlWqpHLlyik0NFRvv/12oe0/+ugj+fv7y+FwKCoqSp988oll+wEgT4iXrxx2D+3NOFlg3u6zpoV7B8gpoz3ntDuanabk3CyFF3IH43zCfQK0O73gdndlJEuS26NcxXEao6F7V+u7k4f1Yd32uiXwr9VDaal9dKp27dr68ssvJUkjRoxQYGCg3nnnHY0ePVpNmjTR6tWr5XA4XO1Hjhyprl27asqUKfLv1EWS5N38BqUvWih7uQD5tGpT7PaMMUqbO1uekQ0U8I8xsv2Zdn3adVTKhLFKX/RvlXv8CbdlPMJryX/Q0Lx2kszpVGV9/52+2b5Dj4xzv01/9OhRValSRa1atXJbx+OPP6733ntPkmS329WzZ88if7EBAIoWHx+v0NCCv8Tzpx0+fLjAPElKSkpSYmKifvjhB61atUoTJ05UeHi4Zs+erUcffVReXl5uF4lat26tPn36qHbt2jp8+LCmT5+u++67TydPntTDDz98ZXYOKIM8bHZ1Kl9DS04c0MHMVNfJfUx6klYkH3K1uy0oTJMO/azpR7bprdpnzvfejt/qmn+xugSFafqRrdp46qiiy1WRlPf40+xjMarpE6AGjgoXtJ7H96/T5yf+0LTabXRncMFHsUq7Uhs0RowY4fb50Ucf1TvvvKOlS5eqSZMmbiHj5MmTys7OVrt27bRs2TL9dCBWnjabci5iBPDc2ANyHj0i3+53yqSmut0882zQUFnrf5BxOvPe7fiTT/uObuvwjKiv7M0/a+I7M5ReyLPAGzdulJeX+zN5TZs21XPPPacTJ05o7dq1iouL05IlS1ShwoV9gQGgLKlfv77q1Kkju73gDfv09HT5+PgUmO7r6+uaX5j8x6SOHz+uBQsW6J577pEk9e7dW40bN9bkyZPdgsYPP/zgtvzgwYPVokULjR8/XgMHDnT7/XQ2p9OpQ4cO6bfffruAPQXKhj179hQ7/6kazbUi+ZC6bF+ioVUaKMc49e7R7WrgV0Fb005Ikhr7V9R9IRGafSxGJ3My1SYwVJtSEzQ/cbe6V6ipduWrXXRd/6zWRP8+vlc9dy7TQ1UbKtjDR/MTd2t/5inNj+hc7HvA+abHb9UHx3YoOqCy/OweWpC4221+jwq15F/K39UotUEjIsJ90JT8Xyz79++XlPeDfuLEiVq/fr3S0tLc2sYdP35RIUOSnMeOSJLSZr1XZBuTni6bv7/rsz3YfSAWm9+f8wr5RSdJL7/8sl5++eXz1rJ+/frztgGAsmjy5Mn617/+JW/vgp15OBwOZWZmFpie/x5FUQEgf7qXl5d69+7tmm6323XPPfdo4sSJio2NVXh4eKHLe3t7a+TIkXrooYe0adMmtWlT+B303NxcrVixQkOGDCl+JwG4NPKrqC8iu2pc7EZNPrRJ1b399WT15jqSneYKGpI0/bpbVMunnOYn7tbipAOq4uXQ6GpNNa5680vabhUvP62M6qEJB3/Se0e2KcOZq0Z+wfp3vS5uA/YV57e045KkjanHtDH1WIH525pVJWhcK2xnJce9e/eqU6dOioyM1JQpUxQWFiZvb28tXbpUU6dOVWZ2zsVvwJkXTBx33yuP8JqF13BugCjkipok2YroOxkAcOWEhoYW2hVtfHzeCLzVqhV+VTM4OFi+vr4KCgqSh4f7IFuVK1eWlPd4VVFBQ5LCwvIezThx4kSRbQBcmjaBoVrb6K4C05+s0cL1/542u8bVaK5xNYoPFtuv71vo9K+juheYVts3UPMiin9vtm1gNaVGP1jovPfqtNN7ddoVu3xpV2rPeHfv3q3atc88y7Znzx45nU7VqlVLixcvVmZmpr766iu3H/zffvutJMnbwy7l5uZNvMAeCOx//jKxORzyimp0ntbFM7mFjxDet29fNWpU/LrXrVunpUuX6qGHHlKNGjWKbQsAZU379u0LhIF8zZo107fffquUlBS3F8I3btzoml8Yu92uZs2a6aefflJWVpbb3ZL89zoqVapUbF1//PHHedvZ7Xa1aNFCkydPLnZdQFly+PBhvfPOOyVdBi5RqQ0a06dPV5cuXVyf33rrLUnS7bffrjVr8gbgM2c9HnXy5EnNnj1bkhTi6yPP7HTlGCObj4/MOY9WFcajZm3ZK1dWxrKl8o5uLZuv+9DwzlMpspcLLGJpdzc1aqRtlSvr2DH322Q9e/bU3XffLUk6duyY60pZvuzsbN10001yOBx69dVXFRBw8b0kAEBZ1bt3b7322mt6//33XeNoZGZmavbs2YqOjnbddYiNjVVaWpoiI88M2HrPPfdow4YNmjNnjoYOzevkIyMjQ/Pnz1dUVJTrbkhCQkKBMHHq1Cm98cYbCgkJUYsWLVQUDw8PNW3aVE2bNrV0v4HSbPPmzQSNUqzUBo19+/bpjjvuUNeuXbV+/XrNmzdP/fr1U9OmTeXr6ytvb2/16NFDw4cPV2pqqj744ANVrlxZ8fHxalAhSItS8sKFZ83ayvxupdIXfyGPylVkCwyUV4OGBbZns9vlN+BBpb7xqlImjJV3m7ayBwXLmXxCOTE7ZHM4FPB/j19Q7d2aN9eqo0f18ccfa8SIEUpNTZW3t7eOHTumjRs3Kjo6WsOHD1dKSoratm2r6tWr68iRI5o/f75iYmL0+uuvEzIA4CJFR0fr7rvv1rhx43Ts2DHVrVtXc+bM0f79+zVr1ixXuwceeECrV692u1g1fPhwzZw5UyNGjNCuXbsUHh6uuXPn6sCBA1q8eLGr3fTp0/XFF1+oR48eCg8PV3x8vD788EPFxsZq7ty5hb47AgB/VaU2aHz66ad6+umn9cQTT8jT01MjR47Uq6++Kimv15GFCxfqqaee0ujRo1W1alU9/PDDqlSpkgYPHqyoCkHSgbzb3b49/i7n8URlfL1EysiQZ/3IQoOGJHlFRqnc+EnKWPyFMlctl8nIlL18eXlcV0c+7ToWukxhoioEScr7ZRYdHa0BAwbo119/1ciRIzVgwABFR0frnnvu0axZszRjxgwdP35c5cqVU4sWLfTyyy/rjjvuuKxjBwBl1ccff6wJEyZo7ty5SkpKUpMmTbRkyRK1bdu22OUcDodWrVqlMWPG6MMPP9Tp06fVrFkz/fe//9Vtt93manfzzTdr3bp1mjlzpo4fPy5/f3+1bNlSH374oTp2vPDfEwDwV2Az5iK7XyphkyZN0jPPPKOEhASFhIScf4FCZDudqv/J50rOyjp/Y4sFeXtrZ79e8iriRXEAAADk2bx5s1q0aKHvG92lZv6Xdt73V7TldKLabP1CmzZtUvPml9Zz1tVQJs92vex2DYqMKHKI+SvFw2bT4MgIQgYAAAD+8srsGe/AyLpyXuWbOU5jNCCy7lXdJgAAAFASymzQCAsIUP96dS5o5EYr2G023V+vjsJ4iRsAAABlQKl7GXzSpEmaNGmSJet6rmULfXPwsBIy0vPH47si7Dapkq+vnm1ZdLeGAAAAKNzO9OSSLuGaUlqOR6kLGlYK9PbS9Lat1HvZqiu6HaeRprdtpUDv0j2MPAAAwNUUEhIiP1+Hhuz9rqRLueb4+TouuWOkq6XU9Tp1JczcvlNjNvx8xdb/aqsbNaRBvSu2fgAAgL+q2NhYJSYmlnQZ15yQkBCFh4eXdBnFImj8KT9s2G2y5DGq/PUQMgAAAFAWETTOsiouXiPWrFdCRsZl9Uhlt9lUyddX09u2UsfqoRZWCAAAAJQOBI1zpGRlacKPmzVv117ZbTblXsTh8bDZ5DRG/evV0XMtW/BOBgAAAMosgkYRDqamak7MHn0Ys9s1grinzaacsw7X2Z+DvL01ODJCAyLr0oUtAAAAyjyCxnlkO53afiJZW46f0K+Jx3UsPUMZubny9fBQZYevmoZUVLOKwYoKDmLEbwAAAOBPBA0AAAAAluMSPAAAAADLETQAAAAAWI6gAQAAAMByBA0AAAAAliNoAAAAALAcQQMAAACA5QgaAAAAACxH0AAAAABgOYIGAAAAAMsRNAAAAABYjqABAAAAwHIEDQAAAACWI2gAAAAAsBxBAwAAAIDlCBoAAAAALEfQAAAAAGA5ggYAAAAAyxE0AAAAAFiOoAEAAADAcgQNAAAAAJYjaAAAAACwHEEDAAAAgOUIGgAAAAAsR9AAAAAAYDmCBgAAAADLETQAAAAAWI6gAQAAAMByBA0AAAAAliNoAAAAALAcQQMAAACA5QgaAAAAACxH0AAAAABgOYIGAAAAAMsRNAAAAABYjqABAAAAwHIEDQAAAACWI2gAAAAAsBxBAwAAAIDlCBoAAAAALEfQAAAAAGA5ggYAAAAAyxE0AAAAAFiOoAEAAADAcgQNAAAAAJYjaAAAAACwHEEDAAAAgOUIGgAAAAAsR9AAAAAAYDmCBgAAAADLETQAAAAAWI6gAQAAAMByBA0AAAAAliNoAAAAALAcQQMAAACA5QgaAAAAACxH0AAAAABgOYIGAAAAAMsRNAAAAABYjqABAAAAwHIEDQAAAACWI2gAAAAAsBxBAwAAAIDlCBoAAAAALEfQAAAAAGA5ggYAAAAAyxE0AAAAAFiOoAEAAADAcgQNAAAAAJYjaAAAAACwHEEDAAAAgOUIGgAAAAAsR9AAAAAAYDmCBgAAAADLETQAAAAAWI6gAQAAAMByBA0AAAAAliNoAAAAALAcQQMAAACA5QgaAAAAACxH0AAAAABgOYIGAAAAAMsRNAAAAABYjqABAAAAwHIEDQAAAACWI2gAAAAAsBxBAwAAAIDlCBoAAAAALEfQAAAAAGA5ggYAAAAAyxE0AAAAAFiOoAEAAADAcgQNAAAAAJYjaAAAAACwHEEDAAAAgOUIGgAAAAAsR9AAAAAAYDmCBgAAAADLETQAAAAAWI6gAQAAAMByBA0AAAAAliNoAAAAALAcQQMAAACA5QgaAAAAACxH0AAAAABgOYIGAAAAAMsRNAAAAABYjqABAAAAwHIEDQAAAACWI2gAAAAAsBxBAwAAAIDlCBoAAAAALEfQAAAAAGA5ggYAAAAAyxE0AAAAAFiOoAEAAADAcgQNAAAAAJYjaAAAAACwHEEDAAAAgOUIGgAAAAAsR9AAAAAAYDmCBgAAAADLETQAAAAAWI6gAQAAAMByBA0AAAAAliNoAAAAALAcQQMAAACA5QgaAAAAACxH0AAAAABgOYIGAAAAAMsRNAAAAABYjqABAAAAwHIEDQAAAACWI2gAAAAAsBxBAwAAAIDlCBoAAAAALEfQAAAAAGA5ggYAAAAAyxE0AAAAAFiOoAEAAADAcgQNAAAAAJYjaAAAAACwHEEDAAAAgOUIGgAAAAAsR9AAAAAAYDmCBgAAAADLETQAAAAAWI6gAQAAAMByBA0AAAAAliNoAAAAALAcQQMAAACA5QgaAAAAACxH0AAAAABgOYIGAAAAAMt5lnQBAAAAQFFiY2OVmJhY0mVcc0JCQhQeHl7SZRSLoAEAAIBrUmxsrBrUj1RaRnpJl3LN8fN1aMfOmGs6bBA0AAAAcE1KTExUWka6ZtVpr/qOoJIu55qxMz1ZQ/Z+p8TERIIGAAAAcKnqO4LUzD+kpMvARSJonEe206ltJ5K0JfGEfjt+QkfTM5SZmysfDw9VcfiqScVgNQsJVsPgCvKy8249AAAAIBE0inQwNVUfxezR7JjdSs7KkiR52mzKMcbVJu/zHklSkLe3BkVGaGBkXYUFBJRIzQAAAMC1gkvw50jJytKo7zeo2Wdfatrv210hQ5JbyDj3c3JWlqb9vl3NPvtSo77foJSs7KtWMwAAAM54/tAmBWycWdJllHnc0TjLqrh4PbJmnRIzMmUk5Z4TLM4nv/383X/om4OHNb1tK3WsHnoFKgUAAEBp90rcL/o5NUE/pR5TQk6GxlW/Xk/WaFHSZVmGOxp/+mD7TvVetkqJ6RlyXmTAOJfTGCVkpKv3slWauX2nRRUCAADgr+TZQ5u06XSCmv5FX3Tnjoakmdt3auyGnyVJTovW6fwzq4z5c70PRtW3aM0AAAAorTKcOfK2echus2lbs3tU06ecErMzVGvzvJIuzXJlPmisiot3hYErZcyGn3Vd+UAeowIAALDYulNH9MSBDdqWlqRq3n76R2iTAm1yjFOvHf5V8xN2KS7rtKp6+alPSB2Nq95cPnYPV7uoXxYoyq+C/lmtqcYd2KitaScU6u2n8dWbq1+lCLd17stI0YSDP2n1ycPKMDlq5AjW2OrXq2uFM+NarEk5rG47lmp23Q7anpakeQm7dCQ7TQdb3K8gTx/V9Cl35Q7MNaBMPzqVkpWlEWvWyW4rOC87ZruShvRXdsz2y96O3SaNWLOeF8QBAAAstDXthO6M+Z8SsjM0vkZz9a9UT8/HbdbipANu7Ub8sVaTD21SU/8QvVTzJrUJDNVrh3/VgD2rCqxzb0aK+u9eqQ7lq+mF8GgFeXhr+B+rtT0tydXmaHaaOm1frJXJh/RglQaaWOMGZZhc9dm1XF+d2F9gnS/H/aJlyQc1KrSxJoXdKG+bR4E2f0VlOmhM+HGzDi5dovS1a67odpxGSsjI0NM/biow74UXXtAXX3xRYHpqaqomTpyorl27Kjg4WDabTR999NEVrRMAyqrMzEyNHTtW1apVk8PhUHR0tJYvX35Byy5YsEDNmzeXr6+vKlWqpCFDhigxMfEKVwxAkiYf2iRjpG+iuuvxak01tvr1Wtqgm3acFQp+P31c8xN3a2Cl+poX0UnDqkTp/TrtNCq0sZYkHdDqk4fd1rk746Tm1u2kSWE3anjVKC2K7Cpvm4fmJexytZly+Dcdy07X55G3aWLYDRoZ2ljLo3oo3CdA42I3FHjfN9OZq5UNe2hkaGM9Xq2p/DzKxkNFZTZoxJ5K1bxde5W+aoWy1hUMGp71IhX07ofyrBdpyfacxmjurr06mJrqNr2ooJGYmKhnn31WO3bsUNOmTS2pAQBQuIEDB2rKlCm677779Oabb8rDw0PdunXT999/X+xyM2bM0L333qvg4GBNmTJFQ4cO1YIFC9SpUydlZGRcpeqBsinXOLXy5CF1D66pMJ8zY5hFOiqoc1AN1+dlyQclSSNDG7kt/39VG7vNP7N8kG4OrOr6XMnLoQhHee3LTHFN+yb5oG7wr6TW5c60C/Dw0qDKkTqQmaod6Ulu6+wXEiGHvWyEi7OV2aAxZ+ce2W2FPDP1J5vdLpuXt2wWjvZtt9k0J2bPBbUNDQ1VfHy8Dhw4oFdffdWyGgAA7n788UctWLBAL774ol599VUNGzZMq1atUs2aNTVmzJgil8vKytL48ePVtm1bLV++XI888oheeOEFffrpp/rtt9/0wQcfXMW9AMqexOwMpTtzVce3fIF5EWdNi81KlV021fFxb1fF209BHt6KzXK/CBzmXXDg5SAPbyXnnBlbLTYzVRGOgtut7xskSTqY6b7OWn/xdzGKUuqCxqRJk2Sz2RQTE6M+ffooMDBQFStW1KhRo9yuHs2ePVsdO3ZU5cqV5ePjo6ioKM2YMUOSlO10anbMbp341yg5Dx9Szs4YJQ3pr6Qh/XXqlcl5bYp4RyPnjz06NfVlJY0cqqSHB+vUy5OVs3uXW5v0Lz9X0pD+yj16RKdnvafkkcOUNHKoUma9q5m/blW2M69vK5vNptOnT2vOnDmy2Wyy2WwaOHCgJMnHx0dVq1YVAODKWrhwoTw8PDRs2DDXNF9fXw0ZMkTr16/XwYMHC11u69atSk5O1j333CPbWReuunfvroCAAC1YsOCK1w7gwhVzfdmNRxENjS59+APfMng3QyrFvU716dNHtWrV0osvvqgNGzZo2rRpSkpK0scffywp73Z2w4YNdccdd8jT01OLFy/WI488IqfTqZvv6avkrCw5+vZX2icfy+brK9+/3SFJsgcWTKf5sndsU+obr8qjZm05evxdstuV9f0anXrtBZUbO0Ge19Vxa3/63bdkD6ksR68+yjmwX1lrv9ORcuW1/c5uahoSrPHjx+ull16S0+lUYGCgXnjhBTVv3vyKHTMAQEG//PKL6tWrp8DAQLfpLVu2lCRt2bJFYWFhBZbLzMyUJDkcjgLzHA6HfvnlFzmdTtktvDMO4IwQL1857B7am3GywLzdZ00L9w6QU0Z7Mk4q0lHBNf1odpqSc7MUXsgdjPMJ9wnQ7vSC292VkSxJbo9ylWWlNmjUrl1bX375pSRpxIgRCgwM1DvvvKPRo0erSZMmWr16tdsP/5EjR6pr166aMmWK/Dt1kSR5N79B6YsWyl4uQD6t2hS7PWOM0ubOlmdkAwX8Y4zr6pVPu45KmTBW6Yv+rXKPP+G2jEd4LfkPGprXTpI5naqs77/TZ+vWq8+//qldu87cCUlJSVHVqlXVqlWryz42AIALFx8fr9DQgt2P5087fPhwgXmSFBERIZvNph9++EGDBg1yTd+5c6cSEhIkSUlJSapYseIVqBqAh82uTuVraMmJAzqYmeo6uY9JT9KK5EOudrcFhWnSoZ81/cg2vVX7zPne2/FbXfMvVpegME0/slUbTx1VdLkqkqTTudmafSxGNX0C1OCsQFOWldqgMWLECLfPjz76qN555x0tXbpUTZo0cQsZJ0+eVHZ2ttq1a6dly5bppwOx8rTZlHMRI4Dnxh6Q8+gR+Xa/UyY11e3mmWeDhspa/4OM0+n2TodP+45u6/CMqK/szT9r6if/T+m73B+3kqTly5crKSmpwPT9+/dLklavXq2cnJwLrhkAIFWvXl233357kfPT09Pl4+NTYLqvr69rfmFCQkLUp08fzZkzRw0aNNDf//53xcXF6dFHH5WXl5eys7OLXFaSvvvuO+3Zc2Hv7QFl1YEDB4qd/1SN5lqRfEhdti/R0CoNlGOcevfodjXwq6CtaSckSY39K+q+kAjNPhajkzmZahMYqk2pCZqfuFvdK9RUu/LVLrquf1Zron8f36ueO5fpoaoNFezho/mJu7U/85TmR3Qu9j3gs/2/hN2KzUpVujPv/O6HU0f0ctwvkqR7Q+oqvJS/21Fqg0ZEhPugKXXq1JHdbnedlP/www+aOHGi1q9fr7S0NLe2ccePX1TIkCTnsSOSpLRZ7xXZxqSny+bv7/psD3YfTt7m9+e8Qn6hSdJ7772n994rev0fffQRXdwCwEXq3LlzsUHD4XC4HoM6W/57f4U9GpXvvffeU3p6ukaPHq3Ro0dLkvr37686deroP//5jwICin584sMPP9TcuXMvdDcAFKKRX0V9EdlV42I3avKhTaru7a8nqzfXkew0V9CQpOnX3aJaPuU0P3G3FicdUBUvh0ZXa6px1S/tkfUqXn5aGdVDEw7+pPeObFOGM1eN/IL173pd3AbsO585CTv1/akjrs9rUuK1JiVektSqXBWCxrXi7Bfx9u7dq06dOikyMlJTpkxRWFiYvL29tXTpUk2dOlWZ2ZdwV8CZF0wcd98rj/CahddwboAo4rlcWxnpOxkASoPQ0FDFxcUVmB4fn/fLvlq1oq92li9fXl9++aViY2O1f/9+1axZUzVr1lTr1q1VqVIlBQUFXamyAfypTWCo1ja6q8D0J2u0cP2/p82ucTWaa1yN4oPF9uv7Fjr966juBabV9g3UvIhOxa6vbWA1pUY/WOT8wtb7V1Jqz3h3796t2rVruz7v2bNHTqdTtWrV0uLFi5WZmamvvvpK4eFnUuW3334rSfL2sEu5uXkTL7AHAnvlynnNHQ55RTU6T+vimdzCRwgfPny4brjhhgLT9+/fr+eff14DBw7UzTfffFnbBoCypnr16sXOb9asmb799lulpKS4vRC+ceNG1/zzCQ8Pd/2+SU5O1qZNm9SrV69ilxk8eLDatm173nUDZdmBAwc0efLkki4Dl6jUBo3p06erS5curs9vvfWWJOn222/XmjV5A/CZsx6POnnypGbPni1JCvH1kWd2unKMkc3HR+acR6sK41GztuyVKytj2VJ5R7eW7c9nd/M5T6XIXi6wiKXddWoZrV0bfnB7GVySbr311kJ/Mf388896/vnn1a5dO1f3twAAa/Tu3Vuvvfaa3n//fdfjT5mZmZo9e7aio6NdPU7FxsYqLS1NkZHFD+Q6btw45eTk6LHHHiu2Xfv27dW+fXtL9gH4q9q8eTNBoxQrtUFj3759uuOOO9S1a1etX79e8+bNU79+/dS0aVP5+vrK29tbPXr00PDhw5WamqoPPvhAlStXVnx8vBpUCNKilLxw4VmztjK/W6n0xV/Io3IV2QID5dWgYYHt2ex2+Q14UKlvvKqUCWPl3aat7EHBciafUE7MDtkcDgX83+MXVHu7yPpavHOnVq9erV69eun48eMKCAhQYmKiNm7cqOjoaEnS22+/reTkZFePJ4sXL9ahQ3m9KDz66KMqX77orngBABcmOjpad999t8aNG6djx46pbt26mjNnjvbv369Zs2a52j3wwANavXq120Wsl156SVu3blV0dLQ8PT31xRdf6JtvvtHkyZN14403lsTuAMA1o9QGjU8//VRPP/20nnjiCXl6emrkyJGuEbTr16+vhQsX6qmnntLo0aNVtWpVPfzww6pUqZIGDx6sqApB0oG8k3ffHn+X83iiMr5eImVkyLN+ZKFBQ5K8IqNUbvwkZSz+QpmrlstkZMpevrw8rqsjn3YdC12mMFEVgiRJ7dq10w8//KAhQ4Zo8+bNeuihhzRgwABX0Hjttdfcelv4z3/+o//85z+S8l42JGgAgDU+/vhjTZgwQXPnzlVSUpKaNGmiJUuWnPfRpsaNG2vRokX66quvlJubqyZNmuizzz7T3XfffZUqB4Brl82Yi+x+qYRNmjRJzzzzjBISEhQSEnL+BQqR7XSq/iefKzkr6/yNLRbk7a2d/XrJiwGcAAAAirV582a1aNFC3ze6S838L+28769oy+lEtdn6hTZt2nRND/ZcJs92vex2DYqMKHKI+SvFw2bT4MgIQgYAAAD+8srsGe/AyLpyXuWbOU5jNCCy7lXdJgAAAFASymzQCAsIUP96dS545MbLZbfZdH+9OgorZvAmAAAA4K+i1L0MPmnSJE2aNMmSdT3XsoW+OXhYCRnp+ePxXRF2m1TJ11fPtmxx/sYAAABwszM9uaRLuKaUluNR6oKGlQK9vTS9bSv1Xrbqim7HaaTpbVsp0Nvrim4HAADgryQkJER+vg4N2ftdSZdyzfHzdVxyx0hXS6nrdepKmLl9p8Zs+PmKrf/VVjdqSIN6V2z9AAAAf1WxsbFKTEws6TKuOSEhIQoPDy/pMopF0PhTftiw22TJY1T56yFkAAAAoCwiaJxlVVy8RqxZr4SMjMvqkcpus6mSr6+mt22ljtVDLawQAAAAKB0IGudIycrShB83a96uvbLbbMq9iMPjYbPJaYz616uj51q24J0MAAAAlFkEjSIcTE3VnJg9+jBmt2sEcU+bTTlnHa6zPwd5e2twZIQGRNalC1sAAACUeQSN88h2OrX9RLK2HD+hXxOP61h6hjJyc+Xr4aHKDl81DamoZhWDFRUcxIjfAAAAwJ8IGgAAAAAsxyV4AAAAAJYjaAAAAACwHEEDAAAAgOUIGgAAAAAsR9AAAAAAYDmCBgAAAADLETQAAAAAWI6gAQAAAMByBA0AAAAAliNoAAAAALAcQQMAAACA5QgaAAAAACxH0AAAAABgOYIGAAAAAMsRNAAAAABYjqABAAAAwHIEDQAAAACWI2gAAAAAsBxBAwAAAIDlCBoAAAAALEfQAAAAAGA5ggYAAAAAyxE0AAAAAFiOoAEAAADAcgQNAAAAAJYjaAAAAACwHEEDAAAAgOUIGgAAAAAsR9AAAAAAYDmCBgAAAADLETQAAAAAWI6gAQAAAMByBA0AAAAAliNoAAAAALAcQQMAAACA5QgaAAAAACxH0AAAAABgOYIGAAAAAMsRNAAAAABYjqABAAAAwHIEDQAAAACWI2gAAAAAsBxBAwAAAIDlCBoAAAAALEfQAAAAAGA5ggYAAAAAyxE0AAAAAFiOoAEAAADAcgQNAAAAAJYjaAAAAACwHEEDAAAAgOUIGgAAAAAsR9AAAAAAYDmCBgAAAADLETQAAAAAWI6gAQAAAMByBA0AAAAAliNoAAAAALAcQQMAAACA5QgaAAAAACxH0AAAAABgOYIGAAAAAMsRNAAAAABYjqABAAAAwHIEDQAAAACWI2gAAAAAsBxBAwAAAIDlCBoAAAAALEfQAAAAAGA5ggYAAAAAyxE0AAAAAFiOoAEAAADAcgQNAAAAAJYjaAAAAACwHEEDAAAAgOUIGgAAAAAsR9AAAAAAYDmCBgAAAADLETQAAAAAWI6gAQAAAMByBA0AAAAAliNoAAAAALAcQQMAAACA5QgaAAAAACxH0AAAAABgOYIGAAAAAMsRNAAAAABYjqABAAAAwHIEDQAAAACWI2gAAAAAsBxBAwAAAIDlCBoAAAAALEfQAAAAAGA5ggYAAAAAyxE0AAAAAFiOoAEAAADAcgQNAAAAAJYjaAAAAACwHEEDAAAAgOUIGgAAAAAsR9AAAAAAYDmCBgAAAADLETQAAAAAWI6gAQAAAMByBA0AAAAAliNoAAAAALAcQQMAAACA5QgaAAAAACxH0AAAAABgOYIGAAAAAMsRNAAAAABYjqABAAAAwHIEDQAAAACWI2gAAAAAsBxBAwAAAIDlCBoAAAAALEfQAAAAAGA5ggYAAAAAyxE0AAAAAFiOoAEAAADAcgQNAAAAAJYjaAAAAACwHEEDAAAAgOUIGgAAAAAsR9AAAAAAYDmCBgAAAADLETQAAAAAWI6gAQAAAMByBA0AAAAAliNoAAAAALAcQQMAAACA5QgaAAAAACxH0AAAAABgOYIGAAAAAMsRNAAAAABYjqABAAAAwHIEDQAAAACWI2gAAAAAsBxBAwAAAIDlCBoAAAAALEfQAAAAAGA5ggYAAAAAyxE0AAAAAFiOoAEAAADAcgQNAAAAAJYjaAAAAACwHEEDAAAAgOUIGgAAAAAsR9AAAAAAYDmCBgAAAADLETQAAAAAWI6gAQAAAMByniVdAAAAAFCU2NhYJSYmlnQZ15yQkBCFh4eXdBnFImgAAADgmhQbG6sG9SOVlpFe0qVcc/x8HdqxM+aaDhsEDQAAAFyTEhMTlZaRrll12qu+I6iky7lm7ExP1pC93ykxMZGgAQAAAFyq+o4gNfMPKekycJF4GRwAAACA5bijcR7ZTqe2nUjSlsQT+u34CR1Nz1Bmbq58PDxUxeGrJhWD1SwkWA2DK8jLTm4DAAAAJIJGkQ6mpuqjmD2aHbNbyVlZkiRPm005xrja5H3eI0kK8vbWoMgIDYysq7CAgBKpGQAAALhWcAn+HClZWRr1/QY1++xLTft9uytkSHILGed+Ts7K0rTft6vZZ19q1PcblJKVfdVqBgAAwBnPH9qkgI0zS7qMMo87GmdZFRevR9asU2JGpoyk3HOCxfnkt5+/+w99c/CwprdtpY7VQ69ApQAAACjN4rNO66nYH7X5dKLis9LkYbOprm95DavSQP1CImSz2Uq6xMtG0PjTB9t3auyGn2WX5LzMdTmNUUJGunovW6VXbrpBD0bVt6JEAAAA/EUcz8lQXNZp3RlcS2HeAco2Tn17Mk7D/1ij3RknNSnsxpIu8bIRNCTN/DNkSJcfMvI5/7wZMubP9RI2AAAAkOHMkbfNQ438KurrqO5u8x6q2lB371ymGUe2aUKNFvKwle63HMp80FgVF+8KA1fKmA0/67rygTxGBQAAYLF1p47oiQMbtC0tSdW8/fSP0CYF2uQYp147/KvmJ+xSXNZpVfXyU5+QOhpXvbl87B6udlG/LFCUXwX9s1pTjTuwUVvTTijU20/jqzdXv0oRbuvcl5GiCQd/0uqTh5VhctTIEayx1a9X1wpnBtBbk3JY3XYs1ey6HbQ9LUnzEnbpSHaaDra4X0GePoXuT7hPOaU5DyrLOOUo5UGjdFd/mVKysjRizTrZC3kELjtmu5KG9Fd2zPbL3o7dJo1Ys54XxAEAACy0Ne2E7oz5nxKyMzS+RnP1r1RPz8dt1uKkA27tRvyxVpMPbVJT/xC9VPMmtQkM1WuHf9WAPasKrHNvRor6716pDuWr6YXwaAV5eGv4H6u1PS3J1eZodpo6bV+slcmH9GCVBppY4wZlmFz12bVcX53YX2CdL8f9omXJBzUqtLEmhd0ob9uZcJPuzFFidoYOZJ7S/IRdmpewS9EBleWwl/77AWU6aEz4cbMOLl2i9LVrruh2nEZKyMjQ0z9uKjDvhRde0BdffFFg+k8//aSRI0eqYcOG8vf3V3h4uPr06aNdu3Zd0VoBoCzKzMzU2LFjVa1aNTkcDkVHR2v58uUXtOyKFSvUoUMHhYSEKCgoSC1bttTcuXOvcMUAJGnyoU0yRvomqrser9ZUY6tfr6UNumnHWaHg99PHNT9xtwZWqq95EZ00rEqU3q/TTqNCG2tJ0gGtPnnYbZ27M05qbt1OmhR2o4ZXjdKiyK7ytnloXsKZc7Aph3/Tsex0fR55myaG3aCRoY21PKqHwn0CNC52g5zndCiU6czVyoY9NDK0sR6v1lR+HmdCxDtHtqnW5nlquOVTDf9jjW4MqKyP6na8Qkfs6iqzQSP2VKrm7dqr9FUrlLWuYNDwrBepoHc/lGe9SEu25zRGc3ft1cHUVLfpRQWNl19+WZ9//rk6deqkN998U8OGDdOaNWvUvHlzbd261ZKaAAB5Bg4cqClTpui+++7Tm2++KQ8PD3Xr1k3ff/99sct99dVX6tKli7KysjRp0iQ9//zzcjgceuCBBzR16tSrVD1QNuUap1aePKTuwTUV5nNmDLNIRwV1Dqrh+rws+aAkaWRoI7fl/69qY7f5Z5YP0s2BVV2fK3k5FOEor32ZKa5p3yQf1A3+ldS63Jl2AR5eGlQ5UgcyU7UjPcltnf1CIoq8Q3F3xeu0OPJ2fVing/pUrCNJSnfmnv8AlAJlNmjM2blH9mK6DbPZ7bJ5ectm4WjfdptNc2L2XFDbf/7znzpw4ICmTZumBx98UE899ZTWrl2rnJwcvfTSS5bVBABl3Y8//qgFCxboxRdf1Kuvvqphw4Zp1apVqlmzpsaMGVPssm+//bZCQ0O1atUqjRw5UiNGjNDKlStVp04dffTRR1dnB4AyKjE7Q+nOXNXxLV9gXsRZ02KzUmWXTXV83NtV8fZTkIe3YrPcLwKHeRcceDnIw1vJOWfGVovNTFWEo+B26/sGSZIOZrqvs5ZPuSL3I9ynnDqUr64+IXX0Yd0OquVTTj1ilirdmVPkMqVFqQsakyZNks1mU0xMjPr06aPAwEBVrFhRo0aNUkZGhqvd7Nmz1bFjR1WuXFk+Pj6KiorSjBkzJEnZTqdmx+zWiX+NkvPwIeXsjFHSkP5KGtJfp16ZnNemiHc0cv7Yo1NTX1bSyKFKeniwTr08WTm73R9nSv/ycyUN6a/co0d0etZ7Sh45TEkjhypl1rua+etWZTvz+ray2Ww6ffq05syZI5vNJpvNpoEDB0qSWrduLW9vb7f1RkREqGHDhtqxY4elxxQAyrKFCxfKw8NDw4YNc03z9fXVkCFDtH79eh08eLDIZVNSUlShQgX5+Jx5qdPT01MhISFyOBxXtG4AF+dCh6XwKKKh0cWNr3Y234t43+LvwbV1KOu0fkg5csnbu1aUuqCRr0+fPsrIyNCLL76obt26adq0aW6/JGbMmKGaNWtq/Pjxev311xUWFqZHHnlE06dP17YTSUrOypKjb3/ZKgTLHlpNfg8+JL8HH5Lv3+4scpvZO7bp1MuTZdIz5Ojxdzl69pFJS9Op115Qzh97C7Q//e5bMhkZcvTqI+8bopX1w1odWfiptp9IliQNGzbMNRiLj4+P3njjDQ0fPrzI7RtjdPToUYWEhFziUQMAnOuXX35RvXr1FBgY6Da9ZcuWkqQtW7YUuWz79u21bds2TZgwQXv27NHevXv13HPP6eeffz7v3RAAlyfEy1cOu4f2ZpwsMG/3WdPCvQPklNGec9odzU5Tcm6Wwgu5g3E+4T4B2p1ecLu7MpIlye1RrouV/9jUydys87S89pXa19lr166tL7/8UpI0YsQIBQYG6p133tHo0aPVpEkTrV692u1q0siRI9W1a1dNmTJF/p26SJK8m9+g9EULZS8XIJ9WbYrdnjFGaXNnyzOygQL+MeZMQGjXUSkTxip90b9V7vEn3JbxCK8l/0FD89pJMqdTlfX9d3p3yX/1n7GjdezYMVfbzMxMVatWTa1atSqyhvnz5ysuLk7PPvvshR8oAECx4uPjFRpasPvx/GmHDx8uMC/fhAkTtG/fPj3//POaPDnvjrifn58+//xz3Xln0ReuAFw+D5tdncrX0JITB3QwM9V1ch+TnqQVyYdc7W4LCtOkQz9r+pFteqv2mfO9t+O3uuZfrC5BYZp+ZKs2njqq6HJVJEmnc7M1+1iMavoEqIGjwnnXkZCdrkpeBe98fpywUzZJzfwrXnRd15pSGzRGjBjh9vnRRx/VO++8o6VLl6pJkyZuIePkyZPKzs5Wu3bttGzZMv10IFaeNptyzIXfAsuNPSDn0SPy7X6nTGqq280zzwYNlbX+Bxmn0+2dDp/27j0GeEbUV/bmnzXn62VKPytk5PvPf/5TZK9SCQkJevfddxUWFqa4uDg9//zzF1w7AJRltWvXVr9+/Yqcn56e7vboUz5fX1/X/KL4+PioXr166t27t3r27Knc3Fy9//776t+/v5YvX66bbrqpyGW/+uor/f777xexJ0DZU1zQl6SnajTXiuRD6rJ9iYZWaaAc49S7R7ergV8FbU07IUlq7F9R94VEaPaxGJ3MyVSbwFBtSk3Q/MTd6l6hptqVr3bRdf2zWhP9+/he9dy5TA9VbahgDx/NT9yt/ZmnND+ic7HvAed79fAWbTh1VJ3L11CYT4CScjL15Yn92nQ6QQ9ViSr03ZPSptQGjYgI90FT6tSpI7vdrv3790uSfvjhB02cOFHr169XWlqaW9u448cvKmRIkvNY3nNyabPeK7KNSU+Xzd/f9dke7P6Ik83vz3mF/EKTpAULFpy3joMHD+rpp58+bzsAQJ7OnTsXGzQcDocyMzMLTM9/76+4dy1GjhypDRs2aPPmzbL/eaGpT58+atiwoUaNGqWNGzcWuezChQvpBhe4TI38KuqLyK4aF7tRkw9tUnVvfz1ZvbmOZKe5goYkTb/uFtXyKaf5ibu1OOmAqng5NLpaU42r3vyStlvFy08ro3powsGf9N6Rbcpw5qqRX7D+Xa+L24B9xekaFKZ9GSmam7BLiTkZ8rV5qJFfsN69rq3uC4k4/wpKgVIbNM5lOys57t27V506dVJkZKSmTJmisLAweXt7a+nSpZo6daoysy/hLX5nXjBx3H2vPMJrFl7DuQGiiB6rbB5/mcMOAKVeaGio4uLiCkyPj4+XJFWrVvjVzqysLM2aNUtjxoxxhQxJ8vLy0u233663335bWVlZBTr2AGCtNoGhWtvorgLTn6zRwvX/nja7xtVornE1ig8W26/vW+j0r6O6F5hW2zdQ8yI6Fbu+toHVlBr9YKHzOpavoY7laxQ676+i1J7x7t69W7Vr13Z93rNnj5xOp2rVqqXFixcrMzNTX331lcLDz6TKb7/9VpLk7WGXcv/sn/gCeyCwV66c19zhkFdUo/O0Lp7JLXyE8LFjx6pNmzPPDmZlZenpp5/Wnj17NHnyZEVGWjOmBwCUJefrQKNZs2b69ttvlZKS4vZCeP7diGbNmhW63PHjx5WTk6Pc3IL93WdnZ8vpdBY6L99jjz2mPn36XMAeAGXXnj179Nhjj5V0GbhEpTZoTJ8+XV26dHF9fuuttyRJt99+u9asyRuAz5z1eNTJkyc1e/ZsSVKIr488s9OVY4xsPj4y5zxaVRiPmrVlr1xZGcuWyju6tWx/Prubz3kqRfZygUUs7a57+/aK27NT69atc5seHR2t7t3zEnNubq569uypnTt36ssvv1S3bt0uaN0AgIvTu3dvvfbaa3r//fc1evRoSXkddMyePVvR0dEKC8t7UTQ2NlZpaWmuiz6VK1dWUFCQFi1apGeffdZ15yI1NVWLFy9WZGRksY9dXX/99br++uuv8N4BpdvmzZtLugRchlIbNPbt26c77rhDXbt21fr16zVv3jz169dPTZs2la+vr7y9vdWjRw8NHz5cqamp+uCDD1S5cmXFx8erQYUgLUrJCxeeNWsr87uVSl/8hTwqV5EtMFBeDRoW2J7NbpffgAeV+sarSpkwVt5t2soeFCxn8gnlxOyQzeFQwP89fkG1twwP1+gfftDu3bvVoUMHxcXFKSQkRMePH9fGjRsVHR2txx9/XF999ZV69OihEydOaN68eW7r6N+//+UfRACAoqOjdffdd2vcuHE6duyY6tatqzlz5mj//v2aNWuWq90DDzyg1atXuy5ieXh4aPTo0Xrqqad000036YEHHlBubq5mzZqlQ4cOFfi5DQBlTakNGp9++qmefvppPfHEE/L09NTIkSP16quvSpLq16+vhQsX6qmnntLo0aNVtWpVPfzww6pUqZIGDx6sqApB0oG8Xgx8e/xdzuOJyvh6iZSRIc/6kYUGDUnyioxSufGTlLH4C2WuWi6TkSl7+fLyuK6OfNp1LHSZwkRVCJKU90L7ypUrNWzYMP30008aOnSoBgwYoOjoaFe/7YsXL9bixYsLrIOgAQDW+fjjjzVhwgTNnTtXSUlJatKkiZYsWaK2bdsWu9yTTz6p2rVr680339QzzzyjzMxMNWnSRAsXLlSvXr2uUvUAcG2yGXOR3S+VsEmTJumZZ55RQkLCJQ9cl+10qv4nnys56+oPhBLk7a2d/XrJq4gXxQEAAJBn8+bNatGihb5vdJea+TNgcb4tpxPVZusX2rRpk5o3v7Ses66GMnm262W3a1BkRJFDzF8pHjabBkdGEDIAAADwl1dmz3gHRtaV8yrfzHEaowGRda/qNgEAAICSUGrf0bhcYQEB6l+vjubv/uOqBA67zab+EdcpLCDgim8LAADgr2RnenJJl3BNKS3Ho9S9o2GllKxsRX++WAkZ6fnj8V0RdptUydehjb16KNDb68ptCAAA4C8kNjZWDepHKi0jvaRLueb4+Tq0Y2eM25hx15oyHTQkaVVcvHovW3XFt7Pwto7qWD30im8HAADgryQ2NlaJiYklXcY1JyQk5JoOGRJBQ5I0c/tOjdnw8xVb/6utbtSQBvWu2PoBAACAa02ZfRn8bA9G1dcrN90gKe8xJyvkr4eQAQAAgLKIOxpnWRUXrxFr1ishI+OyXhC322yq5Our6W1b8bgUAAAAyiSCxjlSsrI04cfNmrdrr+w2m3Iv4vB42GxyGqP+9erouZYtePEbAAAAZRZBowgHU1M1J2aPPozZ7RpB3NNmU85Zh+vsz0He3hocGaEBkXXpwhYAAABlHkHjPLKdTm0/kawtx0/o18TjOpaeoYzcXPl6eKiyw1dNQyqqWcVgRQUHMeI3AAAA8CeCBgAAAADLcQkeAAAAgOUIGgAAAAAsR9AAAAAAYDmCBgAAAADLETQAAAAAWI6gAQAAAMByBA0AAAAAliNoAAAAALAcQQMAAACA5QgaAAAAACxH0AAAAABgOYIGAAAAAMsRNAAAAABYjqABAAAAwHIEDQAAAACWI2gAAAAAsBxBAwAAAIDlCBoAAAAALEfQAAAAAGA5ggYAAAAAyxE0AAAAAFiOoAEAAADAcgQNAAAAAJYjaAAAAACwHEEDAAAAgOUIGgAAAAAsR9AAAAAAYDmCBgAAAADLETQAAAAAWI6gAQAAAMByBA0AAAAAliNoAAAAALDc/wefbtobeO3wAAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# This function plots the solution in a table and a graph\n", - "\n", - "\n", - "def plotting_sol(x_sol, cost):\n", - " x_sol_to_mat = np.reshape(np.array(x_sol), [N, M]) # vector to matrix\n", - " print(\"\\033[1m\\033[4m** QAOA SOLUTION **\\033[0m\")\n", - " print(\"\\033[4mHighest Compatibility Score\\033[0m = \" , cost)\n", - "\n", - " # plotting in a table\n", - " df = pd.DataFrame(x_sol_to_mat)\n", - " df.columns = patients\n", - " df.index = donors\n", - " print(df)\n", - " \n", - "\n", - " # plotting in a graph\n", - " graph_sol = nx.DiGraph()\n", - " graph_sol.add_nodes_from(donors+patients)\n", - " for n, m in product(range(N), range(M)):\n", - " if x_sol_to_mat[n, m] > 0:\n", - " graph_sol.add_edges_from(\n", - " [(donors[m], patients[n])] , weight=compatibility_scores[(donors[m], patients[n])]\n", - " )\n", - "\n", - " plt.figure(figsize=(10, 6))\n", - " left = nx.bipartite.sets(graph_sol, top_nodes=patients)[0]\n", - " pos = nx.bipartite_layout(graph_sol, left)\n", - "\n", - " nx.draw_networkx(\n", - " graph_sol, pos=pos, nodelist=patients, font_size=22, font_color=\"None\"\n", - " )\n", - " nx.draw_networkx_nodes(\n", - " graph_sol, pos, nodelist=patients, node_color=\"#119DA4\", node_size=500\n", - " )\n", - " for d in donors:\n", - " x, y = pos[d]\n", - " plt.text(\n", - " x,\n", - " y,\n", - " s=d,\n", - " bbox=dict(facecolor=\"#F43764\", alpha=1),\n", - " horizontalalignment=\"center\",\n", - " fontsize=12,\n", - " )\n", - " \n", - "\n", - " nx.draw_networkx_edges(graph_sol, pos, width=2)\n", - " labels = nx.get_edge_attributes(graph_sol, \"weight\")\n", - " nx.draw_networkx_edge_labels(graph_sol, pos, edge_labels=labels, font_size=12, label_pos=.6)\n", - " nx.draw_networkx_labels(\n", - " graph_sol,\n", - " pos,\n", - " labels={co: co for co in patients},\n", - " font_size=12,\n", - " #font_color=\"#F4F9E9\",\n", - " )\n", - " plt.title(\"Network Graph of the Best Solution\", fontsize=16)\n", - " plt.axis(\"off\")\n", - " plt.show()\n", - "\n", - "\n", - "#best_solution = optimization_result.loc[optimization_result.probability.idxmax()]\n", - "#plotting_sol(best_solution.solution, best_solution.probability)\n", - "\n", - "best_solution = optimization_result.loc[optimization_result.cost.idxmax()]\n", - "plotting_sol(best_solution.solution, best_solution.cost)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Classiq", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.18" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/community/QClass_2024/Submissions/HW4/HW_4_Bill_Wisotsky.ipynb b/community/QClass_2024/Submissions/HW4/HW_4_Bill_Wisotsky.ipynb new file mode 100644 index 00000000..a8bd7ad8 --- /dev/null +++ b/community/QClass_2024/Submissions/HW4/HW_4_Bill_Wisotsky.ipynb @@ -0,0 +1,689 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Kidney Exchange QAOA Example\n", + "Used samples from Classiq github on QAOA and internet for pyomo models \n", + "Modified as needed for specfic problem and limitations based on account. \n", + "\n", + "What is the Problem? \n", + "Currently there are more than 100,000 patients on the waitling list in the United States for a kidney transplant from a deceased donor. This is addressed by the a program called the Kidney Exchange Program. This program won the Nobel Prize in Economics for Alvin E. Roth and Lloyd S. Shapley's contributions to the theory of stable matchings and the design of markets on 2012.\n", + "In summary, in a donor pair there is a recipient who needs a kidney transplant and a donor who is willing to give their kidney to the recipient. About $\\frac{1}{3}$ of those pairs are not compatible for a direct exchange. This is tackled by considering two incompatible pairs together: donor 1 may be compatible with recpient 2 and donor 2 may be compatible with recpient 1. In this example a two-way swap becomes feasible. This is the core of the kideny exchange program. \n", + "\n", + "This is consdered an NP-Hard combinatorial optimization problem that becomes exponetially more difficult as the size of the pool increases. The longest chain in history involved 35 tranplants in the United States in 2015." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import io\n", + "import sys\n", + "import time\n", + "import warnings\n", + "from contextlib import redirect_stdout\n", + "from itertools import product\n", + "from typing import List, Tuple, cast # noqa\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import networkx as nx # noqa\n", + "import numpy as np\n", + "import pandas as pd\n", + "import pyomo.environ as pyo\n", + "from IPython.display import Markdown, display\n", + "from pyomo.environ import *\n", + "\n", + "import classiq\n", + "from classiq import *\n", + "\n", + "warnings.filterwarnings(\"ignore\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Create the pyomo model for a simple kidney exhange problem \n", + "\n", + "In this very simple example, patients and donors represent sets of patients that receive a kidney from a donor. Compatibility is a dictionary mapping of patient-donor paris to their compatibilty scores. Binary decision variables are defined for each patient-donor pair x[donor,patient]. The objective is to maximize the total compatibility score. $ Maximize \\sum_{d,p\\in A}^{} \\sum_{m\\in M}c_{dp}x_{dpm}$ where d=donors, p=patients and c=compatability score. The contraints are added to ensure that each donor donates only once $\\sum_{d,p\\in A}^{}x_{dpm} = y_{dm}$ and each patient receives once $\\sum_{d,p\\in A}^{}x_{dpm} = y_{pm}$. We are creating a PYOMO model that gets fed into Classiq, as illustrated in Classiq documentation. We also solve initially with a classical solver to get inital results which can be compared to the QAOA results in the end." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1m\u001b[4mOptimal solution:\u001b[0m\n", + "\n", + "\u001b[1m\u001b[4mModel Details\u001b[0m\n", + "5 Set Declarations\n", + " donor_constraint_index : Size=1, Index=None, Ordered=Insertion\n", + " Key : Dimen : Domain : Size : Members\n", + " None : 1 : Any : 3 : {1, 2, 3}\n", + " patient_constraint_index : Size=1, Index=None, Ordered=Insertion\n", + " Key : Dimen : Domain : Size : Members\n", + " None : 1 : Any : 3 : {1, 2, 3}\n", + " x_index : Size=1, Index=None, Ordered=True\n", + " Key : Dimen : Domain : Size : Members\n", + " None : 2 : x_index_0*x_index_1 : 9 : {('donor1', 'patient1'), ('donor1', 'patient2'), ('donor1', 'patient3'), ('donor2', 'patient1'), ('donor2', 'patient2'), ('donor2', 'patient3'), ('donor3', 'patient1'), ('donor3', 'patient2'), ('donor3', 'patient3')}\n", + " x_index_0 : Size=1, Index=None, Ordered=Insertion\n", + " Key : Dimen : Domain : Size : Members\n", + " None : 1 : Any : 3 : {'donor1', 'donor2', 'donor3'}\n", + " x_index_1 : Size=1, Index=None, Ordered=Insertion\n", + " Key : Dimen : Domain : Size : Members\n", + " None : 1 : Any : 3 : {'patient1', 'patient2', 'patient3'}\n", + "\n", + "1 Var Declarations\n", + " x : Size=9, Index=x_index\n", + " Key : Lower : Value : Upper : Fixed : Stale : Domain\n", + " ('donor1', 'patient1') : 0 : None : 1 : False : True : Binary\n", + " ('donor1', 'patient2') : 0 : None : 1 : False : True : Binary\n", + " ('donor1', 'patient3') : 0 : None : 1 : False : True : Binary\n", + " ('donor2', 'patient1') : 0 : None : 1 : False : True : Binary\n", + " ('donor2', 'patient2') : 0 : None : 1 : False : True : Binary\n", + " ('donor2', 'patient3') : 0 : None : 1 : False : True : Binary\n", + " ('donor3', 'patient1') : 0 : None : 1 : False : True : Binary\n", + " ('donor3', 'patient2') : 0 : None : 1 : False : True : Binary\n", + " ('donor3', 'patient3') : 0 : None : 1 : False : True : Binary\n", + "\n", + "1 Objective Declarations\n", + " obj : Size=1, Index=None, Active=True\n", + " Key : Active : Sense : Expression\n", + " None : True : maximize : 0.9*x[donor1,patient1] + 0.7*x[donor1,patient2] + 0.6*x[donor1,patient3] + 0.8*x[donor2,patient1] + 0.75*x[donor2,patient2] + 0.65*x[donor2,patient3] + 0.85*x[donor3,patient1] + 0.8*x[donor3,patient2] + 0.7*x[donor3,patient3]\n", + "\n", + "2 Constraint Declarations\n", + " donor_constraint : Size=3, Index=donor_constraint_index, Active=True\n", + " Key : Lower : Body : Upper : Active\n", + " 1 : -Inf : x[donor1,patient1] + x[donor1,patient2] + x[donor1,patient3] : 1.0 : True\n", + " 2 : -Inf : x[donor2,patient1] + x[donor2,patient2] + x[donor2,patient3] : 1.0 : True\n", + " 3 : -Inf : x[donor3,patient1] + x[donor3,patient2] + x[donor3,patient3] : 1.0 : True\n", + " patient_constraint : Size=3, Index=patient_constraint_index, Active=True\n", + " Key : Lower : Body : Upper : Active\n", + " 1 : -Inf : x[donor1,patient1] + x[donor2,patient1] + x[donor3,patient1] : 1.0 : True\n", + " 2 : -Inf : x[donor1,patient2] + x[donor2,patient2] + x[donor3,patient2] : 1.0 : True\n", + " 3 : -Inf : x[donor1,patient3] + x[donor2,patient3] + x[donor3,patient3] : 1.0 : True\n", + "\n", + "9 Declarations: x_index_0 x_index_1 x_index x obj donor_constraint_index donor_constraint patient_constraint_index patient_constraint\n" + ] + } + ], + "source": [ + "from pyomo.environ import *\n", + "\n", + "# Sample data: patient-donor pairs and compatibility scores\n", + "donors = [\"donor1\", \"donor2\", \"donor3\"]\n", + "patients = [\"patient1\", \"patient2\", \"patient3\"]\n", + "N = len(patients)\n", + "M = len(donors)\n", + "# Parameters\n", + "compatibility_scores = {\n", + " (\"donor1\", \"patient1\"): 0.9,\n", + " (\"donor1\", \"patient2\"): 0.7,\n", + " (\"donor1\", \"patient3\"): 0.6,\n", + " (\"donor2\", \"patient1\"): 0.8,\n", + " (\"donor2\", \"patient2\"): 0.75,\n", + " (\"donor2\", \"patient3\"): 0.65,\n", + " (\"donor3\", \"patient1\"): 0.85,\n", + " (\"donor3\", \"patient2\"): 0.8,\n", + " (\"donor3\", \"patient3\"): 0.7,\n", + "}\n", + "\n", + "# Create Pyomo model\n", + "model = ConcreteModel()\n", + "\n", + "# Variables\n", + "model.x = Var(donors, patients, within=Binary)\n", + "\n", + "# Objective\n", + "model.obj = Objective(\n", + " expr=sum(\n", + " compatibility_scores[donor, patient] * model.x[donor, patient]\n", + " for donor in donors\n", + " for patient in patients\n", + " ),\n", + " sense=maximize,\n", + ")\n", + "\n", + "# Constraints\n", + "model.donor_constraint = ConstraintList()\n", + "for donor in donors:\n", + " model.donor_constraint.add(\n", + " sum(model.x[donor, patient] for patient in patients) <= 1\n", + " )\n", + "\n", + "model.patient_constraint = ConstraintList()\n", + "for patient in patients:\n", + " model.patient_constraint.add(sum(model.x[donor, patient] for donor in donors) <= 1)\n", + "\n", + "# Install \"glpk\" and unommente for runing this part\n", + "# Solve\n", + "# solver = SolverFactory(\"glpk\")\n", + "# solver.solve(model)\n", + "\n", + "# Output\n", + "print(\"\\033[1m\\033[4mOptimal solution:\\033[0m\")\n", + "for donor in donors:\n", + " for patient in patients:\n", + " if model.x[donor, patient].value == 1:\n", + " print(f\"{donor} donates kidney to {patient}\")\n", + "\n", + "print(\"\\n\\033[1m\\033[4mModel Details\\033[0m\")\n", + "model.pprint()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Start Generatng the QAOA Process\n", + " \n", + "### Create the inital parameters for the quantum circuit. These can me modified as needed.\n", + "1. Defining the number of layers (num_layers) of the QAOA Ansatz. \n", + "2. Define the penalty_energy for invalid solutions, which influences the convergence rate. Smaller positive values are preferred, but shoudl be tweaked. \n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "from classiq import (\n", + " Preferences,\n", + " construct_combinatorial_optimization_model,\n", + " set_preferences,\n", + ")\n", + "from classiq.applications.combinatorial_optimization import OptimizerConfig, QAOAConfig\n", + "\n", + "qaoa_config = QAOAConfig(num_layers=5, penalty_energy=2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Create the classical optimizer part of the QAOA. These parameters can be modified.\n", + "1. opt_type is the classical optimizer type. Choices include, COBYLA, SPSA, ADAM, L_BFGS_B, and NELDER_MEAD\n", + "2. The max_iterations is the maximum number of optimzer iterations and is set to 100. \n", + "3. The alpha_cvar is a parameter that describes the quantile considered in the CVAR expectation value. See https://arxiv.org/abs/1907.04769 for more information." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "optimizer_config = OptimizerConfig(\n", + " # opt_type='COBYLA',\n", + " max_iteration=200,\n", + " alpha_cvar=1,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Combine everthing together to form the entire QAOA model as a QMOD.\n", + "1. PYOMO Model \n", + "2. QAOA quantum circuit \n", + "3. Clasical optimizer " + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "qmod = construct_combinatorial_optimization_model(\n", + " pyo_model=model,\n", + " qaoa_config=qaoa_config,\n", + " optimizer_config=optimizer_config,\n", + ")\n", + "\n", + "# defining cosntraint such as computer and parameters for a quicker and more optimized circuit.\n", + "preferences = Preferences(transpilation_option=\"none\", timeout_seconds=3000)\n", + "\n", + "qmod = set_preferences(qmod, preferences)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "1. Wite out the QMOD and preferences to a JSON file \n", + "2. Synthesize the model in Classiq interface \n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# from classiq import write_qmod\n", + "# write_qmod(qmod, \"Kidney Exchange\") # optional" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "1. Sythesize the quantum model\n", + "2. Show the quantm model in the Classiq platform" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "from classiq import show, synthesize\n", + "\n", + "qmod = set_constraints(qmod, Constraints(optimization_parameter=\"width\"))\n", + "qprog = synthesize(qmod)\n", + "# show(qprog)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Execute the quantum model and store the result." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "from classiq import execute\n", + "\n", + "res = execute(qprog).result()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "View the convergence graph \n", + "Important to remember that this is a maximization problem when looking at the graph" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAHgAoADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA5vxR4jvdDuNJtNP0uO/utSuGgRJLnyFXajOSW2N2U9qm07VNVEN3c+IdNstJtoE3+cuoecuBncWJRAoAHWud+IdtBd654Qt7m4lggfUJQ8sU7Qsv7hzw6kEfnSeINM0/Tfh74sFhqN1eeZpk28XOoSXW3EbYxvY7ep6dePSgDr7fW9KvL5rK11Synu0Xe0EVwjSKvqVBzjkUXeu6TYXkVneapY211Ljy4ZrhEd8+ik5NcJeaTp+j2vw9nsLOGCddQhh85EAdkktpd4J6ncQCc9TWBaafcanN4ttL/AFHwzbzy6hcLcpqlmXuFjJ/dsHMq/Js27SBgY9c0AeuXer6bpz7L7ULW1YxmXE8yodgIBbk9ASBn3FRyeINGia0Eur2EZu1D2we5QGdT0KZPzA+1cHDo1tc+OPB1rqE8Gqi10GV1uGUMkzAxKJMHIOQcjr60tivhyPxb40j8SLYo6GFY1uwoAshCu0Rg/wAOd+dvf3oA9Ag1bTrk2wg1G0lN0HNv5cyt5oThiuD82O+OlTC8tjfPZLcRG6WMStAHG8ISQGK9cEgjPtXkmixG0+DfhjxFArmbQ52vDx87QGV0mX/v2zH6qK7HwFjVZNZ8VMQRq12Vtj/07Q5jj/Mh2/4FQB1F9qNlpdsbnUL23tIBwZbiVY1B+pIFRrrGmPpp1FNStGsAMm6E6mID135x+tcd4h+w/wDC09E/t7yP7M/s+f7F9px5X2vemevG7y+mffFV/F39h/bPCufsP/CO/wBrP9s8vZ5PneU3l+Zjj7+M574zQB29trGmXenyahbajaT2UYZnuYplaNQBkksDgYHWm22u6Re3v2K11Wxnutok8iK4Rn2kZDbQc4wQc15vqf2L+2fHv9heT/Z3/COH7Z9mx5X2rbLjpxu8vGce2anl0mw0rwz8PbixtIYLgahZKZkQB2EkbCTLdTuyc+tAHpNvfWt1DJNb3UMsUbMjvHIGVWU4YEjoQQQR2qvNrukW2mxajPqtjFYygGO5kuEWJwemGJwfzrzXxLdz6DqfiXwvatsl8SvDLp2P4XnIhuD+GN//AAKpfEFlJZfETSNPgn0qzs7fRhDp39rW5mi3q+HCfOoEmwR++PxoA9JOq6etlHfNfWotJSqxz+cvluWOFAbODknA9TUJ8RaGbKa9/tmw+yQSeVLP9qTy434+VmzgHkcH1ry7VtDitvh/qdm+qadfW93r1qzx6amyG3Lyxb41G5tvXdjP8XvXQ+JLPSLHxv4RhvLa0t9GAutiNGqQfadiCPcPu52h9ufwoA7ez1Sw1BnFle21yUVXbyJlfarZKk4PAODj1xTLPXNI1K6ltbHVLK6uIv8AWRQXCO6fUA5FeR3fkeX8Vf8AhFtuPs9rj7J93Ox/N2Y/4HnHfPetXStJS71Hw1e2+v8AhSGK1mD2q6ZZmGWZChDRAmU5BU8jGcj2oA9Bl8SaHDKsUms6fHK0rQBHuUBMinBTGfvAkZHWreoanYaVbfadRvbazgzjzLiVY1z6ZYgV5dYaJpl14T+I11cWUE1xJqOpAyyIGYBQSoBPTByRjuc1YtJrS48YeFpvEbQvbSeG0eya8IMZuiVMpG7jfs2++M0AejjVtNbTf7RGoWhscbvtQmXysdM784/WnWGp2Oq2wudPvba7gJx5lvKsi59MqSK848dC2Nz4UGmz6PDo32+fzZJoRLZrcbDs3qjKM7t+Mn72M1seDtIez8UarenWdEuJLm3iWaz0qHylVlLbZGXe3JBIzxnHtQB3dFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFNfIRiDg4oAdRXD+GdN1rWPCuk6nceMNYSa8s4bh1jhs9oZ0DEDMBOMn1rU/4RrVv+h01z/vzZ/wDxigDpKK5v/hGtW/6HTXP+/Nn/APGKP+Ea1b/odNc/782f/wAYoA6Siub/AOEa1b/odNc/782f/wAYo/4RrVv+h01z/vzZ/wDxigDpKK5v/hGtW/6HTXP+/Nn/APGKP+Ea1b/odNc/782f/wAYoA6Siub/AOEa1b/odNc/782f/wAYo/4RrVv+h01z/vzZ/wDxigDpKK5v/hGtW/6HTXP+/Nn/APGKP+Ea1b/odNc/782f/wAYoA6Siub/AOEa1b/odNc/782f/wAYo/4RrVv+h01z/vzZ/wDxigDpKK5v/hGtW/6HTXP+/Nn/APGKP+Ea1b/odNc/782f/wAYoA6Siub/AOEa1b/odNc/782f/wAYo/4RrVv+h01z/vzZ/wDxigDpKK5v/hGtV/6HTXP+/Nn/APGKP+Ea1X/odNc/782f/wAYoA1dR0fTNYiSPVNOtL6NDuRLqBZQp9QGBwaq2nhfw/YQ3ENnoWmW8VynlzpFaRoJU/usAPmHJ4NVP+Ea1b/odNc/782f/wAYo/4RrVf+h01z/vzZ/wDxigDZlsbSVbfzLaB1tnEkAaMERMAQGX+6QCRkdiar3+g6NqlwlxqGkWF5NGMJJcWySMv0JBIrO/4RrVf+h01z/vzZ/wDxij/hGtW/6HTXP+/Nn/8AGKANlbG0FzFci1gFxFGYo5fLG5EOMqD1A4HHsK5nxPo2t6hqUc+nad4auBHGBBc6nEzTWz5OWXCkEdCBleau/wDCNat/0Omuf9+bP/4xR/wjWrf9Dprn/fmz/wDjFAGfP4Y1Sw8AW3hfQbi0JMDWtxd3hYFVYHfIqqDliSSASBz1rqNM06DSdLtNOtl2wWsKQxj/AGVAA/lWP/wjWrf9Dprn/fmz/wDjFH/CNat/0Omuf9+bP/4xQBsX2nWOqWxttQsre7gJyYriJZFJ+hBFMXR9MTTTpyabaLYEYNqIFERHpsxj9Kyv+Ea1b/odNc/782f/AMYo/wCEa1X/AKHTXP8AvzZ//GKANO20fTLPTn062060gspAyvbRQqsbAjBBUDByOtSvp9nJDbxPaW7RWzK0CGJSsTLwpUY+UjtjpWP/AMI1qv8A0Omuf9+bP/4xR/wjWq/9Drrn/fmz/wDjFAGvNp1lc3lveT2VtLdW27yJ5IlZ4s8HaxGVz3xS6hplhqtt9n1GxtryDOfLuIlkXPrhgRWP/wAI1qv/AEOuuf8Afmz/APjFH/CNar/0Ouuf9+bP/wCMUAaS6JpMditjHptmloriRYFt1EYYEEMFxjIIBz7VT8S2F/qOmJb2dlpF9mQGW31VWMTrg9MBsHOOoPeof+Ea1X/odNc/782f/wAYo/4RrVv+h01z/vzZ/wDxigCv4P8ADd1okmo3t+bIXuoPHuhsUKQQRxrtSNAcE4GSTgcnpWxbeHdEsr5r210fT4LtiSZ4rZFkOevzAZrP/wCEa1b/AKHTXP8AvzZ//GKP+Ea1b/odNc/782f/AMYoA2I9Oso4biBbK3WG5Z3njWJQsrN94sMfMT3J61HdaPpl7YJYXem2dxZxgBLeWBXjUAYGFIwMCsv/AIRrVv8AodNc/wC/Nn/8Yo/4RrVv+h01z/vzZ/8AxigDWXStOXTf7NXT7UWONv2UQr5WOuNuMY/Ck07R9M0iNo9M06zskY5K20Cxg/UKBWV/wjWrf9Dprn/fmz/+MUf8I1q3/Q6a5/35s/8A4xQB0lFc3/wjWrf9Dprn/fmz/wDjFH/CNat/0Omuf9+bP/4xQB0lFc3/AMI1q3/Q6a5/35s//jFH/CNat/0Omuf9+bP/AOMUAdJRXN/8I1q3/Q6a5/35s/8A4xR/wjWrf9Dprn/fmz/+MUAdJRXN/wDCNat/0Omuf9+bP/4xR/wjWrf9Dprn/fmz/wDjFAHSUVzf/CNat/0Omuf9+bP/AOMUf8I1q3/Q6a5/35s//jFAHSUVzf8AwjWrf9Dprn/fmz/+MUf8I1q3/Q6a5/35s/8A4xQB0lFc3/wjWrf9Dprn/fmz/wDjFH/CNat/0Omuf9+bP/4xQB0lFc3/AMI1qv8A0Ouuf9+bP/4xR/wjWq/9Drrn/fmz/wDjFAHSUVzf/CNar/0Ouuf9+bP/AOMUf8I1qv8A0Omuf9+bP/4xQB0lFc3/AMI1q3/Q6a5/35s//jFI3hvVgpP/AAmuucD/AJ42f/xigDpaKw/CN5cal4N0S/vJTNc3NjBNLIQBudkBJwOBye1blABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGRqmrXWnSokGhalqKsuS1oYcJ7HzJEOfpmqqzHxJp95Z6j4cu7eHapEOomHZOc5A/du/AIGcjv3roao6hp1tqtm1rdrIYmIb93K8bAg5BDIQR+BoA5HwRbvpniTXtOksYNLby7eePTbSTzLdEO9fMRsLyxUgjauNg65zXTatqd5YEJbaFqGoBkJL2zwKE9j5kin8gaXSdA03RBO1jAyPOQZpZZXlkkxwNzuSxxzjJ4zWm/3G+hoA5/wD/yTvw1/wBgu2/9FLXRVzvgH/knfhr/ALBdt/6KWuioAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBKKK46fxFrc2ragmk2Ftd2ViRHJvcq7vjLBT046YxVRg5bETmoWudjQKztH1SLWdJttQg4WZclSclT0I/A5pl1rVpaazZaXKW8+7DGPA4G0Z5+vOPpS5ZXatqh88bKV9GalLVe5uYrO2e4ndUijUs7t0AFctb+N5ZYVuG8Paq1vJkwywReZvXPBI4xmnGDkrpEyqRi7NnYUtYeieIodaluYPs1xaXFsV3w3C7XwwyDiq0PjPSpdZuNOeQxNCxUSyYEcjL94A+op+zldq2we1hZO+50lLXC2XjK7l1eO5uLcR6DeSm3tp2GCHHRm9mOR+Hsa7kHIpTg47hCrGewUVWvr63060kurqVYoYxlnbtXOR/ELQzGGna5tnIBSOaBtzA9CMZH60RhKSvFXHKpCLs3Y62krlf+E6s+p0zVgn982hxj161qaR4g07XFl+xzEvEcSRupV1+oPam6ckrtCjVg3ZM1qSucm8c+Hre6ktpdQCvGxUkRsVJHUAgEVB/wnNlccaVY6hqLdjBAQn4lsY/KhUp9gdan3R1dFcoPGEw+RvDOt+b6LbZX/vrNINT8XXP7+30O1ht+0NzP+9f344H0NNUpdbL5on20el38mdZRXKnWvFSje3hUbB95VvkLH6Un9veIr35bDw28PrLfShAD/ujk/hR7J+X3oPbR7P7mdXRXKed42t8F7XSrsN2ikZCh/4F1H60oXxy/wAxk0SPP8G2Q4/Gj2fmvvD2v91/cdXRXKfZPGsvD6lpUA/vRQsx/wDHqX+z/GPT+3LEj1+y80ezX8y/H/IPav8Alf4HVUVyv9j+LX+94pji/wCudih/nR/YPif/AKG9v/ACP/Gj2cf5l+P+Qe0l/K/w/wAzqqK5X+wfFI6eLz+Onx/40f8ACP8AiOT/AF3i2X2EdoifyNHJH+Zfj/kHtJfyv8P8zqaK5X/hHNfH3fFtzn3t0P8AWj+zPGCcL4gtZAOjPZgE/gKPZx6SX4/5B7SXWL/D/M6qiuW+w+M3+RtX06Nf+eiW5LfkeKQ+H/Ej8y+LZfpHZov9aPZx6yX4/wCQe1l0i/w/zOqorlf+EZ1nqPFl9u/65Lj8qX/hG9cb7/iy7I/2YEFHs4/zL8f8g9pP+V/h/mdVmjNcoPDevRc2/i26X/rrbpJ/M0HQfEsnE3ixgB08qzRSfqc0ezj/ADL8f8g9pL+V/h/mdXRXKf8ACO+IX4l8WzlB0EdqiH880f8ACNa2BgeLLzHvCpNHJD+Zfj/kHtJ/yv8AD/M6n8aP89K5f/hF9W6/8JXqG7/cXH5Uf8Ivq3U+K9Q3f7i4/Kjkj/N+Ye0n/I/vR1GPelrlf+EY1k/e8V3v4RKK3NMsp7CyEFxfS3sgJPmygBj7cVMoxS0d/vKjKTeqsX6a/wBxvoadTX+430NSaHP+Af8Aknfhr/sF23/opa6Kud8A/wDJO/DX/YLtv/RS10VABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU1/uN9DTqa/wBxvoaAOf8AAP8AyTvw1/2C7b/0UtdFXO+Af+Sd+Gv+wXbf+ilroqACiiigAooooAKKKKACiiigAopKzdb1aLRNLmv5lLrGBhV6sScAD86Em3ZCk1FXZpUVya+MZbWeL+2NHuNNtpThbh3DqD6NgfLXRzXSRWMl2rB40jMgIOQQBnrVOEluSqkXez2LNcD4k8S6hFq5Olkmy0opJflf4yzAbPwGf19K39B106r4Wj1adERtjmRV6AqT6+wz+NUfB2mx3HgdUuRubUBLJcN3feSM/litYR5G5TV7OxjOTqJRg7XVyXxD4gurN9PttGhju7y7JkVGPBiVck9RjPY/WtHQ9ettct2eJWinjO2aCQYeNvQj+tYHgrQtQtLu4u9WB823QWVtuH/LJTnI9jxj8al8Y2Z0yM+JrBjDfWu0ShR8s8ZYAqw79evt9MNxg37Nb9/MSlUUfaPbt5G/r+pf2RoV5fYy0MZKj1Y8L+pFVfCumHS/D1vDIc3Eg86dj1aRuTn+X4VR8eOJvCnkKf8Aj7nhiX3ywP8ASupAAUAdBUPSmvN/l/w5otaj8l+ZyOiD+xPFeo6K3y291/ptp6DPDqPx7egrnvE8skni251mNiItEe1RsdCGYlv54rpvGcEkVna63bKTcaZKJsDq0Z4dfy/kaztCsTrXg/W7hlJfVpp5Y89h0QfgRW9OSX7x+j/X8DnqRbfsl01X9epc8R51vXtN8Pq5+zOpu7wA/ejU/KPoW/pXWJGsaKiqAqjAUDgCuH+HiT30NzrV3zLKI7WMn+5GoBP4n9RXdVhWXK+Tsb0feTm+v5HGeL7e/wBNvoNd0iFpLgxtaSxqudwb7jYHo2P0q9aeEbAeGrfSr+FZ9v7yRskMZTyxDDn2+ldKenFB6daXtHZLsP2MeZyet+n5mfe6NY3+kNpssAFoUCBF42gdMemKxv8AhBrbodX1kj0+2HH8q6uikqkkrJlOnBu7Rykfgaz+0RPc6hqN5BE29ba6n3x7uxxiuo8tePlHHTjpT6T8aTnJ7scacY7IMVzeveFk1e4S7tbp7C8C+XJPCOZIzwVPI/A10tJSjJxd0OUIyVmULDSbLTdPjsreBRBGOFIzk+p9TV4AAcClpaG23dgkkrIKKKKRQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU1/uN9DTqa/3G+hoA5/wD/yTvw1/wBgu2/9FLXRVzvgH/knfhr/ALBdt/6KWuioAKKKKACiiigAooooAKKKKACiiigAooooAKKKo6lqFvpWnT3105WCFdzEck+gA7knAAHUkCgC9TX+430Ncx4S1zVNZl1iLV7WC2ms7xYkiiySiNFHIA5JILDfgkYGRxWnqviLRNGKx6prFhYySKWRbm4SMsPUBiM0AU/AP/JO/DX/AGC7b/0UtdFXO+Af+Sd+Gv8AsF23/opa6KgAooooAKKKKACiiigAooooAbjrXJa4P7Y8W6Zoy/NDa/6bcjtxwgP49vQ11pwATXK+Dh9vm1XXW5+3XJWIn/nlH8q/1/KtKeicu36mNTVqHf8AJG9qlst3pN3bMoYSQuuCM9Qa5axu/wDi0xnzythJGD7jcgrtex+leZ+abb4U6laj70Fy9sB9ZRx/49V0ldW80Z1vdd/J/oQ6HdPp/wAOtftZTiSHgewlRQP5mvRNFtvsWiWNsRgxW8aH6hRmvOPEcP2TxHNoyj5NUFmMDodp2/0r1YVeJ2T76/gv+CRhd2v5dPxf6WCsbxTb/afC+pxAZP2Z2A9wMj+VbNRXMIntpYW+7IhU/iMVzRdpJnXNXi0cPqFx9v0jwZHnLTXVvI3vsX5v513orzHw7Kbu48H27fethdtIPTGQv9K9OrauuVqPr+Zhh3zJy9PyIpokuInikUPG6lWU9CDwRUdjZQadZxWtrEIoIhtRAScD8atUVhd2sdFle5HHFHCgSJFRB0VRgVJRRQMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKa/3G+hp1Nf7jfQ0Ac/4B/wCSd+Gv+wXbf+ilroq53wD/AMk78Nf9gu2/9FLXRUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAZGqeGdD1uWOXVdIsb6SNdqNcwLIVHoMis9/Afhk2jW9tpUNgrSpMWsCbZy6ZKHdGQeCSRzXT0UAcn4X8JHw7q+t3n2q5mjvbhXhEt5LMQgjRTv3k5fcrc8nbgZ7DqJFBRsgHg9RUlNf7jfQ0Ac/4B/wCSd+Gv+wXbf+ilroq53wD/AMk78Nf9gu2/9FLXRUAFFFFABRRRQAUUUUAFFFFAGB4wvzp3hm6eL/XzL5EIHUu/HHvjJ/Cr2jaeul6RZ2KkfuIlUkdzjk/icmsLVT/a3jfTdOHMFgpvJh239EH1HX6GusrSfuwUe+v+RjD3puXbT/MWvLL35Y9V0r/nt4hj49pPm/8AZa9Try/UUP8AwtJbPHyTXlvcj6pGf8TWmGV2/S/3GWK0UfN2+86jWvD0t/4s0bU41Uw2u7ziTyMcpgd+Sa6iilrCUnJJPodEYKLbXUKD0oopFnmHg+F1+ImpW7D93afaPL9t0gx+hr06ub0nQ5bHxbrOpvs8m6EflYPPT5sjtyK6Stq81OSa7I58PBwi0+7FooorE6AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKa/3G+hp1Nf7jfQ0Ac/4B/5J34a/7Bdt/wCilroq53wD/wAk78Nf9gu2/wDRS10VABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU1/uN9DTqa/3G+hoA5/wD/wAk78Nf9gu2/wDRS10Vc74B/wCSd+Gv+wXbf+ilroqACuX0XUp5/GPiKzlmLRQGEwoeijb82P0rp64DQZ9vxU12IHhos/iCn+JrWlG8Zen6owqy5ZR9f0PQKKKKyNxv0rgta8TXaeLLb7G7DTLK4jt7xwflZ5Mgg+u0D8DXWa5qI0nRLy+JGYY2Zc926KPzxXNr4fI+Gk1myk3c0BuZCfvNL9/n34Arakor3pddP8zmrOT92PTX/gfM7btTJZFijZ3YKigliewFZ+g339qaDZXhOWlhVm/3sYb9c1m+OLmWHw81tAcTXsqWiH03nn9AazjBufKauaUOYh8Fo13Hf67MpD6jOWTPURL8qD+f6V1dVrK0jsLGC0hGI4Y1jX6AYqzRN8zbQ6ceWKTA1w1/aZ+LelzY+X7Gzn6gOP6iu5zUPkxtMsxjUyKCofAyAeozTpz5L+aaFUp86Xk0yeiiioNAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKa/3G+hp1Nf7jfQ0Ac/4B/5J34a/wCwXbf+ilroq53wD/yTvw1/2C7b/wBFLXRUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFZ+rarZaJpsuoahK0VrEVDssbSHLMFACqCTkkDgd6g1SLXpJEOkXum26BfmF3ZyTEn2KypgfgaxtVtpX0C8i8a6pp/9nO8WJbSCS18tlcMCzmR8cheRjHPNAG/pmr2usRSPapdqqNtb7TZzW5z7CRVJ+oq+/wBxvoa4zwZefaNW1iGw1G61LQohCbW6uJGm/ekP5iJK3LqAIznJwWIzW/q2mXl+Q9truoaeFQgpbJAwf3PmRsfyIoAp+Af+Sd+Gv+wXbf8Aopa6Kud8A/8AJO/DX/YLtv8A0UtdFQAnavL9LkMXxeuSfuzPLF+IQN/QV6hXly/u/HAu/wC7rLQ5/wB9Mf0rpw+015HJid4PzPUqKTtVXUbtbHT7m7ZdywRNKRnGdoJx+lcyV3ZHU3ZXZzvjFvt9zpOhLz9tug8o/wCmUfzN/T8q6raNuPauX8K6bJc7fEeoust/exhkx92CI8hV/Dr/APrz1XGauo0rRXT8zKmm7yfX8jlfBH+jWeo6WelhfSxIP9gnK/zNHi4ebqPhy2/vakkuP9wE/wBaSxP2H4i6nb/w31rHcge6HYf8aXWiZvHPhuLtGtxK3/fAA/Wtv+Xl/K/4f5mf/Lrl7O34/wCR1dFFFcx1BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTX+430NOpr/AHG+hoA5/wAA/wDJO/DX/YLtv/RS10Vc74B/5J34a/7Bdt/6KWuioAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmv8Acb6GnU1/uN9DQBz/AIB/5J34a/7Bdt/6KWuirnfAP/JO/DX/AGC7b/0UtdFQAleW3nyvqF0f+XfxHFJn2HH9a9SrzC9jaXwz4vdP9YmqM4Pptdf6Zrow+7+X5nLidl8/yPTgK5/xvcfZvBupPnGYwn/fTBf60/xFqz2PhK51K2cLJ5KtE2AcFsAHn61g63qB1jwRou8hpNQubeJ8d2z836qamlB8yk9rlVai5XBb2Oy02D7Lptrb4x5UKJj6KBVrtQOlLWT1dzdKyscp4h/0PxZ4d1HoryvaSH13j5R+eaJP3/xOgXqLfTGf6FpMfyqTx1bvJ4YmuIv9dZyJcxn0KtyfyJqtoc6aj441S9j5RLO3VT7Ou8V0R1hzdk1+P/BOWWlTl7tP8P8AgHYUUUVzHWFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNf7jfQ06mv9xvoaAOf8A/8k78Nf8AYLtv/RS10Vc74B/5J34a/wCwXbf+ilroqACiiigAooooAKKKKACiiigAooooAKKKKACiiigApr/cb6GnU1/uN9DQBz/gH/knfhr/ALBdt/6KWuirnfAP/JO/DX/YLtv/AEUtdFQAlcLpVt9s0TxjABkyX92o+u0Y/Wu6rlPBYDR6+eu7V7j/ANlrSDtFv0MKqvKK9fyMfULj7f8ADrQrfOTeTW1qffBwf/Qaz9LP/Ew0fQD/AMuWr3BC/wCyg3g/+PGl0bMk3h3Ric/ZNSutw9PL+Yf+hVqQaU0Xxbln2Hy2tTODjgEgIf1zXXflTj6v9DjSc3GS8k/wbO/ooorgPTK17bpeWNxayfcmjaNvoRj+tcL8MIZVi1SWfPmCSO3Oe3lqQB+ANehVSsNOtdONwbWIRm4maeTBJ3Oep56fStI1LQlDvYxnT5qkZ9rl6iiiszYKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKa/3G+hp1Nf7jfQ0Ac/4B/wCSd+Gv+wXbf+ilroq53wD/AMk78Nf9gu2/9FLXRUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAZGqatdadKiQaFqWoqy5LWhhwnsfMkQ5+ma5Xxj4g1aXwhdeRo2o6bM9zbQF7uWJN6SSqjANFI5Xg4J4xuyK9BqrfWNrqdjNZXsCTW0ylJI3GQwoA5LwjbLofiC/0F9N0u2nNtFeefpsLRJKhZ0w6sSdwIPOTkHtiuh1bU7ywIS20LUNQDISXtngUJ7HzJFP5A0aT4f03RGmawgdZJ9vmyyzPNI4X7oLuSxAycDOBk1qP9xvoaAOf8A/8AJO/DX/YLtv8A0UtdFXO+Af8Aknfhr/sF23/opa6KgBPWuV8D822sn11Sc/8AoNdV61y3gXnT9SPrqM5/UVpH4H8jGX8SPzMDRLIx/FfU4znZCJLhR2Bk2Z/Pd+lekCqEWlWsOr3GpohFzcRrG7Z4wvTj/PSrwNFWp7Rp+SClT9mmu7bHUUUVmbBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNf7jfQ06mv9xvoaAOf8A/8k78Nf9gu2/8ARS10Vc74B/5J34a/7Bdt/wCilroqACiiigAooooAKKKKACiiigAoorGtPEmkX2qT6bBqEP2+B2R7aTKS5BwSFbBK8feGQexoA2aKKKACiiigApr/AHG+hp1Nf7jfQ0Ac/wCAf+Sd+Gv+wXbf+ilroq53wD/yTvw1/wBgu2/9FLXRUAJXK+BOdHvD6385/WuqNct4B50CY+t5Mf8Ax6tI/BL5fqYy/iR+f6HVUUUVmbBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTX+430NOpr/cb6GgDn/AP/JO/DX/YLtv/AEUtdFXO+Af+Sd+Gv+wXbf8Aopa6KgAooooAKKKKACiiigAooooAK8u8ST6N4kv7nT/Eni3w5Z2dvO6rbQSxG5Xa2Pmllz5bcchFBByN1eo15rHZajIut21l4e0vWYb2+uf9OmnEeCXZSkqshY+WQV+XOQoxigDpPClrDbrcNpuvHVdGdY/swa6+0mFxu3gSZJKkbMAk4wfWumrl/DHhibQLi4keWKQTWdpC7RjBlmiVg8rDHVsr6/dFdRQAUUVS1BL97Nl06e3gucja9xC0qYzzlVdSePegC7TX+430Ncv4W1XWtS1XW7fUZrC4tdPnS2intLZ4d8u3dICGkfhdyj659K6aRgEbJA4PU0AYPgH/AJJ34a/7Bdt/6KWuirnfAP8AyTvw1/2C7b/0UtdFQAh6GuW+H/PhjPrczH/x811J6GuW+H3/ACKMJ9ZpT/4+a0j/AA5eq/Uxl/Ej6P8AQ6qiiiszYKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKa/3G+hp1Nf7jfQ0Ac/4B/5J34a/wCwXbf+ilroq53wD/yTvw1/2C7b/wBFLXRUAFFFFABRRRQAUUUUAFFFFABXlqW1lN4r1S3sNR8VwiZrq5aS3uY0gkliZBKkSkZyC6rkgAkdTgmvUq8l1iGyXxJcyaTq3iFYo3uYriPTtIa5SJ5mVp1SXYQrFkBP3tpJ6dAAekaJcRXeg6dc28s00E1rFJHLOQZHUqCGbH8RHJ960qz9JSCLRrKKzhkgtkt41ihlQo8aBRtVlPIIGAQea0KAMjVPDOh63LHLqukWN9JGu1GuYFkKj0GRTLHw9pegQ3LaFpOn2c8qc+VEIlkYZ2hiozjJ9+praooAw/C2jPoXh22sZZBNdANLdTL0kncl5G9cFmOPbFTar4d0TWSsmqaPYX0kalUa5t0kKj0BYHFa1Nf7jfQ0Ac/4B/5J34a/7Bdt/wCilroq53wD/wAk78Nf9gu2/wDRS10VACHoa5b4ec+C7I+rSn/yI1dQ5wjH2rmPh6MeCNP/AO2v/oxq0j/Dfqv1MZfxI+j/AEOpooorM2CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmv9xvoadTX+430NAHP+Af+Sd+Gv8AsF23/opa6Kud8A/8k78Nf9gu2/8ARS10VABRRRQAUUUUAFFFFABRRRQBS1TUINJ0m91O53eRaQPcS7RltqKWOB64Fcda6dr9pruq2Gm+J7SCNmOoi2k0gyCJJpJOA/nDJLI5Puc8ZxXW63pq6zoOo6W8hjS9tZbYuBkqHUrnHtmuaXwf4ij1Ga/HjFvtE0Edu7f2bFgohcqMZ9ZG/OgDo9Cvm1Tw9puoeZ5ourSKfzDH5e7cgbO3J25z0yceprTrO0TTV0bQdO0tJDIllaxWwcjBYIoXOPfFaNABRRRQAU1/uN9DTqa/3G+hoA5/wD/yTvw1/wBgu2/9FLXRVzvgH/knfhr/ALBdt/6KWuioAinOLeU+in+Vc94AGPBGnfST/wBGNW/eHFnOfSNv5Vh+BBjwXpv+43/obVov4T9V+TMX/FXo/wA0dHRRRWZsFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNf7jfQ06mv9xvoaAOf8A/8AJO/DX/YLtv8A0UtdFXO+Af8Aknfhr/sF23/opa6KgAooooAKKKKACiiigAooooAKKKKACiiigAqjqOpWukWMt9ezpDbRDLyN0GTgfUkkAAdSarapFr0kiHSL3TbdAvzC7s5JiT7FZUwPwNcz4tj1uPwhejV7ixuo2nttstlZyxG1AmUtOR5rltnDgDH3ecigDp9K8Qabrbzx2MztLBt82KWB4ZEDZ2ko6hsHBwcYODWo/wBxvoa4HwZOlz4t1ea31U69C1rbg6qVUbWDP+4BQBCBnd8oBG7nPFdVq2mXl+Q9truoaeFQgpbJAwf3PmRsfyIoAp+Af+Sd+Gv+wXbf+ilroq53wD/yTvw1/wBgu2/9FLXRUAVdQONNuj6RP/I1keBxjwbpn/XI/wDoRrV1Q40i9PpA/wD6CazPBYx4O0z/AK5f1NaL+E/VfkzF/wAVej/NG/RRRWZsFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNf7jfQ06mv9xvoaAOf8A/8AJO/DX/YLtv8A0UtdFXO+Af8Aknfhr/sF23/opa6KgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKa/3G+hp1Nf7jfQ0Ac/4B/wCSd+Gv+wXbf+ilroq53wD/AMk78Nf9gu2/9FLXRUAUNaONDvz6W8n/AKCapeDxjwjpX/XutWteOPD2pH0tZP8A0A1X8JjHhPSv+vZP5Vp/y7+f6GP/AC9+X6m1RRRWZsFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNf7jfQ06mv9xvoaAOf8A/8k78Nf8AYLtv/RS10Vc74B/5J34a/wCwXbf+ilroqACiiigAooooAKKKKACiiigAooooAKKKKACiiigApr/cb6GnU1/uN9DQBz/gH/knfhr/ALBdt/6KWuirnfAP/JO/DX/YLtv/AEUtdFQBl+Izjwzqp9LSX/0A0zwsMeFdJ/69I/8A0EUviY48Lat/15y/+gGjwyMeFtIH/TnF/wCgCtPsfMx/5e/L9TWooorM2CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmv9xvoadTX+430NAHP+Af+Sd+Gv+wXbf8Aopa6Kud8A/8AJO/DX/YLtv8A0UtdFQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBkapq11p0qJBoWpairLktaGHCex8yRDn6ZrB12XVvEmgz28Og6laGOeF5ILqaGM3cQcGSJWjkbGVBHOAc4zya7Wql/Y2+pWb2l0HMMmN3lyNG3BBGGUgjkDoaAOH8HF7TxvrOnWujvpGmizt7gWLOh8qUtIpbbGzIhYL0B5CgnrXW6tqd5YEJbaFqGoBkJL2zwKE9j5kin8gafpWh6dokUqWFuY/OffK7yNI8jYxlnclmOOOSa0X+430NAHP8AgH/knfhr/sF23/opa6Kud8A/8k78Nf8AYLtv/RS10VAGP4pOPCurf9ekn/oJqTw4MeGtKHpaRf8AoAqHxaceEtV/69n/AJVZ0EY8P6aPS2j/APQRWn/Lv5mP/L35fqaNFFFZmwUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU1/uN9DTqa/wBxvoaAOf8AAP8AyTvw1/2C7b/0UtdFXO+Af+Sd+Gv+wXbf+ilroqACiiigAooooAKKKKACiiigAooooAKKKKACiiigApr/AHG+hp1Nf7jfQ0Ac/wCAf+Sd+Gv+wXbf+ilroq53wD/yTvw1/wBgu2/9FLXRUAYXjE48H6p/1war+jjGiWA9LaP/ANBFZ3jU48Han/1x/qK09LGNJsx6QJ/6CK0/5dr1/wAjFfxX6L9S5RRRWZsFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNf7jfQ06mv8Acb6GgDn/AAD/AMk78Nf9gu2/9FLXRVzvgH/knfhr/sF23/opa6KgAooooAKKKKACiiigAooooAKKKKACiiigAorK16XVLfSZptIazW4jBcm7RmTaASeFIJPTuKxX8UXieBdG1ZLeF9T1WO0SKI5WITTheT1O1ck464GPegDr6a/3G+hrndD1fUpNa1HRdYFo17axRXEc9qjIk0UhYD5WLFSGRgeT2roJGARskDg9TQBg+Af+Sd+Gv+wXbf8Aopa6Kud8A/8AJO/DX/YLtv8A0UtdFQBz3jg48Gal/wBcx/6EK17EY021HpEn8hWL48OPBWpf7i/+hrW7aDFnAPSNf5Vo/wCGvV/kjFfxX6L82T0UUVmbBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTX+430NOpr/AHG+hoA5/wAA/wDJO/DX/YLtv/RS10Vc74B/5J34a/7Bdt/6KWuioAKKKKACiiigAooooAKKKKACiiigArE1Lwl4d1i7N3qeh6fd3JAUyz26uxA6DJFbdFAHN3OgrpWgXVj4W0nTLZrgndExNvH8y7SxKI2TjHb8aybfw1rUvgbTdJuzp9vqOkNatZSwzPLHI0AXBfKKQGwQQM4Bzk13VFAHN6HpOpR61qGtawbRL26iit44LV2dIooyxHzMqliWkYngdqvar4d0TWSsmqaPYX0kalUa5t0kKj0BYHFa1Nf7jfQ0Ac/4B/5J34a/7Bdt/wCilroq53wD/wAk78Nf9gu2/wDRS10VAHM/EA48Eaj9I/8A0YtdDCMQRj0Ufyrm/iEceB9Q9/K/9GLXTKMKPpWj/hr1f6GK/iv0X6j6KKKzNgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApr/cb6GnU1/uN9DQBz/gH/AJJ34a/7Bdt/6KWuirnfAP8AyTvw1/2C7b/0UtdFQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNf7jfQ06mv8Acb6GgDn/AAD/AMk78Nf9gu2/9FLXRVzvgH/knfhr/sF23/opa6KgDlviH/yJd4PV4h/5EWuoHQVy/wAQefCcw9Zoh/4+K6gdBWkv4cfV/oYx/iS9F+otFFFZmwUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU1/uN9DTqa/wBxvoaAOf8AAP8AyTvw1/2C7b/0UtdFXO+Af+Sd+Gv+wXbf+ilroqACiiigAooooAKKKKACiiigAooooAKKKxNRh8SyXZbTNQ0mC2wMJdWEkr57/MsyjH4UAWtX1mx0Oz+2ajLJHBu25SJ5CTgn7qAnoD2pja5py6DHrZnJ0+WJJklWJyWR8bSFA3c7hxjPNZmo382i+GL+bxNqumruV0jljiNvGcrwuHkfLE57/hVPwV4i0YfDfSbttUtBb2Vhbw3UvnLtgcRoCrnsckcGgDo9K1ay13TIdR06Yy2s27Y7RshOGKn5WAI5BHIq8/3G+hriPhdq+naj4RS2s763nnt5Z2mjikDNGHnkKkgdMjkV0eraZeX5D22u6hp4VCClskDB/c+ZGx/IigCn4B/5J34a/wCwXbf+ilroq53wD/yTvw1/2C7b/wBFLXRUAcr4+58NAetzCP8Ax4V1HtWbrekx61YLbSyNGqypLleTlTnFaY55q3JOKXqZqLU2/QWiiioNAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApr/AHG+hp1Nf7jfQ0Ac/wCAf+Sd+Gv+wXbf+ilroq53wD/yTvw1/wBgu2/9FLXRUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTX+430NOprDcpAOMjFAHP+Af+Sd+Gv8AsF23/opa6KuO0jQfFmj6NY6Xb6/o7Q2dulvGZNIkLFUUKMkXA5wPQVe+xeM/+g9of/gnl/8AkmgDo6K4rXp/GOieHdR1b+19Em+xWslwYv7JlXfsUtjP2g4zjritFbPxkVB/t7Q+R/0B5f8A5JoA6Siuc+xeM/8AoPaH/wCCeX/5Jo+xeM/+g9of/gnl/wDkmgDo6K5z7F4z/wCg9of/AIJ5f/kmj7F4z/6D2h/+CeX/AOSaAOjornPsXjP/AKD2h/8Agnl/+SaPsXjP/oPaH/4J5f8A5JoA6OiuK16fxjonh3UdW/tfRJvsVrJcGL+yZV37FLYz9oOM464rRWz8ZFQf7e0Pkf8AQHl/+SaAOkornPsXjP8A6D2h/wDgnl/+SaPsXjP/AKD2h/8Agnl/+SaAOjornPsXjP8A6D2h/wDgnl/+SaPsXjP/AKD2h/8Agnl/+SaAOjornPsXjP8A6D2h/wDgnl/+SaPsXjP/AKD2h/8Agnl/+SaAOjoriten8Y6J4d1HVv7X0Sb7FayXBi/smVd+xS2M/aDjOOuK0Vs/GRUH+3tD5H/QHl/+SaAOkornPsXjP/oPaH/4J5f/AJJo+xeM/wDoPaH/AOCeX/5JoA6Oiuc+xeM/+g9of/gnl/8Akmj7F4z/AOg9of8A4J5f/kmgDo6K5z7F4z/6D2h/+CeX/wCSaPsXjP8A6D2h/wDgnl/+SaAOjorm2s/GQUn+3tD4H/QHl/8Akms7QZ/GOt+HdO1b+19Eh+22sdwIv7JlbZvUNjP2gZxnrigDtaK5z7F4z/6D2h/+CeX/AOSaPsXjP/oPaH/4J5f/AJJoA6Oiuc+xeM/+g9of/gnl/wDkmj7F4z/6D2h/+CeX/wCSaAOjornPsXjP/oPaH/4J5f8A5Jo+xeM/+g9of/gnl/8AkmgDo6K5trPxkFJ/t7Q+B/0B5f8A5JrO0Gfxjrfh3TtW/tfRIfttrHcCL+yZW2b1DYz9oGcZ64oA7Wiuc+xeM/8AoPaH/wCCeX/5Jo+xeM/+g9of/gnl/wDkmgDo6K5z7F4z/wCg9of/AIJ5f/kmj7F4z/6D2h/+CeX/AOSaAOjornPsXjP/AKD2h/8Agnl/+SaPsXjP/oPaH/4J5f8A5JoA6Oiuc+xeM/8AoPaH/wCCeX/5JrM0WfxjrFjJdf2vokOy6uLbb/ZMrZ8qZ4t2ftA67M47ZxzQB21Fc59i8Z/9B7Q//BPL/wDJNH2Lxn/0HtD/APBPL/8AJNAHR0Vzn2Lxn/0HtD/8E8v/AMk0fYvGf/Qe0P8A8E8v/wAk0AdHRXOfYvGf/Qe0P/wTy/8AyTR9i8Z/9B7Q/wDwTy//ACTQB0dFc59i8Z/9B7Q//BPL/wDJNZmiz+MdYsZLr+19Eh2XVxbbf7JlbPlTPFuz9oHXZnHbOOaAO2ornPsXjP8A6D2h/wDgnl/+SaPsXjP/AKD2h/8Agnl/+SaAOjornPsXjP8A6D2h/wDgnl/+SaPsXjP/AKD2h/8Agnl/+SaAOjornPsXjP8A6D2h/wDgnl/+SaPsXjP/AKD2h/8Agnl/+SaAOjornPsXjP8A6D2h/wDgnl/+SazNFn8Y6xYyXX9r6JDsuri22/2TK2fKmeLdn7QOuzOO2cc0AdtTX+430Nc99i8Z/wDQe0P/AME8v/yTSGx8ZEEf29ofP/UHl/8AkmgB3gH/AJJ34a/7Bdt/6KWuirL0DTDonhzTNJaYTGytYrfzQu3fsULnGTjOPWtSgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDJ1vWNM0i1T+03IjuG8pIhE0zSkgkqEUFm4BzgHip9M1K01jT4r2xnWe2kztcZHQ4IIPIIIIIPIIrnPE93BpPjHw9q+oSLDpsUN3bvcScJDK/llCx6LkI4yfXHepfAgMthqt8iMtrfarcXNqWUruiJADgHsxDMPUNnvQB1tFFFABRRRQAUUUUAYlj4h0fXL280y2maeaBAZ4pLd1XYxK9WUBgSrDjPQ1Hpfi3SNanSLT2vZQxYLIdPnSI7c5xIyBOxHWudtfE2hSfFu9iTV7MyPplvaoomUlplnn3Rgf3hkZHXmqWk3Gk2evaHaeDdZub6KWeQX1mty08MUBR2LsDkRMH2YA253EYNAHp1FFFABRRRQAUUUUAc/B4o0PUL1dL82TzZyyJHcWksaTYB3KrOoV+AeATxT7HxboepaiNPs74STkusf7p1SUp94RuQFfHfaTiuN1fU7XXPFGkNo+v8A9rt9qONOVVK2WYnXzyUUMpXPSQn7xAAOMV9HvbW+0rwHoVmD/a2lzxNfW4Uh7QRQOkpk/u5Y4GfvbuM0Aer0UUUAFFFFABRRRQBlahr+l6Vf2Nje3ax3V/J5dtFtZjI34A4HI5OBzVS18U6NLqB0qz+1tJBMbUiLT5/JjdeCvmBNgx9cVwviK18TWus2F9daXp9xPca7D5E/9oMMxqJPKi2+Udi4JJOW+Yk454t3lxpFjrSf8ItrN1Lrc+rqbnTo7l5EYNKBP5kR4QBdx3YH3RyaAPT6KKKACiiigAooooAw4fE2kz6q2m29xLNcLIY2aO2laJXHVTKF2AjHQtntUf8AwlWgW2pjRlu1jnSRbYKsLiJJCPlj8wLsDYxhc59q858JPNpNroOnwatfyeI49Q8jUdNeViiw728xjF91V2/OJOrEjk5xVq6uoV8M6p4VY/8AFQz627pbYPmSb7sSpMP9gIQ27oNuOtAHrlFFFABRRRQAUUUUAc3eeNdG065MN62oQlZhBvbTLnyy5baAH8vackgAg4Oafa+KdGl1GTTbIXbzR3DwOYtPn8pZQfmBkCbBznJz3qjrH/E78daTpA5ttMX+1Lv038pAp/He/wDwAVz95caRY60h8LazdS61Pq6m506O5eRGDSgT+ZEeEAXcd2B90cmgD0+iiigAooooAKKKKAMHUfFuh6VevZ3l75c0aq0u2F3WEN0MjKpWMH1Yim6h4q8P6JeGxurtIJMCSQJC7JEHJw0jKpVAxzyxGa4/xkYdOufENvZ+ILeK61iAebpZtDNczP5QjXycMMbgqjlWA68c1nxTx+GtA8UaFrpzqt7ZxLbRMpZr3NnHCEj/AL5EiMCB0znoc0AewUVR0iGa10Wwt7k5nit40kOc5YKAf1q9QAUUUUAFVr28hsLKW6uHKQxLudgpbA+g5P4VZqveXdvY2ct3dzRwW8Kl5JZG2qijqSewoAzbbxPo95oc2tRXoXT4C6yTTRtFsKEhgQ4BBBBHSobHxPoVxp9/d20/lwWCtNdq9vJE8SkFyxjZQ3IDHOOecZrz611fTtV8F6zHYXcF88HiCS/nt7dhI7WovxIW2jkqUGfcVuG90fxF4j1vUVuVl0EaILK8vIidjFnclQw6lVJzjpuoA67SfENhrm77EL3CqH3XFjPApB6YMiKG/DNa9cB4Vu7UeK/sXh/VrrU9DFgWnaS4a4jgmDqI1SRs8lS+VB42jgV39ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUV5V4N1PXdU8RWhtrjTrLT20qKdrCK1k8pV+0Sq2wCUBXO0/Ng9uDjkA9VorzXTfiDqOp3lpc29m01hdXYhW2TTLrzEiL7BKZ8eUccMQBgDPzEitTTfEOtXia5f3Uuk2WmaddXdurSo+WERIV2bdhQMDPBzg4xQB21FebW/jLU9R/tbShcQNcDSpb21vI9PubVRtIUjbKct95SGVvyqbTL/AFSDQPBMmqvYajJfXNuqStbOHiBtZG37mkbMvy4L8ZDNxzQB6HRXAx+Ldba0g8QNBY/2FPqAsxAFf7QqNN5Cyl920/Ng7NvQ9c1Fc+LvEMFvreqiHTP7M0rUmtXiKSedNGGQFg27CsA3oc47UAeh0VxU3ifUY/F8mmXFzYabbLcRxQR3ltLvvEKqS0c24Rg5LKFwxyvPWu1oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArlbDwRZ6VPp81hqOoW72kQt2KtGftEQkMmyQMh4yzcrtOCea6qigDmrPwnHp10rWOq6pb2SzmYafHInkKxbcQMpvCkk/KGxz0xU3/CKac2ianpEpnktdSmnmn3OAwaVizbSAMYJ4/rW/RQBzFl4NtrfVm1O51LUtQunsnsWa8kQgxMysRhFUA5XqPU5zxhbPwfb2lrpds2pahcw6XcJPaLO0f7vbE0SplUBK7XPXJyBzXTUUAcqvgjT475JBeXxso7s3qaaZV+zrNu37gNu77x3bd20HnFWJ/CFhcaPqumNNciDU7hrmZgV3KzFSQvy4A+UdQa6KigDnb7wrHqd75t3q2py2nnpObEyJ5G9GDL/BvwGUHG7HFdFRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//2Q==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAIAAAC6s0uzAADv9ElEQVR4Aey9B4BcV3X//6bPzva+WnXJli25yUXu4IIxxgQMhJBQf4HwIwkQSoAQIIF/gB8JKQTSSAJJaKH3BAwYXLCxjXGV3FSs3rf36fP/nHtm3s6uVtqilTUrnavR2/tuOffe75u533fObYFCoeCZMwQMAUPAEDAEDIFnF4Hgs1uclWYIGAKGgCFgCBgCgoARsH0PDAFDwBAwBAyBk4CAEfBJAN2KNAQMAUPAEDAEjIDtO2AIGAKGgCFgCJwEBIyATwLoVqQhYAgYAoaAIWAEbN8BQ8AQMAQMAUPgJCBgBHwSQLciDQFDwBAwBAwBI2D7DhgChoAhYAgYAicBASPgkwC6FWkIGAKGgCFgCBgB23fAEDAEDAFDwBA4CQgYAZ8E0K1IQ8AQMAQMAUPACNi+A4aAIWAIGAKGwElAwAj4JIBuRRoChoAhYAgYAkbA9h0wBAwBQ8AQMAROAgJGwCcBdCvSEDAEDAFDwBAwArbvgCFgCBgChoAhcBIQMAI+CaBbkYaAIWAIGAKGgBGwfQcMAUPAEDAEDIGTgIAR8EkA3Yo0BAwBQ8AQMASMgO07YAgYAoaAIWAInAQEjIBPAuhWpCFgCBgChoAhYARs3wFDwBAwBAwBQ+AkIGAEfBJAtyINAUPAEDAEDAEjYPsOGAKGgCFgCBgCJwEBI+CTALoVaQgYAoaAIWAIGAHbd8AQMAQMAUPAEDgJCBgBnwTQrUhDwBAwBAwBQ8AI2L4DhoAhYAgYAobASUDACPgkgG5FGgKGgCFgCBgCRsD2HTAEDAFDwBAwBE4CAkbAJwF0K9IQMAQMAUPAEDACtu/AKYVAzjmaxF+u2WyWaz6fV8/o6Ki2NpVKqUeTFQqFZDKZyWQ0UK/cai5NQ6De4vHl4PdFaS6uw8PDlIgHCTg8CNdYvVU/GUdGRtRPBfAQQlmk0VuNOvKqzfHTkD6dTpOM8HKBY2NjfoVJrHX2Q1Ss1hO/H+7XkChtmlaeRvk1IcTHxPcQqxhqCCVq9vIEWhDhfimay5eMh7aQhfpoA6kGThP4ovzK+B4fDRL7fj99uXzzGwKVg0DA/7JWTp2sJobAnBGg4w6Hw2Sn8w2FQpPkwEl00ITH43GioKvq6mpCgsHimygsRWwkEtFkgUBARfEzUbFIIJDskI2mJAF+JGjXX1VVpYWSRbNzq0VQN2oVi8VgIIrQQvETolnKr6REggqhoKGhIZJFo1FfJlGUq8Xh4RY/BSl/k9ivPNm1ArQukUjQBOQQqMVRK2K5EqUhiMKj2f3qKVYDAwP19fXEkoUrKZGDWAqlRSpB/VBjTU0Nafr7+8mCNBL7lSecBpKGLGTk9sCBA+3t7WBSnoxaEaVO8aelgK/NIZwEhPtlaXotxW9gSYD9NQQqDgEj4Ip7JFah40EAdqGDpgtWGkAUXTZ9NF0zgVNSHd031EV6MpLdZ1CtBjyBIy/coFe/uydce3k8JC7v8aErqKupqWlwcLCurk6rgfxydlH5PT09zc3NqH3UEDYiPYRUTpCazL/CdtQEURpChUmv5OSnUY/U2zla5FdDeZQEeKgMHKmU5mchkJrTFr8IpW1NoISnVxXCGwyFkJ6rYtjX19fY2Kjpff7mFtbEKQKkB0xNQ0b86njPqK2tJdxVPAcOmoYrwmm4gowc6kAgtxpCegKVyzULkJJ+SmR8meYxBE4uAkbAJxd/K/2EIODzXDl5UBLh+/btW7JkCf7yvp5OvJyH0PPouGFrwiEGrSL9O708XTxCYC+oS4UTqBxAMviG23JVUrPDf6SBq0hDArLDyjAEpUASvnwlIb2lPsooZCQLyXB+ZUgDA+Ggyd7eXpiekO7u7oaGBmQSzrW87do6fdXwa6uBVAOeg8ipPLWiFK0AV30d0RcOEtNwfVNBuF8T6qa86+cihCJITLg2EMkU4WchiqaRnhCK8196CKfOoORTOMlwhPuJEaUytRUaRXsRhV9vSYxYkvlVMo8hUJkIjP/YKrN+VitDYFYIQCdQBd0x1y9/+ctYNfH7Dhq4+OKLf/CDHyBTNS08xHKlo+dKV84Vkyk0oDRDCFGIhU5gX+3roT08EC09vhIkuSgRziYQRiE9ISr58OHDEBsCSUAu0nOLTKU9ksE3qt6RQKtBIEXgKBEu4aqlwG1E4ZBPCAnwU08trqWlRVlHyyUBsViAEaspeWkgkNeLgwcPEkUg9aEahMCskLeyLyRHE2gagUSpJZmmcatFI59YyFKbr3JoAtWgLIqgUG6RjECKIC9ZqDwJuMVPGpwWhwexNBxpWnMKog4EkoAQmo+jadwSpYHEqiOXxnKlRBxZFAcVUkpofw2BikPAXhIr7pFYhY4HAfpfzY6H/hdd80/+5E8uueQSumm4gb4bArj22mshA3p8umx4gv6acFVbSUNKuJlwYuEYpBGFNKVGKIQE6ujlKQL6UQpRFuRWiYqMynwQm1aJKDJqICUSqDoxBlvqSXFkpHrUjVgcJSJf6aScWcmIHGU4/NA5fhVLhUmvFSALorR0REHz2LpJz+sFTvVOStEQyiU9TSAl9SQQmZRCSvyHDh3iVYYiaCl1VuOBjxhCfNhJTDI4G2l40J5pndaNvDgSUBZO20WUgkC5ZEEmddAKkFIdIRRBW0hMfUgJVhqFEH0EmAGQQzjJSvk8iN/3m8cQqEAEjIAr8KFYlY4LAfpr+ADyQArX3/7t377ooovw6zioz6z09XTodNmwggbSlau2hwTNThr1QBgEcosjsfLNnj17li5dimRC0PlaW1vxQ6XKKGRUIlEJRGEiRkklEGmwCCHI2bZt2xlnnEEWKsOtsiax1Ao/jmTq8JMRiiWZTy1qHya9lsUVrurq6iINXKUlkp1ANVPjV5M1zVFtEiamLDRd6k8u6l8sz1UPP8JhXzzE0hZ/OJkQtRVrlZBAibRCa+KbkREOTZKYyuMA3DWr2C4argIJ3Llz54oVK3gKWhA1VBC4kp0E2mplX14CEMvz0uL81tFSEiOEq48SfnOGQAUiIF9Wc4bAqYcAHbHfNcOONFBpQDtoePTpp5+GgT7zmc/89V//NQxNZ33hhRc+9NBDpCQNHIDnl7/85Wte8xo6d2Jf8pKXfPWrX6VnhwDgpM9//vNr16790Y9+9H//7/9dvXo1edWu+6//+q8rV66ELZ73vOfdeuutV1111Qtf+EJl6Msuu+z1r389YmEUhFAEWS644IKPfexj6G3UVuuGXzlm//79n/zkJ1HfSU8FyEt9YCwyMnXr4x//+KpVqzo6Oijuz/7szyBOGAsJeK655po3vOENt99++4033kjiNWvWfPGLX6T58N/DDz+MHvyFL3wBsiQ9lSHB3XffzUsAFntukf/444+/7W1va2trI+rMM8/80pe+RDiEivC77rqLjF/72tfe+9738vLBaDqsSd3uuOOOc845BzyvuOIKkHnLW95y/vnn6yuIGuSp7fXXX08CuPw973nPE088gUx1ZHzRi16E5Ne+9rXYHhgj+OxnP0ttccBImq1bt5KFZhJC5anbrl27SAn78oZB26kkUTyF97///du3bycLVVIwi2XYH0OgMhHgR2LOEDhlEIAaUcJoDpwHF8IijPjSTUN1KGqYUlnuoo2FAyCY9evXwz2f/vSnoWFoD1IhFp2M6wMPPED2DRs2/Pmf//k//uM/Pve5z+Un/PWvf50o9E7IGF5cvnw5/PqRj3wEgoHP/uu//os0UC/p4QzYYtmyZdzCfNTn//yf/4MGDEEigVuuf/EXf0F6iJYE3OK08lQV/6te9Spib7nllk996lP//M//fPPNN//93/894ZQOv0JOL33pS4l64xvfSLLXve515IW8SdDZ2QknLV68+IMf/OA//MM/XHnllSTYsWOHFg0fX3fddSTDabm/9Vu/BZFTf0KACBBw73vf+6DSF7/4xeT9t3/7N43llYJyafW5555LG//qr/6KlxsNBCjeJD760Y/SxvPOOw++1FYgkxpCkLyp8D5BGjie7FK8c5QFB1MBavsv//IvvHBQ4qZNm4jU5vCiQ8hb3/pWHhOIwfG//vWviaW9Sup//Md/TDPf9KY3wcrPf/7zVawirH67GgKViYDY6MwZAqcMAhCw3+/DH3TcOvCpZkxuUZvgVxRZmJhb+v1nnnmGjh4q+vGPf4zaBJ2ABnyD+giN+chguaW7h2ZIDJN961vfIjvdvXKYzlpCsUbNhSDJRTL4GLKB/1TIz372M7KgxcIcyIchUFXhQupTzhbqR1Ul8Tve8Q6VDM8hhLJoIBoqBcFqft3e/va3k1hpiaahGUN4NARRZIfgocN3v/vdVIksKK9wJLPBtdVIhgJf/vKXE4UfGiMWezK3VJLiXvGKV8DoNJ+QRx99lIIUBCSrQPRgEqAikwDLMPo0aaB/lYAizpvNN7/5TW5xyPnf//1fQniV0bcNnZT+/e9/H2lUGDmARm1pCBWgtkj7+c9/rtm5Kj5E8XzRdL/3ve/5UZ/73OdIzJsTeQmk8n6UeQyBCkTATND8YM2dOghAPHTu9Ox0wfS/zABCS4P5oAGu2DlhWdgLoiUlyhzGT+gKQoWhX/CCF5CFQVkYFCK57bbbIDZUMW4RSL8PX0JyGDmRQBZQ+83f/E0yYhDGgAyzQiGYrOEPomCa3/3d30XJJq/iS3a4TbVkKolk6oNhGb3NfwBUgFpROuo7Mj/84Q9zJRDDL2nwUAQ6PS8ZqH2E0KdwRUenGtiZIU4tcd26dTfddBOiCF+0aBG230ceeYRWk51aYRKA0rglFr5kMBujsZZy5513omojB1UYkgYl1FkoHFhIgIdcNIRwrRiiaCnWY2Z7kYD3G6zumJFJBmI08ytf+Yq+l9AotHASYK4n73e/+13ok/qTC3s1Fn6yIBY5aNhYtgkn+y9+8YuzzjqLVx+kKUo8DkiaqB/+8IfQPBYCLNI8FN5jeJQA9dOf/pRmkhhpmsWuhkBlIlCcClGZlbNaGQKzRQC2g4Ho38mIksQtRmCsx/TXGkLs7t27CaS/RqFExyWZUqB28VwhDKgCbvijP/ojckEMkAEe6IorfMOV7MhkBJf0qmSjScP60A9iYT4CkcCsImiG9DhSwnN/+Zd/ifGWW1RABML6+H2qoCzIlfpAKhA5LxAIwZEGsSRDMvUnHMmakXB4ncTMvYJ+UExpI+2iOHiI9CSA1bQaiIKbaT7juFitkYAqj6UdRZyiMdRDtDheVuBaYARAKkNeblF8yY4fDyxIOFe17cORiMIBJqUz0Es1qC1X3lRwFEpi2kuVCEcygTpvixB4lLw0HOSxTEDA8Lo+RNT93/iN3yAWtGkRCOu8bkIYsId3aSASAARW1gqDAy8cvkA85gyBykTACLgyn4vVao4IaK+tvbyyJioXfTdMQKdMpw9DQD9IV86DdbQkqEVJmn6cQFiWjL/3e7/HJGoMs/TvyFQKufTSS2EOEiOQlHhgKcpVhkM+3My8LZWPcORwRT788eY3v5kBY6YsMTAMAaP2oZ4S61dDK3P8V1pKxXAqiurpe4O+Q6B2/93f/R1UB1liEP6d3/kdKqCUSc0Z90WPpyGQuhIwS5kZeUUUM6VJxsInfWWB73kbIJzWcT1GK2gs3AlPM/cNMAEHHiW7vhwgk4JgX4QACEXj8JMF0HyxNEcLIhfpkYAuztAyOjovTNSWlx7eHtCn9XGrQOSYMwQqEwEj4Mp8LlarOSJAB03nrtZLJWMVpFRE16+3SqX46aMhIXQvenxVreBROneogjTwDcQDDRBLOEyAvkUszAFPQLSwMkIoCI9OlmYAEoYmUDmAGbywAvWhVvAWDgMs5MctOq6qwlolrlQeR5Ww1qIFYqDmbUDpiliKho3gHl4gCMdIy9wl0hOOvgjjUlvVKaktbKR10yt1pkSEcCUWxmXSGYPEvBxgP2eUlyjaiyZNLO2l1UQhk1Yjn1gg4qowEk6LSMYrCA4yRvsnFgeYVAnzNU3AQyw1wTE0Dg4ghipMMupDW6gbzcGDxkxByKQy2gp9FoTApkyXA0xyIU0fFlWieqRECdZ3BZJpS4FX6uEcbSF96c7+GgIVh4CNAVfcI7EKHQ8CSjN06wihl6fjxq8sBWEQQjg0QPcNX+KHuoiF87THJwSOgWiZnPWyl72MJS6Mg8INcAxduVKdEtLevXtJjB2Yfp+OHs0S4zNF/M///I+WDlswRZkQYkkJl3DFMYGZYdf//M//JO8NN9ygtKFR1ISiyU5xf/AHf0BtmfTLlUCYlTR4KAi9mQozo5gQbS9zj5GDXsubAcXxQkDpKO4kptq0SNurNSGQidBQLJOYGIhl3JSJxwAFnyHtla98Jdrqli1bEA5x0lhqBQgIoQl4KFprAg3jITsWbAZ6MfxyC4szFg4vkpgskOurX/1qyPtv/uZviNUstIVY2shVVXOSEUXrqAPJKELbSysY/YWAGbHGT3oqw+OgUXioKo+PVpCdXPpugUe5H4+xLyCYq2QETAOu5KdjdZs1AnCMUgU5YSOuv/rVrzCT0ndzi+JIp3zddddBLZhV6fFRSZXD6PHx08sz2KkdN4tKH3vssbPPPpv5xuiapL/nnntgICZPIY00pIeo0N7wUy60wToZ5i0zrMsMaviP5bZoqxAeBUGQMCt8RhSlMIEI9oV+IA8SIJArtYWwIRjoEE2OZUgIRNOlwjSKLEy6fuc73wlzYxhnyhVWZXb12rhxI3TOgC6WWK0YnA2fUT0EUjGqh0AqgMcviLnZjEazdhb2hZ5JCaWR6//9v//HvCdisZajVmKmpo1MUeathTSo47ApQrhFXSY9Lfr3f/93LOrUjTpQEHWmJjAxflpK5Qn/xCc+AZggA/IAiEDmlwEsVYW/SUndkM8t9QQuCgIKAv+//+//IzFWcSaa6QNl0BppjOvzKsPkaoQwXQ4Nm+cIFLxSYFRndRnYItCcIVDRCPCrM2cInEoI0IPTHLpv1s6qRkWnz48QqtBennnIJEBLo0MnDUzpN59k0JJ/C2cwERrbKeGoetAAc5eIRdv77//+b4QzZ1gTq6aLH9Mu62rIwuYexMJk6HCEQ7Sqi5MS1Q2BjIZqoIar3kZKSEhlomT/7d/+LXKgFpiMZcQYpSE/YnkbQOvFTE2L4HjWHMOFcC1RECSrbKkqIdyCBlyI0qxrhwihAlzRU8kLSzEgrRXwy33yySff9a536Ug516uvvvqf/umfyEICNFEsB/A9t7AmVxytQA2lpRAnzIcCzQJlXly0IK0VOCMHWsWxJuoDH/gAb0Wal1YwkxkhTpiYr5mGzcQr3pY0hHleLI4iF+8olM70b16DNIr3AFZgs1CYhvAaAQ2jajMzS2N9mXprV0Og0hCQTdXpC8wZAqcGAnAJjp4alVFbxDccAoPeIGBoDBahsyYNt1AIyfDAUvjpwSEt/CQgr7K1/mKhFkIgP7KTBcctFKIsRUdPiPKN5mUsU2kbwmCEFR2R9CRAu0Xgc57zHAr6yU9+ghKJZL8yVI9k3JJGi+C23FE3rYDWTTVRjOeq5pKSEAT6pfvhWrQvCjmqcCs4mos0AKWS/ZTlGYGIGjJ0DWVC6sClITSfjJSFDUDbwhxsbPhY2olCFFeiMBdzxWlxhCNcm6nw+oWSgLcioCMj9SRWq8GVWyoPjKShUJw2gbyEUzpRKodbYidJ9oswjyFQCQjYGHAlPAWrw7whAJtCgXTrKILa+9MLwxOMOBIISShB4qE3h05Ij59uHTpB90JXxnILCSkP0cuTjC5e68ct/EEvr7ewr/rJjrpG109Z0Ayxyr5oyYSjjJIMByUQxbQsZuoydQgFmvSEqHxqgp9kXKENAvFDtzjNSOmEU0PqpuFkV6usUhQZaSmO0kms6WmdjnMTSy61JCOZZFocrybKUtQfyUTRZK5kJLHPZwomWWBfwoELv1YMYJGsbw/kRe8HSRZYk4AoHKDh5xGoh+LIqMSJX28BikdGOEUTAvuSBT9tpGitBhDhSIMjjUbxKkBKaktiHgR+nPpJo7d2NQQqEwHTgCvzuVit5ogATEAvTKev+emptVMmnECuEJh2/SRQDwwEN3BLr62KF9SFX6maNKqHqRy4R8dWSYM00hBLGk3MFhDM29LNPRiJ/MY3vsGWFNh4kY9AhmzZQ+Pb3/42ui9mXoy0BMIoelW+9OvmV08bwpW2QDlKKvAczVE/VYLYkOOnRCB1U470A1Vn9W/xQFpc9VUDgUpyPmKaklrBi0QppIyUQ/lkxCzM2C2tpiCW6mKyvvzyyzF9Y1fHCE8UA8nowQjBXK8DATSNjFxBkisCaQ4JMKdDt+X1VxAUXhKAMNUgAR7FmUAqzNV/P8Bf7mgFCcg1CYTyNOY3BE4+AnzXzRkCpxIC9Lw6/Emj8OMmtQ4qQv/z0xDLLd09HqiLK5Q2KQu3yIGelW7L8+rYrZaCrsnKVFYowRNYhjk2QLVPmABKYPyYHzxmZ6YOEYJMLZSoI4sjCuajPqSkUK1YeTLIjASEwOsaDpNpNZTnaAVOK6wJtDgGUCeVi8laE1AK6RGC00K1nhqLWG4n1YRbKsCuW7xP0DoIjxFcHaOlPppxyit1QBqMrrH4eS5aMQ0BWBoI1FoHbQh4TqoAidGeuVJn0nPV9CrEroZAJSNgGvDJfweyGsw7AvzkVLsqlwzPQUhMAqIrR/2iH0eDpL9W2ynsQiB9Nx4NIQGxSEDNKtfPCCENsao7os/5mhyaH6UQomyBNJgY2oaMqRK5kKP6n2YhBCFaW71SQ6pBIMnKK+/74Riq7SuC8BOJyeIn8D0qnFv4lVaruuzHUjfy0jQKwlFhQsoVSrKTZVLDya5KMM0nCur1bcXc+iWSDPYFDQgVDNVOTiAJaGZ5KVofioZ91bRACLn8BhKlNQcZrBdUVRMobgjUh6VyfGnkOrLm5WnMbwhUAgJGwJXwFKwO84YApEI3reLgQt9T3u8r1RGlHb0mo2f3KRAm8NOoBDp6KAo/xOPTCWkIgUqVjfwsUAW9v453kgClDa1X86LVwYX4fad5uVXm1nBEccsVB/3g4Cd4C9Ypf7FAcVf6geRICWlBPAhEiJCq4yo/DRJI4EQWkOOTJXl9RqRQlU8yzY4oEijPEUUgbwA0Ta9aW5Wg9VdKpg5I8F8LyglVs1BP0gMponhBAXDaSCAO6LTtyqAKO+HadsQigdL1KdMoHVOgDj4Tk0ZBQKbfCi3XroZARSFgBFxRj8MqMz8IKBkgi46bXliFardOjyzdvFt3SxT8RM9OoBKhXlVnJT2OKFx5tQiEUej3lcM0jU9jPuFBElAIBUF7BMIKPiX7hSIWIRAV3AbT4KECZCGjVhs/UbjyChCIU34inKJJTF6K8JmJcB3bJlCz+ywIaenIqNZf6QoJk5qJBEqhPuCjpSMcP+VqVfWq7QUE0qgE3j+Qj0Behgj39VoVwpUKU1ttoB+IB4EIL2+sPo7yJpCLOvhoT0pAcYpMuZDyIsxvCFQUAqc4AUtHVdZV6S9ZOyB+uvQdOvuGNEd2BxX1nKwyhoAhYAgYAsdGYNKb7rETV0LsaUHAkCsO9uXFmfEwXrR5K8eQyAs71IuiQKy+wlfCI7E6GAKGgCFgCJQjQO+tJh86avz02MTiZ/4du7mhU2GeYc6BZllACtUpTsA8Kh4G9igcBjescEyHYSc/NhMgyn/A2AaJ9W/NYwgYAoaAIVA5CNCNoy/RjWO5pFaqUEHALHnnqG/2TNWq6oBI5VR72pqMrx2cNunCSgC/OtotXqi8kjGjU2wty2aBTNnA8cAYjmLMT1+pFlYbrbaGgCFgCJwOCPhKLR7aS3eNB1tmZ2enzsNXEOjM8fhTBCofmVNWA/YfmP8MeFqYKdCAda4H2jBPEX7mmfEmdeQMFD+jeQwBQ8AQMAQqDQHMlux4yioDenv6dn+63wIi4NNoqzboVlkWAsaOwa1O6eRbBQ1X2nfL6mMIGAKGgCGgCPgjhqoBE4jWRE/OGDAr3xgeVvbVvt1fVlf56J2yBAy/Tnpy3EK0rAlB5eVxqrGCEJ6Zn7jyH5jV0BAwBAyB0w0BX0fyPYoAvMtIIn4dG6ZX9xl6QUB0yo4B++jrYDC3PBgclmcMFMy68sP9lOapQAR0plzRQOFPmysZLKaIDcgQEYNEE9viAgvuGtCoUgJfpmYoZp+Y+8i7QtBzdZhQAU+L1tQl+Uw+4M2v4BUCmuNIWRNCyqtTaqWKKBPuJyJFqSZFKcUK5V24u5aLd60rePmAF/RllMcf6Q/QqKJMP3K8aS6o/Laskn7yY3oKk5/UMVODpMRTCoXO5CqpZ9hSSTp7J/gc4VyJ5bAckWJiQKlRE0PneDeLcudSwqzQDAj4UwBUKtiv6/hXvRQ1k7/04Sw6x/jMonyUYDhYr5g2Z5K9EtJULgGDJnyJbqqzzwFLZ7gpytgfOOXt3nvvZav3M844Y926dRxZytQqwsnCWxLDA/5j0C0IeDniUSHHEXHx/HP8qgpXwsOwOkxCwP165fdb3AjD//G736v/2+ZnLAHFWPd7l3vhGJcQCiEw564SLvKka5CfP9RYyshd3oOiXB4XQci4K2BAIWmxFMJFvnYurgJaikYr2TqSU7pzKf0KkVkLKUlXMSKzuHeXS1DWLhVOVVV+Kb2wb3C8Sv7bA+2VhKVkpWIIKXi5vJcPesFJcYpGKbBYu5BXCHnZEm5SPSfJXYvvMePtcDWD2vlbEjNe7tS+ghfKF2VOneDIUPdNUPkzuVKbyS09UubxhAS9nM/BpZcJ/zFI6Qgvh0MR1BJL2PE4+D5oqonPV9K5b5FmmP6KyPISps8wqxRSYSqodZxJzoCXCfIFmuy0ikjT6vrXyekm3utMHfp25QVdREoSjJoaBVMQ5W93MzF3hd6dwKc1txazoov3GvKCr47RcsssZXhXTQ1gTSyc+oIXvOBnP/sZC4o++9nP8h7ExvfsvEMunhCx5NWU8DFPSCujkudWMct1khHQX75/ndivSd3kW1Pq6wrFbkvCJnVJQsYEH6VfhtKO6pwwLUK6IvFp0JQ5/CitSnmFhPWncKXKTxEFy5ZXDL+GuHr46f006uE6XpDL4gXRfeEwsnEtBomHcO0N4VWhVvfhQnDYC/gfIvFzVRnEkoZCaFwpU7FTVfHTXKmMn22GnvFH7Lf6mJ5jYHrMfDOM5IVj3JX7CR3H3iXhdlKI5gT8kogp40uRJ/CvgjSTa4kzZ/i0AvI1Qxvlg6rHh1v9Tvh+DXGGFl71+JzAdlag6IrTgP1N8mBcdFMchMrUZbBjsB0q5QUHfsXm8KpXvYpbxtvZUuP3fu/3/vAP/1Bty6RUxoWAYVxVoHkzIhZXgc/AqnRMBPzuiVRHdqcSIh0fv1u//yt5VJvkLhgI09ePM6bwR8kRXUqvdCLXcR2mWGJZt6B5hU/5EK1yQ5KrJFP+Fgm+rKRSbHlVS2Hur7S0PP0EeUqL5UHqLw8hv1LvpEC/lCIlo6ZKWcWph5JYWPlIVwgEUV9Q8XDlIiVzmSuLCoa0AtrGGVyd5uer/WVCp/ZiWhCyVxP6DK6iXJY9Je78JzYP/hIw4+C5EJ1+Mv6Gp9GAgRtP6m65aJbinSSihqVUpQJKaaf9q40i2cxbpyXO6Io1J8O6mRljGPayoXzGWVCoDz8Q2oMHp1ctFGuNYoPxSUxTjqkl0engKo6AFXT0Vxx+ZkjBo0qo/rkrmgbehYmJRTNGFWZ7DRJA28RCtPA0ui8KMQkQggSS4TSvXU9pBOTnrcypV0cEjEyInlfqgot9AEOzUzmR4GLwYLYtcxIq7KuS/Y5Ei/DTTciiN2R0iSSNH+JnKHryASWwSeGuKuUytXRShXyZmsWlFG8pXP7qCLTmFw52mrFfH1/WpLzY3DGwOhOixtBY9ZBDG86t79Hyi1dNN5OrAEkX7F56pr0K8Dj9M6NrybSrjTwR13DxaVIvbW/prw+Xq3PZM9dGkFg9Gj3OSYqoCyVBSWYx1fR/TkQbfZlUiJ8Der/8KKa98vVhdpRX4KpgcMWC4oYpxttVet9luGMchOnbeWqkqDgChi+VMlFeYU1VghVrPWiFkWDdwJkBXY7+/tjHPkb666677rbbbtPd56Fb9GOyqO4LJZMADZjYbdu2nRqP7fRpxYQ+qvj71O7gCAw06fgPu5iAYF8Vdj9xpWHp2TQKcWV93niPVwos/tWuvHxUb1JR5VXVKkrO8lC/yuMatgovJnRF6JBZsVC/aohRmb48rfYUc7tKE740pSRzcrmOm77Lq65+Xy6VJKSUgL+ApndcqVbxVtK7qor6QiFu1BndLxBRiPy2HtsTEMMkUrUXnu7q4FQcji1WY0sgzjzHTKSWpyk38k9+1iUIi+mLt+U4l/snpSYTsQSWpykveUp/Ucis2lsCaUqBEwP5HkXdcIPWa9qre7LO9iTPV5+y/ARpk1axvHFII0WxBRPLPYXvZoH+s4OCTp6Cej/1qU9xiBv2ZxzaMNc1a9ZwbW1tffLJJ6FnaPVd73rX1q1bf/rTnzL6+453vAOVl0rC2XCtWpvh7I9//OMs1kYVJiNHhT87rbBSTiACZb/RUl+vX2N+5K5YGeXViS3yk1bHT50PTFzqnCCMrHIqCSRD6aMpNVDzIrWUUuSRkj+TPppSr1oECVx1SoJdrYqFlHc85TmLfqI1FyJKk8JKyVxl5EblF4s4QqCv2ZNME7u/R9RbxXEta49oyM5KjfqLK0/iinOSiu8QpYL1L1f05rIs0/pdjqAUR788/VVwmZMrh2Ee/VJnTPTSCq6lz+Qauka6RGUxBKpTjPxbFeVffY9fyjFCiHL0NuOrcKFLjGf6j+iv+UggH5nh1cvHvACfKK9l+sl5MqjBuZ5ONZarfnis6imDoYTPKf234nbCQq/Fegy5MrsKP8u8UF6Z6oz1GL0WmzMMfcEFF/BQ/JNfIeMtW7acffbZjz766LnnngvXEoseDBOrB6UZRifj3r17165dy4wtitBkCFfaPqWf8kJtHL9GfpY4MdS4rkKursOSjs9FwVWMvwpBCue6acyayL1xqwR+3nhwZOXLId+PAkNTWRlQDMRKcoqdu3bPpMThF48U6jQ86QRlbE8kkFw41Tl9uy+VUgyTP9TK5dUgkeccQmE5nCtG61a8o1Zaf4nWV4pSLgkpOa0Sd8U6uJRiwi0mmCCzlEmSl/ylqsv9lIGa0I9SwUVAXFy5vyiC1PrRzNNeEcpM62mTHW8CXXZ1Iq7+l1CqWMK++JjF3qBB07WQL7M6fSjlyUsxxQQz+4MYHs5MrjOTV0olT5xfC4K1adNeySB5nKWk9HvUNpZElrASoerIMLWDFCZ12vTkDEQu6P684kzQUCOECtCrVq3iOWBAxs/4Lh7UX30A7H7CqebKr6ThwbAlN579+/ezKzecigQ/Vj1cUaOXLl069bO10IWCAB2S+/B71X7A/cTpxll7Rhv010sngR2WK8oJ86/C4iujGZcV+nQJZGAYPpWMR/3pK/u6Hs3vJxzz6dIm8jm9r0yA6zcdQxfn+Tp8ywhyvLeejDzSXCHSYeHKK+UEyogu4VC7n8xlkcDyxKUSpJcko8tSrBb+opPgYq7ipCEXUowlORMxXKZiiPxxKZQzxhO7RMWUkzOU5Z3aS0NcE2Zwna1sXpgQrs2c96t+GfRKyxR9aqjtASJX25INQ4rXmBKmZS9hKkTx9AX6MqeG7aihWpGZXI8qYsoIKiavngimorRtuivt4604596fyaetU8nkRozDh6t76ZRXyaO/cU5ZoYUfWHEEDKQQrQ+svwgYD0RLOFfY95FHHrnnnnuuueYa3oA2b97853/+5+i+119/PXnRm3UM2H9jUtrWvL5k8ywIBMptv36F+SUPpzKxWES7Kq58M5jonB5lrRpfaQnIj44Eq2JeOutFqxho5LsTikiXVOwF+LWPDnuJeCGZDsWZMRBkmkAoiEA8HHYm38CR0bHahNtkh4PisaaQk9VN9BaIkn4IIqTjyHmZvBeJ8bWFhEdGk9haWAqXz2VSI0NVtXUQwNBYOhaLhuiMuHGdcjaXl/uSG/+6S4ivxcoRmWw4zzff/SIc+1Kc8G7Oy2W9fNYLw48Y98ZF8erpaiIFOZfPpsbCYd5PmF+az42OBCLhQEimJxKbyWUiIaxEwayM5xQi4Qi1c5BKZhg+lM8GAEoWh6D7u0lZlCVTVYMyWYxhoCyAhUNhZtbwrpwfS40mqmNulqyWXrzqqDSV5j7k+vCsh/2fJU2gQE3kzDKdOpzJpgp5hpzC0hB5b5ArsVx5TwqIUukeINGuNwiQTXP6BZJYciGeT1Dylk3xJkgT6luMn8n3YDkDbRwYyZ9S+kzWPYjSrZ/e1Ua4BMebP5eIFCd1LtVLK5yT+vgErPmLD06rpDLkyn/3jGlkgdYjJ1Q+b19i4TVNr4IkhIbm89mofCXkq0kN8EhDylLyxAmkP/QDx5LyOyp9W2SRONX0b4vSHeiAyjNIOYuFtLBUT2rPc5WnWAqhZvKkC17atUz8JUcUYVz5MF82FvKi/MKzzL/KhfiWnn6uEgn4aE8BG7L+KvgCYVX+xje+wQwslggvX7785S9/+Rvf+Eb5vXge7ItRwt+Y+2jSLHzhIsCPPx6L9CdzwWgo5ghLf7uhRBg2TI+lYOEgM96xM4tel+HklHgknmIAKuRlxB6WD2UzgUQCT4CfvbNFh+hghA/oG3RgzEskqug7Uqk0lAWDSfcq21IUx/zYDsBLJb1o2AuTSTo7uq54dZX0wdLHRapqayEA1r2FqqLI6RlKNdXGiBpL5qrjIUJc71TWO2pHLZ2n9PzSnVFskeq9dCoToVFo7XzoIOmVtfumy4Q3vSDLBdhkIxQRJKhpBqbOpMOhQiTGywFHYY9BmqE4A3KCVyGZKgThYvfzL/DuAodK0+V8GdkmPRThjYGq0e+nhqWKIaFYV2M0mrRAEK/K5gqhKALFKjmazIejwVh1TUZKJoAulTci6ZTpt1P5dFUwDnw5eXuRIQPel2hn2guOpnJVsViJqwiWN56kgMl/XZTikjtR6bzkp9Yiuqzrojx6c8Kl8dIOcUBNeprlno3UBA8fnjOf4WEpYCrHdBNBt/xDSCzM5DJvJOUNDCSZWTIwMMCLfpr5nnW1AeiRb0g4GA7wxAIRmCQUOnPNYpiQulCMlBuQtz+tmtaEqzpNMJb10jn2GpIDY3D0b+kMs0d59SnQ7xHClfSsusRGyJWJqFAu702YBt1D46/MNt25YxemPhZzsnSTVSG4+no2a2TjBDpGLxqKpAre4UOjhw8fZgiPt65ly1bwBYGDeX+i2+S4dOyLlI4QtRriUQVGisvnRzKp0czY6Cj7CY7RIDImEjVC4cEwISMjY344Y4bRWHUoWsfXpCBVy+R58ZQXLLc2KZusiYXPOWv1Wctbw+FIthAGzFCgEA3LuOHp48q+xZXdaL5efA/4NvBd5HrllVcy7Rltg1rzdWHKFV84jsXAFk3nZexb2Q9zdrUrdaGlntX1xaN0TdLpeYMoU2mvMeGN5b0oukLQi1RXc/JznF5TNn1irBfazAbC9CPCxmOZfLQqnPfiISEO9xEND6qTX36W3hn5AW84ma2Oy68jFBOVgs5vNM2Ct9BwVlgcTguTXjQ/+k90wWAaXTAqXW0q7+VSeV7tExFM3wG4BKXjUFfqf37w/Ze/9CVtzbwJhGBxqIKc+t7g4CCrOKdpyhsA99pHkx1lJhRDs8QRnC8kRwPwI1SaK+RDVah4kjkiuUTBke5eiJufi4NMVGc4vSB7nsdF7eRGlF0nLJtPD49Ct/LyGo1CynFpruMu6gKasXpQkTaqIgoTR6MUN0aXGQkAy0BSYK5NBGkpFUh4vCeIcPyEkw8Qq4JVQ8Nj1TVVEU9aQayLEbmpmPfw9mF+witXtjYlBOdUBuiEq4bSXl9fgSjqxm+fawbargqkeb3IMAWE2BFmh8AZcAmUo/2DGgyKzJQrDIyMZbKyAS39hh7bjp/OBBpz7Zz6ImhQz5LDT5+DTB3eIljrg4KdTCdRxmknAGvyAiYUL0f6upra5ubG+tpamMyXVFVNTYUdMYrAswcOHdyzZx8dF5Tr6pxPY1Xg3U4kQuiycRl6sJYrCnFJNScxtyTTq9aWTFVxhvBSbNGYz+8ll58RSyG9JbWiq4RoQRVlhttAYKMK0ZT4cZSi2g7NxBFCKVK9QjoYyeaDfO14QeRdkJV9/FbEuMKVEMKd3aIYzjMLpUnCC2MeWwRfIX6T/BpDhVxquK+9qW4gma1vb22Oy1cyFJGvK1CW/ShcbU7py4IhYP3m8Sz4GvET4sovTe1FzM/SbyGzpknAy11bW9sp/dROl8bJ71b66glOenb4z31z79u48/Nf+FIqlbnwgovWrlm77uyzeCVrr/ciUZgGXXhI0mJXjoRHR0bC1bUjdOFVQVgqHI7SxUTRpOgXikokult+DM4My36QkXi4a0xKgTSkM8ZVRYco25XLy38CIo4kvOyYMHcgzNsAdMJHKKdKbHhQOEIoa/+I98nP/Mdgf9/eri9+8E/fTBIKTKjtVeQ65wyG6qUrp80ZOl7soG6uGbORMbjSLSfEWBgsROrgfLxJBAWlttRLOmOHDHkpnV6MmmIPyKWysTAqThUcwvtFdiwXrqLDc4nIgA2wjkmqLr9rp/TqEhvEky0ERrKxfCTGiw50TzDCudLMpHt/2bJt8PY77tqxc3dzW9sZq9c0NdSuP2tVFGt9zhuE7gaHwtFIZ0dLc73n1VQNuxqCMLb/A4d6ntj0+KYtzzy962C0rqGQxQyZO3PVGRdctL46nth3cP8TGx8fRqEaHB5NjdHJByMhtLdCKDySC+Z5W3JO+wSIBOe4pnjRcGGOYCjFGERQyJs0XMPRWG2MdzPXVJUy8YoIApSNuEK50B/dS8pZTuhzMLDxfg+Jwl5oyRATmp0z4ReY0QpL0Snx1Tp48GAqPdDTP0C5EE8WZRXbQj4HGUNcWqYo+AwHQLSO8KgwcFUlang5kC0LYrIIkxIpKMG4BixegO/TqbExrplUCtKK8F4SCsVIFo1yxZBRU1WTyuRIMzA0NDw42DcwUFRLx1K9/YNUjpTNjY2LFi+lDWzzu3f3btSXbCqL7aShtqGxRf7Fq+O5NO1iQED+FbIQa565FMFQNp7wwE9qJ5YV2XFB9R8arto5PTPhIEB4ZiyTG01isOD7I60L8d7IS3M+zAuKV4hHvLVnLK/hl+rg4KHica+MCs9pca24WdDHQJ2HzVPkSfPD4BtASr7rXPWnxZVbTcAXl3BScouH9PIz8Dxe/Rb6rDlacTo5ekPpEOWHKYOO4su6rSH6efIR7xP/8KWHH920ZPEKLGe5tGxWuuGqq173O1fR4dfCQKlBD62JLjWayOZj7NQ+jCoZ9HbtGWxprGupEUU2UEh5mSR8yzKJ4VS+EMM0KgTz1M6Br37zW/T8bDO+dOnic85ZUh30Rjzy5nPpdHbg4HmrOxfXR/PZZCgYywYDUDKfR5/up6fecF4LktGrg2FvyPO+/KPHv/WNr8NCw/39L77peW/8retoBb0UBMmHL2iINsK5MF5xBBbyC45hUQ6FRWVwtMqVWo2mvERMcvn9FOigNWL2FZUYXuRlAxuAo0mupEQwRVQJ36OZobyI/RiXznhirnbUjvGTVxGu/Ep0H/uRUe+pp/Y9vnN3vrmzprVzyZJIK681vFXwgtuDGdbbsnXXY49v2rFjF2ZqSAJDPb+12vra5OiIszUE5chPViJEo40NDbV1ddc897n8bnt7erZs3bpn924UPqlFPhfMZlevXBGLxLfvfKa3u6+uobYmUZtMjyVHU4maqvrahioMEcFIzlF0OJ8MJ/tjgRwl8qz5LWNiZUYIpEjnQIH0+1zhSxLQCVAlyAw/rEB6kiUSAYiD96qYA0GAOIoDWDAHMh4LH16AuIIPXYvaCMrzIYyvjV4J50n1D6GgDx4+3A0RQsuqMqO0Dg4PyZvJ4CAVhmLbOtoXL15EExZ3ttBXUTEeH08NUfqI3VdeiqI+BOqVQP1oqTxGorj6ddCa6FUbMjzM2IeYQhLVgabqCSmlmU6CfFucx7/SEGxCaLvScFcl0vjfPR8B0iOE4oji6jvESgftHOGaQNMgB8eVryXfQTfVA/t0JhyrmaoESXxK9ueKgzSvwh1WJn5O/JZwVFUfhhItr1r8uvjh6S1cqypyhbfIqjdjBOgC+S27H777ffNrj0W8fUPe5m27mtqXvOhlLx8ZTu3dtffBhx/7+f2bzjr/kmvXxaClcDTh5ZOFscFANMhXZwAujghd/dN/fPnMVSv+4PU3U4E4HYsskwgx2SWHmuT4rC/t/eC2Ox/dvBNb4cGRRw/84FZ0kprq6uGR5Fgm3NbQEE72vuIFz3npDRtC4Tg2Z8bVmFN036bub37vx4e7u268/ppbbroIEqas/7nvwP/ecW/rsjOfe+Vl9//yF9/90W3Pec41azpEbdUeswQCnZijYekM5W2D2TRUCwnDWLB7vY/+1aeozNJlqy694vLzVgsFbN/ndXf3bdr4cH9P72gyjRmZcTh+F9BMa0tDe3NjIhpatXTR2qU1YIacbIalAd5owNvd5R3qHuJ31NxU1dEs1vckQ7pBryftbX6yZ9OmTdu2bccomoY/GTKM1+RDcX5TOHpJZ4rMyLyogrBdZ+ei51x1NW8nGIS3PL1t5+7dz+zaRTMQXltbjdqdyaR6e/t37tz+9FNPJRLICWMJpoG801x44cXrzly2YbmXxOpA4wve00/1PfDr+8dGU52L166/4KK6esjbq3YvFsCF47WmTt67sHUKI+J4YPIp6/fBkY867fHxu29NKdT99dNMCD0yJSYSlzkD/fLIJs6GIoZqOPKQkXX0aj6871G1llreAevGOmpBzB/jRgRPl6v7KhdL1rr5gX5V82LzyEfdzEECSTDF1ZVNHOhpbFZeoxiT5r+UQuWhTwpth3RrCJG5BZqS8WU08ni0uJeahpMyk+ZVNlXLahRN6RqlfoczSagZonklQYNHmJPql6Rf4GLZVI3xkWJzEVLmxHbA2zBvmMwOdHL4mYMcoovpyxKfst4FQ8B0KzwEmJUrTIzRxr1hZ+Q76l7a6Q742dMB4YGPT9kndto1zP/ZMkGzODgKBsM57557HxxJp8+/9Jxz1nfUBuGY5Q2LVnzpO/9794ObLlp3ieigYtxjVozMPOKXzWs2PPTQ4/1PbNu960D3i19+8+IaCBjrJd0Vo8KyYQCc15P0brtr0w9//ouzzr1gwxVX9g8OJgObOPZ7oG+0KlEbiNRE6pqe3vLUL3698eorNjRWyws8uVB/7/zVo8/s78Ewfdf9D/MNvOGqtQMp79v/+5NgVd1ZF5z/4pvOOtzTy9f1c1/48gff/fomtjSY4lESRr/GSBoaKV2bx3jnQ5v2P/DoU13DmUJt/K5Hnv7OnQ92dHSiUWFirEvEU8O94QDjhIGcG4KEJsPBnsDW7Qyz5ZJDyzvbXnDNlVdcck5jHEt5iEr2e963fvXEgw8+yGvr0OgYg5FsU8NPZsvWZ3R2D2OQmXS2rn0xcxuXLe4Y7dk/1NN16MD+3u4eZnbX1sQxYDbUJZYvXnrxRRect2axvkZw/Y2VZ6TyZ9B5Mk8KHmJyHI72HDicPXz44D333AsZ19U1rF179Xnnraljhpws5ffqCozGS0rcmvMaX3LeC/EkM7lohM656OTRuA/3MA03DDIz1Fzu/DSCmnOE0PeHA4w+8nwmu2NYoSckLRmrMeOPO0jV8TEhzD6ScFcr54EJpT3MiaOIOhnWVLOGjFuDc6JaRtD9pmltucVELa84UhzxOBlcIF0ulZRw5h3w/qOlMJWpkOeN0n1B+H6XSnexjOa7AlWIk+QjQgIRzFxpWdKJiYCZCl4+ja3GkSkymZvPW1qQVzcvM+ZWb8n4LnMKcvkMadJMOQjLFr8yiz7IixBFyzRzJBIio+CKhoTTIt7S0qEA5yHxckvDyMLPkGYI5QMLU/i0lgHOxBJM8nmZgVUOtKQ7td2Caa1uM6kDDP4jUW1YDdGMQPDVgpvx8EVXVvZTmqccAf0l+iH+L9QPEc+xE5ViVT+Q92qc6yL4Tct7efG3JeN3aoaSrqjUV0gX5XeLDKAWc7tAZMnbtPxW+VW6XG4lpVsChFTpreijPe9n9zyUiESuu/ziNvoppx5ddcXir/0o8uDGjQd6L2lsor8rxOin4jW8s6UzjDkFhj3vsW27Gs+8aP+eXXsPJhefEYeVmVVSnBrEmJYk6P7ej29b1LH0NS97+YZzaui8Uy+7iCb09HooZDXC9N6f/8Whzfv3bXrm0Plr2hNxqc/WA969Dz7U2NR22YZL7rvjjm9953t7uvb1j4ykRgfaO2r/4DfXQX5vec0V7/vQk089vfXW2x57xQsv8N/2mXJEF0vP5Boh0iiOK0Xv7S386sHH/ufHPzv3okufe90N/YND99x7/8iIzInl5PFFDc0brt2wqK2hprouhebCfNNQiAm6DECyQuiJTY9t3fZMNpUORquuuXQVuA143nfv2HbbnbczHgm/5g9Cqwfz6VHG+upiwXgs0NbWcMaaM88+e+2yZaHakNjJ67wz6COwQ7KABQmwIvO+RQfN5XR2LCZElJgCxmS0mWA4X2A4vPiM9Ek1NIfPbFxyzdpXMk07ItNyJJaRWQzg2EJlVVcuxah4kPVRGBLyTNIJxIVdj2BNRmThhPFnJd9QeBACgA55J3dfouJFunm+b87wLq8D5U65c2JYefy4n5T6IQiPtFA0XMgSAgtgiqMGjA0TTpMYjxc7jc7+5v1AvuOuikKuVIcpffFwlBeICTWVEsSeEJLpCFoc3wt14ikuzqEgWi9tgphDQmeyAAyyByjKdUjrlSL15+RXHo8IYra/8zAc7kboisWJEBkhlxc+6i+GBSdNDI00xzU8xOxuMY4zDV8MEC6hLArgt42uzQOFOJHtJi+IkSSPQHkfDAfZuZKfCznIyIcHIt8VCQkE+Q4z84qvBJMd8DOqjJlKxEipp4sD5YXhdP/nKeuqlme6Ho3l9czYd0qg3O9PYtwPazwJv4pJTgiVD+n4Nfg/CMevcqeCXCy9L05W1RDMaj75HdOHpqWLZc5GMuvV1Y+xQLbg1UuUdKt85zANs2iXNSLMTw0kGvMBeSlm6kiMebX0RHQtudBYoIrfNr9g9Bg6PfzaJcPMFPSTBwcOjkTObWu+dFlDrasppJWt9jZcfOYjT2z59vfuOPuN18nkYEwmiWqspdE4k55Fqdq4e/+WsUS0ceXTTz991RnrkRkIx6gO0cwM6cp7n/7SV71g9PdeePP61pol0jvlh3JjwVD18iasuF4k6aWi3gtuvupr37/1P7952z989LVjw16kxvvRz++N1ETPWt325pedd/XqZZ/+3L/e+dSmfCGzKJL76O//ZjPanpuk/X9++ze/+OWvfeXb/9Ox/CxeH1nwCp+hW2TTydTYKFZf5vpX19YsXx6vD3l7erzP/tvntzy9+dKL1//x23+7tgobbPPv3rBisJeaZGsS4ca64nihgO+GJmlxwUvkvEWgkXn5hq9///7v/uDW//r6D9OxN1x0Qc39D/V9+0tfXr6k/fnX3XDTdWsxEhzszhzatycaLJx5xio4jJ5ZiEAepjx84CINz0MozI18+l8VVHDSuFv35sDjcY4bsssj9K9uLRUhYrdy3x0RpvqbZKFzrxJmwaH4+wW4gAmXSdPWNE7kupwTkpbfHCGRLDN0mnJSevhPlT+EEIWyqA4axgkLllwpu1sZXAwsi3Yh/ChgpfLQcn9JkogFPLm6IrhimkY3LQ9Rv59lFh591GJhKj32Ugg1E4XeDy8KdW822rxSMe6uGD7+RKSiJZmSkqbKl8C5ap1ugJ/Nht2ULvFq3GlzXTAEfNo8kRPTUO1T3beb39Ykp782DSz3S4ifsdQva/daLkF6DE1WHkoHPZIM1zYlvcCmfd0PPf7UWZ1nXnpeB1Xg5ynbiEa85OBgvKE5GwgNJPPxOGsKnV0yNQLfBqrqMTMytirr9DElM7jgfscM/iVC3lDSu/vXG5k6dc0VFzRix8qnqEA2H6+NBF5843Pue+D+XbsDOw9cu6GdN++arFSjSvu4EXTKrp6BbANLIp/ZsafgrafiyRT0HEum8sOh4Ne+ffvg6OgVF1561aWrltcwOgweg7UoxowRe7WibwTyNeHgReet+Z+f371v78BdD3vXXOQ9c8D79SOP5nKjv/kbz4enLjm3/v/+n1f/zQ++3d/X/5Y3v2GJ6HmybQYdzrlnNlx8wbm33fXLf/nMv2axxTkHbKgB0qGiCCeqU6wX8vIJjJ5plvikn3fNNTc977mtzGJ27y4QZE017xp51guJ6U4GsH306c7RaNw0b5f4phsuz+RD3/vJnd/9359s3HbuXT/7cVt97QuuvPSm56ytIVveW5wInrluRTwcyGZSSMay6/rAoqmfNrvA8uc6pX8CaWgfOpOrkzUh75TSywNVbHnIdP7ZyZ9O2nTxs6/fuMRi3qkqLFGOfae9joubuU9LnMl15jL9lIid0KLjQcgXesp4jIBPmUd59IaIrWg8dsKvoRRcmszBveiNRSuZJnV56eMJVyfmKu5drJvBq12D0Azk6uzFKK7s2R7OhoKYXv/72z/e29X/REvvOefdEkl71VEvSfZoTSRat6d7YDCbW9SRwPaL0lZVkMUXsoGGlwvnU5GgjGgxzi8GNMczMsMl5D21efcTGx/DiHrllRf79WLsMhCJntnqXXjOWVs3PvXzO+46/9XXxmiJW9pPgTDV4W5voKe7vb0lmM48+czOvqTXGmeDArFA5+PBx5/ae9cddy5dtPzm665urXMWO2kmFuIQmxwEmZLM23uWZaThpfHoledf+M0dd/zswXvPuejKnzywNZuBti9Y0x5lBBT6eu7FS2vb38qCnIvaIzK8DDJugLkp6t103VVV0dAzO/ekGVpzU/phXxZqsAVBKBIeyuSGRoaHBvuHew4zgHjxeefcdN0V562o5ofKBxT4RGRze7d2qPhMyp6u8qe7Qp+t1d6rXrYhmy/c+vNf9PZ0NdREbrnxhudcek6NMyai0NcmZPkz+ZmuLITsqyfuSU+8c0F2MQQMgflDwAh4/rCsTElQyFSOPpcY13Mrsfr0KqklijgX7cxcEJ/wrQojqRsyIsCNe0nHrVwt1kiWUaCtotDlqsOM1N7/VO9Dm57Jhqq7R7q393jrmx2FxGvQjOHmj/3zF/Z1DTznuhte8fIr0PAQg9IVY0pUeijEAiHZOUqG9h3vSMVkvJGJVI88ikK+4cILGhJM2kxHMGAzgYStEtxbwS03XvfXDz28ddv23rFrG2Ns2RROJjOMKzJbatszOwOF7IazV3YdOLj/YHLHwWzdYhasyNBvKuL95I67mY/y/Csuu2SlrNBJpdFJWckG1eUxlmNPRhXPsZYxEq3yvJdce/Ev7nvk0a0bv3XPylvv/nFtOP/SG67HYDuEtT0SgOEuWyIjmXB7NpdiqRIAMQ0HG+8Z7YGWm6+Ixq8ATD7KqTQN6LjlLYHK4OnrKQz39y1ub2K5lFKvPBBBtvRoBHZ5FP4riADkHDIFuICMlFOlm5936YG9u59+ZtdVl2y4+fnnUHkcg31V6NCu3NGRIaZ5u+Dihew4ff7FIPtjCBgC842AEfB8I1ph8iZNkhqvnRvddLfa2dLnS4crcxFdKPdKCfzRKVWSohSlaei+3VQO2BlmwA8ZoHKynsdjmSezL1jZ8tmvfLequj3c0HpoKH37gzvWv2AliaAxeOrp3cnDY6F0rPH2+x8NVjddc8VZwXphoMGRTFt1lZcfZVdJoaySEz4IersPDW98cnNHy6IrNyyjSjIDID3iRWXWC/NUakLeOStq2xvrBkdGfvVk12Xntray016CoVthtccff4oVsZetXfaUl9y/tXbTM/vWL1uOVEzTO3q9TZu3tjQ1X3vJuQlXIrOn2clRstFaOUWNPYpSzBUiMpb1liS8q6/a8N+33XbnY3cP5AY2rFx97lLW6HpVdSw99sYGC23RQGEg7zXL4k4syUzDqYnIWDnCWuLF9ZFAgXOwi4dY3kK0dLZ0G61pSkSFQUdHs3UJGR4tvufwiGBf3xVDaaELF0tycKR/sLqhjllUbBm2tMH783e84mC/195QtGPz4Bi0pdxcJhcMFcrZF6O4Kb4+tOYxBE4oAtoDnNAiTHhlICD05RyMAguI8qQfbiVInZvpwa18+O9SaF8vc5uRoZ9iCvIUGR6BUBR7OsIBkgs1btTzbr3ryUPdve2ti275jZelCqH7H9lEjiQ72mHKDXj/+c0fbt7b3bJoKXv3fPVrX//WD+7ZcliUtkh1hJ19hWxFo8aEHGQX2VL1WEe05VDv4LLOjpWtosCJNZzpmc5VhTz0uEbPe/61V/f29f3w9nsKMaE6PlSO+mzfsasqHDxncdXZS1qjiZpHtuxhXtbQiLwrPPDElkI4vnzJ0lWNwlIo1bSRSnKVzOjAEJusaMkNDg2GUh5bG9/43Avam2t379maqAr+zi2/UUNKBqOZfOZ5DXWiqgfY72psxJl288F8hjcEZnmmxzK8U1BPPpArH4rjCllCvVwZA9CQppiXwIKOtASraWT3P3kgReqVG+coze1SUrp3jyDbiLnZSY5TEUwJntdR56VGpW4OWaf75gqs9inSrYjlRUvE6mxZX555DAFD4AQhYAR8goCtSLH0rn4nLh2u3kuQc8qtRYolRIlX46A6/8OXRohRHROT3MJHJw16EOJSAn7qsHf7Xb9Y3LHoeVdd+fxLgu3NDYe7ux/Zcqg/hXFZlsTs6xnuXL76d19/ywf/9G3LlrQ/9OsHvvL1H27cLRwMWabYoIFlDCxzQEfDueK4bnx6WzASX3+eTOIVAsaFQnm3VT23jGRCbDdffynbJD22dcfmA7JCFwKFg3cf4DSgdH1VjPnM69d0clzC9r3dLLSl+sMe22g8HozGrrh0AxRYBf9jjHYZqYUULf/1FSQg2w5HPeZ+LU5412w4vz6YPWdZ5/nLa8Np2WAy6hY1Sq3YngorNpOvcLImg3UgMFwmEZUVKrCgECEvD6yCYtYVmxJw8JGXjeSzNUHOMc9RAc4959Ujn2afDKZnUQP3QAR6/PoQRI2Vqo0/D43lKeT7eg7B92xkgR0erFgq3ZYQ1qdcuJlzF2Q3SbcYLD2KCcA56imueGd/DAFD4IQiYAR8QuGtGOF+l1pUfKmYU/GKFSSaD18GdCl6dL0V1ZIPgW6dhFOzoAB0XZeUrDIwLGkZ9JV5s75M/BDeT35+R3JsJJwde9m1rWiHl5xzRrCQueOXvw5Xy8ysL3zrcY436OxoX9Pmrerw3vuHbzhrReeDv37guz/4EawJB3uJ+lwhLmv4KYH1n47XUYR3HeyN1zWtP2exjkuPDQ0r/WSyYgEP50W/rI96F114fjSR+OHPH+hPiTpOibsPdGGvbqpNNAS8M1qFE3uGhrduz3NCQXfG27xj90D/0OWXLAtlxIzOmK1sIAC5s+4RwqQS8nIhijhTlYX03LqfNz7/it++9to/eePvorxKRTnpJeBlCsmR5JBQH0PB1QlZIarvMuww6XbETY6MOKyLG0pgPdd1mCxIKmRTqKwyEJBxHkbUdWmOsKJmomYsvZQPj8LBTqXUkaDo2MCBbRp5DqMDvWjeqNTJgQGuMpbNyUFyYLbTfWXdZwGg3MBycTIdIlTQROEl0fbXEDAE5gmB8V/sPAk0MZWKgPamxT611LXmvbHRMVh2lM2HIFGZOsUWTfJJ54LJXJa9b5SD3Y6t8AI21QwEwaqZPHsboqcGvEGWsXqh0ayQJhON0Kbo1B/bNvTA/ffWhAt/9sf/N85sW897zQtXRbIj9z/2dDdk4Hm333M/Oyu97pXPRzlr9bzzFkff/Kpbrrvi4u3bn/n43/3L7iFvEC25ICcc4PyBSXh9IB3oG0421XhRV7OqGsidqcpsSC8cxYcFw1yff/1zObft7vvu7R0VAkbOjt0HObztqg2XwNB8LjjvLGhvy6592J9v/dnjbC905VWXM4TMqlzUQ2VB5Igr/WEc172LONU7II2C4t5y4zVnRr2wVlTIMl8V4LyDqhx29Libv806Y6VxWT8qbyoJt62byp54lblkGiLTkl3B7G7hCFHYUd+OGGLXD49LmX2iELljh355QfLy1XVsQoimm6mvS6DvMjkdRmfLhKIpW5ZGqys2snQrf6cIKo82vyFgCBwfAv7P7/jEWO4KRkC60SLhOgW2dINmJvbXqDvPLhyDd7DHSqfLeTVJOb8izHl2bo9GVL/k8KjwKgI4ApZkTFZ2mxWPkhzLqReOc5Ir6aIRdlMn4UMPP4YCueH8c5Y2enVBrzrvtUS8s5Yt8iKJ2+7tufX+4cbG+sVtDavbPfgT9bHa81YvqvrjP3xJY00Vuyp+9G+/9FSXl0WyIwE2V9FGsAKYk2eDkSoWK7kDBnzcfSM19loGWr2VHaGzVi1Go7zn15vge5h7y9bt2FpXLu6AfeC0s1d2chLDo09uoQnbtu+inAvPW0fLWODj1kHJgPf4z0OqQSXgeDfliQiO78t71TmvDp6FfRVhV1su2OJH5QNTkglLsNgSHGx+hX2P0zslI/9L5oeiEYJi5KMZFX6uenuENCdHpLpKiEfG453T587V3WMJlwEI5/xyuSvmk+LUuVaWbuyvIWAIzDcC/MTMncoI+J3xEY1kfS2kwFnsaGpwhOzegEY1ypEpmD0TbCUnemp/xhvOiPoYx5SqXxa67lSWw2VlhS523SEZryVMVh+NQjoFFGo2an74oUcjhcB1l1/CoCPdPmWwYeT1l1wwnM7f+auH77rrLsy0z73knAYIL8t4ZyrkjcHEvAV84D1v6mxr7Rsa/dinvrStTySrg9zx9wx4o/lQtLoe+y4TlIpfX+L8UeJAJDOWhp7jnnfNFRdGQ9lf/OrhQxwfC8s+swtuPXtVKyxKxovXNFZ5qcef2blxh3dg76H6aHzDeZ2ojY4HUYTVziuzsYoVkBFnhm+lTBRQ+UuFgAYNGiBwhAg7S0Z8GTkMGFRlgjgJp/wg24knPa8EjKZDoiKheC3RtubVxJPkuILLLuPP28mRmhzhtJRiWa4lfrk8+5Ib95VC7K8hYAjMLwL2K5tfPCtZmnbdroZMQmbbCnbuhTvy3lCqSCV9HG5b5TFbF0Jh0JQra2SxnhZnP5MVMuHDRs1uh+fDw9n/+PrPv/nz7XAQpCbbwoZYKSun6/QPjFZFq1Yta5XdXXNjXmYIRrz8wnXsAH/g0KHR/u5QZuBFzz0f3ddLDYnGmc/1HNpbG/IYLv7o+16xaNGi/b1DX/7mndQQx1JgSJYva//gKEf6JuoaoFIoa5xuZDvbor7HxsByInzOu+qc1hVLWvd0dW3c7u3q8cbSmcXtLbCuuuWNXnM1rxe5n969MZtMr1uxvJmNGD2vd2hIeBa6ZdtePqQuDn8zPVlsyMguESc+p01y74iMK9XUQVrJ5vhPE3M9mismkMZoluJVsygCxEl8WQrfr+Eu0oUJhRPGhyla7joutqjAuwVjVN4vruSfKKsk0/4aAobACUGADsfcKY3ApI4fHqOTRb1lZpHb35HtHvUUoC17Bjc98kTPvq7R0dEDA725aGDd+ec857lXrWiQ1atsIlGLcReFDiKVzdnRj/NPbNt+9yMspj38xuetgsPY2hjVEF3zwIAXjdfVVVfJRscUxX6GbDdfkJUwF55/wW1331tXH7p2/dmdHO4NUXA+PDu0J5Mt7e3ok/VB70Da+8Pfe8l7Pvqfm5/ZnveuFX7idcENjvazcVaA44haHUOqKZUGlHhFqJrDfzlwPh/IjFaHaq678qLHv3HHz+/99arFS6tras9auYrW82LBtc7zzupsvCeVeujp7ZyOe/1lGyB1GIk1ymwyL1tDKvU5OsMLswo9URv5Q2Q+xIw2YgnhGpLVzzhJLjtoiuKrMS64GCV/ju5If6RD4JRO3gz8uhRTlNIKB6vz6bsU4AzaACbNmXwtpvEr7OcxjyFgCJwIBPwf6okQbjIrBwE6YuhqvIdnBJfKcQ9tQCww352/fOD7t/70F796aMueg73J7DP7D33/57d/4VvffnhHL1wSYuSX/QvJRK/NRF/JG9zf2xOqrR3OCvUI/4SZMxUg9ZM7BoORRGtLZ3H+LzOD4zHmbPFtu+7qS2PBfLWX/s0XXhthl2ckwQMcnyK7S6EJc9KBVx30ljV5dTXVHIE1NCoYMmNZBmA9r7u3LxcIN7W1yxdXdqwsuYLMB6aRQ2juUOzYSG2ctUKp5162vrGl9YHHnvzVQ49y3N5Zq1dwqg/ZSMmCn4vWLUt7wcFUvjoSu/z8VtTbZDaVqK5JQaMqDj7Psx5JliGTpQife4cRfma0lNeKiAwp03owJJk4ZifnvAQH7bnZXlSVD3xJ/Y/8aA69UsQkN55eCtV1UHplcFw+rl6TMkk9Sx+qOOkjibVx/lVDJkuxe0PAEDjBCJgGfIIBrhDx9LX05UWHrzjRBirC2kq/f3jAe2TTE0Op7Kte+ZrWto6q9oY9Xft/8ouf3/Xrh7q6uvddedXzLrqgs5YpVtJ5D41lo9Uy7XeAM2XT2ZAX2bGj//x26Eb0a4537R7moN5g5+IVKMqOkzhATViUnarOWun95s3Pa8h2L2+OFUb75DCZcJWcJhqMjI4NY/YNR2J1Ya+b8WAOXchlensHF8VqOYyBFuC6urrYELKl1REw4kT3HW8YaWBdrhFOT/NyMS/dHI1dcPHFW257cN/BrtW10VUrl3OKDJwOHUZzo+eftTz7w+35cOzCtedzziCNk4W3jtPYZ0MESfUJEA7j6hMk2SUSDVj0UHbJ4lRVgZRSSSMrgblhajhVQ2ixgn5usow7HcgWaQjy0/rxRExeOaZy9EoO58ZVXil56pJ8mc6jySYlLonTpBOLmJjd7gwBQ+D4ETACPn4MK1eCdK8sneEPyqJs0cTjhjHkobMdFUeQOoVWDmnfsrurq2909Zqzb7n57FEUwJi3bmnnuWtf97Vvfm/jg7/+2ne+NTw09vzLL1/DxooFLxYTOmRtz4G+4QxneNbUbt558PzlZzPxaDib4XDQ/Tt2sUVzW1sbBdGLp9PZ6mgcTsTg3BTw3nTLBdBbMJ8LVyU48CeVTUXjNZyJmqiqQaVLZtFRQ1Vhb1FLQ2awq3dwNNlRywFEyEG57RlKhjND7Wx4gZNVPc74LGZuF5KTOdqDQ159TSw53BWvqUlnsldfsO7XDz6Z6umKevGOVjm1UlFApV7S2lIfGB5JZa679Lls5IUMzmTqzyZrwnFhTSFO/otk5dByfiJEGuGolhVcfho8khqA1OERBvUddgh0eb1qILHyfuLn8JOOB00RR6pSdcrYdzzvdD5tkV41bUncdDkt3hAwBOYJAfvRzROQFSkG9S2JJkYvm2Nx7qAXSDF5CoWOxbtp0c7ywaFRtjXmS/Dtn95ZiNeff5GMgzaGvE7PW+R5ayLeu3/7pR951x+kM6NfvfP+vZwPyGc0wyYVqZE8TN4/XMgGYngfPzg4KJplBEtsDQcJbN8WySXPPLM+5XbtSITiMA6aKnOj6tlYkV2Z5ORXBES8aHUsFueAhGBWtqfMYKYOQ+lyXNLilvpCNr2zuz/HYXmcae7JflXP7O/qCA2ubRa4GQzmdARYEKM0FAitojSjfdbVYiQPRmraB1LR2kj4kk7vshYvcvip69evlHcRdF+3DIm9mWsikd9/3jl/9frnrusIxtnEipncXrAp7M4mBRQqKOt+qTX7TQvbEyDkWmQtWJNoCJ1XC95Y5PWCOsgvinT4yMBVEhN27A9pygTLnXPFstykaGFZJlXxYWeQ8k+5ZMlFpvKgmfu1NKlv0WnW0p39NQQMgflGgB7C3KmMALwl+pfsLsGH/0EZQoQamC2VGmrkwIGg98TO5OHewUzWe+7Va+COQHY0GmDTBq8l6NWGvXBn+9o1Z967L3cQEm9GR5Tx0UgoiAY8MJxhhe5YJrtvkC2PZS1vNBQZzXvp4ZHqaJCNH7D3Qnmi37lKMFEpJAPBOP+KhzheDEgEmcpQLhXlJJ/Wes4fyB/o7meKdU1Q1krxMjGazSXSgy0JEUeIsgXpRZyQK+cfsp1IADO1BAXkUCPma9106bpQ3/7OxkQajTgWYYUQlmoy8RLywsvOicfjVVVVvB/IUqZcDgmyL5XEF//zRwuSwHEn0RouxFzuCJ0qg0vihrIRfdQE5YJ8v5Q10R0ZMh4/O9nj+cxnCBgCzyoCRsDPKtzPcmF0xDxgoQfUTc4lcF6tg4QzDysYR/G86857MsnUpRee3yqrgpgcXfpWuI48HotiTM7v2dfV1e8taxAbLgQcE/4b7O+NBqrz2TRx2IfRfeG1Z7q9weRYfU1tU70ogTLxCzlBFj5lwxzvW+64E9bUBHB1gbFgYWOGVoNeR0c7MXv379MkzIMaC2HNTscL2QZZhXSEK0ljzRKH/ETiUeZgI4oXhks3rDt/3br6Gmk/qWT+mewOKencfo0iSnLlcm6217G47YhSLcAQMAQMgTkiYH3NHIFbENl4unCpPGNGe1nPK/wo+iYhmeRYLBQbyxQODnq79uwtZNIvuOFqooSflIBzBaYAQ5/wUnV1NbzLBChpNSRGeMAbLXBM3miskIsHA10DQyiqiCWSOdR4GxrYX9ilZRtEhDr9UusiQnAE6hWPpEBLZ4tL0T0xN3NtbWnK5TNdPX3UCtU4WygMDouSyqaTCXmnKAoQX5ljs0nIOyJnFwmLi1x2EQl4DTXi11th9ALG8nw4EkEg1MvLAVfaOP7y4TLaxRAwBAyBE4eAdM7mTlUE4BsoV0zOqK1BtorEJCyO8JpYjKWuw4XAk7sPJdP5mqqq5R2yJSRRcJJLJGTIJx4KdbS1R8OR3p4eIviwhSWkODAsWmNtKNBWXz2UyR7oFwLms+tQXyEWX9TGgQhCwDhhUJmtLMtOJzi9LRqlJcZZx4vE2VgbwR49lkwPuzMQqE1vL+0IccyRSylVxU38BrOXNZOpAvAoxwgRRYOZ04WD1MdGcyMjGWY56xRwqQ8lygKnIOlxeAihURlWPZszBAwBQ+AEIzCx+zrBhZn4Zx0BdFV3Rq/MV8IEXSQtqUYhD1Wxuven99zb3dN3zeWXc34sOjJfCDntR0iTT5FTG+rrIae+3n7Jh07Mjv6sCOpJMZGqpTq6qnNRJhTafnBI0+8+1J2PRJYvbkdalm2r3Eok7L0wXIkui986WHmckRm55S3BpZC5VGwQXeXxWpDNF7r7JBnHHOw/2AdfdrS2wZxSz5I4cvkuxHwpeT3gqIgUVSUNGWFcZNYmQnXVEezS7sWikEunpH6umX52PBQhZnZzhoAhYAicYASKXeEJLsXEnyQEIC43/SrtcVit0JguaBVFM52DZfYMe79+/KlYJPqCay9gBBeGhNtQVqW6cmidx8wsbiDCfCbLrhgEs4E0+1My7+lgdy+svLihbtXiViY1bduzny8TquOew/3JvLdiWZvYu+F4tE9ZJqsbbhBU+sqNc68LhPWdSprLyfxqEiWiXktzczpbONg9RHEkP3DgAOppW1uLq6RWlSllvkTkCH+64/byWKFR1YlFCWbGWSbNgK/MpXbFc7h9Xqg6FBIDtHMMAOPQ/lUndrLsYggYAobACUSg1BuewCJM9ElEAA1YFFkmTPGBxGSSsbpIjFHQn97162wosu7sNZ2Nwr7CcqISsmaIjDISK/qi5zU3NeUy2XSSachiTBYFU0zQY3BVS010UX0th/Ye7BmAJtM5r29kNJXJtDVzFi7bWgifI5UBZSFM2FsdgSU5SqQaXJDRWHb2kEKrGLitq01ncr0DY1SenL39A3CkqOPuRaH03ZUG8l9EUwTLhd3x8ozvhkOiy+fSnBsBnQfjkSDbfoiFncFtrM0uMXe8RuDQenEukn2nS/UUeeYMAUPAEDghCJQ6sRMifD6FJl3vT/+L0LExptyibGX01i+Gvht/T0+PhnCrCehe6VJJfzp2rI6A4RMBDifqrUyuQlWFl+594EEY7qUvegELZHMpWfwz/oVgNawz4cJTnfVMX84z5SrJoQlwOSqt541ksjyIhkT4rJWN6Jrbdu7Bnsvhu31Dw+FIcHl7I48IMzKU79bSYpBmTNiRnvjKHJVjGBjOw7idySZiMlWaavBpa2li98sDXT1Uns/g0DDKqu7vQawwuGtdmSzxJurq5A/bQbOpMzOwYjLyjaf4IRBfycmu1mXOcTGbJJelKIs1ryFgCBgC84gAXdPCcCzWhIPpGQcHB1m1SaXhA1QWKJalKSMjI4Tg4drc3KxNisViJMCfSqXouJk9W+MOb9fY0+WKEujPcoJW3D7G7CCRCXubd2eHx3IdLc2tjTL6Wx2DouQNpuiEF4U+lbca6+pRggcGZDoXyjKLgIdGk6FImP2qWmrYeao2OZbd0+ft6R4le3tro/tiOWlFLpv4TXNnC7oSdAY0ZXEne1FBq1oi5dTWVjOfqndgRFifJ55KsvtkXV2tJC06vET6TktxRRbLldiiV1Jp4rJkflbzGAKGgCHw7CIwsVt8dsueVWkoW3AwCkpdXR2kCw0zG1YZNxqNEo40dtuHiXuZLIvClGNBSpFOSKBM7CvHsyp6ISeG0GRsFQaCz5SH8MBanHV/10Ob0GnPOfPM9lrZo8r/KpTRmzSdcDLyWgOkXV093JAglfO6+gYx5LbV19ZHvCUtTQyybt6feuaQzJNavqijKE33wyiKKdWACpRRokSWbp1dmDnWBSrJp72N0eXw3sNdlMi71cjIGFtitTXXk9zlgE1RgsVPcUqtrr2u1YTJm0exIlKKOHcr+RWZIxNoMrsaAoaAIXDCEZjUPZ3w8uZcAOxL3uHhYa5Kw3igBBh3/fr1tbW19957LyGsWG1sbCQcxvUNierBBI0eTJrTyJWYRilKtMwAU5xkZBaLwcPbdjA2e9kF5zJbSqdfOUIrwSO7R4pf8zY2NAC7vsGQDINw7+BgJpevrmJKlre8pS0UCO/oHtzVN8iRC4tbmlxWMsv4q35Kcot/fZovPhIddpXvIwcbMTwtuTo6OjIF70AXByzJ6PLIaJI6NDaIBPfFVRm+JHkzKMU4ZkXEFM5FET4FPU+R2oIMAUPAEDhBCLh+7ATJnlexkCj6LjZkdF8lVKgXW/RHP/rRzs5OGJehQabpugmtsqMCIf5qTvw4TNB06PNaqcoXhp7HaXmyTzJ/oEPGZaEp+GzbAGfUDzXVN6w/s4Wz80JMes6w0zNqpzrHZVxkBFcoEuRj4UjfwBCH80lciI2gx9LZbGN9Dfy9rKU1kA9sO9S3vaefWciLmxtUilNcM8p4kkuWLzlqLUXrXxfl2BJdnVlRjhupSmtzlBMLh4bHsHiPjHnJdBYjB3yPwOIA8BFjwMUqT02946VKs6ZLM57afIaAIWAInAAEFgwBw6ZuISlDgHXgsH//fpTdz33ucz/4wQ/gYMi1u7sbPRgNiRFfEsDBqjSrn3CGkA8dOnQCMKxckbARXMuHIwtkkrMScE7GU+/bdLgnlTn7zDUt7M+RZuCWpbxQnsySFjoUV/rrGBOqBv++vj4oT2TmveGRsWg03trahOTl7c1etrB1/+Hth3uDhfyKjjb3xeIC5bPZ5dQONuZTLEbM5O7EBhYIYbxwOWpiHvs054Ohw71ed9cwc+haWlqImShQNtyY5MpaMSlGitMSfc/kFHZvCBgChsCzgsCRfdezUuzsC4FiIVEd3yV3a2srbPr3f//3X/va1/BDz2zqy6Av2yWiJJFAh4fxMFcLwylRSDgNZ0HDtZCc41X+Qp2FQrbA6t57H3siHYhceuHFKJRxOSQoI0feT+WU7QAZ9Hp7GeKVxUSjSW9wZLiuoT4SFjpc2urFw5EDA0OHB4ajwcDSDtWkEagvACXSE4qlGlM5p/uWR2RzMhJcV99YFa/eu+/Q/kOH+QIsWrSINCUCRtQEaXrvX5ViJ121iPI05YWa3xAwBAyBZw2BqfvcZ634mRekS49gWZhVpzS/+tWvfu1rX3vhhRei2qL7qnarZKxKMML7+/v/8i//8owzzmAeFk6775kXegqk5AErGbq2hPKBIKOymby3Y8/+QChyzpqaWEGO02OjCiy7rC/Cy8cde8fJd0WeQkJLXYK9s/qYBhWSacosBEuPJetr68Zk4rnX0uA1VAW9NGf7jjHhrS6qxEjhcGUefkcCssTwKx9xROhNkU2ZFaVhckwhUWzQnMbXVBNOxMN7+8b2DYxBwG2NnGSoLUIeZmT4vyhwkkZbDHVl2cUQMAQMgQpEoOK6KSVaFNn3ve99zLxluFcdBmc8mEkZjNy6dSu6Lyz7/ve/H0zJAgej4GIjxY+HZNAtWi/E/KEPfWjPnj3M3sJ8unv37gp8BieuSnAVQ7/J/lFOVICt+lBb81X5WOCOXz0dDsTOWXVmc7Un2m+a5b0B2eIqxKG2+XCBE3Y5OJDlu2xYgT0/ByWv7PCSg4P7+4axVhO0b++h5rrqmngVpzxgZa6PeZ11+Y5IqiY1tKyzXdXenCxuYoCY75hMxcIhjtJw3BIKv/LB42JltbAQvwtj9jS7VZN/7eK69Gjv9mFv1yjLpNh6Ol0trwhufrseiyuLi3krKM54RzgCVSZij/bRNKWiXZ3sYggYAobAs4uAaDsV5aBP6oMi+/a3v/1Vr3oVPIpJGeMns6hQZ5nhDMUuWbJk48aNv/zlL5mEBfWSAG6+5pprXv/613/2s5/F5qxWaBQmHGSs14pq5rNUGegu61VzMK+bAB2JV6M2sonJvQ89khtLPXfDhey8IdtyoAJncsWlQaSArgPClCGxXMs9RMVO0YloaCxbGGKPKvfSEyrkaqrimoIEi9uq9j62N55NLlnURhbC+Qibyh+3oaWbByZhzjnSLd0U/yJm3JEANu5srkmnRrqGM5wYwdegvaGWQPc+wfckCNPj2G1apVFXQqeS7NKVXWaSpiy5eQ0BQ8AQmH8EKo6AMS+rEsyM5cWLF2uLCYREy1v/nve852Mf+9jBgwfRkjdt2nTLLbd8/etf37BhA320UrJydlF9Ls7pKR20Vy7oVPfn8wU5dz4QSKaS0VhclNdh76nte2P5qusvCeeY0swxQ6XxV6ZWhTE7+xt3lMCBrjAw19ZUM/O8Z8BbXO/1DwwxFNzcIEceyR5WAe/cs9c88vjWWG31yqWd6MRkEZITUcqSc6S8xYuXJJPp7q7eZEY2NmvvXCSUz8GFQZnWXe4oYMJXpDzO/IaAIWAIVB4CFUfAqLzlKGFGRvdFi0X9ZQAYbtZtsFatWoWnQU6dlSlX0C1K84oVK1B//SPWNZwrQrBOk8afmVVexKntD7LFhnOwL+uPGI391aYdhXD8jJamZrgxJ3OUYwyjRqKwl9tjo4iHy6akJryG3tnYWM9T4HzezvpgV38fBw61NNQRzneINdqrly0eG+iJJ6rbm+vlyIdisTwb6H/uzNjWVsPrF8MHY6lcMFdobhYDCc3AYK0VnbvoYkPtjyFgCBgCJweBiuu+YFAYFzC4MsqLcsaOktCn0qqO7DLnWWlYB4ZJQPq1a9fSU+NHAkRLRqzZ6M141AqNB3dyYD5ZpbrmMv6r5uVMlm0tvPsfezrrRW64/DwGU5nDLEbiNJovRJ3nACEIEx4ufS34Kx/EQLStzY1ox4d6Bxhu7e4dxD7d2iBToti7mUQt9dFoIRXzMq31iRp3oFJRyPFBzm7SiUQczZt3L56me92SNWZHIkpxx1fUkSItxBAwBAyBE4hAxWnAMKvSJJ2s389Cxji24ICGCYRoFRL6ZTRgZlqh3WKOhndZ+0usqtF41HCtAvH7Ak8gohUmmqlVqn/m8uwvFRzMezv3HUqmU1dffG4g7cWiMkSbDcZUTw5yeLA44FX2ZEsM5kIXTdIdLY2FUPBQT1/Wa+zpGwp7hda6WhRSyJBrR4338t+4MV5V3d4kBZYxpNv00ef02eCDHL6g7S2tW/tS6O611TUcLIgLhkQPLn4JigK586tdDLI/hoAhYAhUMgIVR8BQqeKFR+mTW9gXTtVNGLhVYzIhytZ6xAI7YWl6brFY6oaUovMGAj4T+8Ir+ZHMZ90KcnIR09qgLdoeCEVv/8Vj6Wz+jJXL2usDtTI5itlXXjCGfd4L5NLFScoBObRIGVj+yrFCctvSXBcMhw719bHyqG9oJBYKNNfFCQ8UMoUcRorA77z0WlLylRodLcjEOBgRLi4bqp2DhgqRdy5q39K9LxaNNDbJrlvmDAFDwBA4NRAodbMV0xpIVGkSD8Spq37hWt0FGuMzWi+KrI7mKuOi+1J99WO1Jjtjw4QIJzibs0YRcroRsFie3RPOZxlHlxVFP77zvqpI8KqLz88yUQqlMudlRuTMiiFIVbBiujJ6pHCmkKX8lX0hkcGnpjoOyiwFHmVjyFQWZbQ27nFEEknjYdF6OcGXwQAyNiZkOVHRSYwIm4MjG3Ja6mo51DcaCjbUVHNbqpi2bFyqljHHksbFmM8QMAQMgWcJATrHinPwpU+cUK/Sp6q5DOsy7kuN9VarXr7DM2PAovM63oW/K65tz3qFOPcXx4sL4+oHM972A91eauiGK1fHxYgLmWXrasJEhYU5IS8oV0Arfi24cxzMcC/JF7U1sevjjv0HkxD2WCoeDnEQYZxhZFRkL08CdF8+SBpnX6HLuXMiORHV2phIhFjzm1+6qN3VmdOMU65i0gRzhoAhYAgsUAQqzgS9QHGs2Gon4rLQNxaP9+e9H935VHVDy9qVHQ2+Jbfg+NkTDhaiFLotOmYyy/xl5eAA/BpMsGVlMMBg7P4xrNYJ9tByBzwow3LIErQt5yypg8LJ6k/nYtqykvqs2JgsrDnubKrLpQYL+XxdXKbIixLsdssqFeUXWHxtmBhud4aAIWAIVCgCRsAV+mDmpVrCdgUhYKZSjRW82+97OOuFnrNhfY3quBJNXC4ohzXgmC1VzMEfCXGhEsMEaY91wHH2ix7NFrbt9MLxRGNtUKdElRRm9GBhR7ffpGThf1GsSBAn0mfjSM9ncXNdbTTAiU6drY0IlC1C5L+8HBQXOxXfFGYj2tIaAoaAIXCyETACPtlP4ISWD0+xwWTY6896+4e8nqGxWNi7YN0KzMXlXFj2JUCJLCqxJBCWk/9yDQbY9yoSicfYEOOJZ7pD4XhzQ1WYtKJ2QruaS64y96o4m2uCSurCiZ8QyP0xHEkDuWxzIhLOjLKhSFtDNRpwIM+YNUW4GV7HyGxRhoAhYAhUNgKz6A0ruyFWu6MgkBqDSrNh77b7nmZQ/Px1Z9Wxp7IbrGXsVg8zgIChZEiWoV6nvzp6Q16JfUV0Ic1uG4ma6rF84Zk9+7KFINtgsY80SV0W/SI5wpdsog3jSoLczewvcHZNqMB5DM3V8dpYoKlW1i1L7XPKwSWJcoKwFlgKsb+GgCFgCFQ8AmXKT8XX1So4awSgWDlswWPa1P/cfh+eFzzvuXAXLsSSX1nx5ZYo5bMsPMoF9NTgDPrsZMcSJuIDXkNjk9c/dLinvyaba25ohHWhWMaPQ2IMxgsbjyumjpslDA9HKLm/cjsbJRgLeaYpnvid37xlYCy/pNmpz9Sc0nS5WhntSjvdO0NZmAuyiyFgCBgCFYmAEXBFPpZ5qxTnD3Gun/fIXq9nNHP2itbVnTJRWaiS6VdQFgcQ4XLMqkKzDMPNTKSCSoWD0W4DXkiSOseybM9raG4K7k0l05loNl9fVwMlI4MkcB4c7Li4lNxxZfFmzn84ymmgL94Qvf6y1UNShCsM9VcnexnTzhlYy2gIGAIVgACdprljIQDBqGrl+n5V44pXNL8R91GdspTgWNImxSEZIXycKRdtzxWGEul2yGAXDSSzQJcPnvFkRW2SZOKKmUoeDSxWhqnH4Xg64v3sjntWdradu7KjkBQCzqS1yjKXSWy3sl2GfBPwQsDF7wTkyqd4g14rE7TqquuiIQ775XSqTMKtZJpAgmQQURPCnMxSpWb7lxXGdQ2ZdIqh32BSFjjFqE844qUBQxzzsGSethRYrKgLtoshYAgYAgsAAdOAj/WQ6NuV5TgfvjSHqJg+k0YNTGxOyVG4bZ5XzbaX+SSbFHssWJ0xGSCczTFwcBrLaYuFBTJeIJMtjOYDtcPZMEcFqnNyx+Jywi6uSHKMv2oN2XJS7LIQai4b4Shf5j7nctlQbCAQHPC8zU88wNrZl7zxhqVxobFoVEoTsnStCoVY7CMOFZMPa4eI5IQ/JMO6IVmqBGFHMnlv9ZIz8ndu4cDgeCjX1lHrBbFXR0rUJ9LEuSuXUrgG+He+xyWe5oLMGOdEIC3OLiCqBINwVW1RvJY4/vZQrMI0Ui3aEDAEDIEKQGBWvWEF1PckV0EITqsQiUb7k97Xb936zbv7hjK6DxfjpAysKiHOoqJILOYROkEP5i4rRzjB+mFv1PP+9aub/+qff4bSx6G9Li0JitXQYrgpWoPzBX+/a7gL2kRHv2tTX6CQXr24cU1njZfNQ+A5NrJAE4aAnUOyapSM1DpGE1LXMqQYueNvEKatj0dDuUI4n4sGC1VxXg0oIUsW5UFHisjUjwSWRYkg99EyZ3ilEZTCEiR57+AqBcl7g6t8qVS/GD9ghtItmSFgCBgCJxGBYhd8EmuwcIs+fLj3nnvu/dntd4iplmbQ/ZfMtzNsFOhDKk61ZSsMtrlAxcOomvfybLpcG/Oq4beNe727Hv/1PZse2fjUvliAXcBkJLTckYmS+ch+znmxAhObL+Rz7lUA8nzogV9zRvLll19OSriLWH9vziPlaIhLWRYp5mdZCtzYwLqgXDCfY2fmGvb4MGcIGAKGgCEwVwToac0dCwEFSFhLHH/5KD0F4bqxVJKDH1hoC89lGVgV5WwWkCIL4zMEjAcTMoq0aKJygy5aRRDq73dvu70/kI411//4Z79kj05H2RSBRxx2Yj5aoQBbajh2zuTy6VQWgbwWdA97e/fuDYdCV12+Hhty1O2dwbFQkhnC9hvjRDm9V2ImumKL+NNYy+GD2WAhXROPVFFvccVYvbGrIWAIGAKGwAwRsN5zhkBNSAaxsbsyw6OhSBSdM4mxmNHcNGOls8VTNqIKFLJkEwuzM+k6boXSwxyLvOOQ99Dmp4YCyf7M6I79PVigRdUusa/jS0oWDubDzKigo3+s1/lgKBCOEvfww1v6e/vWrD6DseqUDjhPaIrIch+RI5zs7kqBmtTRdEG04NqoxyysUDbZUF0126ZOLNbuDAFDwBA43RGwXvRY3wAoB+cw4qJYqScYjsQy+Xwml2Ujx65uGZuNJqrHmfFYUsvisBKzSAh7saM+d3VsFwgVOKco7P3vT+7eu3//ZZdfwpSontHcwSEhaVcTrYwvytEneYREiQ9HozFuxrLer+67H3X4qiuuRG59lUTjycn0auccn5eIvHjjIopatfMzsRnzs9i+MTq31VXFCunm+hoBx5Xm0tjFEDAEDAFDYHYITOrHZ5f5NE+dQdNkRlIktv/QIbgLD3Q8a0xgzdJgLQznTi9gKVB4JOw9uDV//4MPLl3U8TsvuvScM8/sS+ce2NIHAXOAL+bl0gsBJRc/siZHOTHAMYNCjlu2Hziwbw8Szl+3nBBiIVJqHZriMAPEkEMYVXkYlbrUFuzqZJUTBpkJ1dEQrwpmW+uqJXbiiqNSevtrCBgChoAhMD0CRsDTYySqnpKSS4sXaoLP2BU5EIpEYlWHe+WMekLGZm2FdnKZOuUkw45hYdYI0oYi3qe/+EWkv+T5Nyz1vDM6F4Xr6u59arMWRAUcB2uF3MRpzgQMyPEEiMoUAlSmd8zb9sxOgtasWtFcK8qrzNLyvOHBIUeoLu/4RaugDaUOcisNLzr5niCKzZ+bqyJVXqa+KiyJhJjNGQKGgCFgCMwFAelYzR0DgYkMMw4X4QMDQ7X1DSNjydExGVzFqluVqC3y2DEkTopyWyomWfoL+8pMaG9kNMvOkT/89b59g/0N9TUvv2Ztk+fdcPFFY17hwW1b0IAxLMOvqp+ODQ+KV5YVMSItU6sIT+elMqMZ7xf3/mpsdPjm51+P5opyHmGdVCrf0Njo5TT3xKow+1qcayPNKIgVGof1W2eW5VPJaMG76uJzrr1s/bozVxKMBcAlsYshYAgYAobArBGQsT1zs0FAWElZlhPy0tk82uvg0AghTDsuHc83c3lu0ZDYnVmC5CZQ5b1IItqT9374izsDicjN1z+3NeLVFbzOWq+2vqZ3qG9bV+6CVtkgkhIxVTMNTApT0iygBQsBs1cVBLx5x/7eweEzVixvqJaVTuz2zFVmcWFqFn51Gi4sOu5ECntXOmEQvftbaiy3wWigNuhdcW7LosVXtzfKGwOLocdzm88QMAQMAUNgNggUO9nZZDnN0ipX0ejxXRkFAXguHI2kM9lcIHiot4dUvlY6C4AgsVA4m0qHgiw8Eq7LpGWa1ePP9D6xdXNLa/11V61grDWW8doT3vLF7cz6emzjJsg1xTaVzN+CFFkChSuZgpkMJmpsQAj4gUcfHxhObrjwwrYaod4YXI+FGuO0UG+JeN20amfNJoQvQ/n3QSTh+EMOXGF0mOMa2EhraaMMBpOUzbZcjF0MAUPAEDAEZo1AeYc768ynbQY4CeZhrjGEVwiGunp6hH3ddhxF1popNOAfycBqIdnmggnR6YBsTnnfgxsba2vOXb2sKeDJCQmyH6R3/uqVVYH8U09tpizCsAzDi2E2RqZImSCFBi3LiPWzf9DbuHl7vLr2wnPPhSwRrgTvyFQ2dtYKMolKK1ziYDjaOaclayJCaBouEA7lRocoAw6mPtif3Xpi+wopZHY1BAwBQ2B2CFjvORu8nBJcpCjyOXUyGAgPjYxCe7jxKHc77UXmTEFrYRgt4+WSKbacjnu9Be/xp55pjcSuPHNVApnsbhmS8xg2rFlWnU4d2Hdw2J1TBCsLd8qCpVyJUIMQK3WAnjdv7znYM7Bi1ZqlS6phXxnelZeFrMc20aXZzuQmWPhVPjKzmo/IVCfJSo5EmYwXDoZi0SjnOzh9WqZ7mTMEDAFDwBCYKwJGwHNBTqmHM4XceX2FVDo7JgZh+czWYXAucN4Ci5GQEfXG4E6ODhwYSqQzFyzuhJnZ6gNiZtePs9u8jnBkdHhkyzMDWgrVcBTOQ4RWxU847Ev4k1ue4XzfNevOgX7RfRk0DualKGFfRq0ncqeTU6RhJEgrNIG7SiwaMDQv88VQ0kfFjC3jyJz2MIcWa93taggYAobA6Y6AEfAMvgFCQZOTQUmjqaSYcNmBqhAYGXGzmSenmuZeORvVVKzPIU5yEAL+1abNbHyxYfWZy6uCbJJVCOZG3YmENZ53yapVgVz+8aeeJqNfo+K+ks6qXBToedt37opW1SxbsZJ6imIrpmXHvtTIz+m8msUJFJ22LNLN1XJ8TKycRiTUjLbNuU8owx6nFIV0BHqaVlq0IWAIGAKGwBQIGAFPAcp4kNIRJMan5NSLTTiZRq3MYQFm9dBwKs8s6JJTUivdHfMv0jhAUGZAh2TvqmGU16e3QJpXX/UcUWiTo5ifQ15BpjF73rnnnpsLhnfsP4Qyi6MYqYwMAMscam6pAkII7O3uqorH62vlrMACKq+bf+XmWZNyXAMmpX4D/O+BCBSZJOPEIRHlpEsQO1/LYqZQhHFnwvM4mm7OEDAEDAFDYE4I+B3vnHI/i5no7eWAPufwcLwP3uFhCEu2ZRYSdC6VSvl+DTmuK2OnYmyF2hytOVlCaU5VTXO0QSHTXJsYTAf29owwgVmMvdBiMYvSsMvrspCr/IMw0ocL+epYOJ8JFALVsNpwn7dr2+ZEItq5rmmI1Bzcm0/Ve0NNXoblv2uvWNVTCD6559BAUmZBsyq3AAys103n5PTfQnF5L2KzowPDPb0rFzkGZQUShIq2ygZYrBWORMVPYW7bLRIru7vKi1++E5y5Kx/xM+JLlKxOqm30YpwBTBIJ4UiloC6C4t6cIWAIGAKGwCwRWDAETG/PTk8DAwNQLDbfuFhEvZqaGtg3EomwB4WGx2Ix/IcOHZolDkdPDgfLx7fN6oxg1TU58YCFQ2P5QHRwLMtILqRW5orUWxZypDcPYRfy+WCsetTte/HM1t3RQmH1ymVIc2RIwQy2cgBRXkgz5HUsWzqcTu8/mEa3xWQss6vIqFzoFhLD2ikCC/lETAzExQcsNXMrjUW15VN8n9C/R15dGkfEjmslt+SiBnyK4Uc2xkIMAUPAEDAEZo7AgiFg+BVmra+vh2LDwizevn37uMK+2lrCxSiaF9prb2/XwBN0hZAADgssxEfFeDPo7++PYSkWHbfEc3hk1nQR4SlIrlS5NEc6eEEUXBT8Bx96lDXBG9afx9oh0TtFGpqo0B5t5qXj/LVnJYdGntr6DIlF7Ue8iBaNNOT+kKdngF1Bgg21dUVoSgXZX0PAEDAEDIHKQaBID5VToaPVBH4lCt0XwlOWbW1t1cSEqEUahiZqaGhoZGTkaHLmMZyyQm7/5UAo0HW4Bx4UdVQKUN51iua05QmZhxhRZgr04THv6S3bqiORC85eVFReYVa1BjvFE0K94KzV2UzqqW27IGDGdsVAjGMxkvvLHWl6+seywWhTYz20jHhzhoAhYAgYAhWIwIIh4LExJgiz3jUQjWKjLaTTaTyEwL5wMxZpbNHwLhxcW1tbXc3+UfPoJqEkJAuxYRrmCN6qqir04INdhwl1GvDk68R6KEf7V/IEgpEok6rQZjdt6esbHl7c0bykvjgWy+6WSsAo1rApDV69uL4mHt11oItXDLdpJBO4hIkzUimU5jzvKV39w7lgtLmxTll5YgXszhAwBAwBQ6AiEJhELRVRpykrAc/Bu0Sh7MKysC+TrZR9mZOlI8HKu/M5CavMhnxkrZjzRFmNjY0QcE8P+zeLK6PWI3NMEZIPyPZVsCmzqR587IlIOLb+nDUQrWrASMvKXlicQhQMFnJwMPtKLmppHBxJ7TmsBCybT1JNmensCJgn2tU/wskLDY01Mkg8RZkWZAgYAoaAIXDyEVgwBAxUaL2wL0yss7FWr17NJCz0XYaBGfT9xCc+wRQtonDw8fxAC30Jg8kCWXGlSdE+q8H9LS0tzAbG7p10DOwrwcrHms9dlZo1ANjlg14LRVJXtp88OCwLkGjRFRsuVksyE6CRBj3zwRMIYKXO1Xreso72TCG4dc+QnFMEQ/NewjQsrVNBXhl6B0czgVB9XXXUTWPWIu1qCBgChoAhUFEI6BBiRVVp6sqga/rDwAy+MhuLdH/2Z3/2jne8gwlQkO6iRYvUKE24PzNralmzDfX5tpSx+NpSyBXyWd4AKD3FbljsGSlGcVGCSQBlHsVJbo0lJeQ6xsZSIa+7zzvU1b2ivWFVRySfyYcjwuBuh0gRKFXgfEA50SjU1ljnBfsPdPdmA7WcMMhGIDLvCw6WDIxLe0OjKTb3qIqzXtecIWAIGAKGQIUiUKSSyqkdaq5WRi3MfsUw82KCRuPkigm6t7cX+3NbW1tDQ8OKFSuWL1+upMvKYOhQc5HMFzUpxBc7A8+REAl7Inp0dDSRSFAB2YsqEOjr5xzeo/GurDUiVy4nk8jIz81IMgP7MpeK0d1tu/Kf/vS/VkWC1119Oe9EMeZUib1dCpJsvmOFcd679KL1oHHvAw+Rl8yyT6RjaHeQQhjq3bvvEO8ii9pbNFyizRkChoAhYAhUGAJHsstJriA8CgfDUnAMKi+Mi6NO0CqOBUiEY2FuamrC9vuhD30Ii/TFF1/84Q9/WJkbEy7JsEX7Vmg8TOAiFm7es2fPHJqnfFnM6FgOyuPD1iCUBc1Dw9RKp4n58vUtwF2FQ0VFda0IhaPcs41GOifkiv1516H8f/zHf7Bsd8P6c1920/lDQ5moGJQlF3n8j0qOBb2l7Y25dGZkLNk9wplInMkkqYunKBSEj9No49lsTaJKs9jVEDAEDAFDoAIRqDgCBiO0N6gXbsMP4+Lw6MoiLKxQCySNfvyqV73qG9/4xkMPPfS6173uH//xHyFjkjEWyxUDNSnxoCh/7GMfW7x4MQLh7GuuuYbAWTlRQstdmVJa4Dw+FgCFQkiGAfsHh6XIMuezr+6lRY0YrWXNEoovm2ckqiOw7+5u71/+/XOZ1Fg0n3zvm2+CM5trI1i2VQx6No3nIYkot4cG/rY6j4nQDIhvP9DL1HBqRLKAHHZUHDAeHRkqZFJNDYlKfLpl+JjXEDAEDIHTGYGK66JV32Urq/e97306vAoTs8oIToXq4NG6urq7774b/wc+8IHrrrtu3bp173znOz/5yU/CwQwG67NE3yUlfqiRZAcPHoSwu7q6fvSjH83hYUOrkJyQa4l9QY0PHF9gn+VCDm2c/bEge2iSD1F6dZlKO1m6glGDkaEfaPhQX/7L3/zO9t37Whrr/9+H3zY2LEftpsbSoi4XN5xiSLe4JMlJDWGEJmTVisXAsvNANxQuXJ3NeBx2xGKkgpfMemMjo+FAtr5mDm21LIaAIWAIGALPEgIVR8BqSWZWM7T6+OOPw5o7d+782c9+duDAgdtvv52QX/3qV895znN0543u7m5wIsENN9yABRj1F84mBB3aHzBGgYatMRFD4Rir5xNXJmHBwPl8c3Mznt7eftFTS+yrfsfZxTKpAyw+kpRzARno5vPTO3/50MYnW9o7f/8Nr+uIe4tqvHwyU13FVC4lcWQw05mjCPlw1kM4R7hj74vOXYuW/NTOPYhKyqEQsDpTuTzOR+wf8bLJsYZEnBlYkzTyYj3sjyFgCBgChkAFICDW3Ypy/h4aTLCCU9HzGOtljhX6pW9AJpyhX5iPKCrPJKxvf/vbaMbwLgo0jKtMrFZoJWD8jCsPDg7OqrGi8R7pCnmd5qXyiYeAufb293FV3dexr9N9/aOHUF2dUssfVFgYEwLe9OTTmUD0lb/zquXtcmBgFRs/R/LJ5EhVvJokkK5X4OMyBmBfcSFOXkh5a9d0MCPt6e17EBKX0eWM2xVaLNtd1CKfaWsWZHBTN0Hj7GoIGAKGgCFw8hCoOAJGlYQp4V1syMyoUmQIdOOsYubFQyxW6LvuuuuVr3wl/vvuu+9Nb3rTK17xCvRmpl+h6aoejOKLUwlon3A2kucJakzOQcaAKZ0iGhtlS0qKRjhk6Ni3VA4EyMcFodwHo9FwROZx8SFl//BYJJ5Yd26dUHI6G4gypyrPObuquYZIAvsysCszooMUyR8eGBmXtnnVVbFDff37hrzW2rCXS2kRpOnuS0LSHS2NKMfmDAFDwBAwBCoWATrzynIM1jLiC/viKZ/JDAez7Ic1P1SXBLDpPffcw/m4F1544d/+7d9+5CMf+cpXvoL6C/uSgIywnbIveqraqwmHJrnO3Glq5VSHlBuadaHoo8xkDgUK8WChIcEmkdnhVI4pUYzIQpOMDzvNlSL1iATswWHWIBET4TxA1v6mvIG81zMymkmnRvpkWLcqJtyaHh6l2ulkevzByNYa7jxBV28mOUfCHi8mTdXxZD66p1cmXnEkU5H2A97I2Cjt5BWEEx4QO7sGuyLsYggYAoaAIfAsIFBxGrDOeabl8BBOIcC2jIfVPj4il1xyyY9//GP/Vj1+Xl0TDIUjAd1Xs5NmtgQsWZxoOesABVQOqC8OrUJ74Wgsk04mwtkzmrxganBnV2TIaaik4FAI8mENx0TMdlTsJFnIeFXRGIuPIizdzYcbYt5je7L5WPXiqsiKRjaVluFbtn0OVvECEYzLyiKl8KirAXFhn5JZiYT/nOWLnu6P3PfkwRuXd3jRGLSvKnJX38FMMBipqqkP+7O3XBvsYggYAoaAIVBJCPi9eiVVqqLqAvWK4iqE6szBUjkNS8sxvV5VKFgd9hKRQCofGvQ1YIzGTI92G11xJb0QuWwMyX7OYhvmtn8kPYZpva6Kmc9o5prYaa1usFiMzy6f6NAyACwELYXLEC8cv3LJIjZ83ne4X6zqQTbICqVlIRILsfrYwbK+vpGXF7aPLmZx+exiCBgChoAhUDkIGAHP8VlAbFi5sW9jLYcO0c4xgA+NlTjSSeVsIliQj7Agf4TBUY3lH+uFDvf0Z3IFDlUk1qfJmejocjCD55191pmoyfv27B4YQjICglm321ZPX38hn+toayUUuz1Xc4aAIWAIGAIViIAR8BwfCsAx0gzDYffGzxxsyHh8krWQKiZhIeAiuQoVihotRxeh7wa8Qz392Jx1BrXwp1N4hVrFuT/FnBoiV2SwGkkt80s6Qhy2MNDf2z80JqcWumnQFNDd1xso5Fqb4yjNmN/HM5vPEDAEDAFDoJIQsA567k8DxoWA0VnhRQ4lRFB/Pwt2x11IDlnIy/gxjgg53Ei0UigYpjzUMxAMx8goWYqHCXrh8vyyy/PkB0ShKL5EYLjuaKoL5DJd3b0YteFgtu9A7ODQSCjg1TJNS8uVss0ZAoaAIWAIVBwCk/v3iqtgZVdIVUxoT08FZpUU9RUO5T9nF4oGzFUdfKiUGJRtNSDg7n52pmxuauIZSNpSNBRbzMEfkSVu/Dm5xcQIIuasVctiIW/rjl1I4yAIYkYK3lgyzVYeiWjpgELNb1dDwBAwBAyBCkNgvGOvsIpVenUgSbU/66gt66Pw9Pf0TgDU6bWix/IRvZWJ1JzpJJwMZXb39LMwqb2lBTO1KrXKvIg9RuMxKhNNFozO55+1KpRPP/H0NuZhYdMmvHfAS3EMQ3VVVUgSyEHB5gwBQ8AQMAQqEgHroOf4WDJOTZUB4CDsKZOwIGA5DFHlCaOCrXyEboWA+QjV5nMyDRoCHh4ezWfzDfWOnV18PueEFmskQ8XOMdW66AjATypGl5n5tWpxIJhL7dyzTyZaOwLuG/WyuUIN66hdDg5BLGW1v4aAIWAIGAKVhYAR8ByfR5RxXHc0E5Of4VU2vmATTUzQyrqpVNJNVQ709g2Jfdh9CoFgIZOPRuOQ6FO78vF4or2ppT4q6mzEsW2UP2i3uvpZ2Bdtd/wB+b5UCnk5FNzFtV5tVTSaqH18hxzEBA0f7h7OFUItTW5cmfzOXj3HFlo2Q8AQMAQMgROJgN+rn8hCTkXZ8CMbW2Iu1k0/MEGzKmloYDAN30Ki7Izh7MT1jfWw5baDQ9sPDeAJhIV9YUr2qyrksk11dcjRD0+i7GGUvELDk52UyH7ULEH2vDUrlyazha079ykBj6Sy4UiUXSplVvTkfHZvCBgChoAhUEEIlDr6CqrSgqkKZ0JQV7X2trbWwMd9fX1xqA+DcDCczOfTGS+Z8+5/Yv+nP/fFn933a9Fb8zLdCgLu6+8J5LKL25rFKu0+PhOX2q/BclceRd6ITJXmcIlhrNAbLliXSmceeXIb4Vi2e/qHQrFEY10NYnE57N3mDAFDwBAwBCoSASPguT8W3W6aXTLh1PqEyIGSIWV0U1kgHAwHYMiQt793dPO+rrsfenwIpRn9mF0nYcqenkA2vbhNZmApv86wHiQWV8iHPT7emtVLc4Hwjr0HkyLYO9w7EAiFmxrq8JOS4xI1uV0NAUPAEDAEKg0BI+C5PxH2msYazIgtqi08yjAwaPb3jmWzXsZNf2InDri2ezQdrGne0zdysFfWBSsldnUdDuZTbfW1jlBhcP3MqDJuObEXioTg95ZGr7q2fjSdO9gjjHu4tz+bzzc11nOMoXP2fGcEqSUyBAwBQ+DZR8A66Lljjpara5BUK+UwROZPDfT2ySSqUAjjL5/+pPfktt2DWIdjNTsO9MGZsj+W53Ud3h8NFJob5CDCcTczfZXNsETdDRTQgNmGeumy5WjbW7buoLi+/sFMLtfS2Mhz5aPVG5dvPkPAEDAEDIGKQcAIeO6PAgJGCWbxrq75WbRoESG7du7ABA2sSsDhmDeUycfqWwrR6sc3y0gt7MmmGd3dh6siwc4WUVvl4EJZL8TqonE9mGT+p7yKpCg58YoV+uy1HCO88fEnET48OkaVmltq2AwL51ZIlZLbX0PAEDAEDIFKQsAIeLqnoeoty4FE7/QnKsvqXqZa5fJpDMJosRBhW10Vq3IPd/XnXFo2aIYRR9Pe4UOsThodyYc37z5ALqiWw4AHh1KReKihsbz0GT0LChKlmeFlPvkcVuiVHY1eNrVlX9cQk6szsj1mosYtOZaUZXxdXpT5DQFDwBAwBE42AjPq9E92JU9m+bJvVZGDqQZ8Jqf/CY/KFCeORkjXVAkjxtFEF1VHc6O7DvYnAzIqHHc7Y/QPjrIpZFW0MRmsfmTb3hFs0Z43MOhlg3WJxjhbYwlDslq3tGuHT/GU6X8kj3MUFCkUOA+4EIilMpFwMES5l6yM1oYy23rTvzrEhiA16UwqEpBZYNncKH9dZUv57a8hYAgYAoZAxSBgBDz9o3CqryZDp4UxBTQJZB+qXIZFucKLntdaFw+H8j0jSSi6BGt2cLgrl84017fUNbUWItGuPtkz8kA3ymmirq66VDbJSzlKQUf5ywiynPpLPbwwyrBo3jVBb0l7YyZcff/G0eGRsaamOsILgXxEzNDMxRKKN2cIGAKGgCFQaQjMsN+vtGo/q/VRBdgVOe6FApnilM1ldB0wEYvam8PRSPfwQF9SlFdHqsHurt5kMtm5uGP54k7SP7OzB9P0zkPdXjjY1twUdWruHBoD/Yfk0cngcVXEO+esNZzK8OiDv8plk0sWdUC5IcfojFDPQbhlMQQMAUPAEHgWEDACPjbIRxJYETFVi5nxFGVlkbupr/JiidhQLnuwX9gPtTjgBXu7+tOp1JLFHauWL2Prq01bt2aC3v7+HvTgtvrGORIwc71cifK3wMomb+3ZayKBfO+hAzXRcFtzA5EMEQc9Dn7Qah67jRZrCBgChoAhcBIQMAKePehucFd1Yc5JwAPN8cFT39CQioZ398qRDJG8cHB31wBzpTvb6s5YFo8EAk/t3DHMLhxjo+lCpq2uUfernG0NHO1KJjaj5jBiHuGKJfXhQi5SyCXCwdpYxHG/l81nQ2Eo3h7xbAG29IaAIWAIPBsIWO88LcpHKsGSBYpF/dWDE6Bh+WCFXtyZiUZ3HDrE2iRGhXE93QPhoNfRyjCt11iX2N/Vc2DMOzTcn/FyS5rbYpD0rHVUSDegmi0EHArIWUyNVV5jTbwq7AUzyfqqGEUTCPUG5B3AnCFgCBgChkAlImAEPM1TcUw2zsHikwN+ZRIW5yBxHCHDrKicjMgS2rm0cyzo7T7cDUGG8t5Iyuvq6Y+Gw+3NXlvU62xrGUmlt+zNH+jpCoS8ZYtqAzKZavbOETA1KbgDhPPZAnruujNXxAOZQnJwcVsjU6ML+XQ4GGaIePbSLYchYAgYAobAs4GAEfDMUIbIHBWXp1YNuJATNRMNmAXBLS0tqVy+e2CI5HzG0t7ASDIWCjYmPGY8tzbW5QKBfQcOdw/0MEO5td4lIt1sXcARL7lkdXLey8rapnPPWBnzMqHM6JLWJqZGZ5IcFBFIcxyEOUPAEDAEDIGKRMAIeNrHMokhZc0u2meK5cEBmDCbYD8MZLAmOJM7Y9USLxDaf7gn6LbA2L5nJFsILOtsr3XrlM5cvSxRU/OTn98e8gJLOtqzLBaWnHNxEVmC5EXdDOyqONtteReuay+MDiQCmaqAHNIQZXWUF4xFObHQHvFcELY8hoAhYAicaARcR36iC1nw8uFJ2d2qINtlFK3GHPSnc4xF/UXZDHjxSKgq4CXiiWQy3TvoxWu8rpExjipqrIejRUte0tYYCASz6Vw4n2+uq4lhOIaD5+rkvQClXCaA5cMBUbJXdraE89nGqrAM/GKmlmOZpMZHqO5zLdLyGQKGgCFgCMwfAkbAc8RSrcBBGFV1zIIXDYqdubm2/sCerkM9XnOdt7u7J+MFO9uaGZSFt5d2VMeC4dFUOsq86KYGKXgu3CjMO1ErZ0PKcHXAe+8fvZFNshbVQvZ6YFKAvbpkjpY5Q8AQMAQMgcpDAPowNx0CE+mO1ASo8TjojjtQELnyOtPZ2JJPZw7197If1s6uLq6LO1p1ve+ihNfW1BQthKoKgc7mJiTk0aOPlyBlLw52tMxlvc56r61W6jA61O+WShn7TvdkLd4QMAQMgZOHgBHwtNhPGqeFMAW0ogbsCFj0TceCRCxrbo8Xwod6uqHefX392WBwUXNjrCC8yOeMZStihUBVJtNeV4tOXIiF3JTqaetw7ARwcK4m7KWSHmc+MB0sUVMt5yHmdLHSsfNarCFgCBgChsDJQcAIeI6453Jysi/LcKFVxlo9zj4ocAySt6KjsyoU2XvwwIjnHR4ZDMQiLU3skuGhBDM0u2rJsmA6FxxLNSWqGP/NFnl8jnUoZhOezVN0Xdxrqg5yEoNIlb1BChm2gjZnCBgChoAhUJEIGAHP8bFks8JwmKDJ7y6s7C1AxsvaauPhyI69u7vSXn8yGU1UNdYJSetc6TNX1jdUVTfX1C5qboI2IWA5bWl2TkzXk3MU8iODYxC8TL/KZbODgzIzK6y1m5zW7g0BQ8AQMAQqAQGowdyxEXDvKKiVgeJwrai7LLRFyZR9mMWEzC3DrUyEhv/aalB2A3t6hlGBx3K5jpp4nKVAbmOsUM47q9Nb2hqLFeqWtkihcq7gsQs/MtbN+irLxbIoahZsqIsNJ/NBTigMBcN1DVpbe706Ej8LMQQMAUOgQhCo3C6afabS6TTXSUj19/f7Id/97ncvvvji9vZ22O9lL3sZ4Zp+bGyMvLpPJPs14tcsunDIzz4jD+zKsYNBL+v4VVRMN6UZAkbBjMJ3LCYijdOE2VdyVauXHhsYibXevz01OJpcvXxpOOBlR5OhbLAp4LEg+ON/+tKPvv91rNxNePk4Q7Uu54xqIokohgKDrGviIw7FOxDzAmJ4rokH3fpgTmHgLAaJZxfMMqp26e1iCBgChoAhUBkIVJwGPDw8XF1dDaFCn2z0CEqw5sDAQENDA/7Dhw+3tbXhyWQy3//+99/61rd+4hOfWLVq1erVq++9917CU6kUuaqq0DqLezVDk/E464DEzYWAHYXJhCn4TA4+YAMOMQHrBCfYD4bz1VgmQDHWy5aTe1KFB5/YGud0pIhsNxmuirs8slQJ/gx4qaCMIMORc3gBkixltCobg7jGlQIlbmKIRtvVEDAEDAFDoJIQqDgCrqmpAR/VfSPOQcawL4ovV2VfEsDEH/rQh/76r//6Na95DYxL+ptuuolwyBu2rq+vx89WkTCusjh6MNyMI3xeHPOcqBjOlyYmane3csWy+zZt3/b000011a2NDbLjFYRI1HhaP5N5DAFDwBAwBE5TBIqqUqW1PhqNJhIJ+BdNlwPtqR7su2/fPq0ntNrb27t582ZY+cILLzzjjDOwP+/fv5/Eo6OjsC9ZSIPuixoNDXOLH7UYY/V8tVSXISkB+8t9mA7NxsxLF3dEMFrn0myLsXLpEtkKIzB52pRx8Xw9CJNjCBgChsACRaDiNGD4EgeVwqCYjlUJVnAXLVqkHmjv0Ucf5fqZz3wGEzRpvvzlLz/nOc/ZsWMHGjDZ1easui+jwoSgAQ8NDW3btm2+nhPaNaLgda5CwCVGZVpzW2s9R/M2J+rH+vYt62iIgjFHJmAodrZryTVeiTLveKD5DAFDwBAwBE59BCqOADAmo/7CoJ/61Kc4XAiWxRHCta6ujiuK7IMPPsgVTv2jP/qjW2655eabb/7CF75AyL//+78z/UrnXqm1GUX54x//eEdHB4Gtra2knK9HCqlTGSXgcZkBTkHw2prrIoVMPJDNDg0113hMwhInenAxofsL8hUHfrF+9scQMAQMAUPgxCNQcRowiq+2+tWvfvVLX/pSSBei7erqam5uHhkZ4Yp/3bp1JMNdcMEFMC4elN1YLNbT0wMNY3CGv5Uam5qa/uzP/uzd7343IVD73r17165dOy+oUivkwMFcS1UWwajErY2RBPtSDQ8uamA9kNtrQ7bqKBJuiX0le5nmLPHmDAFDwBAwBE4fBCqOgBn6hVBRWJnbzGPAgIx/xYoV+FE6IdfOzk6uTHtmQPfxxx+/+uqr9WlhtdYpWsq1KM0ajoEaD1dCli5dqoHHf6WSCFECLpPGjlTBhlqvNhpMDY6ceeZSKpFPpzxWHQUxTjNL2leDyzKZ1xAwBAwBQ+D0Q6DiCJhHUM5qOo6rzwUm9od4UXzRaz/4wQ+uWbNmyZIl//iP/7hz587Xve51pCQKPRgPhE0WPHrVEK7z4ngzwNXW1qLJRqUQL5fPsQ3GWDoVj8aWNtd3Hexa2d4G8+aZBh1nM0o5EInEklbWLY0vH5qX+pgQQ8AQMAQMgYWFQCUS8JQI+myq9NzY2PjiF78Yen7lK18JEd5www0PPfQQgeTldkoJ8xuIBkxNtDJlkvMxdF/PW72kY++u/YvqagpZr7YKNTib58Ci8tOJnC4MHzMO7IzSZTLMawgYAoaAIXAaILBgCNinOjyMvzLEe/bZZ2OFZh4W3MzqI9iXIV60YbTSZ+HB+WPAPn26GrJVRzroRa678rLqaPW1l54fC3jBUDCfzeTCHIlUcuO+Uoj9NQQMAUPAEDjNEFgwBOzPN4bnmOGM7otTlRcPM7CgYdiXx8dyI3bz8An7BD1QikOy1kr5VAk472XYj+uspbHW2os5oFdYt5BPJsdCNTVkcLZqVyNOKzpBNTOxhoAhYAgYAgsBgYW0EoZpzAopdFvOr319fdChDvTCvmjA5bEn6CkoAU8qqODlQl4+5OV4r2lr8Dh9we1AmU/UyOm/wtjqZEtL0ZyNg0uI2F9DwBAwBE47BBYSATPsylRnHhG0p3RLCA49WG9ZhqT2Z6ZJn+gnCQFTjQkasHAqo7rMsMpBrUy7Sg451hWaZQq0TJsm2pwhYAgYAoaAIQACC4mAYVklPMZfdQhWWZBmoARzZZUwV/aCZiUSnhPqtAKTNGBKzHpJTk7icCJORqqhFqLoovqyFdYUbsrAKdJZkCFgCBgChsAph8CCIWBVdlXT5Sko8zH6q8ouSjCMqPqxnsQwn0+KXaUdk8rqoQBbO7PYF6Jlc40g5wHjR7XFL5EcfORVceIRgbLmlz9SV0Z+ZTkUd3p1oRKn8e7WLoaAIWAIGAKnFwILZhIWjKtbavB8/AlZ+H1ll8Dy8Pl5jEKv4mBWfJi/Ob435KVCXixVCPCpTsSEXeV4xEI0HAgUiK8mLSFySCDrj6BhOZo3EivtwoEo2S7LyZRkIt6cIWAIGAKGwGmHwIIh4JPzZKBHGNSxr9iRi3diOWZhb4EhYDTf8pqJjgykog0XqVV8AjJcO+4kUFzpr97Z1RAwBAwBQ+A0QmACfZxG7T7upk4aAz5yMPi4SzABhoAhYAgYAqcyAkbAc3y6SsCTjd7lxzLMUbBlMwQMAUPAEDgtEDACnuNj1nXAPgGbBjxHHC2bIWAIGAKnKwJGwHN88uXrgOcowrIZAoaAIWAInMYIGAHP8eFPGgOeoxTLZggYAoaAIXC6ImAEPMcnz7pkcvqWZ98zR3GWzRAwBAwBQ+A0Q2A+CRilkLN4AZANmZ+dMwFP4sPSTT/KViF7BY5BdMcPn8RaWdGGgCFgCBgCCwWBeSPg4eFh2swxCVzZr4o9qvA8C3synyygJ2nAVMOU4JP1LKxcQ8AQMAQWIgLzRsCcAMiU4JGREfTgRCIBFlCyryAuRGiOXWcbAz42PhZrCBgChoAhcGwE5o2AmRUM+3IYETS8e/dudF8omXMRjl38wo31lyGN72YVGPcu3HZZzQ0BQ8AQMASeHQTEUDwvDrNzVVUVtMQA8LJly1Tm/J+LMC91nQ8hugxJzc5ut0qxQRe3qpwP+SbDEDAEDAFD4NRGYN404NHRUeYlQcNqfwa13t7eUxg7NUH7G3FIS00DPoWftzXNEDAEDIH5RmDeCBjeXbJkyQ033LB9+3aYuL+/v6mpab5rW0HyyseAixpwBdXOqmIIGAKGgCFQ6QjMGwHT0L/7u79bunTp2rVrV61a9fnPf37v3r06VbjSMTh2/ThWMCDHFvEpnWgU5DikTIHzgMPBgBxYKEf/+q50gqEfYB5DwBAwBAwBQ+BIBOaTgF/72tf+13/9V1dX1zve8Y7PfOYz55133o033vitb31L5yuVl31kSHls5fghVj2FkOMHQ1427OUdB0eynpcuREbT2cbaGhCMwdCFTL6Q9wJhO2Kwch6f1cQQMAQMgUpGYD4JmAFRpj03NDT88R//8ebNm9/znvc88MADv/Vbv7V69eq3vvWt2KWVd1mexFBxJYNSXjc4WI7/5SzgAlycD3h5jgAWXyEU8EJMwqIlBJKA44EJN2cIGAKGgCFgCMwEgXkjYLU2w6zsgfXJT36S8eC/+Iu/eP7zn79x48a3ve1tW7duveyyy5R3WZ60UDTgYyBYPgYsyaBim4R1DLwsyhAwBAwBQ2AiAvO2DAn6+epXv4rB+bvf/e66des++tGPYpGORCI9PT2owjfddNOll15K0awVRlFmwdLEaiy8uylmQS+8RliNDQFDwBAwBE4aAvNGwFiY0XRf8YpX3HvvvevXr2cPrAMHDrS3tzc3N9O4FStWfPCDH2SpUnV1NbeoywtdX1QlvrwVMhB80p6jFWwIGAKGgCGwwBCYNwJm82cWIOnOGxAtMCxatEhZilvMzu9973vRGpV6y3lrgQFWqi5NoxW6Dtg1SiKMgEvw2F9DwBAwBAyBaRCYNwKGjdB6mXsFB0ejUfbDwoNazOaUekIDgdSF45JIRrjeTlO7Co6ePAZcwVW1qhkChoAhYAhUIALzRsC0DWZtaWkZHBxMp9OovGwHDUvhLrzwwhe/+MUYqFtbWxkVhqoX0Czooz0znXSmqryvAR8tsYUbAoaAIWAIGAKTEJhPAv63f/u3j33sY29+85uZ8AwnPfroo5/97GexPKPs/vmf/zmG6L/8y7/EUs1CYZh4Uj1meMsUayRA6mr7RZOG0fVWo5AD8RMIx2uaGUqebTJUeYqgIOaRS0GFbK6QCwQXzPKq2bbX0hsChoAhYAjMLwLzRsCwIHT7qU996uUvf7lW8ZZbbjnnnHO+9KUvsTtHXV3d5z73OdLAW2jJc2gDq4eZwOUfMwzdwuvo3IhKpVJMq9YoZn4x9qzylZJRUn3CVoV1DqUfmaVcAz4y1kIMAUPAEDAEDIFjIzBv64AxO3d3d/vnILEjByFsS3nrrbeyKfT5559/5513QpmMB8OCrE06drWOjMWmrZxHFPtOw+iov5oMNZQpUThulX2hZPxoqMq4vio8jwQMqSOtXGC5XytmV0PAEDAEDAFD4GgIzBsBo4yi3f73f/83JcG+OhXrC1/4AjtyEIIyys6UULJyoa5NOlqdpgyH8FCCiYJ3WUzMgmPUa8eAATRjHDT8ox/9SPPqtC+fd5W5kaAkPaX82QYqAWsR/pvBbIVYekPAEDAEDIHTFoF5M0FDQv/xH//x+te//ic/+cmVV16JDvrLX/7y0KFDX//615kRzX5YHJQEAaMEE4VDhZ0V6FAdLEsW9Fo8LDhmbTHsjjbMtK+PfOQjP/3pT2+++WYSUBMYmjSwvirB8C5UTThuVoUeIzEETKzP8bITlq0DPgZeFmUIGAKGgCEwEYF5I2AI6EUvetHdd9/NOUicRYi2yhgwu1Eq0bIrFmPDmJGVGlVDnViTae5QfCFUxnqZzIW2zYgv9m2lZEgd9n3pS1+KCJJRE99ejR9HYmVKUk5TzIyjldR9Ddi2oZwxcpbQEDAEDAFDQBCYNwKGcV/5ylf+67/+65/+6Z/6JwFji6YMSBH7MAuC8Sv1orPOVgNGAg4JkCtXHKLQpNFEb7vttt7e3j/5kz8hkDTUhDTwrj8G7Cu+ULjLOg8XZFKET8DzINFEGAKGgCFgCJxOCMwbAcN5999/P1zLaUgAyFog9FRGguFImFI5GK0RUiR2tuxLFiU8laC2ZfRaZVnmVzMezLaXJMNRE7V1w83k4kodSElefSHQZMd59Un9OOVYdkPAEDAEDIHTE4F5m4QFfK9+9avRgFEKGfSFfXWUFPbF7Ky8q/ZhnUt1NLiZyUUUa4Xf9773MVcL4lSHtRkPJmiumzZt4koyWHDnzp1MtOa8B6Vb1XGJhYNhaGrC8PDSpUth5cbGRn+S9tFKn3k4BVFEQ0OcoWBpnSP7eRthnnk9LKUhYAgYAobAwkRg3jRg9EvmQ7EOmGHgSy65RBkXCkT7/Kd/+ifAga5gZTxwIexF1JSIqZ2ZnTre/va3v+pVr2LUFrEQLbRNFGJxq1atIoS1TCwp5vAlWPnGG2/UjISrU+Go4+9///vf+c53onPzZgCv+6uEpyx95oGU4ifGry8Efoh5DAFDwBAwBAyBYyMwNQseO8/RYu+55x6IcP/+/Tt27ICT0HcZ68UKTXpmTmGU9seGdeh0SjkosqoEd3R0LF68WNMQqFn6+vrgVLUw64Ye2J/haQaYKQIO5j2Aa/lkK/hbKVwN0VMWOodAqgTpls+94mack+cg0bIYAoaAIWAInE4IzBsBo5iy7gjShfx0GpTOtGJGNHgqC+pIMGZhnZA1Jc7l3EkCdGUd92X4FurFjEygXwQLf5988slvf/vbBGLrpg6qB8O1aNgUpzo3EkiAX2/xH79TmexBiRMNOCjLkI5frEkwBAwBQ8AQOE0QmLcxYNRWVECocevWrb/4xS/Qd1VnhTUZA1Y0CZwWVhRZ5TauqrPCrLAp1IviS3b22+KKHRsiZzuOF7zgBWeffTZFlGujpPTJmMT4cfDxwYMHp63ADBP4BGysO0PELJkhYAgYAoZAOQLzpgEzEAsncQzDQw89BOnecccd69evf93rXsdo7oc//GEYkVjSUPYx1F9idZoVHmVNrSt5uYWJucWOrTo0chhyRvtUyejKEDasz3QtoggkSrOLhhoIoBwfw/StKWd+VRO0rwHPPKOlNAQMAUPAEDAEQGDeNGAI6SUveUlbWxvDtJid8UCBrAz+zne+o9tSwqxqFqZUXyc+8hlAluoQ6MciCj9X9GxIVC3JkDpTqxCOxZtAlG94V0kaNRrC9ud5Kf0jYQ5bYPp1mOTR6ukYMBXW2NLfSWnt1hAwBAwBQ8AQmIzAvBEwJMfcqw996EMwIuZiVUbPPfdcxm5hTShKp1YplTIkPLkipXuoVPkMDySHWK46MIwWq3q2DvSiB5OJKyWqXRrhSroqnzpocbAy0jBBH3sFVKkKM/pbTsAzymCJDAFDwBAwBAyBMgTmjYDRSiFgdFBoEq6F+fAwIxrmgzWxD6vaqlflxbJqTPCShbwE4YF6uWq0elBt9VbVWUrkVmdE+1GaADLWEMgSgdC2itXYuVxLGi77afGWQH2oCxX1xfqq8FyEWx5DwBAwBAyB0wmBeSNgQLvwwgvZk3nfvn2MAUOckC6HAV999dVEQX7oowoss6N94/BCghr2da8FBci3VG81QZfu7K8hYAgYAoaAITBTBOZtEhZKLQcfXXTRRZyGxGTjd7/73ZyAtG3btl27dqk52ifdY6u/M634SU3H8DRar3MntR5WuCFgCBgChsCCRWDeNGCMvZ2dnTDuddddx84YqLnMwIJ6OTEQPxowBKxDsIwQ6/DtAgUNO7POD4OAgxMXIRGyQBtl1TYEDAFDwBB4lhGYNw2YesPBsCx7OONn8hRWaN2Lg5VIugUHg8HMT2aGlM5VfpabOl/FQcBuUrZTgicKNf6diIfdGQKGgCFgCBwVgXkjYCY6Qa7sj/H9738fBRc/xxOxXTMrjv7oj/4IAqYKOg1KD0o6ao0qM2J82FemX41rwH5tZYTYvzGPIWAIGAKGgCEwDQLzRsDMfH744Ydf9rKXcTQv2zjDuHhWrlzJMqQ3vvGNbI5BRaBelGD16HToaWpXkdHlBKycS4hMzLK9KCvyeVmlDAFDwBCoTATmbQwYin29czDx7t27Dxw4gE4MJbNClyjdAxKiUreA2BeKdRiFCqVNS/JekFnQOg2L9xdFUGdIzxualfllsVoZAoaAIWAIzB8Cc6QMf00RY704rQ8Tntl1ktWxOAaD4Vq2yNAodGI88C6aMeHzV/8TK0nYN58NePwP5YPRfCFP1QPhUH+ykPMCkWgQAo7CxcGQF4zSLjNCn9jnYdINAUPAEDiFEJg1ASt9Mt+KUV5wYKYVXIuyy7jvG97wBhb+EkKsrtFBG9bRX1KyLJhAYqFnn78rHsl8oCA7YsK7pbcG4eCsF4B1CY9IA2SbTOcCfqJSiP01BAwBQ8AQMASmRmDWY8Cs4oVxlXRVpC7zZUeqSy+99G/+5m/Y/eqGG27ABM1wL3Oy4F0WJpEeVtb0hCy4WdAywlum3oqy65y2CO/U6FqoIWAIGAKGgCFwFARmTcBQKUot85nRZZGJjqvzqphyxeYbMBMc/Fd/9VcYn5l+RRRcy/EMpOzq6mI9Eh5UZw5ROEp9KjRYrObMsSoRLW8hSsBGvBX6wKxahoAhYAhUPAKzJmBapDzE0C80rHotM63YjRkr9KFDhzgHiUBilaEhZrJw1dXAqL+wLztyoBxXPDjjFdRhayhYDdG6ufR4tO+bpCn74eYxBAwBQ8AQMAQmIjDrMWAYFCVYhcDEsCxa77ve9S70XXTcRYsW/f3f/z32Z2Vf9oVmYRKJOcSXZCiOGq7XiTWp1LuS1uvXDw5WAvYVYt/jpzGPIWAIGAKGgCFwbARmTcD+nGefRNlq48tf/jLaMDtvUNh73/teRoVx+Nn06he/+AV+aBuWwhwNdRHu5z125SonVjVgvz7aCuNdHxDzGAKGgCFgCMwWgVkTsB6162/mzHiwGpOxKqMEUzwrjhjlhWvRd3UKNH5VmmEseJo07Mgx24pWTno0YJ2EVTlVspoYAoaAIWAILDgEZk3A6LI0kjnPSqIQKkRLCEqhrvplzw1d9ctIMFO0iNIEeHze9Y3YBC4IF3FG92xO2g5kvFhgCcCuzm0B5Z6xYZ0mfYS9ekG0zippCBgChoAh8OwjMGsChjvR/6goZmQ1R+s8LOVUlOA1a9YwGMzMZ3gXnialJvCnZZF9IRHwVJxqGvCz/021Eg0BQ8AQOMUQmMssaPRaDNHsp6GqLeogW1yxDSUToRkP3rJly3ve8x7oWRPo7leqKOvQr2ZfiDj6g77lY8AE6tTohdgiq7MhYAgYAobAyUJgLgQMs2p18UBFkOtrXvMaFhqh1zY0NHAMcHNzM8PAqIlciSIBycpznazWzrlcKNZf8ouf5sC7uDkLtIyGgCFgCBgCpzkCcyFglFpGgnHYltUc/bGPfUzHfX001eBMLCuDCcQDATMGDEmT3U+2sDzKuD4BFytvNLywnqLV1hAwBAyBykBg1gSsuixsCvui2kLDNMRnX2I1BA/h8K5G4SExIaoHq5DKQGBGtSjfYMMnYNOAZ4SdJTIEDAFDwBCYCoG5EDBsCvsqlaLRsiSJAwfFIBsIEOiv8VWW5crAsM7GUg5m5FgV4qnqU6FhMu2stBUlfhql7S2vrpB0+b35DQFDwBAwBAyBoyMwl1nQk5YVKbnCqZSi5KrFsTJYPZrAX4NEmoU0C3oq7LSxxRgzQU8FkYUZAoaAIWAIHBuBWRMw4nwd1x/NRfHFEYVmjGqoReqJCxpOiJ/Yz67JZn7VbaXRPqFwXQGFn+xKh+jZ+DXEJ/uZCz9GSsoLBT2OIaQgjgQOB+QICirAumctPpfnbIYJxyUdQ5pFGQKGgCFgCBgCIDAXAj5ZwLHxBcwKo/uTv5TdlfIxg0t7gkFdFnWCKqllwcT+e8YJKsjEGgKGgCFgCJzaCCwYAtZNtVSNVlWYB8OELzRRHH50X90Lk5Fm9cz7k/NJV3VubkXZL2n8816cCTQEDAFDwBA4hRFYMATM0cL9/f08CeZ8sdpYz3VAIcagrWuO0X2xCevu07op5nw9NqVbN8ZdFIkNXNi3RL2+Z75KNDmGgCFgCBgCpzwCC4aAeRKov3AhE7jgWmiYQ5Y4BwIuhI+hQGiYNCSAp3Up1Lw/PDfOK0ov2rbQL46bEg3Pe3Em0BAwBAwBQ+AURmDBELCO7EJ5qMKYo6FbPNu3b2c8mChUYXbH7O7uRiGGj0/oLGt/HfAp/LWwphkChoAhYAicaAQWDAEzsstYL9SL9onuy9nDjz322Ec+8pElS5awzOmWW2758Y9/zGbUxKIc64DxfGGnJmhfmk/AqgD74eYxBAwBQ8AQMARmjsCCIWA4Fe0WrRf2Rcelhddffz2zsb7zne9s3rx5/fr1L3zhC3t6eiBFqJpkM4dgDiknUfIcJFgWQ8AQMAQMgdMcgYojYJ3SzFNhcBeu9R8PnKqre/HAfxx3CPt+6EMfuvDCC5cvX875S0zLuvPOOyFgXZtERqzTmh1R6vFDfLHTe/L5cHETTUnLkl8gw+iNTEagJciNB7sFyXJnzhAwBAwBQ8AQmAkCFUfAamqGeuFROJXpVP6MKmVWeBeWxey8bNmyz33uc6TfuXPnF7/4RYzSN954I21GUWZTDp0OzS0etGd4nZ259uzZMxNQJqSZao6VacATILIbQ8AQMAQMgdkjMOu9oGdfxKxzwKB+nvLpVOpnOw6dhHzfffe99KUvZf8NGBoy/tKXvgQrw7LwNIGqPcPWn/70pz/5yU8SDlU3Njb6kmfrkWVI49tB20Ycs8XP0hsChoAhYAhMQKDiNGDVdznE8H3vex+EirKLYwESV44ZdneBLVu2wLJvf/vbmXX1ve9974EHHrjqqqte//rXHz58GLOw6r5ozzQUtv7ABz5w8OBBLMZdXV0/+tGPJrR+rjdI05qIAHz+KQzli4XnKtzyGQKGgCFgCJwOCFScBoytGFUVe/I73/nOt7zlLeiy2JMxHa9cuRJLMgPAjP6effbZ99xzz7e//W3WHRHCAqTPf/7za9aswSL9tre9jV042AmLnaihSQZ90ZuxGEPYhF988cVze6hy0IRzsK3Ngi6BYX8NAUPAEDAE5o5AxRGwbulMg9ra2mBcCA81l2lWhGBGhlMXL16MlsxuGzArnKp2aeY/Q9soyvAuy5B0Jyws1eQiATSsi5cGBwdnDZUbAy7XbCcT8FSDxLMuxTIYAoaAIWAInGYIVBwBo60yfAvvYkMuTjN2+1sRAo9qCASMzRnzMmPAn/jEJ+DpW2+99cknn7zmmmt4fP4QMulx+kDRgNGVdWD4+B+xUjtVOn5RJsEQMAQMAUPg9ESg4saA0XFRZGFfPJNmMsOgut8kFIuO+/3vfx+2holf8IIXfOtb37r99tvLLcyYspV9IUtdv8QDnjNl+hpwwQuxNCqHXh3IRgspH768cfHp+QOyVhsChoAhMFcEKk4DVpMyzXHqa1F/9ZVahnuJQp3levnll//whz88suE6/YosOgZMYj/7rAm44Bi2EOQ8YCzPXoGDf8MQ8ECaM4H7lzbGJLpQyFKlgGxDHQiSyqj4yGdiIYaAIWAIGAKTEfBVuMkRdi8IKJm6Wc7idTOwoNscrweFbKwADxedEK9QNHxcDLE/hoAhYAgYAobAMRAwAj4GOEeNwqw9a2X6qMIswhAwBAwBQ+B0RKDiTNCV/xBQcZWA4WBVi309uPIrbzU0BAwBQ8AQqBAETAOe9YOAgBldFva1WdCzBs8yGAKGgCFgCBQRMAKe9VdBNWCyGQHPGjvLYAgYAoaAIVBCwAi4hMTR/zK9mUh/JRJ+GwM+OloWYwgYAoaAITAjBIyAZwSTMHDJ4ZcVR86VwuyvIWAIGAKGgCEwOwSMgKfDy3Et6i8rfSFeDhZm3ho7ezAMzK6ZYo5mPJgrPhsSng5LizcEDAFDwBDwETAC9qGYkcef8GwDwDPCyxIZAoaAIWAIHAUBI+CjAOMHO722OABc0nEZAyZejNA2FcsHyjyGgCFgCBgCs0HACHg2aJXSHnUSVvlMrVJi+2sIGAKGgCFgCByJgBHwkZhMEeITq5qgy9cBmy16CrwsyBAwBAwBQ2A6BIyAp0PIxetKJE0qE6/cVpRGvTPCzhIZAoaAIWAITIWAEfBUqBwR5hOwasATCNgNDJdGh4/IaQGGgCFgCBgChsBUCBgBT4XKMcN0HfAxk1ikIWAIGAKGgCEwDQJGwNMApNHRiACVy2ZhX3xp5xoaamUyNOH5QnF5kinCDhC7GAKGgCFgCEyLgBHwtBBNkcC3SE8RZ0GGgCFgCBgChsAMEDACngFIpSS68Je70hiwV1R8SwnsryFgCBgChoAhMEMEjIBnCNSEZD4Ba6hNh56Ajt0YAoaAIWAIzAABI+AZgMQm0C6VEm3ZMiTTgGeEniUyBAwBQ8AQOBIBI+AjMZkmBAIubcQxTUqLNgQMAUPAEDAEjoaAEfDRkBkPZ8qV7oTla8Dcm9l5HCDzGQKGgCFgCMweASPg2WPmzgMmm605mgt2lscQMAQMAUPAIcDhtuamQQBlt3yZr5qgM5lMXZ0bGy4UOCo4Ryhqss2KngZLizYEDAFDwBAoImAa8Ky/ClCt74xwfSjMYwgYAoaAITArBIyAZwRX8TSk0qFIjAEHg+i95gwBQ8AQMAQMgTkiYAQ8a+CcsVkmYRkBzxo7y2AIGAKGgCFQQsAIuITEDP7qZGglYNOAZwCYJTEEDAFDwBA4KgJGwEeFZsoIYV83C3qSBizGaVOJp4TMAg0BQ8AQMASmQsAIeCpUjh4Gz6qbRMClYPtrCBgChoAhYAjMCAEj4BnBpImKJugCC45sI45Z4GZJDQFDwBAwBI5EoHIJOJvNcuouV620kh/+0dFRrsPDw08++eTznve82tralpaW17zmNZqsr69PPeQNhUL4OTgBvwb6QvR2Rlc381lW+uYLwVAIvAYHvWg0OsUYcGmO9IzEWiJDwBAwBAyB0xuBiiNgmFVpEvqE58LhMLf9/f066Rh+TSQSY2NjAwMDl1122fnnn//YY4/ddtttO3fu5JZH2djY2Nvbi4e87NiMB6aMx+P6lOdCwJqz7OrzrM6CnheZZeLNawgYAoaAIXBaIFBxBFxTUwPXorPCsuw2xUPgtqGhATaFfeFXQqqqqn7wgx/U1dV98pOfXLVq1Zlnnvnv//7v+/bte/TRR4ltamoaGRnBQxZfgUYPRmAqlSL8+B2kC6+Xy7EJWOVomN8QMAQMAUNgWgQmsMi0qZ+1BOivaLqRSAQOTiaTlItCrOwL+aElE4XxGYqFquFs7NIQ8MaNGzVxdXW1ciS5SEMgfAltt7e3H2cT3BRoGQP2TdD4j1OmZTcEDAFDwBA4DRGoOAJWTkWFhWXRXyFaNSDrOC6WZ9gUxr388ss3b96MBoxqCwX+wz/8Aw9v7969ZCEjfvRmzNdcCUEmycj70EMPHecz9glYB5h9aaIBmxbsw2EeQ8AQMAQMgekQqDgChmhRfyHdT33qU8yugkFxhMRiMXTizs5OtNtf/vKX55577n/913994QtfQK/FoQ0TBePCzThIWq3NjAd//OMf7+jogC9bW1tvvvnm6QA5Ir5Eq76mi8arGrAm1XDbFesI4CzAEDAEDAFD4FgIBHxeOVaqZzEOYzJEi866a9cu/Az0orx2dXVBn0zFGhwcXL9+PYFDQ0OQ7sGDB/Hv37//jDPOgGK/9rWvvehFL8IDW2O7Rnum4ngY/YXRoXZU5LVr1yKEIlSFRfik0dzJbS3kvUCQ2VzZXD4Wyo16kY3d3rv/4pO8HPzzh1/f6nnh7JgXrkIzDvM/kPcKQTsTaTKGdm8IGAKGwPEhAClM6rTpyevr62fXnx9fHeY9d8UdRwg18k4A0MyuorUYkPGvWLECpuRKCNZpOBX2xdSMakvI6tWr/+3f/g3N+Prrr4d6Sa9qNFE4pWGuqNFLly7VwOO/operEGpr6u/x42kSDAFDwBA43RCoOBM0D8DnNvw6josHJuYKDaPL6iTnr3zlK9iimXuFkfkDH/gA1+bmZh0AhqFJzBsTV5y+N+HxQ1zwzC5ujpUouLIG2GNlcX+/TAHTkWlCwk7PzhaLmplMS2UIGAKGgCFw2iNQiQQ85UNBfyUcYzJsyqokhnh/9KMfveENb1iyZMmdd975kY985C1veQsJlLzRhqcUMo+B5W8J8yjWRBkChoAhYAicJghUnAn6aLiLpTcQYL4VCdCDMTV//vOfZwCAQKJwDBgTy5AwfiZhacqjSTuecFdacR0wmrG6kkG6dG9/DQFDwBAwBAyBYyKwYDRgVF5/whQebtGDVQ3FOs1EKiY/Q400lgHgE8W+ao52DDzN1K1jgm6RhoAhYAgYAobAgiFgxlzhPFRbnZbF2LD/8DScWw1EOfaj5sFzhG6rGrCOK5sGPA8ImwhDwBAwBE5LBBYMAUO9MB80rNOyUHN5XujBOLhQp0ShGbM8iXASn4inKdTrDgPm7yQNuEjTTkU+EUWbTEPAEDAEDIFTDIEFQ8BKsQz0wrhMZlYjM8quar0wrhqoWZ7EE9KlRyf0UY0TsJHuCQXahBsChoAhcIoisGAIGJWXEV9WCUO6cC2Pg305uKL+YpRWAzWKKfSsM6Xn6XmxC4eTVLI18zcVDGS9QKhQECN4Kby0KHjB4DlP+JgYQ8AQMAQMgTkiMD6SOkcBz1Y2XYakpamCyyQsvfXHg2HoeR4AlgLQt3OBYCRYYEcs2RLr8Gg6G43XRQIMNUeFeAM5Lx30wp5syFEkYq2YXQ0BQ8AQMAQMgaMhYBrb0ZDxw0Xbhn3FFeBaLxMMMes6UijECl4JPqKJMfZ1KNnFEDAEDAFDYAYIlBhkBkktiSIgU7GOmIRl4BgChoAhYAgYArNCwAh4VnDJmK9PwP4CpYDqvqYAzw5LS20IGAKGwGmNgBHw7B6/T8BM/lLC5XDCcRFl3vFA8xkChoAhYAgYAkcgYAR8BCTTBfga8HQJLd4QMAQMAUPAEDgqAkbAR4VmyghfxdV1wKwBho+nTGmBhoAhYAgYAobAMRAwAj4GOBOiynnWSHcCNHZjCBgChoAhMHsEjICnxazAcC/sq1OuWDfd29vLamNcLo/66wUDrFEq5D1ZrWQLkaZF0xIYAoaAIWAIKAJGwLP+JugYMJt++LOgEVGcCD1rYZbBEDAEDAFD4DRFwAh4jg/eHwOekN+GgyfAYTeGgCFgCBgCR0XACPio0Bwtwp8FbRrw0SCycEPAEDAEDIFpETACnhaisv013ESscQKWTTmmzW4JDAFDwBAwBAyBKRAwAp4ClGMHKQEzM2uKZMbHU4BiQYaAIWAIGAJTIGAEPAUoRw0qKbxwcPkULJuBdVTELMIQMAQMAUPgKAgsmOMIj1L/ZyHYvaOoHTogDFzIh7xCUAeACwX/EKSpFOJnoXZWhCFgCBgChsDCRMA04GM/N/AJ5fOcBOzW+AaDEPHIcDoarYrFQ5BxJCLMXPAinFiYySRJe2xxFmsIGAKGgCFgCCgCRsDTfRMKkyEqacBl473jXrjaOHg6SC3eEDAEDAFDAL3NQJgDAowBsw7Ynx5dvh5pDtIsiyFgCBgChsBpiIAR8PQPvXy+lYwBO6cbcZRnLk9WHm5+Q8AQMAQMAUPgSASMgI/E5FghPgHrMqQJhwEfK5/FGQKGgCFgCBgCExAwAp4Ax0xuTAOeCUqWxhAwBAwBQ+DYCBgBHxuf8VhVdn0NuLQX9Pj8q/Gk5jMEDAFDwBAwBKZDwAh4OoSOEm8jvkcBxoINAUPAEDAEZoRAJRLw6OhoOp32q4/JFz+BXHt6ejQ8m83mcjmu3OqVZAMDA9xqejxHzpPSvHO4UgXZ7irPHhwepSA5Go2yB4ceBsx06GzOC4VtV5M5QGtZDAFDwBA4TRGoOM7I5/OJRKL8aaBrauDQ0FBzczNRkLGfxqfbkZGR+vp6Yn3dFGIOh8OaXcnYjyqXPze/L0oq4C9Impssy2UIGAKGgCFw+iFQcRqwr7YODw/zOFB5YV8Cx8bGIhE2nBKHXz1dXV0QYTKZ5LampoYrqvPg4KAq0ExUVpr0ZfqsqdnndoVxcYgqp90JN3OTa7kMAUPAEDAETicEKo6AAR9NN5VKVVVV4f/yl7987bXXwqCrVq2Kx+MHDhwgUPVgiPbNb35zLBZbv3797//+72ORhqoh6bq6OuzDJPN5F77klljS4Jm7c3JUmrC7E6S3RsBzR9VyGgKGgCFwWiJQcQQMTdbW1kKrMByjrdDbjTfe+K53vQs/iu+iRYtUu8V/wQUXoCVv2rTpT//0T++8884PfOADWKFVL92/fz8ZM5kM0vAoN+PBHf9TRghiYfdyDfj4xZoEQ8AQMAQMgdMKgYobA1a1FQ0YkmNM921vexuM+8Mf/hBVGA24t7e3oaGBJ3Trrbf29/d/5StfaW1tXbNmDbboz372s3CwPrzOzk7lWjEUBwKMBKtY1Yzn/IDL+XuSem0a8JxRtYyGgCFgCJyeCFScBqwKLhowJmg4GO5kvhWq7eHDh6HSpqYmLM8M+u7atWvx4sXoyjo7+pZbbtmxYweKLxOvdPCYxP4YsE+cOl/6OJ800nA+Aau0ojY8Hxr2cVbPshsChoAhYAgsCAQqTgOGcaE3rMeyzieXU57Dg/GZcBhUNeDHH38cNRedGJShZ0aI4WwC165di0ehV/szV/Rp+Bgh2LHn9FRYgoTtmq04xq3OckChuGAhD9Wr3105PWk8VVm4eQ0BQ8AQMAQMgTIETqYGjKr64Q9/GAUXdoQ1uUK3KL5cq6urN27cyIwqVXChXgZ9YVBClIbRbklGCG2BrfHDskq9RBGIJg2XM5/rIx/5yNKlS5kj3djYuGzZsrK2z9SLeTng5QpeNhAWvu/r74nFw1VVER1PjkSE7zO5lCfUW5ynPVPRls4QMAQMAUPgdEXgZGrAkOJb3/rWm266CaUWfReuhX1RUtva2rq7u88//3w4VZ+LEjCECuPCr3hI8/Of/xw/REt27M+kJItasP2xXqLe//73v/Od72RqNCTNUDGa9JyeNUzvNqN02i3zuorn/ioJcwawHgPMram/c8LXMhkChoAhcLohcNIImHFcDMjwKE5BV3JVP9oqHjRazMtosRAzVApDoy5DsfDrhg0bPvnJTx46dEizf+Mb38AiDctio9Y9OnwO5hYHhash+vgfMKJw0Hk51aK+H79kk2AIGAKGgCFw+iBw0kzQOnyrQMNnsCOU5uNOLEowt5iXN2/evH37driWkGeeeUaXAjPrCn33ta997c6dO7/4xS9+7Wtfe+Mb34jhGq4lF9t3QOe6QQe3+BkJRmZ7e7tfxGw9k04eLK/tbEVZekPAEDAEDAFD4KRpwCiyOHRchnVRW1FYdZ4UVmXmOaPLtrS0sNDoPe95D/wKDTPhefny5TywBx98EGUXwmYN0pve9KbVq1cvWbLk2muvZQ0SLIsoJOhOHf7TJQQ/QvytpP2o2XqwMTsFuKAymfWsqq9owBJnJujZImrpDQFDwBA4TRE4aQQM4+IUdThYPXAk7Kv2Z0IwO3/uc5/7p3/6J5RXJmFhiMYcDRMTRRaGkBkGhvnI5UsgCku1zsaCKVUsHpKR5vjVVp+AJ4mSeVrmDAFDwBAwBAyBGSMwbvWdcZb5TIjCih7MVckSolX2RffVGVhE4SgS9sWkDPvCwVoDbNHKvqJ9lo5LwsMULULQUPFoSorACo1/kmassbO9qgasBAzFl1h+tmIsvSFgCBgChsBpjcBJJmBoEj1Ypzcr46K/8kDQbtFiYU2iGNnFw2ws1YPhYFWUmc9MFvRaJVpGfxknJi/UqOxIrPIuogghl+7RMS8PXC3PvijTgH0ozGMIGAKGgCEwEwROmglaK6fKK35I1OdRveWq46yqzkLDhKAHc4V0cXjU1IxHnc6xUjmE4FEJjA1DwGTxiyvlmMVf1dExQaNPI43dPrIFL+Z23ch7+aIB2uzQs0DUkhoChoAhcFojcJI14AWAfXEcuVhTMzgvgEdmVTQEDAFDYCEgYAQ806ek2rMb9BVOZs1UuRXaTNAzxdHSGQKGgCFgCDgEjICn+SJMUnnzeVmGRB4h4FLWcfadqC6X4u2vIWAIGAKGgCEwGQEj4MmIHPve14BZWawEPImhj53dYg0BQ8AQMAQMAUXACHiab8Ikfh3XgEsEPE1+izYEDAFDwBAwBKZCwAh4KlSOHuZrwD5wExjaTNBHh85iDAFDwBAwBMoR8HmkPND84wjkHacGPICSUV/2BCkw/pvn6EFngsYMLSPAbhkSm1G62/HM5jMEDAFDwBAwBI6CwEleB3yUWlVQcCBU2uA576WC3phMwvLikTiHAIOdEG4w795iRBPOh4SodWy4gtpgVTEEDAFDwBCoPAQcd1RetSqkRuUW5YAXyntOA84HQm5NksOOMDiZK3+Eqs0ZAoaAIWAIGAIzQcAIeBqUyhf7klRHfHWry2lyWrQhYAgYAoaAIXB0BIyAj46Ni4GA5SRgd54SAToL2gh4GtQs2hAwBAwBQ2A6BIyAp0OoFI/VWUZ53UYcRsAlVOyvIWAIGAKGwBwRMAKeHjjd+krTQcA4PeNh+pyWwhAwBAwBQ8AQOAoCRsBHAeYowaoBH8+pSkcRbMGGgCFgCBgCpxcCRsBzed5GwHNBzfIYAoaAIWAIlCFgBFwGxlG8wYCcfJTL5QBrcHA0Ho+bCfooUFmwIWAIGAKGwEwRMAKeKVLl6WwSVjka5jcEDAFDwBCYAwJGwNODJsuQ2N/KrQhmQhbOCHh61CyFIWAIGAKGwDERMAI+JjxlkUrAeTcN2gi4DBjzGgKGgCFgCMwFASPg6VFD5fUTKQHbGLAPiHkMAUPAEDAE5oaAHcYwPW6OgAvlGrAR8PSoWQpDwBAwBAyBYyJgGvAx4XGR5RowfpyZoKdHzVIYAoaAIWAIHBMB04CPBQ8HC5aszyGOAZbzjtgU2ssHA7IkiY0pc5wN7AXd+YMFUthJhMdC0+IMAUPAEDAEyhCoRA0YkmPRrVYym83iSafTXIeHh31/KpXSBCTGz1Vvk8kkHr1qyHFec9l8JBTOFUIZdxbh2NhIyMskIgUFjspJzQJhT3g54+UyejThcRZq2Q0BQ8AQMAROeQQqkYAZbcWNjo7Co2NjY8x7ikajPImamhquav6NxWKEDwwMkDISiXCFs0mvo7PslTG/T07P+oXkYfqglwujBEsBeUJ4U5CXBYKZIJ2Hkd1u0fNbvEkzBAwBQ8AQOOUQqDgT9MjICHQLpyYSCdAup1IoFj5WGiYKLqyvr8dDYHV1NdSr7Atzk7K2tna+Hpbj3aIwsUCXXgL4W1YEfjbMckzsTNJlUeY1BAwBQ8AQMAQmI1BOIZPjTso9VBoOy2tBJpMptzlDzPAr7IvBeXBwkATcovJioyaLVpX0xKINzy/7ivpb4lR/GVIpQEqGocVJkONgd2cXQ8AQMAQMAUPgGAhUnAZMXdFf4WCUYBy3+KE9WHZoaAgCxviMY1QYRVn1Y9KTTOlZm4pyDA2r/zivKkeHmCFaIeB8QVVtClDTtBiduZESi1x8nIVadkPAEDAEDIFTHoGK04AVcczIOvEK0mXQV8d90Wv9uVewLzqxJlblWHVTDdGpW8f/8IRxAwF3LQrL57PcR4IhBc6HT1Rkd2aDTYQ+fthNgiFgCBgCpwMCPoNUSmOxKqPyMgAMxUK3H/jAB2688UYIuKOjo7u7G5VXR4Kp7vvf//5zzz0XbfjKK68kl5I01MuQsKrO894kSJZJzsy2Cgcm8KwwNFEQMCbo4vzoeS/cBBoChoAhYAicUghUnAlarcrwKIQKuba1tcGyZ5/9/7d3J0B6FeUagJNAXLhXFFBUQCKgCGhExSiLGBZFFAERFHfKHRcQQUVU3CruoKCllgSQQhZBQUFFRYOIGyqoYBAXVMCA0bhVcet6ZUnuM3nh1E8mM/9kJvnPmcl3aupMnz69fP321/32191/n21OPfXU+9///rA3/ZtpYffDDjvskksuueGGG8SyIxpn3/ve97Z4vFqrCL1ONwU9xL5DBLt0+rKl60xfvii8jHl85whGoKErgeKueyFQCBQChUAhMDICrRFw7zItSxd3IlS8y/xFpdneTOxjjz2W5/z589nEHNjXVLPZaYx74okn4tqbb7554cKFQooiTW9Dz3yyUsvBaI593PjwHOO1zoyhKeh7+vHvtGlWpG/99/8uu+3W+/7XeusMxV8+8dws/GJf5m9x8BiRrWCFQCFQCKzdCLRGwGgyq7axdHFn9l6FjFEsH4yLmFXQJptswj+2r/v6669vnpnDW2axFMLcJqJZwLjZNmmOTEQjaYGlJs1FixatanX7FuHtS5etO2MGxh2aZ2Ze33ErGh4iYNPRy+k2nDtkKa9q6hW+ECgECoFCYG1FoM01YMSJdDEr8PFxpo5NO+PO0LCdz0hUMGYuy1gY+63y2yQs6xX3TTfdhMjxq0SEST16FXb/xz/+MW/evE033VSyG2644dy5c1e1oq32Wtddbtuaf552r5kzNt7wvuvdw9FXS1EzGl5uCt+VajHwXUjU/0KgECgECoHREWiTgNHqe9/7XrurMKsL72LcuGfNmnXllVcSnWlrRpoFnGIIIBh3gpmXxrUbbLCBOw5294qlKwzG5Ua6tnEtXrwY0y9ZsuSiiy5KOmO841OLvjNnLFtn2h1Lb/8Prt16yy323G3unO1nD5175cdOy9eGi3bHiGcFKwQKgUKgEGgQaG0KmgRo9eijj95///39uhezsm7RZA66Moc8e/ZsBq5HJIo7m5nknJBlthkHm4JmCv/1r38VkY9HHCwkBz7maZqaWczNjLZIvMMOOzQlH5tj6W23/2cm4xvlL70DAW+71cYbbL7xfRH97f9hAUskQ5i7ONgsdZtjmrEVqkIVAoVAIVAItI9AawSMbnEngtx+++1juSJODqzJhL3f/e4HGzwahPhnzjmTzCaWsXJeiYVfpYPCxeXJ4Y6eMwstirfcprVzhFYijvF++x233WPdIU5dd2i9d+n0aTP+e2amnVnAQ3/NRui7OHiMCVewQqAQKAQKgbUagdYIODRpophtqgayw5kDcZpAdjmLgxvX3njjjddddx0GvfzyyzfaaKNtt92Wv5A2P4tlDdg+LK+4/SCYf7hWCnjXxcclFz44OI9jv693TzPeQ5budDR8+213TL+n+ehb/mfa+vdi7Nqh1ZvS0CatugqBQqAQKAQKgbEg4Beud+OQscRZLWGYuQ1BZq5YsjxZvWgyK7h2Lx966KFnnHGGV2jVKwEWLFiwxx57eNx9990vu+wyZBwLmOOaa67ZeuutI16SSkRuBjS35WS2NTvYPHa4WToZASTWsDtOHbLJl91+x7oWlZetc+vSdf9vnWmGLevd8e9py25jD5vdTizfI1zuuPNxWFLlUQgUAoVAITBOBBqaaDptPbmFxVXpz8eZ9ZqL1hoBr7kiNSmvpgq7m127bNoM09wM8HWGFoCNXWbWb48awMtRCBQChcAaQmA19edrSLpxJtvaFPQ45W0h2t0sWtR7J2TTC7oWKqOyLAQKgUJgyiBwN3aZMqWqghQChUAhUAgUAh1HoAi44xVU4hUChUAhUAhMTQSKgKdmvVapCoFCoBAoBDqOQBFwxyuoxCsECoFCoBCYmggUAU/Neq1SFQKFQCFQCHQcgSLgjldQiVcIFAKFQCEwNRGYsgTc/GiMozlqI0do3ec+93E0h19zq1IO99FPI8n3l5pgDp1u3BxJh8M1ejoJM/h7yT94zJsce1WiUZV4rqBITTU1cbvgmOzyj4Rh6sJxe6mFnJHnNL2RwnfNfy2UXzeuM6eQ6c9VlmOG06UHDccSN02sa/U1kjxTloAb0lVhLuVXeS7+Hh1LmQA5IWuUM6JFyfchHIqZ2k2U3ppO+rJoHCPBPXj/kn/wmPfm2KhE4/B2BUWiWjypmcrqjdsFdyN245hc8o+EoeaPfZ2Il+bs6D2dQI6aHylKp/zXQvlpYK7eiuCTnjyfElCDbKqYVb3BOuuesqdJZGQEdw79nYMn9W6prZ/85CdOrNTwnEzpeEttj3skDvbRCB9+EFc1u//tb39Tu86zVN8Zf6UzzcGWAjT5dqTKS/52K4LKNbpBElrEx+Dd90X+9a9/UT8f00xnKhgmzhnp7crcm/tkl7+3LL1ux9w6xRDgGqy2rxbWX39931ULH/eG7KZ7bZM/3Tht5NBS0oi0I4+qjE9IVw9sMsMcZzdrbSVSKcnUvlSJSxnVUFh2s802a4DQA3JnDNV49jqaWQ6e6Ul9+6EJoPrj5mjczdsuOEr+1muhVzd6lSSKFKUipFcqq3Vphwsw2eUfXiI+BkDQDt1i4pWG6bLn2ix/byOCwxVXXGEyo2GxW265pXF33zGVz4Jeof2oDCOm66+/npHBhDX7pNrYr2zETDKvED6PlojUsSj4W3Td5bXXXvuEJzzhL3/5C/LWhqUgZRROLbh7lWOlCQ7Ys+QfMOArZBfdcI9u0BNaRJce+MAHmonxaS+jQ1pEl+ihaZWuWWCTXf4VqqN5ZOxuueWWegPDcW4WsKYNf+VtwnTZsRbKr2pcGQ7G7c6mikHF8NWU8rX4LlfcCrJNWQJOVa1Q2jyqJy1NP6g3TIWpvJjCw8Orb7M9pqklKAqHuGL985//1FfGZEnfKqQww1No16fkbxd/uUcx6EYmWmiRUZEe3/jP2I7u0SJhOGxN6KYKkco1SeVfqQIYA2m/qYK0YqtL5iQUc6Xhu+ZZ8qdG9Mag0I7SRWtH/FXrZGHiLk55rRZdX95j3Nll9CZoxGSxJ/N++kH1p/JcqbnekHGnQabrEcv8Bj7GuN42UTjizn14Ii36lPwtgt9k3asYcVMhYziM27tepbJ6QzbRW3f0SjUZ5R8OoP0f+gE9tUadLR3YV6WkpQ8P3zWfkj81wnBqbCdDWNVnODVZ2FcRpuwu6FRP6Mdd04pbq1NPSFQAQ+BQaQKv9M5e0Ut6pa266y4zXy21JMiz173SRFr0LPlbBL/JuldDGjdFCvtGtaiZymqidMrRyEyqxj2J5B8OprafvVfYVydgCO5nYJOFfRVnbZa/0UA4MH/TajQimCBjZtXw6u6sz5QlYG3JldG6e+NWEyYrwqlxu3s7Ug1pmaxkl1EV5rZQx/GOd7xD12moRRVENKcti27+jpP8xCMksZWCQ9nf/va3G/hn5o2P4isXR9/hiDADviJSpmdlrb0pyDHHHKNQkT+lEyx1MWDxxpId2ahHCkJ+Yusm3v3udzd0q0Rxq6yxJDjIMNEZ9lbTRpSF8qsCYqsXFwfwFaGD8lOPXsWw8xx6CqW1fuITn1Auj4qm+x5lI8ggAR+el1m3eIKa/nCTXy189KMfjfzKyJ/8+T3b8BQG4JNmKKNetD2SOblHcrBHo7SCefPmhSzhryDk95jovbVGr5rEk5Syu+LWlNIPUML4NI48dvzexWXLTkFGY3AV0qIEHGSjEDTm73//uzmr6IEWousx/mJYN9TeqVJEGL1MtFNjyLwNdWcH2GJGibldTT/bEfmhrQqYKeThhrCGGtjVCGm5iR16E8DoqiOSN2JAGLxBnoQEjiIJoMehNhzKSPIOEpgOFLbRar2kDcM0HwFHfxpFEoz8ndV/sNOW6AZ3uuwIH8uJInlUNR2sgigS3iJ2ND9DOphTHkOKpnWkXI3iDdKRBpgOpBESpCRMz9l0PqQSGOBRJ9XBsdFGG/FvqoZbUqIISdkGWZAB5zWi5TdgOTqbne4+at3MbBhm0p4HPOAB9Az1RkV0qdpDB9mXTmu6lhshHA6g7uk9NQxF0KWmgNS9g7VAtvw0No1Ta0xFpFUrWkoBfy22g+xLPax6BPlMM8BcWYgNbQJTGyWiZrr+DlYBCYn65z//mbTpCvWV0R/KHwf5g7wOt2sqBF7y0yLXkiVLiMehUtQF4emPqtGc+fPpIPtG28lJbVwQ1papOneGbrnTKCVtEXzygFEz5CCzy2PYl/AEg3MkNErzVhH0PIqjOjSQ4M8dB3/paPhRuaTQYunWXNZlAY8J2/T+9IAO0SSPmisVydiTumjMXnWQAJriRch0/eRMG/ZWoVwKpUShuiZKFxwZOKdB6h+JqvdMO3ePhHrY+KuFtOEuSN7IoLsharqnxpNDQUiuUOk99VZNiXqDtetuDCxiAFlFUJLYLuRXqKaCFESLaFfaleZOWiPjjBWoPYEVIfofk92QGhl0EHzFSbPtLRediajUhn+vwjevesMPzC13IjV9IGzN6zBUQE1z0kNyEzgy63AEjltc4Q1De6VtGrVkOzg26hV13O6ygPtARwmEyNiNElARnQ518TMS2mN20Vt65u5Ra+mT3MBf03JK754OiLqTUx+k9yRLNBv7KmYH2ZeEZAtmaYG6+DRafRALLK80XeyVgVF8unMHNdkIHxXySDaSUyGKlEKpFOArhZrqjuSRxBAzTYCqk5acLDB0pSDkFyZvaRflb3ENciTcQE1a4vmVkTAQjp4H6kxZ0ZxQWkzkkZJqxT/NVtZGQkYSHNF8LZfauOiVMqYWeLYipExlTTBtk7vBNuyrzcbHWxeZIyeZuYV3poJShH21C/7u/Omb8N0c1RFvtVxlAfeBsbELFy9e/KAHPUjvQ3soVn41qMdxUKUk9J76I+rSJ7mWXtNvsulD9TgUOnrPMiMOenCPodMUpyUxV5Kt1mh8Y7ijf9fCXQLxDHVpqErBrZ8ypFALHRxGkJbY7iuoB+H5UzAl8srjCgFWAkfbXnpS3X3mDCN/JOLZ2bU6i9amzalHVIW2pFGTOYBTHtSLADq4hERtIKzBNjzUwN6LOc1vV/jGUicenAmsP0w7TVPlpjw6T8MdvShp9TyKIGQkN6TzKndFlqCkVE2afNuKv6byLwu4D7I6dKpDGzLb/KlPfeppT3satXjqU5/6zW9+E/uGxugQzz5ptfH6q1/96oEHHrj99ttrwBdeeKHGkIbx/Oc/n/CIjb+u82Uve5k+KIOJNsQcMc/TTz8d1IY++sqnP/3pHgXVJrHyYYcdRvItttjiiCOO+OUvf6lcHWRf0maqlvw2z2+88cYHH3xwSvuMZzwD+JtuuqmuH0Mce+yx+qMRgWjvxY9//ONDDjmEbpB29uzZN9xwQ2QxqjvyyCOpEPlf9apXfe9732tPxhFzBumOO+5IclsmjRvcNQFbuDVq7YL+aNd8aJGfBmQqa8S02nhBeYjnxK6jjjrKuWmU/ClPecoPf/hDshDeSEIVbL755qhrv/32U1NtyDiUZ3o/9ElgzZC2f/3rX3/5y1++1VZbaa1f+MIXaIsw5DTWP+OMMxxfpc984Qtf+Nvf/lZ0vahXj3jEI8TNaENNzZ8/XzXl7VAeU/IyKqlrFAQM2fKWKpx77rn046STTrr66qvf+MY3GsGZPPGW9lA7jtxHSW3wrzSDd73rXRoA7dVFZnxKjJe85CX77rvvddddZzTKmtfCeWo/g5dw9BwNIL74xS+S85prrnnTm96EqK688kpRtG1f1Ljgggt+97vf6Zj0Smph9KRaeauLlC8a0GnqX3T0r3/96/lQld133x2xLVq0CP66IYZaKxKOnqntV4973OOe+9zn6txvuumm73znO45ipUWaw/HHH29gdNZZZ/3pT3/abbfdHvnIR5ojHT21Vt6CVzslPCXXHPDBt7/9bZI4UJYWwd+lCOaHWhGvb6Za5Utf+tKHPexh2oLqeMMb3vDgBz+YzCKecMIJqM7A2gB0n3320SL6praGAjRdRzpM6kFVjj766PPPP9/oh4TJV1349ZcqUBEaMmNmm2228SrRnc/6oQ996I9//CNF+v3vf58WnaWZNSR268kOzdfXNToC0QA95p577om3EphyGHieeOKJ6XRM3vKndqMn1crbcIDxpgGEMX7kPOiggxjBLPuIFIdRaisSjpJpBIO2Tl8ww2QDIGgb/SiO1s5fWzW8+NGPfjRKOi2+ojmAfchDHvK1r33NoIexGD0xaHjFK15BsCgPRwcHcG9729tYkFGhXvXmpv860/CWatLP6m1bxHmlWYcPGsU2a2IYlOLstdder3zlK3vxb0bbK02qFU+Sg5rhawwdAQzU5syZo148qoIPfvCDaRpmsAT73Oc+t4KcoifACv6r97FXN3QyvUgaIpx99tmyo+f8H/3oR5vsiUhG/+z4U045JcLMmjXruOOO4/Y2CQqfylq90nYntZqC7j+vkVVSg+gFCxYwWTBu4uy9997nnXceSqAlJrI0FZMn/ZMbbAiqTEJ5GkY0k7TkNPOpSWMFhsvhhx9uBKoUHZxFN/9mzkob1mZ0LsbOu+yyy1VXXYWSd911V48KZbaKKWbEPVhox5RbOtAXvehFr371qzEuI8yeIPjjLYzFpjG1+8xnPvMtb3kLI5jPmBIdYCBd50477fS6172OzEzhk08+OfO0uvsbb7yR+aIDJQ7tevKTn3zJJZcMULQxZUU9hKPYBjdaLlPMuFOLyLj5K1/5SoO/qRTqNKZEBxiI5LAlvH0nGoKcdUeaww9+8AMCqwIT6RovfwXZeeedTRRpGtqy9sJTRBUXEDyuuUsu8sKasshKELEJlgF0fKxW2Elj+lAVEImQFi8e85jHkFksLYLkn/zkJzUQBbFeI64aUVk6sTUnebspd44w2oVjeO5UihLQAJ0jI9Lkjx6HomgGmsSvfvUrmkdR3AUTGGEMT6RFH4pOKp2mRuvi1oxJblWYvYJ9zSgy67///e//7Gc/E0yTaFHa4Vkb//rwi5lbYsP8y1/+slH/r3/9a7WAdNVLmqjJN1SnwWe0MTydtnxgjsMU4TnPeY7O1Bd4dP1qwXqkOUO9DMfPf/7zD3/4w+x447m25BwpX0R75plnmipcuHChrpP5rhaMJ3T9ouBmHb2moRQPfehD83PhkZJq0V9fr4UaolnANoYmiV7elgLrvhy/+MUv4G/mMys1Lco5PGtdDRUi6jvf+c5zzjlHV2Pix3e0NtlkE01DeKyG3pCflk671IsWobBJiqaJPjzZNeHTS/PctJ0kMiJzxvdqgTrx0ZwJH1Zm9Zr/56l3taihOPZJGGFrGlq3UivLwIqwJmAZPc0i4NHxGdoKL4QuhsOYTjdkxVEfRIFQAhWhXlRNGIrisU9yA38dyak1JdYMlAL7ktmqElksyWjbOlZNwiKfqa2BC9gnQ60U0RolsB2/+93vojFVoBnHDtM9CaC1K4jm3TX2VTZjBdsF7NczRPCYvfRRKot55NdJMQJUygEHHGA8t9122/VBZLCv4Wyslr1vNs7YNWPOEwHTfxMPf/jDH2zLSrkwcWc7yhDwqaeeauObgULoSr00+CvLs5/9bGqmdQ8W4D65URUa4uBSBzca/et5nvjEJ9pvZbiWqbjs8da0NYSbb77ZJoloV2+6Gaf2+qx2t+Gv2tcSUT4BdDuuJhey6R69dektqQ09B74AFIyPGhHLVJDxEJ+0AuxrhJQpliapKeaoKej+FUq3KFMGldkLzSf9Pp0L+9plg9Uy4uuf4mBDZFhghof2U3SZR2YNWL+j3zQdrdnYx9HBAQRpQY2DsdRrX/taJvsHPvABM5+gVqIURLm4DTL0s4OFtn9u7Cqdo8nbKIzZNmvY1Ang/A3p0l0+6UlPIrxljv4pDjYEA8UasDxpOFUxRCNzdMaSXhQeB6ggM6JpHYMVsE9uRBUCbxncGAZlBxwfaCsIDgj+1jXUSAct+Mj/8Ic/3OQ5gYH8jW98g8wGQwpFqRiOBkPuCqX9Mh8VRAeVtpzSDaBfytgLqk1esKUzhCEYeXSPYV8dacJ4VAS9kP5HWxAM+wpvEs5I+lGPepTxBH/pBAQBpt5VBNy/TqmOQHTdGp5mYIBG26jFZz/7WQaZV3Q9w7RuKgp1TzNAt5ReYyAnxkqj9cq8HNVXhDTX/ogMNoT5WxlqqyQkJ2N37ty5mvqll15KYLXDylQppqYzSBqsdH1yw6wWei+77DKT/CbWEBUOMOVAcr2MQYPqcLG9JKSC+iQ38NeYybS/bIHv+s1vfkP5DSDYkaS1rcyQjtWlCDbBWQYeuIB9MqTqGXTarU1O1REmoCr0P1s3CI+eJWQZtU9yA39NTuMbeiJnTQC/KhEO1gSYwmb+P/3pT+uatGKjN2qmCqiWJh8DVHsX3jUAwY0PZCpHgAOZelOYdCnuGSvTf03Y7xoyegb7FVdcYYSHdHtHDKQ1l66+NHNxU5YBFKGFLFI9dR8JgYy/8tbv0rQEW4F0Q3Yhqi32jdYb40AY6jJSOm35oyuLu6xbLdmUDgvM/A+BzWhRfb/N+Na3vmXpyM/1SBjjpi1RV5qvRUejfj9DMkNuzlZTvOiiiwz57R8mtklpdeEXGixj0fmvNJHuePq5TnY+GzT4+bLfJuk3jeSYyLrU7sjZSEJz9KQ0Ry2YwsUB+Fhf6fI1Hl2/R2vYdhSbqbaptYnYEUeaJA6z+Tk7hyPYcPxRV0dk7hWD/FolPUe6Gqy7qSDaIowZCMcS6IVsHWC7W6dXRqPVJnrKzojEiI3nmnPIKImnGXo0ICA5cqUqFtoN9AXwY0K9jZ8h+TFYfihMeP6XX365yS3r9LTIr0tonWUy/kqBzpPy1LvXz5D61ykOxrIJ9/73vz+TP9aKbFvVDcXfCLR/Qm2EyG/zm6E9AvObTi3E8Nk+Dq3X7NZrXvMaTNyGdP3ztHmYnIbVBvv777//xRdfnLpwx2TGQ0bWNlWiMWmlx+mf6ABDNIMznYh+0KEimQW1gcDvUC39ssPMqFuP1O8MpqNcpdKbWtCNWsDWIVqZ+8xnPpPeMHebt/120ysLqH5lvkopDyZwGqbunqobTCRThcJeptMZ8fDXlh1noUYGI9Iq5ZIe5rTTTrNLg6g6H+M25mNURemQFktR6fbYYw+DUYk3fVHG040GrlK+4wicfLXBOOwwN+jX4bgTz+VHX2m8b33rW00787cBJT/rF+WnP/0pU1iLEFLTsNVANyW1htfHIVL3o9RRlMtVo26FQCFQCBQChcBgEag14MHiXbkVAoVAIVAIFALLESgCLkUoBAqBQqAQKARaQKAIuAXQK8tCoBAoBAqBQqAIuHSgECgECoFCoBBoAYEi4BZArywLgUKgECgECoEi4NKBQqAQKAQKgUKgBQSKgFsAvbIsBAqBQqAQKASKgEsHCoEWEHBsgm/8JWOHKnA4cMDdqS/uDhDIK3cHdLg7lMDdCRKNf87iz2MTS0RHZMTTGQ4Ol4jbeQhOxIzbXRinNDSPie7RuWnuIuacDe5GEkcl5FXj47GuQqAQmAgCRcATQa/iFgLjRODzn/+88/kcDORYPgcKYl/nSTkx0VmPUkS34VEs67Qv5wE59JF/jrx3thG3M3UTEpUmlgOSEK2jwXzw3JeeHQjs7CSBk9rjH/944cO1iNwrj/mqoOhJ08lQGQ1IRFK4P8MCKTu3CPVKsyF40esqBAqBiSBw5yFhE0mi4hYChcCqIpBT9cViWWI1F7czBVmfuDCfFUJ7Ydkc5of5OHiiajTpeE7nKeaQUTSJMgXmcDkE36frJIiww9ncCYlrsX7cMvIFC68wtCjSl4hk0bMsCIb7vW1y4SaeBBnWHfzwEfHqKgQmFwJlAU+u+ipppwgCDoV2BPeBBx7oa+Q+s4gvWZy4ExM70XfnnXf2+NjHPtbxuY65VmbM5wNtxxxzjO8iYE3HX7NHP/7xjzsiGGs6O9cHzJnLiNNXiXxF1cm6UvB4yimnYFC868tFmT12JLLveskIib74xS/Gu/mCjZPxn/e85zne2VcufN/izW9+MyZmXmNrNjqTWjDugw8+uNh3imhhFaNtBIqA266Byn+tRIAJi1MRGwY9/vjjfVCIWYkyfRVj7733Rs8+a2PVlv/73vc+Fiq+FOBLX/oSCuR/3HHHMYUZo6ayfdjHB9t9lci5/LCcPXv2oYce6r548WKpoVhRWL2ZxPaN1UMOOcSR9z4+4wuJyNgnNU1HI1dZnHPOOTjb96YchX/mmWeefvrpXgljudoHanzNxtH5prKltlZWWhW6EFjNCNQU9GoGtJIrBMaCAE7Nt1FZpciYfcnWxHY+FLPPPvu85z3viTWMaJ/1rGd5xM2+O8QwPfzwwxsDlEEsLzPJBx10kK9MomePvtSbAMLn0zQ8zU7no28LFixgYftGlo/E8Wcr+zoWVs6nsVjSRx11lOloLHv22WcjaZ+EQ+QM6AMOOIAMpGIZGzqIW1chUAhMEIEi4AkCWNELgfEgYHnV3DLGNQNstZUBykI15WtXFKsX1aFnlOwjjCaWXWiVBezDhcjVI/pksPqwuZ1cvvGMEe2ukghRuFnGDFkcL02JC89cFlGAq6++2vx2vn8uhZ122gk3+y46eQwFhBFRCl75YJxvuJIQK/vQLDN6v/3223XXXU1BY+jxlLniFAKFwN0RqCnou+NRT4XAQBBArtlaxUjFsoxgF15kbjJnmaS+ZM5avfTSS2OeZocUQ5kNijLF8nl2s8d77bUXO9XMsJlqdMvfJSnB0DA3BhU+3MwTH1szFiClNBeNnhGqYHxYuqjXJTs+HDxRMiY+99xz7RFjkc+dO9dc9EBAqkwKgSmOQFnAU7yCq3jdRAD7MnPJhuRYnJgSL2LHHXbYwWSyPVmu+ONRtqnALGA8GlL0yjYrZrHVX7SKI23mYvImWdzJIObGo7IQ2CURwezkmj9/vkVcYdwvvvhiDnlxC5DEzWmjZCJJUPSZM2d6a1naNW/ePDS/cOHCWbNmdRPYkqoQmEQIlAU8iSqrRJ06CJhtxqzKY8uxfcsYzl4qVOcnvKagjzjiCMu05qgvvPDCI488En0KKTxaTSxU6odM119//QUXXCDiWWedddppp7F0BWNbm75mSTOL8zPf0KqI+NgEsrVhk8nXXnst09kaMLdt1d5Kk2WMhtnB5EH5ZqE92t510kknXXXVVXZjcbCDhZ86NVElKQTaQ6AIuD3sK+e1GAFrrpkW/shHPsKgNAtt3zK223bbbc8//3z7pJib+M/bzTbbDC8iY1apOWruJUuWQM5PmHCzvVEveMELTj75ZPuW0TN/YUxi77nnnl5ZM/7Yxz4mSlaUETz79bzzzpPddtttt++++86ZM+eEE04QyxlY7G9U7fANwfCxWIsWLULD+BjN77LLLjvuuKO4doQRVZS6CoFCYIIITNfmJ5hERS8ECoFVRYCJieGyHIvwRM+eKe0xU9N8ECrys3vZFLFHRjNyTUZptkIyjmPg5q27dNi4/BF8E4BBjIMT19yy2Wl0m3wz4ewVn8xgk02akrInizs2d+JGpKQQn7oXAoXAuBEoAh43dBWxEJgoAjgvNMyBjCWH9pAfauTvQsA8s2MrC8BCCoAXrd022WcZ2KtwanZshSwTXWCbrfAx29eOaEQuNQGE5OPuEfui7TBuSB3R8pFm7pISBR+jf+Gb3MtRCBQC40OgWtH4cKtYhcBqQAC34TM2K/bFfFJEjcgS8/Fx2ZDFk8MdKaLkkKUwSBcvOq/DK8u37lKIZewuBeSNL/mHR60Q41qv3EOfUuMWQJrYl0MW5An7euTpUWByys4lTSxe7AucugqBiSNQFvDEMawUCoFVRgDnsWuzbSqR0Vt4NGcv4048h3rZtTgPF9oFbU5Y4Mw292YptcZcjh3MR1yJxIbOY2Mic/DxCtdmCjqGb5NmmDtxWcyWn8ngrVwMFzw2IctRCBQC40agLOBxQ1cRC4HxI4AdsS8iRGlSQXLYF+15dOQFkkN+wngUJuYp2ouBy/zlj7ATl0NI4Vm6kmKtihIjlSc3TwGyuyopiGI3FtLF5ZL1KJZgCSyMiC4WNk/U64qB7lH40DN3XYVAITARBMoCngh6FbcQKAQKgUKgEBgnAmUBjxO4ilYIFAKFQCFQCEwEgSLgiaBXcQuBQqAQKAQKgXEiUAQ8TuAqWiFQCBQChUAhMBEEioAngl7FLQQKgUKgECgExolAEfA4gatohUAhUAgUAoXARBAoAp4IehW3ECgECoFCoBAYJwJFwOMErqIVAoVAIVAIFAITQeD/AZMIX4iKlKUbAAAAAElFTkSuQmCC", + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from classiq.execution import VQESolverResult\n", + "\n", + "vqe_result = res[0].value\n", + "vqe_result.convergence_graph" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Retrieve and Display the Solutions\n", + "- Print them out\n", + "- Graph using a histogram\n", + "- Show Donor - Recipients in Network Graph" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Print out the top 10 solutions with the highest cost or objective" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "\u001b[1m\u001b[4mTop 10 Solutions\u001b[0m\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
probabilitycostsolutioncount
500.0048832.35[1, 0, 0, 0, 1, 0, 0, 0, 1]10
450.0048832.35[1, 0, 0, 0, 0, 1, 0, 1, 0]10
410.0053712.20[0, 0, 1, 1, 0, 0, 0, 1, 0]11
1200.0029302.20[0, 1, 0, 1, 0, 0, 0, 0, 1]6
310.0063482.20[0, 1, 0, 0, 0, 1, 1, 0, 0]13
1310.0029302.20[0, 0, 1, 0, 1, 0, 1, 0, 0]6
190.0078121.70[1, 0, 0, 0, 0, 0, 0, 1, 0]16
630.0043951.65[1, 0, 0, 0, 1, 0, 0, 0, 0]9
360.0058591.60[0, 0, 0, 1, 0, 0, 0, 1, 0]12
800.0039061.60[1, 0, 0, 0, 0, 0, 0, 0, 1]8
\n", + "
" + ], + "text/plain": [ + " probability cost solution count\n", + "50 0.004883 2.35 [1, 0, 0, 0, 1, 0, 0, 0, 1] 10\n", + "45 0.004883 2.35 [1, 0, 0, 0, 0, 1, 0, 1, 0] 10\n", + "41 0.005371 2.20 [0, 0, 1, 1, 0, 0, 0, 1, 0] 11\n", + "120 0.002930 2.20 [0, 1, 0, 1, 0, 0, 0, 0, 1] 6\n", + "31 0.006348 2.20 [0, 1, 0, 0, 0, 1, 1, 0, 0] 13\n", + "131 0.002930 2.20 [0, 0, 1, 0, 1, 0, 1, 0, 0] 6\n", + "19 0.007812 1.70 [1, 0, 0, 0, 0, 0, 0, 1, 0] 16\n", + "63 0.004395 1.65 [1, 0, 0, 0, 1, 0, 0, 0, 0] 9\n", + "36 0.005859 1.60 [0, 0, 0, 1, 0, 0, 0, 1, 0] 12\n", + "80 0.003906 1.60 [1, 0, 0, 0, 0, 0, 0, 0, 1] 8" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "\n", + "from classiq.applications.combinatorial_optimization import (\n", + " get_optimization_solution_from_pyo,\n", + ")\n", + "\n", + "solution = get_optimization_solution_from_pyo(\n", + " model, vqe_result=vqe_result, penalty_energy=qaoa_config.penalty_energy\n", + ")\n", + "\n", + "optimization_result = pd.DataFrame.from_records(solution)\n", + "\n", + "print(\"\\n\\033[1m\\033[4mTop 10 Solutions\\033[0m\")\n", + "optimization_result.sort_values(by=\"cost\", ascending=False).head(10)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Histogram of Cost and Weighted by Probability" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlQAAAHRCAYAAACsDSffAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAABobElEQVR4nO3deVhUZf8/8PewODMoSAIKJK6AWEikAkmkorlvqIDrg6hJZZaaW1imlqWFyqOZPZkGavqY0mJfs9IKzQXBDbNcUxEU0kBZVBgE7t8f/uY8jDPDdkAGeL+ua65L7u18zpnD8PGc+9yjEEIIEBEREVGVmdV2AERERER1HRMqIiIiIpmYUBERERHJxISKiIiISCYmVEREREQyMaEiIiIikokJFREREZFMTKiIiIiIZGJCRURERCQTEyoT16ZNGygUCsTGxpbZrmfPnlAoFFi0aJFO+b59+6BQKNCzZ88ai5Fq15kzZxAUFITmzZvD3Nzc4HlQnrNnz+L111/H008/DTs7O1haWsLOzg7dunVDZGQkzp49WzPB15BffvkFCoUCtra2KC4uNthmyZIlUCgUUCgUOHjwoME2x44dg0KhgFKpRH5+fpXjCQ8Pr9DvcUXFxsZCoVAgPDy8WsZ7FLSfUfv27atwn+o+blWVkpIinSulX40bN0bHjh0xbdo0XLly5ZHFo/27kJKSUuPb0u57mzZtKt3XWJzG3te6eF6XxoSKKqSun+j11d27dzFo0CDs3LkTrVu3xtixYzFhwgR4e3tXqH9RURFmzpwJT09PREdHIzU1FT4+PggNDcUzzzyDK1euYNmyZfD09MSaNWtqdmcMqOofDn9/fzRq1Ag5OTk4efKkwTbx8fHSv439kde28fPzg1qtrlQMpkjOH0d6YOTIkZgwYQImTJgAf39/XL9+HR9//DG8vLxw4MCB2g6vXqor561FbQdANcvX1xdnz56FlZVVbYdCNeDo0aNISUmBv78/Dh06VOn+48ePx5dffgkbGxusWrUK//rXv2Bubi7VCyGwd+9eREZG4q+//qrO0GuUWq3GM888g99++w3x8fHo2rWrTn1hYSESEhLg6emJCxcuYN++fXjrrbf0xtEmWoGBgbLiWbp0Kd544w04OTnJGodq3/Lly3X+sGdkZGDgwIFITk7GhAkTcOHCBVhY8E8r8OBK8f379/H4449XqP3w4cPxzDPPoGnTpjUcWc3gFap6zsrKCh4eHmjVqlVth0I1IDU1FQDg5uZW6b6ff/45vvzyS1haWmLPnj0IDw/XSaYAQKFQoG/fvjhy5AhGjRpVLTE/KtokqPSVKK3ExETk5+ejf//+8PHxweHDh1FYWKjTpri4WLriIDehcnJygoeHR539Q0HGOTk5ITo6GgBw5coVHDt2rJYjMh3t27eHh4cHLC0tK9S+adOm8PDwqLP/8WBCVc+VNYfq+PHjGDVqFFq2bIlGjRrBxsYG7dq1w8iRI7Fz506pXZs2bTBx4kQAwMaNG3XmEDw87r1797Bs2TJ07twZ1tbWsLKywpNPPom33noLt2/fNhrnwYMH0b9/f9ja2qJJkybw8fHBpk2bAEDa1sNKl8fExKBbt25o2rSpzi2iq1ev4oMPPkCvXr3QqlUrKJVK2NraIiAgAJ9++ilKSkr0xi19ebmkpASrV6+Gl5cXrKys4OTkhJdeegm3bt0CAGg0Grz77rvw8PCAWq2Gs7Mzpk+fjrt37xp/U8rw008/YfDgwWjevDkaNWoEZ2dnjBo1Su9DWvu+TpgwAYD++1IeIQTee+89AMDLL78MPz+/MttbWlqiW7dueuVJSUkIDQ2Fs7MzGjVqhObNm2PIkCHYu3evwXE0Gg2ioqLQpUsXWFtbo1GjRnB0dISPjw/mzp0rHVftLearV68CANq2bauzfxWZh6NNgg4ePIiioiKdOm3/nj17okePHsjPz0diYqJOm+PHjyMvLw8qlUpv3y9cuIAXX3wR7du3h0qlQtOmTdG9e3d88cUXBmMpay5QUVERVqxYAU9PT6hUKjRv3hwhISE4c+ZMhW613717F5GRkXB1dYVSqYSjoyMmTJiA69ev68XQtm1bAA9+Lx6eD/Sw48ePY9y4cdLvTbNmzdCvXz/s3r3baCxpaWmYNGkSnJycoFKp4ObmhjfffFPW/DOtU6dOYcSIEXBwcIBarYaXlxdWrVqlN0duwoQJUCgUWLp0qdGxtm/fDoVCAV9fX9lxAUCXLl2kf2s/e0p/9t67dw9vv/02OnbsCCsrK71bV9u2bUPv3r3RrFkzKJVKtG7dGpMmTcKFCxfK3fY333yDgIAA2NjYwNraGj179jT6HlXl87C0oqIifPjhh3jyySehVqthb2+P0NBQnDt3zmD7yt6yN3S+V+S8rY333CBBJq1169YCgIiJiSmzXY8ePQQAsXDhQp3y+Ph4AUD06NFDp/znn38WlpaWAoB46qmnRHBwsBg+fLjw9fUVSqVSDBs2TGo7a9Ys8eyzzwoAon379mLChAnSa+nSpVK7rKws4e3tLQAIGxsbMXToUDFy5Ehhb28vAIi2bduKK1eu6MX+3//+V5iZmQkAolOnTmLMmDGie/fuwszMTMybN08AEIZOVW35tGnThJmZmQgICBBjxowRfn5+IiUlRQghxLvvvittu3fv3mL06NGiR48eolGjRgKAGDFihCgpKdEZ98qVKwKAaN26tRgzZoxQq9Wif//+IigoSDRv3lwAEE8//bS4c+eOCAgIkPZ18ODBomnTpgKAGDBgQJnvlyFvvfWWACAUCoV49tlnxZgxY6TjaW5uLjZs2CC1PXv2rJgwYYLR96U8p06dko7f8ePHKx2rEEKsW7dOet+efvppMWbMGOHv7y+Nu2jRIp32xcXFonfv3tL5MWDAADFmzBjx/PPPS+f5yZMnhRBCHDhwQEyYMEE0btxYABAjR47U2b+zZ8+WG19BQYFQqVQCgDhy5IhOXa9evYS5ubnIzs4WP/30kwAgFi9erNNm2bJlAoAIDAzUKd++fbs0roeHhxg+fLjo1auXFOvEiRP1YpkwYYLB3+Pi4mIxePBgAUA0atRI9O3bV4waNUq0a9dOWFlZiWnTpgkAeu9pTEyMACCCgoKEl5eXsLW1FUOGDBHDhg2TztHWrVuL7Oxsqc9nn30mRo4cKQCIxo0b6xzPh8f/97//Lb233t7eIjg4WAQEBEi/Nw8fKyEenJPabTs5OYmQkBAxcOBAoVarRbdu3US3bt0EABEfH2/kHdOnPW4vv/yyUKlUok2bNmLUqFGib9++UizBwcE6v8PHjx8XAESrVq1EUVGRwXG7d+8uAIiNGzdWKA7tZwIAg59h165dk+q//vprIcT/Pnv9/PyEj4+PaNy4sRgwYIAYNWqUeP7554UQQpSUlIiwsDABQFhYWIhevXqJ0aNHC3d3dwFAWFlZiR9++EFve9rfl5kzZwoAomvXrmLMmDHC19dXimP16tV6/eR+Ho4YMUJYWlqK559/XowePVq0a9dOABBNmjQRhw8fNhrnw8fM2O+D9rwufT5W5Lytife8KphQmbiaSqgCAwMFAPHFF1/ojZWdnS0SEhJ0ygyd6A8bNWqU9AGSmZkplefl5YkBAwYIAMLf31+nz/Xr10WTJk0EALFq1Sqduv3790t/pMpKqGxsbPTi1UpKShKnT5/WK79+/bp46qmnBACxfft2nbrSH57t27eXkjMhhMjMzBRubm5S8ufr66uzr5cvXxaPPfaYACAOHjxo9Fg97IcffhAAhEqlEnv27NGpW79+vQAgLC0txR9//KFTV5H3xZANGzZIf8Tv379fqb5CCPH7778LCwsLoVAoxKZNm3Tqdu/eLX1Al96X/fv3S8lXbm6u3phHjx7VOZZCGP9ArqhevXoJADqJv0ajEWq1WnTp0kUI8eD8tLCw0Euc+vfvLwCId955R2e/lUqlUKlU4quvvtJpn5KSIjp16mTwQ9vYH5BVq1ZJCci5c+ek8qKiIjF9+nTpPDSWUAEQ/fr1Ezk5OVLdrVu3pET8/fff1+lX+o+jMT/++KNQKBTC3t5e7N+/X6fu999/Fy1bthQAxL59+3TqfHx8BAARGhoq8vPzpfKrV6+K9u3bS/FWJaECIKZOnapzrv7xxx/CwcFBABD/+c9/dPpp/6OhTW5KO336tAAgHBwcREFBQYXiKC+hWrNmjVR/+fJlIcT/PnsBCC8vL5GRkaHX75NPPhEAhL29vfSfCSEeJFoLFy4UAIStra24efOmTj/t74VCodD7DN+2bZtQKBTCwsJC77NP7uehvb29OHXqlFRXVFQkXn31Vemcevh4VkdCVTqGss7b6n7Pq4IJlYnTnpAVfVU0oXriiScEAHHr1q0KxVHeH+6rV68KMzMzoVAodH7htK5duyb9r/7QoUNS+TvvvCMAiG7duhkcd/bs2eUmVKX/4FWG9spESEiITnnpD5Dvv/9er9/KlSulDzNDH07aDxhD/4s3Rnvl5vXXXzdYr72KMWXKFJ3yqiZU2qsvjo6OleqnNXnyZOl/tIZor6z06dNHKtu+fbsAIF577bUKb0duQqX9H3nfvn2lMm1iN2vWLKnMz89PqFQq6cP2/v37UqJ/4MABqZ32Pw3Lly83uL2kpCQBQErWtIz9AdH+D//TTz/VG0uj0YjHH3+8zISqcePGIj09Xa/vtm3bBADRq1cvnfKK/GHy8/MTAERcXJzBeu37OHLkSKns4MGDUjwPJ8VCCPHNN9/ISqicnJx0kjStjz76SAAQbm5uBmPs3bu3Xp8XX3xRABCRkZEVjsNYQpWeni7Wrl0rnStDhw6V6konVL/99pvBcbWJpqGrSSUlJcLLy0sAEO+9955Onfb3IigoyOC42is6D39elKUin4f//ve/9foVFBRI5+mWLVsMxvkoEqrqfs+rgnOo6ohnn31WelTX0KtFixaVGk97H3ncuHEG55hU1m+//YaSkhI8/fTT8PLy0qt//PHH0a9fPwC6k4T3798vxWGIsfLSgoODy6zXaDT4v//7P7z99tt46aWXMHHiRISHh+PTTz8FAJw/f95gPwsLC/Tt21evXDsBvFWrVvD09DRan56eXm7swIN5Cdon9IzNlZk8eTIAwxOsa4N2DlJ58R44cECa49K5c2eYm5vj888/x8cff4yMjIwaj1M7j+rQoUO4f/8+gP/F3qNHD6ldjx49UFBQgCNHjgB4sP7UnTt3YGVlJf2ulJSU4IcffgAAoxP0u3btiiZNmuDkyZMoKCgoM7Zr167h8uXLAICxY8fq1Tdq1Kjcc7tr164GJ/B27NgRAPTmUZUnMzMTSUlJUKvVGDJkiME22nmThw8flsq0x7R///6ws7PT6zNs2DBZE/JDQ0OhUqn0yrVzCC9evKjz+zZ8+HC4uLjgl19+0Znfk5OTgy+++ALm5uZ4+eWXqxRL6fl8zs7OmDp1Ku7cuYPnn3/e4By55s2b47nnntMrv3btGi5duqSzH6UpFApp7qqx33tD/UqXG5prWNXPQ2PbUyqV0u9DZdYYq241+Z5XFJ/trCNeeOGFMiem9uzZEzdu3KjweEuXLsXvv/+OH374AT/88APUajU6d+6Mnj17Yty4cdIHckVpP7i1kwcNad++vU5b4MGHCgCj64tUZN2Rstpon07TPg1nSG5ursFyJycng48/N2nSBACMPjlpbW0NAOX+QdXKysqS2ho7foaOnRwODg4AgFu3bqG4uFjv6b7ylPd+a+MtKChAVlYWmjdvjvbt2yM6Ohpz5szBtGnTMG3aNLRu3RrdunXD4MGDERISgkaNGsnYK32+vr5o3Lgx7t69i6NHj8Lf3x/79u2DmZkZunfvLrXr0aMHPvzwQ+zbtw89evSQ/jA8++yzUkxZWVnSueLi4lLutrOyssp8XFx77tvb20vn1MPKO/+NnYM2NjYAKn4Oal25cgVCCOTn50OpVJbZ9p9//pH+rd0XY+eD9iGPU6dOVSoeLWPjWltbw87ODllZWbh27RqcnZ0BPPjP0NSpUxEZGYk1a9ZIa6ht3LgRd+/elf74VsXIkSPRpEkTKBQKqFQquLi4oHfv3kYf7DD2Hmp/h+zs7KT362Hl/d4bOy7acu37oiXn89DW1ha2traV2t6jVJPveYVjqNHRyWQ5Ojri2LFj2L9/P37++WccOnQIiYmJOHToEN5//30sXboU8+bNe2TxGHsyrSJPrBlbcPHevXsICgrCjRs3MHHiRLz88stwdXWFjY0NzM3NceHCBXTo0AFCCIP9zczKvoBbXr0p0z6VVFhYiFOnTqFz586PZLuvvvoqQkND8d133+HgwYM4ePAgtm3bhm3btmHhwoU4cOBAtT4ybWlpiWeffRZ79uxBfHw8unTpgiNHjsDb21vniklAQADMzc0RHx+PhQsXSlcESi+XUPoJKGNXBkorLyHRKuscL+/8r+5zULuPTZo0wciRI6t17Jr28O/xlClT8M4772DTpk1YunQpmjRpgrVr1wIApk2bVuXtPLwOVXlqc0HY0sdE7udhZbdXG2rqPa8oJlQNmPaRXu0l/IKCAsTGxuKVV17B/PnzERwcLP0PqTza/4lrb2EYoq0r/b/2xx9/HOfPnzf6WK2cr1b47bffcOPGDXTu3Bmff/65Xv3FixerPHZ1srOzg1KphEajweXLlw3eMjV07OTw8vJC27ZtceXKFWzcuLHSCdXjjz+OS5cu4fLlywZve2rjValUaNasmU5dixYtMGXKFEyZMgUAcO7cOUyaNAkJCQl44403sHHjxirulWGBgYFSQvXcc88hPz9f53Yf8OCKjre3N44cOYK8vDzpFmzphMre3h5qtRr5+flYvnw57O3tZcWlfS//+ecf3L17F40bN9Zr8yi+WqQ07f/gFQoFPv/88wonbNp9KSte7RIYVWHsa13y8vKQlZUFAGjZsqVOnZ2dHcaNG4f169dj06ZNcHd3x/nz5/HEE0+gV69eVY6lumiPmfbKp6GrVOX93l+5cgVPPfWUXrn2fSh9TOR+HmZnZyM7O9vgVSpD26sNtf2e193/YlO1U6lUeOmll+Dl5YWSkhL8/vvvUp32toexuVbdu3eHmZkZkpOTDV7Wz8jIwI8//ghA94+U9rbLf//7X4Pjbt26tWo7A0hrGhm7LWJszaBHzcLCAgEBAQBg9DvLtB+AcheY1FIoFJg/fz4A4JNPPkFSUlKZ7YuKiqT5RcD/5tGUF+9zzz1X7qrRHh4e0tXQ5ORknbryzruK0B6zw4cPY8+ePQD+F39pPXr0gEajwerVq3H37l00adJEZ4V1c3Nz9OnTB8CDNW3kcnFxka50GDr/CwsL8dVXX8neTmnlHU9nZ2d4eXkhLy9P+n2tCG2C+uOPP0q/d6V99913yM7OrnzA/9+OHTug0Wj0yjdv3gwAcHV1NZh0vPbaawCAjz/+WLoF9Morr1Q5jurUsmVL6T+shn6PhBBSubHfe+3+P0y7hl/p87w6Pg8Nba+wsBBffvml3vaqU2U+B2r1Pa/RKe8kW00tmxAVFSWuXr2qN87Zs2elpQpKr09U+pF3Y4wtm3Dnzh3pKbWHl01IS0sTVlZWAoBYs2aNTt3Bgwelp2cMnarGyrVOnDghAAhra2vx559/6tR9+umnQqFQGHxypLwnSowdU62qPHm3e/duATxYNuHnn382OF51LpugFRwcLIAHS0/ExsbqreFSUlIifvnlF+Hj4yOmT58ulZdeNmHz5s06fX766SehVCoFAPHTTz9J5b/88ov4/vvvRWFhod42XnjhBQFADBkyRKdOu7zHt99+W6X9E+LBE3vW1tYCgGjWrJkwMzMTt2/f1mu3c+dOqQ1geC2x48ePi0aNGgkrKysRGxsriouL9dqcPn1ab0kFY081aZ8YdXZ2FufPn5fKi4uLxeuvvy6d48ae8jP2vhs7hwsLC0WjRo2Eubm5yMrKMtj3u+++EwBE8+bNxXfffadXX1JSIo4cOaLz3gohROfOnQUAMXr0aJ1H01NTU6WlRlDFp/yAB+vNlT4/z5w5I1q0aCEAiI8//tjoGNqlM7TneV5eXoW3r1XesgmGlPc5IYTusgnJyclSeUlJifQEdHnLJvz3v//VqduxY4cwMzMTFhYWOk9cy/08BB4sO1D6yebi4mIxY8YMAUC4uLjoPYlZXU/5VeS8La063vOqYEJl4moqodIuQKldmHDs2LGiZ8+ewsLCQgAQYWFhOu01Go1wdnaWkqqwsDAxefJk8eGHH0ptMjMzpbVMmjZtKoKCgkRwcLC0VoyxhT03b94sLSLo5eUlxowZI3r06CHMzMykZRMsLS31+pWXUAkhxLBhwwTwv0UTR48eLTw8PIRCoRBvvvmmySRUQugu7BkQECDGjh0r/ZF6eGFPudvSKiwsFNOmTZM+TO3s7ET//v3F2LFjxaBBg4STk5O0/Yf/aH366afS+9a5c2cxduxY8eyzz0pjPbywZ3R0tPQB17NnTzF27FgxfPhw6Rxv2rSpzlo8QvxvfZ8mTZqIESNGiMmTJ4vJkyfrrNlUEQMHDpTOF29vb4Ntbt26Je0PAJ1zu7Tt27dL/wlo2bKl6Nu3rxg3bpwYMGCAtEbTqFGjdPoY+wNSVFQkrdGmVCpF//79xejRo0X79u2FWq0WU6dONfj4e1UTKiH+l0S7uLiIMWPGSMe0tFWrVkmfBa6urmLQoEFi7Nixok+fPtLinfPmzdPp8+eff0q/687OziI0NFQMHjxYWFlZiWeeeUbWwp4vvfSSUKlUom3btmL06NGiX79+0lpnw4cP11uMsrRvv/1Wek9fffXVCm+7tJpKqEpKSsS//vUvATxY2LN3795izJgxokOHDgKAUKvVYvfu3Xr9tL8z2mTGx8dHjB07VlryAoBYuXKlXj85n4etWrUSw4cPF5aWlqJPnz7SeQo8WC6j9PIiD8cpN6ESomLnrVZ1vOdVwYTKxNVUQvXFF1+IiRMnCk9PT9GsWTOhVCpF69atxYABA8Q333xj8APq9OnTYujQocLBwUH6w/PwuHfv3hVLly4V3t7ewsrKSqhUKtGxY0cxf/78Mte82rdvn+jTp4+wsbERVlZWonPnzmLDhg0iNTVVAA/WoXlYRRKqwsJCERUVJTp16iSsrKxEs2bNRN++fcWePXuM/tGprYRKiAcLfA4cOFDY2dkJCwsL4ejoKEJCQkRiYmK1b6u0P//8U0yfPl089dRTwtbWVlhYWIjHHntM+Pn5ifnz54sLFy4Y7HfkyBERHBwsHB0dhYWFhbCzsxODBg3SW5xUCCH++usvsWjRItG7d2/RqlUroVKpxGOPPSa8vLzEG2+8IdLS0vT6FBcXi6VLl4onn3xSWsessn+UhXhwRVbbd8aMGUbbaf9DAEAcPXrUaLsrV66ImTNnCk9PT9G4cWOhUqlE69atRc+ePcWyZcvEX3/9pdPe2B8QIR6cox9++KF44oknhFKpFPb29mL48OHi9OnT0lWKh9fPkZNQZWVliRdffFG0atVK+rYEQ79Hp0+fFhEREcLNzU2oVCphZWUl2rVrJ/r16ydWr14trl+/rtfn6tWrIjw8XLRo0UI0atRItGvXTsybN0/cvXtX+oyqSkIVExMjTpw4IYYMGSLs7OyEUqkUTz75pFi5cmW5C9Pm5eUJc3NzoVAoKp2Ia9VUQqW1detW0bNnT2FrayssLS2Fi4uLCA8PNxpv6URl+/btolu3bqJJkyaicePG4rnnnhP/93//Z7Cf3M/D+/fvi/fee094eHgIpVIpmjVrJkaOHKl3xctQnKVVJaGq6HkrRPW851WhEKKWp+UTlWHTpk2YMGEChgwZgu+++662wyF6pHr16oX4+Hh89dVXGDFiRG2HUyetX78eU6ZMQd++ffHTTz/Vdjj0CNTWe85J6VTrUlNT8ffff+uVHzp0CLNnzwYAaYE7ovomOTkZhYWFOmWFhYVYtGgR4uPj0bx5cwwcOLCWoqvb7t69K31h7qxZs2o5GnoUavM957IJVOt+/fVXTJ48GU899RRatWoFc3NzXLp0SXpacOLEiRg+fHgtR0lUM2bMmIHk5GQ89dRTcHJywu3bt3H69GlkZGRApVJh48aNBlcJJ+OioqLwxx9/4ODBg7h8+TL69+9v8FsPqP4whfect/yo1p07dw7Lly/HgQMHcOPGDdy9exe2trbw9vbGpEmTMGbMmNoOkajGbNmyBVu2bMHvv/+OrKwsCCHg7OyMwMBAzJo1C0888URth1jn9OzZE/v374e9vT0GDx6MlStX4rHHHqvtsKgGmcJ7zoSKiIiISCbOoSIiIiKSiQkVERERkUyclP6IlJSUID09HdbW1hX6wl8iIiKqfUII5OXlwdnZuczvt2RC9Yikp6dLXzxKREREdUtaWlqZXwDNhOoRsba2BvDgDTH0reJERERkenJzc+Hi4iL9HTeGCdUjor3NZ2Njw4SKiIiojilvug4npRMRERHJxISKiIiISCYmVEREREQyMaEiIiIikokJFREREZFMTKiIiIiIZGJCRURERCQTEyoiIiIimZhQEREREcnEhIqIiIhIJiZURERERDIxoSIiIiKSiQkVERERkUxMqIiIiIhksqjtAIiIiKj6paamIjMzs0p97e3t0apVq2qOqH5jQkVERFTPpKamooNHRxTk36tSf5XaCufPnWVSVQlMqIiIiOqZzMxMFOTfg93gWbC0c6lU3/tZacjatQKZmZlMqCqBCRUREVE9ZWnnAqWja22H0SCY3KR0jUaDefPmwdnZGWq1Gn5+fti7d2+5/b7++muMGjUK7dq1g5WVFTp06IBZs2YhOzvbYPvvvvsOnTt3hkqlQqtWrbBw4UIUFRXptcvOzkZERAQcHBzQuHFjBAYG4sSJE3J3k4iIiOoRk0uowsPDsXLlSowbNw6rVq2Cubk5Bg4ciIMHD5bZLyIiAmfPnsX48eOxevVq9O/fH2vWrEG3bt2Qn5+v0/aHH35AUFAQbG1t8dFHHyEoKAhLlizBq6++qtOupKQEgwYNwtatWzFt2jR8+OGHuHnzJnr27ImLFy9W+74TERFR3WRSt/ySkpKwbds2REVFYfbs2QCAsLAweHp6Yu7cuTh8+LDRvnFxcejZs6dOWZcuXTBhwgRs2bIFL7zwglQ+e/ZseHl5Yc+ePbCweHAIbGxs8P7772P69Onw8PCQxjx8+DB27NiB4OBgAEBoaCjc3d2xcOFCbN26tTp3n4iIiOook7pCFRcXB3Nzc0REREhlKpUKkydPRkJCAtLS0oz2fTiZAoDhw4cDAM6ePSuVnTlzBmfOnEFERISUTAHA1KlTIYRAXFycTjwtWrTAiBEjpDIHBweEhoZi586d0Gg0VdpPIiIiql9MKqE6efIk3N3dYWNjo1Pu6+sLAEhOTq7UeH///TeAB+tplN4GAHTt2lWnrbOzM1q2bCnVa9t27twZZma6h8nX1xf37t3DhQsXjG5bo9EgNzdX50VERET1k0klVBkZGXByctIr15alp6dXarwPPvgA5ubm0u067TZKj/nwdkpvQ048S5cuRdOmTaWXi0vlHlslIiKiusOkEqr8/HwolUq9cpVKJdVX1NatW7FhwwbMmjULbm5uOtsAYHQ7pbchJ57IyEjk5ORIr7JuVxIREVHdZlKT0tVqtcF5SQUFBVJ9RRw4cACTJ09Gv3798N577+ltA4DR7ZTehpx4lEqlwWSMiIiI6h+TukLl5OQk3ZIrTVvm7Oxc7hinTp3C0KFD4enpibi4OJ2J59ptlB7z4e2U3kZ1xENERET1n0klVN7e3rhw4YLeBO7ExESpviyXLl1C//790bx5c+zevRtNmjQxuA0AOHbsmE55eno6rl27prMNb29vnDhxAiUlJXrxWFlZwd3dvYJ7RkRERPWZSSVUwcHBKC4uxrp166QyjUaDmJgY+Pn5SRO7U1NTce7cOZ2+f//9N/r27QszMzP89NNPcHBwMLiNJ598Eh4eHli3bh2Ki4ul8k8++QQKhUJnAntwcDBu3LiBr7/+WirLzMzEjh07MGTIEN7SIyIiIgAmNofKz88PISEhiIyMxM2bN+Hq6oqNGzciJSUFGzZskNqFhYVh//79EEJIZf3798fly5cxd+5cHDx4UGdl9RYtWqBPnz7Sz1FRURg6dCj69u2L0aNH448//sCaNWvwwgsvoGPHjlK74OBgPPPMM5g4cSLOnDkDe3t7rF27FsXFxVi8eHENHw0iIiKqK0wqoQKATZs2YcGCBdi8eTNu374NLy8v7Nq1C927dy+z36lTpwAAH374oV5djx49dBKqwYMH4+uvv8bixYvx6quvwsHBAfPnz8fbb7+t08/c3By7d+/GnDlzsHr1auTn58PHxwexsbHo0KFDNewtERER1QcKUfoyD9WY3NxcNG3aFDk5OXoLlxIREVWnEydOoEuXLnCc8G8oHV0r1Vfz91/4e+MMHD9+HJ07d66hCOuOiv79Nqk5VERERER1ERMqIiIiIpmYUBERERHJxISKiIiISCaTe8qPiIjI1KSmpiIzM7NKfe3t7dGqVatqjohMDRMqIiKiMqSmpqKDR0cU5N+rUn+V2grnz51lUlXPMaEiIiIqQ2ZmJgry78Fu8CxY2rlUqu/9rDRk7VqBzMxMJlT1HBMqIiKiCrC0c6n0mk7UcHBSOhEREZFMTKiIiIiIZGJCRURERCQTEyoiIiIimZhQEREREcnEhIqIiIhIJiZURERERDIxoSIiIiKSiQkVERERkUxMqIiIiIhkYkJFREREJBMTKiIiIiKZmFARERERycSEioiIiEgmJlREREREMjGhIiIiIpKJCRURERGRTEyoiIiIiGRiQkVEREQkExMqIiIiIpmYUBERERHJZHIJlUajwbx58+Ds7Ay1Wg0/Pz/s3bu33H7nz5/HzJkz4e/vD5VKBYVCgZSUFL12+/btg0KhMPp67733pLaxsbFG2/3999/VudtERERUh1nUdgAPCw8PR1xcHGbMmAE3NzfExsZi4MCBiI+PR0BAgNF+CQkJWL16NZ544gl07NgRycnJBtt17NgRmzdv1ivfvHkz9uzZg759++rVvfPOO2jbtq1Oma2tbaX2i4iIiOovk0qokpKSsG3bNkRFRWH27NkAgLCwMHh6emLu3Lk4fPiw0b5Dhw5FdnY2rK2tsXz5cqMJVYsWLTB+/Hi98sWLF8PNzQ0+Pj56dQMGDEDXrl2rtlNERERU75nULb+4uDiYm5sjIiJCKlOpVJg8eTISEhKQlpZmtG+zZs1gbW1dpe0mJSXhr7/+wrhx44y2ycvLQ3FxcZXGJyIiovrNpBKqkydPwt3dHTY2Njrlvr6+AGD0qpNcW7ZsAQCjCVVgYCBsbGxgZWWFoUOH4uLFi+WOqdFokJubq/MiIiKi+smkbvllZGTAyclJr1xblp6eXu3bLC4uxpdffglfX1+4urrq1FlZWSE8PFxKqI4fP46VK1fC398fJ06cgIuLi9Fxly5disWLF1d7vERERGR6TOoKVX5+PpRKpV65SqWS6qvbL7/8ghs3bhi8OhUaGoqYmBiEhYUhKCgI7777Ln766SdkZWXpPA1oSGRkJHJycqRXWbcriYiIqG4zqStUarUaGo1Gr7ygoECqr25btmyBubk5Ro0aVaH2AQEB8PPzw88//1xmO6VSaTA5JCIiovrHpK5QOTk5ISMjQ69cW+bs7Fyt28vPz8c333yD559/Hi1atKhwPxcXF9y6dataYyEiIqK6y6QSKm9vb1y4cEFvAndiYqJUX52+++475OXllfl0nyGXL1+Gg4NDtcZCREREdZdJJVTBwcEoLi7GunXrpDKNRoOYmBj4+flJk8BTU1Nx7tw52dvbunUrrKysMHz4cIP1//zzj17Z7t27cfz4cfTv31/29omIiKh+MKk5VH5+fggJCUFkZCRu3rwJV1dXbNy4ESkpKdiwYYPULiwsDPv374cQQirLycnBRx99BAA4dOgQAGDNmjWwtbWFra0tpk2bprOtW7du4YcffsDIkSPRpEkTg/H4+/vj6aefRteuXdG0aVOcOHECn3/+OVxcXDB//vzq3n0iIiKqo0wqoQKATZs2YcGCBdi8eTNu374NLy8v7Nq1C927dy+z3+3bt7FgwQKdshUrVgAAWrdurZdQ7dixA/fv38fYsWONjjlq1Ch8//332LNnD+7duwcnJydMmTIFCxcurNScKyIiIqrfTC6hUqlUiIqKQlRUlNE2+/bt0ytr06aNzhWr8rz44ot48cUXy2yzZMkSLFmypMJjEhERUcNkUnOoiIiIiOoiJlREREREMjGhIiIiIpKJCRURERGRTEyoiIiIiGRiQkVEREQkExMqIiIiIpmYUBERERHJxISKiIiISCYmVEREREQyMaEiIiIikokJFREREZFMTKiIiIiIZGJCRURERCQTEyoiIiIimZhQEREREcnEhIqIiIhIJiZURERERDIxoSIiIiKSiQkVERERkUxMqIiIiIhkYkJFREREJBMTKiIiIiKZmFARERERycSEioiIiEgmJlREREREMjGhIiIiIpKJCRURERGRTCaXUGk0GsybNw/Ozs5Qq9Xw8/PD3r17y+13/vx5zJw5E/7+/lCpVFAoFEhJSTHYtk2bNlAoFHqvl156Sa9tdnY2IiIi4ODggMaNGyMwMBAnTpyQu5tERERUj1jUdgAPCw8PR1xcHGbMmAE3NzfExsZi4MCBiI+PR0BAgNF+CQkJWL16NZ544gl07NgRycnJZW7H29sbs2bN0ilzd3fX+bmkpASDBg3CqVOnMGfOHNjb22Pt2rXo2bMnjh8/Djc3tyrvJxEREdUfJpVQJSUlYdu2bYiKisLs2bMBAGFhYfD09MTcuXNx+PBho32HDh2K7OxsWFtbY/ny5eUmVI8//jjGjx9fZpu4uDgcPnwYO3bsQHBwMAAgNDQU7u7uWLhwIbZu3Vq5HSQiIqJ6yaRu+cXFxcHc3BwRERFSmUqlwuTJk5GQkIC0tDSjfZs1awZra+tKba+wsBB3794tM54WLVpgxIgRUpmDgwNCQ0Oxc+dOaDSaSm2PiIiI6ieTSqhOnjwJd3d32NjY6JT7+voCQLlXnSrj119/hZWVFZo0aYI2bdpg1apVBuPp3LkzzMx0D5Ovry/u3buHCxcuVFs8REREVHeZ1C2/jIwMODk56ZVry9LT06tlO15eXggICECHDh2QlZWF2NhYzJgxA+np6fjggw904unevXuZ8XTq1MngNjQajc4VrNzc3GqJnYiIiEyPSSVU+fn5UCqVeuUqlUqqrw7fffedzs8TJ07EgAEDsHLlSrz66qto2bKl7HiWLl2KxYsXV0u8REREZNpM6pafWq02OC+poKBAqq8JCoUCM2fORFFREfbt21ct8URGRiInJ0d6lTX/i4iIiOo2k7pC5eTkhOvXr+uVZ2RkAACcnZ1rbNsuLi4AgFu3bunEo912ZeNRKpUGr24RERFR/WNSV6i8vb1x4cIFvflGiYmJUn1NuXz5MoAHT/GVjufEiRMoKSnRi8fKykpv3SoiIiJqmEwqoQoODkZxcTHWrVsnlWk0GsTExMDPz0+6ipSamopz585VaRu3bt1CcXGxTtn9+/exbNkyNGrUCIGBgTrx3LhxA19//bVUlpmZiR07dmDIkCG8AkVEREQATOyWn5+fH0JCQhAZGYmbN2/C1dUVGzduREpKCjZs2CC1CwsLw/79+yGEkMpycnLw0UcfAQAOHToEAFizZg1sbW1ha2uLadOmAXgwIX3JkiUIDg5G27ZtcevWLWzduhV//PEH3n//fTg6OkpjBgcH45lnnsHEiRNx5swZaaX04uJiTjgnIiIiiUklVACwadMmLFiwAJs3b8bt27fh5eWFXbt2GVy+oLTbt29jwYIFOmUrVqwAALRu3VpKqDp16oQnnngCX3zxBf755x80atQI3t7e2L59O0JCQnT6m5ubY/fu3ZgzZw5Wr16N/Px8+Pj4IDY2Fh06dKjGvSYiIqK6zOQSKpVKhaioKERFRRltU/pJPK02bdroXLEypkuXLnrLJpTlsccew/r167F+/foK9yEiIqKGxaTmUBERERHVRUyoiIiIiGRiQkVEREQkExMqIiIiIplMblI6ERERNUypqanIzMysUl97e3u0atWqmiOqOCZUREREVOtSU1PRwaMjCvLvVam/Sm2F8+fO1lpSxYSKiIiIal1mZiYK8u/BbvAsWNq5VKrv/aw0ZO1agczMTCZURERERJZ2LlA6utZ2GJXGSelEREREMjGhIiIiIpKJCRURERGRTEyoiIiIiGRiQkVEREQkExMqIiIiIpmYUBERERHJxISKiIiISCYmVEREREQyMaEiIiIikokJFREREZFMTKiIiIiIZGJCRURERCQTEyoiIiIimZhQEREREcnEhIqIiIhIJlkJVWJiYnXFQURERFRnyUqounXrBnd3d7z77ru4fPlydcVEREREVKfISqi++OILuLm54d1334WbmxueffZZ/Oc//8GtW7eqKz4iIiIikycroRo7diy+//57pKenY9WqVRBCYOrUqXB2dkZQUBDi4uJQWFhYXbESERERmaRqmZRub2+PadOm4fDhw7h48SLefPNNnDt3DqNGjYKjoyMiIiJw8ODB6tgUERERkcmp9qf81Go1rKysoFKpIISAQqHAzp070aNHD/j4+ODMmTNl9tdoNJg3bx6cnZ2hVqvh5+eHvXv3lrvd8+fPY+bMmfD394dKpYJCoUBKSopeu6ysLERFRaF79+5wcHCAra0tnnnmGXz55Zd6bfft2weFQmHwdeTIkQofEyIiIqrfqiWhysvLQ0xMDJ5//nm0bt0a8+fPR5s2bRAXF4e///4b6enp+PLLL3Hz5k1MnDixzLHCw8OxcuVKjBs3DqtWrYK5uTkGDhxY7hWuhIQErF69Gnl5eejYsWOZ7d588000a9YMb731Ft577z1YWVlh9OjRWLhwocE+r732GjZv3qzzcnV1Lf/AEBERUYNgIafzzp07sWXLFuzatQsFBQXw8fHBv//9b4wePRp2dnY6bYODg3H79m288sorRsdLSkrCtm3bEBUVhdmzZwMAwsLC4Onpiblz5+Lw4cNG+w4dOhTZ2dmwtrbG8uXLkZycbLDdk08+iYsXL6J169ZS2dSpU/H888/jgw8+wNy5c9G4cWOdPs899xyCg4PLOxxERETUQMm6QjV8+HAkJiZi5syZOHv2LBITE/HKK6/oJVNaTz31FMaNG2d0vLi4OJibmyMiIkIqU6lUmDx5MhISEpCWlma0b7NmzWBtbV1uzG3bttVJpgBAoVAgKCgIGo3G6PIPeXl5KCoqKnd8IiIianhkXaH69ddf0bNnzwq39/X1ha+vr9H6kydPwt3dHTY2Nnr9ACA5ORkuLi5VirU8f//9N4AHE+wfNnHiRNy5cwfm5uZ47rnnEBUVha5du9ZIHERERFT3yLpCtWnTpjJXS09KSsKkSZMqPF5GRgacnJz0yrVl6enplQ+yAm7duoX169fjueee09l+o0aNMHLkSKxatQo7d+7EkiVLcPr0aTz33HM4efJkmWNqNBrk5ubqvIiIiKh+kpVQxcbG4tKlS0brr1y5go0bN1Z4vPz8fCiVSr1ylUol1Ve3kpISjBs3DtnZ2fjoo4906vz9/REXF4dJkyZh6NCheOONN3DkyBEoFApERkaWOe7SpUvRtGlT6VVTV9aIiIio9tXolyOnp6dDrVZXuL1arYZGo9ErLygokOqr26uvvooff/wR69evx1NPPVVue1dXVwwbNgzx8fEoLi422i4yMhI5OTnSq6z5X0RERFS3VXoO1c6dO7Fz507p53Xr1uHnn3/Wa5ednY2ff/4ZPj4+FR7byckJ169f1yvPyMgAADg7O1c23DItXrwYa9euxbJly/Cvf/2rwv1cXFxQWFiIu3fv6s330lIqlQavthEREVH9U+mE6syZM9ixYweAB0/HJSYm4vjx4zptFAoFGjdujO7du2PlypUVHtvb2xvx8fHIzc3VSVS087S8vb0rG65RH3/8MRYtWoQZM2Zg3rx5lep7+fJlqFQqNGnSpNriISIiorqr0rf8IiMjkZeXh7y8PAghsGHDBuln7Ss3NxcZGRnYtWsX3N3dKzx2cHAwiouLsW7dOqlMo9EgJiYGfn5+0jyk1NRUnDt3rrKhS7788ku89tprGDduXJkJ3z///KNXdurUKXz33Xfo27cvzMxq9I4pERER1RGylk0oKSmprjgAAH5+fggJCUFkZCRu3rwJV1dXbNy4ESkpKdiwYYPULiwsDPv374cQQirLycmRJpUfOnQIALBmzRrY2trC1tYW06ZNA/DgycOwsDDY2dmhd+/e2LJli04M/v7+aNeuHQBg1KhRUKvV8Pf3R/PmzXHmzBmsW7cOVlZWWLZsWbXuOxEREdVdshKqmrBp0yYsWLAAmzdvxu3bt+Hl5YVdu3ahe/fuZfa7ffs2FixYoFO2YsUKAEDr1q2lhOrMmTMoLCzEP//8Y3BJh5iYGCmhCgoKwpYtW7By5Urk5ubCwcEBI0aMwMKFC/nVM0RERCSpVEJlZmYGMzMz3Lt3D40aNYKZmRkUCkWZfRQKRaVWGFepVIiKikJUVJTRNvv27dMra9Omjc4VK2PCw8MRHh5eoVhee+01vPbaaxVqS0RERA1XpRKqt99+GwqFAhYWFjo/ExERETVklUqoFi1aVObPRERERA0RH1MjIiIikqlSV6g2bdpUpY2EhYVVqR8RERFRXVCphKqik7lLUygUTKiIiIioXqtUQnXlypWaioOIiIiozqpUQtW6deuaioOIiIiozuKkdCIiIiKZKnWFKjAwEGZmZvjpp59gYWGBXr16ldtHoVDgl19+qXKARERERKauUgmVEELn+/tKSkrKXdizIquXExEREdVllUqoHv7KF0NfAUNERETU0HAOFREREZFMlbpCZcyuXbuwe/dupKSkAHjwRcUDBw7E4MGDq2N4IiIiIpMmK6HKzs7G8OHD8dtvv8Hc3BxOTk4AgJ9//hmffvopnnvuOXz77bewtbWtjliJiIiITJKsW37Tp0/HgQMH8MEHH+D27du4evUqrl69itu3b2PZsmU4ePAgpk+fXl2xEhEREZkkWVeovv32W0ydOhWzZ8/WKW/cuDHmzJmD1NTUKn//HxEREVFdIesKlaWlJTp06GC03sPDA5aWlnI2QURERGTyZCVUI0eOxI4dO1BcXKxXV1RUhO3btyMkJETOJoiIiIhMXqVu+Z04cULn5/Hjx2PatGnw9/dHREQEXF1dAQAXL17EunXrUFhYiHHjxlVftEREREQmqFIJVdeuXfVWRteuhH706FGprvTq6D169DB4BYuIiIiovqhUQhUTE1NTcRARERHVWZVKqCZMmFBTcRARERHVWdWyUjoREREZd/bs2Sr1s7e3R6tWrao5GqoJshOqgoICfPXVVzhx4gRycnJQUlKiU69QKLBhwwa5myEiIqpziu/cBhQKjB8/vkr9VWornD93lklVHSArobp69SoCAwORkpICW1tb5OTkoFmzZsjOzkZxcTHs7e3RpEmT6oqViIioTinR3AGEgN3gWbC0c6lU3/tZacjatQKZmZlMqOoAWQnVnDlzkJOTgyNHjqBdu3Zo3rw5vvzySzz77LNYvXo11qxZg59++qm6YiUiIqqTLO1coHR0re0wqAbJWtjz119/xdSpU+Hr6wszswdDCSGgVCoxZ84c9O7dGzNmzKiOOImIiIhMlqyE6t69e2jTpg0AwMbGBgqFAjk5OVJ9t27dcPDgQVkBEhEREZk6WQlVq1atcO3aNQCAhYUFHn/8cRw5ckSqP3PmDFQqlbwIiYiIiEycrISqV69e2Llzp/RzeHg4oqOjMWXKFEyePBkff/wxhgwZUqkxNRoN5s2bB2dnZ6jVavj5+WHv3r3l9jt//jxmzpwJf39/qFQqKBQKpKSkGG3/3XffoXPnzlCpVGjVqhUWLlyIoqIivXbZ2dmIiIiAg4MDGjdujMDAQL2v4CEiIqKGTdak9DfeeANHjx6FRqOBUqnE/PnzkZ6ejri4OJibm2Ps2LFYuXJlpcYMDw9HXFwcZsyYATc3N8TGxmLgwIGIj49HQECA0X4JCQlYvXo1nnjiCXTs2BHJyclG2/7www8ICgpCz5498dFHH+H06dNYsmQJbt68iU8++URqV1JSgkGDBuHUqVOYM2cO7O3tsXbtWvTs2RPHjx+Hm5tbpfaNiIiI6idZCVWrVq10HuVUqVRYv3491q9fX6XxkpKSsG3bNkRFRWH27NkAgLCwMHh6emLu3Lk4fPiw0b5Dhw5FdnY2rK2tsXz58jITqtmzZ8PLywt79uyBhcWDQ2BjY4P3338f06dPh4eHBwAgLi4Ohw8fxo4dOxAcHAwACA0Nhbu7OxYuXIitW7dWaT+JiIiofpF1y680IQRu3ryJmzdv6nw5cmVor2xFRERIZSqVCpMnT0ZCQgLS0tKM9m3WrBmsra3L3caZM2dw5swZRERESMkUAEydOhVCCMTFxenE06JFC4wYMUIqc3BwQGhoKHbu3AmNRlPZXSQiIqJ6SHZCdebMGQQHB8PGxgZOTk5wcnKCjY0NgoOD8ccff1RqrJMnT8Ld3R02NjY65b6+vgBQ5lWnymwDALp27apT7uzsjJYtW0r12radO3eWloQoHc+9e/dw4cIF2fEQERFR3Sfrlt+BAwcwYMAAlJSUYNiwYXB3dwfwYIL4d999hx9++AE//vgjnnvuuQqNl5GRAScnJ71ybVl6erqccKVtlB7z4e2U3kZGRga6d+9eZjydOnUyuB2NRqNzBSs3N1dW3ERERGS6ZCVUM2fORPPmzbF//364uOguqZ+Wlobu3bvj9ddfx9GjRys0Xn5+PpRKpV65dumF/Px8OeHqjGFsO6UTHznxLF26FIsXL5YbLhEREdUBsm75/fnnn5g6dapeMgUALi4uePnll/Hnn39WeDy1Wm1wXlJBQYFUL5d2DGPbKb0NOfFERkYiJydHepU1/4uIiIjqNlkJVevWrcucmF1YWGgw2TLGyclJuiVXmrbM2dm58kEa2EbpMR/eTultyIlHqVTCxsZG50VERET1k6yE6u2338bq1asNThY/efIkPvroIyxatKjC43l7e+PChQt6840SExOlerm0Yxw7dkynPD09HdeuXdPZhre3N06cOIGSkhK9eKysrKQ5Y0RERNSwVSqheu2113ReR44cQYsWLdClSxc899xzmDhxIiZOnIiAgAB07doVjo6OOl9FU57g4GAUFxdj3bp1UplGo0FMTAz8/Pykq12pqak4d+5cZUKXPPnkk/Dw8MC6detQXFwslX/yySdQKBTSelPaeG7cuIGvv/5aKsvMzMSOHTswZMgQg/OriIiIqOGp1KT0NWvWGK07dOgQDh06pFN2+vRp/PHHH1i1alWFxvfz80NISAgiIyNx8+ZNuLq6YuPGjUhJScGGDRukdmFhYdi/f7/Oelc5OTn46KOPpFi08dra2sLW1hbTpk2T2kZFRWHo0KHo27cvRo8ejT/++ANr1qzBCy+8gI4dO0rtgoOD8cwzz2DixIk4c+aMtFJ6cXExJ5wTERGRpFIJ1cO3vmrCpk2bsGDBAmzevBm3b9+Gl5cXdu3aZXD5gtJu376NBQsW6JStWLECwIO5XqUTqsGDB+Prr7/G4sWL8eqrr8LBwQHz58/H22+/rdPf3Nwcu3fvxpw5c7B69Wrk5+fDx8cHsbGx6NChQzXtMREREdV1spZNqAkqlQpRUVGIiooy2mbfvn16ZW3atKnUCu1BQUEICgoqt91jjz0m6+t0iIiIqP6rloTqypUr+OGHH3D16lUAD64IDRgwAG3btq2O4YmIiIhMmuyEatasWVi1apXe7UAzMzPMmDEDy5cvl7sJIiIiIpMma9mEFStWIDo6GiNGjEBCQgKys7ORnZ2NhIQEBAcHIzo6GtHR0dUVKxEREZFJknWF6rPPPsPQoUOxfft2nXI/Pz9s27YNBQUF+PTTTzFz5kxZQRIRERGZMllXqFJSUtCvXz+j9f369UNKSoqcTRARERGZPFkJVfPmzXHq1Cmj9adOnYKDg4OcTRARERGZPFkJVUhICNavX49ly5bh7t27Uvndu3fxwQcfYP369Rg1apTsIImIiIhMmaw5VO+++y6Sk5OlRTG1Xxacnp6OoqIiBAYG4p133qmWQImIiIhMlayEysrKCr/88gt27typsw5V//79MXDgQAwZMgQKhaJaAiUiIiIyVVVOqO7du4fx48dj5MiRGDduHIYNG1adcRERERHVGVWeQ2VlZYWff/4Z9+7dq854iIiIiOocWbf8AgICkJCQgClTplRXPERERFSHpaamIjMzs9L9zp49WwPRPDqyEqo1a9agX79+eOutt/DSSy+hZcuW1RUXERER1TGpqano4NERBfkN7+6VrITqqaeeQlFREZYuXYqlS5fCwsICSqVSp41CoUBOTo6sIImIiMj0ZWZmoiD/HuwGz4KlnUul+uZfPoacA1/UUGQ1T1ZCFRwcXF1xEBERUT1haecCpaNrpfrcz0qroWgejSolVAUFBdi5cyc6dOgAOzs7DB48GE5OTtUdGxEREVGdUOmE6ubNm/D398eVK1cghIBCoYCVlRW++eYbPP/88zURIxEREZFJq/SyCe+++y5SUlIwc+ZM7Nq1C9HR0VCpVHjxxRdrIj4iIiIik1fpK1R79uxBWFgYli9fLpW1aNECY8eOxfnz59GhQ4dqDZCIiIjI1FX6ClVqaioCAgJ0ygICAiCEwI0bN6otMCIiIqK6otIJlUajgUql0inT/lxUVFQ9URERERHVIVV6yi8lJQUnTpyQftauM3Xx4kXY2trqte/cuXPVoiMiIiKqA6qUUC1YsAALFizQK586darOz9qnAIuLi6sWHREREVEdUOmEKiYmpibiICIiIqqzKp1QTZgwoSbiICIiIqqzKj0pnYiIiIh0MaEiIiIikokJFREREZFMTKiIiIiIZDK5hEqj0WDevHlwdnaGWq2Gn58f9u7dW6G+169fR2hoKGxtbWFjY4Nhw4bh8uXLOm1iY2OhUCiMvrZs2SK1XbRokcE2Dy9sSkRERA1bldahqknh4eGIi4vDjBkz4ObmhtjYWAwcOBDx8fF6X3lT2p07dxAYGIicnBzMnz8flpaWiI6ORo8ePZCcnAw7OzsAQPfu3bF582a9/tHR0Th16hR69+6tV/fJJ5+gSZMm0s/m5ubVsKdERERUX5hUQpWUlIRt27YhKioKs2fPBgCEhYXB09MTc+fOxeHDh432Xbt2LS5evIikpCT4+PgAAAYMGABPT0+sWLEC77//PgCgXbt2aNeunU7f/Px8TJ06Fb169YKjo6Pe2MHBwbC3t6+u3SQiIqJ6xqRu+cXFxcHc3BwRERFSmUqlwuTJk5GQkIC0tLQy+/r4+EjJFAB4eHigd+/e2L59e5nb/b//+z/k5eVh3LhxBuuFEMjNzYUQopJ7RERERA2BSSVUJ0+ehLu7O2xsbHTKfX19AQDJyckG+5WUlOD3339H165d9ep8fX1x6dIl5OXlGd3uli1boFarMWLECIP17dq1Q9OmTWFtbY3x48fjxo0bFdwjIiIiaghM6pZfRkYGnJyc9Mq1Zenp6Qb73bp1CxqNpty+HTp0MNj3xx9/RFBQEKytrXXqHnvsMUybNg3dunWDUqnEgQMH8PHHHyMpKQnHjh3TS/xK02g00Gg00s+5ublG2xIREVHdZlIJVX5+PpRKpV659qm6/Px8o/0AVKlvXFwcCgsLDd7umz59us7PI0eOhK+vL8aNG4e1a9fijTfeMLovS5cuxeLFi43WExERUf1hUrf81Gq1zlUdrYKCAqneWD8AVeq7ZcsWNGvWDAMGDKhQjGPHjoWjoyN+/vnnMttFRkYiJydHepU1/4uIiIjqNpO6QuXk5ITr16/rlWdkZAAAnJ2dDfZr1qwZlEql1K6ifVNTU3HgwAFERETA0tKywnG6uLjg1q1bZbZRKpUGr5gRERFR/WNSV6i8vb1x4cIFvflGiYmJUr0hZmZm6NSpE44dO6ZXl5iYiHbt2unNjwKA//73vxBCGH26zxAhBFJSUuDg4FDhPkRERFS/mVRCFRwcjOLiYqxbt04q02g0iImJgZ+fH1xcXAA8uLJ07tw5vb5Hjx7VSarOnz+PX3/9FSEhIQa3t3XrVrRq1crogqH//POPXtknn3yCf/75B/3796/0/hEREVH9ZFK3/Pz8/BASEoLIyEjcvHkTrq6u2LhxI1JSUrBhwwapXVhYGPbv36+zLtTUqVPx2WefYdCgQZg9ezYsLS2xcuVKtGjRArNmzdLb1h9//IHff/8db7zxBhQKhcF4WrdujVGjRqFTp05QqVQ4ePAgtm3bBm9vb7z44ovVfwCIiIioTjKphAoANm3ahAULFmDz5s24ffs2vLy8sGvXLnTv3r3MftbW1ti3bx9mzpyJJUuWoKSkBD179kR0dLTB23Pa7+wbO3as0THHjRuHw4cP46uvvkJBQQFat26NuXPn4s0334SVlZW8HSUiIqJ6w+QSKpVKhaioKERFRRlts2/fPoPlLVu2xI4dOyq0naVLl2Lp0qVltvnss88qNBYRERE1bCY1h4qIiIioLmJCRURERCQTEyoiIiIimZhQEREREcnEhIqIiIhIJiZURERERDIxoSIiIiKSiQkVERERkUxMqIiIiIhkYkJFREREJBMTKiIiIiKZmFARERERycSEioiIiEgmJlREREREMjGhIiIiIpKJCRURERGRTEyoiIiIiGRiQkVEREQkExMqIiIiIpmYUBERERHJxISKiIiISCYmVEREREQyMaEiIiIikokJFREREZFMTKiIiIiIZGJCRURERCQTEyoiIiIimZhQEREREcnEhIqIiIhIJpNLqDQaDebNmwdnZ2eo1Wr4+flh7969Fep7/fp1hIaGwtbWFjY2Nhg2bBguX76s106hUBh8LVu2rMpjEhERUcNlUdsBPCw8PBxxcXGYMWMG3NzcEBsbi4EDByI+Ph4BAQFG+925cweBgYHIycnB/PnzYWlpiejoaPTo0QPJycmws7PTad+nTx+EhYXplD399NOyxiQiIqKGyaQSqqSkJGzbtg1RUVGYPXs2ACAsLAyenp6YO3cuDh8+bLTv2rVrcfHiRSQlJcHHxwcAMGDAAHh6emLFihV4//33ddq7u7tj/PjxZcZT2TGJiIioYTKpW35xcXEwNzdHRESEVKZSqTB58mQkJCQgLS2tzL4+Pj5S4gMAHh4e6N27N7Zv326wT35+PgoKCqp1TCIiImp4TCqhOnnyJNzd3WFjY6NT7uvrCwBITk422K+kpAS///47unbtqlfn6+uLS5cuIS8vT6c8NjYWjRs3hlqtxhNPPIGtW7fKHpOIiIgaJpO65ZeRkQEnJye9cm1Zenq6wX63bt2CRqMpt2+HDh0AAP7+/ggNDUXbtm2Rnp6Ojz/+GOPGjUNOTg5efvnlKo35MI1GA41GI/2cm5trdL+JiIiobjOphCo/Px9KpVKvXKVSSfXG+gGocN9Dhw7ptJk0aRK6dOmC+fPnIzw8HGq1utJjPmzp0qVYvHix0XoiIiKqP0zqlp9arda5qqOlneekVquN9gNQpb4A0KhRI0ybNg3Z2dk4fvx4tYwZGRmJnJwc6VXW/C8iIiKq20zqCpWTkxOuX7+uV56RkQEAcHZ2NtivWbNmUCqVUrvK9NVycXEB8OBWX3WMqVQqDV7dIiIiovrHpBIqb29vxMfHIzc3V2diemJiolRviJmZGTp16oRjx47p1SUmJqJdu3awtrYuc9vaxTodHByqbUwiIqK66uzZs4+kT31hUglVcHAwli9fjnXr1knrUGk0GsTExMDPz0+6ipSamop79+7Bw8NDp+8bb7yBY8eOSU/mnT9/Hr/++qs0FgD8888/UtKklZeXh3//+9+wt7dHly5dKj0mERFRfVF85zagUJS7ViPpMqmEys/PDyEhIYiMjMTNmzfh6uqKjRs3IiUlBRs2bJDahYWFYf/+/RBCSGVTp07FZ599hkGDBmH27NmwtLTEypUr0aJFC8yaNUtq9/HHH+Pbb7/FkCFD0KpVK2RkZODzzz9HamoqNm/ejEaNGlV6TCIiovqiRHMHEAJ2g2fB0s6lUn3zLx9DzoEvaigy02ZSCRUAbNq0CQsWLMDmzZtx+/ZteHl5YdeuXejevXuZ/aytrbFv3z7MnDkTS5YsQUlJCXr27Ino6GidK1LPPvssDh8+jPXr1yMrKwuNGzeGr68vPv/8c/Tq1atKYxIREdU3lnYuUDq6VqrP/ayG+wCWySVUKpUKUVFRiIqKMtpm3759BstbtmyJHTt2lDl+nz590KdPnwrHU5ExiYiIqGEzqWUTiIiIiOoiJlREREREMjGhIiIiIpKJCRURERGRTEyoiIiIiGRiQkVEREQkExMqIiIiIpmYUBERERHJxISKiIiISCaTWymdiIjImNTUVGRmZlapr729PVq1alXNERE9wISKiIjqhNTUVHTw6IiC/HtV6q9SW+H8ubNMqqhGMKEiIqI6ITMzEwX592A3eBYs7Vwq1fd+Vhqydq1AZmYmEyqqEUyoiIioTrG0c4HS0bW2wyDSwUnpRERERDIxoSIiIiKSibf8iIhqGZ9cI6r7mFAREdUiPrlGVD8woSIiqkV8co2ofmBCRURkAvjkGlHdxknpRERERDIxoSIiIiKSiQkVERERkUxMqIiIiIhkYkJFREREJBMTKiIiIiKZmFARERERycR1qIiI6JGq6lftnD17tgaiIaoeTKiIiOiRkftVOw1RVRJJJp+PHhMqIiJ6ZOR81U7+5WPIOfBFDUVmeorv3AYUCowfP762Q6EKMLmESqPR4O2338bmzZtx+/ZteHl5YcmSJejTp0+5fa9fv46ZM2diz549KCkpQWBgIKKjo9GuXTupTVpaGj7//HN8//33uHjxIszNzeHp6Ym33noLzz//vM54sbGxmDhxosFtZWRkwNHRUd7OEhE1UFX5qp37WWk1FI1pKtHcAYRg8llHmFxCFR4ejri4OMyYMQNubm6IjY3FwIEDER8fj4CAAKP97ty5g8DAQOTk5GD+/PmwtLREdHQ0evTogeTkZNjZ2QEAdu7ciQ8++ABBQUGYMGECioqKsGnTJvTp0weff/65wQTqnXfeQdu2bXXKbG1tq3W/iYiIDGHyWTeYVEKVlJSEbdu2ISoqCrNnzwYAhIWFwdPTE3PnzsXhw4eN9l27di0uXryIpKQk+Pj4AAAGDBgAT09PrFixAu+//z4AIDAwEKmpqbC3t5f6vvTSS/D29sbbb79tMKEaMGAAunbtWp27SkRERPWISS2bEBcXB3Nzc0REREhlKpUKkydPRkJCAtLSjGfccXFx8PHxkZIpAPDw8EDv3r2xfft2qezJJ5/USaYAQKlUYuDAgbh27Rry8vIMjp+Xl4fi4uKq7hoRERHVYyaVUJ08eRLu7u6wsbHRKff19QUAJCcnG+xXUlKC33//3eBVJF9fX1y6dMlooqT1999/w8rKClZWVnp1gYGBsLGxgZWVFYYOHYqLFy9WcI+IiIioITCpW34ZGRlwcnLSK9eWpaenG+x369YtaDSacvt26NDBYP+//voLX3/9NUJCQmBubi6VW1lZITw8XEqojh8/jpUrV8Lf3x8nTpyAi4vxSYIajQYajUb6OTc312hbIiIiqttMKqHKz8+HUqnUK1epVFK9sX4AqtT33r17CAkJgVqtxrJly3TqQkNDERoaKv0cFBSEfv36oXv37njvvffwn//8x+i+LF26FIsXLzZaT0RERPWHSd3yU6vVOld1tAoKCqR6Y/0AVLpvcXExRo8ejTNnziAuLg7Ozs7lxhgQEAA/Pz/8/PPPZbaLjIxETk6O9Cpr/hcRERHVbSZ1hcrJyQnXr1/XK8/IyAAAowlPs2bNoFQqpXYV7TtlyhTs2rULW7ZsQa9evSocp4uLC86fP19mG6VSafCKGREREdU/JnWFytvbGxcuXNCbb5SYmCjVG2JmZoZOnTrh2LFjenWJiYlo164drK2tdcrnzJmDmJgYREdHY8yYMZWK8/Lly3BwcKhUHyIiIqq/TCqhCg4ORnFxMdatWyeVaTQaxMTEwM/PT5oEnpqainPnzun1PXr0qE5Sdf78efz6668ICQnRaRsVFYXly5dj/vz5mD59utF4/vnnH72y3bt34/jx4+jfv3+V9pGIiIjqH5O65efn54eQkBBERkbi5s2bcHV1xcaNG5GSkoINGzZI7cLCwrB//34IIaSyqVOn4rPPPsOgQYMwe/ZsWFpaYuXKlWjRogVmzZoltfvmm28wd+5cuLm5oWPHjvjiC92l+fv06YMWLVoAAPz9/fH000+ja9euaNq0KU6cOIHPP/8cLi4umD9/fg0fDSIiIqorTCqhAoBNmzZhwYIFOt/lt2vXLnTv3r3MftbW1ti3bx9mzpyJJUuWoKSkBD179kR0dLTO7blTp04BAC5evIh//etfeuPEx8dLCdWoUaPw/fffY8+ePbh37x6cnJwwZcoULFy4UGpDRER1x9mzZx9JH2p4TC6hUqlUiIqKQlRUlNE2+/btM1jesmVL7Nixo8zxFy1ahEWLFlUoliVLlmDJkiUVaktERKar+M5tQKHA+PHjazsUqqdMLqEiIiLTl5qaiszMzEr3q62rPSWaO4AQsBs8C5Z2xhdlNiT/8jHkHPii/IbUoDGhIiKiSklNTUUHj44oyL9X26FUmqWdC5SOrpXqcz+L6whS+ZhQERFRpWRmZqIg/x6v9hCVwoSKiIiqhFd7iP7HpNahIiIiIqqLmFARERERycSEioiIiEgmJlREREREMjGhIiIiIpKJCRURERGRTEyoiIiIiGRiQkVEREQkExMqIiIiIpmYUBERERHJxK+eISL6/1JTU5GZmVmlvvb29mjVqlU1R0REdQUTKiIiPEimOnh0REH+vSr1V6mtcP7cWSZVRA0UEyoiIgCZmZkoyL8Hu8GzYGnnUqm+97PSkLVrBTIzM5lQETVQTKiIiEqxtHOB0tG1tsMgojqGCVU9wHkfREREtYsJVR3HeR9ERES1jwlVHcd5H0RERLWPCVU9wXkfREREtYcJFRHVCM7tI6KGhAkVEVU7zu0jooaGCRURVTvO7SOihoYJFRHVGM7tezTOnj1bpX68tUpUfZhQERHVUcV3bgMKBcaPH1+l/ry1SlR9mFAREdVRJZo7gBCybq0eOHAAHTt2rFTfql4RI6rPmFAREdVxVbm1KvfqFhHpMrmESqPR4O2338bmzZtx+/ZteHl5YcmSJejTp0+5fa9fv46ZM2diz549KCkpQWBgIKKjo9GuXTu9ths2bMDy5ctx5coVuLi44LXXXsOrr74qa0wiorpCztWt/MvHkHPgixqKjKhuMrmEKjw8HHFxcZgxYwbc3NwQGxuLgQMHIj4+HgEBAUb73blzB4GBgcjJycH8+fNhaWmJ6Oho9OjRA8nJybCzs5Pafvrpp3jppZcwcuRIvP766zhw4ABee+013Lt3D/PmzavSmEREdVFVrm7dz0qroWiI6i6TSqiSkpKwbds2REVFYfbs2QCAsLAweHp6Yu7cuTh8+LDRvmvXrsXFixeRlJQEHx8fAMCAAQPg6emJFStW4P333wcA5Ofn480338SgQYMQFxcHAJgyZQpKSkrw7rvvIiIiAo899lilxqSGg4tVPjp18cm1qsTM+UhE9YNJJVRxcXEwNzdHRESEVKZSqTB58mTMnz8faWlpcHExfGk6Li4OPj4+UuIDAB4eHujduze2b98uJT/x8fHIysrC1KlTdfq/8sor2LJlC77//ntpTkFFx6SGgYtVPhpy5/YolSp89VUcnJycKtVPTmLD+UhEZFIJ1cmTJ+Hu7g4bGxudcl9fXwBAcnKywYSqpKQEv//+OyZNmqRX5+vriz179iAvLw/W1tY4efIkAKBr16467bp06QIzMzOcPHkS48ePr9SY1DBUx2KVVXmiCmhYV7fkzO0puPYnsn9dj8GDB9dQdIZxPhIRmVRClZGRYfB/ldqy9PR0g/1u3boFjUZTbt8OHTogIyMD5ubmaN68uU67Ro0awc7OTtpGZcY0RKPRQKPRSD/n5OQAAHJzcw22r6o7d+482N7ff6GksKBSfe/fugYAOH78uDROZZiZmaGkpKTS/epq3/PnzwMASu5rKn2si/Ie3Cas6hWMRkoVvti8CS1atKh039o4XtpjVaXz8v/Pz6nKcS65lwMIARufETBv6lCpvoXpF3D3TPwjj1kUFQKQd6zYl30bfN////fszp071f53VjueEKLshsKEtGvXTgwYMECv/NKlSwKAiI6ONtgvNTVVABAffPCBXt2GDRsEAHHy5EkhhBCTJk0SarXa4DguLi5i2LBhlR7TkIULFwoAfPHFF1988cVXPXilpaUZ/ZsvhBAmdYVKrVbrXNXRKigokOqN9QNQob5qtRqFhYUGxykoKNBpV9ExDYmMjMTrr78u/VxSUoJbt27Bzs4OCoXCaD+t3NxcuLi4IC0tTe8WaEPHY2Mcj03ZeHyM47ExjsembPX9+AghkJeXB2dn5zLbmVRC5eTkhOvXr+uVZ2RkAIDRnWnWrBmUSqXUrqy+Tk5OKC4uxs2bN3Vu+xUWFiIrK0tqV5kxDVEqlVAqlTpltra2RtsbY2NjUy9P0OrAY2Mcj03ZeHyM47ExjsembPX5+DRt2rTcNmaPII4K8/b2xoULF/TufyYmJkr1hpiZmaFTp044duyYXl1iYiLatWsnTR7XjvFw22PHjqGkpESqr8yYRERE1LCZVEIVHByM4uJirFu3TirTaDSIiYmBn5+f9IRfamoqzp07p9f36NGjOgnQ+fPn8euvvyIkJEQq69WrF5o1a4ZPPvlEp/8nn3wCKysrDBo0qNJjEhERUQNX5gyrWhASEiIsLCzEnDlzxKeffir8/f2FhYWF2L9/v9SmR48e4uHQc3NzRfv27UXz5s3Fhx9+KKKjo4WLi4twdnYWN2/e1Gn78ccfCwAiODhYfPbZZyIsLEwAEO+9916Vx6xuBQUFYuHChaKgoKBGt1MX8dgYx2NTNh4f43hsjOOxKRuPzwMml1Dl5+eL2bNnC0dHR6FUKoWPj4/48ccfddoYSqiEECItLU0EBwcLGxsb0aRJEzF48GBx8eJFg9tZt26d6NChg2jUqJFo3769iI6OFiUlJbLGJCIiooZJIUR5CysQERERUVlMag4VERERUV3EhIqIiIhIJiZURERERDIxoTIxv/32G4YOHQoXFxeoVCo4Ojqif//+OHTokMH2hw8fRkBAAKysrODo6IjXXnutSt/LVxf88ssvmDRpEtzd3WFlZYV27drhhRdeMLj4as+ePaFQKPRe/fv3r4XIH43KHB+gYZ07GRkZeOONNxAYGAhra2soFArs27fPYNuGdu5U5tgADeu8MSY2NtbgOaJQKPD333/XdniPjEajwbx58+Ds7Ay1Wg0/Pz/s3bu3tsOqNSa1UjoBFy5cgJmZGV566SU4Ojri9u3b+OKLL9C9e3d8//33Oh/qycnJ6N27Nzp27IiVK1fi2rVrWL58OS5evIgffvihFveiZsybNw+3bt1CSEgI3NzccPnyZaxZswa7du1CcnIyHB0dddq3bNkSS5cu1Skr76sD6rLKHJ+Gdu6cP38eH3zwAdzc3NCpUyckJCSU2b4hnTuVOTYN7bwpzzvvvIO2bdvqlFXlGzHqqvDwcMTFxWHGjBlwc3NDbGwsBg4ciPj4eAQEBNR2eI9ebT9mSOW7e/euaNGihejXr59O+YABA4STk5PIycmRyj777DMBQPz000+POswat3//flFcXKxXBkC8+eabOuU9evQQTz755KMMr9ZV5vg0tHMnNzdXZGVlCSGE2LFjhwAg4uPjDbZtaOdOZY5NQztvjImJiREAxNGjR2s7lFqTmJgoAIioqCipLD8/X7Rv315069atFiOrPbzlVwdYWVnBwcEB2dnZUllubi727t2L8ePH63x3UlhYGJo0aYLt27fXQqQ1q3v37jAzM9Mra9asGc6ePWuwT1FRUYO5HVHR49MQzx1ra2s0a9asUn0ayrlT0WPTEM+bisjLy0NxcXFth/HIxcXFwdzcHBEREVKZSqXC5MmTkZCQgLS0tFqMrnYwoTJRubm5yMzMxLlz5zB//nz88ccf6N27t1R/+vRpFBUVoWvXrjr9GjVqBG9vb5w8efJRh1wr7ty5gzt37sDe3l6v7sKFC2jcuDGsra3h6OiIBQsW4P79+7UQZe0xdHx47pSP544+njf6AgMDYWNjAysrKwwdOhQXL16s7ZAemZMnT8Ld3V3vy5B9fX0BPLg93NBwDpWJCg0NxU8//QTgwQfWiy++iAULFkj12onGTk5Oen2dnJxw4MCBRxNoLfv3v/+NwsJCjBo1Sqe8ffv2CAwMRKdOnXD37l3ExcVhyZIluHDhAr788staivbRM3R8eO6UjeeOYTxv/sfKygrh4eFSQnX8+HGsXLkS/v7+OHHihPS9s/VZRkaG0XMBANLT0x91SLWOCVUNKikpQWFhYYXaKpVKKBQK6edly5Zh1qxZSEtLw8aNG1FYWIiioiKpPj8/X+r3MJVKJdWbKjnHRuu3337D4sWLERoail69eunUbdiwQefnf/3rX4iIiMBnn32GmTNn4plnnql68I9ATR4fnjtlq8vnTk0em7p+3hhTlWMWGhqK0NBQqTwoKAj9+vVD9+7d8d577+E///lPTYVrMvLz842eC9r6hoa3/GrQb7/9BrVaXaHX+fPndfp6e3ujT58+mDRpEvbu3YukpCSEh4dL9Wq1GsCDx1YfVlBQINWbKjnHBgDOnTuH4cOHw9PTE+vXr6/QNmfNmgUA+Pnnn6t1X2pCTR6fhn7uVEVdOXdq8tjU9fPGmOo6ZgEBAfDz8zP5c6S6qNVqo+eCtr6h4RWqGuTh4YGYmJgKtTV06VSrUaNGGDp0KJYtW4b8/Hyo1WqpvaE1hjIyMkz+EW85xyYtLQ19+/ZF06ZNsXv3blhbW1doHO1l+Fu3blUu2FpQk8enIZ87VVVXzp2aPDZ1/bwxpjqPmYuLS7Ul8abOyckJ169f1yvXnh919XyQgwlVDXJ0dNS5qiRHfn4+hBDIy8uDWq2Gp6cnLCwscOzYMZ1Lz4WFhUhOTtYpM0VVPTZZWVno27cvNBoNfvnll0r9Ubh8+TIAwMHBodLbfdRq8vg01HNHjrpy7tTksanr540x1XnMLl++bPLnSHXx9vZGfHw8cnNzdSamJyYmSvUNDW/5mZibN2/qlWVnZ+Orr76Ci4sLmjdvDgBo2rQpnn/+eXzxxRfIy8uT2m7evBl37txBSEjII4v5Ubl79y4GDhyI69evY/fu3XBzczPYLjc3V+9StBACS5YsAQD069evxmOtDRU9Pg3x3KmohnruVATPm//5559/9Mp2796N48eP19sV9R8WHByM4uJirFu3TirTaDSIiYmBn59fg5iY/zCFEELUdhD0P126dEHLli3h5+eH5s2bIzU1FTExMUhPT8eXX36J4OBgqe2JEyfg7++PJ554AhEREbh27RpWrFiB7t27S08I1idBQUHYuXMnJk2ahMDAQJ26Jk2aICgoCACwb98+jBkzBmPGjIGrqyvy8/PxzTff4NChQ4iIiMCnn35aC9HXvIoeH6DhnTsApKTozz//xLZt2zBp0iRpleu33noLQMM9dypybICGed4Y4ubmhqeffhpdu3ZF06ZNceLECXz++edwcnLC0aNH0aJFi9oO8ZEIDQ3FN998g5kzZ8LV1RUbN25EUlISfvnlF3Tv3r22w3v0anVZUdKzZs0aERAQIOzt7YWFhYVwcHAQQ4YMEb/99pvB9gcOHBD+/v5CpVIJBwcH8corr4jc3NxHHPWj0bp1awHA4Kt169ZSu8uXL4uQkBDRpk0boVKphJWVlejSpYv4z3/+I0pKSmpvB2pYRY+PVkM6d4QQRo9N6Y/BhnruVOTYaDW088aQN998U3h7e4umTZsKS0tL0apVK/Hyyy+Lv//+u7ZDe6Ty8/PF7NmzhaOjo1AqlcLHx0f8+OOPtR1WreEVKiIiIiKZOIeKiIiISCYmVEREREQyMaEiIiIikokJFREREZFMTKiIiIiIZGJCRURERCQTEyoiIiIimZhQEREREcnEhIqIiIhIJiZURET/36VLl/Diiy+iXbt2UKlUsLGxwbPPPotVq1YhPz+/Wrd17949LFq0CPv27avWcYmodljUdgBERKbg+++/R0hICJRKJcLCwuDp6YnCwkIcPHgQc+bMwZ9//ol169ZV2/bu3buHxYsXAwB69uxZbeMSUe1gQkVEDd6VK1cwevRotG7dGr/++iucnJykuldeeQV//fUXvv/++1qMkIhMHW/5EVGD9+GHH+LOnTvYsGGDTjKl5erqiunTpwMAioqK8O6776J9+/ZQKpVo06YN5s+fD41Go9Pn2LFj6NevH+zt7aFWq9G2bVtMmjQJAJCSkgIHBwcAwOLFi6FQKKBQKLBo0aKa3VEiqjEKIYSo7SCIiGpTy5YtoVQqcenSpXLbhoeHY+PGjQgODkZgYCASExOxadMmBAUF4ZtvvgEA3Lx5Ex4eHnBwcMCUKVNga2uLlJQUfP311zhz5gzu3r2LzZs34+WXX8bw4cMxYsQIAICXlxe8vLxqdF+JqGYwoSKiBi03NxdNmzbFsGHD8O2335bZ9tSpU/D29sYLL7yAzz77TCqfM2cOli9fjl9//RWBgYH49ttvMXz4cBw9ehRdu3Y1OFZmZiYcHBywcOFCXpkiqgd4y4+IGrTc3FwAgLW1dbltd+/eDQB4/fXXdcpnzZoFANI8K1tbWwDArl27cP/+/eoKlYhMGBMqImrQbGxsAAB5eXnltr169SrMzMzg6uqqU+7o6AhbW1tcvXoVANCjRw+MHDkSixcvhr29PYYNG4aYmBi9eVZEVH8woSKiBs3GxgbOzs74448/KtxHoVCUWx8XF4eEhARMmzYN169fx6RJk9ClSxfcuXNHbshEZIKYUBFRgzd48GBcunQJCQkJZbZr3bo1SkpKcPHiRZ3yGzduIDs7G61bt9Ypf+aZZ/Dee+/h2LFj2LJlC/78809s27YNQPlJGRHVLUyoiKjBmzt3Lho3bowXXngBN27c0Ku/dOkSVq1ahYEDBwIA/v3vf+vUr1y5EgAwaNAgAMDt27fx8PM+3t7eACDd9rOysgIAZGdnV9duEFEt4sKeRNTgtW/fHlu3bsWoUaPQsWNHnZXSDx8+jB07diA8PBzTp0/HhAkTsG7dOmRnZ6NHjx5ISkrCxo0bERQUhMDAQADAxo0bsXbtWgwfPhzt27dHXl4ePvvsM9jY2EhJmVqtxhNPPIEvv/wS7u7uaNasGTw9PeHp6Vmbh4KIqojLJhAR/X8XL15EVFQU9u7di/T0dCiVSnh5eWH06NGYMmUKlEolioqK8P777yM2NhbXrl2Do6Mjxo8fj4ULF0KpVAIATp48iaioKBw6dAg3btxA06ZN4evri0WLFqFLly7S9hISEvDqq6/i9OnTKCws5BIKRHUYEyoiIiIimTiHioiIiEgmJlREREREMjGhIiIiIpKJCRURERGRTEyoiIiIiGRiQkVEREQkExMqIiIiIpmYUBERERHJxISKiIiISCYmVEREREQyMaEiIiIikokJFREREZFMTKiIiIiIZPp/deSIQwVe+0wAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "optimization_result[\"cost\"].plot(\n", + " kind=\"hist\", bins=30, edgecolor=\"black\", weights=optimization_result[\"probability\"]\n", + ")\n", + "plt.ylabel(\"Probability\", fontsize=12)\n", + "plt.xlabel(\"Cost\", fontsize=12)\n", + "plt.tick_params(axis=\"both\", labelsize=12)\n", + "plt.title(\"Histogram of Cost Weighted by Probability\", fontsize=16)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Create a Network Graph for the Best Solution Found\n", + "$\\star$ Very important to remember that this is a mximization problem and the classical solver of the QAOA process returns all possible results. We need to filter out the solution with the highest cost which would represent the the highest compatability score. " + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1m\u001b[4m** QAOA SOLUTION **\u001b[0m\n", + "\u001b[4mHighest Compatibility Score\u001b[0m = 2.3499999999999996\n", + " patient1 patient2 patient3\n", + "donor1 1 0 0\n", + "donor2 0 0 1\n", + "donor3 0 1 0\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxoAAAH6CAYAAACAmzr5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAACIL0lEQVR4nOzdd1hUZ9oG8HuGYehIVxFBRaTYsWBBVEAUmBnUZI3JmhhjumaT3fglMWVTNptsko3ZZNeYuqaYbDabKMxQxK7YexdQY0VQeu/zfn8YThw5YBsHkPt3XXttmHnmnOeMo8x9znveVyGEECAiIiIiIjIjZVs3QEREREREdx4GDSIiIiIiMjsGDSIiIiIiMjsGDSIiIiIiMjsGDSIiIiIiMjsGDSIiIiIiMjsGDSIiIiIiMjsGDSIiIiIiMjsGDSIiIiIiMjsGDaLr0KtXLygUCigUCvz0008t1kVHR0OhUOCrr76yXHMdQNN7dzts2LABjzzyCEJCQuDq6gpra2u4u7tj5MiRmD9/PtasWQMhxG3Zt7lNmDABCoUCGzZsaOtWAABbt25FTEwM3NzcoFQqzfbZPn36NBQKBXr16nXL2zJXL1f/T6lUws3NDeHh4Vi8eDEaGhrautVbkpubixdeeAFDhgyBk5MT1Go1vL29MXToUDzyyCP46quv0NjYaJZ93c6/7y1p+jf69OnTFt0vEbWOQYPoBr300ksW+9LR3r54ticFBQWYPHkyJk6ciC+++AJlZWUYO3YsZsyYgdGjR+PSpUtYvHgxJk2ahGHDhrV1ux3OhQsXEB8fjzVr1mDAgAGYNWsWZs+ejb59+17ztR31c3vXXXdh9uzZmD17NmbOnInAwEBs3boV8+fPR1RUFOrq6tqkrwcffPCWQt7WrVsREhKCd955BydPnsTIkSNx9913Y/jw4SgpKcEXX3yBOXPmoLq62ryNm8mtHj8RtR1VWzdA1JHY29sjOzsbX3zxBR5//PG2bqfTKikpQXh4OLKyshAUFISPP/4YEydObFZ3+PBhfPDBB/jhhx/aoMuObdWqVSgpKcF9992H7777rq3bsYi///3vza6ybN26FZGRkdi0aRM+++wzzJ8/v22au0m1tbWYMWOG9Ge5ZMkSODs7m9RkZmbi3//+N6ysrNqoy1u3du1a1NfXo0ePHm3dChFdgVc0iG7A008/DQB44403UFVV1cbddF5PPfUUsrKy0KdPH2zdulU2ZADAgAED8OWXX2L9+vUW7rDjO3v2LAAgICCgjTtpW2PGjMHdd98N4PKX2Y5m8+bNyMnJgUqlwmeffdYsZABAUFAQ3n33XdjZ2bVBh+bh7++PoKAgWFtbt3UrRHQFBg2iGxAXF4fx48cjNzcXH3zwwQ2/fs+ePfj9738PX19f2NjYwM3NDZMnT0ZqaqpJ3YYNG6BQKLBx40YAwMSJE03Gj3/11VcoKSmBlZUVXF1dYTQaTV7/448/SrVXb7u2thb29vawtbVtNlSiqKgIL774Ivr37w97e3s4OTlh2LBhePfdd2WHVTT1OWHCBFRVVeHPf/4zgoODYW9vf13j7xsbG/HEE09AoVBg4MCBOHfu3DVfc/LkSXz//fcAgA8++ACurq7XfM3IkSObPXbl8J6MjAxotVp4enpCqVRKQzTKy8vx+eefY/r06QgICICDgwMcHBwwcOBAvPTSSygpKZHd35XjxVesWIHw8HA4OzvDyckJEyZMaPZnImf//v2YPn06PDw8YGNjg5CQELz//vs3fb/JDz/8gKioKLi5ucHGxgZ+fn546KGHkJ2dbVL31VdfQaFQ4NVXXwUAvP7669Jn6Vp/ptfzub2aEAKfffYZhg0bBgcHB3Tp0gUxMTHYtm1bi/uprq7G+++/j1GjRsHFxQW2trYIDAzEc889h8LCwht7Y65Dt27dAKDFIZM308///vc/REdHw93dXbqvKCQkBI888ggOHjwI4Lf7R77++msAwJw5c0zez9dee+2avV+8eBEA4OjoCAcHhxs9dFRVVeFvf/sbQkND4eTkBHt7e/Tv3x8vv/wyiouLb2hb17p34+ohdzdy/K3do3Gjx3DlPUQ38/kkoisIIromPz8/AUBkZGSI7du3CwDC2dlZFBQUmNRFRUUJAGLp0qXNtvGPf/xDKJVKAUAMGTJE3H333SI8PFyo1WoBQLz++utS7bFjx8Ts2bNF165dBQAxefJkMXv2bOl/GRkZQgghRowYIQCIHTt2mOzrkUceEQAEAPHHP/7R5Lm1a9cKAGLixIkmj588eVI6Tk9PT3HXXXcJnU4nnJycBAARGhoqioqKTF6zfv16AUCEhYWJESNGCAcHBxEbGyvuueceER0dLdU19XKl8vJyERsbKwCISZMmidLS0mv8Kfz2PgIQrq6uorGx8bpeI2f8+PECgHjyySeFUqkUISEhYubMmSImJkZ8//33QgghMjIypPcjPDxc3HPPPSImJka4u7sLAKJv377NPgNC/PZ5+eMf/ygAiOHDh4t7771XjBw5UnovPvrooxZ7euGFF4RarRbBwcFi5syZYvz48cLKykoAEE8//fQNHafRaBQPPPCAACBUKpWIjIwUM2fOFP369RMAhL29vUhLS5PqMzIyxOzZs8XgwYMFADF48GDpc/fss8+2uq/r/dyeOnVKABB+fn5i9uzZwtraWkRGRooZM2ZIfdnY2Ijt27c320dOTo4YOHCgACDc3NxEdHS0mDZtmvSe9+rVS5w+ffq635+mXgCIU6dOydaMGzdOABDPP/+8Wfp5/fXXpT+PiIgIce+994q4uDgxYMAAoVAoxAcffCCEECI/P1/Mnj1b+Pv7CwBi7NixJu/nihUrrnl8TZ/hlv5dak1hYaEYMmSI9O+dTqcTd911l/Dw8BAARO/evWXfM7m/76093qTp879+/XohxI0df9P7fXU/N3MMt/L5JCJTDBpE1+HKoCGEENOnT5f9Et9S0Fi5cqVQKBTCw8NDbNy40eS5gwcPCh8fHwFAbNiwweS5q3/xXm3hwoUCgPjrX/9q8njv3r2Ft7e3cHd3FwMHDryu14SFhQkAQqfTiYqKCunxS5cuidDQUAFA3HfffSavaQoaAMSgQYNEbm6ubJ9Xf8E4f/689Mt/zpw5oq6uTvZ1cu6//34BQERFRV33a+Q0vbcAxOLFi2Vrzp07J9asWdMs0FRWVkpf3p988slmr2v6vCgUCrFs2TKT53744QehUCiESqUShw4darGnTz75xOS5tWvXCoVCIaysrMS5c+eu+ziXLFkiAAgPDw+xb98+6XGj0SheffVVAUC4uLiIS5cumbyu6blXX331uvd19XG09Lm98su9n5+fyMrKkp5raGgQDz30kAAgYmJiTF5nNBrF2LFjBQAxd+5cUVZWJj1XX18vnn32WdkQ3ZqWgkZtba3IysoSTz75pPT+nT179pb7qampEXZ2dsLR0VFkZmY26+f06dPi2LFjJo/Nnj37poKCEEI0NjaKoUOHSsc4YsQI8dJLL4kVK1Zc83N0zz33SCcSrgzUV54kGDNmTLPXmStoNLme428paNzMMdzs55OImmPQILoOVweNzMxMoVKphI2NjcnZypaCRtOX+J9++kl2+z/++KMAIO666y6Tx6/1ha3p6sSECROkx06ePCkAiNmzZ4vf/e53AoDIy8uTnpe7CtJ01tPe3t6ktsnu3bsFAKFUKk2+nFwZNDZt2iTboxCmXzAOHDggBas33nijxde0pOnLwcyZM2Wf379/v8lZz6vPpjdpem8jIyNvuAchLocNlUolPD09mz3X9HmZOnWq7GvvuusuAUA88sgjsj1Nnz5d9nVTpkwRAMQ333xz3X02nQ2Wu4JiNBrFoEGDZIOnpYKGXq9v9nxubq501vjKEJqWliaAy1cE6+vrm72usbFRDBgwQABoFuJacmUvLf3v3nvvlT1zfzP9XLp0SQrm1+tWgoYQQly4cEH6e3P1//r16yf+9re/iaqqKpPXnDlzRiiVSqFQKMSBAweabfP8+fPC1tZWABBbtmwxea69BI2bPYab/XwSUXO8R4PoJgQGBuKhhx5CbW0tXnnllVZrCwoKsHPnTtjZ2UGr1crWTJgwAcDlGW5uxNixY2FnZ4dt27ZJN6evWbMGADBp0iRER0ebPFZSUoI9e/bAxcUFw4cPl7bTNCZ6ypQp6Nq1a7P9DBs2DIMHD4bRaJTG31/Jy8sL48aNu2a/6enpCA8Px6VLl/Dtt99e8727GefOncPXX3/d7H8nTpyQrW+60bc1W7duxTvvvIN58+Zhzpw5ePDBB/Hkk09CrVYjPz+/xbHqs2fPbvXxlqZ/belzEhwcDADIycm5Zs8AcP78eZw8ebLFXhQKBebMmQMAbXLDvEqlwpQpU5o93q1bN7i6uqK2ttbkHoeUlBQAl6ehVamaT5qoVCoREREB4Mb/LjVtt2l62/vvvx9RUVHo0qULfvzxR7z44ouoqKgwqb+Zfjw9PdGrVy8cPHgQzz77LI4ePXrDfd6o7t27IzU1FYcPH8Zbb70FrVYrzc6UnZ2NF154AaNHjza552jTpk0wGo0YOnQoBg0a1GybPXr0wOTJkwG0zWfnetzqMdzo55OImuP0tkQ36bXXXsOyZcvw3XffYcGCBbK/yADg1KlTEEKguroaNjY2rW4zPz//hnqwsbFBeHg4Vq9ejYyMDEyePBlr1qyBQqFAdHQ0KisrAVwOGr///e+xbt06GI1GTJw4EUrlb+cZmr649u7du8V9+fv748CBA7Jfcq934TWNRoOGhgYsW7YMv//972/gSH/j4eEBoOX3SqPRmNwwHR0d3epsQa31funSJdx1113YvHlzqz2VlZXJ3pTe0vvZ9Pj58+dln/f19ZV9vGnGoJqamlb7adL0Z+Xu7i472xBw+c/1ylpL6t69e4uzBDk7O6O4uNjkWH/55RcAwCuvvHLNkHqjf5cA+eltS0pKMGPGDPznP/9BeXk5DAbDLffzzTff4O6778aiRYuwaNEiuLm5ISwsDJMmTcL9998vfcbNrX///ujfv7/087Fjx/Dxxx9j8eLFOHDgAF566SUsXrwYwPX/m3BlbXtzq8dwo59PImqOQYPoJnXv3h1PP/003n77bSxcuFA6u3m1phmhHB0dcdddd5m9j+joaKxevRqrV69GTEwM1q1bh4EDB0pXJnr37i1d0Wj6/6YrHeZyvdNizp49G19++SVeeeUVjBkzptUvAC0JDQ3Ft99+i71798JoNJoEppvRWu8PP/wwNm/ejNGjR+P111/H4MGDpdXHAcDb2xu5ubk3PRNUS6+71WPqKG70OJv+LoWHh0tfEFty5RfqW+Hi4oL3338fgwYNQnJyMo4cOSJt+2b7GTduHE6fPo2UlBRs3LgRW7duRXp6OtLS0vDqq69ixYoViIqKMkv/rQkODsY///lPKJVKfPTRR0hMTJSCRlu4eva8ttZZ/h4S3U4MGkS34Pnnn8dnn32G1NRUbNq0SbamZ8+eAC4PU/n3v/9t9l9eVw6P2rdvHwoLC02GyURHR+Pzzz9HZmZmi0GjaRhF0xlaOU3P3cqCWJ9//jkcHR3x4YcfYty4cVizZg2CgoJuaBsajQbPPvssiouLkZqaCo1Gc9P9tKayshKpqalQKpVITU2Fi4tLs+fz8vJa3capU6cwePDgZo83TcHp4+NjrnZlNf1ZFRYWoqysTPaqhjn+XC2l6e9SQkICFixYYLH99unTR/rvY8eOSaHhVvqxs7PD3XffLQ3dy8/Px8svv4zPPvsMDz30EM6cOWOm7q8tJiYGH330EQoKCqTHbse/CdbW1qivr0d5eTmcnJyaPW/uY7bUv2tE1DLGdaJb0KVLF7z44osAgOeee062xtvbG4MGDUJ5eTlWrlx5Q9tXq9UAWp6/HwCGDh0Kd3d3HDx4UFpfYtKkSdLzTaHiyy+/xPHjx9GzZ0/069fPZBtN94isXLlSmnf/Svv27cP+/ftNxpzfDIVCgX/84x94+eWXkZOTg4iICOzfv/+GttG3b1/cc889AIA//elPKC0tvel+WlNaWorGxkY4Ozs3CxkAsGzZsmteyfj2229lH//mm28A/Pa+3y4+Pj7SmfaW1rBoerylRQ9vxvV8bm9GbGwsgMtrUNzsVaSb0XSfC3D5yuTt6MfT0xPvvvsugMuLJV5538+tvJ/X01fT4oxXBt+IiAgolUrs378fBw4caPaa3Nxc6d+z6/3sNH2ZP3bsWLPnDh482OI6Ojd7/LfjGIjoxjBoEN2iefPmwdfXFzt27GhxEac333wTwOUFp64c491ECIEdO3Zg1apVJo83/eI/cuRIi/tXKBSIjIyEEAKLFy+GWq02CQNRUVFQKBT417/+BUB+2FR4eDjCwsJQXV2Nxx57zGTV84KCAjz22GMAgJkzZ0pncW/FX/7yF7z77rvIz8/HxIkTb3jxq8WLF6Nv3744fvw4xowZI3uDOnD5ykFL90FcS9euXeHq6oqSkpJmgWH79u1YuHDhNbexYsUK/PDDDyaP/fTTT/j555+hUqnw1FNP3VRvN6LpTPtf/vIXky9bQgi8+eab2L9/P1xcXPDII4+YbZ/X87m9GQkJCRgxYgR27tyJOXPmyN6HUVxcjE8++cRsIaekpER6D93c3EwmPbiZfs6cOYMvvvgCZWVlzWqb/m1wdXU1ufp0K++nwWDA1KlTsXr1ajQ2NjZ7fsOGDdLCdzNnzpQe9/X1xe9+9zsIIfDYY4+Z3PRcWVmJRx99FDU1NRgzZgzGjBlzXb00/dvz+uuvo7a2Vnr89OnTmD17douh6GaP/3YcAxHdoDaY6Yqow7l6eturffXVVyZTRspNw/jhhx8KlUolgMsLvcXHx4v77rtPTJo0SXh5eQmg+YJgycnJAoBQq9VCo9GIhx56SMydO7fZdJKffvqptG+5NQSunEf/u+++kz2GKxfs8/LyEnfffbdISEgQzs7OAmh9wb7x48e38u61PK3lkiVLhEKhEA4ODmLt2rWtbuNqFy9elKYTBiB8fHyERqMRs2bNEnfddZcYNGiQUCgUAoAYOHBgi2tWtDQFqxBCfPDBB9L2w8LCxL333ivGjh0rFAqFuP/++1ucu7/p8WeeeUZau+C+++6TpjkGIBYtWtRsf9fq6WamnDUajdLaIyqVSkRFRYl7771XBAYGCgDCzs5OpKammmVfTa71ub1yQbSWtPTe5uTkSGuwODg4iDFjxoiZM2eK6dOniyFDhkgLG1ZXV19Xr1dOZXrXXXdJ0yHff//9Ijo6WnTp0kUAELa2tsJgMDR7/Y32s2/fPgFAWFtbixEjRogZM2aIGTNmSH9HFQqF+OKLL0z2ceDAAaFUKoVSqRTR0dFizpw5Yu7cuSIpKemax7dixQrp+Lp06SImTpwo7r33XqHT6URQUJD0XHR0tKisrDR5bUFBgbRwY5cuXcTUqVPF3XffLTw9PQVw4wv2/fLLL8LFxUUAEL6+vuKuu+4SERERws7OTkRHR4sxY8bIfv6v5/hb+rzczDHcyueTiEwxaBBdh2sFjcbGRml14JaChhBCHDp0SDz66KMiICBA2NraCnt7e9GnTx8xefJk8dFHH4mcnJxmr/n8889FaGiosLe3b3H7TWtnQGY9BCGE+L//+z/pS4zcOhlNCgsLxcKFC0VwcLDU39ChQ2Xn2Rfi1oOGEEIsW7ZMqFSqFr/IXcuaNWvEQw89JAIDA4Wzs7NQqVTC1dVVhIaGiscee0ysXr1adgXx6wkaQgiRmJgoxowZI1xcXISjo6MYPny4+Pjjj4XRaLxm0Dh16pT48ccfxejRo4Wjo6NwcHAQ48aNa/E4b0fQaPL999+LCRMmCBcXF2FtbS169uwpHnzwQdlF4251X0K0/rm91S9yNTU14pNPPhETJ04U7u7uQqVSCS8vLzFkyBAxb948kZ6eft19traOhoODgwgODhbz588Xx48fb3EbN9JPWVmZ+Mc//iGmTZsmAgICpM9Fv379xAMPPCB2794tu48VK1aIsWPHCicnJylAX8+fTXV1tUhPTxfPPfecGDt2rPDz8xO2trbC1tZW+Pr6iqlTp4r//ve/wmg0yr6+srJSvP3222LIkCHC3t5e2NraiuDgYPHiiy82O/HQpLW/70ePHhXTp08Xrq6uwsbGRgQGBoo333xT1NXVtfr5v9bxt/Z5udFjYNAgMh+FEBYc6EpE1An06tULZ86cwalTp6576l8iIqI7De/RICIiIiIis2PQICIiIiIis2PQICIiIiIis+M9GkREREREZHa8okFERERERGbHoEFERERERGbHoEFERERERGbHoEFERERERGbHoEFERERERGbHoEFERERERGbHoEFERERERGbHoEFERERERGbHoEFERERERGbHoEFERERERGbHoEFERERERGbHoEFERERERGbHoEFERERERGbHoEFERERERGbHoEFERERERGbHoEFERERERGbHoEFERERERGbHoEFERERERGbHoEFERERERGbHoEFERERERGbHoEFERERERGbHoEFERERERGbHoEFERERERGanausGiIiIiIhacvbsWRQUFLR1G+2Oh4cHfH1927qNVjFoEBEREVG7dPbsWQQHBqGqprqtW2l37G3tcCwrs12HDQYNIiIiImqXCgoKUFVTjS/9JyDQzqWt22k3sqpLMPfkBhQUFDBoEBERERHdrEA7Fwxx8GjrNugGMWhcQ73RiCNFxdhfUISDhUW4WF2D2sZG2FhZoaudLQa5u2GIhxv6u7nCWsl764mIiIiIAAaNFp2rqMBXmSewNPM4SurqAAAqhQINQkg1l38+AQBwUasxJygADwb1RU9HxzbpmYiIiIioveAp+KuU1dXh6c3bMeTHJHx06KgUMgCYhIyrfy6pq8NHh45iyI9JeHrzdpTV1VusZyIiIiL6zV/P74Hjji/auo1Oj1c0rrAuJxdPbtqKgppaCACNVwWLa2mq/+74L1h17gIWR4xGZI/ut6FTIiIiIurIsqpL8G1+FtaW5uBUTTkcrFQY4uCBl3qEItTRs63bMwte0fjV50ezcHf6OhRU18B4gwHjakYhkF9TjbvT1+GLo1lm6pCIiIiI7hRfX8rCV5eyEOrggbf8wvBUt4E4Xl2KiUf0WF+a09btmQWvaAD44mgWnt++GwBgNNM2jb9mled+3e7DIYFm2jIRERERdVQ1xgaoFVb4nYc/XvQJhaOVtfTc/Z79MOzgT3jr/F5M7NKjDbs0j04fNNbl5Eph4HZ5bvtu9OnizGFURERERGa2tTwPL5zZjiNVxfBW2+OZ7oOa1TQII/5+4QC+y89GTl0lulnbY4aHPxb2CIWN0kqqC9n3A0LsXfEn78FYeGYHDlcVobvaHi/2CMV9ngEm2zxVU4ZXzu3CxtILqBENGGDnhud7DMUU19/WtdhUdgFxx1KxtO9EHK0qxrL8bOTVV+HcsPsxVGa6XndrW4xx6obN5blmfIfaTqceOlVWV4d5m7ZCqWj+XH3mURTPnYX6zKO3vB+lApi3aRtvECciIiIyo8NVRUjITEN+fQ1e9AnFLM9++GvOXhiKz5jUzfslA2+e34PBDh74m98ohDt3x98vHMDsE+uabfNkTRlmHV+LiV288ZZvGFys1Hjsl404WlUs1Vysr0LUUQPWlpzHw12D8arPcNSIRszIXg190elm23wnZx/SS87h6e4D8VrPEVArrJrVNLlUXwV3le3NvyntSKe+ovHKzr04l5oMYa2GTXjEbduPUQD5NTX48849+Ef4KJPn3nrrLYSEhGDq1Kkmj+/atQtff/011q9fj9OnT8Pd3R2jRo3Cm2++iX79+t22XomIiIg6ijfP74EQwKoQDXraXF5eIMGtF8IOLpdqDlUW4ruC43jQMxD/6jMOAPBoV8DT2hYf5h7CxtILGN/FW6o/XlOK9GANxjp3AwBMd++NoH0/YFl+Nt7yCwMALLpwEJfqq7EqRIMxTpfrHvQKwqhDy7Hw7HZoXP2gVPx2JrvW2IiMQVNhp2z9q/eWsjzsqLiE53oMNcO70/Y67RWNs+UVWJZ9EtXr1qBu66Zmz6v6BcHlk39D1S/ILPszCoFvs0/iXEWFyeNvvfUWEhMTm9W/8847+PnnnxEVFYUPP/wQjz76KDZt2oTQ0FAcPnzYLD0RERERdVSNwoi1peehcfOTQgYABNm5ItrFR/o5veQcAGB+9wEmr/9Dt4Emz//2ehcpZACAp7UdAuy64FRtmfTYqpJzGO7gKYUMAHC0ssYcryCcqa3Asepik23e5xFwzZBxqb4aD51cj142TvijzPCvjqjTBo2vs06YJM2rKZRKKKzVUJhxtW+lQoGvM09cV+2f/vQnnDlzBh999BEefvhhvPzyy8jIyEBDQwP+9re/ma0nIiIioo6ooL4G1cZG+Nt2afZcwBWPna2rgBIK+NuY1nVV28PFSo2zdaYngXuqmy+87GKlRknDb2urna2tQIBd8/0G2roAAM7Vmm6zl41Tq8dS2ViP32WtQkVjPX7oN8nkBvGOrMMFjddeew0KhQKZmZmYMWMGnJ2d4e7ujqeffho1NTVS3dKlSxEZGQkvLy/Y2NggJCQES5YsAQDUG41YmnkcRf/3NIwXzqMhKxPFc2eheO4slL/75uWaFu7RaPjlBMo/eAfF8x9B8RMPofydN9FwPNukpjrpZxTPnYXGi3mo/PJTlMx/FMXzH0HZl5/giwOHUW+8PLeVQqFAZWUlvv76aygUCigUCjz44IMAgDFjxkCtVptsNyAgAP3798exY8fM+p4SERER3elaOb9swqqFQoGbX/7AtpWrGXXGRtx3fA0OVxXhh36T0N/e7ab309502Hs0ZsyYgV69euHtt9/G9u3b8dFHH6G4uBjffPMNAGDJkiXo378/dDodVCoVDAYDnnzySRiNRoy9ZyZK6upgN3MWqr7/BgpbW9jG6wAASufm6bRJ/bEjqPjHe7Dy6w077TRAqUTd5k0o//tbcHr+Faj6+JvUV37yTyg9vGB31ww0nDmNuowNyHPqgqMJcRjs4YZvv/0WDz/8MEaOHIlHH30UAODv7y+z58uEELh48SL69+9/i+8eERERUcfmYW0LO6UVTtaUNnvu+BWP+aodYYTAiZpSBNm5So9frK9CSWMdfGWuYFyLr40jjlc33292TQkAmAzlao1RCDxyciM2lF7ANwGRGOd8Z81Q2mGDRu/evZGUlAQAmDdvHpydnfHxxx9jwYIFGDRoEDZu3Ag7Ozupfv78+ZgyZQoWLVoEh6gYAIA6dDiqV/wEpZMjbEaHt7o/IQSqvl0KVVAwHJ95Dopf067N+EiUvfI8qlf8D07PvmDyGivfXnCY88jlOgCisgJ1mzdgf2ERBnu4YdasWXj88cfRp08fzJo165rH/N133yEnJwdvvPHGdb9PRERERHciK4USUV18kFx0BudqK6Qv95nVxVhTcl6qm+zSE6+d343FeUfwz96/fd/7V+5h6fkbFePSE4vzDmNH+UWEOXUFcHn409JLmfCzcUTwFYGmNc+e3oqfi37BR73DkeDW+4b7aO86bNCYN2+eyc9PPfUUPv74Y6SmpmLQoEEmIaO0tBT19fUYP3480tPTsevMWagUCjTcwArgjWfPwHgxD7aaBIiKCpOLZ6rg/qjbtgXCaDS5p8NmQqTJNlQBgajfuxs7z5zF7MC+N3S8mZmZmDdvHkaPHo3Zs2ff0GuJiIiI7kQv+4RiTcl5xBxNxiNdg9EgjPjk4lEE27vicFURAGCggzt+7xGApZcyUdpQi3Dn7thTkY/vCo5D4+pnMuPU9fqT9yD8r/Akpmel4/Fu/eFmZYPvCo7jdG05vguIbvU+4CaLcw/j80vHEOboBXulFX4oOG7yvNa1Fxw6+L0aHTZoBASYLpri7+8PpVKJ06dPAwC2bNmCV199Fdu2bUNVVZVJbU5h4Q2FDAAwXsoDAFR9+WmLNaK6GgoHB+lnpZvpQiwK+8vP5eTn39C+8/LyEB8fjy5duuCnn36ClVXLcy8TERERdRYD7N2RGDQFC8/uwJvn96CH2gEv9QhFXn2VFDQAYHGfcehl44TvCo7DUHwGXa3tsMB7MBb2CL2p/Xa1tsfaEC1eObcLn+YdQY2xEQPs3fC/fjEmC/a15mBVIQBgR8Ul7Ki41Oz5I0O6MWi0F4orkuPJkycRFRWFoKAgLFq0CD179oRarUZqaio++OAD1NY33PgOjJeDid3v7oWVr598DzY2pg+0MGNVbUPjde+2tLQUsbGxKCkpQUZGBry9bzx1ExEREd2pwp27I2PA1GaPv+QzTPpvlUKJhT6hWOjTerA4OnSm7OMrQzTNHutt64xlAVGtbi/C2RsVYQ/LPvep/3h86j++1dd3dB02aBw/fhy9e/82lu3EiRMwGo3o1asXDAYDamtrodfr4ev7W6pcv349AEBtpQQaf/2yf50zECi9vC6X29nBOmTANapbZ2P1WwBRKBQQLVxdqampgVarRXZ2NtasWYOQkJBb2i8RERERkaV0uOltmyxevNjk53/+858AgNjYWGlo0ZVf4EtLS7F06VIAgIetDVS/XgFR2NhAXDW0So6VX28ovbxQk54KccU0uk2M5WUyr5J3PisT0dHR8PX1RWVlJb799luMHDkSFVcs5tfY2Ih77rkH27Ztw//+9z+MHj36urdPRERERNTWOuwVjVOnTkGn02HKlCnYtm0bli1bhvvuuw+DBw+Gra0t1Go1tFotHnvsMVRUVODzzz+Hl5cXcnNzEezqghVll8OFyq83ajesRbUhEVZeXaFwdoZ1cPPpYxVKJexnP4yKf7yHsleehzo8AkoXNxhLitCQeQwKOzs4/uHZ6+r94KqVqN+5w+SxXbt2YfHixZgwYQLCwsLw7LPPQq/XQ6vVoqioCMuWLTOpv55ZqoiIiIiI2kqHDRr//e9/8ec//xkvvPACVCoV5s+fj/feew8AEBgYiJ9++gkvv/wyFixYgG7duuGJJ56Ap6cnHnroIYS4ugBnLgAAbLXTYCwsQM3KZKCmBqrAINmgAQDWQSFwevE11BgSUbtuNURNLZRdusCqjz9sxkfKvkZO4/nzso+/8MILmD17NsLCwrB//34AgMFggMFgaFbLoEFERERE7ZlCtHSDQDv12muv4fXXX0d+fj48PDyu/QIZ9UYjAr//GSV1ddcuNjNjRQVK/zTvt3tEfqVQKDBhwgQkJCRAq9WiT58+Fu+NiIiIqD3Zu3cvhg0bhs0DpmKIw81977sT7a8sQPjhROzZswehoTc3c5YldNh7NG6FtVKJOUEBLS4xf7soAdRtXNcsZACX7ydZv349nnnmGfj7+yMgIADPPfccMjIy0NBwE7NkERERERG1oU4ZNADgwaC+MFr4Yo4A8O28x6FSNR+x1q1bN5OfT5w4gffeew8RERFwd3fHfffdhx9++AHFxcUW6paIiIiI6OZ12qDR09ERs/r5X9fKjeagVChwfz9/3BU5Ebt27YLDFQv7hYWF4cKFCzh06BDefvttjBw50mRdkLKyMvznP//BvffeCw8PD4wbNw7vv/8+srKyWpwal4iIiKij4/ecjq3D3aNhTmV19Qj72YD8muqm9fhuC6UC8LS1w467tHBWX17hsaioCPfddx+2bt2K77//HhqN6UIwBQUFSEtLg16vR1paGiorK2W37efnh2nTpkGr1SI8PBxqtfr2HQgRERHRbVZXV4eMjAwkJyfjhx9+QF5eHr70n4BAO5e2bq3dyKouwdyTG9r9PRqdOmgAwLqcXNydvu627+enyZGI7NG92eNGoxHKFlYQb1JXV4fNmzcjOTkZy5cvx5kzZ2TrHBwcEBsbC51Oh9jY2Ju+WZ6IiIjIkgoKCpCamgqDwdDsBKsSChjRqb+uyrK3tcOxrEyTxanbm04fNADgi6NZeG777tu2/fdGj8Dc4H5m2ZYQAtnZ2UhOTkZiYiK2bt0Ko9HYrE6hUGDEiBGYNm0aNBoN+vfvbzIci4iIiKitCCFw5MgRGAwGJCYmYteuXbLDpJRKJYYNG4bw8HCMGzcOfn5+bdBt++Th4dGuQwbAoCFpChtKBcwyjKppO+YMGXKKi4uRnp4Og8GA5ORklJXJr1Deo0cPTJ06FVqtFuPHj4etre1t64mIiIjoajU1Ndi4cSMMBgNWrFiBCxcuyNY5OztDo9FAp9Nh8uTJcHFxsWyjZDYMGldYl5OLeZu2Ib+m5pZmpFIqFPC0tcXiiNGyw6Vul4aGBmzbtk0aYnXixAnZOltbW8TExCAhIQFxcXHNZrwiIiIiMoe8vDykpqYiKSkJq1atQk1NjWxdQEAApk+fDo1Gg1GjRsnO0EkdD4PGVcrq6vDKzr1Yln0SSoUCjTfw9lgpFDAKgVn9/PGXkcOkG7/bysmTJ5GSkoLExMRW1+MYOnSoNMRqyJAhHGJFREREN0UIgf3790tDovbt2ydbp1KpEBERgalTpyI+Pp4LFd+hGDRacK6iAl9nnsC/M49LK4irFAo0XPF2Xfmzi1qNh4ICMDuoL3o6OrZJz60pKyvD6tWrYTAYkJSUhJKSEtm6rl27SquTR0ZGwt7e3rKNEhERUYdSVVWFdevWQa/XIykpCZcuXZKtc3V1lb5jTJo0CU5OThbulCyNQeMa6o1GHC0qwf7CIhwoKMSl6hrUNDbC1soKXna2GOzhjiHubghxc4H1NWaPai8aGxuxa9cu6WzD0aNHZevUajWio6Oh0+kQHx8PHx8fC3dKRERE7dH58+eRkpKCpKQkrF27FnW/npS9WkhIiDQN/4gRI6450ybdWRg0CGfPnpX+sVi3bh3q6+tl6wYMGCANsRo+fDj/sSAiIuokjEYjdu/eLZ2kPHz4sGydtbU1oqKioNPpoNFo0LNnTwt3Su0JgwaZqKysxNq1a6XLnwUFBbJ17u7u0Ol00uVPx3Y4XIyIiIhuXnl5OdasWQO9Xg+9Xo+ioiLZOk9PTyQkJECn0yEyMhIODg4W7pTaKwYNapHRaMS+ffuQnJyMFStW4MCBA7J1KpUKEyZMQEJCAjQaDXr16mXZRomIiMgsTp8+jeTkZCQlJWHDhg0tTiQzZMgQadr8oUOHciIZksWgQdftwoUL0hR1q1evRm1trWxdYGCgNMRq1KhRsLKysnCnREREdD0aGxuxfft2aWr87Oxs2TpbW1tMmjRJmhq/e3fLTd9PHReDBt2U6upqbNiwQRpilZubK1vXpUsXaLVaaLVaTJ48GV26dLFwp0RERHSl0tJSabFfg8GA0tJS2bru3btj6tSp0Ol0mDBhAhf7pRvGoEG3TAiBQ4cOSUOs9uzZA7mPlZWVFcLDw6UhVgEBAW3QLRERUedz/PhxJCcnIzExEVu2bEFjY2OzGoVCgeHDh0tDogYMGMAhUXRLGDTI7C5duoS0tDTo9XqkpaWhurpatq5Pnz7SEKuxY8fC2rptFzgkIiK6U9TX12PLli3SkKhTp07J1tnb2yM2NhZarRZxcXHw9PS0cKd0J2PQoNuqrq4OmzZtgsFgwPLly3H+/HnZOicnJ8TFxUGr1WLKlClwd3e3cKdEREQdW2FhIVauXAm9Xo/U1FRUVFTI1vXs2RPTp0+HRqNBREQE1Gq1hTulzoJBgyxGCIHMzExpDu7t27fLDrFSKBQYNWoUpk6dCo1Gg+DgYF66JSIiuooQAseOHZOGRLX0e1WpVGL06NHSqtyBgYH8vUoWwaBBbaaoqAhpaWkwGAxISUlp9cxL0xCriIgI2NjYWLhTIiKi9qG2thabNm2ShkS1NlIgPj5eGing5uZm4U6JGDSonaivr8fWrVthMBiwYsUK/PLLL7J1dnZ2JmNJvby8LNwpERGRZV26dEmaXj49Pb3Fex/9/f1N7n1UqVQW7pTIFIMGtUtNs2MkJSVh8+bNLc6OMWzYMGmI1aBBg3gpmIiIOjwhBA4ePCgNiWptNsdx48ZJszn27du3DbolahmDBrV7paWlWLVqFfR6favzfXfr1k2aki8yMpLzfRMRUYdRXV2N9evXS/cx5uXlyda5uLhI61PFxMRwfSpq1xg0qENpbGzEjh07pCFWWVlZsnW2traIjo6GTqdDfHw8vL29LdwpERFR6y5cuICUlBTo9XqsWbMGNTU1snVBQUHSkKiwsDBYWVlZuFOim8OgQR3a6dOnpSFWGzZsQENDg2zd4MGDpSFWoaGhUCqVFu6UiIg6O6PRiL1790pDog4cOCBbp1KpMHHiRCQkJCA+Ph69evWybKNEZsKgQXeMiooKrFmzBnq9Hnq9HoWFhbJ1np6e0Ol00Gq1iI6OhoODg4U7JSKizqKyshJr1qyBwWCAXq9Hfn6+bJ27u7s0/Wx0dDQcHR0t3CmR+TFo0B3JaDRiz5490ljXQ4cOydZZW1sjMjISOp0OGo0Gvr6+Fu6UiIjuNGfOnJGGRK1btw719fWydYMGDZKutg8bNoxX2+mOw6BBncL58+dNxsHW1dXJ1oWEhEj/6I8cOZLjYImI6JoaGxuxc+dOJCcnY8WKFTh27JhsnY2Njcn9gz169LBwp0SWxaBBnU5VVRXWrVsHg8GApKQkXLx4UbbO1dVVutIRExMDZ2dnC3dKRETtVVlZGVatWgWDwQCDwYDi4mLZum7duklDoiIjI2FnZ2fhTonaDoMGdWpCCOzfv1+6MW/v3r2ydSqVSpqrXKvVok+fPhbulIiI2trJkyelCUgyMjJkJyBRKBQIDQ2Vro4PHjyYazxRp8WgQXSFvLw8pKamQq/XIz09vcWpBvv27Ytp06ZBq9Vi9OjRXH2ViOgO1NDQgK1bt0pDok6cOCFbZ2dnh8mTJ0On0yEuLg5du3a1cKdE7RODBlELamtrsWHDBukXTE5Ojmydk5MTNBoNtFotpkyZAldXVwt3SkRE5lJcXIyVK1fCYDAgOTkZ5eXlsnU9evTA9OnTodFoMH78eNjY2Fi4U6L2j0GD6DoIIXD06FFpFqudO3dC7q+OUqnEmDFjpCFW/fr14yVzIqJ2TAiBrKwsaUjU1q1bYTQam9UpFAqEhYVJQ6JCQkL47zvRNTBoEN2EgoICpKWlwWAwIDU1FZWVlbJ1fn5+0mqu48aNg1qttnCnRER0tbq6OmRkZEhXrM+cOSNb5+joiLi4OOmKtYeHh4U7JerYGDSIblF9fb30C2v58uUt/sJycHBAbGwstFot4uLi+AuLiMiC8vPzpRNEaWlpLZ4g6tWrlzQkKjw8HNbW1hbulOjOwaBBZGbZ2dnS1Llbtmxp8RL8iBEjMHXqVGi1WvTv35+X4ImIzEgIgcOHD0uzCu7atavFIa/h4eFISEiARqNBv3792qBbojsTgwbRbVRSUmJyU2FZWZlsXY8ePaRxvxMmTICtra2FOyUi6vhqampMJvG4cOGCbJ2zszO0Wi20Wi0mT54MFxcXyzZK1EkwaBBZSENDA7Zt2yb9Ajx+/Lhsna2tLWJiYqSVY7t162bhTomIOo68vDykpKRAr9dj1apVLU5L3q9fP+meuVGjRnFaciILYNAgaiMnT55ESkoKkpKSsGnTJtmFnwBg6NCh0hCrIUOGcIgVEXVqQgjs27dPGhK1b98+2TqVSoWIiAhMnToV8fHxXGiVqA0waBC1A2VlZVi9erU0vWJxcbFsnZeXFxISEqDT6RAZGQl7e3sLd0pEZHlVVVVYu3atdP/bpUuXZOvc3Nyg0+mg1WoxadIkODk5WbhTIroSgwZRO2M0GrFz505piNXRo0dl69RqNaKiopCQkID4+Hj4+PhYuFMiotvn/PnzSE5Ohl6vx9q1a1FXVydb179/f2lI1IgRI6BUKi3cKRG1hEGDqJ07e/asNP547dq1qK+vl60bMGCANMRq+PDh/GVLRB2K0WjErl27pCFRhw8flq2ztrY2OcnSs2dPC3dKRNeLQYOoA6msrDQZPpCfny9b1zR8QKfTITo6msMHiKhdKi8vx+rVq2EwGKDX61FUVCRb1zRsVKvVIjIyEg4ODhbulIhuBoMGUQdlNBpNbojcv3+/bJ1KpcKECROkccu9evWyaJ9ERFc6deqUNCRqw4YNLU6EMWTIEGlI1NChQzkRBlEHxKBBdIfIzc2VhlitXr26xSkeAwMDpSFWo0aNgpWVlYU7JaLOpLGxEdu3b4fBYMCKFSuQnZ0tW3fl1N5xcXHo3r27hTslInNj0CC6A9XU1GD9+vUwGAxITExEbm6ubF2XLl1MFq3q0qWLhTslojtRaWkp0tPTodfrkZycjNLSUtk6b29v6cQHFysluvMwaBDd4YQQOHTokDTEavfu3ZD7a29lZYWxY8dKK5QHBAS0QbdE1FEdP35cun9sy5YtaGxsbFajUCgwfPhwaUjUgAEDOCSK6A7GoEHUyVy6dAlpaWkwGAxIS0tDVVWVbF3v3r0xffp0aDQajB07FtbW1hbulIjas/r6emzZskUaEnXq1CnZOnt7e8TGxkKn0yE2Nhaenp4W7pSI2gqDBlEnVldXh02bNiE5ORnLly/HuXPnZOscHR0RFxcHnU6HKVOmwN3d3cKdElF7UFhYKJ2oSE1NRUVFhWxdz549MX36dGi1WowbNw5qtdrCnRJRe8CgQUQALg+xyszMlIZYbdu2TXaIlUKhwKhRo6QhVsHBwRz6QHSHEkLg2LFj0pCo7du3y/67oFQqMXr0aOnfhcDAQP67QEQMGkQkr6ioCCtXroTBYEBKSgrKy8tl63x8fKQhVhEREbCxsbFwp0RkTrW1tdi0aZM0JOr8+fOydU5OToiPj4dOp8PkyZPh5uZm4U6JqL1j0CCia6qvr8fWrVuRnJyMFStW4OTJk7J1dnZ2mDx5MhISEhAXFwcvLy8Ld0pEN+PSpUvS9Njp6emorq6WrfP398e0adOg1WoxZswYqFQqC3dKRB0JgwYR3bATJ04gOTkZSUlJyMjIaHF2mWHDhklDKQYNGsShFETthBACBw8elKbA3rt3b4uz0Y0bNw5Tp05FfHw8+vbt2wbdElFHxaBBRLektLQUq1atgsFggMFgQElJiWxdt27dpPnyJ06cCDs7O8s2StTJVVdXY/369dDr9UhKSkJeXp5snYuLC7RaLXQ6HSZNmsT1dYjopjFoEJHZNDY2YseOHdIsVllZWbJ1tra2iI6Ohk6nQ3x8PLy9vS3cKVHncOHCBaSkpCApKQlr1qxBbW2tbF1wcLB0ImDkyJGwsrKycKdEdCdi0CCi2+b06dNISUlBYmIiNmzYgIaGBtm6wYMHS0OsQkNDoVQqLdwp0Z3BaDRi79690v1UBw8elK1TqVSYOHEiEhISoNFo4OfnZ+FOiagzYNAgIouoqKjAmjVrpGkyCwsLZes8PT2h0+mg1WoRHR0NBwcHC3dK1LFUVlZizZo10Ov10Ov1KCgokK3z8PAw+bvl6Oho4U6JqLNh0CAiizMajdizZ4901vXQoUOyddbW1oiMjJSGWPGsK9FlZ86ckYZErV+/HvX19bJ1gwYNkoZE8WohEVkagwYRtbmcnBxpas1rjSOfNm0aNBoNx5FTu7Z9+3asWrUK4eHhiIyMvOXtNTY2YufOndIsUceOHZOts7GxMbn/qUePHre8byKim8WgQUTtSlVVFdavXy99obp48aJsnaurK7RaLbRaLWJiYuDs7GzhTol+U1dXh7S0NCxduhTr169HeXk5BgwYgEWLFiE6OvqmtllWVoZVq1ZBr9dfc0a3hIQE6HQ6zuhGRO0KgwYRtVtCCBw4cEAaYrV3717ZOpVKhXHjxkk3tvr7+1u4U+rs7OzsUFtbi/DwcMTFxWH48OHo06cPfHx8oFarr3s7J0+eRHJyMhITE7F582bZCRQUCgVCQ0OlIVFco4aI2isGDSLqMC5evIjU1NRrrl7ct29faYgVVy8mc9q5cye2bt2KAQMGYPz48bC2tgYAxMTEIDMzE99++y3Gjx9/U9t++OGH8eWXX8o+Z2dnh8mTJ0On0yEuLg5du3a96WMgIrIUBg0i6pBqa2uxceNGac2OnJwc2TonJydoNBpotVpMmTIFrq6uFu6UOrrGxkZ88cUX+Otf/4qioiJ0794dkydPxjPPPCOtlP3ll1/ikUceQXp6OiZNmoTCwkJkZ2fDx8cHPXv2vOY+6uvr8eWXX+KJJ56QHvPx8ZEC8/jx42FjY3PbjpGI6HZg0CCiDk8IgaNHj0pDrHbu3Am5f9qUSiXGjBkjDbEKDAzkkBNqkdFohFKpRFJSEp566inExMTgnnvugaOjI7p3745evXpBCAGFQoGCggJ4eXlhzJgxKCkpwdGjR2FlZYW+ffti7ty5ePjhh+Hi4iLVy8nLy8O0adOkNWVCQkL4+SSiDo1Bg4juOAUFBVi5ciX0ej1SU1NRWVkpW+fn5yedMR43btwNjaWnzqGkpARxcXFwdnbGf//7X3Tp0qVZTVMgGTp0KC5cuIB77rkHY8eORV5eHn766Sds2bIFL7zwAt566602OAIiorbDoEFEd7T6+nps3rwZBoMBy5cvx5kzZ2TrHBwcEBsbC61Wi9jYWHh6elq4U7Kkurq66wqWx44dQ//+/bFx40aMGzcO58+fx6ZNm6BUKjFp0iS4u7ujsbERVlZWWLp0KSoqKjBnzhzY29tDqVSirKwMc+fOxYYNG7Bu3ToMHDjQAkdHRNQ+MGgQUaeSnZ0tzeqzZcsWGI3GZjUKhQIjRoyQhrAMGDCAQ1juAEVFRfj3v/+NH3/8EWq1GrGxsXj44YdbvbH622+/xbx58/DNN9/gyJEjeOWVV2BjYwOFQoHBgwfj9ddfR0xMTIuvNxqN2LhxI2JiYrBkyRLMnTuXnyUi6jQYNIio0yopKUF6ejr0ej2Sk5NRVlYmW+ft7S0NsZowYQJsbW0t3CmZw7x585CYmIhJkyahvLwcK1aswPjx4/HRRx9h4MCB0hAo4LfhUMuXL8e9996LSZMm4dixY3jllVcwZMgQHD58GH/4wx9gb2+PEydOSJ8Jo9EIhUIBhUIh3Y+RmZmJyMhIzJo1C++++67JfoiI7mQMGkREABoaGrB9+3ZpFqvjx4/L1tna2iImJkZaeblbt24W7pRuRmJiImbMmIHnn38eCxcuhL29PZKTkzFnzhyMHTsWiYmJsq87d+4c/Pz8oFar8cADD+Djjz+Wpkv+4osv8Pjjj+Nf//oXHn/8cQCXJyYQQpgEiYMHD2LIkCF4+umn8cEHH7R6QzgR0Z2Ep1SIiHB50b/w8HD87W9/Q3Z2Nk6ePImPPvoIkZGRJutw1NTUQK/X4+GHH0b37t0RGhqKN954A3v37pWd6YrahyNHjqBLly54+umnYW9vDwCIiorCc889h5SUFKxdu1b2dd7e3hg8eDDq6uowadIkqFQq1NbWAgAiIyMxdOhQ6PV6qV6hUEghQwiBnJwcvPfeewCA6dOnSzVERJ0BgwYRkYw+ffrgqaeewtq1a1FUVISff/4ZDz74INzc3Ezq9u3bh1dffRXDhg1Dt27d8Oijj8JgMKCqqqqNOic5ZWVlqK2thYeHh/SYnZ0d7rnnHri4uODnn39GeXl5s9dZWVkhISEBALBnzx4AvwUFd3d3+Pv74+DBgwAuB4sTJ07gxx9/xH//+198/vnnmD9/PvR6Pd59912MGzfudh8mEVG7wqFTREQ3wGg0YteuXdIQq6NHj8rWqdVqREVFQafTQaPRwMfHx8Kd0pXeffddvPvuu9iwYQMGDBhgcp/Evffei3379mH58uUICQmRhjY1/X9WVhaCg4PRr18/ZGZmmmx39OjRqKurw4YNG+Dk5IT//Oc/eOONN3Dx4kXU1tYiJCQEjz/+OGbOnAkHB4e2OHQiojbDoEFEdAvOnTuHlJQUJCUlYe3ataivr5etGzBggDSL1YgRI3gzsIVt27YNcXFx+Mc//oHZs2dLU9ICwLJly/DQQw/BYDBg8uTJsq+fO3culi5dikWLFuGBBx6AUqlEamoqZs2ahTfffBMvvvgiAKC4uBi7d+8GAIwaNQpOTk6WOUAionaIQYOIyEwqKyuxbt066PV6JCUlIT8/X7bOzc0NOp0OWq0WkyZN4pdRC6isrESPHj1w7733YsmSJSbPHTx4ECNGjMDnn3+OBx54wOS5pisfv/zyCxYsWIDExEQMGTIEvXr1QkZGBkaNGoV///vfXHeFiEgGgwYR0W0ghMC+fftgMBiQmJiI/fv3y9apVCpMmDBBCh69evWyaJ93opZmdZo0aRIKCgqQnp4OLy8vKUQcO3YMEREReOaZZ/DSSy+hvr4ep06dQklJCUaOHIn6+npYW1ujsLAQy5cvR2JiIiorK6HRaPDAAw/Ay8urDY6SiKj9Y9AgIrKA3NxcpKamIikpCatXr0ZNTY1sXb9+/TBt2jRotVqMGjVKGt5DLbtyauIVK1bgq6++QlhYWLPhaQaDAbNmzcKiRYswd+5cKUAcO3YMYWFh+NOf/oTXXnsNly5dQkREBLKzs2UXdLxy2BUREbWMQYOIyMJqamqwYcMG6PV6JCYmIjc3V7auS5cu0Gg00Ol0mDx5Mrp06WLhTtuvpsUWDQYDDAaDyWKLzz//PN58802TaYkBoLy8HLGxscjNzUVGRga8vb1RX1+PTz75BE8//TR27NiBESNGAAA0Gg0OHTqEPXv2mMxURURE149Bg4ioDQkhcPjwYWmI1e7du2XX47CyssLYsWORkJAArVaLgICANui2bWVnZyM5ORlJSUnYsmULGhsbm9UoFArcc889+M9//iO7je3btyM2NhYeHh64//77IYTAJ598Ap1Ohw8//FBa4buqqkpab4OIiG4OgwYRUTuSn5+PtLQ06PV6pKWltbgeR+/evaUhVmPHjoW1tbWFO7396uvrsXnzZmlI1KlTp2Tr7O3tERcXB61Wi9jY2GvemJ2cnIylS5di7969qKiowPTp0/Hiiy/Cz8/vdhwGEVGnxaBBRNRO1dXVISMjAwaDAcuXL8e5c+dk6xwdHU2+aLu7u1u4U/MpLCxEWloaDAYDUlNTUVFRIVvn6+uL6dOnQ6PRYNy4cVCr1Te0n/r6ely8eJHrmxAR3UYMGkREHYAQAllZWdLZ/e3bt8veqKxQKDBq1ChpiFVwcLDsDEzthRACR48elYZEbd++XXbomFKpxJgxY5CQkACNRoPAwMB2fVxERMSgQUTUIRUVFWHlypUwGAxISUlBeXm5bJ2Pj480xCoiIgI2NjYW7rS52tpabNy4UQpN58+fl61zcnKCRqOBVqvF5MmT4ebmZuFOiYjoVjBoEBF1cA0NDdiyZYv0xf3kyZOydXZ2dpg8eTISEhIQFxdn0fUfLl68iNTUVOj1eqSnp6O6ulq2zt/fXxoSNWbMmGYzRxERUcfBoEFEdIc5ceKENBQpIyOjxdmZQkNDMW3aNGg0GgwaNMisQ5GEEDhw4ACSk5ORmJiIvXv3yg6JUqlUGDduHBISEhAfH4++ffuarQciImpbDBpERHew0tJSrFq1SlpvoqSkRLauW7duSEhIgE6nw8SJE2FnZ3fD+6qursa6detgMBiQlJSEvLw82ToXFxdpJfSYmBg4Ozvf8L6IiKj9Y9AgIuokGhsbsXPnThgMBqxYsQKZmZmydTY2NoiOjpauMnh7e7e4zQsXLiA5ORl6vR5r1qxBbW2tbF1wcLB09WTkyJFcWZuIqBNg0CAi6qTOnDkjDbFav349GhoaZOsGDRokhYQhQ4Zg//790gKDBw8elH2NSqXCxIkTMXXqVMTHx3ONCiKiTohBg4iIUFFRgTVr1sBgMECv16OgoEC2TqFQyN5rAQAeHh7Q6XTQ6XSIioqCo6Pj7WyZiIjaOQYNIiIyYTQakZKSgiVLliAjI6PFRfOAy4sFRkRE4PHHH0d8fDyUSqUFOyUiovaMQYOIiNDY2IgdO3ZIs0QdO3bshrfB+zCIiOhKDBpERJ1UWVkZ0tPTr2tGqqlTp0Kr1WLUqFHYvn079Hp9qzNLubq6QqvVcmYpIqJOjEGDiKgTMecaG0IIHDx4ULoxvLW1MsLDwzF16lRoNBr4+/vflmMjIqL2hUGDiOgOdiOrhk+ZMgU6nQ6xsbHo2rXrDe+Lq38TEdGVGDSIiO4wxcXFSEtLg8FgQEpKCsrLy2XrfHx8pC/8ERERsLGxMVsPtbW12LhxI5KTk7F8+XLk5OTI1jk5OUGj0UCr1WLKlClwdXU1Ww9ERNS2GDSIiDo4IQSysrKkFbm3bdsGo9HYrE6hUGDUqFHSEKbg4GDZIVG3o7+jR49KN5rv2LFDdoiVUqnE6NGjpf4CAwMt0h8REd0eDBpERB1QXV0dMjIypFW+z549K1vn6OiIuLg46HQ6TJkyBe7u7hbutLnCwkLpiktqamqL0+f6+vpKV1zGjRsHtVpt4U6JiOhWMGgQEXUQ+fn5SE1NhcFgQFpaGqqqqmTrevfujWnTpkGr1WLs2LGwtra2cKfXr76+Hps3b5buITl16pRsnYODA2JjY6HVahEbGwtPT08Ld0pERDeKQYOIqJ0SQuDw4cPSrE67d++WHXJkZWWFsWPHYurUqYiPj0e/fv3aoFvzyM7OlmbF2rJlS4uzYo0YMUIaYjVgwACzDrEqLCyEwWCAtbU1YmNj4ebmZrZtExF1JgwaRETtSE1NDTZs2CCtU3HhwgXZOmdnZ2i1Wuh0OsTExMDFxcWyjVpASUmJyTofZWVlsnXe3t7SOh8TJkyAra3tTe/zyy+/xF/+8hdpxqzKykq88sor+L//+z+uek5EdIMYNIiI2lhubi5SUlKg1+uxevVq1NTUyNb169dPGhI1atSoTrXydkNDA7Zv3y4NscrOzpats7W1RUxMDHQ6HeLi4tC9e/fr3sfWrVsRExODiRMn4oknnoCPjw8+/vhjfP/991ixYgWioqLMdThERJ0CgwYRkYUJIbBv3z5pSNT+/ftl61QqFcaPHy8Nierdu7dlG23HfvnlF6SkpCApKQkbN25EQ0ODbN3QoUOlqx1DhgxpcYhVQ0MDYmNjcfDgQZw8eRKOjo4AAKPRCE9PTzzwwAN4//33eVWDiOgGMGgQEVlAVVUV1qxZA4PBAL1ej0uXLsnWubm5QafTQafTITo6Gk5OThbutOMpLy/H6tWrpfe2qKioWU1kZCTWrl3b4jaOHDmCiIgIPPnkk/jLX/6C2tpa2NjYoKKiAtOmTUNhYSH27t3bah9NNd7e3ujfv/8tHxcRUUfH5ViJiG6Tc+fOITk5GXq9HuvWrUNdXZ1s3YABA6Sz7sOHD+dZ8xvk5OSE6dOnY/r06TAajdi1a5e0Zsfhw4cBABqNBvX19S3OwPWf//wHzs7OmDp1KgBIq5U3nYtruiFcCNHsqkhdXR2+//57vP7666itrUV1dTWcnJwwZ84cPPXUU/Dw8Lgdh01E1O7xigYRkZlc+SV3xYoVOHLkiGydWq1GVFQUdDod4uPj0bNnTwt32nmcO3cOKSkpmDZtGrp27SpbI4RAQEAAAgMDodfrTe59KSsrw8CBA6HRaLBo0SKT1dMbGxthZWWFtLQ03H///QgICMCCBQtgb2+PlJQU/PDDD/jDH/6AP//5z7f9OImI2iNe0SAiugXXM2wHALy8vJCQkACtVouoqCjY29tbuNPOqWfPnnj88cdbrbl06RLKysowYMAAWFlZwWg0SleVTp48iXPnziEkJMQkZACQajZv3oza2lp8+OGHGDlyJBoaGjBlyhTk5eXho48+QlxcHIYPH357DpCIqB1j0CAiukGnTp2ShuZs2rTplm9EprZ14sQJVFRUYNCgQQBgEjSSk5Ph5OQke89F059n9+7dUVlZiVOnTmHkyJFQKpVQKBQICAiAXq9HbW2t5Q6GiKgdYdAgIrqGpqlVm2aJup6pVePj49GtWzcLd0o3o6GhATU1NQgMDATw230ZeXl5+PnnnxEREYGgoCDpuaaA0RRIpk6dii+++AJvvPEGysvLER4ejp07d2LJkiWIiIjg1Qwi6rQYNIiIZDQtFqfX65GcnNzqYnFNa1uMHz/+lhaLo7bh4uICtVqN7du3Y/jw4dIN4//5z39w8OBBvP7661JovDpkFBYWYufOnejevTuysrKwcOFCFBYWYty4cXjsscfwxBNPwMbGRvYmciKiOx1vBici+lV2drY0JGrLli0wGo3NahQKBUaMGCENierfvz+/QHZw5eXlmDlzJrKzs/HZZ5+hR48e2Lx5M5555hkMHz4c69ata/G1Go0Gx44dw7fffgtfX1+UlpbijTfewIEDB7By5Ur06tXLcgdCRNTOMGgQUadVX1+PzZs3w2AwYMWKFTh9+rRsnb29PeLi4qDVahEbGwtPT0/LNkq33Y4dO/DYY4/h5MmTcHNzQ25uLqZOnYrXX38dwcHBKCsrg7W1Nezs7KTXrF69GpMnT8bixYvxxBNPSI+Xl5eje/fuWLhwIV566aW2OBwionaBQ6eIqFMpLCxEWloa9Ho9UlNTUVlZKVvn6+uL6dOnQ6PRYNy4cVCr1RbulCwpLCwM+/btQ1paGvbt24cxY8Zg5MiRcHBwAAC8//77SExMxHfffYcBAwYAuBw0bG1tpRvF6+rqoFarUVtbiz59+iA9PZ1Bg4g6NQYNIrqjCSFw9OhRaUjUjh07IHchV6lUYsyYMUhISIBGo0FgYCCHRHUyCoUCcXFxiIuLM3ncaDRizZo1OHToELy9vaXHa2trUVNTA0dHRwCQwmhWVhby8/MxatQo6fVXL8JoNBqRlZWFoKAgfs6I6I7FoVNEdMepra3Fxo0bpYXzzp8/L1vn5OQEjUYDrVaLKVOmwNXV1cKdUkdRUlKCHTt2YPLkydJCfRkZGZg2bRoGDRqEd955B71794a7uzvuvfde/Pjjj1izZg0iIyObbauxsRGbNm1CZGQkfHx8MG3aNGg0GowfP77ZWh1ERB0ZgwYR3REuXryI1NRU6PV6pKeno7q6Wraub9++0he7MWPGQKXihV26flfPHvXZZ5/hlVdegYuLC/z8/HDkyBHk5ubikUcewaeffiq7jcbGRjz77LP48MMPTR63s7PD5MmTpemRvby8buuxEBHdbgwaRNQhCSFw4MAB6arF3r17ZetUKhXGjRsnDYny9/e3cKd0pzt58iS+//57bNq0CT4+PpgyZQpiY2Ph7Ozc4rS2X331Fb7++mtkZGSgsbGx2fMKhQKhoaHS7GaDBg3iECsi6nAYNIiow6iursa6detgMBiQlJSEvLw82ToXFxfodDpotVrExMTA2dnZwp1SZ9U0rOp6lZaWYvXq1dDr9TAYDCgpKZGt69atGxISEqDVahEZGWky+xURUXvFoEFE7VpOTg5SUlKQlJSEtWvXora2VrYuODhYGhI1cuTIG/qyR9QeNDY2YufOnUhOTsby5cuRmZkpW2djY4Po6GjodDpoNBqTG9SJiNoTBg0ialeMRiP27NkjDYk6dOiQbJ21tTUmTpyIhIQExMfHw8/Pz8KdEt1eZ86cQUpKChITE7F+/Xo0NDTI1g0aNAhTp06FRqPBsGHDms1wRUTUVhg0iKjNVVRUYM2aNdDr9dDr9SgsLJSt8/DwkIaPREVFSdOKEt3pKioqsHbtWunvSEFBgWydh4eHNGxw0qRJ0jogRERtgUGDiNrEmTNnpLUtNmzY0OLZ2sGDB0tna0NDQ3m2ljo9o9GIvXv3Slf9Dh48KFtnbW2NCRMmSBMh8KofEVkagwYRWURjYyN27NghfTlqbfz5pEmToNPpEBcXhx49eli4U6KOJScnB6mpqUhKSsKaNWtavY+paRYr3sdERJbAoEFEt01paSlWrVoFg8FwzRl1mr4ATZw4kTPqEN2k6upqrF+/HgaDAYmJia3OzKbVaqHT6TgzGxHdNgwaRGRWJ06cQHJyMpKSklpdI2DYsGHSkCiuEUBkfkIIHDx4UAode/fuhdyvfJVKhfDwcOn+J641Q0TmwqBBRLekoaEBW7Zskabk/OWXX2Tr7OzsMGXKFOh0OsTGxqJr164W7pSoc7t48SJSU1Oh1+uRnp6O6upq2Tp/f39MmzYNWq0WY8aMgUqlsnCnRHSnYNAgohtWVFSElStXwmAwICUlBeXl5bJ1Pj4+mD59OjQaDSIiImBjY2PhTolITm1tLTZt2gSDwYDly5cjJydHts7JyQnx8fHQ6XSYMmUKXF1dLdwpEXVkDBpEdE1CCGRmZkpDorZt2waj0disTqFQYNSoUdKQqODgYA6JImrnhBA4duyYNMRqx44dskOslEolRo8eLQ2xCgwM5N9vImoVgwYRyaqrq8OmTZukIVHnzp2TrXN0dER8fDy0Wi2mTJkCd3d3C3dKROZUWFiIlStXQq/XIzU1FRUVFbJ1vr6+0hCrcePGQa1WW7hTImrvGDSISHLp0iWkpaXBYDAgLS0NVVVVsnW9e/eWhkSNHTsW1tbWFu6UiCyhvr4eW7ZsgcFgwIoVK3Dq1CnZOnt7e8TGxkKr1SIuLg6enp4W7pSI2iMGDaJOTAiBQ4cOSWtb7NmzR3bIhJWVlTQrTXx8PPr169cG3RJRW8vOzkZKSgoSExOxZcuWFmeVGz58uDRl9YABAzjEiqiTYtAg6mRqampM5tnPzc2VrevSpQu0Wi20Wi1iYmLg4uJi2UaJqF0rKSnBqlWroNfrYTAYUFZWJlvn7e0thY4JEybA1tbWwp0SUVth0CDqBHJzc5GSkgK9Xo/Vq1ejpqZGtq5fv37SkKhRo0Zx5WAiui6NjY3Yvn27NMQqOztbts7W1haTJk1CQkIC4uLi0L17dwt3SkSWxKBBdAcSQmDv3r1ITk5GYmIi9u/fL1unUqkwfvx4TJ06FfHx8ejdu7dlGyWiO9KpU6ekWeo2btyIhoYG2bohQ4Zg2rRp0Gg0GDp0KIdYEd1hGDSI7hCVlZVYu3YtDAYD9Ho9Ll26JFvn5uYGnU4HnU6H6OhoODk5WbhTIupMysvLsXr1aunfpqKiItk6Ly8v6d+mqKgo2NvbW7hTIjI3Bg2iDuzs2bPSkKh169ahrq5Otm7AgAHSWcPhw4dDqVRauFMiIsBoNGL37t3SPWKHDx+WrVOr1YiMjJQmoOjZs6eFOyUic2DQIOpAjEYjdu7cKc0SdfToUdk6tVqNqKgo6Ze0j4+PhTslIrq2c+fOSSdL1q5d2+LJkv79+0snS0aMGMGTJUQdBIMGUTtXVlaG1atXS+Odi4uLZeu8vLyQkJAAnU6HyMhIDjsgog6lqqpKGv6ZlJR0zeGfWq0WkyZN4vBPonaMQYOoHfrll1+kYLFp06YWb6QcOnSodJZvyJAhvJGSiO4IQgjs379fGmK1b98+2TqVSoWIiAhMnToVGo2GE1oQtTMMGkTtQENDA7Zt2yYNiTp+/Lhsna2tLWJiYqSpIbt162bhTomILC8vL08aYrVq1apWp+huOvkyatQoqFQqC3dKRFdi0CBqI8XFxUhPT4fBYEBycnKri11NmzYNWq0W48eP52JXRNSp1dTUYMOGDdLVjgsXLsjWOTs7S4uOTp48mYuOErUBBg0iC8rKypKGRG3ZsgVGo7FZjUKhwIgRI6SVdPv3788hUUREMoQQOHz4sLRm0K5duyD3tcbKygpjx45FQkICNBoN+vXr1wbdEnU+DBpEt1F9fT0yMjKkIVGnT5+WrXNwcEBsbCy0Wi1iY2Ph6elp2UaJiO4A+fn5SEtLg8FgQGpqKqqqqmTrevXqhenTp0Oj0SA8PBzW1tYW7pSoc2DQIDKzgoICk190lZWVsnW+vr6YPn06tFotwsPDoVarLdwpEdGdq66uTjrRs3z5cpw9e1a2ztHREXFxcdKJHnd3dwt3SnTnYtAgukVCCBw5ckS6dL9z507ZS/dKpRJjxoxBQkICtFot+vXrxyFRREQWIIQwGbq6devWFoeuhoWFSbNYhYSE8N9polvAoEF0E2pra7FhwwZpSFROTo5snZOTEzQaDXQ6HSZPngxXV1cLd0pERFcrLi7GypUrpck4ysvLZet8fHykWazGjx8PGxsbC3dK1LExaBBdp7y8PKSmpkKv1yM9Pb3F6RX79u0rzRI1evRoTq9IRNSONTQ0YOvWrdKJoxMnTsjW2dnZYfLkydDpdIiLi0PXrl0t3ClRx8OgQdSCpgWjmoZE7d27V7ZOpVJh3Lhx0mwm/v7+Fu6UiIjM5eTJk9IQq4yMDNkFUxUKBUJDQ6UhVoMHD+YQKyIZDBpEV6iursbatWthMBiQlJSEixcvyta5uLhAp9NBq9UiJiYGzs7OFu6UiIhut7KyMqxatQoGgwF6vR4lJSWydd26dZPuv4uMjISdnZ1lGyVqpxg0qNM7f/68tOLs2rVrUVtbK1sXEhIinb0aOXIkrKysLNwpERG1lcbGRuzcuVMaYnXs2DHZOhsbG0RHR0On0yE+Ph49evSwcKdE7QeDBnU6RqMRu3fvloZEHTp0SLbO2toakZGR0Ol00Gg08PX1tXCnRETUXp05cwYpKSlISkrC+vXrUV9fL1s3aNAg6STVsGHDoFQqLdwpUdth0KBOoaKiAqtXr5YufxcWFsrWeXh4SJe/o6Oj4eDgYOFOiYioo6moqDAZdltQUCBb5+HhIQ27jY6OhqOjo4U7JbIsBg26Y50+fVq6oW/Dhg2yN/QBwODBg6WzTaGhoTzbREREN81oNGLv3r3SVfMDBw7I1llbW2PChAnSRCJ+fn4W7pTo9mPQoDtGY2MjduzYAYPBgMTERGRmZsrW2djYYNKkSdL4WW9vbwt3SkREnUVOTo40Nfrq1atbvA8wODhYOukVFhbG+wDpjsCgQR1aaWkp0tPTYTAYYDAYUFpaKlvXrVs3TJ06FVqtFhMnTuSMIEREZHHV1dVYv369dEIsLy9Pts7FxQVarRZarRaTJ0/mzIbUYTFoUIdz4sQJaRzs5s2b0djY2KxGoVBg2LBh0tmhQYMGcY5zIiJqN4QQOHjwoDTEas+ePZD7SmZlZWWyVlPfvn3boFuim8OgQe1efX09tmzZIk0p+Msvv8jW2dnZYcqUKdDpdIiNjeWqrURE1GFcvHgRaWlp0Ov1WLlyJaqrq2Xr/P39MW3aNGg0GowdOxYqlcrCnRJdPwYNapeKioqQlpYGg8GA1NRUlJeXy9b5+Phg+vTp0Gg0iIiIgI2NjYU7JSIiMq/a2lps2rQJycnJWL58Oc6fPy9b5+TkhPj4eGi1WkyZMgVubm4W7pSodQwa1C4IIZCZmSkNidq2bZvsJWSFQoFRo0ZJQ6KCg4M5JIqIiO5YQggcO3ZMGmK1fft22d+PSqUSo0ePloZYBQUF8fcjtTkGDWozdXV12LRpEwwGA1asWIFz587J1jk6OpqcsXF3d7dwp0RERO1DYWEhVq5cCYPBgJSUFFRUVMjW+fr6SkOsIiIioFarLdwpEYMGWdilS5dMxqBWVVXJ1vXp08dkDKq1tbWFOyUiImrfrryHcfny5Th16pRsnb29PWJjY6HVahEXFwdPT08Ld0qdFYMG3VZCCBw6dEiayq+1WTXCw8OlS74BAQFt0C0REVHHlZ2djZSUlGvOyjh8+HBpCPLAgQM5xIpuGwYNMruamhqsX78eer0eSUlJyM3Nla3r0qWLNE94TEwMXFxcLNsoERHRHaqkpASrVq265jpT3bt3N1lnytbW1sKd0p2MQYPM4sKFC0hNTUVSUhLWrFmDmpoa2brAwEBpSNSoUaO48ikREdFt1tjYiO3bt0tDrLKzs2XrbG1tMWnSJOh0OsTHx6N79+4W7pTuNAwadFOMRiP27dsnDYk6cOCAbJ1KpcKECROQkJCA+Ph49O7d28KdEhER0ZVOnTqFlJQUJCYmYuPGjWhoaJCtGzJkiHS1Y+jQoRxiRTeMQYOuW2VlJdauXQu9Xg+9Xo/8/HzZOnd3d+h0Omi1WkRHR8PJycnCnRIREdH1KC8vx5o1a6Tf7UVFRbJ1Xl5eJr/b7e3tLdwpdUQMGtSqs2fPIjk5GXq9HuvWrUN9fb1s3YABA6QhUcOHD4dSqbRwp0RERHQrjEYjdu/ejeTkZKxYsQKHDx+WrVOr1YiMjIROp4NGo0HPnj1va19nz55FQUHBbd1HR+Th4QFfX9+2bqNVDBpkorGxEbt27ZKGRB09elS2Tq1WIzo6WhrH6ePjY+FOiYiI6HY6f/68NIvV2rVrUVdXJ1sXEhKCadOmQavVYsSIEWY92Xj27FkEBwahqqbabNu8U9jb2uFYVma7DhsMGoSysjKsXr0aBoMBer0excXFsnVdu3ZFQkICtFotIiMjedmUiIiok6iqqsK6deukGSUvXbokW+fm5iZd6YiJibnl4dN79+7FsGHD8KX/BATaudzStu4kWdUlmHtyA/bs2YPQ0NC2bqdFDBqd1C+//ILk5GQkJiYiIyOjxRvBQkNDpbm2hwwZwhvBiIiIOjkhBPbv3y8Nsdq3b59snUqlQkREhLRGVp8+fW54X01BY/OAqRji4HGrrd8x9lcWIPxwIoNGR1dvNOJIUTH2FxThYGERLlbXoLaxETZWVuhqZ4tB7m4Y4uGG/m6usG7H9yU0NDRg27Zt0tR2J06ckK2ztbVFTEwMEhISEBcXh27dulm4UyIiIupI8vLypCnuV61a1eIU9wEBAdIQq1GjRkGlUl1z2wwa8hg0OrhzFRX4KvMElmYeR8mvYxJVCgUarni7rvzZRa3GnKAAPBjUFz0dHduk56sVFxcjPT0der0eKSkpKCsrk63r0aOHdCP3+PHjuVgPERER3ZSamhps3LhROrF54cIF2TpnZ2doNBrodDpMnjy5xUV7GTTkMWh0UGV1dXhl514syz4JpUKBxht4e6wUChiFwKx+/vjLyGFwVlvfxk6bE0IgOztbGhK1detWGI3GZnUKhQIjRoyQwkX//v05JIqIiIjMSgiBI0eOSBPM7Nq1C3JfO5VKJcaOHSsN1e7Xr5/03M0Gjb+e34O3c/ahIuxhsxxLe8Og0QGty8nFk5u2oqCmFsZbeFuUCgU8bW2xOGI0Invc3lU16+rqsHnzZhgMBqxYsQJnzpyRrXNwcEBsbCx0Oh1iY2Ph4cGzAkRERGQ5+fn5SEtLg8FgQFpaGiorK2XrevXqJQ2xcnBwQFhY2B0ZNHLrKvHy2Z3YW1mA3LoqWCkU6GvbBY92DcZ9HgGtngRm0OhgPj+ahee374YSQPNrADdOqQCMAnh31HA8HBJohi3+pqCgAGlpadDr9a3+RfXz88P06dOh0WgQHh4OtVpt1j6IiIiIbsaVJ0qXL1+Os2fPytbZ2tqipqbmjgwah6sKseD0Noxy6oqeakfUCyPWl+YgpeQsFngPxms9R7T42o4SNK59F04n8MWvIQMwT8gALocMAHju1+3eSthouvTYNLtDa5cex4wZY3LpkUOiiIiIqL1pWvQvMjISixYtQnZ2NgwGA5KSkkyGfrd0Y3lHVmNsgFphhQH27lgZojF57vFu/fG7rHQsyTuCV3yGwUrRficauh6dPmisy8mVwsDt8tz23ejTxdlkGFVlZSWeeOIJbNmyBUuXLkVERITJa5pupmoa15iTkyO77aabqbRaLSZPngxXV9fbeixERERE5qRQKBAYGIjAwEAsWLDAZDKbpKQkVFVVtfr6reV5eOHMdhypKoa32h7PdB/UrKZBGPH3CwfwXX42cuoq0c3aHjM8/LGwRyhslFZSXci+HxBi74o/eQ/GwjM7cLiqCN3V9nixRyju8www2eapmjK8cm4XNpZeQI1owAA7NzzfYyimuP62gN6msguIO5aKpX0n4mhVMZblZyOvvgrnht0PF5WN7PH42jihyngOdcIIOwaNjqusrg7zNm2VhjldqT7zKCreewuO//cirINCbmk/SgUwb9M27LhLC2e1Nc6cOYPhw4ejoKAAAPDyyy9j06ZN1z09XN++faWxi6NHj76u6eGIiIiIOgJXV1fMnDkTM2fOxM6dOxEWFtZi7eGqIiRkpsFDZYcXfULRIIz4a85eeFnbmdTN+yUD3xUcx1S33niq+0DsrsjH3y8cQGZ1CX7oN8mk9mRNGWYdX4sHPPvhPo8AfJufhcd+2YghDh4Isb98QvdifRWijhpQ3diAx7v1h7vKBt8VHMeM7NVYFhAFnVsvk22+k7MPaoUVnu4+ELXCCLXit3BTbWxAZWMDKo312FyWi2X52Qhz9IKdsuN/v+v4R3ALXtm5F+dSkyGs1bAJj7j2C26SUQD5NTX48849eMTVCcOHDzcJERkZGRg0aBAOHTrU4jasra3Rs2dPPP/883j00UdvW69ERERE7cW1Tqa+eX4PhABWhWjQ0+by8gIJbr0QdnC5VHOoshDfFRzHg56B+FefcQCAR7sCnta2+DD3EDaWXsD4Lt5S/fGaUqQHazDW+fJaYtPdeyNo3w9Ylp+Nt/wuh55FFw7iUn01VoVoMMbpct2DXkEYdWg5Fp7dDo2rH5RXDF+vNTYiY9BU2fDwcd4RvHpul/TzBGdvfNLn9n0vtaSOfT3mFpwtr8Cy7JOoXrcGdVs3NXte1S8ILp/8G6p+QWbZn1EIfJt9EkMjo2SvVFwdMhwcHODt7Y0ZM2bgww8/xHvvvYcePXrgsccew2effWaWnoiIiIg6qkZhxNrS89C4+UkhAwCC7FwR7eIj/Zxecg4AML/7AJPX/6HbQJPnf3u9ixQyAMDT2g4Bdl1wqva39chWlZzDcAdPKWQAgKOVNeZ4BeFMbQWOVRebbPM+j4AWr1D8zr0PDEGx+Lf/RMxw9wcAVBsbr/0GdACd9orG11knTJLm1RRKJaA07yxNxsZGWI2NQP2K/8k+HxISgqlTp0Kr1WLEiBGwsrIyeX7+/PkYNmwYFi1axKsaRERE1KkV1Neg2tgIf9suzZ4LsO2CdFwOEGfrKqCEAv42pnVd1fZwsVLjbF2FyeM91c0XXnaxUqOkoU76+WxtBaa7925WF2jrAgA4V1uB/vZu0uO9bJxaPA5fGyf4/vr8DA9/zP8lA9rMVOwb/LsOP3yqw13ReO2116BQKJCZmYkZM2bA2dkZ7u7uePrpp02uFCxduhSRkZHw8vKCjY0NQkJCsGTJEgBAvdGIpZnHUfR/T8N44TwasjJRPHcWiufOQvm7b16uyTyK4rmzUJ951GT/Db+cQPkH76B4/iMofuIhlL/zJhqOZ5vUVCf9jOK5s9B4MQ+VX36KkvmPonj+I6j6+guox4wDrgoQTY4ePYqcnByMGjWqWcgAACsrK/Ts2RMlJSW38hYSERERdTrXOxGnVQuFAje/IoTtDQSGaW69cb6uElvK8m56f+1Fh41JM2bMQK9evfD2229j+/bt+Oijj1BcXIxvvvkGALBkyRL0798fOp0OKpUKBoMBTz75JIxGI8beMxMldXWwmzkLVd9/A4WtLWzjdQAApXPzVNyk/tgRVPzjPVj59YaddhqgVKJu8yaU//0tOD3/ClR9/E3qKz/5J5QeXrC7awYazpxGXcYGKJy6wKpHTzSePd1s+3/9618xceJE021UVqK6uhqlpaXSuhn33HPPrb15RERERB2ch7Ut7JRWOFlT2uy541c85qt2hBECJ2pKEWT32+ycF+urUNJYB1+ZKxjX4mvjiOPVzfebXVMCACZDuW5U07Cp0sa6a1S2fx02aPTu3RtJSUkAgHnz5sHZ2Rkff/wxFixYgEGDBmHjxo2ws/ttxoH58+djypQpWLRoERyiYgAA6tDhqF7xE5ROjrAZHd7q/oQQqPp2KVRBwXB85jlpfQqb8ZEoe+V5VK/4H5yefcHkNVa+veAw55HLdQBEZQXqNm/AuCefQsnKFJw5cwalpaXS8Tz55JNwcXEx2cazzz6LTz/9FMDldTKmT5+Of/3rXzf3phERERHdIawUSkR18UFy0Rmcq62QvtxnVhdjTcl5qW6yS0+8dn43FucdwT97//Z971+5h6Xnb1SMS08szjuMHeUXEebUFQBQ2ViPpZcy4WfjiGC7ay83kF9fDc+rZscCgG/ys6AAMMTB/Yb7am86bNCYN2+eyc9PPfUUPv74Y6SmpmLQoEEmIaO0tBT19fUYP3480tPTsevMWagUCjTcwKLojWfPwHgxD7aaBIiKCpOLZ6rg/qjbtgXCaLx8b8evbCZEmmxDFRCI+r27MSAqGovfeQsA4OjoCK1Wi2XLlskOl3rmmWdw991348KFC/jxxx/R2NiIurqOn3CJiIiIbtXLPqFYU3IeMUeT8UjXYDQIIz65eBTB9q44XFUEABjo4I7fewRg6aVMlDbUIty5O/ZU5OO7guPQuPqZzDh1vf7kPQj/KzyJ6VnpeLxbf7hZXZ7e9nRtOb4LiG71PuAm713Yj+3lFxHdxQc9bRxR3FCLpKLT2FOZj8e7hsjee9LRdNigERBgumiKv78/lEolTp8+DQDYsmULXn31VWzbtq3ZQi85hYU3FDIAwHjp8ji5qi8/bbFGVFdD4eAg/ax08zB5XmF/+bmc/HyTx21sbGRDBgAEBQUhKOjyzFcPPPAAYmJioNVqsWPHDq76TURERJ3aAHt3JAZNwcKzO/Dm+T3ooXbASz1CkVdfJQUNAFjcZxx62Tjhu4LjMBSfQVdrOyzwHoyFPUJvar9dre2xNkSLV87twqd5R1BjbMQAezf8r1+MyYJ9rZni0hOnasrwbX42ChpqYKuwwgB7N3zSJwK/9wi49gY6gA4bNK525ZfukydPIioqCkFBQVi0aBF69uwJtVqN1NRUfPDBB6itb7jxHfy6op/d7+6Fla+ffA82V63wqJS/17624eanLLv77rvx2GOPITs7G4GBgTe9HSIiIqI7Qbhzd2QMmNrs8Zd8hkn/rVIosdAnFAt9Wg8WR4fOlH18ZYim2WO9bZ2xLCCq1e1FOHujIuxh2eciu/ggsouP7HN3ig4bNI4fP47evX+bVuzEiRMwGo3o1asXDAYDamtrodfr4ev7W6pcv349AEBtpQQaf/2yf50XBZReXpfL7exgHTLgGtWts7H6LYDc6FWJ6upqAJDu7SAiIiIiao863PS2TRYvXmzy8z//+U8AQGxsrDQMSVwxPKq0tBRLly4FAHjY2kD16xd8hY0NxFVDq+RY+fWG0ssLNempEDIL7hnLy2ReJc/d9rcrHw4ODrLT1V66dKnZY/X19fjmm29gZ2eHkJCQ694fEREREZGlddgrGqdOnYJOp8OUKVOwbds2LFu2DPfddx8GDx4MW1tbqNVqaLVaPPbYY6ioqMDnn38OLy8v5ObmItjVBSvKLocLlV9v1G5Yi2pDIqy8ukLh7Azr4P7N9qdQKmE/+2FU/OM9lL3yPNThEVC6uMFYUoSGzGNQ2NnB8Q/PXlfvwa6/zUQwbNgwrFmzBosWLYK3tzd69+6NsLAwPPbYYygrK0NERAR69OiBvLw8fPfdd8jMzMT7778PR8ebnzaNiIiIiOh267BB47///S/+/Oc/44UXXoBKpcL8+fPx3nvvAQACAwPx008/4eWXX8aCBQvQrVs3PPHEE/D09MRDDz2EEFcX4MwFAICtdhqMhQWoWZkM1NRAFRgkGzQAwDooBE4vvoYaQyJq162GqKmFsksXWPXxh834SNnXyAlxdZH+u2mV75dffhnV1dWYPXs2wsLCcM899+DLL7/EkiVLUFhYCCcnJwwbNgzvvPMOdDrdTb9vRERERESWoBDiBqdfamOvvfYaXn/9deTn58PDw+PaL5BRbzQi8PufUdIG08S6qNXIuu8uWLdwozgRERERXbZ3714MGzYMmwdMxRCHm/vedyfaX1mA8MOJ2LNnD0JDb27mLEvolN92rZVKzAkKaHGJ+dvFSqHAQ0EBDBlEREREdMfrtN94HwzqC6OFL+YYhcDsoL4W3ScRERERUVvotEGjp6MjZvXzv66VG81BqVDg/n7+6MmbuImIiIioE+hwN4O/9tpreO2118yyrb+MHIZV5y4gv6a6aT2+20KpADxtbfHGyGHXLiYiIiIiE1nVJW3dQrvSUd6PDhc0zMlZbY3FEaNxd/q627ofowAWR4yGs9r6tu6HiIiI6E7i4eEBe1s7zD25oa1baXfsbe1uemIkS+lws07dDl8czcJz23fftu2/N3oE5gb3u23bJyIiIrpTnT17FgUFBW3dRrvj4eEBX1/ftm6jVQwav2oKG0oFzDKMqmk7DBlERERE1BkxaFxhXU4u5m3ahvyamluakUqpUMDT1haLI0Yjskd3M3ZIRERERNQxMGhcpayuDq/s3Itl2SehVCjQeANvj5VCAaMQmNXPH38ZOYz3ZBARERFRp8Wg0YJzFRX4OvME/p15XFpBXKVQoOGKt+vKn13UajwUFIDZQX05hS0RERERdXoMGtdQbzTiaFEJ9hcW4UBBIS5V16CmsRG2VlbwsrPFYA93DHF3Q4ibC1f8JiIiIiL6FYMGERERERGZHU/BExERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2TFoEBERERGR2anaugEiIiIiopacPXsWBQUFbd1Gu+Ph4QFfX9+2bqNVDBpERERE1C6dPXsWwYFBqKqpbutW2h17Wzscy8ps12GDQYOIiIiI2qWCggJU1VTjS/8JCLRzaet22o2s6hLMPbkBBQUFDBpERERERDcr0M4FQxw82roNukG8GZyIiIiIiMyOVzSuod5oxJGiYuwvKMLBwiJcrK5BbWMjbKys0NXOFoPc3TDEww393VxhrWRuIyIiIiICGDRadK6iAl9lnsDSzOMoqasDAKgUCjQIIdVc/vkEAMBFrcacoAA8GNQXPR0d26RnIiIiIqL2gqfgr1JWV4enN2/HkB+T8NGho1LIAGASMq7+uaSuDh8dOoohPybh6c3bUVZXb7GeiYiIiOg3fz2/B447vmjrNjo9XtG4wrqcXDy5aSsKamohADReFSyupan+u+O/YNW5C1gcMRqRPbrfhk6JiIiIqKN7N2cfdlfkY1fFJeQ31GBhj6F4yWdYW7dlNryi8avPj2bh7vR1KKiugfEGA8bVjEIgv6Yad6evwxdHs8zUIRERERHdSd44vwd7KvMx+A6dUYtXNAB8cTQLz2/fDQAwmmmbxl+zynO/bvfhkEAzbZmIiIiIOqoaYwPUCisoFQocGXIP/GycUFBfg157l7V1a2bX6YPGupxcKQzcLs9t340+XZw5jIqIiIjIzLaW5+GFM9txpKoY3mp7PNN9ULOaBmHE3y8cwHf52cipq0Q3a3vM8PDHwh6hsFFaSXUh+35AiL0r/uQ9GAvP7MDhqiJ0V9vjxR6huM8zwGSbp2rK8Mq5XdhYegE1ogED7NzwfI+hmOL62wJ6m8ouIO5YKpb2nYijVcVYlp+NvPoqnBt2P1xUNvCzcbp9b0w70KmHTpXV1WHepq1QKpo/V595FMVzZ6E+8+gt70epAOZt2sYbxImIiIjM6HBVERIy05BfX4MXfUIxy7Mf/pqzF4biMyZ1837JwJvn92Cwgwf+5jcK4c7d8fcLBzD7xLpm2zxZU4ZZx9diYhdvvOUbBhcrNR77ZSOOVhVLNRfrqxB11IC1JefxcNdgvOozHDWiETOyV0NfdLrZNt/J2Yf0knN4uvtAvNZzBNQKq2Y1d6JOHTRe2bkX51KTUZ2x6bbuxyiA/Joa/HnnnmbPvfXWW0hMTGz2eEVFBV599VVMmTIFbm5uUCgU+Oqrr25rn0REnVVtbS2ef/55eHt7w87ODmFhYVi9evV1vfaHH35AaGgobG1t4enpiblz56KgoOA2d0xEAPDm+T0QAlgVosGz3oPxfI+hSA2Ow7ErQsGhykJ8V3AcD3oGYllAFB7tGoLP/Mfj6e4DkVx8BhtLL5hs83hNKb7tG4XXeo7AY91CsCJoCtQKKyzLz5ZqFl04iEv11fg5aDJe7Tkc87sPxOoQLXxtHLHw7PZm9/vWGhuxtr8W87sPxLPeg2Fv1TkGFXXaoHG2vALLsk+iet0a1G1tHjRU/YLg8sm/oeoXZJb9GYXAt9knca6iwuTxloJGQUEB3njjDRw7dgyDBw82Sw9ERCTvwQcfxKJFi/D73/8eH374IaysrBAXF4fNmze3+rolS5bg3nvvhZubGxYtWoRHHnkEP/zwA6KiolBTU2Oh7ok6p0ZhxNrS89C4+aGnzW9rmAXZuSLaxUf6Ob3kHABgfvcBJq//Q7eBJs//9noXjHXuJv3saW2HALsuOFVbJj22quQchjt4YozTb3WOVtaY4xWEM7UVOFZdbLLN+zwCYKfsHOHiSp02aHyddQJKhcyYqV8plEoorNVQmHG1b6VCga8zT1xXbffu3ZGbm4szZ87gvffeM1sPRERkaufOnfjhhx/w9ttv47333sOjjz6KdevWwc/PD88991yLr6urq8OLL76IiIgIrF69Gk8++STeeust/Pe//8XBgwfx+eefW/AoiDqfgvoaVBsb4W/bpdlzAVc8drauAkoo4G9jWtdVbQ8XKzXO1pmeBO6pbr7wsouVGiUNv62tdra2AgF2zfcbaOsCADhXa7rNXnf4vRgt6XBB47XXXoNCoUBmZiZmzJgBZ2dnuLu74+mnnzY5e7R06VJERkbCy8sLNjY2CAkJwZIlSwAA9UYjlmYeR9H/PQ3jhfNoyMpE8dxZKJ47C+Xvvnm5poV7NBp+OYHyD95B8fxHUPzEQyh/5000HM82qalO+hnFc2eh8WIeKr/8FCXzH0Xx/EdQ9uUn+OLAYdQbL89tpVAoUFlZia+//hoKhQIKhQIPPvggAMDGxgbdunUDERHdXj/99BOsrKzw6KOPSo/Z2tpi7ty52LZtG86dOyf7usOHD6OkpAT33HMPFFecuNJoNHB0dMQPP/xw23snouvXyvllE1YtFArc/PIHtp3wagbQgWedmjFjBnr16oW3334b27dvx0cffYTi4mJ88803AC5fzu7fvz90Oh1UKhUMBgOefPJJGI1GjL1nJkrq6mA3cxaqvv8GCltb2MbrAABK5+bptEn9sSOo+Md7sPLrDTvtNECpRN3mTSj/+1twev4VqPr4m9RXfvJPKD28YHfXDDScOY26jA3Ic+qCowlxGOzhhkcffRSff/45hBCwsbHBO++8g5EjR96294yIiJrbt28f+vXrB2dnZ5PHm/493r9/P3r27NnsdbW1tQAAOzu7Zs/Z2dlh3759MBqNUJrxyjgR/cbD2hZ2SiucrClt9tzxKx7zVTvCCIETNaUIsnOVHr9YX4WSxjr4ylzBuBZfG0ccr26+3+yaEgAwGcrVmXXYoNG7d28kJSUBAObNmwdnZ2d8/PHHWLBgAQYNGoSNGzea/OM/f/58TJkyBYsWLYJDVAwAQB06HNUrfoLSyRE2o8Nb3Z8QAlXfLoUqKBiOzzwnnb2yGR+JsleeR/WK/8Hp2RdMXmPl2wsOcx65XAdAVFagbvMGfJKcguXPL8ClS5ek2traWnh7e2P06NG3/N4QEdH1y83NRffuzacfb3rswoULzZ4DgICAACgUCmzZsgVz5syRHs/KykJ+fj4AoLi4GO7u7rehayKyUigR1cUHyUVncK62Qvpyn1ldjDUl56W6yS498dr53VicdwT/7P3b971/5R6Wnr9RMS49sTjvMHaUX0SYU1cAQGVjPZZeyoSfjSOCrwg0nVmHDRrz5s0z+fmpp57Cxx9/jNTUVAwaNMgkZJSWlqK+vh7jx49Heno6dp05C5VCgYYbWAG88ewZGC/mwVaTAFFRYXLxTBXcH3XbtkAYjSb3dNhMiDTZhiogEPV7d+PrlemoviJkNFm+fDmys7ObPZ6TkwMAMBgM0n8TEdH16d27N+67774Wn6+uroaNjU2zx21tbaXn5Xh4eGDGjBn4+uuvERwcjGnTpiEnJwdPPfUUrK2tUV9f3+JrAUCv1+PQoUM3eDREnUtLQb/Jyz6hWFNyHjFHk/FI12A0CCM+uXgUwfauOFxVBAAY6OCO33sEYOmlTJQ21CLcuTv2VOTju4Lj0Lj6YXwX7xvu60/eg/C/wpOYnpWOx7v1h5uVDb4rOI7TteX4LiC61fuAr/Sf/OM4W1eBamMDAGBLeR7eydkHALjXoy98O/i9HR02aAQEmC6a4u/vD6VSidOnTwMAtmzZgldffRXbtm1DVVWVSW1OYeENhQwAMF7KAwBUfflpizWiuhoKBwfpZ6Wb6XLyCvtfn5P5hQbgmuN5ly9fjuXLl19Pu0RE9Kvo6OhWg4adnZ00DOpKTff9yQ2NavLpp5+iuroaCxYswIIFCwAAs2bNgr+/P5YvXw5Hx5aHT/z000/49ttvr/cwiEjGAHt3JAZNwcKzO/Dm+T3ooXbASz1CkVdfJQUNAFjcZxx62Tjhu4LjMBSfQVdrOyzwHoyFPUJvar9dre2xNkSLV87twqd5R1BjbMQAezf8r1+MyYJ91/J1fhY2l+dJP28qy8WmslwAwGinrgwa7cWVN+KdPHkSUVFRCAoKwqJFi9CzZ0+o1Wqkpqbigw8+QG19w43vwHg5mNj97l5Y+frJ93B1gGhhXK6ik8ydTETUEXTv3l32anFu7uVf9t7eLZ/t7NKlC5KSknD27FmcPn0afn5+8PPzw5gxY+Dp6QkXF5fb1TYR/SrcuTsyBkxt9vhLPsOk/1YplFjoE4qFPq0Hi6NDZ8o+vjJE0+yx3rbOWBYQ1er2Ipy9URH2cIvPy233TtJhv/EeP34cvXv3ln4+ceIEjEYjevXqBYPBgNraWuj1evj6/pYq169fDwBQWymBxsbLD17nDARKL6/L5XZ2sA4ZcI3q1olG+RXCn3/+eYSHN79X5Pjx4/jTn/6Ep59+GtHR0be0byKizsbDw6PV54cMGYL169ejrKzM5IbwHTt2SM9fi6+vr/T7pqSkBHv27MFdd93V6mv++Mc/YsaMGdfcNlFnduLECfzxj39s6zboJnXYoLF48WLExMRIP//zn/8EAMTGxmLTpssL8IkrhkeVlpZi6dKlAAAPWxuo6qvRIAQUNjYQVw2tkmPl1xtKLy/UpKdCHTYGil/H7jYxlpdB6eTcwqtNaSZMQM6JLGzdutXk8bCwMGg0zZPt7t27AVz+ZSf3PBER3by7774bf//73/HZZ59Jw59qa2uxdOlShIWFSTNOnT17FlVVVQgKan0h14ULF6KhoeGaX46GDh2KoUOHmucgiO5Qe/fubesW6BZ02KBx6tQp6HQ6TJkyBdu2bcOyZctw3333YfDgwbC1tYVarYZWq8Vjjz2GiooKfP755/Dy8kJubi6CXV2wouxyuFD59UbthrWoNiTCyqsrFM7OsA7u32x/CqUS9rMfRsU/3kPZK89DHR4BpYsbjCVFaMg8BoWdHRz/8Ox19T7S1xcLtmzB8ePHMXHiROTk5MDDwwOFhYXYsWMHwsLCAAD/+te/UFJSIt0IZTAYcP785VkUnnrqKXTp0vJUvEREdH3Cwv6/vbsLzeo+4Dj+e5KYxvUtbc2wlN7UaB7DzIrOZoViwZteFTra3IxgtnQKMi9laFFR6oV03vauFtRtoFgM1ovNouAodJtVWpBW13VoihRMrFK6+jQuyS5cQ2x9oe0/L5rP5+6B8/acq/M95/zPvzNdXV1Zv359zp8/n9bW1uzcuTNnzpzJjh07xpZbsWJFjh49es1NrG3btuXkyZPp7OxMQ0ND+vr6cujQoWzdujVLly6dir8DMG3ctqGxZ8+ebNq0KevWrUtDQ0PWrFkzNoN2W1tb9u3blw0bNmTt2rWZO3duVq9enZaWlvT29qb9gebk7NWL96Znf5GRC4Op/flgUquloa163dBIklnV9tz70ubU3uzLV0feymjtq9Tdf3/qH5uXu55eft11rqf9geYkVwe0Hz58OKtWrcqxY8eycuXK9PT0jIXG9u3bc/bs2bH1xg8G7+7uFhoAhezatSsbN27M7t27c/HixXR0dOTgwYNZtmzZTddbtGhR9u/fnwMHDmR4eDgdHR3Zu3dvurq6JunIAaavyujod/z80hTbvHlztmzZkoGBgVu+d3sjV0ZG0vanN3JpaOjWCxfW3NiY0798PrNM4AQAcFMnTpzIkiVL8vZPnsvjd3+/67470Xv/GcxTJ/ty/PjxLF78/b6cNRlm5NXurLq6/Lo6/4ZTzE+U+kolvdX5IgMAgDvejL3i/VW1NSOT/DBnZHQ0PdXWSd0nAABMhdt2jMYP9eg996R7wbz88aN/T0pw1FUq6Z7/WB69yeRNAAB82+nLl6b6EKaV2+V83HZjNEr6fOhKOt94MwO1y1/Pxzch6ipJS9Ps/P35Z3Nf46yJ2xEAwB2kv78/C9uq+bJ2eaoPZdr5UdPsfHj61DVzxk03Mzo0kuTIuU/zwl+OTPh+9j2zPMsfeXjC9wMAcCfp7+/P4ODgVB/GtDNnzpxpHRmJ0EiSvPbB6fzub+9O2PZ//+TSvLhwwYRtHwAAppsZOxh8vN+0t+WVn/8sydXXnEr4ejsiAwCAmcgTjXGOnPs0v/3rOxmo1X7QAPG6SiUtTU15ddmTXpcCAGBGEhrf8PnQUDb+40T+8M+PU1epZPg7nJ76SiUjo6PpXjAvLz+xxMBvAABmLKFxA5988UV2nvpXXj/10dgM4g2VSv477nSN/93c2Jje6vz0VFt9whYAgBlPaNzClZGRfPDZpbx34bO8P3gh5y/XUhseTlN9fX48uyk/nfNQHn/owbQ/2GzGbwAA+D+hAQAAFOcWPAAAUJzQAAAAihMaAABAcUIDAAAoTmgAAADFCQ0AAKA4oQEAABQnNAAAgOKEBgAAUJzQAAAAihMaAABAcUIDAAAoTmgAAADFCQ0AAKA4oQEAABQnNAAAgOKEBgAAUJzQAAAAihMaAABAcUIDAAAoTmgAAADFCQ0AAKA4oQEAABQnNAAAgOKEBgAAUJzQAAAAihMaAABAcUIDAAAoTmgAAADFCQ0AAKA4oQEAABQnNAAAgOL+B+STH8Z5W52nAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# This function plots the solution in a table and a graph\n", + "\n", + "\n", + "def plotting_sol(x_sol, cost):\n", + " x_sol_to_mat = np.reshape(np.array(x_sol), [N, M]) # vector to matrix\n", + " print(\"\\033[1m\\033[4m** QAOA SOLUTION **\\033[0m\")\n", + " print(\"\\033[4mHighest Compatibility Score\\033[0m = \", cost)\n", + "\n", + " # plotting in a table\n", + " df = pd.DataFrame(x_sol_to_mat)\n", + " df.columns = patients\n", + " df.index = donors\n", + " print(df)\n", + "\n", + " # plotting in a graph\n", + " graph_sol = nx.DiGraph()\n", + " graph_sol.add_nodes_from(donors + patients)\n", + " for n, m in product(range(N), range(M)):\n", + " if x_sol_to_mat[n, m] > 0:\n", + " graph_sol.add_edges_from(\n", + " [(donors[m], patients[n])],\n", + " weight=compatibility_scores[(donors[m], patients[n])],\n", + " )\n", + "\n", + " plt.figure(figsize=(10, 6))\n", + " left = nx.bipartite.sets(graph_sol, top_nodes=patients)[0]\n", + " pos = nx.bipartite_layout(graph_sol, left)\n", + "\n", + " nx.draw_networkx(\n", + " graph_sol, pos=pos, nodelist=patients, font_size=22, font_color=\"None\"\n", + " )\n", + " nx.draw_networkx_nodes(\n", + " graph_sol, pos, nodelist=patients, node_color=\"#119DA4\", node_size=500\n", + " )\n", + " for d in donors:\n", + " x, y = pos[d]\n", + " plt.text(\n", + " x,\n", + " y,\n", + " s=d,\n", + " bbox=dict(facecolor=\"#F43764\", alpha=1),\n", + " horizontalalignment=\"center\",\n", + " fontsize=12,\n", + " )\n", + "\n", + " nx.draw_networkx_edges(graph_sol, pos, width=2)\n", + " labels = nx.get_edge_attributes(graph_sol, \"weight\")\n", + " nx.draw_networkx_edge_labels(\n", + " graph_sol, pos, edge_labels=labels, font_size=12, label_pos=0.6\n", + " )\n", + " nx.draw_networkx_labels(\n", + " graph_sol,\n", + " pos,\n", + " labels={co: co for co in patients},\n", + " font_size=12,\n", + " # font_color=\"#F4F9E9\",\n", + " )\n", + " plt.title(\"Network Graph of the Best Solution\", fontsize=16)\n", + " plt.axis(\"off\")\n", + " plt.show()\n", + "\n", + "\n", + "# best_solution = optimization_result.loc[optimization_result.probability.idxmax()]\n", + "# plotting_sol(best_solution.solution, best_solution.probability)\n", + "\n", + "best_solution = optimization_result.loc[optimization_result.cost.idxmax()]\n", + "plotting_sol(best_solution.solution, best_solution.cost)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/community/QClass_2024/Submissions/HW4/Hisham_Mansour_HW4_qpe_for_molecules.ipynb b/community/QClass_2024/Submissions/HW4/Hisham_Mansour_HW4_qpe_for_molecules.ipynb new file mode 100644 index 00000000..4463eb4d --- /dev/null +++ b/community/QClass_2024/Submissions/HW4/Hisham_Mansour_HW4_qpe_for_molecules.ipynb @@ -0,0 +1,1497 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "75e2c1fe-8a06-4f0b-8fd6-d1b6d10ce82f", + "metadata": { + "id": "75e2c1fe-8a06-4f0b-8fd6-d1b6d10ce82f" + }, + "source": [ + "# Quantum Phase Estimation (QPE) for Solving Molecular Energies\n", + "\n", + "\n", + "Quantum Phase Estimation (QPE) is a key algorithm in quantum computing, allowing one to estimate the phase (or eigenvalue) of an eigenvector of a unitary operation. The algorithm is designed so, that for a given Hamiltonian $H$, and an eigenvalue ${|\\psi\\rangle}$, the output that will be obtained is $\\epsilon$ where\n", + "\n", + "$U{|\\psi\\rangle} = e^{2\\pi i\\epsilon}{|\\psi\\rangle} , U = e^{2\\pi iH}$ .\n", + "\n", + "\n", + "Therefore, by measuring the phase accumulated, the QPE algorithm allows calculating the energies relating to the chosen initial state.\n", + "When using QPE for chemistry problems, it is common to search for the lowest energy of a given molecule. As the molecule can be written in the form of a Hamiltonian (Hermitian matrix which meaning is the energetic forces of the structure), usually symbolized by \"H\", one only need to insert the ground eigenvector in order to obtain the minimal energy value using QPE. However, obtaining the ground state is not a trivial problem. In order to overcome it, it is sufficient to use a state with big overlap with the ground state.\n", + "\n", + "We define a state ${|v\\rangle}$ which will be chosen as the algorithm's initial state. Let us define {$\\psi_i$} to be the set of (unknown) eigenvalues of $H$. Generally, any vector can be rewritten as a superposition of any basis set, thus -\n", + "\n", + "${|v\\rangle} = \\sum_i a_i{|\\psi_i\\rangle}$\n", + "\n", + "and -\n", + "\n", + "$U{|v\\rangle} = \\sum_i a_i e^{2\\pi i\\epsilon_i}{|\\psi_i\\rangle}$.\n", + "\n", + "where ${\\epsilon_i}$ are the eigenvalues of H, i.e. the span of energies relating to the molecule. Using execution with enough shots, one will obtain this set of $\\theta_i$, i.e., a subset of the Hamiltonian's eigenvalues. As we are specifically interested in $\\epsilon_0$, the ground state of H, it is important that there is a large overlap between ${\\psi_0}$ and ${|v\\rangle}$ so the probability to measure ${\\epsilon_0}$ is high, i.e.\n", + "\n", + "$P(\\epsilon_0) = |\\langle v|\\psi_0\\rangle|^2 > \\epsilon $.\n", + "\n", + "How large is $\\epsilon$? After execution, we will obtain a set of ${E_i}$.\n", + "If we have done 1000 shots of execution, and $P(\\epsilon_0)>1$, it should be measured is about 10 times to get a good statistical variance.\n", + "\n", + "A common choice for ${|v\\rangle}$ (the initial state) is the Hartree-Fock (HF) state, which with good probability have a large overlap with the ground state. However, other guesses for the initial state are possibly good or even better fit, and choosing the right initial state is a sort of art and an active field of research.\n", + "\n", + "For further reading about QPE we recommend [[1](#NC)].\n", + "\n", + "\n", + "#### What are the benefits of using QPE algorithm for finding a molecule's ground state?\n", + "\n", + "The two most prominent methods to solve ground energy for molecules are quantum variational algorithm (VQE) and QPE. Those promise better scalability compared to classical counterparts as the molecules becomes more complex, with larger number of electrons manifesting as more degrees of freedom for the problem.\n", + "\n", + "While so, the number of parameters in VQE is closely related to the number of electrons. This may create inherent difficulty achieving high-precision calculations through sampling statistical estimators, and paraphs even not converge for very large systems. While so, the number of parameters in QPE is a flexible value which is directly related to the resolution of the problem, but is not bonded with the number of electrons.\n", + "\n", + "Furthermore, it is known that advanced quantum algorithms based on QPE can perform electronic structure calculations in sub-exponential time with accuracy that rivals exact diagonalization methods. This guarantee of simultaneously achieving high accuracy, efficiency, and generality is a feat that is believed to be impossible for classical algorithms. For those reasons, VQE is applicable in the near term (NISQ) era, while QPE is suited for fault-tolerant design.\n", + "\n", + "#### During this tutorial, we will follow the QPE algorithms steps as following:\n", + "\n", + "a. Define a molecule and convert it into a Hamiltonian H, manifested as a pauli list.\n", + "\n", + "b. Prepare the Hamiltonian for QPE: including normalization and choosing the resolution.\n", + "\n", + "c. Initializing the state for the HF state.\n", + "\n", + "d. Preparing the quantum circuit.\n", + "\n", + "e. Executing the circuit to find the related phases and analyzing the results to find the ground state.\n", + "\n", + "f. Comparing the QPE results with exact solution for the molecule’s ground state." + ] + }, + { + "cell_type": "markdown", + "id": "7cd71faa-1ef3-4d67-8c9a-d66e0a895b9a", + "metadata": { + "id": "7cd71faa-1ef3-4d67-8c9a-d66e0a895b9a" + }, + "source": [ + "## 0. Pre-requirments\n", + "\n", + "The model is using several Classiq's libraries in addition to IBM's simulating tool." + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "id": "k3DQRV9GpPSG", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "k3DQRV9GpPSG", + "outputId": "4039a7c0-2b12-4e86-d14a-455090db8a57" + }, + "outputs": [], + "source": [ + "# !pip install -U classiq" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "Nsm3pKlqpZpr", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Nsm3pKlqpZpr", + "outputId": "c7a6175b-bfa2-4b6a-f067-36f48d33d94c" + }, + "outputs": [], + "source": [ + "# import classiq\n", + "# classiq.authenticate()" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "id": "11eaf8f8-c06e-443e-ac74-5aa364f5198c", + "metadata": { + "id": "11eaf8f8-c06e-443e-ac74-5aa364f5198c", + "tags": [] + }, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import scipy\n", + "from numpy import linalg as LA\n", + "\n", + "# for state preperation and phase estimation\n", + "from classiq import Constraints, Preferences\n", + "\n", + "# for chemistry\n", + "from classiq.applications.chemistry import Molecule, MoleculeProblem, PauliOperator" + ] + }, + { + "cell_type": "markdown", + "id": "ac537458-568d-4718-9020-408cc7232641", + "metadata": { + "id": "ac537458-568d-4718-9020-408cc7232641" + }, + "source": [ + "## 1. Create Your Molecule" + ] + }, + { + "cell_type": "markdown", + "id": "WC3NKxILHo6H", + "metadata": { + "id": "WC3NKxILHo6H" + }, + "source": [ + "### XYZ cartesian coordinates" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "id": "2b67b2e1-94c2-4c8f-8ee9-577c79a7234f", + "metadata": { + "id": "2b67b2e1-94c2-4c8f-8ee9-577c79a7234f", + "tags": [] + }, + "outputs": [], + "source": [ + "# build your molecule\n", + "\n", + "# hydrogen\n", + "molecule_H2 = Molecule(atoms=[(\"H\", (0.0, 0.0, 0)), (\"H\", (0.0, 0.0, 0.735))])\n", + "# oxygen\n", + "molecule_O2 = Molecule(atoms=[(\"O\", (0.0, 0.0, 0)), (\"O\", (0.0, 0.0, 1.16))])\n", + "# lithium hydride\n", + "molecule_LiH = Molecule(atoms=[(\"H\", (0.0, 0.0, 0.0)), (\"Li\", (0.0, 0.0, 1.596))])\n", + "# water\n", + "molecule_H2O = Molecule(\n", + " atoms=[(\"O\", (0.0, 0.0, 0.0)), (\"H\", (0, 0.586, 0.757)), (\"H\", (0, 0.586, -0.757))]\n", + ")\n", + "# beryllium hydride\n", + "molecule_BeH2 = Molecule(\n", + " atoms=[(\"Be\", (0.0, 0.0, 0.0)), (\"H\", (0, 0, 1.334)), (\"H\", (0, 0, -1.334))]\n", + ")\n", + "# carbon dioxide\n", + "molecule_CO2 = Molecule(\n", + " atoms=[(\"C\", (0.0, 0.0, 0.0)), (\"O\", (0, 0, 1.1693)), (\"O\", (0, 0, -1.1693))]\n", + ")\n", + "# ethyne, acetylene\n", + "molecule_C2H2 = Molecule(\n", + " atoms=[\n", + " (\"C\", (0, 0, -0.5977)),\n", + " (\"C\", (0, 0, 0.5977)),\n", + " (\"H\", (0, 0, -1.6692)),\n", + " (\"H\", (0, 0, 1.6692)),\n", + " ]\n", + ")\n", + "# chloroform\n", + "molecule_CH3Cl = Molecule(\n", + " atoms=[\n", + " (\"C\", (0, 0, -1.1401)),\n", + " (\"Cl\", (0, 0, 0.6645)),\n", + " (\"H\", (0, 1.0343, -1.4855)),\n", + " (\"H\", (0.8957, -0.5171, -1.4855)),\n", + " (\"H\", (-0.8957, -0.5171, -1.4855)),\n", + " ]\n", + ")\n", + "# ethylene\n", + "molecule_C2H4 = Molecule(\n", + " atoms=[\n", + " (\"C\", (0, 0, 0.6673)),\n", + " (\"C\", (0, 0, -0.6673)),\n", + " (\"H\", (0, 0.9239, 1.2411)),\n", + " (\"H\", (0, -0.9239, 1.2411)),\n", + " (\"H\", (0, -0.9239, -1.2411)),\n", + " (\"H\", (0, 0.9239, -1.2411)),\n", + " ]\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "id": "9e37fada-9ecc-4a24-bf2c-0994e9c14149", + "metadata": { + "id": "9e37fada-9ecc-4a24-bf2c-0994e9c14149", + "tags": [] + }, + "outputs": [], + "source": [ + "# define your molecule\n", + "# molecule = molecule_H2\n", + "# molecule = molecule_O2\n", + "# molecule = molecule_LiH\n", + "\n", + "molecule = molecule_BeH2\n", + "\n", + "# molecule = molecule_H2O\n", + "\n", + "# molecule = molecule_CO2\n", + "# The exponentiation constraints are not satisfiable.\n", + "# Minimal max_depth is 36476.\n", + "# molecule = molecule_CH3Cl\n", + "# The exponentiation constraints are not satisfiable.\n", + "# Minimal max_depth is 57965.\n", + "# molecule = molecule_C2H2\n", + "# The exponentiation constraints are not satisfiable.\n", + "# Minimal max_depth is 15115.\n", + "# molecule = molecule_C2H4\n", + "# The exponentiation constraints are not satisfiable.\n", + "# Minimal max_depth is 24471." + ] + }, + { + "cell_type": "markdown", + "id": "ClsUidSlHIsO", + "metadata": { + "id": "ClsUidSlHIsO" + }, + "source": [ + "# **Results for BeH2:**\n", + "\n", + "Your qubit solution is [{'phase': 0.46875}: 135341]\n", + "\n", + "The final results of the Energy (matrix's eigenvlues) is therefore:\n", + "\n", + "[-5.0500156710895965]\n", + "\n", + "exact result: -3.940331561325765\n", + "\n", + "The results including the error contributed from the resolution (number of qubits participating in the QPE) are: The resolution of result is 3.3666771140597356 the energy solution is between -8.416692785149332 and -1.683338557029861" + ] + }, + { + "cell_type": "markdown", + "id": "Cab7eyKPHSW8", + "metadata": { + "id": "Cab7eyKPHSW8" + }, + "source": [ + "# **Results for H2O:**\n", + "\n", + "Your qubit solution is\n", + "[{'phase': 0.453125}: 89076]\n", + "\n", + "The final results of the Energy (matrix's eigenvlues) is therefore:\n", + "\n", + "[-29.018825909142947]\n", + "\n", + "exact result: -23.54449724044351\n", + "\n", + "\n", + "The results including the error contributed from the resolution (number of qubits\n", + "participating in the QPE) are:\n", + "The resolution of result is 11.607530363657174\n", + "the energy solution is between -40.62635627280012 and -17.41129554548577\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "id": "5d27e5df-e16e-44b2-b78a-187905577908", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "5d27e5df-e16e-44b2-b78a-187905577908", + "outputId": "7bad3408-043c-4a50-beb7-a0b2acfb6360", + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Your Hamiltonian is\n", + "-0.702 * IIIIIII\n", + "-0.230 * ZIZZZIZ\n", + "-0.022 * IIIIIZX\n", + "+0.022 * ZIZZZZX\n", + "-0.251 * ZIIIZZI\n", + "-0.058 * ZIZZZXZ\n", + "+0.058 * IIZZIXZ\n", + "-0.857 * IIIZIII\n", + "-0.857 * IIZIIII\n", + "-0.495 * IIIIIIZ\n", + "-0.755 * IIIIIZI\n", + "-0.230 * ZZZZZII\n", + "-0.022 * ZXIIIII\n", + "+0.022 * IXZZZII\n", + "-0.251 * IIIIZII\n", + "+0.058 * YZZZYII\n", + "+0.058 * XZZZXII\n", + "-0.495 * IZIIIII\n", + "-0.755 * ZIIIIII\n", + "+0.062 * IIZZIZZ\n", + "+0.010 * IIIIIXI\n", + "-0.010 * ZIIIZXI\n", + "+0.172 * ZIZIZIZ\n", + "+0.172 * ZIIZZIZ\n", + "+0.159 * ZIZZZII\n", + "+0.093 * ZIZZZZZ\n", + "+0.012 * ZIIIZIX\n", + "-0.012 * IIZZIIX\n", + "+0.003 * ZIZZZYY\n", + "+0.020 * IIZZIXX\n", + "+0.017 * IIZZIYY\n", + "+0.017 * IIIIIYY\n", + "+0.020 * IIIIIXX\n", + "+0.003 * ZIIIZYY\n", + "+0.014 * IIIZIZX\n", + "-0.014 * ZIZIZZX\n", + "+0.014 * IIZIIZX\n", + "-0.014 * ZIIZZZX\n", + "+0.005 * IIIIIIX\n", + "-0.005 * ZIZZZIX\n", + "+0.202 * IZIIIIZ\n", + "+0.003 * ZZZZZZX\n", + "-0.003 * IZIIIZX\n", + "+0.041 * ZZIIXZZ\n", + "-0.041 * IIZZXZZ\n", + "-0.041 * ZZZZXII\n", + "+0.041 * IIIIXII\n", + "-0.011 * ZZZZXXI\n", + "+0.011 * IIIIXXI\n", + "-0.011 * IZIIYYZ\n", + "+0.011 * ZIZZYYZ\n", + "+0.012 * ZZIXIZZ\n", + "-0.012 * IIZXZZZ\n", + "-0.012 * IZZXZZI\n", + "+0.012 * ZIIXIZI\n", + "+0.012 * ZZXIIZZ\n", + "-0.012 * IIXZZZZ\n", + "-0.012 * IZXZZZI\n", + "+0.012 * ZIXIIZI\n", + "+0.003 * IXZZZIZ\n", + "-0.003 * ZXIIIIZ\n", + "+0.039 * ZXIIIZX\n", + "-0.039 * IXZZZZX\n", + "-0.011 * XIZZIZZ\n", + "+0.011 * XZIIZZZ\n", + "+0.011 * XIIIIII\n", + "-0.011 * XZZZZII\n", + "+0.014 * XIIIIXI\n", + "-0.014 * XZZZZXI\n", + "+0.014 * YIZZZYZ\n", + "-0.014 * YZIIIYZ\n", + "+0.103 * ZIZZIIZ\n", + "-0.012 * IIIIZZX\n", + "+0.012 * ZIZZIZX\n", + "+0.024 * IYIIYZZ\n", + "+0.024 * IXIIXZZ\n", + "-0.024 * IYZZYII\n", + "-0.024 * IXZZXII\n", + "-0.015 * IYZZYXI\n", + "-0.015 * IXZZXXI\n", + "+0.015 * ZYIIXYZ\n", + "-0.015 * ZXIIYYZ\n", + "-0.001 * XZIIXIZ\n", + "-0.001 * YZIIYIZ\n", + "-0.018 * YZZZYZX\n", + "-0.018 * XZZZXZX\n", + "-0.018 * XZIIXZX\n", + "-0.018 * YZIIYZX\n", + "-0.012 * IYIYIZZ\n", + "-0.012 * IXIXIZZ\n", + "+0.012 * ZYZYZZI\n", + "+0.012 * ZXZXZZI\n", + "-0.012 * IYYIIZZ\n", + "-0.012 * IXXIIZZ\n", + "+0.012 * ZYYZZZI\n", + "+0.012 * ZXXZZZI\n", + "+0.198 * ZZZZZIZ\n", + "-0.036 * YYZZIZZ\n", + "-0.036 * XXZZIZZ\n", + "+0.036 * YYIIIII\n", + "+0.036 * XXIIIII\n", + "+0.014 * YYIIIXI\n", + "+0.014 * XXIIIXI\n", + "-0.014 * XYZZZYZ\n", + "+0.014 * YXZZZYZ\n", + "+0.107 * IIZZZIZ\n", + "-0.009 * ZIIIIZX\n", + "+0.009 * IIZZZZX\n", + "+0.174 * ZIIZZZI\n", + "+0.174 * ZIZIZZI\n", + "+0.081 * ZIIIZZZ\n", + "+0.182 * ZIIIZII\n", + "+0.026 * ZIZIZXZ\n", + "-0.026 * IIZIIXZ\n", + "+0.026 * ZIIZZXZ\n", + "-0.026 * IIIZIXZ\n", + "+0.017 * ZIZZZXI\n", + "-0.017 * IIZZIXI\n", + "+0.103 * IZZZIZI\n", + "-0.001 * IZIIIXZ\n", + "+0.001 * ZZIIZXZ\n", + "+0.024 * IZIIYZY\n", + "-0.024 * ZIZZYZY\n", + "+0.024 * ZZIIXIX\n", + "-0.024 * IIZZXIX\n", + "-0.012 * IXIIZZI\n", + "+0.012 * ZXZZIZI\n", + "+0.018 * IXZZZXZ\n", + "-0.018 * ZXIIIXZ\n", + "-0.018 * ZXZZIXZ\n", + "+0.018 * IXIIZXZ\n", + "-0.015 * YIZZZZY\n", + "+0.015 * YZIIIZY\n", + "-0.015 * XIZZIIX\n", + "+0.015 * XZIIZIX\n", + "+0.231 * ZIIIIZI\n", + "-0.003 * ZIZZIXZ\n", + "+0.003 * IIZZZXZ\n", + "+0.004 * ZIIXXZI\n", + "+0.004 * ZIIYYZI\n", + "+0.004 * IIIYYII\n", + "+0.004 * IIIXXII\n", + "+0.004 * ZIXIXZI\n", + "+0.004 * ZIYIYZI\n", + "+0.004 * IIYIYII\n", + "+0.004 * IIXIXII\n", + "-0.021 * ZYIIXZY\n", + "+0.021 * ZXIIYZY\n", + "+0.021 * IYIIYIX\n", + "+0.021 * IXIIXIX\n", + "-0.003 * XZZZXZI\n", + "-0.003 * YZZZYZI\n", + "+0.041 * XZIIXXZ\n", + "+0.041 * YZIIYXZ\n", + "+0.003 * XZZXZZI\n", + "+0.003 * YZZYZZI\n", + "+0.003 * YZZYIII\n", + "+0.003 * XZZXIII\n", + "+0.003 * XZXZZZI\n", + "+0.003 * YZYZZZI\n", + "+0.003 * YZYZIII\n", + "+0.003 * XZXZIII\n", + "+0.102 * ZZIIZZI\n", + "-0.007 * ZZZZZXZ\n", + "+0.007 * IZZZIXZ\n", + "+0.024 * XYZZZZY\n", + "-0.024 * YXZZZZY\n", + "-0.024 * YYZZIIX\n", + "-0.024 * XXZZIIX\n", + "+0.223 * IIIIZZI\n", + "+0.389 * IIZZIII\n", + "+0.171 * IIIZIIZ\n", + "+0.191 * IIIZIZI\n", + "+0.172 * ZZZIZII\n", + "-0.012 * ZZIYIIY\n", + "+0.012 * IIZYZIY\n", + "-0.012 * ZZIXIIX\n", + "+0.012 * IIZXZIX\n", + "+0.014 * ZXIZIII\n", + "-0.014 * IXZIZII\n", + "+0.174 * IIIZZII\n", + "-0.003 * IIZXYYZ\n", + "+0.003 * IIZYXYZ\n", + "+0.003 * IIZYYXZ\n", + "+0.003 * IIZXXXZ\n", + "-0.026 * YZZIYII\n", + "-0.026 * XZZIXII\n", + "+0.012 * IIXXIII\n", + "+0.012 * IIYYIII\n", + "-0.013 * IYIXIIY\n", + "+0.013 * IXIYIIY\n", + "+0.013 * IYIYIIX\n", + "+0.013 * IXIXIIX\n", + "-0.004 * YZIXIYZ\n", + "+0.004 * XZIYIYZ\n", + "+0.004 * YZIYIXZ\n", + "+0.004 * XZIXIXZ\n", + "+0.171 * IZIZIII\n", + "+0.191 * ZIIZIII\n", + "+0.171 * IIZIIIZ\n", + "+0.191 * IIZIIZI\n", + "+0.172 * ZZIZZII\n", + "-0.012 * ZZYIIIY\n", + "+0.012 * IIYZZIY\n", + "-0.012 * ZZXIIIX\n", + "+0.012 * IIXZZIX\n", + "+0.014 * ZXZIIII\n", + "-0.014 * IXIZZII\n", + "+0.174 * IIZIZII\n", + "-0.003 * IIXZYYZ\n", + "+0.003 * IIYZXYZ\n", + "+0.003 * IIYZYXZ\n", + "+0.003 * IIXZXXZ\n", + "-0.026 * YZIZYII\n", + "-0.026 * XZIZXII\n", + "-0.013 * IYXIIIY\n", + "+0.013 * IXYIIIY\n", + "+0.013 * IYYIIIX\n", + "+0.013 * IXXIIIX\n", + "-0.004 * YZXIIYZ\n", + "+0.004 * XZYIIYZ\n", + "+0.004 * YZYIIXZ\n", + "+0.004 * XZXIIXZ\n", + "+0.171 * IZZIIII\n", + "+0.191 * ZIZIIII\n", + "+0.074 * IIIIIZZ\n", + "-0.036 * ZZZZXYY\n", + "+0.036 * IIIIXYY\n", + "-0.036 * ZZZZXXX\n", + "+0.036 * IIIIXXX\n", + "+0.014 * XIIIIYY\n", + "-0.014 * XZZZZYY\n", + "+0.014 * XIIIIXX\n", + "-0.014 * XZZZZXX\n", + "+0.102 * IIIIZIZ\n", + "-0.024 * IYZZYYY\n", + "-0.024 * IXZZXYY\n", + "-0.024 * IYZZYXX\n", + "-0.024 * IXZZXXX\n", + "+0.007 * YZZZYIZ\n", + "+0.007 * XZZZXIZ\n", + "+0.035 * YYIIIYY\n", + "+0.035 * XXIIIYY\n", + "+0.035 * YYIIIXX\n", + "+0.035 * XXIIIXX\n", + "+0.109 * ZIIIIIZ\n", + "+0.107 * ZZZZZZI\n", + "-0.009 * ZXIIIZI\n", + "+0.009 * IXZZZZI\n", + "+0.109 * IZIIIZI\n", + "+0.062 * ZZZZIII\n", + "+0.010 * XIIIXII\n", + "+0.010 * YIIIYII\n", + "+0.093 * IZZZZII\n", + "+0.012 * ZXIIZII\n", + "-0.012 * IXZZIII\n", + "+0.003 * XYZZYII\n", + "+0.020 * XXZZXII\n", + "+0.017 * YYZZXII\n", + "+0.017 * YYIIXII\n", + "+0.020 * XXIIXII\n", + "+0.003 * XYIIYII\n", + "+0.005 * IXIIIII\n", + "-0.005 * ZXZZZII\n", + "+0.081 * IZIIZII\n", + "-0.017 * YIZZYII\n", + "-0.017 * XIZZXII\n", + "+0.074 * ZZIIIII\n" + ] + } + ], + "source": [ + "# define your molecule problem\n", + "\n", + "gs_problem = MoleculeProblem(\n", + " molecule=molecule,\n", + " basis=\"sto3g\",\n", + " mapping=\"jordan_wigner\", #'bravyi_kitaev'\n", + " z2_symmetries=True,\n", + " freeze_core=True,\n", + ")\n", + "\n", + "operator = gs_problem.generate_hamiltonian()\n", + "gs_problem = gs_problem.update_problem(operator.num_qubits)\n", + "print(\"Your Hamiltonian is\", operator.show(), sep=\"\\n\")" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "id": "7a0b57c6-a057-41cb-8163-cc91d559bbdd", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "7a0b57c6-a057-41cb-8163-cc91d559bbdd", + "outputId": "1460479e-94e8-4c11-baa9-d0b96c9916b7", + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Your Pauli list is\n", + "[('IIIIIII', (-0.7022930768258921+0j)), ('ZIZZZIZ', (-0.23019060454699553+0j)), ('IIIIIZX', (-0.022105135983230773+0j)), ('ZIZZZZX', (0.022105135983230773+0j)), ('ZIIIZZI', (-0.2508359055835329+0j)), ('ZIZZZXZ', (-0.05762054716987136+0j)), ('IIZZIXZ', (0.05762054716987136+0j)), ('IIIZIII', (-0.8572771753840491+0j)), ('IIZIIII', (-0.8572771753840495+0j)), ('IIIIIIZ', (-0.4953913605926791+0j)), ('IIIIIZI', (-0.755422115779769+0j)), ('ZZZZZII', (-0.2301906045469956+0j)), ('ZXIIIII', (-0.022105135983230766+0j)), ('IXZZZII', (0.022105135983230766+0j)), ('IIIIZII', (-0.25083590558353275+0j)), ('YZZZYII', (0.05762054716987136+0j)), ('XZZZXII', (0.05762054716987136+0j)), ('IZIIIII', (-0.49539136059267913+0j)), ('ZIIIIII', (-0.755422115779769+0j)), ('IIZZIZZ', (0.06177536902294072+0j)), ('IIIIIXI', (0.009628629697052186+0j)), ('ZIIIZXI', (-0.009628629697052186+0j)), ('ZIZIZIZ', (0.17213123525686325+0j)), ('ZIIZZIZ', (0.1721312352568633+0j)), ('ZIZZZII', (0.15942306177427767+0j)), ('ZIZZZZZ', (0.09279153113235836+0j)), ('ZIIIZIX', (0.011782782608242606+0j)), ('IIZZIIX', (-0.011782782608242606+0j)), ('ZIZZZYY', (0.002973281387454196+0j)), ('IIZZIXX', (0.020388829108894987+0j)), ('IIZZIYY', (0.017415547721440768+0j)), ('IIIIIYY', (0.017415547721440768+0j)), ('IIIIIXX', (0.020388829108894987+0j)), ('ZIIIZYY', (0.002973281387454196+0j)), ('IIIZIZX', (0.014419981611826721+0j)), ('ZIZIZZX', (-0.014419981611826721+0j)), ('IIZIIZX', (0.014419981611826716+0j)), ('ZIIZZZX', (-0.014419981611826716+0j)), ('IIIIIIX', (0.0048161379430657495+0j)), ('ZIZZZIX', (-0.0048161379430657495+0j)), ('IZIIIIZ', (0.2024043809018113+0j)), ('ZZZZZZX', (0.002565939742358108+0j)), ('IZIIIZX', (-0.002565939742358108+0j)), ('ZZIIXZZ', (0.04108938500992236+0j)), ('IIZZXZZ', (-0.04108938500992236+0j)), ('ZZZZXII', (-0.04108938500992236+0j)), ('IIIIXII', (0.04108938500992236+0j)), ('ZZZZXXI', (-0.011051936749184687+0j)), ('IIIIXXI', (0.011051936749184687+0j)), ('IZIIYYZ', (-0.011051936749184687+0j)), ('ZIZZYYZ', (0.011051936749184687+0j)), ('ZZIXIZZ', (0.01234821063234334+0j)), ('IIZXZZZ', (-0.01234821063234334+0j)), ('IZZXZZI', (-0.01234821063234334+0j)), ('ZIIXIZI', (0.01234821063234334+0j)), ('ZZXIIZZ', (0.01234821063234334+0j)), ('IIXZZZZ', (-0.01234821063234334+0j)), ('IZXZZZI', (-0.01234821063234334+0j)), ('ZIXIIZI', (0.01234821063234334+0j)), ('IXZZZIZ', (0.002565939742358108+0j)), ('ZXIIIIZ', (-0.002565939742358108+0j)), ('ZXIIIZX', (0.03889565589184009+0j)), ('IXZZZZX', (-0.03889565589184009+0j)), ('XIZZIZZ', (-0.011051936749184687+0j)), ('XZIIZZZ', (0.011051936749184687+0j)), ('XIIIIII', (0.011051936749184687+0j)), ('XZZZZII', (-0.011051936749184687+0j)), ('XIIIIXI', (0.01414965096283118+0j)), ('XZZZZXI', (-0.01414965096283118+0j)), ('YIZZZYZ', (0.01414965096283118+0j)), ('YZIIIYZ', (-0.01414965096283118+0j)), ('ZIZZIIZ', (0.10286475403286306+0j)), ('IIIIZZX', (-0.011879666226520792+0j)), ('ZIZZIZX', (0.011879666226520792+0j)), ('IYIIYZZ', (0.023662448834763396+0j)), ('IXIIXZZ', (0.023662448834763396+0j)), ('IYZZYII', (-0.023662448834763396+0j)), ('IXZZXII', (-0.023662448834763396+0j)), ('IYZZYXI', (-0.015307708024581815+0j)), ('IXZZXXI', (-0.015307708024581815+0j)), ('ZYIIXYZ', (0.015307708024581815+0j)), ('ZXIIYYZ', (-0.015307708024581815+0j)), ('XZIIXIZ', (-0.0014233070521324988+0j)), ('YZIIYIZ', (-0.0014233070521324988+0j)), ('YZZZYZX', (-0.018280989412036014+0j)), ('XZZZXZX', (-0.018280989412036014+0j)), ('XZIIXZX', (-0.018280989412036014+0j)), ('YZIIYZX', (-0.018280989412036014+0j)), ('IYIYIZZ', (-0.01185327361540123+0j)), ('IXIXIZZ', (-0.01185327361540123+0j)), ('ZYZYZZI', (0.01185327361540123+0j)), ('ZXZXZZI', (0.01185327361540123+0j)), ('IYYIIZZ', (-0.011853273615401231+0j)), ('IXXIIZZ', (-0.011853273615401231+0j)), ('ZYYZZZI', (0.011853273615401231+0j)), ('ZXXZZZI', (0.011853273615401231+0j)), ('ZZZZZIZ', (0.19831871766611772+0j)), ('YYZZIZZ', (-0.03569653713347678+0j)), ('XXZZIZZ', (-0.03569653713347678+0j)), ('YYIIIII', (0.03569653713347678+0j)), ('XXIIIII', (0.03569653713347678+0j)), ('YYIIIXI', (0.013897967082179451+0j)), ('XXIIIXI', (0.013897967082179451+0j)), ('XYZZZYZ', (-0.013897967082179451+0j)), ('YXZZZYZ', (0.013897967082179451+0j)), ('IIZZZIZ', (0.10694118209518956+0j)), ('ZIIIIZX', (-0.009081829139113701+0j)), ('IIZZZZX', (0.009081829139113701+0j)), ('ZIIZZZI', (0.1744698035079177+0j)), ('ZIZIZZI', (0.1744698035079177+0j)), ('ZIIIZZZ', (0.08104582589502732+0j)), ('ZIIIZII', (0.1820000129718488+0j)), ('ZIZIZXZ', (0.02628674552520143+0j)), ('IIZIIXZ', (-0.02628674552520143+0j)), ('ZIIZZXZ', (0.026286745525201414+0j)), ('IIIZIXZ', (-0.026286745525201414+0j)), ('ZIZZZXI', (0.01726508183549788+0j)), ('IIZZIXI', (-0.01726508183549788+0j)), ('IZZZIZI', (0.10286475403286306+0j)), ('IZIIIXZ', (-0.0014233070521324988+0j)), ('ZZIIZXZ', (0.0014233070521324988+0j)), ('IZIIYZY', (0.023662448834763396+0j)), ('ZIZZYZY', (-0.023662448834763396+0j)), ('ZZIIXIX', (0.023662448834763396+0j)), ('IIZZXIX', (-0.023662448834763396+0j)), ('IXIIZZI', (-0.011879666226520792+0j)), ('ZXZZIZI', (0.011879666226520792+0j)), ('IXZZZXZ', (0.018280989412036014+0j)), ('ZXIIIXZ', (-0.018280989412036014+0j)), ('ZXZZIXZ', (-0.018280989412036014+0j)), ('IXIIZXZ', (0.018280989412036014+0j)), ('YIZZZZY', (-0.015307708024581815+0j)), ('YZIIIZY', (0.015307708024581815+0j)), ('XIZZIIX', (-0.015307708024581815+0j)), ('XZIIZIX', (0.015307708024581815+0j)), ('ZIIIIZI', (0.23075467521596427+0j)), ('ZIZZIXZ', (-0.0025513531024711268+0j)), ('IIZZZXZ', (0.0025513531024711268+0j)), ('ZIIXXZI', (0.0036560013958361025+0j)), ('ZIIYYZI', (0.0036560013958361025+0j)), ('IIIYYII', (0.0036560013958361025+0j)), ('IIIXXII', (0.0036560013958361025+0j)), ('ZIXIXZI', (0.0036560013958361025+0j)), ('ZIYIYZI', (0.0036560013958361025+0j)), ('IIYIYII', (0.0036560013958361025+0j)), ('IIXIXII', (0.0036560013958361025+0j)), ('ZYIIXZY', (-0.020873062000978788+0j)), ('ZXIIYZY', (0.020873062000978788+0j)), ('IYIIYIX', (0.020873062000978788+0j)), ('IXIIXIX', (0.020873062000978788+0j)), ('XZZZXZI', (-0.0025513531024711255+0j)), ('YZZZYZI', (-0.0025513531024711255+0j)), ('XZIIXXZ', (0.04125144772662377+0j)), ('YZIIYXZ', (0.04125144772662377+0j)), ('XZZXZZI', (0.0034405062273071014+0j)), ('YZZYZZI', (0.0034405062273071014+0j)), ('YZZYIII', (0.0034405062273071014+0j)), ('XZZXIII', (0.0034405062273071014+0j)), ('XZXZZZI', (0.0034405062273071014+0j)), ('YZYZZZI', (0.0034405062273071014+0j)), ('YZYZIII', (0.0034405062273071014+0j)), ('XZXZIII', (0.0034405062273071014+0j)), ('ZZIIZZI', (0.10191888789600612+0j)), ('ZZZZZXZ', (-0.006564129606561645+0j)), ('IZZZIXZ', (0.006564129606561645+0j)), ('XYZZZZY', (0.023829211442059527+0j)), ('YXZZZZY', (-0.023829211442059527+0j)), ('YYZZIIX', (-0.023829211442059527+0j)), ('XXZZIIX', (-0.023829211442059527+0j)), ('IIIIZZI', (0.22325146069847254+0j)), ('IIZZIII', (0.3892355930337427+0j)), ('IIIZIIZ', (0.17086285707799778+0j)), ('IIIZIZI', (0.19133630882633235+0j)), ('ZZZIZII', (0.17213123525686325+0j)), ('ZZIYIIY', (-0.01185327361540123+0j)), ('IIZYZIY', (0.01185327361540123+0j)), ('ZZIXIIX', (-0.01185327361540123+0j)), ('IIZXZIX', (0.01185327361540123+0j)), ('ZXIZIII', (0.014419981611826721+0j)), ('IXZIZII', (-0.014419981611826721+0j)), ('IIIZZII', (0.1744698035079177+0j)), ('IIZXYYZ', (-0.0034405062273071014+0j)), ('IIZYXYZ', (0.0034405062273071014+0j)), ('IIZYYXZ', (0.0034405062273071014+0j)), ('IIZXXXZ', (0.0034405062273071014+0j)), ('YZZIYII', (-0.02628674552520143+0j)), ('XZZIXII', (-0.02628674552520143+0j)), ('IIXXIII', (0.012124689610585541+0j)), ('IIYYIII', (0.012124689610585541+0j)), ('IYIXIIY', (-0.012722452161354637+0j)), ('IXIYIIY', (0.012722452161354637+0j)), ('IYIYIIX', (0.012722452161354637+0j)), ('IXIXIIX', (0.012722452161354637+0j)), ('YZIXIYZ', (-0.004138154161062577+0j)), ('XZIYIYZ', (0.004138154161062577+0j)), ('YZIYIXZ', (0.004138154161062577+0j)), ('XZIXIXZ', (0.004138154161062577+0j)), ('IZIZIII', (0.17086285707799778+0j)), ('ZIIZIII', (0.19133630882633235+0j)), ('IIZIIIZ', (0.17086285707799784+0j)), ('IIZIIZI', (0.19133630882633237+0j)), ('ZZIZZII', (0.1721312352568633+0j)), ('ZZYIIIY', (-0.011853273615401231+0j)), ('IIYZZIY', (0.011853273615401231+0j)), ('ZZXIIIX', (-0.011853273615401231+0j)), ('IIXZZIX', (0.011853273615401231+0j)), ('ZXZIIII', (0.014419981611826716+0j)), ('IXIZZII', (-0.014419981611826716+0j)), ('IIZIZII', (0.1744698035079177+0j)), ('IIXZYYZ', (-0.0034405062273071023+0j)), ('IIYZXYZ', (0.0034405062273071023+0j)), ('IIYZYXZ', (0.0034405062273071023+0j)), ('IIXZXXZ', (0.0034405062273071023+0j)), ('YZIZYII', (-0.026286745525201414+0j)), ('XZIZXII', (-0.026286745525201414+0j)), ('IYXIIIY', (-0.012722452161354645+0j)), ('IXYIIIY', (0.012722452161354645+0j)), ('IYYIIIX', (0.012722452161354645+0j)), ('IXXIIIX', (0.012722452161354645+0j)), ('YZXIIYZ', (-0.004138154161062578+0j)), ('XZYIIYZ', (0.004138154161062578+0j)), ('YZYIIXZ', (0.004138154161062578+0j)), ('XZXIIXZ', (0.004138154161062578+0j)), ('IZZIIII', (0.17086285707799784+0j)), ('ZIZIIII', (0.19133630882633237+0j)), ('IIIIIZZ', (0.07373286867690836+0j)), ('ZZZZXYY', (-0.03569653713347678+0j)), ('IIIIXYY', (0.03569653713347678+0j)), ('ZZZZXXX', (-0.03569653713347678+0j)), ('IIIIXXX', (0.03569653713347678+0j)), ('XIIIIYY', (0.013897967082179451+0j)), ('XZZZZYY', (-0.013897967082179451+0j)), ('XIIIIXX', (0.013897967082179451+0j)), ('XZZZZXX', (-0.013897967082179451+0j)), ('IIIIZIZ', (0.10191888789600612+0j)), ('IYZZYYY', (-0.023829211442059527+0j)), ('IXZZXYY', (-0.023829211442059527+0j)), ('IYZZYXX', (-0.023829211442059527+0j)), ('IXZZXXX', (-0.023829211442059527+0j)), ('YZZZYIZ', (0.006564129606561645+0j)), ('XZZZXIZ', (0.006564129606561645+0j)), ('YYIIIYY', (0.03516605240243114+0j)), ('XXIIIYY', (0.03516605240243114+0j)), ('YYIIIXX', (0.03516605240243114+0j)), ('XXIIIXX', (0.03516605240243114+0j)), ('ZIIIIIZ', (0.10889892107933949+0j)), ('ZZZZZZI', (0.10694118209518956+0j)), ('ZXIIIZI', (-0.009081829139113701+0j)), ('IXZZZZI', (0.009081829139113701+0j)), ('IZIIIZI', (0.10889892107933949+0j)), ('ZZZZIII', (0.06177536902294072+0j)), ('XIIIXII', (0.009628629697052186+0j)), ('YIIIYII', (0.009628629697052186+0j)), ('IZZZZII', (0.09279153113235836+0j)), ('ZXIIZII', (0.011782782608242606+0j)), ('IXZZIII', (-0.011782782608242606+0j)), ('XYZZYII', (0.002973281387454196+0j)), ('XXZZXII', (0.020388829108894987+0j)), ('YYZZXII', (0.017415547721440768+0j)), ('YYIIXII', (0.017415547721440768+0j)), ('XXIIXII', (0.020388829108894987+0j)), ('XYIIYII', (0.002973281387454196+0j)), ('IXIIIII', (0.0048161379430657495+0j)), ('ZXZZZII', (-0.0048161379430657495+0j)), ('IZIIZII', (0.08104582589502732+0j)), ('YIZZYII', (-0.01726508183549788+0j)), ('XIZZXII', (-0.01726508183549788+0j)), ('ZZIIIII', (0.07373286867690836+0j))]\n" + ] + } + ], + "source": [ + "pauli_ops = operator.pauli_list\n", + "N = operator.num_qubits\n", + "print(\"Your Pauli list is\", pauli_ops, sep=\"\\n\")" + ] + }, + { + "cell_type": "markdown", + "id": "685f4a01-caf3-4d0c-b9f3-4fc89bc5192a", + "metadata": { + "id": "685f4a01-caf3-4d0c-b9f3-4fc89bc5192a" + }, + "source": [ + "## 2. Preparing the Molecule for QPE" + ] + }, + { + "cell_type": "markdown", + "id": "1b1bafad-d35c-4504-9665-02b0ae86d52f", + "metadata": { + "id": "1b1bafad-d35c-4504-9665-02b0ae86d52f" + }, + "source": [ + "### 2.1 Chose the Algorithm's Precision\n", + "\n", + "For QPE algorithms, the precision is set by the number of qubits chosen $n$, such that the resolution is $1/{2^n}$. In case the matrix needs to be normlized, the resolution will be distorted. In case of normalization, that the span of results in the QPE is strached between the lowest and highest possible phase, thus the reslution will be mapped to $normalization-coefficient/{2^n} ~\\sim 1/{((\\lambda_{max}-\\lambda_{min})*2^n)}$.\n", + "\n", + "Here you can chose the precision in the parameter `n_qpe`, or by setting your desired resolution. If you chose your desired resolution and set the parameter `get_recommended_n` to be True, the number of qubits will be calculated for you accordingly.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "id": "4e96164f-aa00-4723-9f59-b1c13ccb58d8", + "metadata": { + "id": "4e96164f-aa00-4723-9f59-b1c13ccb58d8", + "tags": [] + }, + "outputs": [], + "source": [ + "# `n_qpe`- The precision of the QPE (the number of qubits to be used in the QPE. Creates resolution of 1/2^n_qpe\n", + "n_qpe = 6" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "id": "74aeea8b-1e16-408f-bc5f-c5888b552a6f", + "metadata": { + "id": "74aeea8b-1e16-408f-bc5f-c5888b552a6f", + "tags": [] + }, + "outputs": [], + "source": [ + "# recommanded n_qpe:\n", + "get_recommanded_n = False\n", + "\n", + "import math\n", + "\n", + "desired_resolution = 0.02\n", + "\n", + "\n", + "def get_nqpe(pauli_operator, desired_resolution):\n", + " N = pauli_operator.num_qubits\n", + " A = 0\n", + " for a, b in pauli_operator.pauli_list:\n", + " A = A + abs(b)\n", + " nqpe = math.log2(2 * N * A / desired_resolution)\n", + " return math.ceil(nqpe)\n", + "\n", + "\n", + "if get_recommanded_n:\n", + " n_qpe = get_nqpe(operator, desired_resolution)\n", + " print(\"number of qubits for QPE is\", n_qpe)" + ] + }, + { + "cell_type": "markdown", + "id": "fa3d1079-c12b-48db-8935-1ea059fdbce9", + "metadata": { + "id": "fa3d1079-c12b-48db-8935-1ea059fdbce9" + }, + "source": [ + "### 2.3 Normalize the Matrix\n", + "\n", + "As QPE obtains a phase in the form $e^{2\\pi i\\theta}$, there is meaning only for $\\theta \\in [0,2\\pi)$. Generally, our matrix M can have any eigenvalue, thus \\theta can have any value. In order to fix this discrepancy, the values of the matrix are stretched to be rescaled. We assume\n", + "$\\theta \\in [\\lambda_{min}, \\lambda_{max}]$\n", + "and use a normalization function in order to map those values into $[0, 1-1/{2^n}]$, where n is the number of qubits chosen for the QPE process in section 2.2.\n", + "\n", + "We perform the normalization procedure as following:\n", + "\n", + "a. We evaluate $\\lambda_{min},\\lambda_{max}$ (in the function ` normalization_params()` below). In order to do so we use rough estimation of the absolute max value that can take place by adding together all the pauli coefficients and multiplying by the matrix's dimensions. That will yield us a value $\\lambda$ (which is referred in the code as `normalization_coeff`) and we now assume that the domain is $\\theta \\in [-\\lambda, \\lambda]$.\n", + "In general, one can build a more accurate assessment, which will decrease the span of solutions and thus achieve a better resolution.\n", + "\n", + "b. We make sure only positive values are available by adding $\\lambda*I^n$ to the pauli list. Now our evaluated span is $[0, 2*\\lambda]$.\n", + "\n", + "c. We normlize our matrix by multiplying all of the pauli coefficients by $(1-1/2^n)/(2*\\lambda)$. Now the span of $\\theta$ is $[0, 1-1/2^n]$, as required for proper QPE process.\n", + "\n", + "The values of the matrix's eigenvalues should be now between $0$ to $1-(1/2^n)$. The QPE procedure will be performed on this new normalized matrix. After the phases are obtained, the original phases of the pre-normalized matrix will be gathered by performing opposite steps to this normalization procedure.\n", + "\n", + "* Note that in case your matrix's eigenvalues are naturally between the values $0$ to $1-(1/2^n)$, you may not want to normalize it, as the normalization procedure may enlarge the span, thus lowering the resolution of the agorithm. In that case, you may skip those lines or change the value `normalize` to False." + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "id": "70d8b16f-5f50-4272-9b7b-0ca7cad00b60", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "70d8b16f-5f50-4272-9b7b-0ca7cad00b60", + "outputId": "4c9491de-b9f5-4855-edac-2798e3def5ab", + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[('IIIIIII', (0.48892810536438785+0j)), ('ZIZZZIZ', (-0.0010683317925043478+0j)), ('IIIIIZX', (-0.00010259158750198228+0j)), ('ZIZZZZX', (0.00010259158750198228+0j)), ('ZIIIZZI', (-0.0011641481769591397+0j)), ('ZIZZZXZ', (-0.0002674212640616372+0j)), ('IIZZIXZ', (0.0002674212640616372+0j)), ('IIIZIII', (-0.003978687415385474+0j)), ('IIZIIII', (-0.003978687415385476+0j)), ('IIIIIIZ', (-0.002299148313610232+0j)), ('IIIIIZI', (-0.0035059704744972017+0j)), ('ZZZZZII', (-0.0010683317925043482+0j)), ('ZXIIIII', (-0.00010259158750198224+0j)), ('IXZZZII', (0.00010259158750198224+0j)), ('IIIIZII', (-0.0011641481769591388+0j)), ('YZZZYII', (0.0002674212640616372+0j)), ('XZZZXII', (0.0002674212640616372+0j)), ('IZIIIII', (-0.002299148313610232+0j)), ('ZIIIIII', (-0.0035059704744972017+0j)), ('IIZZIZZ', (0.00028670410267514636+0j)), ('IIIIIXI', (4.468718974806055e-05+0j)), ('ZIIIZXI', (-4.468718974806055e-05+0j)), ('ZIZIZIZ', (0.0007988739221995865+0j)), ('ZIIZZIZ', (0.0007988739221995868+0j)), ('ZIZZZII', (0.0007398943396800268+0j)), ('ZIZZZZZ', (0.0004306524281429421+0j)), ('ZIIIZIX', (5.468477433874995e-05+0j)), ('IIZZIIX', (-5.468477433874995e-05+0j)), ('ZIZZZYY', (1.3799221043490736e-05+0j)), ('IIZZIXX', (9.462607907840828e-05+0j)), ('IIZZIYY', (8.082685803491742e-05+0j)), ('IIIIIYY', (8.082685803491742e-05+0j)), ('IIIIIXX', (9.462607907840828e-05+0j)), ('ZIIIZYY', (1.3799221043490736e-05+0j)), ('IIIZIZX', (6.69242119310627e-05+0j)), ('ZIZIZZX', (-6.69242119310627e-05+0j)), ('IIZIIZX', (6.692421193106269e-05+0j)), ('ZIIZZZX', (-6.692421193106269e-05+0j)), ('IIIIIIX', (2.2352055991986362e-05+0j)), ('ZIZZZIX', (-2.2352055991986362e-05+0j)), ('IZIIIIZ', (0.0009393738527474021+0j)), ('ZZZZZZX', (1.1908718037412015e-05+0j)), ('IZIIIZX', (-1.1908718037412015e-05+0j)), ('ZZIIXZZ', (0.00019069890548721174+0j)), ('IIZZXZZ', (-0.00019069890548721174+0j)), ('ZZZZXII', (-0.00019069890548721174+0j)), ('IIIIXII', (0.00019069890548721174+0j)), ('ZZZZXXI', (-5.129286410771216e-05+0j)), ('IIIIXXI', (5.129286410771216e-05+0j)), ('IZIIYYZ', (-5.129286410771216e-05+0j)), ('ZIZZYYZ', (5.129286410771216e-05+0j)), ('ZZIXIZZ', (5.730896803991555e-05+0j)), ('IIZXZZZ', (-5.730896803991555e-05+0j)), ('IZZXZZI', (-5.730896803991555e-05+0j)), ('ZIIXIZI', (5.730896803991555e-05+0j)), ('ZZXIIZZ', (5.730896803991555e-05+0j)), ('IIXZZZZ', (-5.730896803991555e-05+0j)), ('IZXZZZI', (-5.730896803991555e-05+0j)), ('ZIXIIZI', (5.730896803991555e-05+0j)), ('IXZZZIZ', (1.1908718037412015e-05+0j)), ('ZXIIIIZ', (-1.1908718037412015e-05+0j)), ('ZXIIIZX', (0.00018051764476372577+0j)), ('IXZZZZX', (-0.00018051764476372577+0j)), ('XIZZIZZ', (-5.129286410771216e-05+0j)), ('XZIIZZZ', (5.129286410771216e-05+0j)), ('XIIIIII', (5.129286410771216e-05+0j)), ('XZZZZII', (-5.129286410771216e-05+0j)), ('XIIIIXI', (6.566958719353869e-05+0j)), ('XZZZZXI', (-6.566958719353869e-05+0j)), ('YIZZZYZ', (6.566958719353869e-05+0j)), ('YZIIIYZ', (-6.566958719353869e-05+0j)), ('ZIZZIIZ', (0.000477403008162358+0j)), ('IIIIZZX', (-5.513441844904338e-05+0j)), ('ZIZZIZX', (5.513441844904338e-05+0j)), ('IYIIYZZ', (0.00010981919278779331+0j)), ('IXIIXZZ', (0.00010981919278779331+0j)), ('IYZZYII', (-0.00010981919278779331+0j)), ('IXZZXII', (-0.00010981919278779331+0j)), ('IYZZYXI', (-7.104421653185207e-05+0j)), ('IXZZXXI', (-7.104421653185207e-05+0j)), ('ZYIIXYZ', (7.104421653185207e-05+0j)), ('ZXIIYYZ', (-7.104421653185207e-05+0j)), ('XZIIXIZ', (-6.605674359651609e-06+0j)), ('YZIIYIZ', (-6.605674359651609e-06+0j)), ('YZZZYZX', (-8.484343757534281e-05+0j)), ('XZZZXZX', (-8.484343757534281e-05+0j)), ('XZIIXZX', (-8.484343757534281e-05+0j)), ('YZIIYZX', (-8.484343757534281e-05+0j)), ('IYIYIZZ', (-5.5011928369130166e-05+0j)), ('IXIXIZZ', (-5.5011928369130166e-05+0j)), ('ZYZYZZI', (5.5011928369130166e-05+0j)), ('ZXZXZZI', (5.5011928369130166e-05+0j)), ('IYYIIZZ', (-5.501192836913017e-05+0j)), ('IXXIIZZ', (-5.501192836913017e-05+0j)), ('ZYYZZZI', (5.501192836913017e-05+0j)), ('ZXXZZZI', (5.501192836913017e-05+0j)), ('ZZZZZIZ', (0.0009204119844437524+0j)), ('YYZZIZZ', (-0.0001656702956102602+0j)), ('XXZZIZZ', (-0.0001656702956102602+0j)), ('YYIIIII', (0.0001656702956102602+0j)), ('XXIIIII', (0.0001656702956102602+0j)), ('YYIIIXI', (6.450150350093854e-05+0j)), ('XXIIIXI', (6.450150350093854e-05+0j)), ('XYZZZYZ', (-6.450150350093854e-05+0j)), ('YXZZZYZ', (6.450150350093854e-05+0j)), ('IIZZZIZ', (0.0004963220153364809+0j)), ('ZIIIIZX', (-4.214944750895218e-05+0j)), ('IIZZZZX', (4.214944750895218e-05+0j)), ('ZIIZZZI', (0.0008097273921596634+0j)), ('ZIZIZZI', (0.0008097273921596634+0j)), ('ZIIIZZZ', (0.0003761397326525242+0j)), ('ZIIIZII', (0.0008446756568395641+0j)), ('ZIZIZXZ', (0.00012199874978090469+0j)), ('IIZIIXZ', (-0.00012199874978090469+0j)), ('ZIIZZXZ', (0.0001219987497809046+0j)), ('IIIZIXZ', (-0.0001219987497809046+0j)), ('ZIZZZXI', (8.012853461743276e-05+0j)), ('IIZZIXI', (-8.012853461743276e-05+0j)), ('IZZZIZI', (0.000477403008162358+0j)), ('IZIIIXZ', (-6.605674359651609e-06+0j)), ('ZZIIZXZ', (6.605674359651609e-06+0j)), ('IZIIYZY', (0.00010981919278779331+0j)), ('ZIZZYZY', (-0.00010981919278779331+0j)), ('ZZIIXIX', (0.00010981919278779331+0j)), ('IIZZXIX', (-0.00010981919278779331+0j)), ('IXIIZZI', (-5.513441844904338e-05+0j)), ('ZXZZIZI', (5.513441844904338e-05+0j)), ('IXZZZXZ', (8.484343757534281e-05+0j)), ('ZXIIIXZ', (-8.484343757534281e-05+0j)), ('ZXZZIXZ', (-8.484343757534281e-05+0j)), ('IXIIZXZ', (8.484343757534281e-05+0j)), ('YIZZZZY', (-7.104421653185207e-05+0j)), ('YZIIIZY', (7.104421653185207e-05+0j)), ('XIZZIIX', (-7.104421653185207e-05+0j)), ('XZIIZIX', (7.104421653185207e-05+0j)), ('ZIIIIZI', (0.0010709496866189421+0j)), ('ZIZZIXZ', (-1.1841020351975455e-05+0j)), ('IIZZZXZ', (1.1841020351975455e-05+0j)), ('ZIIXXZI', (1.6967775606213202e-05+0j)), ('ZIIYYZI', (1.6967775606213202e-05+0j)), ('IIIYYII', (1.6967775606213202e-05+0j)), ('IIIXXII', (1.6967775606213202e-05+0j)), ('ZIXIXZI', (1.6967775606213202e-05+0j)), ('ZIYIYZI', (1.6967775606213202e-05+0j)), ('IIYIYII', (1.6967775606213202e-05+0j)), ('IIXIXII', (1.6967775606213202e-05+0j)), ('ZYIIXZY', (-9.68734401060554e-05+0j)), ('ZXIIYZY', (9.68734401060554e-05+0j)), ('IYIIYIX', (9.68734401060554e-05+0j)), ('IXIIXIX', (9.68734401060554e-05+0j)), ('XZZZXZI', (-1.184102035197545e-05+0j)), ('YZZZYZI', (-1.184102035197545e-05+0j)), ('XZIIXXZ', (0.00019145105066260875+0j)), ('YZIIYXZ', (0.00019145105066260875+0j)), ('XZZXZZI', (1.5967646430117258e-05+0j)), ('YZZYZZI', (1.5967646430117258e-05+0j)), ('YZZYIII', (1.5967646430117258e-05+0j)), ('XZZXIII', (1.5967646430117258e-05+0j)), ('XZXZZZI', (1.5967646430117258e-05+0j)), ('YZYZZZI', (1.5967646430117258e-05+0j)), ('YZYZIII', (1.5967646430117258e-05+0j)), ('XZXZIII', (1.5967646430117258e-05+0j)), ('ZZIIZZI', (0.0004730131727585797+0j)), ('ZZZZZXZ', (-3.0464615889121402e-05+0j)), ('IZZZIXZ', (3.0464615889121402e-05+0j)), ('XYZZZZY', (0.00011059315050655418+0j)), ('YXZZZZY', (-0.00011059315050655418+0j)), ('YYZZIIX', (-0.00011059315050655418+0j)), ('XXZZIIX', (-0.00011059315050655418+0j)), ('IIIIZZI', (0.0010361267075021726+0j)), ('IIZZIII', (0.001806471465812303+0j)), ('IIIZIIZ', (0.0007929872843150064+0j)), ('IIIZIZI', (0.0008880061033849397+0j)), ('ZZZIZII', (0.0007988739221995865+0j)), ('ZZIYIIY', (-5.5011928369130166e-05+0j)), ('IIZYZIY', (5.5011928369130166e-05+0j)), ('ZZIXIIX', (-5.5011928369130166e-05+0j)), ('IIZXZIX', (5.5011928369130166e-05+0j)), ('ZXIZIII', (6.69242119310627e-05+0j)), ('IXZIZII', (-6.69242119310627e-05+0j)), ('IIIZZII', (0.0008097273921596634+0j)), ('IIZXYYZ', (-1.5967646430117258e-05+0j)), ('IIZYXYZ', (1.5967646430117258e-05+0j)), ('IIZYYXZ', (1.5967646430117258e-05+0j)), ('IIZXXXZ', (1.5967646430117258e-05+0j)), ('YZZIYII', (-0.00012199874978090469+0j)), ('XZZIXII', (-0.00012199874978090469+0j)), ('IIXXIII', (5.6271590279399006e-05+0j)), ('IIYYIII', (5.6271590279399006e-05+0j)), ('IYIXIIY', (-5.904585093444126e-05+0j)), ('IXIYIIY', (5.904585093444126e-05+0j)), ('IYIYIIX', (5.904585093444126e-05+0j)), ('IXIXIIX', (5.904585093444126e-05+0j)), ('YZIXIYZ', (-1.9205482609715886e-05+0j)), ('XZIYIYZ', (1.9205482609715886e-05+0j)), ('YZIYIXZ', (1.9205482609715886e-05+0j)), ('XZIXIXZ', (1.9205482609715886e-05+0j)), ('IZIZIII', (0.0007929872843150064+0j)), ('ZIIZIII', (0.0008880061033849397+0j)), ('IIZIIIZ', (0.0007929872843150067+0j)), ('IIZIIZI', (0.0008880061033849398+0j)), ('ZZIZZII', (0.0007988739221995868+0j)), ('ZZYIIIY', (-5.501192836913017e-05+0j)), ('IIYZZIY', (5.501192836913017e-05+0j)), ('ZZXIIIX', (-5.501192836913017e-05+0j)), ('IIXZZIX', (5.501192836913017e-05+0j)), ('ZXZIIII', (6.692421193106269e-05+0j)), ('IXIZZII', (-6.692421193106269e-05+0j)), ('IIZIZII', (0.0008097273921596634+0j)), ('IIXZYYZ', (-1.596764643011726e-05+0j)), ('IIYZXYZ', (1.596764643011726e-05+0j)), ('IIYZYXZ', (1.596764643011726e-05+0j)), ('IIXZXXZ', (1.596764643011726e-05+0j)), ('YZIZYII', (-0.0001219987497809046+0j)), ('XZIZXII', (-0.0001219987497809046+0j)), ('IYXIIIY', (-5.90458509344413e-05+0j)), ('IXYIIIY', (5.90458509344413e-05+0j)), ('IYYIIIX', (5.90458509344413e-05+0j)), ('IXXIIIX', (5.90458509344413e-05+0j)), ('YZXIIYZ', (-1.920548260971589e-05+0j)), ('XZYIIYZ', (1.920548260971589e-05+0j)), ('YZYIIXZ', (1.920548260971589e-05+0j)), ('XZXIIXZ', (1.920548260971589e-05+0j)), ('IZZIIII', (0.0007929872843150067+0j)), ('ZIZIIII', (0.0008880061033849398+0j)), ('IIIIIZZ', (0.00034219975187565625+0j)), ('ZZZZXYY', (-0.0001656702956102602+0j)), ('IIIIXYY', (0.0001656702956102602+0j)), ('ZZZZXXX', (-0.0001656702956102602+0j)), ('IIIIXXX', (0.0001656702956102602+0j)), ('XIIIIYY', (6.450150350093854e-05+0j)), ('XZZZZYY', (-6.450150350093854e-05+0j)), ('XIIIIXX', (6.450150350093854e-05+0j)), ('XZZZZXX', (-6.450150350093854e-05+0j)), ('IIIIZIZ', (0.0004730131727585797+0j)), ('IYZZYYY', (-0.00011059315050655418+0j)), ('IXZZXYY', (-0.00011059315050655418+0j)), ('IYZZYXX', (-0.00011059315050655418+0j)), ('IXZZXXX', (-0.00011059315050655418+0j)), ('YZZZYIZ', (3.0464615889121402e-05+0j)), ('XZZZXIZ', (3.0464615889121402e-05+0j)), ('YYIIIYY', (0.00016320827634266465+0j)), ('XXIIIYY', (0.00016320827634266465+0j)), ('YYIIIXX', (0.00016320827634266465+0j)), ('XXIIIXX', (0.00016320827634266465+0j)), ('ZIIIIIZ', (0.0005054080282183209+0j)), ('ZZZZZZI', (0.0004963220153364809+0j)), ('ZXIIIZI', (-4.214944750895218e-05+0j)), ('IXZZZZI', (4.214944750895218e-05+0j)), ('IZIIIZI', (0.0005054080282183209+0j)), ('ZZZZIII', (0.00028670410267514636+0j)), ('XIIIXII', (4.468718974806055e-05+0j)), ('YIIIYII', (4.468718974806055e-05+0j)), ('IZZZZII', (0.0004306524281429421+0j)), ('ZXIIZII', (5.468477433874995e-05+0j)), ('IXZZIII', (-5.468477433874995e-05+0j)), ('XYZZYII', (1.3799221043490736e-05+0j)), ('XXZZXII', (9.462607907840828e-05+0j)), ('YYZZXII', (8.082685803491742e-05+0j)), ('YYIIXII', (8.082685803491742e-05+0j)), ('XXIIXII', (9.462607907840828e-05+0j)), ('XYIIYII', (1.3799221043490736e-05+0j)), ('IXIIIII', (2.2352055991986362e-05+0j)), ('ZXZZZII', (-2.2352055991986362e-05+0j)), ('IZIIZII', (0.0003761397326525242+0j)), ('YIZZYII', (-8.012853461743276e-05+0j)), ('XIZZXII', (-8.012853461743276e-05+0j)), ('ZZIIIII', (0.00034219975187565625+0j))]\n" + ] + } + ], + "source": [ + "from typing import cast\n", + "\n", + "from classiq import Pauli, PauliTerm\n", + "\n", + "# normalizing the operator\n", + "## we need to create a matrix such that its normalized version will have eigenvalues of [0,1/2^k] when k is the resolution of the QPE\n", + "normalize = True\n", + "\n", + "\n", + "def normalization_params(pauli_list, N):\n", + " A = 0\n", + " for a, b in pauli_list:\n", + " A = A + abs(b)\n", + " return N * A\n", + "\n", + "\n", + "def normalize_hamiltonian(pauli_list, normalization_coeff, k):\n", + " new_pauli_list = []\n", + " for a, b in pauli_list:\n", + " if a == \"I\" * N:\n", + " new_pauli_list.append(\n", + " (\n", + " a,\n", + " (b + normalization_coeff)\n", + " * (1 - 1 / (2**k))\n", + " / (2 * normalization_coeff),\n", + " )\n", + " )\n", + " else:\n", + " new_pauli_list.append((a, b * (1 - 1 / (2**k)) / (2 * normalization_coeff)))\n", + " return new_pauli_list\n", + "\n", + "\n", + "pauli_list = pauli_ops\n", + "if normalize:\n", + " normalization_coeff = normalization_params(pauli_ops, N)\n", + " new_pauli_list = normalize_hamiltonian(pauli_ops, normalization_coeff, n_qpe)\n", + " pauli_ops = new_pauli_list\n", + " print(pauli_ops)" + ] + }, + { + "cell_type": "markdown", + "id": "21e4de42-3417-46d4-b981-664bb0683dc4", + "metadata": { + "id": "21e4de42-3417-46d4-b981-664bb0683dc4" + }, + "source": [ + "Convert the objects to qmod:" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "id": "e340b469-5566-4bd5-bb5d-3107ebc790e0", + "metadata": { + "id": "e340b469-5566-4bd5-bb5d-3107ebc790e0", + "tags": [] + }, + "outputs": [], + "source": [ + "CHAR_TO_STUCT_DICT = {\"I\": Pauli.I, \"X\": Pauli.X, \"Y\": Pauli.Y, \"Z\": Pauli.Z}\n", + "\n", + "\n", + "def pauli_str_to_enums(pauli):\n", + " return [CHAR_TO_STUCT_DICT[s] for s in pauli]\n", + "\n", + "\n", + "def pauli_list_to_hamiltonian(pauli_list):\n", + " return [\n", + " PauliTerm(\n", + " pauli=pauli_str_to_enums(pauli), coefficient=cast(complex, coeff).real\n", + " )\n", + " for pauli, coeff in pauli_list\n", + " ]" + ] + }, + { + "cell_type": "markdown", + "id": "62d2e51d-d532-4c26-86dd-a5b9b40d009e", + "metadata": { + "id": "62d2e51d-d532-4c26-86dd-a5b9b40d009e" + }, + "source": [ + "## 3. Creating the Quantum Circuit\n", + "\n", + "We will now create a quantum circuit of the QPE algorithm using the Classiq platform. The user is able to fill in their constraints and preferences as desired." + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "id": "fd4ee616-2a11-46ba-adc0-ed5171d7dd7d", + "metadata": { + "id": "fd4ee616-2a11-46ba-adc0-ed5171d7dd7d", + "tags": [] + }, + "outputs": [], + "source": [ + "constraints = Constraints()\n", + "preferences = Preferences(timeout_seconds=600)" + ] + }, + { + "cell_type": "markdown", + "id": "43c249a1-9db3-4164-bec1-f345670d4cd1", + "metadata": { + "id": "43c249a1-9db3-4164-bec1-f345670d4cd1" + }, + "source": [ + "### 3.1. Create the phase estimation model" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "id": "b05c5ced-e02a-4b56-acc5-c62de3564239", + "metadata": { + "id": "b05c5ced-e02a-4b56-acc5-c62de3564239", + "tags": [] + }, + "outputs": [], + "source": [ + "from classiq import molecule_problem_to_qmod\n", + "from classiq.qmod import (\n", + " CInt,\n", + " Output,\n", + " QArray,\n", + " QBit,\n", + " QCallable,\n", + " QNum,\n", + " allocate,\n", + " allocate_num,\n", + " control,\n", + " invert,\n", + " qfunc,\n", + " repeat,\n", + ")\n", + "from classiq.qmod.builtins import (\n", + " H,\n", + " apply_to_all,\n", + " exponentiation_with_depth_constraint,\n", + " molecule_hartree_fock,\n", + " qft,\n", + ")\n", + "from classiq.qmod.symbolic import log, pi\n", + "\n", + "# this constant will be multipled be a linear factor for each qbit of the qpe, so the\n", + "# depth will scale linear with the power of each unitary, on the expense of approximating the\n", + "# exponentiation function\n", + "exp_max_depth = 2200\n", + "\n", + "\n", + "# define a Quantum Phase Estimation function that allows specifying each controlled\n", + "# power unitary directly\n", + "@qfunc\n", + "def my_flexible_qpe(\n", + " unitary_with_power: QCallable[CInt],\n", + " phase: QArray[QBit],\n", + ") -> None:\n", + " apply_to_all(H, phase)\n", + "\n", + " repeat(\n", + " count=phase.len,\n", + " iteration=lambda index: control(\n", + " ctrl=phase[index],\n", + " operand=lambda: unitary_with_power(2**index),\n", + " ),\n", + " )\n", + " invert(lambda: qft(phase))\n", + "\n", + "\n", + "@qfunc\n", + "def main(reg: Output[QArray[QBit]], phase: Output[QNum]):\n", + " allocate_num(num_qubits=n_qpe, is_signed=False, fraction_digits=n_qpe, out=phase)\n", + " allocate(N, reg)\n", + "\n", + " # The state chosen for the initial state is HF, as usually it has good overlap with the with the eigenstate of minimal energy.\n", + " molecule_hartree_fock(molecule_problem_to_qmod(gs_problem), reg)\n", + "\n", + " # # Hereby we send the pauli list created for the molecule for creating phase estimation circuit.\n", + " my_flexible_qpe(\n", + " lambda power: exponentiation_with_depth_constraint(\n", + " pauli_list_to_hamiltonian(pauli_ops),\n", + " evolution_coefficient=-2 * np.pi * power,\n", + " max_depth=exp_max_depth * ((2**0.5) ** log(power, 2)),\n", + " qbv=reg,\n", + " ),\n", + " phase,\n", + " )" + ] + }, + { + "cell_type": "markdown", + "id": "467eca03-8a66-43d8-b2af-6d86b21e36d5", + "metadata": { + "id": "467eca03-8a66-43d8-b2af-6d86b21e36d5", + "tags": [] + }, + "source": [ + "## 3.2. Synthesizing the Circuit\n", + "\n", + "Hereby we syntesize the circuit and show it using the analyzer." + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "id": "10eaa569-de42-41b4-b615-c04bdc850ecf", + "metadata": { + "id": "10eaa569-de42-41b4-b615-c04bdc850ecf", + "tags": [] + }, + "outputs": [], + "source": [ + "from classiq import create_model\n", + "from classiq.execution import ExecutionPreferences\n", + "\n", + "num_shots = 200000\n", + "\n", + "qmod = create_model(\n", + " main,\n", + " constraints=constraints,\n", + " preferences=preferences,\n", + " execution_preferences=ExecutionPreferences(num_shots=num_shots),\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "id": "a7aae67f-1750-43be-9446-74fa0565058a", + "metadata": { + "id": "a7aae67f-1750-43be-9446-74fa0565058a" + }, + "outputs": [], + "source": [ + "# from classiq import write_qmod\n", + "\n", + "# write_qmod(qmod, name=\"qpe_for_molecules\") # optional" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "id": "8d434afe-5cbc-4a56-a48c-e657090c348a", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "8d434afe-5cbc-4a56-a48c-e657090c348a", + "outputId": "660ea141-5ece-4b9f-ca7b-68e2abdea824", + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Opening: https://platform.classiq.io/circuit/99f0cfde-38f4-4b77-958b-6991194539a5?version=0.42.1\n" + ] + } + ], + "source": [ + "from classiq import show, synthesize\n", + "\n", + "qprog = synthesize(qmod)\n", + "show(qprog)" + ] + }, + { + "cell_type": "markdown", + "id": "7483f266-af0f-4d08-aa96-317b4044df58", + "metadata": { + "id": "7483f266-af0f-4d08-aa96-317b4044df58" + }, + "source": [ + "# 4. Measurment and Analysis\n" + ] + }, + { + "cell_type": "markdown", + "id": "e5bf0b3c-839f-43de-9da1-cba55ceba995", + "metadata": { + "id": "e5bf0b3c-839f-43de-9da1-cba55ceba995" + }, + "source": [ + "### 4.1. Circuit Execution\n", + "\n", + "The circuit is now sent to execution on a default simulator" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "id": "bc063bfc-de4b-4181-82b1-f805f86baa2e", + "metadata": { + "id": "bc063bfc-de4b-4181-82b1-f805f86baa2e", + "tags": [] + }, + "outputs": [], + "source": [ + "from classiq import execute\n", + "\n", + "results = execute(qprog).result()" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "id": "05e682bd-0f1a-4e10-ba0b-e0bf3378fecd", + "metadata": { + "id": "05e682bd-0f1a-4e10-ba0b-e0bf3378fecd", + "tags": [] + }, + "outputs": [], + "source": [ + "from classiq.execution import ExecutionDetails\n", + "\n", + "results = results[0].value" + ] + }, + { + "cell_type": "markdown", + "id": "8611351f-1b14-4969-878d-6f022cdfce2a", + "metadata": { + "id": "8611351f-1b14-4969-878d-6f022cdfce2a" + }, + "source": [ + "### 4.2. Presenting the Result's Count" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "id": "9c0ee98c-3ffa-4f1d-9cb2-4fada19b08b4", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "9c0ee98c-3ffa-4f1d-9cb2-4fada19b08b4", + "outputId": "dbdec0d4-3bef-487c-ce25-5761628ee8ab", + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[{'phase': 0.46875}: 135118,\n", + " {'phase': 0.484375}: 36276,\n", + " {'phase': 0.453125}: 8424,\n", + " {'phase': 0.5}: 5425,\n", + " {'phase': 0.4375}: 2817,\n", + " {'phase': 0.515625}: 2133,\n", + " {'phase': 0.421875}: 1332,\n", + " {'phase': 0.53125}: 1130,\n", + " {'phase': 0.40625}: 859,\n", + " {'phase': 0.546875}: 694]" + ] + }, + "execution_count": 50, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "results.parsed_counts_of_outputs(\"phase\")[:10]" + ] + }, + { + "cell_type": "markdown", + "id": "41009d2c-4276-409b-b9f4-8dee8103f208", + "metadata": { + "id": "41009d2c-4276-409b-b9f4-8dee8103f208" + }, + "source": [ + "### 4.3. Chosing the Most Probable Solution\n", + "\n", + "Hereby the user will choose the number of eigenvalues they wish to extract from the poll of results. The\n", + "value `number_of_solutions` will determine how many results out of `qpe_results` will be analyzed.\n", + "The `parsed_counts` property is already sorted.\n", + "\n", + "We get the result in the `phase` variable already encoded as fixed point variable in the range [0,1]." + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "id": "ba022acc-738c-4685-a7ff-70ea2c400bfd", + "metadata": { + "id": "ba022acc-738c-4685-a7ff-70ea2c400bfd" + }, + "outputs": [], + "source": [ + "number_of_solutions = 1 # to be set" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "id": "4a54cb17-8c0a-4b00-a3a3-6e276fa92b53", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "4a54cb17-8c0a-4b00-a3a3-6e276fa92b53", + "outputId": "52406be4-77d6-4bc1-e6f5-891113990de4", + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Your qubit solution is\n", + "[{'phase': 0.46875}: 135118]\n" + ] + } + ], + "source": [ + "solutions = results.parsed_counts_of_outputs(\"phase\")[:number_of_solutions]\n", + "print(\"Your qubit solution is\", solutions, sep=\"\\n\")" + ] + }, + { + "cell_type": "markdown", + "id": "2f784e6f-d7ed-4cc9-81dd-f6b952d0dc01", + "metadata": { + "id": "2f784e6f-d7ed-4cc9-81dd-f6b952d0dc01" + }, + "source": [ + "### 4.4. Translating into Energy value (Phase)" + ] + }, + { + "cell_type": "markdown", + "id": "d83d16de-2450-4c7a-8093-26bf13d4dce4", + "metadata": { + "id": "d83d16de-2450-4c7a-8093-26bf13d4dce4" + }, + "source": [ + "Map the phase back into the original values, i.e. renormalized into it's original span." + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "id": "836084e1-a20d-4a55-93cc-91a40c1d2f53", + "metadata": { + "id": "836084e1-a20d-4a55-93cc-91a40c1d2f53" + }, + "outputs": [], + "source": [ + "def post_process_phase(phase):\n", + " return (\n", + " (phase * 2 * normalization_coeff) / (1 - (1 / 2**n_qpe))\n", + " ) - normalization_coeff" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "id": "a5bdb723-b015-4e80-98ea-985901c6c8d7", + "metadata": { + "id": "a5bdb723-b015-4e80-98ea-985901c6c8d7", + "tags": [] + }, + "outputs": [], + "source": [ + "# renormalize into the \"real\" solution -\n", + "if normalize:\n", + " solution = [post_process_phase(value.state[\"phase\"]) for value in solutions]\n", + "else:\n", + " solution = phase" + ] + }, + { + "cell_type": "markdown", + "id": "6c963b82-26a7-4251-bae0-32e66c57fa1d", + "metadata": { + "id": "6c963b82-26a7-4251-bae0-32e66c57fa1d" + }, + "source": [ + "The final results of the Energy (matrix's eigenvlues) is therefore:" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "id": "43e8ec8f-2be9-403d-8ae9-9380fb2b08c9", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "43e8ec8f-2be9-403d-8ae9-9380fb2b08c9", + "outputId": "57fe6127-9b33-4cc5-ffcc-a121004cf862", + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[-5.050015671089611]\n" + ] + } + ], + "source": [ + "print(solution)" + ] + }, + { + "cell_type": "markdown", + "id": "7565aa1f-b8ba-4617-a2ef-79317261dfe7", + "metadata": { + "id": "7565aa1f-b8ba-4617-a2ef-79317261dfe7" + }, + "source": [ + "And the results including the error contributed from the resolution (number of qubits participating in the QPE) are:" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "id": "79f1c1ba-61fd-438e-a3d5-7606ea95e70f", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "79f1c1ba-61fd-438e-a3d5-7606ea95e70f", + "outputId": "d75f1d8a-8af0-48c8-a552-a37bf9fbf641", + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "the resolution of result is 3.3666771140597387\n", + "the eneregy solution is beteen -8.41669278514935 and -1.683338557029872\n" + ] + } + ], + "source": [ + "if normalize:\n", + " energy_resolution = (\n", + " (1 / (2**n_qpe)) * 2 * normalization_coeff / (1 - (1 / 2**n_qpe))\n", + " )\n", + "else:\n", + " energy_resolution = 1 / (2**n_qpe)\n", + "\n", + "print(\"the resolution of result is\", energy_resolution)\n", + "\n", + "for sol in solution:\n", + " print(\n", + " \"the eneregy solution is beteen\",\n", + " sol - energy_resolution,\n", + " \"and\",\n", + " sol + energy_resolution,\n", + " )\n", + "\n", + " ###if zero or exceed the normalization range need to add conditions" + ] + }, + { + "cell_type": "markdown", + "id": "d570c6b0-bd32-40d1-9ebb-c1ee7c8663ad", + "metadata": { + "id": "d570c6b0-bd32-40d1-9ebb-c1ee7c8663ad" + }, + "source": [ + "### 4.4. Find Exact Solution for Comparison" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "id": "bd9e84a5-d131-4835-bade-13ba01035b44", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "bd9e84a5-d131-4835-bade-13ba01035b44", + "outputId": "7cfc9892-b918-4447-806d-f13493e84053", + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "exact result: -3.940331561325752\n" + ] + } + ], + "source": [ + "mat = operator.to_matrix()\n", + "w, v = np.linalg.eig(mat)\n", + "print(\"exact result:\", np.real(min(w)))" + ] + }, + { + "cell_type": "markdown", + "id": "703c6ae7-5174-433f-ad9f-78f9864b1914", + "metadata": { + "id": "703c6ae7-5174-433f-ad9f-78f9864b1914" + }, + "source": [ + "### 4.4. Find the Solution's Histogram" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "id": "dfc5f725-495b-45d1-9c67-a1daf80a1454", + "metadata": { + "id": "dfc5f725-495b-45d1-9c67-a1daf80a1454", + "tags": [] + }, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "\n", + "energy_vec = []\n", + "energy_prob = []\n", + "\n", + "for value, counts in results.parsed_counts_of_outputs(\"phase\"):\n", + " temp = value[1][\"phase\"]\n", + " if normalize:\n", + " temp2 = (\n", + " temp * 2 * normalization_coeff / (1 - (1 / 2**n_qpe))\n", + " ) - normalization_coeff\n", + " else:\n", + " temp2 = temp\n", + " energy_vec.append(temp2)\n", + " energy_prob.append(counts[1] / num_shots)" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "id": "993c5b3b-7a05-44f1-9c4e-6651cd50f4cb", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 430 + }, + "id": "993c5b3b-7a05-44f1-9c4e-6651cd50f4cb", + "outputId": "640fb07e-7b78-45ad-958a-c447af80f9be", + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGeCAYAAABGlgGHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAmcUlEQVR4nO3df3RU9Z3/8ddMIBMCZoIGJiE7ENAKpUCiCRljV92eHc12OT1ldXtSv67J5ijdtci2Hbcr0TZRuzJUXJpdyYr1aOmppyXVQ3XbZeO6o2wPSxbcAFUUaLVAUs0MpJYZDJho5vP9g+PQKfk1IeSTSZ6Pc+7R+dzP58775ia5L+587o3DGGMEAABgidN2AQAAYHIjjAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsmmK7gOGIx+N69913dckll8jhcNguBwAADIMxRqdOndKcOXPkdA5y/cOMwKZNm8y8efOMy+Uy5eXlZvfu3QP2veGGG4yk85Y///M/H/b7dXR09LsNFhYWFhYWlvG/dHR0DHqeT/nKSHNzswKBgDZv3iyfz6fGxkZVVlbq8OHDmj179nn9t23bpt7e3sTr3/72tyouLtYXvvCFYb/nJZdcIknq6OhQTk5OqiUDAAALYrGYvF5v4jw+EIcxqf2hPJ/Pp+XLl2vTpk2Szn6E4vV6tWbNGq1du3bI8Y2Njaqvr1dnZ6emT58+rPeMxWJyu92KRqOEEQAA0sRwz98pTWDt7e1VW1ub/H7/uQ04nfL7/WptbR3WNp566il98YtfHDSI9PT0KBaLJS0AAGBiSimMdHV1qa+vTx6PJ6nd4/EoHA4POX7Pnj06cOCA7rzzzkH7BYNBud3uxOL1elMpEwAApJExvbX3qaee0tKlS1VeXj5ov7q6OkWj0cTS0dExRhUCAICxltIE1ry8PGVkZCgSiSS1RyIR5efnDzq2u7tbW7du1UMPPTTk+7hcLrlcrlRKAwAAaSqlKyOZmZkqLS1VKBRKtMXjcYVCIVVUVAw69tlnn1VPT4/+6q/+amSVAgCACSnlW3sDgYBqampUVlam8vJyNTY2qru7W7W1tZKk6upqFRYWKhgMJo176qmntHLlSl122WWjUzkAAJgQUg4jVVVVOnHihOrr6xUOh1VSUqKWlpbEpNb29vbznrJ2+PBh7dy5U//5n/85OlUDAIAJI+XnjNjAc0YAAEg/F+U5IwAAAKONMAIAAKwijAAYdZ3RM9r1dpc6o2dslwIgDaQ8gRUABtP8arvqtr2uuJGcDil481JVLZ9ruywA4xhXRgCMms7omUQQkaS4ke7bdoArJAAGRRgBMGqOdHUngsjH+ozR0a7TdgoCkBYIIwBGzfy86XI6ktsyHA4V5WXbKQhAWiCMABg1Be5pCt68VBmOs4kkw+HQupuXqMA9zXJlAMYzJrACGFVVy+fq+itn6WjXaRXlZRNEAAyJMAJg1BW4pxFCAAwbH9MAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKtGFEaamppUVFSkrKws+Xw+7dmzZ9D+J0+e1OrVq1VQUCCXy6Urr7xS27dvH1HBAABgYpmS6oDm5mYFAgFt3rxZPp9PjY2Nqqys1OHDhzV79uzz+vf29urGG2/U7Nmz9dxzz6mwsFDHjh1Tbm7uaNQPAADSnMMYY1IZ4PP5tHz5cm3atEmSFI/H5fV6tWbNGq1du/a8/ps3b9aGDRt06NAhTZ06dURFxmIxud1uRaNR5eTkjGgbAABgbA33/J3SxzS9vb1qa2uT3+8/twGnU36/X62trf2O+bd/+zdVVFRo9erV8ng8WrJkidatW6e+vr4B36enp0exWCxpAQAAE1NKYaSrq0t9fX3yeDxJ7R6PR+FwuN8xv/71r/Xcc8+pr69P27dv1ze/+U390z/9k/7xH/9xwPcJBoNyu92Jxev1plImAABIIxf9bpp4PK7Zs2fru9/9rkpLS1VVVaX7779fmzdvHnBMXV2dotFoYuno6LjYZQIAAEtSmsCal5enjIwMRSKRpPZIJKL8/Px+xxQUFGjq1KnKyMhItH3yk59UOBxWb2+vMjMzzxvjcrnkcrlSKQ0AAKSplK6MZGZmqrS0VKFQKNEWj8cVCoVUUVHR75hPf/rTeuuttxSPxxNtv/zlL1VQUNBvEAEAAJNLyh/TBAIBPfnkk/r+97+vgwcP6q677lJ3d7dqa2slSdXV1aqrq0v0v+uuu/Tee+/pK1/5in75y1/q3//937Vu3TqtXr169PYCAACkrZSfM1JVVaUTJ06ovr5e4XBYJSUlamlpSUxqbW9vl9N5LuN4vV69+OKL+trXvqZly5apsLBQX/nKV3TvvfeO3l4AAIC0lfJzRmzgOSMAAKSfi/KcEQAAgNFGGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFaNKIw0NTWpqKhIWVlZ8vl82rNnz4B9t2zZIofDkbRkZWWNuGAAADCxpBxGmpubFQgE1NDQoL1796q4uFiVlZU6fvz4gGNycnLU2dmZWI4dO3ZBRQMAgIkj5TCyceNGrVq1SrW1tVq8eLE2b96s7OxsPf300wOOcTgcys/PTywej+eCigYAABNHSmGkt7dXbW1t8vv95zbgdMrv96u1tXXAce+//77mzZsnr9erz3/+83rjjTdGXjEAAJhQUgojXV1d6uvrO+/KhsfjUTgc7nfMwoUL9fTTT+uFF17QM888o3g8rmuvvVa/+c1vBnyfnp4exWKxpAUAAExMF/1umoqKClVXV6ukpEQ33HCDtm3bplmzZumJJ54YcEwwGJTb7U4sXq/3YpcJAAAsSSmM5OXlKSMjQ5FIJKk9EokoPz9/WNuYOnWqrrrqKr311lsD9qmrq1M0Gk0sHR0dqZQJAADSSEphJDMzU6WlpQqFQom2eDyuUCikioqKYW2jr69Pr7/+ugoKCgbs43K5lJOTk7QAAICJaUqqAwKBgGpqalRWVqby8nI1Njaqu7tbtbW1kqTq6moVFhYqGAxKkh566CFdc801uuKKK3Ty5Elt2LBBx44d05133jm6ewIAANJSymGkqqpKJ06cUH19vcLhsEpKStTS0pKY1Nre3i6n89wFl9/97ndatWqVwuGwZs6cqdLSUu3atUuLFy8evb0AAABpy2GMMbaLGEosFpPb7VY0GuUjGwAA0sRwz9/8bRoAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFaNKIw0NTWpqKhIWVlZ8vl82rNnz7DGbd26VQ6HQytXrhzJ2wIAgAko5TDS3NysQCCghoYG7d27V8XFxaqsrNTx48cHHXf06FH9/d//va677roRFwsAACaelMPIxo0btWrVKtXW1mrx4sXavHmzsrOz9fTTTw84pq+vT7fddpsefPBBLViw4IIKBgAAE0tKYaS3t1dtbW3y+/3nNuB0yu/3q7W1dcBxDz30kGbPnq077rhj5JUCAIAJaUoqnbu6utTX1yePx5PU7vF4dOjQoX7H7Ny5U0899ZT2798/7Pfp6elRT09P4nUsFkulTAAAkEYu6t00p06d0u23364nn3xSeXl5wx4XDAbldrsTi9frvYhVAgAAm1K6MpKXl6eMjAxFIpGk9kgkovz8/PP6v/322zp69Kg+97nPJdri8fjZN54yRYcPH9bll19+3ri6ujoFAoHE61gsRiABAGCCSimMZGZmqrS0VKFQKHF7bjweVygU0t13331e/0WLFun1119PavvGN76hU6dO6Z//+Z8HDBgul0sulyuV0gAAQJpKKYxIUiAQUE1NjcrKylReXq7GxkZ1d3ertrZWklRdXa3CwkIFg0FlZWVpyZIlSeNzc3Ml6bx2AAAwOaUcRqqqqnTixAnV19crHA6rpKRELS0tiUmt7e3tcjp5sCsAABgehzHG2C5iKLFYTG63W9FoVDk5ObbLAQAAwzDc8zeXMAAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWDWiMNLU1KSioiJlZWXJ5/Npz549A/bdtm2bysrKlJubq+nTp6ukpEQ/+MEPRlwwAACYWFIOI83NzQoEAmpoaNDevXtVXFysyspKHT9+vN/+l156qe6//361trbqtddeU21trWpra/Xiiy9ecPEAACD9OYwxJpUBPp9Py5cv16ZNmyRJ8XhcXq9Xa9as0dq1a4e1jauvvlorVqzQt771rWH1j8VicrvdikajysnJSaVcAABgyXDP3yldGent7VVbW5v8fv+5DTid8vv9am1tHXK8MUahUEiHDx/W9ddfP2C/np4exWKxpAUAAExMKYWRrq4u9fX1yePxJLV7PB6Fw+EBx0WjUc2YMUOZmZlasWKFHnvsMd14440D9g8Gg3K73YnF6/WmUiYAAEgjY3I3zSWXXKL9+/fr1Vdf1cMPP6xAIKAdO3YM2L+urk7RaDSxdHR0jEWZAADAgimpdM7Ly1NGRoYikUhSeyQSUX5+/oDjnE6nrrjiCklSSUmJDh48qGAwqD/5kz/pt7/L5ZLL5UqlNAAAkKZSujKSmZmp0tJShUKhRFs8HlcoFFJFRcWwtxOPx9XT05PKWwMAgAkqpSsjkhQIBFRTU6OysjKVl5ersbFR3d3dqq2tlSRVV1ersLBQwWBQ0tn5H2VlZbr88svV09Oj7du36wc/+IEef/zx0d0TAACQllIOI1VVVTpx4oTq6+sVDodVUlKilpaWxKTW9vZ2OZ3nLrh0d3fry1/+sn7zm99o2rRpWrRokZ555hlVVVWN3l4AAIC0lfJzRmzgOSMAAKSfi/KcEQAAgNFGGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFUjCiNNTU0qKipSVlaWfD6f9uzZM2DfJ598Utddd51mzpypmTNnyu/3D9ofAABMLimHkebmZgUCATU0NGjv3r0qLi5WZWWljh8/3m//HTt26NZbb9Urr7yi1tZWeb1e3XTTTXrnnXcuuHgAAJD+HMYYk8oAn8+n5cuXa9OmTZKkeDwur9erNWvWaO3atUOO7+vr08yZM7Vp0yZVV1cP6z1jsZjcbrei0ahycnJSKRcAAFgy3PN3SldGent71dbWJr/ff24DTqf8fr9aW1uHtY3Tp0/rww8/1KWXXjpgn56eHsVisaQFAABMTCmFka6uLvX19cnj8SS1ezwehcPhYW3j3nvv1Zw5c5ICzR8KBoNyu92Jxev1plImAABII2N6N8369eu1detW/eQnP1FWVtaA/erq6hSNRhNLR0fHGFYJAADG0pRUOufl5SkjI0ORSCSpPRKJKD8/f9Cxjz76qNavX6//+q//0rJlywbt63K55HK5UikNAACkqZSujGRmZqq0tFShUCjRFo/HFQqFVFFRMeC4Rx55RN/61rfU0tKisrKykVcLAAAmnJSujEhSIBBQTU2NysrKVF5ersbGRnV3d6u2tlaSVF1drcLCQgWDQUnSt7/9bdXX1+uHP/yhioqKEnNLZsyYoRkzZozirgAAgHSUchipqqrSiRMnVF9fr3A4rJKSErW0tCQmtba3t8vpPHfB5fHHH1dvb6/+8i//Mmk7DQ0NeuCBBy6segAAkPZSfs6IDTxnBJg4OqNndKSrW/PzpqvAPc12OQAuouGev1O+MgIAI9X8arvqtr2uuJGcDil481JVLZ9ruywAlvGH8gCMic7omUQQkaS4ke7bdkCd0TN2CwNgHWEEwJg40tWdCCIf6zNGR7tO2ykIwLhBGAEwJubnTZfTkdyW4XCoKC/bTkEAxg3CCIAxUeCepuDNS5XhOJtIMhwOrbt5CZNYATCBFcDYqVo+V9dfOUtHu06rKC+bIAJAEmEEwBgrcE8jhABIwsc0AADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwaURhpampSUVGRsrKy5PP5tGfPngH7vvHGG7rllltUVFQkh8OhxsbGkdYKAAAmoJTDSHNzswKBgBoaGrR3714VFxersrJSx48f77f/6dOntWDBAq1fv175+fkXXDAAAJhYUg4jGzdu1KpVq1RbW6vFixdr8+bNys7O1tNPP91v/+XLl2vDhg364he/KJfLdcEFAwCAiSWlMNLb26u2tjb5/f5zG3A65ff71draOurFAQCAiW9KKp27urrU19cnj8eT1O7xeHTo0KFRK6qnp0c9PT2J17FYbNS2DQAAxpdxeTdNMBiU2+1OLF6v13ZJAADgIkkpjOTl5SkjI0ORSCSpPRKJjOrk1Lq6OkWj0cTS0dExatsGAADjS0phJDMzU6WlpQqFQom2eDyuUCikioqKUSvK5XIpJycnaQEAABNTSnNGJCkQCKimpkZlZWUqLy9XY2Ojuru7VVtbK0mqrq5WYWGhgsGgpLOTXt98883E/7/zzjvav3+/ZsyYoSuuuGIUdwUAAKSjlMNIVVWVTpw4ofr6eoXDYZWUlKilpSUxqbW9vV1O57kLLu+++66uuuqqxOtHH31Ujz76qG644Qbt2LHjwvcAAACkNYcxxtguYiixWExut1vRaJSPbAAASBPDPX+Py7tpAADA5EEYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQTAiHRGz2jX213qjJ6xXQqANDfFdgEA0k/zq+2q2/a64kZyOqTgzUtVtXyu7bIApCmujABISWf0TCKISFLcSPdtO8AVEgAjRhgBkJIjXd2JIPKxPmN0tOu0nYIApD3CCICUzM+bLqcjuS3D4VBRXradggCkPcIIgJQUuKcpePNSZTjOJpIMh0Prbl6iAvc0y5UBSFdMYAWQsqrlc3X9lbN0tOu0ivKyCSIALghhBMCIFLinjXoI6Yye0ZGubs3Pm07AASYRwgiAcYHbhYHJizkjAKzjdmFgciOMALCO24WByY0wAsA6bhcGJjfCCADruF0YmNyYwApgXOB2YWDyIowAGNBY32p7MW4XBjD+EUYA9Gu83WrLM0iAiYswAuA8A91qe/2Vs6wEgfEWjACMLiawApNcZ/SMdr3dlfRMj/F0qy3PIAEmPq6MABPcYB9vDHTF4eNbbX8/kNi61XawYPT7+8PHOED6GtGVkaamJhUVFSkrK0s+n0979uwZtP+zzz6rRYsWKSsrS0uXLtX27dtHVCyA/vV3dUM6GzY+vf5l/b8nd+vT619W86vtSWMGuuIwnm61Hc4zSAbbT2ngr89Q6wCMjZTDSHNzswKBgBoaGrR3714VFxersrJSx48f77f/rl27dOutt+qOO+7Qvn37tHLlSq1cuVIHDhy44OIv1IX8ghrp2LFeN97qmQz7MdbvOdCJeKiPN4b6KKZq+VztXPsZ/WjVNdq59jPW5mgMFYyG2s/BgsrFCjHj6ftjstQ6UfZjPNYzFhzGGDN0t3N8Pp+WL1+uTZs2SZLi8bi8Xq/WrFmjtWvXnte/qqpK3d3d+tnPfpZou+aaa1RSUqLNmzcP6z1jsZjcbrei0ahycnJSKXdAg02IG2qy3EjHjvW68VbPZNiPsX7PzugZfXr9y+d9nLJz7Wd0pKtb/+/J3ed97/9o1TWquPyyQceOx485OqNn+n0Gya63uwbcz6K87AH3UdKg+z8Rvj8mS60TZT/GYz0Xarjn75TCSG9vr7Kzs/Xcc89p5cqVifaamhqdPHlSL7zwwnlj5s6dq0AgoK9+9auJtoaGBj3//PP6xS9+Mao7M1yD/RKWBv8FNdKxY70unWqdKPtho9bBAsdgJ+KPT+bNr7brvm0H1GdM4opDut2lMtJAZmRGPcQMto7vZfYjnWodrX+QDPf8ndIE1q6uLvX19cnj8SS1ezweHTp0qN8x4XC43/7hcHjA9+np6VFPT0/idSwWS6XMIQ12edrIDDpZbqRjx3pdOtU6UfbDRq2DTTT9+OONPwwbv/9LZiI89XSo/RxsIu5A6y7GceR7mf1Ip1rH+nfBuLybJhgM6sEHH7xo2x/qToHB1l3I2LFel061TpT9GOtahzoRDydsTISnng60n0N9fUY7xAy1ju9l9iOdah1LKU1gzcvLU0ZGhiKRSFJ7JBJRfn5+v2Py8/NT6i9JdXV1ikajiaWjoyOVMoc02IS4oSbLjXTsWK9Lp1onyn7YqFUaeqJpgXuaKi6/LO0Dx1AG2s/Bvj4DrZso3x+TodaJsh/jrdaxNqIJrOXl5XrssccknZ3AOnfuXN19990DTmA9ffq0fvrTnybarr32Wi1btszqBFZp4AlxQ627kLFjvW681TMZ9sPWe2L0TZTvj8lQ60TZj/FYz4W4KBNYpbO39tbU1OiJJ55QeXm5Ghsb9eMf/1iHDh2Sx+NRdXW1CgsLFQwGJZ29tfeGG27Q+vXrtWLFCm3dulXr1q3T3r17tWTJklHdGQAAMH5clAms0tkrHSdOnFB9fb3C4bBKSkrU0tKSmKTa3t4up/Pcpz/XXnutfvjDH+ob3/iG7rvvPn3iE5/Q888/P+wgAgAAJraUr4zYwJURAADSz3DP3/yhPAAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGBVyo+Dt+Hjh8TGYjHLlQAAgOH6+Lw91MPe0yKMnDp1SpLk9XotVwIAAFJ16tQpud3uAdenxd+micfjevfdd3XJJZfI4XBYrSUWi8nr9aqjo4O/kzOOcZzSB8cqPXCc0sN4O07GGJ06dUpz5sxJ+iO6fygtrow4nU790R/9ke0ykuTk5IyLA43BcZzSB8cqPXCc0sN4Ok6DXRH5GBNYAQCAVYQRAABgFWEkRS6XSw0NDXK5XLZLwSA4TumDY5UeOE7pIV2PU1pMYAUAABMXV0YAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgbx8MMP69prr1V2drZyc3P77dPe3q4VK1YoOztbs2fP1te//nV99NFHSX127Nihq6++Wi6XS1dccYW2bNly8YufxIqKiuRwOJKW9evXJ/V57bXXdN111ykrK0ter1ePPPKIpWont6amJhUVFSkrK0s+n0979uyxXdKk9sADD5z3s7No0aLE+g8++ECrV6/WZZddphkzZuiWW25RJBKxWPHk8fOf/1yf+9znNGfOHDkcDj3//PNJ640xqq+vV0FBgaZNmya/369f/epXSX3ee+893XbbbcrJyVFubq7uuOMOvf/++2O4FwMjjAyit7dXX/jCF3TXXXf1u76vr08rVqxQb2+vdu3ape9///vasmWL6uvrE32OHDmiFStW6DOf+Yz279+vr371q7rzzjv14osvjtVuTEoPPfSQOjs7E8uaNWsS62KxmG666SbNmzdPbW1t2rBhgx544AF997vftVjx5NPc3KxAIKCGhgbt3btXxcXFqqys1PHjx22XNql96lOfSvrZ2blzZ2Ld1772Nf30pz/Vs88+q//+7//Wu+++q5tvvtlitZNHd3e3iouL1dTU1O/6Rx55RP/yL/+izZs3a/fu3Zo+fboqKyv1wQcfJPrcdttteuONN/TSSy/pZz/7mX7+85/rS1/60ljtwuAMhvS9733PuN3u89q3b99unE6nCYfDibbHH3/c5OTkmJ6eHmOMMf/wD/9gPvWpTyWNq6qqMpWVlRe15sls3rx55jvf+c6A6//1X//VzJw5M3GMjDHm3nvvNQsXLhyD6vCx8vJys3r16sTrvr4+M2fOHBMMBi1WNbk1NDSY4uLiftedPHnSTJ061Tz77LOJtoMHDxpJprW1dYwqhDHGSDI/+clPEq/j8bjJz883GzZsSLSdPHnSuFwu86Mf/cgYY8ybb75pJJlXX3010ec//uM/jMPhMO+8886Y1T4QroxcgNbWVi1dulQejyfRVllZqVgspjfeeCPRx+/3J42rrKxUa2vrmNY62axfv16XXXaZrrrqKm3YsCHpo7PW1lZdf/31yszMTLRVVlbq8OHD+t3vfmej3Emnt7dXbW1tST8bTqdTfr+fnw3LfvWrX2nOnDlasGCBbrvtNrW3t0uS2tra9OGHHyYds0WLFmnu3LkcM8uOHDmicDicdGzcbrd8Pl/i2LS2tio3N1dlZWWJPn6/X06nU7t37x7zmv9QWvyhvPEqHA4nBRFJidfhcHjQPrFYTGfOnNG0adPGpthJ5O/+7u909dVX69JLL9WuXbtUV1enzs5Obdy4UdLZYzJ//vykMb9/3GbOnDnmNU82XV1d6uvr6/dn49ChQ5aqgs/n05YtW7Rw4UJ1dnbqwQcf1HXXXacDBw4oHA4rMzPzvPlzHo8n8fsOdnz89e/v5+n3z0WzZ89OWj9lyhRdeuml4+L4TbowsnbtWn37298etM/BgweTJm3BvlSOWyAQSLQtW7ZMmZmZ+pu/+RsFg8G0e0QyMJY++9nPJv5/2bJl8vl8mjdvnn784x/zDydcVJMujNxzzz3667/+60H7LFiwYFjbys/PP2/2/8czy/Pz8xP//cPZ5pFIRDk5Ofxwp+BCjpvP59NHH32ko0ePauHChQMeE+ncccPFlZeXp4yMjH6PA8dg/MjNzdWVV16pt956SzfeeKN6e3t18uTJpKsjHDP7Pv76RyIRFRQUJNojkYhKSkoSff5wcvhHH32k9957b1wcv0kXRmbNmqVZs2aNyrYqKir08MMP6/jx44nLXy+99JJycnK0ePHiRJ/t27cnjXvppZdUUVExKjVMFhdy3Pbv3y+n05k4RhUVFbr//vv14YcfaurUqZLOHpOFCxfyEc0YyczMVGlpqUKhkFauXClJisfjCoVCuvvuu+0Wh4T3339fb7/9tm6//XaVlpZq6tSpCoVCuuWWWyRJhw8fVnt7O7/PLJs/f77y8/MVCoUS4SMWi2n37t2Ju0ErKip08uRJtbW1qbS0VJL08ssvKx6Py+fz2Sr9HNszaMezY8eOmX379pkHH3zQzJgxw+zbt8/s27fPnDp1yhhjzEcffWSWLFlibrrpJrN//37T0tJiZs2aZerq6hLb+PWvf22ys7PN17/+dXPw4EHT1NRkMjIyTEtLi63dmtB27dplvvOd75j9+/ebt99+2zzzzDNm1qxZprq6OtHn5MmTxuPxmNtvv90cOHDAbN261WRnZ5snnnjCYuWTz9atW43L5TJbtmwxb775pvnSl75kcnNzk+5Ow9i65557zI4dO8yRI0fM//zP/xi/32/y8vLM8ePHjTHG/O3f/q2ZO3euefnll83//d//mYqKClNRUWG56snh1KlTiXOQJLNx40azb98+c+zYMWOMMevXrze5ubnmhRdeMK+99pr5/Oc/b+bPn2/OnDmT2Maf/dmfmauuusrs3r3b7Ny503ziE58wt956q61dSkIYGURNTY2RdN7yyiuvJPocPXrUfPaznzXTpk0zeXl55p577jEffvhh0nZeeeUVU1JSYjIzM82CBQvM9773vbHdkUmkra3N+Hw+43a7TVZWlvnkJz9p1q1bZz744IOkfr/4xS/MH//xHxuXy2UKCwvN+vXrLVU8uT322GNm7ty5JjMz05SXl5v//d//tV3SpFZVVWUKCgpMZmamKSwsNFVVVeatt95KrD9z5oz58pe/bGbOnGmys7PNX/zFX5jOzk6LFU8er7zySr/no5qaGmPM2dt7v/nNbxqPx2NcLpf50z/9U3P48OGkbfz2t781t956q5kxY4bJyckxtbW1iX9c2+YwxhhLF2UAAAB4AisAALCLMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMCq/w/K2qbFB1ZKWQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(energy_vec, energy_prob, \".\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "9797b512-d41f-47c1-8c0f-4134f0500b80", + "metadata": { + "id": "9797b512-d41f-47c1-8c0f-4134f0500b80" + }, + "source": [ + "## References\n", + "\n", + "[1]: [Michael A. Nielsen and Isaac L. Chuang. 2011. Quantum Computation and Quantum Information: 10th Anniversary Edition, Cambridge University Press, New York, NY, USA.\n", + "](http://mmrc.amss.cas.cn/tlb/201702/W020170224608149940643.pdf)\n" + ] + }, + { + "cell_type": "markdown", + "id": "ttDDvHfPDI4y", + "metadata": { + "id": "ttDDvHfPDI4y" + }, + "source": [ + "# **Results for BeH2:**\n", + "\n", + "Your qubit solution is [{'phase': 0.46875}: 135341]\n", + "\n", + "The final results of the Energy (matrix's eigenvlues) is therefore:\n", + "\n", + "[-5.0500156710895965]\n", + "\n", + "exact result: -3.940331561325765\n", + "\n", + "The results including the error contributed from the resolution (number of qubits participating in the QPE) are: The resolution of result is 3.3666771140597356 the energy solution is between -8.416692785149332 and -1.683338557029861" + ] + }, + { + "cell_type": "markdown", + "id": "JvBCdhv08YSu", + "metadata": { + "id": "JvBCdhv08YSu" + }, + "source": [ + "# **Results for H2O:**\n", + "\n", + "Your qubit solution is\n", + "[{'phase': 0.453125}: 89076]\n", + "\n", + "The final results of the Energy (matrix's eigenvlues) is therefore:\n", + "\n", + "[-29.018825909142947]\n", + "\n", + "exact result: -23.54449724044351\n", + "\n", + "\n", + "The results including the error contributed from the resolution (number of qubits\n", + "participating in the QPE) are:\n", + "The resolution of result is 11.607530363657174\n", + "the energy solution is between -40.62635627280012 and -17.41129554548577\n", + "\n" + ] + } + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/community/QClass_2024/Submissions/HW4/Priyabrata_Bag_HW4.ipynb b/community/QClass_2024/Submissions/HW4/Priyabrata_Bag_HW4.ipynb index 77dd92a0..6a235878 100644 --- a/community/QClass_2024/Submissions/HW4/Priyabrata_Bag_HW4.ipynb +++ b/community/QClass_2024/Submissions/HW4/Priyabrata_Bag_HW4.ipynb @@ -1,429 +1,1686 @@ { - "cells": [ - { - "cell_type": "markdown", - "id": "8d7703dc-4560-4c42-b641-c95dc1958032", - "metadata": { - "id": "8d7703dc-4560-4c42-b641-c95dc1958032" - }, - "source": [ - "# Quantum Software Development Journey:\n", - "# From Theory to Application with Classiq" - ] - }, - { - "cell_type": "markdown", - "id": "d1af5c13-129a-4e5d-8f40-ad400d35b764", - "metadata": { - "id": "d1af5c13-129a-4e5d-8f40-ad400d35b764" - }, - "source": [ - "## Final Assignment - Overview\n", - "\n", - "In this homework assignment, you have the opportunity to implement something meaningful, be creative, and practice your new skills and knowledge! You can apply your knowledge from the course and contribute to the Classiq community. Details are provided below.\n", - "\n", - "**Successful contributions will have the opportunity to earn SWAG credits and potentially more advanced certificates.**\n", - "\n", - "## The Project\n", - "\n", - "### Goal\n", - "The main goal is to be creative, collaborate with each other and with the community, and to apply your knowledge to bridge the gap between theory and application! Focus on the last two weeks of the course, using this assignment to solidify and expand your knowledge and skills.\n", - "\n", - "### Optional Projects\n", - "You may choose a project from the following list, or come up with your own idea. Just please make sure to consult with us before you start!\n", - "\n", - "- **Domain of Expertise**:\n", - " - Use your background in neural networks, chemistry, biology, or any other field to implement something new. We are here to support you!\n", - " - Example: An advanced application of VQE for a more complex molecule.\n", - " - Implementation of different QNN or QAE architectures.\n", - " - Combine your domain of expertise with the power of Classiq!\n", - "\n", - "- **QNN for XOR Problem**:\n", - " - Classiq has an available dataset for training PQC to imitate the XOR gate, similar to how we trained a U-gate to act as a NOT gate. Design a QNN to solve the XOR problem. Read more on the dataset [here](https://docs.classiq.io/latest/reference-manual/built-in-algorithms/qml/qnn/datasets/#datasetxor).\n", - "\n", - "- **QNN as VQE**:\n", - " - Like VQE, QNNs with well-suited loss functions and data can be used to find minima of a system. Can you solve one of the problems from week 3 (in class or HW3) by implementing it with QNN?\n", - " - Review the materials from weeks 3 and 4 and tackle this problem!\n", - " - If needed, you may create synthetic data.\n", - " - Do you have another example to show how QNN can generalize VQE? Show us!\n", - "\n", - "- **Noise Reduction Using Quantum Auto-Encoders**:\n", - " - Quantum Auto-Encoders can be used to reduce noise!\n", - " - Create code that generates a quantum state, adds random noise to it, and tries to reconstruct it using a Quantum Auto-Encoder.\n", - " - If needed, you may create synthetic data.\n", - "\n", - "- **Contribute to Quantum Algorithm Zoo**:\n", - " - Implement one of the algorithms in the [Quantum Algorithm Zoo](https://quantumalgorithmzoo.org/) that has not been implemented yet using Classiq.\n", - " - By doing so, you will have the opportunity to contribute to one of the main resources on quantum algorithms! (your Implementation will be linked to their website!)\n", - "\n", - "- **New Algorithm Implementation**:\n", - " - Choose a research paper (you may consult us) and try to implement it using Classiq's SDK.\n", - "\n", - "### Note\n", - "\n", - "- For those who choose a more extensive project, you will have a discussion with me or another Classiq member to fine-tune your project's purpose and set a deadline. This collaborative approach ensures your project aligns with course objectives and maximizes your learning experience.\n", - "- **You are allowed to work in teams of up to 3 members!**\n", - "\n", - "### Deadline & Submission\n", - "\n", - "- **Important Dates**:\n", - " - **Assignment Release:** 29.5.2024\n", - " - **Submission Deadline:** 10.6.2024 (7 A.M GMT+3)\n", - "- Consult with us before submitting your project, and we will direct you to the right place in the [Classiq Library](https://github.com/Classiq/classiq-library).\n", - "- You might get an extension to the deadline based on your specific project and progress.\n", - "\n", - "## Conclusion\n", - "\n", - "Choose the project that best aligns with your interests and career goals. This project provides a valuable opportunity to deepen your understanding of QML and quantum computing in general, while contributing to the Classiq community.\n", - "\n", - "If you have any questions or need further clarification, feel free to reach out.\n", - "\n", - "**Happy coding!**\n" - ] - }, - { - "cell_type": "markdown", - "source": [ - "# VQE for a more Complex Molecule:\n", - "### Hamiltonian of the Water (H₂O) Molecule" - ], - "metadata": { - "id": "HojnZ_UpJrDs" - }, - "id": "HojnZ_UpJrDs" - }, - { - "cell_type": "markdown", - "source": [ - "\\begin{align*}\n", - "\\hat{H} =& - 73.13873 (I\\otimes I\\otimes I\\otimes I\\otimes I\\otimes I\\otimes I\\otimes I) + 0.22757 (Z\\otimes I\\otimes I\\otimes I\\otimes I\\otimes I\\otimes I\\otimes I)\\\\\n", - "&- 0.04375 (Y\\otimes Z\\otimes Z\\otimes Z\\otimes Y\\otimes I\\otimes I\\otimes I) - 0.04375 (X\\otimes Z\\otimes Z\\otimes Z\\otimes X\\otimes I\\otimes I\\otimes I)\\\\\n", - "&+ 0.17420 (I\\otimes I\\otimes Z\\otimes I\\otimes I\\otimes I\\otimes I\\otimes I) + 0.16757 (Z\\otimes I\\otimes Z\\otimes I\\otimes I\\otimes I\\otimes I\\otimes I)\\\\\n", - "&- 0.15961 (I\\otimes I\\otimes I\\otimes I\\otimes Z\\otimes I\\otimes I\\otimes I) + 0.11952 (Z\\otimes I\\otimes I\\otimes I\\otimes Z\\otimes I\\otimes I\\otimes I)\\\\\n", - "&- 0.18067 (I\\otimes I\\otimes I\\otimes I\\otimes I\\otimes I\\otimes Z\\otimes I) + 0.13402 (Z\\otimes I\\otimes I\\otimes I\\otimes I\\otimes I\\otimes Z\\otimes I)\\\\\n", - "&+ 0.22757 (I\\otimes Z\\otimes I\\otimes I\\otimes I\\otimes I\\otimes I\\otimes I) + 0.19393 (Z\\otimes Z\\otimes I\\otimes I\\otimes I\\otimes I\\otimes I\\otimes I)\\\\\n", - "&- 0.03079 (Y\\otimes I\\otimes Z\\otimes Z\\otimes Y\\otimes I\\otimes I\\otimes I) - 0.03079 (X\\otimes I\\otimes Z\\otimes Z\\otimes X\\otimes I\\otimes I\\otimes I)\\\\\n", - "&+ 0.01387 (Y\\otimes X\\otimes X\\otimes Y\\otimes I\\otimes I\\otimes I\\otimes I) - 0.01387 (Y\\otimes Y\\otimes X\\otimes X\\otimes I\\otimes I\\otimes I\\otimes I)\\\\\n", - "&- 0.01387 (X\\otimes X\\otimes Y\\otimes Y\\otimes I\\otimes I\\otimes I\\otimes I) + 0.01387 (X\\otimes Y\\otimes Y\\otimes X\\otimes I\\otimes I\\otimes I\\otimes I)\\\\\n", - "&- 0.04375 (I\\otimes Y\\otimes Z\\otimes Z\\otimes Z\\otimes Y\\otimes I\\otimes I) - 0.03079 (Z\\otimes Y\\otimes Z\\otimes Z\\otimes Z\\otimes Y\\otimes I\\otimes I)\\\\\n", - "&- 0.04375 (I\\otimes X\\otimes Z\\otimes Z\\otimes Z\\otimes X\\otimes I\\otimes I) - 0.03079 (Z\\otimes X\\otimes Z\\otimes Z\\otimes Z\\otimes X\\otimes I\\otimes I)\\\\\n", - "&+ 0.01783 (Y\\otimes X\\otimes I\\otimes I\\otimes X\\otimes Y\\otimes I\\otimes I) - 0.01783 (Y\\otimes Y\\otimes I\\otimes I\\otimes X\\otimes X\\otimes I\\otimes I)\\\\\n", - "&- 0.01783 (X\\otimes X\\otimes I\\otimes I\\otimes Y\\otimes Y\\otimes I\\otimes I) + 0.01783 (X\\otimes Y\\otimes I\\otimes I\\otimes Y\\otimes X\\otimes I\\otimes I)\\\\\n", - "&+ 0.01737 (Y\\otimes X\\otimes I\\otimes I\\otimes I\\otimes I\\otimes X\\otimes Y) - 0.01737 (Y\\otimes Y\\otimes I\\otimes I\\otimes I\\otimes I\\otimes X\\otimes X)\\\\\n", - "&- 0.01737 (X\\otimes X\\otimes I\\otimes I\\otimes I\\otimes I\\otimes Y\\otimes Y) + 0.01737 (X\\otimes Y\\otimes I\\otimes I\\otimes I\\otimes I\\otimes Y\\otimes X)\\\\\n", - "&- 0.03010 (Y\\otimes Z\\otimes I\\otimes Z\\otimes Y\\otimes I\\otimes I\\otimes I) - 0.03010 (X\\otimes Z\\otimes I\\otimes Z\\otimes X\\otimes I\\otimes I\\otimes I)\\\\\n", - "&+ 0.17420 (I\\otimes I\\otimes I\\otimes Z\\otimes I\\otimes I\\otimes I\\otimes I) + 0.18144 (Z\\otimes I\\otimes I\\otimes Z\\otimes I\\otimes I\\otimes I\\otimes I)\\\\\n", - "&- 0.02981 (Y\\otimes Z\\otimes Z\\otimes I\\otimes Y\\otimes I\\otimes I\\otimes I) - 0.02981 (X\\otimes Z\\otimes Z\\otimes I\\otimes X\\otimes I\\otimes I\\otimes I)\\\\\n", - "&- 0.00029 (Y\\otimes Z\\otimes Y\\otimes Y\\otimes Z\\otimes Y\\otimes I\\otimes I) - 0.00029 (Y\\otimes Z\\otimes Y\\otimes X\\otimes Z\\otimes X\\otimes I\\otimes I)\\\\\n", - "&- 0.00029 (X\\otimes Z\\otimes X\\otimes Y\\otimes Z\\otimes Y\\otimes I\\otimes I) - 0.00029 (X\\otimes Z\\otimes X\\otimes X\\otimes Z\\otimes X\\otimes I\\otimes I)\\\\\n", - "&- 0.02510 (Y\\otimes Z\\otimes Z\\otimes Z\\otimes Y\\otimes I\\otimes Z\\otimes I) - 0.02510 (X\\otimes Z\\otimes Z\\otimes Z\\otimes X\\otimes I\\otimes Z\\otimes I)\\\\\n", - "&- 0.15961 (I\\otimes I\\otimes I\\otimes I\\otimes I\\otimes Z\\otimes I\\otimes I) + 0.13735 (Z\\otimes I\\otimes I\\otimes I\\otimes I\\otimes Z\\otimes I\\otimes I)\\\\\n", - "&- 0.01131 (Y\\otimes Z\\otimes Z\\otimes Z\\otimes Y\\otimes Z\\otimes I\\otimes I) - 0.01131 (X\\otimes Z\\otimes Z\\otimes Z\\otimes X\\otimes Z\\otimes I\\otimes I)\\\\\n", - "&- 0.01456 (Y\\otimes Z\\otimes Z\\otimes Z\\otimes Z\\otimes X\\otimes X\\otimes Y) + 0.01456 (Y\\otimes Z\\otimes Z\\otimes Z\\otimes Z\\otimes Y\\otimes X\\otimes X)\\\\\n", - "&+ 0.01456 (X\\otimes Z\\otimes Z\\otimes Z\\otimes Z\\otimes X\\otimes Y\\otimes Y) - 0.01456 (X\\otimes Z\\otimes Z\\otimes Z\\otimes Z\\otimes Y\\otimes Y\\otimes X)\\\\\n", - "&- 0.18067 (I\\otimes I\\otimes I\\otimes I\\otimes I\\otimes I\\otimes I\\otimes Z) + 0.15138 (Z\\otimes I\\otimes I\\otimes I\\otimes I\\otimes I\\otimes I\\otimes Z)\\\\\n", - "&- 0.01054 (Y\\otimes Z\\otimes Z\\otimes Z\\otimes Y\\otimes I\\otimes I\\otimes Z) - 0.01054 (X\\otimes Z\\otimes Z\\otimes Z\\otimes X\\otimes I\\otimes I\\otimes Z)\\\\\n", - "&+ 0.16757 (I\\otimes Z\\otimes I\\otimes Z\\otimes I\\otimes I\\otimes I\\otimes I) + 0.11952 (I\\otimes Z\\otimes I\\otimes I\\otimes I\\otimes Z\\otimes I\\otimes I)\\\\\n", - "&+ 0.13402 (I\\otimes Z\\otimes I\\otimes I\\otimes I\\otimes I\\otimes I\\otimes Z) + 0.18144 (I\\otimes Z\\otimes Z\\otimes I\\otimes I\\otimes I\\otimes I\\otimes I)\\\\\n", - "&- 0.02981 (I\\otimes Y\\otimes I\\otimes Z\\otimes Z\\otimes Y\\otimes I\\otimes I) - 0.02981 (I\\otimes X\\otimes I\\otimes Z\\otimes Z\\otimes X\\otimes I\\otimes I)\\\\\n", - "&- 0.00029 (I\\otimes Y\\otimes X\\otimes X\\otimes Y\\otimes I\\otimes I\\otimes I) + 0.00029 (I\\otimes Y\\otimes Y\\otimes X\\otimes X\\otimes I\\otimes I\\otimes I)\\\\\n", - "&+ 0.00029 (I\\otimes X\\otimes X\\otimes Y\\otimes Y\\otimes I\\otimes I\\otimes I) - 0.00029 (I\\otimes X\\otimes Y\\otimes Y\\otimes X\\otimes I\\otimes I\\otimes I)\\\\\n", - "&- 0.03010 (I\\otimes Y\\otimes Z\\otimes I\\otimes Z\\otimes Y\\otimes I\\otimes I) - 0.03010 (I\\otimes X\\otimes Z\\otimes I\\otimes Z\\otimes X\\otimes I\\otimes I)\\\\\n", - "&+ 0.13735 (I\\otimes Z\\otimes I\\otimes I\\otimes Z\\otimes I\\otimes I\\otimes I) - 0.01131 (I\\otimes Y\\otimes Z\\otimes Z\\otimes I\\otimes Y\\otimes I\\otimes I)\\\\\n", - "&- 0.01131 (I\\otimes X\\otimes Z\\otimes Z\\otimes I\\otimes X\\otimes I\\otimes I) + 0.01456 (I\\otimes Y\\otimes Z\\otimes Z\\otimes X\\otimes I\\otimes X\\otimes Y)\\\\\n", - "&+ 0.01456 (I\\otimes Y\\otimes Z\\otimes Z\\otimes Y\\otimes I\\otimes Y\\otimes Y) + 0.01456 (I\\otimes X\\otimes Z\\otimes Z\\otimes X\\otimes I\\otimes X\\otimes X)\\\\\n", - "&+ 0.01456 (I\\otimes X\\otimes Z\\otimes Z\\otimes Y\\otimes I\\otimes Y\\otimes X) - 0.02510 (I\\otimes Y\\otimes Z\\otimes Z\\otimes Z\\otimes Y\\otimes I\\otimes Z)\\\\\n", - "&- 0.02510 (I\\otimes X\\otimes Z\\otimes Z\\otimes Z\\otimes X\\otimes I\\otimes Z) + 0.15138 (I\\otimes Z\\otimes I\\otimes I\\otimes I\\otimes I\\otimes Z\\otimes I)\\\\\n", - "&- 0.01054 (I\\otimes Y\\otimes Z\\otimes Z\\otimes Z\\otimes Y\\otimes Z\\otimes I) - 0.01054 (I\\otimes X\\otimes Z\\otimes Z\\otimes Z\\otimes X\\otimes Z\\otimes I)\\\\\n", - "&+ 0.13767 (I\\otimes I\\otimes Z\\otimes I\\otimes Z\\otimes I\\otimes I\\otimes I) + 0.14973 (I\\otimes I\\otimes Z\\otimes I\\otimes I\\otimes I\\otimes Z\\otimes I)\\\\\n", - "&+ 0.22004 (I\\otimes I\\otimes Z\\otimes Z\\otimes I\\otimes I\\otimes I\\otimes I) + 0.00956 (I\\otimes I\\otimes Y\\otimes X\\otimes X\\otimes Y\\otimes I\\otimes I)\\\\\n", - "&- 0.00956 (I\\otimes I\\otimes Y\\otimes Y\\otimes X\\otimes X\\otimes I\\otimes I) - 0.00956 (I\\otimes I\\otimes X\\otimes X\\otimes Y\\otimes Y\\otimes I\\otimes I)\\\\\n", - "&+ 0.00956 (I\\otimes I\\otimes X\\otimes Y\\otimes Y\\otimes X\\otimes I\\otimes I) + 0.00609 (I\\otimes I\\otimes Y\\otimes X\\otimes I\\otimes I\\otimes X\\otimes Y)\\\\\n", - "&- 0.00609 (I\\otimes I\\otimes Y\\otimes Y\\otimes I\\otimes I\\otimes X\\otimes X) - 0.00609 (I\\otimes I\\otimes X\\otimes X\\otimes I\\otimes I\\otimes Y\\otimes Y)\\\\\n", - "&+ 0.00609 (I\\otimes I\\otimes X\\otimes Y\\otimes I\\otimes I\\otimes Y\\otimes X) + 0.14723 (I\\otimes I\\otimes Z\\otimes I\\otimes I\\otimes Z\\otimes I\\otimes I)\\\\\n", - "&+ 0.15582 (I\\otimes I\\otimes Z\\otimes I\\otimes I\\otimes I\\otimes I\\otimes Z) + 0.13767 (I\\otimes I\\otimes I\\otimes Z\\otimes I\\otimes Z\\otimes I\\otimes I)\\\\\n", - "&+ 0.14973 (I\\otimes I\\otimes I\\otimes Z\\otimes I\\otimes I\\otimes I\\otimes Z) + 0.14723 (I\\otimes I\\otimes I\\otimes Z\\otimes Z\\otimes I\\otimes I\\otimes I)\\\\\n", - "&+ 0.15582 (I\\otimes I\\otimes I\\otimes Z\\otimes I\\otimes I\\otimes Z\\otimes I) + 0.11270 (I\\otimes I\\otimes I\\otimes I\\otimes Z\\otimes I\\otimes Z\\otimes I)\\\\\n", - "&+ 0.14926 (I\\otimes I\\otimes I\\otimes I\\otimes Z\\otimes Z\\otimes I\\otimes I) + 0.02869 (I\\otimes I\\otimes I\\otimes I\\otimes Y\\otimes X\\otimes X\\otimes Y)\\\\\n", - "&- 0.02869 (I\\otimes I\\otimes I\\otimes I\\otimes Y\\otimes Y\\otimes X\\otimes X) - 0.02869 (I\\otimes I\\otimes I\\otimes I\\otimes X\\otimes X\\otimes Y\\otimes Y)\\\\\n", - "&+ 0.02869 (I\\otimes I\\otimes I\\otimes I\\otimes X\\otimes Y\\otimes Y\\otimes X) + 0.14139 (I\\otimes I\\otimes I\\otimes I\\otimes Z\\otimes I\\otimes I\\otimes Z)\\\\\n", - "&+ 0.11270 (I\\otimes I\\otimes I\\otimes I\\otimes I\\otimes Z\\otimes I\\otimes Z) + 0.14139 (I\\otimes I\\otimes I\\otimes I\\otimes I\\otimes Z\\otimes Z\\otimes I)\\\\\n", - "&+ 0.15436 (I\\otimes I\\otimes I\\otimes I\\otimes I\\otimes I\\otimes Z\\otimes Z)\n", - "\\end{align*}" - ], - "metadata": { - "id": "sgBR_fcRKAqq" - }, - "id": "sgBR_fcRKAqq" - }, - { - "cell_type": "code", - "source": [ - "# !pip install -U classiq" - ], - "metadata": { - "id": "bkgCA-XNLBaq" - }, - "id": "bkgCA-XNLBaq", - "execution_count": 1, - "outputs": [] - }, - { - "cell_type": "code", - "source": [ - "# import classiq\n", - "# classiq.authenticate()" - ], - "metadata": { - "id": "jfBwcuM2LdS0" - }, - "id": "jfBwcuM2LdS0", - "execution_count": 2, - "outputs": [] - }, - { - "cell_type": "code", - "execution_count": 3, - "id": "e4b9b85d-f164-4c1b-aca3-e24e9a0427f8", - "metadata": { - "id": "e4b9b85d-f164-4c1b-aca3-e24e9a0427f8" - }, - "outputs": [], - "source": [ - "from typing import List\n", - "from classiq import *\n", - "\n", - "HAMILTONIAN = QConstant(\"HAMILTONIAN\", List[PauliTerm],\n", - " [PauliTerm(pauli=[Pauli.I, Pauli.I, Pauli.I, Pauli.I, Pauli.I, Pauli.I, Pauli.I, Pauli.I], coefficient=-73.13873),\n", - " PauliTerm(pauli=[Pauli.Z, Pauli.I, Pauli.I, Pauli.I, Pauli.I, Pauli.I, Pauli.I, Pauli.I], coefficient=0.22757),\n", - " PauliTerm(pauli=[Pauli.Y, Pauli.Z, Pauli.Z, Pauli.Z, Pauli.Y, Pauli.I, Pauli.I, Pauli.I], coefficient=-0.04375),\n", - " PauliTerm(pauli=[Pauli.X, Pauli.Z, Pauli.Z, Pauli.Z, Pauli.X, Pauli.I, Pauli.I, Pauli.I], coefficient=-0.04375),\n", - " PauliTerm(pauli=[Pauli.I, Pauli.I, Pauli.Z, Pauli.I, Pauli.I, Pauli.I, Pauli.I, Pauli.I], coefficient=0.17420),\n", - " PauliTerm(pauli=[Pauli.Z, Pauli.I, Pauli.Z, Pauli.I, Pauli.I, Pauli.I, Pauli.I, Pauli.I], coefficient=0.16757),\n", - " PauliTerm(pauli=[Pauli.I, Pauli.I, Pauli.I, Pauli.I, Pauli.Z, Pauli.I, Pauli.I, Pauli.I], coefficient=-0.15961),\n", - " PauliTerm(pauli=[Pauli.Z, Pauli.I, Pauli.I, Pauli.I, Pauli.I, Pauli.I, Pauli.I, Pauli.I], coefficient=0.11952),\n", - " PauliTerm(pauli=[Pauli.I, Pauli.I, Pauli.I, Pauli.I, Pauli.I, Pauli.I, Pauli.Z, Pauli.I], coefficient=-0.18067),\n", - " PauliTerm(pauli=[Pauli.Z, Pauli.I, Pauli.I, Pauli.I, Pauli.I, Pauli.I, Pauli.Z, Pauli.I], coefficient=0.13402),\n", - " PauliTerm(pauli=[Pauli.I, Pauli.Z, Pauli.I, Pauli.I, Pauli.I, Pauli.I, Pauli.I, Pauli.I], coefficient=0.22757),\n", - " PauliTerm(pauli=[Pauli.Z, Pauli.Z, Pauli.I, Pauli.I, Pauli.I, Pauli.I, Pauli.I, Pauli.I], coefficient=0.19393),\n", - " PauliTerm(pauli=[Pauli.Y, Pauli.I, Pauli.Z, Pauli.Z, Pauli.Y, Pauli.I, Pauli.I, Pauli.I], coefficient=-0.03079),\n", - " PauliTerm(pauli=[Pauli.X, Pauli.I, Pauli.Z, Pauli.Z, Pauli.X, Pauli.I, Pauli.I, Pauli.I], coefficient=-0.03079),\n", - " PauliTerm(pauli=[Pauli.Y, Pauli.X, Pauli.X, Pauli.Y, Pauli.I, Pauli.I, Pauli.I, Pauli.I], coefficient=0.01387),\n", - " PauliTerm(pauli=[Pauli.Y, Pauli.Y, Pauli.X, Pauli.X, Pauli.I, Pauli.I, Pauli.I, Pauli.I], coefficient=-0.01387),\n", - " PauliTerm(pauli=[Pauli.X, Pauli.X, Pauli.Y, Pauli.Y, Pauli.I, Pauli.I, Pauli.I, Pauli.I], coefficient=-0.01387),\n", - " PauliTerm(pauli=[Pauli.X, Pauli.Y, Pauli.Y, Pauli.X, Pauli.I, Pauli.I, Pauli.I, Pauli.I], coefficient=0.01387),\n", - " PauliTerm(pauli=[Pauli.I, Pauli.Y, Pauli.Z, Pauli.Z, Pauli.Z, Pauli.Y, Pauli.I, Pauli.I], coefficient=-0.04375),\n", - " PauliTerm(pauli=[Pauli.Z, Pauli.Y, Pauli.Z, Pauli.Z, Pauli.Z, Pauli.Y, Pauli.I, Pauli.I], coefficient=-0.03079),\n", - " PauliTerm(pauli=[Pauli.I, Pauli.X, Pauli.Z, Pauli.Z, Pauli.Z, Pauli.X, Pauli.I, Pauli.I], coefficient=-0.04375),\n", - " PauliTerm(pauli=[Pauli.Z, Pauli.X, Pauli.Z, Pauli.Z, Pauli.Z, Pauli.X, Pauli.I, Pauli.I], coefficient=-0.03079),\n", - " PauliTerm(pauli=[Pauli.Y, Pauli.X, Pauli.I, Pauli.I, Pauli.X, Pauli.Y, Pauli.I, Pauli.I], coefficient=0.01783),\n", - " PauliTerm(pauli=[Pauli.Y, Pauli.Y, Pauli.I, Pauli.I, Pauli.X, Pauli.X, Pauli.I, Pauli.I], coefficient=-0.01783),\n", - " PauliTerm(pauli=[Pauli.X, Pauli.X, Pauli.I, Pauli.I, Pauli.Y, Pauli.Y, Pauli.I, Pauli.I], coefficient=-0.01783),\n", - " PauliTerm(pauli=[Pauli.X, Pauli.Y, Pauli.I, Pauli.I, Pauli.Y, Pauli.X, Pauli.I, Pauli.I], coefficient=0.01783),\n", - " PauliTerm(pauli=[Pauli.Y, Pauli.X, Pauli.I, Pauli.I, Pauli.I, Pauli.I, Pauli.X, Pauli.Y], coefficient=0.01737),\n", - " PauliTerm(pauli=[Pauli.Y, Pauli.Y, Pauli.I, Pauli.I, Pauli.I, Pauli.I, Pauli.X, Pauli.X], coefficient=-0.01737),\n", - " PauliTerm(pauli=[Pauli.X, Pauli.X, Pauli.I, Pauli.I, Pauli.I, Pauli.I, Pauli.Y, Pauli.Y], coefficient=-0.01737),\n", - " PauliTerm(pauli=[Pauli.X, Pauli.Y, Pauli.I, Pauli.I, Pauli.I, Pauli.I, Pauli.Y, Pauli.X], coefficient=0.01737),\n", - " PauliTerm(pauli=[Pauli.Y, Pauli.Z, Pauli.I, Pauli.Z, Pauli.Y, Pauli.I, Pauli.I, Pauli.I], coefficient=-0.03010),\n", - " PauliTerm(pauli=[Pauli.X, Pauli.Z, Pauli.I, Pauli.Z, Pauli.X, Pauli.I, Pauli.I, Pauli.I], coefficient=-0.03010),\n", - " PauliTerm(pauli=[Pauli.I, Pauli.I, Pauli.I, Pauli.Z, Pauli.I, Pauli.I, Pauli.I, Pauli.I], coefficient=0.17420),\n", - " PauliTerm(pauli=[Pauli.Z, Pauli.I, Pauli.I, Pauli.Z, Pauli.I, Pauli.I, Pauli.I, Pauli.I], coefficient=0.18144),\n", - " PauliTerm(pauli=[Pauli.Y, Pauli.Z, Pauli.Z, Pauli.I, Pauli.Y, Pauli.I, Pauli.I, Pauli.I], coefficient=-0.02981),\n", - " PauliTerm(pauli=[Pauli.X, Pauli.Z, Pauli.Z, Pauli.I, Pauli.X, Pauli.I, Pauli.I, Pauli.I], coefficient=-0.02981),\n", - " PauliTerm(pauli=[Pauli.Y, Pauli.Z, Pauli.Y, Pauli.Y, Pauli.Z, Pauli.Y, Pauli.I, Pauli.I], coefficient=-0.00029),\n", - " PauliTerm(pauli=[Pauli.Y, Pauli.Z, Pauli.Y, Pauli.X, Pauli.Z, Pauli.X, Pauli.I, Pauli.I], coefficient=-0.00029),\n", - " PauliTerm(pauli=[Pauli.X, Pauli.Z, Pauli.X, Pauli.Y, Pauli.Z, Pauli.Y, Pauli.I, Pauli.I], coefficient=-0.00029),\n", - " PauliTerm(pauli=[Pauli.X, Pauli.Z, Pauli.X, Pauli.X, Pauli.Z, Pauli.X, Pauli.I, Pauli.I], coefficient=-0.00029),\n", - " PauliTerm(pauli=[Pauli.Y, Pauli.Z, Pauli.Z, Pauli.Z, Pauli.Y, Pauli.I, Pauli.Z, Pauli.I], coefficient=-0.02510),\n", - " PauliTerm(pauli=[Pauli.X, Pauli.Z, Pauli.Z, Pauli.Z, Pauli.X, Pauli.I, Pauli.Z, Pauli.I], coefficient=-0.02510),\n", - " PauliTerm(pauli=[Pauli.I, Pauli.I, Pauli.I, Pauli.I, Pauli.I, Pauli.Z, Pauli.I, Pauli.I], coefficient=-0.15961),\n", - " PauliTerm(pauli=[Pauli.Z, Pauli.I, Pauli.I, Pauli.I, Pauli.I, Pauli.Z, Pauli.I, Pauli.I], coefficient=0.13735),\n", - " PauliTerm(pauli=[Pauli.Y, Pauli.Z, Pauli.Z, Pauli.Z, Pauli.Y, Pauli.Z, Pauli.I, Pauli.I], coefficient=-0.01131),\n", - " PauliTerm(pauli=[Pauli.X, Pauli.Z, Pauli.Z, Pauli.Z, Pauli.X, Pauli.Z, Pauli.I, Pauli.I], coefficient=-0.01131),\n", - " PauliTerm(pauli=[Pauli.Y, Pauli.Z, Pauli.Z, Pauli.Z, Pauli.Z, Pauli.X, Pauli.X, Pauli.Y], coefficient=-0.01456),\n", - " PauliTerm(pauli=[Pauli.Y, Pauli.Z, Pauli.Z, Pauli.Z, Pauli.Z, Pauli.Y, Pauli.X, Pauli.X], coefficient=0.01456),\n", - " PauliTerm(pauli=[Pauli.X, Pauli.Z, Pauli.Z, Pauli.Z, Pauli.Z, Pauli.X, Pauli.Y, Pauli.Y], coefficient=0.01456),\n", - " PauliTerm(pauli=[Pauli.X, Pauli.Z, Pauli.Z, Pauli.Z, Pauli.Z, Pauli.Y, Pauli.Y, Pauli.X], coefficient=-0.01456),\n", - " PauliTerm(pauli=[Pauli.I, Pauli.I, Pauli.I, Pauli.I, Pauli.I, Pauli.I, Pauli.I, Pauli.Z], coefficient=-0.18067),\n", - " PauliTerm(pauli=[Pauli.Z, Pauli.I, Pauli.I, Pauli.I, Pauli.I, Pauli.I, Pauli.I, Pauli.Z], coefficient=0.15138),\n", - " PauliTerm(pauli=[Pauli.Y, Pauli.Z, Pauli.Z, Pauli.Z, Pauli.Y, Pauli.I, Pauli.I, Pauli.Z], coefficient=-0.01054),\n", - " PauliTerm(pauli=[Pauli.X, Pauli.Z, Pauli.Z, Pauli.Z, Pauli.X, Pauli.I, Pauli.I, Pauli.Z], coefficient=-0.01054),\n", - " PauliTerm(pauli=[Pauli.I, Pauli.Z, Pauli.I, Pauli.Z, Pauli.I, Pauli.I, Pauli.I, Pauli.I], coefficient=0.16757),\n", - " PauliTerm(pauli=[Pauli.I, Pauli.Z, Pauli.I, Pauli.I, Pauli.I, Pauli.Z, Pauli.I, Pauli.I], coefficient=0.11952),\n", - " PauliTerm(pauli=[Pauli.I, Pauli.Z, Pauli.I, Pauli.I, Pauli.I, Pauli.I, Pauli.I, Pauli.Z], coefficient=0.13402),\n", - " PauliTerm(pauli=[Pauli.I, Pauli.Z, Pauli.Z, Pauli.I, Pauli.I, Pauli.I, Pauli.I, Pauli.I], coefficient=0.18144),\n", - " PauliTerm(pauli=[Pauli.I, Pauli.Y, Pauli.I, Pauli.Z, Pauli.Z, Pauli.Y, Pauli.I, Pauli.I], coefficient=-0.02981),\n", - " PauliTerm(pauli=[Pauli.I, Pauli.X, Pauli.I, Pauli.Z, Pauli.Z, Pauli.X, Pauli.I, Pauli.I], coefficient=-0.02981),\n", - " PauliTerm(pauli=[Pauli.I, Pauli.Y, Pauli.X, Pauli.X, Pauli.Y, Pauli.I, Pauli.I, Pauli.I], coefficient=-0.00029),\n", - " PauliTerm(pauli=[Pauli.I, Pauli.Y, Pauli.Y, Pauli.X, Pauli.X, Pauli.I, Pauli.I, Pauli.I], coefficient=0.00029),\n", - " PauliTerm(pauli=[Pauli.I, Pauli.X, Pauli.X, Pauli.Y, Pauli.Y, Pauli.I, Pauli.I, Pauli.I], coefficient=0.00029),\n", - " PauliTerm(pauli=[Pauli.I, Pauli.X, Pauli.Y, Pauli.Y, Pauli.X, Pauli.I, Pauli.I, Pauli.I], coefficient=-0.00029),\n", - " PauliTerm(pauli=[Pauli.I, Pauli.Y, Pauli.Z, Pauli.I, Pauli.Z, Pauli.Y, Pauli.I, Pauli.I], coefficient=-0.03010),\n", - " PauliTerm(pauli=[Pauli.I, Pauli.X, Pauli.Z, Pauli.I, Pauli.Z, Pauli.X, Pauli.I, Pauli.I], coefficient=-0.03010),\n", - " PauliTerm(pauli=[Pauli.I, Pauli.Z, Pauli.I, Pauli.I, Pauli.Z, Pauli.I, Pauli.I, Pauli.I], coefficient=0.13735),\n", - " PauliTerm(pauli=[Pauli.I, Pauli.Y, Pauli.Z, Pauli.Z, Pauli.I, Pauli.Y, Pauli.I, Pauli.I], coefficient=-0.01131),\n", - " PauliTerm(pauli=[Pauli.I, Pauli.X, Pauli.Z, Pauli.Z, Pauli.I, Pauli.X, Pauli.I, Pauli.I], coefficient=-0.01131),\n", - " PauliTerm(pauli=[Pauli.I, Pauli.Y, Pauli.Z, Pauli.Z, Pauli.X, Pauli.I, Pauli.X, Pauli.Y], coefficient=0.01456),\n", - " PauliTerm(pauli=[Pauli.I, Pauli.Y, Pauli.Z, Pauli.Z, Pauli.Y, Pauli.I, Pauli.Y, Pauli.Y], coefficient=0.01456),\n", - " PauliTerm(pauli=[Pauli.I, Pauli.X, Pauli.Z, Pauli.Z, Pauli.X, Pauli.I, Pauli.X, Pauli.X], coefficient=0.01456),\n", - " PauliTerm(pauli=[Pauli.I, Pauli.X, Pauli.Z, Pauli.Z, Pauli.Y, Pauli.I, Pauli.Y, Pauli.X], coefficient=0.01456),\n", - " PauliTerm(pauli=[Pauli.I, Pauli.Y, Pauli.Z, Pauli.Z, Pauli.Z, Pauli.Y, Pauli.I, Pauli.Z], coefficient=-0.02510),\n", - " PauliTerm(pauli=[Pauli.I, Pauli.X, Pauli.Z, Pauli.Z, Pauli.Z, Pauli.X, Pauli.I, Pauli.Z], coefficient=-0.02510),\n", - " PauliTerm(pauli=[Pauli.I, Pauli.Z, Pauli.I, Pauli.I, Pauli.I, Pauli.I, Pauli.Z, Pauli.I], coefficient=0.15138),\n", - " PauliTerm(pauli=[Pauli.I, Pauli.Y, Pauli.Z, Pauli.Z, Pauli.Z, Pauli.Y, Pauli.Z, Pauli.I], coefficient=-0.01054),\n", - " PauliTerm(pauli=[Pauli.I, Pauli.X, Pauli.Z, Pauli.Z, Pauli.Z, Pauli.X, Pauli.Z, Pauli.I], coefficient=-0.01054),\n", - " PauliTerm(pauli=[Pauli.I, Pauli.I, Pauli.Z, Pauli.I, Pauli.Z, Pauli.I, Pauli.I, Pauli.I], coefficient=0.13767),\n", - " PauliTerm(pauli=[Pauli.I, Pauli.I, Pauli.Z, Pauli.I, Pauli.I, Pauli.I, Pauli.Z, Pauli.I], coefficient=0.14973),\n", - " PauliTerm(pauli=[Pauli.I, Pauli.I, Pauli.Z, Pauli.Z, Pauli.I, Pauli.I, Pauli.I, Pauli.I], coefficient=0.22004),\n", - " PauliTerm(pauli=[Pauli.I, Pauli.I, Pauli.Y, Pauli.X, Pauli.X, Pauli.Y, Pauli.I, Pauli.I], coefficient=0.00956),\n", - " PauliTerm(pauli=[Pauli.I, Pauli.I, Pauli.Y, Pauli.Y, Pauli.X, Pauli.X, Pauli.I, Pauli.I], coefficient=-0.00956),\n", - " PauliTerm(pauli=[Pauli.I, Pauli.I, Pauli.X, Pauli.X, Pauli.Y, Pauli.Y, Pauli.I, Pauli.I], coefficient=-0.00956),\n", - " PauliTerm(pauli=[Pauli.I, Pauli.I, Pauli.X, Pauli.Y, Pauli.Y, Pauli.X, Pauli.I, Pauli.I], coefficient=0.00956),\n", - " PauliTerm(pauli=[Pauli.I, Pauli.I, Pauli.Y, Pauli.X, Pauli.I, Pauli.I, Pauli.X, Pauli.Y], coefficient=0.00609),\n", - " PauliTerm(pauli=[Pauli.I, Pauli.I, Pauli.Y, Pauli.Y, Pauli.I, Pauli.I, Pauli.X, Pauli.X], coefficient=-0.00609),\n", - " PauliTerm(pauli=[Pauli.I, Pauli.I, Pauli.X, Pauli.X, Pauli.I, Pauli.I, Pauli.Y, Pauli.Y], coefficient=-0.00609),\n", - " PauliTerm(pauli=[Pauli.I, Pauli.I, Pauli.X, Pauli.Y, Pauli.I, Pauli.I, Pauli.Y, Pauli.X], coefficient=0.00609),\n", - " PauliTerm(pauli=[Pauli.I, Pauli.I, Pauli.Z, Pauli.I, Pauli.I, Pauli.Z, Pauli.I, Pauli.I], coefficient=0.14723),\n", - " PauliTerm(pauli=[Pauli.I, Pauli.I, Pauli.Z, Pauli.I, Pauli.I, Pauli.I, Pauli.I, Pauli.Z], coefficient=0.15582),\n", - " PauliTerm(pauli=[Pauli.I, Pauli.I, Pauli.I, Pauli.Z, Pauli.I, Pauli.Z, Pauli.I, Pauli.I], coefficient=0.13767),\n", - " PauliTerm(pauli=[Pauli.I, Pauli.I, Pauli.I, Pauli.Z, Pauli.I, Pauli.I, Pauli.I, Pauli.Z], coefficient=0.14973),\n", - " PauliTerm(pauli=[Pauli.I, Pauli.I, Pauli.I, Pauli.Z, Pauli.Z, Pauli.I, Pauli.I, Pauli.I], coefficient=0.14723),\n", - " PauliTerm(pauli=[Pauli.I, Pauli.I, Pauli.I, Pauli.Z, Pauli.I, Pauli.I, Pauli.Z, Pauli.I], coefficient=0.15582),\n", - " PauliTerm(pauli=[Pauli.I, Pauli.I, Pauli.I, Pauli.I, Pauli.Z, Pauli.I, Pauli.Z, Pauli.I], coefficient=0.11270),\n", - " PauliTerm(pauli=[Pauli.I, Pauli.I, Pauli.I, Pauli.I, Pauli.Z, Pauli.Z, Pauli.I, Pauli.I], coefficient=0.14926),\n", - " PauliTerm(pauli=[Pauli.I, Pauli.I, Pauli.I, Pauli.I, Pauli.Y, Pauli.X, Pauli.X, Pauli.Y], coefficient=0.02869),\n", - " PauliTerm(pauli=[Pauli.I, Pauli.I, Pauli.I, Pauli.I, Pauli.Y, Pauli.Y, Pauli.X, Pauli.X], coefficient=-0.02869),\n", - " PauliTerm(pauli=[Pauli.I, Pauli.I, Pauli.I, Pauli.I, Pauli.X, Pauli.X, Pauli.Y, Pauli.Y], coefficient=-0.02869),\n", - " PauliTerm(pauli=[Pauli.I, Pauli.I, Pauli.I, Pauli.I, Pauli.X, Pauli.Y, Pauli.Y, Pauli.X], coefficient=0.02869),\n", - " PauliTerm(pauli=[Pauli.I, Pauli.I, Pauli.I, Pauli.I, Pauli.Z, Pauli.I, Pauli.I, Pauli.Z], coefficient=0.14139),\n", - " PauliTerm(pauli=[Pauli.I, Pauli.I, Pauli.I, Pauli.I, Pauli.I, Pauli.Z, Pauli.I, Pauli.Z], coefficient=0.11270),\n", - " PauliTerm(pauli=[Pauli.I, Pauli.I, Pauli.I, Pauli.I, Pauli.I, Pauli.Z, Pauli.Z, Pauli.I], coefficient=0.14139),\n", - " PauliTerm(pauli=[Pauli.I, Pauli.I, Pauli.I, Pauli.I, Pauli.I, Pauli.I, Pauli.Z, Pauli.Z], coefficient=0.15436)])" - ] - }, - { - "cell_type": "code", - "source": [ - "@qfunc\n", - "def main(q: Output[QArray[QBit]], angles: CArray[CReal, 6]) -> None:\n", - " allocate(8, q)\n", - " # U(angles[0], angles[1], angles[2], 0, q[0])\n", - " # U(angles[3], angles[4], angles[5], 0, q[1])\n", - " # U(angles[6], angles[7], angles[8], 0, q[2])\n", - " # U(angles[9], angles[10], angles[11], 0, q[3])\n", - " # U(angles[12], angles[13], angles[14], 0, q[4])\n", - " # U(angles[15], angles[16], angles[17], 0, q[5])\n", - " # U(angles[18], angles[19], angles[20], 0, q[6])\n", - " # U(angles[21], angles[22], angles[23], 0, q[7])\n", - " repeat(q.len, lambda i: U(angles[0], angles[1], angles[2], 0, q[i]))\n", - " repeat(q.len-1, lambda i: repeat(q.len-i-1, lambda j: CX(q[i], q[i+j+1])))\n", - " repeat(q.len, lambda i: U(angles[3], angles[4], angles[5], 0, q[i]))\n", - " # repeat(q.len-1, lambda i: repeat(q.len-i-1, lambda j: CX(q[i], q[i+j+1])))\n", - " # repeat(q.len, lambda i: U(angles[6], angles[7], angles[8], 0, q[i]))\n", - "\n", - "\n", - "@cfunc\n", - "def cmain() -> None:\n", - " res = vqe(\n", - " HAMILTONIAN,\n", - " False,\n", - " [],\n", - " optimizer=Optimizer.COBYLA,\n", - " max_iteration=5000,\n", - " tolerance=0.001,\n", - " step_size=0,\n", - " skip_compute_variance=False,\n", - " alpha_cvar=1.0,\n", - " )\n", - " save({\"result\": res})\n", - "\n", - "qmod = create_model(main, classical_execution_function=cmain)\n", - "qprog = synthesize(qmod)\n", - "# show(qprog)" - ], - "metadata": { - "id": "pm3NUPq7K7Xd" - }, - "id": "pm3NUPq7K7Xd", - "execution_count": 4, - "outputs": [] - }, - { - "cell_type": "code", - "source": [ - "execution = execute(qprog)\n", - "res = execution.result()\n", - "# execution.open_in_ide()\n", - "vqe_result = res[0].value" - ], - "metadata": { - "id": "sTTUaPmKLW5O" - }, - "id": "sTTUaPmKLW5O", - "execution_count": 5, - "outputs": [] - }, - { - "cell_type": "code", - "source": [ - "print(f\"Optimal energy: {vqe_result.energy}\")\n", - "print(f\"Optimal parameters: {vqe_result.optimal_parameters}\")\n", - "print(f\"Eigenstate: {vqe_result.eigenstate}\")" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "y2LsEoJQL6KS", - "outputId": "f97511b4-26f0-4032-f737-0338a207238e" - }, - "id": "y2LsEoJQL6KS", - "execution_count": 6, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Optimal energy: -74.28639479492185\n", - "Optimal parameters: {'angles_0': -1.622441216459358, 'angles_1': 6.273309048672006, 'angles_2': 2.393676433518781, 'angles_3': -1.5671779543739635, 'angles_4': 1.8858586567955338, 'angles_5': -0.026747140832290826}\n", - "Eigenstate: {'10101001': (0.02209708691207961+0j), '10001010': (0.02209708691207961+0j), '10100010': (0.02209708691207961+0j), '10101000': (0.02209708691207961+0j), '10101101': (0.02209708691207961+0j), '10110101': (0.02209708691207961+0j), '10100101': (0.03125+0j), '10101011': (0.038273277230987154+0j), '10101010': (0.9973108373270593+0j)}\n" - ] - } - ] + "cells": [ + { + "cell_type": "markdown", + "id": "8d7703dc-4560-4c42-b641-c95dc1958032", + "metadata": { + "id": "8d7703dc-4560-4c42-b641-c95dc1958032" + }, + "source": [ + "# Quantum Software Development Journey:\n", + "# From Theory to Application with Classiq" + ] + }, + { + "cell_type": "markdown", + "id": "d1af5c13-129a-4e5d-8f40-ad400d35b764", + "metadata": { + "id": "d1af5c13-129a-4e5d-8f40-ad400d35b764" + }, + "source": [ + "## Final Assignment - Overview\n", + "\n", + "In this homework assignment, you have the opportunity to implement something meaningful, be creative, and practice your new skills and knowledge! You can apply your knowledge from the course and contribute to the Classiq community. Details are provided below.\n", + "\n", + "**Successful contributions will have the opportunity to earn SWAG credits and potentially more advanced certificates.**\n", + "\n", + "## The Project\n", + "\n", + "### Goal\n", + "The main goal is to be creative, collaborate with each other and with the community, and to apply your knowledge to bridge the gap between theory and application! Focus on the last two weeks of the course, using this assignment to solidify and expand your knowledge and skills.\n", + "\n", + "### Optional Projects\n", + "You may choose a project from the following list, or come up with your own idea. Just please make sure to consult with us before you start!\n", + "\n", + "- **Domain of Expertise**:\n", + " - Use your background in neural networks, chemistry, biology, or any other field to implement something new. We are here to support you!\n", + " - Example: An advanced application of VQE for a more complex molecule.\n", + " - Implementation of different QNN or QAE architectures.\n", + " - Combine your domain of expertise with the power of Classiq!\n", + "\n", + "- **QNN for XOR Problem**:\n", + " - Classiq has an available dataset for training PQC to imitate the XOR gate, similar to how we trained a U-gate to act as a NOT gate. Design a QNN to solve the XOR problem. Read more on the dataset [here](https://docs.classiq.io/latest/reference-manual/built-in-algorithms/qml/qnn/datasets/#datasetxor).\n", + "\n", + "- **QNN as VQE**:\n", + " - Like VQE, QNNs with well-suited loss functions and data can be used to find minima of a system. Can you solve one of the problems from week 3 (in class or HW3) by implementing it with QNN?\n", + " - Review the materials from weeks 3 and 4 and tackle this problem!\n", + " - If needed, you may create synthetic data.\n", + " - Do you have another example to show how QNN can generalize VQE? Show us!\n", + "\n", + "- **Noise Reduction Using Quantum Auto-Encoders**:\n", + " - Quantum Auto-Encoders can be used to reduce noise!\n", + " - Create code that generates a quantum state, adds random noise to it, and tries to reconstruct it using a Quantum Auto-Encoder.\n", + " - If needed, you may create synthetic data.\n", + "\n", + "- **Contribute to Quantum Algorithm Zoo**:\n", + " - Implement one of the algorithms in the [Quantum Algorithm Zoo](https://quantumalgorithmzoo.org/) that has not been implemented yet using Classiq.\n", + " - By doing so, you will have the opportunity to contribute to one of the main resources on quantum algorithms! (your Implementation will be linked to their website!)\n", + "\n", + "- **New Algorithm Implementation**:\n", + " - Choose a research paper (you may consult us) and try to implement it using Classiq's SDK.\n", + "\n", + "### Note\n", + "\n", + "- For those who choose a more extensive project, you will have a discussion with me or another Classiq member to fine-tune your project's purpose and set a deadline. This collaborative approach ensures your project aligns with course objectives and maximizes your learning experience.\n", + "- **You are allowed to work in teams of up to 3 members!**\n", + "\n", + "### Deadline & Submission\n", + "\n", + "- **Important Dates**:\n", + " - **Assignment Release:** 29.5.2024\n", + " - **Submission Deadline:** 10.6.2024 (7 A.M GMT+3)\n", + "- Consult with us before submitting your project, and we will direct you to the right place in the [Classiq Library](https://github.com/Classiq/classiq-library).\n", + "- You might get an extension to the deadline based on your specific project and progress.\n", + "\n", + "## Conclusion\n", + "\n", + "Choose the project that best aligns with your interests and career goals. This project provides a valuable opportunity to deepen your understanding of QML and quantum computing in general, while contributing to the Classiq community.\n", + "\n", + "If you have any questions or need further clarification, feel free to reach out.\n", + "\n", + "**Happy coding!**\n" + ] + }, + { + "cell_type": "markdown", + "id": "HojnZ_UpJrDs", + "metadata": { + "id": "HojnZ_UpJrDs" + }, + "source": [ + "# VQE for a more Complex Molecule:\n", + "### Hamiltonian of the Water (H₂O) Molecule" + ] + }, + { + "cell_type": "markdown", + "id": "sgBR_fcRKAqq", + "metadata": { + "id": "sgBR_fcRKAqq" + }, + "source": [ + "\\begin{align*}\n", + "\\hat{H} =& - 73.13873 (I\\otimes I\\otimes I\\otimes I\\otimes I\\otimes I\\otimes I\\otimes I) + 0.22757 (Z\\otimes I\\otimes I\\otimes I\\otimes I\\otimes I\\otimes I\\otimes I)\\\\\n", + "&- 0.04375 (Y\\otimes Z\\otimes Z\\otimes Z\\otimes Y\\otimes I\\otimes I\\otimes I) - 0.04375 (X\\otimes Z\\otimes Z\\otimes Z\\otimes X\\otimes I\\otimes I\\otimes I)\\\\\n", + "&+ 0.17420 (I\\otimes I\\otimes Z\\otimes I\\otimes I\\otimes I\\otimes I\\otimes I) + 0.16757 (Z\\otimes I\\otimes Z\\otimes I\\otimes I\\otimes I\\otimes I\\otimes I)\\\\\n", + "&- 0.15961 (I\\otimes I\\otimes I\\otimes I\\otimes Z\\otimes I\\otimes I\\otimes I) + 0.11952 (Z\\otimes I\\otimes I\\otimes I\\otimes Z\\otimes I\\otimes I\\otimes I)\\\\\n", + "&- 0.18067 (I\\otimes I\\otimes I\\otimes I\\otimes I\\otimes I\\otimes Z\\otimes I) + 0.13402 (Z\\otimes I\\otimes I\\otimes I\\otimes I\\otimes I\\otimes Z\\otimes I)\\\\\n", + "&+ 0.22757 (I\\otimes Z\\otimes I\\otimes I\\otimes I\\otimes I\\otimes I\\otimes I) + 0.19393 (Z\\otimes Z\\otimes I\\otimes I\\otimes I\\otimes I\\otimes I\\otimes I)\\\\\n", + "&- 0.03079 (Y\\otimes I\\otimes Z\\otimes Z\\otimes Y\\otimes I\\otimes I\\otimes I) - 0.03079 (X\\otimes I\\otimes Z\\otimes Z\\otimes X\\otimes I\\otimes I\\otimes I)\\\\\n", + "&+ 0.01387 (Y\\otimes X\\otimes X\\otimes Y\\otimes I\\otimes I\\otimes I\\otimes I) - 0.01387 (Y\\otimes Y\\otimes X\\otimes X\\otimes I\\otimes I\\otimes I\\otimes I)\\\\\n", + "&- 0.01387 (X\\otimes X\\otimes Y\\otimes Y\\otimes I\\otimes I\\otimes I\\otimes I) + 0.01387 (X\\otimes Y\\otimes Y\\otimes X\\otimes I\\otimes I\\otimes I\\otimes I)\\\\\n", + "&- 0.04375 (I\\otimes Y\\otimes Z\\otimes Z\\otimes Z\\otimes Y\\otimes I\\otimes I) - 0.03079 (Z\\otimes Y\\otimes Z\\otimes Z\\otimes Z\\otimes Y\\otimes I\\otimes I)\\\\\n", + "&- 0.04375 (I\\otimes X\\otimes Z\\otimes Z\\otimes Z\\otimes X\\otimes I\\otimes I) - 0.03079 (Z\\otimes X\\otimes Z\\otimes Z\\otimes Z\\otimes X\\otimes I\\otimes I)\\\\\n", + "&+ 0.01783 (Y\\otimes X\\otimes I\\otimes I\\otimes X\\otimes Y\\otimes I\\otimes I) - 0.01783 (Y\\otimes Y\\otimes I\\otimes I\\otimes X\\otimes X\\otimes I\\otimes I)\\\\\n", + "&- 0.01783 (X\\otimes X\\otimes I\\otimes I\\otimes Y\\otimes Y\\otimes I\\otimes I) + 0.01783 (X\\otimes Y\\otimes I\\otimes I\\otimes Y\\otimes X\\otimes I\\otimes I)\\\\\n", + "&+ 0.01737 (Y\\otimes X\\otimes I\\otimes I\\otimes I\\otimes I\\otimes X\\otimes Y) - 0.01737 (Y\\otimes Y\\otimes I\\otimes I\\otimes I\\otimes I\\otimes X\\otimes X)\\\\\n", + "&- 0.01737 (X\\otimes X\\otimes I\\otimes I\\otimes I\\otimes I\\otimes Y\\otimes Y) + 0.01737 (X\\otimes Y\\otimes I\\otimes I\\otimes I\\otimes I\\otimes Y\\otimes X)\\\\\n", + "&- 0.03010 (Y\\otimes Z\\otimes I\\otimes Z\\otimes Y\\otimes I\\otimes I\\otimes I) - 0.03010 (X\\otimes Z\\otimes I\\otimes Z\\otimes X\\otimes I\\otimes I\\otimes I)\\\\\n", + "&+ 0.17420 (I\\otimes I\\otimes I\\otimes Z\\otimes I\\otimes I\\otimes I\\otimes I) + 0.18144 (Z\\otimes I\\otimes I\\otimes Z\\otimes I\\otimes I\\otimes I\\otimes I)\\\\\n", + "&- 0.02981 (Y\\otimes Z\\otimes Z\\otimes I\\otimes Y\\otimes I\\otimes I\\otimes I) - 0.02981 (X\\otimes Z\\otimes Z\\otimes I\\otimes X\\otimes I\\otimes I\\otimes I)\\\\\n", + "&- 0.00029 (Y\\otimes Z\\otimes Y\\otimes Y\\otimes Z\\otimes Y\\otimes I\\otimes I) - 0.00029 (Y\\otimes Z\\otimes Y\\otimes X\\otimes Z\\otimes X\\otimes I\\otimes I)\\\\\n", + "&- 0.00029 (X\\otimes Z\\otimes X\\otimes Y\\otimes Z\\otimes Y\\otimes I\\otimes I) - 0.00029 (X\\otimes Z\\otimes X\\otimes X\\otimes Z\\otimes X\\otimes I\\otimes I)\\\\\n", + "&- 0.02510 (Y\\otimes Z\\otimes Z\\otimes Z\\otimes Y\\otimes I\\otimes Z\\otimes I) - 0.02510 (X\\otimes Z\\otimes Z\\otimes Z\\otimes X\\otimes I\\otimes Z\\otimes I)\\\\\n", + "&- 0.15961 (I\\otimes I\\otimes I\\otimes I\\otimes I\\otimes Z\\otimes I\\otimes I) + 0.13735 (Z\\otimes I\\otimes I\\otimes I\\otimes I\\otimes Z\\otimes I\\otimes I)\\\\\n", + "&- 0.01131 (Y\\otimes Z\\otimes Z\\otimes Z\\otimes Y\\otimes Z\\otimes I\\otimes I) - 0.01131 (X\\otimes Z\\otimes Z\\otimes Z\\otimes X\\otimes Z\\otimes I\\otimes I)\\\\\n", + "&- 0.01456 (Y\\otimes Z\\otimes Z\\otimes Z\\otimes Z\\otimes X\\otimes X\\otimes Y) + 0.01456 (Y\\otimes Z\\otimes Z\\otimes Z\\otimes Z\\otimes Y\\otimes X\\otimes X)\\\\\n", + "&+ 0.01456 (X\\otimes Z\\otimes Z\\otimes Z\\otimes Z\\otimes X\\otimes Y\\otimes Y) - 0.01456 (X\\otimes Z\\otimes Z\\otimes Z\\otimes Z\\otimes Y\\otimes Y\\otimes X)\\\\\n", + "&- 0.18067 (I\\otimes I\\otimes I\\otimes I\\otimes I\\otimes I\\otimes I\\otimes Z) + 0.15138 (Z\\otimes I\\otimes I\\otimes I\\otimes I\\otimes I\\otimes I\\otimes Z)\\\\\n", + "&- 0.01054 (Y\\otimes Z\\otimes Z\\otimes Z\\otimes Y\\otimes I\\otimes I\\otimes Z) - 0.01054 (X\\otimes Z\\otimes Z\\otimes Z\\otimes X\\otimes I\\otimes I\\otimes Z)\\\\\n", + "&+ 0.16757 (I\\otimes Z\\otimes I\\otimes Z\\otimes I\\otimes I\\otimes I\\otimes I) + 0.11952 (I\\otimes Z\\otimes I\\otimes I\\otimes I\\otimes Z\\otimes I\\otimes I)\\\\\n", + "&+ 0.13402 (I\\otimes Z\\otimes I\\otimes I\\otimes I\\otimes I\\otimes I\\otimes Z) + 0.18144 (I\\otimes Z\\otimes Z\\otimes I\\otimes I\\otimes I\\otimes I\\otimes I)\\\\\n", + "&- 0.02981 (I\\otimes Y\\otimes I\\otimes Z\\otimes Z\\otimes Y\\otimes I\\otimes I) - 0.02981 (I\\otimes X\\otimes I\\otimes Z\\otimes Z\\otimes X\\otimes I\\otimes I)\\\\\n", + "&- 0.00029 (I\\otimes Y\\otimes X\\otimes X\\otimes Y\\otimes I\\otimes I\\otimes I) + 0.00029 (I\\otimes Y\\otimes Y\\otimes X\\otimes X\\otimes I\\otimes I\\otimes I)\\\\\n", + "&+ 0.00029 (I\\otimes X\\otimes X\\otimes Y\\otimes Y\\otimes I\\otimes I\\otimes I) - 0.00029 (I\\otimes X\\otimes Y\\otimes Y\\otimes X\\otimes I\\otimes I\\otimes I)\\\\\n", + "&- 0.03010 (I\\otimes Y\\otimes Z\\otimes I\\otimes Z\\otimes Y\\otimes I\\otimes I) - 0.03010 (I\\otimes X\\otimes Z\\otimes I\\otimes Z\\otimes X\\otimes I\\otimes I)\\\\\n", + "&+ 0.13735 (I\\otimes Z\\otimes I\\otimes I\\otimes Z\\otimes I\\otimes I\\otimes I) - 0.01131 (I\\otimes Y\\otimes Z\\otimes Z\\otimes I\\otimes Y\\otimes I\\otimes I)\\\\\n", + "&- 0.01131 (I\\otimes X\\otimes Z\\otimes Z\\otimes I\\otimes X\\otimes I\\otimes I) + 0.01456 (I\\otimes Y\\otimes Z\\otimes Z\\otimes X\\otimes I\\otimes X\\otimes Y)\\\\\n", + "&+ 0.01456 (I\\otimes Y\\otimes Z\\otimes Z\\otimes Y\\otimes I\\otimes Y\\otimes Y) + 0.01456 (I\\otimes X\\otimes Z\\otimes Z\\otimes X\\otimes I\\otimes X\\otimes X)\\\\\n", + "&+ 0.01456 (I\\otimes X\\otimes Z\\otimes Z\\otimes Y\\otimes I\\otimes Y\\otimes X) - 0.02510 (I\\otimes Y\\otimes Z\\otimes Z\\otimes Z\\otimes Y\\otimes I\\otimes Z)\\\\\n", + "&- 0.02510 (I\\otimes X\\otimes Z\\otimes Z\\otimes Z\\otimes X\\otimes I\\otimes Z) + 0.15138 (I\\otimes Z\\otimes I\\otimes I\\otimes I\\otimes I\\otimes Z\\otimes I)\\\\\n", + "&- 0.01054 (I\\otimes Y\\otimes Z\\otimes Z\\otimes Z\\otimes Y\\otimes Z\\otimes I) - 0.01054 (I\\otimes X\\otimes Z\\otimes Z\\otimes Z\\otimes X\\otimes Z\\otimes I)\\\\\n", + "&+ 0.13767 (I\\otimes I\\otimes Z\\otimes I\\otimes Z\\otimes I\\otimes I\\otimes I) + 0.14973 (I\\otimes I\\otimes Z\\otimes I\\otimes I\\otimes I\\otimes Z\\otimes I)\\\\\n", + "&+ 0.22004 (I\\otimes I\\otimes Z\\otimes Z\\otimes I\\otimes I\\otimes I\\otimes I) + 0.00956 (I\\otimes I\\otimes Y\\otimes X\\otimes X\\otimes Y\\otimes I\\otimes I)\\\\\n", + "&- 0.00956 (I\\otimes I\\otimes Y\\otimes Y\\otimes X\\otimes X\\otimes I\\otimes I) - 0.00956 (I\\otimes I\\otimes X\\otimes X\\otimes Y\\otimes Y\\otimes I\\otimes I)\\\\\n", + "&+ 0.00956 (I\\otimes I\\otimes X\\otimes Y\\otimes Y\\otimes X\\otimes I\\otimes I) + 0.00609 (I\\otimes I\\otimes Y\\otimes X\\otimes I\\otimes I\\otimes X\\otimes Y)\\\\\n", + "&- 0.00609 (I\\otimes I\\otimes Y\\otimes Y\\otimes I\\otimes I\\otimes X\\otimes X) - 0.00609 (I\\otimes I\\otimes X\\otimes X\\otimes I\\otimes I\\otimes Y\\otimes Y)\\\\\n", + "&+ 0.00609 (I\\otimes I\\otimes X\\otimes Y\\otimes I\\otimes I\\otimes Y\\otimes X) + 0.14723 (I\\otimes I\\otimes Z\\otimes I\\otimes I\\otimes Z\\otimes I\\otimes I)\\\\\n", + "&+ 0.15582 (I\\otimes I\\otimes Z\\otimes I\\otimes I\\otimes I\\otimes I\\otimes Z) + 0.13767 (I\\otimes I\\otimes I\\otimes Z\\otimes I\\otimes Z\\otimes I\\otimes I)\\\\\n", + "&+ 0.14973 (I\\otimes I\\otimes I\\otimes Z\\otimes I\\otimes I\\otimes I\\otimes Z) + 0.14723 (I\\otimes I\\otimes I\\otimes Z\\otimes Z\\otimes I\\otimes I\\otimes I)\\\\\n", + "&+ 0.15582 (I\\otimes I\\otimes I\\otimes Z\\otimes I\\otimes I\\otimes Z\\otimes I) + 0.11270 (I\\otimes I\\otimes I\\otimes I\\otimes Z\\otimes I\\otimes Z\\otimes I)\\\\\n", + "&+ 0.14926 (I\\otimes I\\otimes I\\otimes I\\otimes Z\\otimes Z\\otimes I\\otimes I) + 0.02869 (I\\otimes I\\otimes I\\otimes I\\otimes Y\\otimes X\\otimes X\\otimes Y)\\\\\n", + "&- 0.02869 (I\\otimes I\\otimes I\\otimes I\\otimes Y\\otimes Y\\otimes X\\otimes X) - 0.02869 (I\\otimes I\\otimes I\\otimes I\\otimes X\\otimes X\\otimes Y\\otimes Y)\\\\\n", + "&+ 0.02869 (I\\otimes I\\otimes I\\otimes I\\otimes X\\otimes Y\\otimes Y\\otimes X) + 0.14139 (I\\otimes I\\otimes I\\otimes I\\otimes Z\\otimes I\\otimes I\\otimes Z)\\\\\n", + "&+ 0.11270 (I\\otimes I\\otimes I\\otimes I\\otimes I\\otimes Z\\otimes I\\otimes Z) + 0.14139 (I\\otimes I\\otimes I\\otimes I\\otimes I\\otimes Z\\otimes Z\\otimes I)\\\\\n", + "&+ 0.15436 (I\\otimes I\\otimes I\\otimes I\\otimes I\\otimes I\\otimes Z\\otimes Z)\n", + "\\end{align*}" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "bkgCA-XNLBaq", + "metadata": { + "id": "bkgCA-XNLBaq" + }, + "outputs": [], + "source": [ + "# !pip install -U classiq" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "jfBwcuM2LdS0", + "metadata": { + "id": "jfBwcuM2LdS0" + }, + "outputs": [], + "source": [ + "# import classiq\n", + "# classiq.authenticate()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "e4b9b85d-f164-4c1b-aca3-e24e9a0427f8", + "metadata": { + "id": "e4b9b85d-f164-4c1b-aca3-e24e9a0427f8" + }, + "outputs": [], + "source": [ + "from typing import List\n", + "\n", + "from classiq import *\n", + "\n", + "HAMILTONIAN = QConstant(\n", + " \"HAMILTONIAN\",\n", + " List[PauliTerm],\n", + " [\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " ],\n", + " coefficient=-73.13873,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.Z,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " ],\n", + " coefficient=0.22757,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.Y,\n", + " Pauli.Z,\n", + " Pauli.Z,\n", + " Pauli.Z,\n", + " Pauli.Y,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " ],\n", + " coefficient=-0.04375,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.X,\n", + " Pauli.Z,\n", + " Pauli.Z,\n", + " Pauli.Z,\n", + " Pauli.X,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " ],\n", + " coefficient=-0.04375,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.Z,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " ],\n", + " coefficient=0.17420,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.Z,\n", + " Pauli.I,\n", + " Pauli.Z,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " ],\n", + " coefficient=0.16757,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.Z,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " ],\n", + " coefficient=-0.15961,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.Z,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " ],\n", + " coefficient=0.11952,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.Z,\n", + " Pauli.I,\n", + " ],\n", + " coefficient=-0.18067,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.Z,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.Z,\n", + " Pauli.I,\n", + " ],\n", + " coefficient=0.13402,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.I,\n", + " Pauli.Z,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " ],\n", + " coefficient=0.22757,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.Z,\n", + " Pauli.Z,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " ],\n", + " coefficient=0.19393,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.Y,\n", + " Pauli.I,\n", + " Pauli.Z,\n", + " Pauli.Z,\n", + " Pauli.Y,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " ],\n", + " coefficient=-0.03079,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.X,\n", + " Pauli.I,\n", + " Pauli.Z,\n", + " Pauli.Z,\n", + " Pauli.X,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " ],\n", + " coefficient=-0.03079,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.Y,\n", + " Pauli.X,\n", + " Pauli.X,\n", + " Pauli.Y,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " ],\n", + " coefficient=0.01387,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.Y,\n", + " Pauli.Y,\n", + " Pauli.X,\n", + " Pauli.X,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " ],\n", + " coefficient=-0.01387,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.X,\n", + " Pauli.X,\n", + " Pauli.Y,\n", + " Pauli.Y,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " ],\n", + " coefficient=-0.01387,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.X,\n", + " Pauli.Y,\n", + " Pauli.Y,\n", + " Pauli.X,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " ],\n", + " coefficient=0.01387,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.I,\n", + " Pauli.Y,\n", + " Pauli.Z,\n", + " Pauli.Z,\n", + " Pauli.Z,\n", + " Pauli.Y,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " ],\n", + " coefficient=-0.04375,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.Z,\n", + " Pauli.Y,\n", + " Pauli.Z,\n", + " Pauli.Z,\n", + " Pauli.Z,\n", + " Pauli.Y,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " ],\n", + " coefficient=-0.03079,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.I,\n", + " Pauli.X,\n", + " Pauli.Z,\n", + " Pauli.Z,\n", + " Pauli.Z,\n", + " Pauli.X,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " ],\n", + " coefficient=-0.04375,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.Z,\n", + " Pauli.X,\n", + " Pauli.Z,\n", + " Pauli.Z,\n", + " Pauli.Z,\n", + " Pauli.X,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " ],\n", + " coefficient=-0.03079,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.Y,\n", + " Pauli.X,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.X,\n", + " Pauli.Y,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " ],\n", + " coefficient=0.01783,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.Y,\n", + " Pauli.Y,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.X,\n", + " Pauli.X,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " ],\n", + " coefficient=-0.01783,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.X,\n", + " Pauli.X,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.Y,\n", + " Pauli.Y,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " ],\n", + " coefficient=-0.01783,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.X,\n", + " Pauli.Y,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.Y,\n", + " Pauli.X,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " ],\n", + " coefficient=0.01783,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.Y,\n", + " Pauli.X,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.X,\n", + " Pauli.Y,\n", + " ],\n", + " coefficient=0.01737,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.Y,\n", + " Pauli.Y,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.X,\n", + " Pauli.X,\n", + " ],\n", + " coefficient=-0.01737,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.X,\n", + " Pauli.X,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.Y,\n", + " Pauli.Y,\n", + " ],\n", + " coefficient=-0.01737,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.X,\n", + " Pauli.Y,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.Y,\n", + " Pauli.X,\n", + " ],\n", + " coefficient=0.01737,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.Y,\n", + " Pauli.Z,\n", + " Pauli.I,\n", + " Pauli.Z,\n", + " Pauli.Y,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " ],\n", + " coefficient=-0.03010,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.X,\n", + " Pauli.Z,\n", + " Pauli.I,\n", + " Pauli.Z,\n", + " Pauli.X,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " ],\n", + " coefficient=-0.03010,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.Z,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " ],\n", + " coefficient=0.17420,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.Z,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.Z,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " ],\n", + " coefficient=0.18144,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.Y,\n", + " Pauli.Z,\n", + " Pauli.Z,\n", + " Pauli.I,\n", + " Pauli.Y,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " ],\n", + " coefficient=-0.02981,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.X,\n", + " Pauli.Z,\n", + " Pauli.Z,\n", + " Pauli.I,\n", + " Pauli.X,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " ],\n", + " coefficient=-0.02981,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.Y,\n", + " Pauli.Z,\n", + " Pauli.Y,\n", + " Pauli.Y,\n", + " Pauli.Z,\n", + " Pauli.Y,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " ],\n", + " coefficient=-0.00029,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.Y,\n", + " Pauli.Z,\n", + " Pauli.Y,\n", + " Pauli.X,\n", + " Pauli.Z,\n", + " Pauli.X,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " ],\n", + " coefficient=-0.00029,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.X,\n", + " Pauli.Z,\n", + " Pauli.X,\n", + " Pauli.Y,\n", + " Pauli.Z,\n", + " Pauli.Y,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " ],\n", + " coefficient=-0.00029,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.X,\n", + " Pauli.Z,\n", + " Pauli.X,\n", + " Pauli.X,\n", + " Pauli.Z,\n", + " Pauli.X,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " ],\n", + " coefficient=-0.00029,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.Y,\n", + " Pauli.Z,\n", + " Pauli.Z,\n", + " Pauli.Z,\n", + " Pauli.Y,\n", + " Pauli.I,\n", + " Pauli.Z,\n", + " Pauli.I,\n", + " ],\n", + " coefficient=-0.02510,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.X,\n", + " Pauli.Z,\n", + " Pauli.Z,\n", + " Pauli.Z,\n", + " Pauli.X,\n", + " Pauli.I,\n", + " Pauli.Z,\n", + " Pauli.I,\n", + " ],\n", + " coefficient=-0.02510,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.Z,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " ],\n", + " coefficient=-0.15961,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.Z,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.Z,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " ],\n", + " coefficient=0.13735,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.Y,\n", + " Pauli.Z,\n", + " Pauli.Z,\n", + " Pauli.Z,\n", + " Pauli.Y,\n", + " Pauli.Z,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " ],\n", + " coefficient=-0.01131,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.X,\n", + " Pauli.Z,\n", + " Pauli.Z,\n", + " Pauli.Z,\n", + " Pauli.X,\n", + " Pauli.Z,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " ],\n", + " coefficient=-0.01131,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.Y,\n", + " Pauli.Z,\n", + " Pauli.Z,\n", + " Pauli.Z,\n", + " Pauli.Z,\n", + " Pauli.X,\n", + " Pauli.X,\n", + " Pauli.Y,\n", + " ],\n", + " coefficient=-0.01456,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.Y,\n", + " Pauli.Z,\n", + " Pauli.Z,\n", + " Pauli.Z,\n", + " Pauli.Z,\n", + " Pauli.Y,\n", + " Pauli.X,\n", + " Pauli.X,\n", + " ],\n", + " coefficient=0.01456,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.X,\n", + " Pauli.Z,\n", + " Pauli.Z,\n", + " Pauli.Z,\n", + " Pauli.Z,\n", + " Pauli.X,\n", + " Pauli.Y,\n", + " Pauli.Y,\n", + " ],\n", + " coefficient=0.01456,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.X,\n", + " Pauli.Z,\n", + " Pauli.Z,\n", + " Pauli.Z,\n", + " Pauli.Z,\n", + " Pauli.Y,\n", + " Pauli.Y,\n", + " Pauli.X,\n", + " ],\n", + " coefficient=-0.01456,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.Z,\n", + " ],\n", + " coefficient=-0.18067,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.Z,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.Z,\n", + " ],\n", + " coefficient=0.15138,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.Y,\n", + " Pauli.Z,\n", + " Pauli.Z,\n", + " Pauli.Z,\n", + " Pauli.Y,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.Z,\n", + " ],\n", + " coefficient=-0.01054,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.X,\n", + " Pauli.Z,\n", + " Pauli.Z,\n", + " Pauli.Z,\n", + " Pauli.X,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.Z,\n", + " ],\n", + " coefficient=-0.01054,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.I,\n", + " Pauli.Z,\n", + " Pauli.I,\n", + " Pauli.Z,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " ],\n", + " coefficient=0.16757,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.I,\n", + " Pauli.Z,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.Z,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " ],\n", + " coefficient=0.11952,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.I,\n", + " Pauli.Z,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.Z,\n", + " ],\n", + " coefficient=0.13402,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.I,\n", + " Pauli.Z,\n", + " Pauli.Z,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " ],\n", + " coefficient=0.18144,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.I,\n", + " Pauli.Y,\n", + " Pauli.I,\n", + " Pauli.Z,\n", + " Pauli.Z,\n", + " Pauli.Y,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " ],\n", + " coefficient=-0.02981,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.I,\n", + " Pauli.X,\n", + " Pauli.I,\n", + " Pauli.Z,\n", + " Pauli.Z,\n", + " Pauli.X,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " ],\n", + " coefficient=-0.02981,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.I,\n", + " Pauli.Y,\n", + " Pauli.X,\n", + " Pauli.X,\n", + " Pauli.Y,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " ],\n", + " coefficient=-0.00029,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.I,\n", + " Pauli.Y,\n", + " Pauli.Y,\n", + " Pauli.X,\n", + " Pauli.X,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " ],\n", + " coefficient=0.00029,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.I,\n", + " Pauli.X,\n", + " Pauli.X,\n", + " Pauli.Y,\n", + " Pauli.Y,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " ],\n", + " coefficient=0.00029,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.I,\n", + " Pauli.X,\n", + " Pauli.Y,\n", + " Pauli.Y,\n", + " Pauli.X,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " ],\n", + " coefficient=-0.00029,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.I,\n", + " Pauli.Y,\n", + " Pauli.Z,\n", + " Pauli.I,\n", + " Pauli.Z,\n", + " Pauli.Y,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " ],\n", + " coefficient=-0.03010,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.I,\n", + " Pauli.X,\n", + " Pauli.Z,\n", + " Pauli.I,\n", + " Pauli.Z,\n", + " Pauli.X,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " ],\n", + " coefficient=-0.03010,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.I,\n", + " Pauli.Z,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.Z,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " ],\n", + " coefficient=0.13735,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.I,\n", + " Pauli.Y,\n", + " Pauli.Z,\n", + " Pauli.Z,\n", + " Pauli.I,\n", + " Pauli.Y,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " ],\n", + " coefficient=-0.01131,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.I,\n", + " Pauli.X,\n", + " Pauli.Z,\n", + " Pauli.Z,\n", + " Pauli.I,\n", + " Pauli.X,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " ],\n", + " coefficient=-0.01131,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.I,\n", + " Pauli.Y,\n", + " Pauli.Z,\n", + " Pauli.Z,\n", + " Pauli.X,\n", + " Pauli.I,\n", + " Pauli.X,\n", + " Pauli.Y,\n", + " ],\n", + " coefficient=0.01456,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.I,\n", + " Pauli.Y,\n", + " Pauli.Z,\n", + " Pauli.Z,\n", + " Pauli.Y,\n", + " Pauli.I,\n", + " Pauli.Y,\n", + " Pauli.Y,\n", + " ],\n", + " coefficient=0.01456,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.I,\n", + " Pauli.X,\n", + " Pauli.Z,\n", + " Pauli.Z,\n", + " Pauli.X,\n", + " Pauli.I,\n", + " Pauli.X,\n", + " Pauli.X,\n", + " ],\n", + " coefficient=0.01456,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.I,\n", + " Pauli.X,\n", + " Pauli.Z,\n", + " Pauli.Z,\n", + " Pauli.Y,\n", + " Pauli.I,\n", + " Pauli.Y,\n", + " Pauli.X,\n", + " ],\n", + " coefficient=0.01456,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.I,\n", + " Pauli.Y,\n", + " Pauli.Z,\n", + " Pauli.Z,\n", + " Pauli.Z,\n", + " Pauli.Y,\n", + " Pauli.I,\n", + " Pauli.Z,\n", + " ],\n", + " coefficient=-0.02510,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.I,\n", + " Pauli.X,\n", + " Pauli.Z,\n", + " Pauli.Z,\n", + " Pauli.Z,\n", + " Pauli.X,\n", + " Pauli.I,\n", + " Pauli.Z,\n", + " ],\n", + " coefficient=-0.02510,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.I,\n", + " Pauli.Z,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.Z,\n", + " Pauli.I,\n", + " ],\n", + " coefficient=0.15138,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.I,\n", + " Pauli.Y,\n", + " Pauli.Z,\n", + " Pauli.Z,\n", + " Pauli.Z,\n", + " Pauli.Y,\n", + " Pauli.Z,\n", + " Pauli.I,\n", + " ],\n", + " coefficient=-0.01054,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.I,\n", + " Pauli.X,\n", + " Pauli.Z,\n", + " Pauli.Z,\n", + " Pauli.Z,\n", + " Pauli.X,\n", + " Pauli.Z,\n", + " Pauli.I,\n", + " ],\n", + " coefficient=-0.01054,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.Z,\n", + " Pauli.I,\n", + " Pauli.Z,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " ],\n", + " coefficient=0.13767,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.Z,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.Z,\n", + " Pauli.I,\n", + " ],\n", + " coefficient=0.14973,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.Z,\n", + " Pauli.Z,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " ],\n", + " coefficient=0.22004,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.Y,\n", + " Pauli.X,\n", + " Pauli.X,\n", + " Pauli.Y,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " ],\n", + " coefficient=0.00956,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.Y,\n", + " Pauli.Y,\n", + " Pauli.X,\n", + " Pauli.X,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " ],\n", + " coefficient=-0.00956,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.X,\n", + " Pauli.X,\n", + " Pauli.Y,\n", + " Pauli.Y,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " ],\n", + " coefficient=-0.00956,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.X,\n", + " Pauli.Y,\n", + " Pauli.Y,\n", + " Pauli.X,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " ],\n", + " coefficient=0.00956,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.Y,\n", + " Pauli.X,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.X,\n", + " Pauli.Y,\n", + " ],\n", + " coefficient=0.00609,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.Y,\n", + " Pauli.Y,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.X,\n", + " Pauli.X,\n", + " ],\n", + " coefficient=-0.00609,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.X,\n", + " Pauli.X,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.Y,\n", + " Pauli.Y,\n", + " ],\n", + " coefficient=-0.00609,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.X,\n", + " Pauli.Y,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.Y,\n", + " Pauli.X,\n", + " ],\n", + " coefficient=0.00609,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.Z,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.Z,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " ],\n", + " coefficient=0.14723,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.Z,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.Z,\n", + " ],\n", + " coefficient=0.15582,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.Z,\n", + " Pauli.I,\n", + " Pauli.Z,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " ],\n", + " coefficient=0.13767,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.Z,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.Z,\n", + " ],\n", + " coefficient=0.14973,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.Z,\n", + " Pauli.Z,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " ],\n", + " coefficient=0.14723,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.Z,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.Z,\n", + " Pauli.I,\n", + " ],\n", + " coefficient=0.15582,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.Z,\n", + " Pauli.I,\n", + " Pauli.Z,\n", + " Pauli.I,\n", + " ],\n", + " coefficient=0.11270,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.Z,\n", + " Pauli.Z,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " ],\n", + " coefficient=0.14926,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.Y,\n", + " Pauli.X,\n", + " Pauli.X,\n", + " Pauli.Y,\n", + " ],\n", + " coefficient=0.02869,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.Y,\n", + " Pauli.Y,\n", + " Pauli.X,\n", + " Pauli.X,\n", + " ],\n", + " coefficient=-0.02869,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.X,\n", + " Pauli.X,\n", + " Pauli.Y,\n", + " Pauli.Y,\n", + " ],\n", + " coefficient=-0.02869,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.X,\n", + " Pauli.Y,\n", + " Pauli.Y,\n", + " Pauli.X,\n", + " ],\n", + " coefficient=0.02869,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.Z,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.Z,\n", + " ],\n", + " coefficient=0.14139,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.Z,\n", + " Pauli.I,\n", + " Pauli.Z,\n", + " ],\n", + " coefficient=0.11270,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.Z,\n", + " Pauli.Z,\n", + " Pauli.I,\n", + " ],\n", + " coefficient=0.14139,\n", + " ),\n", + " PauliTerm(\n", + " pauli=[\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.I,\n", + " Pauli.Z,\n", + " Pauli.Z,\n", + " ],\n", + " coefficient=0.15436,\n", + " ),\n", + " ],\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "pm3NUPq7K7Xd", + "metadata": { + "id": "pm3NUPq7K7Xd" + }, + "outputs": [], + "source": [ + "@qfunc\n", + "def main(q: Output[QArray[QBit]], angles: CArray[CReal, 6]) -> None:\n", + " allocate(8, q)\n", + " # U(angles[0], angles[1], angles[2], 0, q[0])\n", + " # U(angles[3], angles[4], angles[5], 0, q[1])\n", + " # U(angles[6], angles[7], angles[8], 0, q[2])\n", + " # U(angles[9], angles[10], angles[11], 0, q[3])\n", + " # U(angles[12], angles[13], angles[14], 0, q[4])\n", + " # U(angles[15], angles[16], angles[17], 0, q[5])\n", + " # U(angles[18], angles[19], angles[20], 0, q[6])\n", + " # U(angles[21], angles[22], angles[23], 0, q[7])\n", + " repeat(q.len, lambda i: U(angles[0], angles[1], angles[2], 0, q[i]))\n", + " repeat(q.len - 1, lambda i: repeat(q.len - i - 1, lambda j: CX(q[i], q[i + j + 1])))\n", + " repeat(q.len, lambda i: U(angles[3], angles[4], angles[5], 0, q[i]))\n", + " # repeat(q.len-1, lambda i: repeat(q.len-i-1, lambda j: CX(q[i], q[i+j+1])))\n", + " # repeat(q.len, lambda i: U(angles[6], angles[7], angles[8], 0, q[i]))\n", + "\n", + "\n", + "@cfunc\n", + "def cmain() -> None:\n", + " res = vqe(\n", + " HAMILTONIAN,\n", + " False,\n", + " [],\n", + " optimizer=Optimizer.COBYLA,\n", + " max_iteration=5000,\n", + " tolerance=0.001,\n", + " step_size=0,\n", + " skip_compute_variance=False,\n", + " alpha_cvar=1.0,\n", + " )\n", + " save({\"result\": res})\n", + "\n", + "\n", + "qmod = create_model(main, classical_execution_function=cmain)\n", + "qprog = synthesize(qmod)\n", + "# show(qprog)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "sTTUaPmKLW5O", + "metadata": { + "id": "sTTUaPmKLW5O" + }, + "outputs": [], + "source": [ + "execution = execute(qprog)\n", + "res = execution.result()\n", + "# execution.open_in_ide()\n", + "vqe_result = res[0].value" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "y2LsEoJQL6KS", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "y2LsEoJQL6KS", + "outputId": "f97511b4-26f0-4032-f737-0338a207238e" + }, + "outputs": [ { - "cell_type": "code", - "source": [], - "metadata": { - "id": "Wc7QKyY6MDvu" - }, - "id": "Wc7QKyY6MDvu", - "execution_count": 6, - "outputs": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.8" - }, - "colab": { - "provenance": [] + "name": "stdout", + "output_type": "stream", + "text": [ + "Optimal energy: -74.0387620605469\n", + "Optimal parameters: {'angles_0': -1.6244327148424826, 'angles_1': 0.0029992440706366028, 'angles_2': -3.0176878190240437, 'angles_3': 4.742160511370476, 'angles_4': -0.027681125858615045, 'angles_5': -3.186328011179737}\n", + "Eigenstate: {'00010101': (0.02209708691207961+0j), '00101010': (0.02209708691207961+0j), '10101010': (0.03125+0j), '01011010': (0.03125+0j), '01010100': (0.02209708691207961+0j), '01010111': (0.038273277230987154+0j), '01000101': (0.02209708691207961+0j), '01011101': (0.02209708691207961+0j), '11010101': (0.02209708691207961+0j), '01001010': (0.03125+0j), '01010001': (0.04419417382415922+0j), '01010101': (0.9953505192895616+0j)}\n" + ] } + ], + "source": [ + "print(f\"Optimal energy: {vqe_result.energy}\")\n", + "print(f\"Optimal parameters: {vqe_result.optimal_parameters}\")\n", + "print(f\"Eigenstate: {vqe_result.eigenstate}\")" + ] + } + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" }, - "nbformat": 4, - "nbformat_minor": 5 -} \ No newline at end of file + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/community/QClass_2024/Submissions/HW4/Yasir_Mansour_HW4_molecule_eigensolver.ipynb b/community/QClass_2024/Submissions/HW4/Yasir_Mansour_HW4_molecule_eigensolver.ipynb index 090647d7..d3bb4ef5 100644 --- a/community/QClass_2024/Submissions/HW4/Yasir_Mansour_HW4_molecule_eigensolver.ipynb +++ b/community/QClass_2024/Submissions/HW4/Yasir_Mansour_HW4_molecule_eigensolver.ipynb @@ -1,16 +1,5 @@ { "cells": [ - { - "cell_type": "markdown", - "id": "726d2386", - "metadata": { - "colab_type": "text", - "id": "view-in-github" - }, - "source": [ - "\"Open" - ] - }, { "cell_type": "markdown", "id": "4fbae0f9", @@ -34,7 +23,7 @@ "id": "TWGNYMkUKh6C" }, "source": [ - "` **RESULTS**\n", + "**RESULTS**\n", "\n", "Comparison of different molecules in terms of width and depth. The more atoms in a molecule, the more qubits/circuit depth are necessary. System overload when more than 3 atoms.\n", "\n", @@ -76,7 +65,7 @@ "id": "Br0-chtAKv6D" }, "source": [ - "##**co2**\n", + "## **co2**\n", "\n", "hw-eff ansatz: width 24/depth 175\n", "\n", @@ -100,7 +89,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 12, "id": "C3SemPUxJw4V", "metadata": { "colab": { @@ -111,12 +100,12 @@ }, "outputs": [], "source": [ - "!pip install classiq" + "# !pip install classiq" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 13, "id": "zjvfmLnXJ1Kk", "metadata": { "id": "zjvfmLnXJ1Kk" @@ -128,7 +117,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 14, "id": "LHrqCSj2J5PC", "metadata": { "colab": { @@ -139,13 +128,13 @@ }, "outputs": [], "source": [ - "import classiq\n", - "classiq.authenticate()" + "# import classiq\n", + "# classiq.authenticate()" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 15, "id": "c6bbe65f-1e6a-475c-a43f-cb4cc04bbdfa", "metadata": { "id": "c6bbe65f-1e6a-475c-a43f-cb4cc04bbdfa", @@ -188,7 +177,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 16, "id": "VN6XdfYfLApS", "metadata": { "id": "VN6XdfYfLApS", @@ -196,40 +185,60 @@ }, "outputs": [], "source": [ - "#hydrogen\n", + "# hydrogen\n", "molecule_H2 = Molecule(atoms=[(\"H\", (0.0, 0.0, 0)), (\"H\", (0.0, 0.0, 0.735))])\n", "\n", - "#oxygen\n", + "# oxygen\n", "molecule_O2 = Molecule(atoms=[(\"O\", (0.0, 0.0, 0)), (\"O\", (0.0, 0.0, 1.16))])\n", "\n", - "#lithium hydride\n", + "# lithium hydride\n", "molecule_LiH = Molecule(atoms=[(\"H\", (0.0, 0.0, 0.0)), (\"Li\", (0.0, 0.0, 1.596))])\n", "\n", - "#water\n", + "# water\n", "molecule_H2O = Molecule(\n", " atoms=[(\"O\", (0.0, 0.0, 0.0)), (\"H\", (0, 0.586, 0.757)), (\"H\", (0, 0.586, -0.757))]\n", ")\n", - "#beryllium hydride\n", + "# beryllium hydride\n", "molecule_BeH2 = Molecule(\n", " atoms=[(\"Be\", (0.0, 0.0, 0.0)), (\"H\", (0, 0, 1.334)), (\"H\", (0, 0, -1.334))]\n", ")\n", - "#carbon dioxide\n", - "molecule_CO2 = Molecule(atoms=[(\"C\", (0.0, 0.0, 0.0)),\n", - " (\"O\", (0, 0, 1.1693)), (\"O\", (0, 0, -1.1693))])\n", + "# carbon dioxide\n", + "molecule_CO2 = Molecule(\n", + " atoms=[(\"C\", (0.0, 0.0, 0.0)), (\"O\", (0, 0, 1.1693)), (\"O\", (0, 0, -1.1693))]\n", + ")\n", "\n", - "#ethyne, acetylene\n", - "molecule_C2H2 = Molecule(atoms=[(\"C\", (0, 0, -0.5977)), (\"C\", (0, 0, 0.5977)),\n", - " (\"H\", (0, 0, -1.6692)), (\"H\", (0, 0, 1.6692))])\n", + "# ethyne, acetylene\n", + "molecule_C2H2 = Molecule(\n", + " atoms=[\n", + " (\"C\", (0, 0, -0.5977)),\n", + " (\"C\", (0, 0, 0.5977)),\n", + " (\"H\", (0, 0, -1.6692)),\n", + " (\"H\", (0, 0, 1.6692)),\n", + " ]\n", + ")\n", "\n", - "#chloroform\n", - "molecule_CH3Cl = Molecule(atoms=[(\"C\", (0, 0, -1.1401)), (\"Cl\", (0, 0, 0.6645)),\n", - " (\"H\", (0, 1.0343, -1.4855)),\n", - " (\"H\", (0.8957, -0.5171, -1.4855)), (\"H\", (-0.8957, -0.5171, -1.4855))])\n", + "# chloroform\n", + "molecule_CH3Cl = Molecule(\n", + " atoms=[\n", + " (\"C\", (0, 0, -1.1401)),\n", + " (\"Cl\", (0, 0, 0.6645)),\n", + " (\"H\", (0, 1.0343, -1.4855)),\n", + " (\"H\", (0.8957, -0.5171, -1.4855)),\n", + " (\"H\", (-0.8957, -0.5171, -1.4855)),\n", + " ]\n", + ")\n", "\n", - "#ethylene\n", - "molecule_C2H4 = Molecule(atoms=[(\"C\", (0, 0, 0.6673)), (\"C\", (0, 0, -0.6673)),\n", - " (\"H\", (0, 0.9239, 1.2411)), (\"H\", (0, -0.9239, 1.2411)),\n", - " (\"H\", (0, -0.9239, -1.2411)), (\"H\", (0, 0.9239, -1.2411))])\n" + "# ethylene\n", + "molecule_C2H4 = Molecule(\n", + " atoms=[\n", + " (\"C\", (0, 0, 0.6673)),\n", + " (\"C\", (0, 0, -0.6673)),\n", + " (\"H\", (0, 0.9239, 1.2411)),\n", + " (\"H\", (0, -0.9239, 1.2411)),\n", + " (\"H\", (0, -0.9239, -1.2411)),\n", + " (\"H\", (0, 0.9239, -1.2411)),\n", + " ]\n", + ")" ] }, { @@ -244,7 +253,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 17, "id": "2e77678f", "metadata": { "id": "2e77678f", @@ -276,7 +285,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 18, "id": "2e0426d5", "metadata": { "colab": { @@ -287,7 +296,529 @@ "outputId": "205584a3-ca38-4d54-ca52-dbc3f88b8bbf", "tags": [] }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Your Hamiltonian is\n", + "-18.374 * IIIIIIII\n", + "+1.169 * ZIZIZIZZ\n", + "-0.061 * IIZIIZZX\n", + "+0.061 * ZIIIZZIX\n", + "+0.139 * IIIIIZXI\n", + "-0.139 * ZIZIZZXZ\n", + "+0.813 * ZIIIZZII\n", + "+0.192 * ZIZIZXZZ\n", + "-0.192 * IIZIIXZZ\n", + "+0.823 * IIIIIIIZ\n", + "-0.114 * IIZIIIYY\n", + "-0.114 * IIZIIIXX\n", + "+1.640 * IIZIIIII\n", + "+0.385 * IIIIIIZI\n", + "+0.377 * IIIIIZII\n", + "+1.169 * ZZZZZIII\n", + "-0.061 * ZZZXIIII\n", + "+0.061 * IIIXZIII\n", + "+0.139 * ZXIIIIII\n", + "-0.139 * IXZZZIII\n", + "+0.813 * IIIIZIII\n", + "-0.192 * YZZZYIII\n", + "-0.192 * XZZZXIII\n", + "+0.823 * IIIZIIII\n", + "-0.114 * IYZYIIII\n", + "-0.114 * IXZXIIII\n", + "+0.385 * IZIIIIII\n", + "+0.377 * ZIIIIIII\n", + "+0.125 * IIZIIZZZ\n", + "+0.024 * IIIIIXII\n", + "-0.024 * ZIIIZXII\n", + "+0.138 * ZIZIZIZI\n", + "+0.019 * ZIIIZIXX\n", + "+0.019 * ZIIIZIYY\n", + "+0.338 * ZIIIZIZZ\n", + "+0.128 * ZIZIZIIZ\n", + "+0.141 * ZIZIZZZZ\n", + "-0.003 * ZIZIZIZX\n", + "+0.003 * IIIIIIIX\n", + "+0.029 * ZIIIZIXI\n", + "-0.029 * IIZIIIXZ\n", + "-0.011 * ZIIIZYIY\n", + "-0.011 * IIIIIXIX\n", + "-0.000 * IIIIIYIY\n", + "-0.000 * IIZIIYZY\n", + "-0.011 * IIZIIXZX\n", + "-0.011 * ZIZIZYZY\n", + "+0.010 * ZIZIZYYZ\n", + "+0.016 * IIZIIXXZ\n", + "+0.005 * IIZIIYYZ\n", + "+0.005 * IIIIIYYI\n", + "+0.016 * IIIIIXXI\n", + "+0.010 * ZIIIZYYI\n", + "+0.030 * IIIIIZXZ\n", + "-0.030 * ZIZIZZXI\n", + "-0.023 * IIIIIZZX\n", + "+0.023 * ZIZIZZIX\n", + "-0.001 * IIZIIZIX\n", + "+0.001 * ZIIIZZZX\n", + "+0.001 * IIZIIIZX\n", + "-0.001 * ZIIIZIIX\n", + "+0.065 * IIZIIZXI\n", + "-0.065 * ZIIIZZXZ\n", + "+0.020 * IIIIIIXI\n", + "-0.020 * ZIZIZIXZ\n", + "+0.182 * IZIZIIZZ\n", + "+0.001 * ZZIZZZZX\n", + "-0.001 * IZZZIZIX\n", + "+0.036 * ZZZZZZXI\n", + "-0.036 * IZIZIZXZ\n", + "+0.036 * ZZIZXZZZ\n", + "-0.036 * IIZIXZZZ\n", + "-0.036 * ZZZZXIII\n", + "+0.036 * IIIIXIII\n", + "+0.010 * ZZZZXXII\n", + "-0.010 * IIIIXXII\n", + "+0.010 * IZIZYYZZ\n", + "-0.010 * ZIZIYYZZ\n", + "+0.001 * IZIXZIZZ\n", + "-0.001 * ZIZXIIZZ\n", + "+0.031 * ZZIXIZZX\n", + "-0.031 * IIZXZZZX\n", + "-0.031 * IZZXZZIX\n", + "+0.031 * ZIIXIZIX\n", + "+0.005 * ZZZXIZXI\n", + "-0.005 * IIIXZZXI\n", + "-0.005 * IZIXZZXZ\n", + "+0.005 * ZIZXIZXZ\n", + "+0.036 * ZZXIIZZI\n", + "-0.036 * IIXZZZZI\n", + "-0.036 * IZXIZZIZ\n", + "+0.036 * ZIXZIZIZ\n", + "+0.036 * IXZIZIZZ\n", + "-0.036 * ZXIZIIZZ\n", + "+0.005 * ZXZIIZZX\n", + "-0.005 * IXIZZZZX\n", + "-0.005 * IXIIZZIX\n", + "+0.005 * ZXZZIZIX\n", + "+0.025 * ZXIIIZXI\n", + "-0.025 * IXZZZZXI\n", + "-0.025 * IXZIZZXZ\n", + "+0.025 * ZXIZIZXZ\n", + "+0.010 * XIZIIZZZ\n", + "-0.010 * XZIZZZZZ\n", + "-0.010 * XIIIIIII\n", + "+0.010 * XZZZZIII\n", + "+0.015 * XIIIIXII\n", + "-0.015 * XZZZZXII\n", + "+0.015 * YIZIZYZZ\n", + "-0.015 * YZIZIYZZ\n", + "+0.161 * ZIZIIIZZ\n", + "+0.002 * IIZIZZZX\n", + "-0.002 * ZIIIIZIX\n", + "+0.019 * IIIIZZXI\n", + "-0.019 * ZIZIIZXZ\n", + "-0.005 * IIZYYZZZ\n", + "-0.005 * IIZXXZZZ\n", + "+0.005 * IIIYYIII\n", + "+0.005 * IIIXXIII\n", + "+0.009 * IIIYYXII\n", + "+0.009 * IIIXXXII\n", + "-0.009 * ZIZYXYZZ\n", + "+0.009 * ZIZXYYZZ\n", + "+0.010 * IYIZYZZZ\n", + "+0.010 * IXIZXZZZ\n", + "-0.010 * IYZZYIII\n", + "-0.010 * IXZZXIII\n", + "-0.009 * IYZZYXII\n", + "-0.009 * IXZZXXII\n", + "+0.009 * ZYIZXYZZ\n", + "-0.009 * ZXIZYYZZ\n", + "+0.035 * XZIZXIZZ\n", + "+0.035 * YZIZYIZZ\n", + "+0.019 * YZIZYZZX\n", + "+0.019 * XZIZXZZX\n", + "+0.019 * XZZZXZIX\n", + "+0.019 * YZZZYZIX\n", + "-0.019 * YZZZYZXI\n", + "-0.019 * XZZZXZXI\n", + "-0.019 * XZIZXZXZ\n", + "-0.019 * YZIZYZXZ\n", + "+0.169 * ZIZZZIZZ\n", + "-0.026 * IIZZIZZX\n", + "+0.026 * ZIIZZZIX\n", + "+0.022 * IIIZIZXI\n", + "-0.022 * ZIZZZZXZ\n", + "+0.012 * IIYYIZZI\n", + "+0.012 * IIXXIZZI\n", + "-0.012 * ZIYYZZIZ\n", + "-0.012 * ZIXXZZIZ\n", + "-0.024 * ZYIYZIZZ\n", + "-0.024 * ZXIXZIZZ\n", + "+0.008 * IYIYIZZX\n", + "+0.008 * IXIXIZZX\n", + "-0.008 * ZYZYZZIX\n", + "-0.008 * ZXZXZZIX\n", + "-0.015 * IYZYIZXI\n", + "-0.015 * IXZXIZXI\n", + "+0.015 * ZYIYZZXZ\n", + "+0.015 * ZXIXZZXZ\n", + "+0.019 * YZIYIZZZ\n", + "+0.019 * XZIXIZZZ\n", + "-0.019 * YZZYIIII\n", + "-0.019 * XZZXIIII\n", + "+0.004 * YZZYIXII\n", + "+0.004 * XZZXIXII\n", + "-0.004 * XZIYZYZZ\n", + "+0.004 * YZIXZYZZ\n", + "-0.015 * IYYIIZZI\n", + "-0.015 * IXXIIZZI\n", + "+0.015 * ZYYIZZIZ\n", + "+0.015 * ZXXIZZIZ\n", + "+0.154 * ZZZIZIZZ\n", + "+0.015 * IZZIIZZX\n", + "-0.015 * ZZIIZZIX\n", + "+0.024 * IZIIIZXI\n", + "-0.024 * ZZZIZZXZ\n", + "-0.025 * YYZIIZZZ\n", + "-0.025 * XXZIIZZZ\n", + "+0.025 * YYIIIIII\n", + "+0.025 * XXIIIIII\n", + "+0.002 * YYIIIXII\n", + "+0.002 * XXIIIXII\n", + "-0.002 * XYZIZYZZ\n", + "+0.002 * YXZIZYZZ\n", + "+0.156 * IIZIZIZZ\n", + "-0.003 * ZIZIIZZX\n", + "+0.003 * IIIIZZIX\n", + "+0.017 * ZIIIIZXI\n", + "-0.017 * IIZIZZXZ\n", + "+0.138 * ZIIIZZIZ\n", + "-0.018 * ZIZIZZYY\n", + "-0.018 * ZIZIZZXX\n", + "+0.307 * ZIZIZZII\n", + "+0.125 * ZIIIZZZI\n", + "+0.229 * ZIIIZIII\n", + "+0.039 * ZIZIZXZI\n", + "-0.039 * IIZIIXZI\n", + "+0.008 * ZIIIZXXX\n", + "+0.008 * ZIIIZXYY\n", + "+0.001 * ZIIIZYXY\n", + "+0.001 * IIIIIYYX\n", + "-0.008 * IIIIIXXX\n", + "-0.008 * IIIIIXYY\n", + "+0.089 * ZIIIZXZZ\n", + "-0.089 * IIIIIXZZ\n", + "+0.026 * ZIZIZXIZ\n", + "-0.026 * IIZIIXIZ\n", + "+0.161 * IZZZIZII\n", + "+0.035 * IZIZIXZZ\n", + "-0.035 * ZZIZZXZZ\n", + "-0.005 * IZZZYZIY\n", + "+0.005 * ZIIIYZIY\n", + "-0.005 * ZZZZXIIX\n", + "+0.005 * IIIIXIIX\n", + "+0.010 * IZIZYZYZ\n", + "-0.010 * ZIZIYZYZ\n", + "+0.010 * ZZIZXIXZ\n", + "-0.010 * IIZIXIXZ\n", + "+0.002 * IZZXZZII\n", + "-0.002 * ZIIXIZII\n", + "-0.019 * IZIXZXZZ\n", + "+0.019 * ZIZXIXZZ\n", + "+0.019 * ZZIXIXZZ\n", + "-0.019 * IIZXZXZZ\n", + "+0.019 * IXIIZZII\n", + "-0.019 * ZXZZIZII\n", + "+0.019 * IXZIZXZZ\n", + "-0.019 * ZXIZIXZZ\n", + "-0.019 * ZXZIIXZZ\n", + "+0.019 * IXIZZXZZ\n", + "+0.009 * YIIIZZIY\n", + "-0.009 * YZZZIZIY\n", + "+0.009 * XIIIIIIX\n", + "-0.009 * XZZZZIIX\n", + "-0.009 * YIZIZZYZ\n", + "+0.009 * YZIZIZYZ\n", + "-0.009 * XIZIIIXZ\n", + "+0.009 * XZIZZIXZ\n", + "+0.313 * ZIIIIZII\n", + "-0.001 * ZIZIIXZZ\n", + "+0.001 * IIZIZXZZ\n", + "-0.012 * ZIIYXZIY\n", + "+0.012 * ZIIXYZIY\n", + "+0.012 * IIIYYIIX\n", + "+0.012 * IIIXXIIX\n", + "+0.007 * ZIZYXZYZ\n", + "-0.007 * ZIZXYZYZ\n", + "-0.007 * IIZYYIXZ\n", + "-0.007 * IIZXXIXZ\n", + "+0.007 * ZIXZXZIZ\n", + "+0.007 * ZIYZYZIZ\n", + "+0.007 * IIYZYIIZ\n", + "+0.007 * IIXZXIIZ\n", + "+0.007 * ZYZZXZIY\n", + "-0.007 * ZXZZYZIY\n", + "-0.007 * IYZZYIIX\n", + "-0.007 * IXZZXIIX\n", + "-0.018 * ZYIZXZYZ\n", + "+0.018 * ZXIZYZYZ\n", + "+0.018 * IYIZYIXZ\n", + "+0.018 * IXIZXIXZ\n", + "-0.001 * XZZZXZII\n", + "-0.001 * YZZZYZII\n", + "+0.076 * XZIZXXZZ\n", + "+0.076 * YZIZYXZZ\n", + "+0.150 * ZIIZZZII\n", + "+0.040 * ZIZZZXZZ\n", + "-0.040 * IIZZIXZZ\n", + "-0.011 * ZYZYZZII\n", + "-0.011 * ZXZXZZII\n", + "-0.020 * ZYIYZXZZ\n", + "-0.020 * ZXIXZXZZ\n", + "+0.020 * IYIYIXZZ\n", + "+0.020 * IXIXIXZZ\n", + "-0.001 * XZZYZZIY\n", + "+0.001 * YZZXZZIY\n", + "+0.001 * YZZYIIIX\n", + "+0.001 * XZZXIIIX\n", + "-0.011 * XZIYZZYZ\n", + "+0.011 * YZIXZZYZ\n", + "+0.011 * YZIYIIXZ\n", + "+0.011 * XZIXIIXZ\n", + "+0.006 * XZXIZZIZ\n", + "+0.006 * YZYIZZIZ\n", + "+0.006 * YZYIIIIZ\n", + "+0.006 * XZXIIIIZ\n", + "+0.143 * ZZIIZZII\n", + "+0.009 * ZZZIZXZZ\n", + "-0.009 * IZZIIXZZ\n", + "-0.012 * XYIIZZIY\n", + "+0.012 * YXIIZZIY\n", + "+0.012 * YYIIIIIX\n", + "+0.012 * XXIIIIIX\n", + "+0.016 * XYZIZZYZ\n", + "-0.016 * YXZIZZYZ\n", + "-0.016 * YYZIIIXZ\n", + "-0.016 * XXZIIIXZ\n", + "+0.305 * IIIIZZII\n", + "+0.351 * IIZIIIIZ\n", + "+0.120 * IIIIIIZZ\n", + "+0.135 * IIIIIZIZ\n", + "-0.059 * IIIIIIYY\n", + "-0.059 * IIIIIIXX\n", + "-0.025 * IIZIIZYY\n", + "-0.025 * IIZIIZXX\n", + "+0.169 * ZZZZZIIZ\n", + "-0.024 * ZZIZZIYY\n", + "-0.024 * ZZIZZIXX\n", + "+0.019 * ZZIZXYZY\n", + "-0.019 * IIZIXYZY\n", + "+0.019 * ZZIZXXZX\n", + "-0.019 * IIZIXXZX\n", + "-0.026 * ZZZXIIIZ\n", + "+0.026 * IIIXZIIZ\n", + "+0.008 * ZZIXIIYY\n", + "-0.008 * IIZXZIYY\n", + "+0.008 * ZZIXIIXX\n", + "-0.008 * IIZXZIXX\n", + "+0.012 * ZZYIIIIY\n", + "-0.012 * IIYZZIIY\n", + "+0.012 * ZZXIIIIX\n", + "-0.012 * IIXZZIIX\n", + "+0.022 * ZXIIIIIZ\n", + "-0.022 * IXZZZIIZ\n", + "-0.015 * ZXZIIIYY\n", + "+0.015 * IXIZZIYY\n", + "-0.015 * ZXZIIIXX\n", + "+0.015 * IXIZZIXX\n", + "+0.004 * XIZIIYZY\n", + "-0.004 * XZIZZYZY\n", + "+0.004 * XIZIIXZX\n", + "-0.004 * XZIZZXZX\n", + "+0.150 * IIIIZIIZ\n", + "-0.011 * IIZIZIYY\n", + "-0.011 * IIZIZIXX\n", + "+0.001 * IIZYYYZY\n", + "+0.001 * IIZXXYZY\n", + "+0.001 * IIZYYXZX\n", + "+0.001 * IIZXXXZX\n", + "+0.011 * IYIZYYZY\n", + "+0.011 * IXIZXYZY\n", + "+0.011 * IYIZYXZX\n", + "+0.011 * IXIZXXZX\n", + "-0.040 * YZZZYIIZ\n", + "-0.040 * XZZZXIIZ\n", + "+0.020 * YZIZYIYY\n", + "+0.020 * XZIZXIYY\n", + "+0.020 * YZIZYIXX\n", + "+0.020 * XZIZXIXX\n", + "+0.196 * IIIZIIIZ\n", + "-0.030 * IIZZIIYY\n", + "-0.030 * IIZZIIXX\n", + "-0.014 * IIXYIIIY\n", + "+0.014 * IIYXIIIY\n", + "+0.014 * IIYYIIIX\n", + "+0.014 * IIXXIIIX\n", + "-0.030 * IYZYIIIZ\n", + "-0.030 * IXZXIIIZ\n", + "+0.017 * IYIYIIYY\n", + "+0.017 * IXIXIIYY\n", + "+0.017 * IYIYIIXX\n", + "+0.017 * IXIXIIXX\n", + "+0.017 * YZIYIYZY\n", + "+0.017 * XZIXIYZY\n", + "+0.017 * YZIYIXZX\n", + "+0.017 * XZIXIXZX\n", + "+0.000 * IYXIIIIY\n", + "-0.000 * IXYIIIIY\n", + "-0.000 * IYYIIIIX\n", + "-0.000 * IXXIIIIX\n", + "+0.137 * IZIIIIIZ\n", + "-0.011 * IZZIIIYY\n", + "-0.011 * IZZIIIXX\n", + "-0.014 * YYZIIYZY\n", + "-0.014 * XXZIIYZY\n", + "-0.014 * YYZIIXZX\n", + "-0.014 * XXZIIXZX\n", + "+0.152 * ZIIIIIIZ\n", + "-0.010 * ZIZIIIYY\n", + "-0.010 * ZIZIIIXX\n", + "+0.285 * IIZIIIZI\n", + "+0.306 * IIZIIZII\n", + "+0.338 * ZZIZZIII\n", + "-0.023 * ZZIXIIII\n", + "+0.023 * IIZXZIII\n", + "-0.015 * ZZYIIIYI\n", + "+0.015 * IIYZZIYI\n", + "-0.015 * ZZXIIIXI\n", + "+0.015 * IIXZZIXI\n", + "+0.065 * ZXZIIIII\n", + "-0.065 * IXIZZIII\n", + "+0.307 * IIZIZIII\n", + "-0.006 * IIXZYYZI\n", + "+0.006 * IIYZXYZI\n", + "+0.006 * IIYZYXZI\n", + "+0.006 * IIXZXXZI\n", + "-0.089 * YZIZYIII\n", + "-0.089 * XZIZXIII\n", + "+0.351 * IIZZIIII\n", + "+0.000 * IIXYIIYI\n", + "-0.000 * IIYXIIYI\n", + "-0.000 * IIYYIIXI\n", + "-0.000 * IIXXIIXI\n", + "-0.059 * IYIYIIII\n", + "-0.059 * IXIXIIII\n", + "-0.010 * IYXIIIYI\n", + "+0.010 * IXYIIIYI\n", + "+0.010 * IYYIIIXI\n", + "+0.010 * IXXIIIXI\n", + "-0.006 * YZXIIYZI\n", + "+0.006 * XZYIIYZI\n", + "+0.006 * YZYIIXZI\n", + "+0.006 * XZXIIXZI\n", + "+0.285 * IZZIIIII\n", + "+0.306 * ZIZIIIII\n", + "+0.113 * IIIIIZZI\n", + "+0.154 * ZZZZZIZI\n", + "-0.025 * ZZZZXYYI\n", + "+0.025 * IIIIXYYI\n", + "-0.025 * ZZZZXXXI\n", + "+0.025 * IIIIXXXI\n", + "+0.015 * ZZZXIIZI\n", + "-0.015 * IIIXZIZI\n", + "+0.024 * ZXIIIIZI\n", + "-0.024 * IXZZZIZI\n", + "+0.002 * XIIIIYYI\n", + "-0.002 * XZZZZYYI\n", + "+0.002 * XIIIIXXI\n", + "-0.002 * XZZZZXXI\n", + "+0.143 * IIIIZIZI\n", + "+0.012 * IIIYYYYI\n", + "+0.012 * IIIXXYYI\n", + "+0.012 * IIIYYXXI\n", + "+0.012 * IIIXXXXI\n", + "-0.016 * IYZZYYYI\n", + "-0.016 * IXZZXYYI\n", + "-0.016 * IYZZYXXI\n", + "-0.016 * IXZZXXXI\n", + "-0.009 * YZZZYIZI\n", + "-0.009 * XZZZXIZI\n", + "+0.137 * IIIZIIZI\n", + "-0.011 * IYZYIIZI\n", + "-0.011 * IXZXIIZI\n", + "-0.014 * YZZYIYYI\n", + "-0.014 * XZZXIYYI\n", + "-0.014 * YZZYIXXI\n", + "-0.014 * XZZXIXXI\n", + "+0.149 * IZIIIIZI\n", + "+0.029 * YYIIIYYI\n", + "+0.029 * XXIIIYYI\n", + "+0.029 * YYIIIXXI\n", + "+0.029 * XXIIIXXI\n", + "+0.142 * ZIIIIIZI\n", + "+0.156 * ZZZZZZII\n", + "-0.003 * ZZZXIZII\n", + "+0.003 * IIIXZZII\n", + "+0.017 * ZXIIIZII\n", + "-0.017 * IXZZZZII\n", + "+0.152 * IIIZIZII\n", + "-0.010 * IYZYIZII\n", + "-0.010 * IXZXIZII\n", + "+0.142 * IZIIIZII\n", + "+0.125 * ZZZZIIII\n", + "+0.024 * XIIIXIII\n", + "+0.024 * YIIIYIII\n", + "+0.138 * ZZZIZIII\n", + "+0.019 * ZXIXZIII\n", + "+0.019 * ZYIYZIII\n", + "+0.128 * ZIZZZIII\n", + "+0.141 * IZZZZIII\n", + "-0.003 * ZZZXZIII\n", + "+0.003 * IIIXIIII\n", + "+0.029 * ZXIIZIII\n", + "-0.029 * IXZZIIII\n", + "-0.011 * XIIYYIII\n", + "-0.011 * XIIXXIII\n", + "-0.000 * YIIYXIII\n", + "-0.000 * YZZYXIII\n", + "-0.011 * XZZXXIII\n", + "-0.011 * XZZYYIII\n", + "+0.010 * XYZZYIII\n", + "+0.016 * XXZZXIII\n", + "+0.005 * YYZZXIII\n", + "+0.005 * YYIIXIII\n", + "+0.016 * XXIIXIII\n", + "+0.010 * XYIIYIII\n", + "+0.030 * ZXIZIIII\n", + "-0.030 * IXZIZIII\n", + "-0.001 * ZIZXIIII\n", + "+0.001 * IZIXZIII\n", + "+0.001 * IZZXIIII\n", + "-0.001 * ZIIXZIII\n", + "+0.020 * IXIIIIII\n", + "-0.020 * ZXZZZIII\n", + "+0.138 * IIIZZIII\n", + "-0.018 * IYZYZIII\n", + "-0.018 * IXZXZIII\n", + "+0.125 * IZIIZIII\n", + "-0.039 * YZZIYIII\n", + "-0.039 * XZZIXIII\n", + "-0.008 * YXIXYIII\n", + "-0.008 * YYIYYIII\n", + "+0.001 * XXIYYIII\n", + "+0.001 * YYIXXIII\n", + "-0.008 * XXIXXIII\n", + "-0.008 * XYIYXIII\n", + "-0.026 * YIZZYIII\n", + "-0.026 * XIZZXIII\n", + "+0.120 * IZIZIIII\n", + "+0.135 * ZIIZIIII\n", + "-0.025 * ZYZYIIII\n", + "-0.025 * ZXZXIIII\n", + "+0.113 * ZZIIIIII\n" + ] + } + ], "source": [ "chemistry_problem = MoleculeProblem(\n", " molecule=molecule,\n", @@ -344,7 +875,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 19, "id": "90b20061-8dbd-4136-adba-28ddacb1f583", "metadata": { "id": "90b20061-8dbd-4136-adba-28ddacb1f583", @@ -361,8 +892,18 @@ "\n", "hwea_params = HEAParameters(\n", " num_qubits=12,\n", - " connectivity_map=[(0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 8),\n", - " (8, 9), (9, 10)],\n", + " connectivity_map=[\n", + " (0, 1),\n", + " (1, 2),\n", + " (2, 3),\n", + " (3, 4),\n", + " (4, 5),\n", + " (5, 6),\n", + " (6, 7),\n", + " (7, 8),\n", + " (8, 9),\n", + " (9, 10),\n", + " ],\n", " reps=3,\n", " one_qubit_gates=[\"x\", \"ry\"],\n", " two_qubit_gates=[\"cx\"],\n", @@ -393,7 +934,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 20, "id": "f13599d2-e8e7-4165-aa26-8ae8d4bdafaa", "metadata": { "id": "f13599d2-e8e7-4165-aa26-8ae8d4bdafaa", @@ -401,14 +942,15 @@ }, "outputs": [], "source": [ - "from classiq import write_qmod\n", + "# optional:\n", "\n", - "write_qmod(qmod, name=\"molecule_eigensolver\")" + "# from classiq import write_qmod\n", + "# write_qmod(qmod, name=\"molecule_eigensolver\")" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 21, "id": "22cd12d1-2c87-400a-a983-b2f24e40fa45", "metadata": { "colab": { @@ -422,7 +964,7 @@ "outputs": [], "source": [ "qprog = synthesize(qmod)\n", - "show(qprog)" + "# show(qprog) # optional" ] }, { @@ -448,7 +990,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 22, "id": "1f520673", "metadata": { "colab": { @@ -459,7 +1001,15 @@ "outputId": "fd4a3467-c48b-483c-b156-0a0cde9e2189", "tags": [] }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "circuit depth: 1048\n" + ] + } + ], "source": [ "chemistry_problem = MoleculeProblem(\n", " molecule=molecule,\n", @@ -491,7 +1041,7 @@ ")\n", "\n", "qprog = synthesize(serialized_chemistry_model)\n", - "show(qprog)\n", + "# show(qprog) # optional\n", "\n", "circuit = QuantumProgram.from_qprog(qprog)\n", "print(f\"circuit depth: {circuit.transpiled_circuit.depth}\")" @@ -516,12 +1066,14 @@ "source": [ "## 3. Execute to Find Ground State\n", "\n", - "Once we've synthesized the model we can execute it." + "Once we've synthesized the model we can execute it. \n", + "\n", + "**Uncomment the remaining code lines to run the final part. It will take a few minutes.**" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 23, "id": "1a66d377", "metadata": { "colab": { @@ -534,8 +1086,8 @@ }, "outputs": [], "source": [ - "result = execute(qprog).result()\n", - "chemistry_result_dict = result[1].value" + "# result = execute(qprog).result()\n", + "# chemistry_result_dict = result[1].value" ] }, { @@ -560,7 +1112,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 24, "id": "437b3211", "metadata": { "colab": { @@ -573,12 +1125,12 @@ }, "outputs": [], "source": [ - "chemistry_result_dict[\"total_energy\"]" + "# chemistry_result_dict[\"total_energy\"]" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 25, "id": "9a537d3c", "metadata": { "colab": { @@ -590,7 +1142,7 @@ }, "outputs": [], "source": [ - "chemistry_result_dict[\"vqe_result\"][\"optimal_parameters\"]" + "# chemistry_result_dict[\"vqe_result\"][\"optimal_parameters\"]" ] }, { @@ -605,7 +1157,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 26, "id": "5c896576", "metadata": { "colab": { @@ -618,10 +1170,10 @@ }, "outputs": [], "source": [ - "mat = operator.to_matrix()\n", - "w, v = np.linalg.eig(mat)\n", - "print(\"exact result:\", np.real(min(w)))\n", - "print(\"vqe result:\", chemistry_result_dict[\"energy\"])" + "# mat = operator.to_matrix()\n", + "# w, v = np.linalg.eig(mat)\n", + "# print(\"exact result:\", np.real(min(w)))\n", + "# print(\"vqe result:\", chemistry_result_dict[\"energy\"])" ] }, { @@ -668,14 +1220,11 @@ "id": "bxRq_3-Jb4_0" }, "source": [ - "##**co2**\n", + "## **co2**\n", "\n", "hw-eff: width 24/depth 175\n", "\n", - "ucc: width 20/depth 19767, width 24/depth 16968\n", - "\n", - "Error number 90001 occurred. The resources needed to execute this request are insufficient.\n", - " This may be due to computational limitations, or high load on Classiq's servers." + "ucc: width 20/depth 19767, width 24/depth 16968" ] }, { @@ -697,7 +1246,7 @@ "provenance": [] }, "kernelspec": { - "display_name": "Python 3 [Default]", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, diff --git a/community/QClass_2024/Submissions/HW4/index.md b/community/QClass_2024/Submissions/HW4/index.md deleted file mode 100644 index d42278e1..00000000 --- a/community/QClass_2024/Submissions/HW4/index.md +++ /dev/null @@ -1,27 +0,0 @@ -:rocket: Final Assignment Alert! :rocket: - -Hey everyone! :tada: Get ready to apply your skills and creativity in our final assignment. Here are the main highlights: - -:sparkles: Goal: -- Be creative and collaborate with each other and the community. -- Apply your knowledge to bridge the gap between theory and application! - -:hammer_and_wrench: Project Options: -- Read in the thread! -- Feel free to suggest different projects. - -:gift: Rewards: -- Earn SWAG credits. -- Potentially more advanced certificates! (depending on the project results) -- Mentoring from a Classiq member for selected projects during the process, to enhance your learning! - -:date: Important Dates: -- Release: 29.5.2024 -- Submission Deadline: 10.6.2024 (7 A.M GMT+3) (might be flexible for this project solid deadline for HW1-3) - -:busts_in_silhouette: Teamwork: -- Work in teams of up to 3 members! - -For more details, check out the full assignment document. Reach out if you have any questions. - -Happy coding and good luck! :computer::star2: \ No newline at end of file diff --git a/community/basic_examples/entanglement/bell_state_of_2_qubits.qmod b/community/basic_examples/entanglement/bell_state_of_2_qubits.qmod index a3128a11..35df42c7 100644 --- a/community/basic_examples/entanglement/bell_state_of_2_qubits.qmod +++ b/community/basic_examples/entanglement/bell_state_of_2_qubits.qmod @@ -7,4 +7,3 @@ qfunc main(output registers: qbit[]) { allocate<2>(registers); my_bell_state(registers); } - diff --git a/community/basic_examples/entanglement/bell_state_of_2_qubits.synthesis_options.json b/community/basic_examples/entanglement/bell_state_of_2_qubits.synthesis_options.json index 9e26dfee..0967ef42 100644 --- a/community/basic_examples/entanglement/bell_state_of_2_qubits.synthesis_options.json +++ b/community/basic_examples/entanglement/bell_state_of_2_qubits.synthesis_options.json @@ -1 +1 @@ -{} \ No newline at end of file +{} diff --git a/community/basic_examples/entanglement/entanglement.ipynb b/community/basic_examples/entanglement/entanglement.ipynb index 47eb807b..332da381 100644 --- a/community/basic_examples/entanglement/entanglement.ipynb +++ b/community/basic_examples/entanglement/entanglement.ipynb @@ -31,11 +31,13 @@ " H(reg[0])\n", " CX(reg[0], reg[1])\n", "\n", + "\n", "@qfunc\n", "def main(registers: Output[QArray[QBit]]) -> None:\n", " allocate(2, registers)\n", " my_bell_state(registers)\n", "\n", + "\n", "model = create_model(main)\n", "write_qmod(model, \"bell_state_of_2_qubits\")\n", "\n", @@ -77,8 +79,8 @@ "If we measure both the qubits we will either get the state $|00\\rangle$ or the state $|11\\rangle$ with equal probability.\n", "\n", "It is described as:\n", - "- When Alice oberseve her state as $|0\\rangle$ then the state of Bob's qubit collapses to the state $|0\\rangle$\n", - "- When Alice oberseve her state as $|1\\rangle$ then the state of Bob's qubit collapses to the state $|1\\rangle$ \n", + "- When Alice observes her state as $|0\\rangle$ then the state of Bob's qubit collapses to the state $|0\\rangle$\n", + "- When Alice observes her state as $|1\\rangle$ then the state of Bob's qubit collapses to the state $|1\\rangle$ \n", "\n", "The resultant entangled state is designated as a bell pair state $|\\Phi^{+}\\rangle$\n", "$$|\\Phi^{+}\\rangle = \\frac{1}{\\sqrt{2}} \\left( |00\\rangle + |11\\rangle \\right)$$\n", diff --git a/community/basic_examples/hw_aware_synthesis/hardware_aware_mcx_grid.qmod b/community/basic_examples/hw_aware_synthesis/hardware_aware_mcx_grid.qmod index afa2dbc1..7b0f0cb4 100644 --- a/community/basic_examples/hw_aware_synthesis/hardware_aware_mcx_grid.qmod +++ b/community/basic_examples/hw_aware_synthesis/hardware_aware_mcx_grid.qmod @@ -9,4 +9,3 @@ qfunc main(output ctrl: qbit[], output target: qbit) { allocate<1>(target); my_mcx(ctrl, target); } - diff --git a/community/basic_examples/hw_aware_synthesis/hardware_aware_mcx_grid.synthesis_options.json b/community/basic_examples/hw_aware_synthesis/hardware_aware_mcx_grid.synthesis_options.json index eccba304..9b5bf99c 100644 --- a/community/basic_examples/hw_aware_synthesis/hardware_aware_mcx_grid.synthesis_options.json +++ b/community/basic_examples/hw_aware_synthesis/hardware_aware_mcx_grid.synthesis_options.json @@ -5,229 +5,64 @@ }, "preferences": { "custom_hardware_settings": { - "basis_gates": [ - "cx", - "u" - ], + "basis_gates": ["cx", "u"], "connectivity_map": [ - [ - 0, - 1 - ], - [ - 1, - 2 - ], - [ - 2, - 3 - ], - [ - 3, - 4 - ], - [ - 4, - 5 - ], - [ - 6, - 7 - ], - [ - 7, - 8 - ], - [ - 8, - 9 - ], - [ - 9, - 10 - ], - [ - 10, - 11 - ], - [ - 12, - 13 - ], - [ - 13, - 14 - ], - [ - 14, - 15 - ], - [ - 15, - 16 - ], - [ - 16, - 17 - ], - [ - 0, - 6 - ], - [ - 6, - 12 - ], - [ - 1, - 7 - ], - [ - 7, - 13 - ], - [ - 2, - 8 - ], - [ - 8, - 14 - ], - [ - 3, - 9 - ], - [ - 9, - 15 - ], - [ - 4, - 10 - ], - [ - 10, - 16 - ], - [ - 5, - 11 - ], - [ - 11, - 17 - ], - [ - 1, - 0 - ], - [ - 2, - 1 - ], - [ - 3, - 2 - ], - [ - 4, - 3 - ], - [ - 5, - 4 - ], - [ - 7, - 6 - ], - [ - 8, - 7 - ], - [ - 9, - 8 - ], - [ - 10, - 9 - ], - [ - 11, - 10 - ], - [ - 13, - 12 - ], - [ - 14, - 13 - ], - [ - 15, - 14 - ], - [ - 16, - 15 - ], - [ - 17, - 16 - ], - [ - 6, - 0 - ], - [ - 12, - 6 - ], - [ - 7, - 1 - ], - [ - 13, - 7 - ], - [ - 8, - 2 - ], - [ - 14, - 8 - ], - [ - 9, - 3 - ], - [ - 15, - 9 - ], - [ - 10, - 4 - ], - [ - 16, - 10 - ], - [ - 11, - 5 - ], - [ - 17, - 11 - ] + [0, 1], + [1, 2], + [2, 3], + [3, 4], + [4, 5], + [6, 7], + [7, 8], + [8, 9], + [9, 10], + [10, 11], + [12, 13], + [13, 14], + [14, 15], + [15, 16], + [16, 17], + [0, 6], + [6, 12], + [1, 7], + [7, 13], + [2, 8], + [8, 14], + [3, 9], + [9, 15], + [4, 10], + [10, 16], + [5, 11], + [11, 17], + [1, 0], + [2, 1], + [3, 2], + [4, 3], + [5, 4], + [7, 6], + [8, 7], + [9, 8], + [10, 9], + [11, 10], + [13, 12], + [14, 13], + [15, 14], + [16, 15], + [17, 16], + [6, 0], + [12, 6], + [7, 1], + [13, 7], + [8, 2], + [14, 8], + [9, 3], + [15, 9], + [10, 4], + [16, 10], + [11, 5], + [17, 11] ] }, "random_seed": -1 } -} \ No newline at end of file +} diff --git a/community/basic_examples/hw_aware_synthesis/hardware_aware_mcx_star.qmod b/community/basic_examples/hw_aware_synthesis/hardware_aware_mcx_star.qmod index afa2dbc1..7b0f0cb4 100644 --- a/community/basic_examples/hw_aware_synthesis/hardware_aware_mcx_star.qmod +++ b/community/basic_examples/hw_aware_synthesis/hardware_aware_mcx_star.qmod @@ -9,4 +9,3 @@ qfunc main(output ctrl: qbit[], output target: qbit) { allocate<1>(target); my_mcx(ctrl, target); } - diff --git a/community/basic_examples/hw_aware_synthesis/hardware_aware_mcx_star.synthesis_options.json b/community/basic_examples/hw_aware_synthesis/hardware_aware_mcx_star.synthesis_options.json index 54a8c00f..15bbf496 100644 --- a/community/basic_examples/hw_aware_synthesis/hardware_aware_mcx_star.synthesis_options.json +++ b/community/basic_examples/hw_aware_synthesis/hardware_aware_mcx_star.synthesis_options.json @@ -5,141 +5,42 @@ }, "preferences": { "custom_hardware_settings": { - "basis_gates": [ - "cx", - "u" - ], + "basis_gates": ["cx", "u"], "connectivity_map": [ - [ - 0, - 1 - ], - [ - 0, - 2 - ], - [ - 0, - 3 - ], - [ - 0, - 4 - ], - [ - 0, - 5 - ], - [ - 0, - 6 - ], - [ - 0, - 7 - ], - [ - 0, - 8 - ], - [ - 0, - 9 - ], - [ - 0, - 10 - ], - [ - 0, - 11 - ], - [ - 0, - 12 - ], - [ - 0, - 13 - ], - [ - 0, - 14 - ], - [ - 0, - 15 - ], - [ - 0, - 16 - ], - [ - 1, - 0 - ], - [ - 2, - 0 - ], - [ - 3, - 0 - ], - [ - 4, - 0 - ], - [ - 5, - 0 - ], - [ - 6, - 0 - ], - [ - 7, - 0 - ], - [ - 8, - 0 - ], - [ - 9, - 0 - ], - [ - 10, - 0 - ], - [ - 11, - 0 - ], - [ - 12, - 0 - ], - [ - 13, - 0 - ], - [ - 14, - 0 - ], - [ - 15, - 0 - ], - [ - 16, - 0 - ] + [0, 1], + [0, 2], + [0, 3], + [0, 4], + [0, 5], + [0, 6], + [0, 7], + [0, 8], + [0, 9], + [0, 10], + [0, 11], + [0, 12], + [0, 13], + [0, 14], + [0, 15], + [0, 16], + [1, 0], + [2, 0], + [3, 0], + [4, 0], + [5, 0], + [6, 0], + [7, 0], + [8, 0], + [9, 0], + [10, 0], + [11, 0], + [12, 0], + [13, 0], + [14, 0], + [15, 0], + [16, 0] ] }, "random_seed": -1 } -} \ No newline at end of file +} diff --git a/community/basic_examples/hw_aware_synthesis/hw_aware_synthesis.ipynb b/community/basic_examples/hw_aware_synthesis/hw_aware_synthesis.ipynb index 7618195a..8e2cac18 100644 --- a/community/basic_examples/hw_aware_synthesis/hw_aware_synthesis.ipynb +++ b/community/basic_examples/hw_aware_synthesis/hw_aware_synthesis.ipynb @@ -1,645 +1,691 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "id": "S5a8KVmhRyCm" - }, - "source": [ - "# HW-aware Synthesis of MCX\n", - "\n", - "This tutorial consists of two parts,\n", - "1. How to create a 10-CONTROL MCX gate with Classiq\n", - "2. Classiq's Hardware-Aware Synthesis capability\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "AE1ksqSMC_MY" - }, - "source": [ - "## 1. How to create a 10-CONTROL MCX gate with Classiq" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "CiCAjWxbC_Ma" - }, - "source": [ - "To create an MCX gate with 10 control qubits using Classiq, we will first define a quantum function called `my_mcx`, whose arguments are an array of qubits (of any size) to be used as control, and a single qubit argument to be used as the target." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "id": "N55CY8rJo6nu" - }, - "outputs": [], - "source": [ - "#importing all the necessary libraries from classiq\n", - "\n", - "from math import pi\n", - "from classiq import *" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "id": "8jxKs0RkpLqf" - }, - "outputs": [], - "source": [ - "# define MCX quantum function\n", - "@qfunc\n", - "def my_mcx(ctrl: QArray[QBit], target: QBit) -> None:\n", - " control(ctrl, lambda: X(target))" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "DxI88JO1C_Mh" - }, - "source": [ - "Then, to create an MCX gate with 10 control qubits we will create a quantum main function that will simply execute our `my_mcx` function with 10 qubits allocated to the control argument." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "id": "NIxnhfOgpSSI" - }, - "outputs": [], - "source": [ - "# define the MCX parameters within the quantum 'main' function\n", - "@qfunc\n", - "def main(ctrl: Output[QArray[QBit]], target: Output[QBit]) -> None:\n", - " allocate(10, ctrl)\n", - " allocate(1, target)\n", - " my_mcx(ctrl, target)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "Iu8uortFC_Mi" - }, - "source": [ - "To build our model we will use the `create_model` function:" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "id": "iHVgE7SCpZBL" - }, - "outputs": [], - "source": [ - "# build a model\n", - "model = create_model(main)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "CTi8GIBrC_Mk" - }, - "source": [ - "To constrain a circuit to only 20 qubits and optimize for circuit depth, we pass the max width and optimization parameter to a `Constraints` object and update our model" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "id": "zbzL6MksC_Ml" - }, - "outputs": [], - "source": [ - "from classiq import write_qmod\n", - "\n", - "constraints = Constraints(\n", - " max_width=20, optimization_parameter=OptimizationParameter.DEPTH\n", - ")\n", - "model = set_constraints(model, constraints)\n", - "\n", - "write_qmod(model, \"mcx_10_ctrl_depth\")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "bpBmDJcBC_Mm" - }, - "source": [ - "We can now synthesize our model, create a quantum program and view it:" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "OebNdwj-C_Mn", - "outputId": "d6b32f26-36b9-42a8-f8d0-629dbcd5598d" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Opening: https://platform.classiq.io/circuit/c51e64f0-fc0a-43a8-b484-2ddf7366c956?version=0.42.0\n" - ] - } - ], - "source": [ - "qprog = synthesize(model)\n", - "show(qprog)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "HDdeZAmNC_Mo" - }, - "source": [ - "Additionally, To get the transpiled circuit from our qprog object and print its depth:" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "4Ykj96NcC_Mp", - "outputId": "759f30d6-34e5-4e17-9e68-ec112c1ef074" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Synthesized MCX depth is 52\n" - ] - } - ], - "source": [ - "circuit = QuantumProgram.from_qprog(qprog)\n", - "print(f\"Synthesized MCX depth is {circuit.transpiled_circuit.depth}\")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "rF_sE_vHC_Mq" - }, - "source": [ - "# 2. Classiq's Hardware-Aware Synthesis capability" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "74aCfp3IC_Mq" - }, - "source": [ - "In the above section we have seen how to create a MCX circuit, add constraints to it and optimize its depth in Classiq. In this section we will check the hardware-aware synthesis capability of Classiq. In this example we will implement and synthesize a simple MCX (Multiple Control-X) circuit with two different HW-aware configuration settings using Classiq's synthesis engine.\n", - "\n", - "The two different fictitious hardware created here demonstrates how to insert your own custom-designed machine. For comparison, we create two types of hardware with `cx, u` basis gates. The difference between them manifests in the connectivity map: one has grid connectivity while the other has star connectivity.\n", - "\n", - "The two fictitious hardware created are using two different simulators: Classiq's Simulator and IonQ's Simulator. We will compare the depth of the circuit and we will optimise the number of cnot gates as it is important in quantum computation because they cause more errors and are very expensive.\n" - ] - }, - { - "cell_type": "code", - "source": [ - "# define MCX quantum function\n", - "@qfunc\n", - "def my_mcx(ctrl: QArray[QBit], target: QBit) -> None:\n", - " control(ctrl, lambda: X(target))" - ], - "metadata": { - "id": "kDz3GbcKEwwB" - }, - "execution_count": 10, - "outputs": [] - }, - { - "cell_type": "code", - "source": [ - "# define the MCX parameters within the quantum 'main' function\n", - "@qfunc\n", - "def main(ctrl: Output[QArray[QBit]], target: Output[QBit]) -> None:\n", - " allocate(12, ctrl)\n", - " allocate(1, target)\n", - " my_mcx(ctrl, target)" - ], - "metadata": { - "id": "yOzokSMZEw78" - }, - "execution_count": 11, - "outputs": [] - }, - { - "cell_type": "code", - "source": [ - "# build a model\n", - "model = create_model(main)" - ], - "metadata": { - "id": "5bGo7UFBEw_V" - }, - "execution_count": 12, - "outputs": [] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "id": "NlxS3xSTC_Mr" - }, - "outputs": [], - "source": [ - "# define the hardware parameters\n", - "max_width = 18\n", - "\n", - "#Grid Connectivity\n", - "grid_connectivity = [\n", - " [0, 1], [1, 2], [2, 3], [3, 4], [4, 5], # Row 1\n", - " [6, 7], [7, 8], [8, 9], [9, 10], [10, 11], # Row 2\n", - " [12, 13], [13, 14], [14, 15], [15, 16], [16, 17], # Row 3\n", - " [0, 6], [6, 12], # Column 1\n", - " [1, 7], [7, 13], # Column 2\n", - " [2, 8], [8, 14], # Column 3\n", - " [3, 9], [9, 15], # Column 4\n", - " [4, 10], [10, 16], # Column 5\n", - " [5, 11], [11, 17] # Column 6\n", - "]\n", - "\n", - "#Star Connectivity\n", - "star_connectivity = [[0, i] for i in range(1, max_width-1)]" - ] - }, - { - "cell_type": "code", - "source": [ - "#Plotting Grid Connectivity\n", - "import matplotlib.pyplot as plt\n", - "import networkx as nx\n", - "\n", - "G = nx.Graph()\n", - "G.add_edges_from(grid_connectivity)\n", - "\n", - "# Define the positions of the nodes in a 3x6 grid\n", - "pos = {}\n", - "for i in range(3):\n", - " for j in range(6):\n", - " pos[i * 6 + j] = (j, -i) # (x, y) coordinates\n", - "\n", - "# Plot the graph\n", - "plt.figure(figsize=(10, 6))\n", - "nx.draw(G, pos, with_labels=True, node_size=500, node_color=\"skyblue\", font_size=16, font_color=\"black\", edge_color=\"gray\")\n", - "plt.title(\"3x6 Grid Connectivity Map\")\n", - "plt.show()" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 659 - }, - "id": "qVDIz-txBcRS", - "outputId": "62566d81-b841-4eb0-e4fa-046f1a6151bd" - }, - "execution_count": 14, - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": [ - "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/sAAAKCCAYAAACOIsmHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABTaklEQVR4nO3deZiVdcE//vcw7MMqoIAgkhvuuGSWmqaoueWaW2oupWW2mG3fenKpp+wpzbZfPdmTmq2uaS4tam6Fu4gr7qCyCQjINsDMnN8fyATOAGeYgx5uXq/r6krO/bnvz83hfc7M+5x7qSmVSqUAAAAAhdHh3d4BAAAAoLKUfQAAACgYZR8AAAAKRtkHAACAglH2AQAAoGCUfQAAACgYZR8AAAAKRtkHAACAglH2AQAAoGCUfQBYgSuuuCI1NTUZP378KsduvPHGOfnkk9f4PhXN+eefn5qamtVat6amJueff35ldwgACkLZB2C1PfXUU/noRz+a97znPenevXv69++fD37wg7npppvatd1Fixblu9/9bkaMGJGuXbtmgw02yEEHHZTXXnutrPXffPPNfOc738nOO++c3r17p0uXLhk2bFiOOeaY3HLLLe3at0qor6/PJZdckve9733p3bt3unbtms033zxnnXVWnnvuuXd79ypu/vz5Of/883PXXXet0XlGjx6d888/P7Nmzarodvfaa6/U1NRks802a3X5bbfdlpqamtTU1OTaa6+t6NwAsLo6vts7AMDaa8KECZkzZ04+/vGPZ/DgwZk/f36uu+66fOQjH8kvf/nLnH766W3e5uLFi3PQQQdl9OjR+eQnP5ntttsuM2fOzAMPPJDZs2dnyJAhK13/hRdeyP77758JEybk8MMPz0knnZQePXrk1Vdfza233pqDDz44V155ZU488cRV7suJJ56YY489Nl26dGnz32NFpk+fng9/+MN55JFHcvDBB+f4449Pjx498uyzz+ZPf/pTLr300ixatKhi81WD+fPn54ILLkiypDgv67/+67/yta99bbW2u2DBgnTs+J9fZUaPHp0LLrggJ598cvr06bO6u9uqrl275oUXXsiDDz6YXXbZZbllv//979O1a9fU19dXdE4AaA9lH4DVduCBB+bAAw9c7rGzzjorO+20U374wx+uVtm/5JJLcvfdd+df//pXi1K1Kg0NDTn88MMzderU3H333dltt92WW37eeeflH//4RxobG1e6nXnz5qWuri61tbWpra1t899hZU4++eSMGTMm1157bY488sjlln3729/ON77xjYrOV+06duy4XGFvi65du1Z4b1Zsk002SUNDQ/74xz8ul8v6+vr8+c9/zkEHHZTrrrvuHdsfAFgVh/EDUFG1tbUZOnTocodS//Of/0yHDh1y7rnnLjf2D3/4Q2pqavKLX/wiSdLU1JQf//jHOfzww7PLLrukoaEh8+fPL3vua665Jk8++WS++c1vtij6S+2333454IADmv+89Lz8u+++O2eeeWbWX3/95qMHWjtnv1Qq5b//+78zZMiQdO/ePR/60Ify1FNPlbV/DzzwQG655ZacdtppLYp+knTp0iUXXXTRco/985//zB577JG6urr06dMnhx56aJ555pnlxiw97/2FF15o/la7d+/eOeWUU1o8fzU1NTnrrLNyww03ZJtttkmXLl2y9dZb529/+1uL/Zk4cWJOPfXUbLDBBs3jLrvsshbj6uvrc/7552fzzTdP165dM2jQoBxxxBF58cUXM378+AwYMCBJcsEFFzQf7r70XPu3n7O/zTbb5EMf+lCLOZqamrLhhhvmqKOOWu7vsux2vvzlLydJhg8f3jzP+PHjs+eee2b77bdvsc0k2WKLLbL//vu3uuztjjvuuFx11VVpampqfuymm27K/Pnzc/TRR7cYP2HChJx55pnZYost0q1bt/Tr1y8f/ehHW1wDYmnO7rnnnpxxxhnp169fevXqlZNOOikzZ84sa98A4O2UfQDabd68eZk+fXpefPHFXHLJJfnrX/+affbZp3n53nvvnTPPPDMXXnhhHn300STJ5MmT89nPfjajRo3Kpz71qSTJ008/nUmTJmW77bbL6aefnrq6utTV1WW77bbLnXfeucr9WHqtgBNOOKHNf4czzzwzTz/9dM4999yVHlZ+7rnn5pvf/Ga23377/OAHP8h73vOe7Lfffpk3b94q5/jLX/6SJGWdQpAkt99+e/bff/+8/vrrOf/88/PFL34xo0ePzm677dbqRQOPPvrozJkzJxdeeGGOPvroXHHFFc2Hzy/rX//6V84888wce+yx+f73v5/6+voceeSRmTFjRvOYqVOnZtddd83tt9+es846Kz/+8Y+z6aab5rTTTsuPfvSj5nGNjY05+OCDc8EFF2SnnXbKxRdfnM9//vOZPXt2nnzyyQwYMKD5w5zDDz88v/3tb/Pb3/42RxxxRKt/52OOOSb33HNPpkyZ0mKfJ02alGOPPbbV9Y444ogcd9xxSZYcHbJ0ngEDBuTEE0/M448/nieffHK5dR566KE899xzZefl+OOPz+TJk5e79sAf/vCH7LPPPll//fVbjH/ooYcyevToHHvssfnJT36ST33qU7njjjuy1157tfoh1llnnZVnnnkm559/fk466aT8/ve/z2GHHZZSqVTW/gHAckoA0E5nnHFGKUkpSalDhw6lo446qvTGG28sN2bevHmlTTfdtLT11luX6uvrSwcddFCpV69epQkTJjSPuf7660tJSv369Sttttlmpcsvv7x0+eWXlzbbbLNS586dS2PHjl3pfuywww6lPn36tHh87ty5pWnTpjX/b/bs2c3LLr/88lKS0u67715qaGhYbr2ly15++eVSqVQqvf7666XOnTuXDjrooFJTU1PzuK9//eulJKWPf/zjK92/ww8/vJSkNHPmzJWOW2rkyJGl9ddfvzRjxozmx8aOHVvq0KFD6aSTTmp+7LzzzislKZ166qkt5uvXr99yjyUpde7cufTCCy8st80kpZ/+9KfNj5122mmlQYMGlaZPn77c+scee2ypd+/epfnz55dKpVLpsssuKyUp/fCHP2yx/0ufo2nTppWSlM4777wWY5bu+1LPPvtsi30plUqlM888s9SjR4/meZf+XZbd5g9+8IPl/r2WmjVrVqlr166lr371q8s9/rnPfa5UV1dXmjt3bov9Wtaee+5Z2nrrrUulUqm08847l0477bRSqVQqzZw5s9S5c+fSb37zm9Kdd95ZSlK65pprmtdbdl+Xuu+++0pJSldeeWXzY0tzttNOO5UWLVrU/Pj3v//9UpLSjTfeuNL9A4DW+GYfgHb7whe+kNtuuy2/+c1vcsABB6SxsbHFRea6d++eK664Is8880w++MEP5pZbbskll1ySjTbaqHnM3LlzkyRz5szJHXfckZNPPjknn3xybr/99pRKpXz/+99f6X68+eab6dGjR4vHv/GNb2TAgAHN/zv++ONbjPnkJz+5yvPzb7/99ixatCif/exnlzv0/Atf+MJK11t2/5KkZ8+eqxw7efLkPPbYYzn55JOz3nrrNT++3XbbZd99982tt97aYp2lR0gstccee2TGjBnN8y41atSobLLJJstts1evXnnppZeSLDlV4brrrsshhxySUqmU6dOnN/9v//33z+zZs5uP0LjuuuvSv3//fPazn22xP6tzS73NN988I0eOzFVXXdX8WGNjY6699toccsgh6datW5u32bt37xx66KH54x//2PwteWNjY6666qocdthhqaurK3tbxx9/fK6//vosWrQo1157bWpra3P44Ye3OnbZfV28eHFmzJiRTTfdNH369Gl+/pZ1+umnp1OnTs1//vSnP52OHTu2+m8NAKui7APQbiNGjMioUaNy0kkn5eabb87cuXObi+Kydtttt3z605/Ogw8+mP333z+nnnrqcsuXlqPddtstQ4cObX58o402yu67757Ro0evdD969uzZ/IHBss4888zcdtttue2227LBBhu0uu7w4cNX+fecMGFCkrS4BduAAQPSt2/fVa7fq1evJEs+zCh3ri222KLFsi233DLTp09vcerAsh+cJGnep7ef9/32cUvHLh03bdq0zJo1K5deeulyH5IMGDAgp5xySpLk9ddfT5K8+OKL2WKLLVb7InutOeaYY/Lvf/87EydOTJLcddddef3113PMMces9jZPOumkvPLKK7n33nuTLPngZurUqWWfUrHUsccem9mzZ+evf/1rfv/73+fggw9e4Yc3CxYsyLnnnpuhQ4emS5cu6d+/fwYMGJBZs2Zl9uzZLca/PVc9evTIoEGDWj1lAwBWRdkHoOKOOuqo5vOhl7Vw4cLm851ffPHFFuctDx48OElaLeTrr7/+Ki9WNmLEiMyaNau5JC61+eabZ9SoURk1atQKr+C+Ot8Yt9WIESOSJE888cQa2f6Kjkx4+4cuqxq39AJ0J5xwQvOHJG//34ougFgJxxxzTEqlUq655pokydVXX53evXvnwx/+8Gpvc//9988GG2yQ3/3ud0mS3/3udxk4cGBGjRrVpu0MGjQoe+21Vy6++OLcc889rR4lstRnP/vZfOc738nRRx+dq6++Ov/4xz9y2223pV+/fstd5A8A1gRlH4CKW7BgQZK0+PbyvPPOyzPPPJOLLrooL7/8cosL4W277bbp1KlTi7KeJJMmTWq+qvuKHHzwwUmW3Pd8TRg2bFiS5Pnnn1/u8WnTppV11fRDDjkkSZoLZzlzPfvssy2WjRs3Lv3792/T4edtMWDAgPTs2TONjY3NH5K8/X9LL0i3ySab5Nlnn83ixYtXuL22Hs4/fPjw7LLLLrnqqqvS0NCQ66+/Pocddli6dOmy0vVWNk9tbW2OP/74XHvttZk5c2ZuuOGGHHfccat1a8Xjjz8+9957b3r16tXi1pPLuvbaa/Pxj388F198cY466qjsu+++2X333Ze7U8Wy3p6ruXPnZvLkydl4443bvI8AoOwDsNqWHsq9rMWLF+fKK69Mt27dstVWWzU//sADD+Siiy7KF77whZxzzjn58pe/nJ/97Ge5++67m8f07NkzBx54YEaPHp1x48Y1P/7MM89k9OjR2XfffVe6P0cffXS22mqrfPvb387999/f6pi3f8vdFqNGjUqnTp3y05/+dLntLHt1+pV5//vfnw9/+MP5v//7v9xwww0tli9atChf+tKXkiz5BnnkyJH5zW9+s1w5fPLJJ/OPf/xjpSWzvWpra3PkkUfmuuuua3EF+2TJhxtLHXnkkZk+fXp+9rOftRi39Dnq3r17kqyw5LbmmGOOyf3335/LLrss06dPL+sQ/qUffqxonhNPPDEzZ87MGWeckblz567WXRuSJUeunHfeefn5z3+ezp07r3BcbW1ti7z99Kc/TWNjY6vjL7300uU+NPnFL36RhoaG5W4VCQDlqtwJdgCsc84444y8+eab+eAHP5gNN9wwU6ZMye9///uMGzcuF198cfPF8urr6/Pxj388m222Wb7zne8kWXLP9ZtuuimnnHJKnnjiieai9t3vfjd33HFH9t5773zuc59LkvzkJz/Jeuutl69//esr3Z9OnTrlz3/+c/bff//svvvuOeKII5rvUT9x4sT85S9/ySuvvJKDDjpotf6+AwYMyJe+9KVceOGFOfjgg3PggQdmzJgx+etf/5r+/fuXtY0rr7wy++23X4444ogccsgh2WeffVJXV5fnn38+f/rTnzJ58uRcdNFFSZIf/OAHOeCAA/L+978/p512WhYsWJCf/vSn6d27d/P95deU733ve7nzzjvzvve9L5/85Cez1VZb5Y033sijjz6a22+/PW+88UaSJefCX3nllfniF7+YBx98MHvssUfmzZuX22+/PWeeeWYOPfTQ5g9+rrrqqmy++eZZb731ss0222SbbbZZ4fxHH310vvSlL+VLX/pS1ltvvbIOt99pp52SLLkg47HHHptOnTrlkEMOac7WDjvskG222SbXXHNNttxyy+y4446r9dyU+/wffPDB+e1vf5vevXtnq622yn333Zfbb789/fr1a3X8okWLss8+++Too4/Os88+m5///OfZfffd85GPfGS19hOAddy7cxMAAIrgj3/8Y2nUqFGlDTbYoNSxY8dS3759S6NGjWpxq7Czzz67VFtbW3rggQeWe/zhhx8udezYsfTpT396uccfeeSR0qhRo0p1dXWlnj17lg499NDSc889V/Z+zZo1q/Stb32rtMMOO5R69OhR6ty5c2no0KGlo446qnTTTTctN3bpbc8eeuihFtt5+633SqVSqbGxsXTBBReUBg0aVOrWrVtpr732Kj355JOlYcOGrfLWe0vNnz+/dNFFF5Xe+973Nu/fZpttVvrsZz+73C3xSqVS6fbbby/ttttupW7dupV69epVOuSQQ0pPP/30cmOW3r5u2rRpq9z/JKXPfOYzLfaptf2fOnVq6TOf+Uxp6NChpU6dOpUGDhxY2meffUqXXnppi7/PN77xjdLw4cObxx111FGlF198sXnM6NGjSzvttFOpc+fOy90y7+233lvWbrvtVkpS+sQnPtHq8rRyO79vf/vbpQ033LDUoUOHVm/Dt/R2dt/97ndb3WZrlr313oq0duu9mTNnlk455ZRS//79Sz169Cjtv//+pXHjxrV4rpf+O919992l008/vdS3b99Sjx49Sh/72MeWu+0iALRFTanUjuMZAQDWIj/+8Y9z9tlnZ/z48a3eleDdcMUVV+SUU07JQw89lJ133vnd3h0ACsI5+wDAOqFUKuXXv/519txzz6op+gCwpjhnHwAotHnz5uUvf/lL7rzzzjzxxBO58cYb3+1dAoA1TtkHAApt2rRpOf7449OnT598/etfd8E7ANYJztkHAACAgnHOPgAAABSMsg8AAAAFo+wDAABAwSj7AAAAUDDKPgAAABSMsg8AAAAFo+wDAABAwSj7AAAAUDDKPgAAABSMsg8AAAAFo+wDAABAwSj7AAAAUDDKPgAAABSMsg8AAAAFo+wDAABAwSj7AAAAUDDKPgAAABSMsg8AAAAFo+wDAABAwSj7AAAAUDDKPgAAABSMsg8AAAAFo+wDAABAwSj7AAAAUDDKPgAAABSMsg8AAAAFo+wDAABAwSj7AAAAUDDKPgAAABSMsg8AAAAFo+wDAABAwSj7AAAAUDDKPgAAABSMsg8AAAAFo+wDAABAwSj7AAAAUDDKPgAAABSMsg8AAAAFo+wDAABAwXR8t3dgXdNYKmXagsZMmd+QKfMbMrehKY1NpdR2qEmPjh0ysHvHDOzeMQO61aa2pubd3l3WATJJtZFJqpFcUm1kkmojk9WnplQqld7tnVgXzF7UmMem12fM9PrUNy55yjskaVpmzLJ/7lpbkx36d83I/l3Tu3PtO7y3rAtkkmojk1QjuaTayCTVRiarl7K/htU3NuXOifMydsbC1CRpy5O9dPz2/bpk7w3r0qXWWRe0n0xSbWSSaiSXVBuZpNrIZPVT9tegl99clJsnzMn8hlKbwv92NUnqOtbkoGE9M7xX50rtHusgmaTayCTVSC6pNjJJtZHJtYOyv4Y8Mm1BbnttXps/5VqRpdvZd0hddhrQrQJbZF0jk1QbmaQaySXVRiapNjK59lD214ClL4A1xQuBtpJJqo1MUo3kkmojk1QbmVy7uBp/hb385qKyXgBP3HZj7rv6skx+7qk0Ll6cfkOHZ+QBR2b3j30qtZ06rXTd216bl/W61DrUhbKsKpPTxr+Q5++/MxOfGZuJzzyeaS8/l6bGxux75tey9yfOKWsOmaQtVpXJxsWL8/Kj9+W50f/MS4/8OzNeeSmL6uene+++Gbr1jtnlyJMyYo/9VjqHTNJWq8rlmFuvzfP33ZnJzz2VOdOnZsGcWenUtVsGDNs0W3/owLz/2E+kS/ceK51DLmmLcn+nXNZff3RB7rnyZ0lS1s9xmaQtysnkNeedlUdvumqlY75136vp1KVrq8tksrKU/Qqqb2zKzRPmrPKQlpt+8I2M/uOl6dCxYzbZefd07l6XFx/6V/72k29l3D1/z6k/vyaduq74E62aJLdMmJNPbtXXxSxYqXIyef81l2f0Hy9t1zwySbnKyeTLj47Orz99VJKkZ//1M2zk+9K5W/e8/vJzeeaev+eZe/6eXY44KYd946LUrODWPTJJW5STyweuvTyvjH0oA4ZvnsEjtk333n0zd8a0vPLEw3ntqTF5+MY/5PT/+0t6DRi4wnnkknKV+zvlsiaMfTD3/u7nqampSbkH7sok5WprJoeN3CX9hg5vdVmHDiu+Ar9MVpayX0F3Tpy3yotUPHXnrRn9x0vTuXtdTv/Vjdlwy+2TJPNmzsj/nXFExj/2QG77xfdy4NkXrHAbpSTzGkr558R5OWCjnpX9S1Ao5WRy4KYjsseJn8ngEdtm8IjtctdlP8qYW65u0zwySbnKyWRNTYdss8/B+cBxp2f4ju9fbtnjf/9zrvqvT+fB66/MsJG7ZMeDj2l1GzJJW5STywPP/lb6b/SedO/dd7nH5816I7/74kkZ/9gDueWH5+a4C1f84alcUq5yMrmsRQvm55rzPpue/TfIkK13yNN33lrWejJJudqayfcedkJ2+shxbZ5HJivLxyUVMmthY8bOWLjKF8Bdl/0oSbLXyZ9rLvpJUte3Xw79f/+TJLnvql+nfs6bK91OKcnYGQsze1FjO/aaIis3k+89/MQcePb5GXnAkVl/+Gap6dD6N6WrIpOsSrmZ3GSXPfKxH1zeougnyXb7H54dDzk2SfLozSv/UEomKUe5udxo251aFP0kqeuzXvY76xtJkufvv2uV88klq1JuJpf195/9d2a88lIO/6+L07VH2wqSTLIqq5PJ9pDJylH2K2TsjPqsqiLNfn1yXntqTJJk+wOObLF84x12Te+BG6Zh0cKM+/ftq5yzJslj0+tXY29ZF5STyUqTSVamUpkcvMW2SZLZUyeucqxMsiqVyGWH2iUHSnbsVN45pnLJyrQ1ky89/O/c96f/yw4HH50Ru++7WnPKJCvjd8q1l7JfAY2lUsZMr1/lp12Txj2RJOnWu2/W23BYq2OGbDkySTL5rbErU0oyZnp9Gt1QgbcpN5OVJpOsSCUzOf2Vl5IkPftvsMqxMsnKVCKXC+fNzR2//H6SZMs9P1zWOnLJirQ1kwvnz821F3w+PfoNyCFf+s5qzyuTrMjqvk+++PC/cssPz8313/5i/vbTb+epf96ShkULy15fJivDOfsVMG1BY+obVx3EmZMmJEn6DNxwhWN6DxycJHnjrbGrUt9YyrQFjRnY3T8l/1FuJtcEmaQ1lcrknOlT8+hNf0qSbLPPwWWtI5OsyOrk8rn77szYv12XUlMpc2e8nleeeDgL583N5h/YOwd87tyytyOXtKatmbz1kvMzc+KEnHDxb9KtV592zS2TtGZ1f36PaeVUu579N8iR5/04W+y2T1nbkMn288xVwJT5DWWNWzhvbpKkc7fuKxzTuVvdkrFz57Rpfi8CllVuJtfk/DLJsiqRycaGhlz1X2emfu6bGbjpVtnlyI+3aX6Z5O1WJ5evv/Rsi9tKbX/AkTnoi99K15692jy/XLKstmTyufvuzIPX/Sbb7X94tv7QgRWbXyZZVlvfJwdttk0O/vJ22XSXD6bPwCFZvHBBJj/3VO745fczYexD+e3ZJ+bUn1+T9+y8W9nzy+Tq88xVwJT5DemQpOldmLtD3v1iR/WRSapNJTJ5w3e/lBcfvCfd+6yX439wWdnnR8skK7I6udz9Y5/K7h/7VBoXL86sKa/l6bv/ljv/74d5bvQ/c+JFV2T4Th8oaztySWvKzWT9nDdz/be+kLq+/fORr1xYkbllkta09X1y9xM+tdyfu9T1yGa77pVN37dnfnfOx/P0XX/NzRd9I5/7012r3JZMtp+yXwFzG5rKegF0qeuRZMntUVZk0YJ5S8aWeSXVppQyY+78TJ5c/pEAFN+MubVpSk3yjl9ORSZpXXszedMPvp6Hb/h9uvXqk9N+fk0GDNuk7HVlkhVpTy5rO3VKv6HDs8cJn86w7XfJ/558QK765pk55/r70qlrt1WuL5e0ptxM3nzRNzJ76qQc971fpa5vv4rMLZO0plK/U9bU1GTUp76Sp+/6ayY/91RmTZm40lObkyUfMMxreDe+uioOZb8CGpvKO4+l76CNkiSzp05a4ZjZUyYtN3bVajLh1Vdy6TU3lzmedUGnXQ9Jh/XLzVClySQttSeTt/zw3Iz+46/StWfvnPrzazJ4xHZt3IJM0rpKvVdutO1OWf89W2Tqi+Py2tOPtXrbyJbkkpbKzeRTd96aDh075v5rLs/911y+3LJp459Pkjx8wx/ywgP3pGe/9XPc935VxuwySUuV/J1ywPDNm/979tRJqyz7SdJQZs+idcp+BdSWeV/ywSOW3C5q/qw38sbECa1ekf+1Zx5bMnbLcn+ZLWXY0KHZe7vTyxzPuuCfM2vz6sJS3o1v9mWS1qxuJv/6owvyr9/9Il179MqpP78mQ7YauRqzyyStq+R7Zae3rsczb+b0MteQS1pqSyabGhry8iOjV7h85qRXMnPSK+kzaGiZs8skLVXyfXL+rDea/3vpEc+r0rHMnkXrlP0K6NGxQ1nnsvTeYHCGbL1DXntqTMb+9bp86BNfXG75+DH3Z/aUienYuUtG7DaqrLk7pCb9enTLoEHlvWBYN/RbPDcTF9a/S+fsyyQtrU4m//aTb+WeK3+2pOj/4toM3XqH1ZpbJlmRSr1Xzps5I1OeeypJ0n+j8k4xkUtaU24mz7vnxRUuu+a8s/LoTVdl3zO/lr0/cU7Zc8skrank75SP//2GJEtOVx4wbNNVju+QpK6jO8W3h2evAgZ271j2C2CvU7+QJLnrip9k4jNjmx+fN+uN3HjhV5Mk7z/mtLKv6Nv01vywrLZkstJkkta0NZP/+P++m7uv+OmSQ/fbUfQTmWTFys3l1JeezZhbr83ihfUtlk2b8GL+8NXT0rBoYYZuu3MGbrZVWXPLJa3x85tq05ZMTnr2iTx999/S2LD8RfWampry0A2/y9//v+8kST5w7CdT26nTKrcnk+3n2auAtoRw6w8dmA8c98mM/uOv8ouPH5BNdtkjnbt1zwsP3pv6ObMzbOQu2ffTX1tj87NuaEsmJj4ztvmDpiR547XxSZIHr7sy4+65rfnxEy6+Ir0GDKz4/Kwb2pKJp+/+W+789SVJkn5Dh+f+q3+d+1sZV9enXw48+4KKz8+6o9xczHtjeq7+r0/nhu+ck8FbbJteGwxO4+JFmTVlYiaNezylpqasP3zzHF/WedFtn591x7udiXd7fqpPWzIxc9Kr+d05H0+3Xn0yeMR26dFvQOrnzM7UF8Zl1pTXkiTbf/iI7HP6l9fI/LTk2auAAd1q07W2JvWN5V1A4pAvfzfDtt8l9199WSY8/lCaGhqy3pCNs9cpn8tuH/tU2beTSpKutTUZ0K12dXedgmpLJhfOm5tXn3ykxeOzp05a7mKSjYsXlTW3TNKatmRyweyZzf898enHMvHpx1od12fQ0LLKvkyyIuXmcv1Ntsh+n/l6xo+5P9PGv5BJzz6RxoaGdO/dJ5vs8sFss/dB2ekjx6Vj5y5lzy2XtKatv1NWkkzSmrZkctDmW2e348/IxKcfy7Txz2fC2AeTUik91huQbUYdkp0+clxG7L5v2XPLZPvVlEollzisgLsnzcv9UxfknXwya5LsukG37Dm47h2clbWFTFJtZJJqJJdUG5mk2sjk2ss5+xUysn/Xd/QFkCSlt+aF1sgk1UYmqUZySbWRSaqNTK69lP0K6d25Ntv36/KO3eisJsn2/bqkd2eHttA6maTayCTVSC6pNjJJtZHJtZeyX0F7b1iXuo41a/yFUJOkrmNN9t7QYS2snExSbWSSaiSXVBuZpNrI5NpJ2a+gLrUdctCwnmv8MJdSkoOG9UyXWv98rJxMUm1kkmokl1QbmaTayOTaybNYYcN7dc6+Q9bsJ1H7DanL8F7lX7GfdZtMUm1kkmokl1QbmaTayOTaR9lfA3Ya0K35hVCpQ12Wbme/IXXZcUC3Cm2VdYVMUm1kkmokl1QbmaTayOTaxa331qCX31yUWybMybyGUrsOeVl67spBw3r6pIt2kUmqjUxSjeSSaiOTVBuZXDso+2tYfWNT7pw4L2NnLExN0qYXw9Lx2/frkr03rHPuChUhk1QbmaQaySXVRiapNjJZ/ZT9d8jsRY15bHp9xkyvT33jkqe8Q5KmlLI07h1Sk6a3xnetrckO/btmZP+ubjvBGiGTVBuZpBrJJdVGJqk2Mlm9lP13WGOplGkLGjNlfkOmzG/IjLnzM+HVVzNs6ND069E9A7t3zMDuHTOgW21qa96pu1myLpNJqo1MUo3kkmojk1Qbmaw+Hd/tHVjX1NbUNAc9SSZPnpNLr7k5e293egYN6vEu7x3rIpmk2sgk1UguqTYySbWRyerj5AgAAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACqamVCqV3u2dWJc0lkqZtqAxU+Y3ZMr8hsyYOz8TXn0tw4YOSb8e3TOwe8cM7N4xA7rVpram5t3eXdYBMkm1kUmqkVxSbWSSaiOT1UfZf4fMXtSYx6bXZ8z0+tQ3LnnKOyRpSilJTZJSOqQmTW+N71pbkx36d83I/l3Tu3Ptu7TXFJlMUm1kkmokl1QbmaTayGT1UvbXsPrGptw5cV7Gzlj4VtTLt3T89v26ZO8N69Kl1lkXtJ9MUm1kkmokl1QbmaTayGT1U/bXoJffXJSbJ8zJ/IZSm8L/djVJ6jrW5KBhPTO8V+dK7R7rIJmk2sgk1UguqTYySbWRybWDsr+GPDJtQW57bV6bP+VakaXb2XdIXXYa0K0CW2RdI5NUG5mkGskl1UYmqTYyufZQ9teApS+ANcULgbaSSaqNTFKN5JJqI5NUG5lcu3R8t3egaF5+c1FZL4CGxYvywLVX5InbbszrLz2XxfUL0r3Pehm46ZbZ6ZBjs93+h69w3dtem5f1utQ61IWyrCqTMye9ku8fvFNZ2zr9Vzdm+E4faPG4TNIW5b5Pzpr8Wu7+zU/zwgN3Z9aUiUmplJ79N8jGO+6aPU74dAZtvs0K15VJ2qqcXM6aMjF3X/GTPDf6n5k9dVK61PXIhiO2yweO+2RG7LHfKueQS9ri5TcX5Q//Gpvn778zE58Zm4nPPJ5pLz+XpsbG7Hvm17L3J85Z6fovPHB37v3dL/LaU2OyaMH89B00JFvvfXD2OvXz6dK9RxKZpG2Wvk9OG/9Cm3M5a8rEPPuv299aZ2ymvjgujYsXZefDPpYjz/1R8ziZrCxlv4LqG5ty84Q5qzykZfbUSbnsM0fn9ZeeTV2ffhm2/S7p3K17Zk+dmJcfvT+du3VfadmvSXLLhDn55FZ9XcyClSonk5271WXHQ45Z4TZef+m5vPbUmCW/1G61fatjZJJylfs++coTj+SyM4/Kwnlz02v9Qdls173SoUNtJj33ZMbcfHXG/u36HPud/822+x7a6voySVuUk8tXnxqTy886Jgtmz0zP/htki932yfxZb+Slh/+d5++/K3t/8kvZ99NfXek8ckm5lmbygWsuz7//eGmb1//X7/43t/zwm6mpqcnGO+yaHv0GZPyY+3PXZT/KU/+8OWf8+ubU9e0nk5Rt2ffJ+6+5PKPbmMsn77gpt1z8zVWOk8nKUvYr6M6J81Z5kYrF9Qvy608flWnjn88+Z3wlHzr1C6nt1Kl5+aIF8zP9lRdXOk8pybyGUv45cV4O2KhnZXaeQionk3V9++WjF/xshcsv/+yxSZLt9js8nbvVtTpGJilXOZlMkj//9zlZOG9udjnipHzkq99rfp9samrK7f/7P7nz/36Y6//7nIz44P7p1KVri/VlkrZYVS4XL6zP7798ShbMnpnt9jssR53/k3TquuQw01efGpMrPnts/vmri7LxDu/LZrvutcJ55JJyLc3kBpuOyB4nfiaDR2ybwSO2y12X/Shjbrl6petOGvd4br3k3HSorc1JP/pdtthtVJIlv2NeefaJefHBe3LDd7+Uj/3gcpmkbMu+Tw5cjVyut+GwvP/YT2TDEdtl8Ijt8sRtN+bOX1/SYpxMVpaPSypk1sLGjJ2xcJW/wN51+Y8zbfzz2eWIkzLqjC8vV/STpHO37hm8xbarnK+UZOyMhZm9qHH1d5pCKzeTKzP79cl5/r47kyQ7H/axlY6VSVal3EzOm/VGpjz/VJJk38/8v+XeJzt06JBRZ3wlnbp2S/2c2Zn28nMr3I5MUo5ycvnUnbdm9pSJ6dqzdw77xkXNRT9Jhm69Q/b+5JLDVv956UWrnE8uWZVlM/new0/MgWefn5EHHJn1h2+Wmg41q1z/rst/nFKplJ0+clxz0U+W/I555Lk/Sk2HDnnyjpvz+svPJ5FJVu3t75Ork8ut9jogH/nKhdnpI8dl0OZbp0Ptir9zlsnKUfYrZOyM+qwq5o2LF+eBa65Ikuxx0mfaPWdNksem17d7OxRTOZlclUf/8seUmpqywSYjstG2qz6vXyZZmXIz2bFz+efpde/Tb6XLZZJVKSeXrz01Jkmy4Zbbp1vP3i2Wb/q+PZMkE8Y+mDnTp65yTrlkZdrz87th8aKMu/f2JMn2Hz6yxfK+g4dm2Pa7JEmevvOW5sdlkpWpxO+UbSWTlaHsV0BjqZQx0+tX+W3VxHGPZ96sGek1YGD6b/SeTHn+6dz+yx/kz/99Tv72k29l3L3/SFNTU9nzlpKMmV6fRjdU4G3KzeSqPHLTn5IkOx+68m/1l5JJVqQtmezSvUc23mHXJMlt/9+FaVy8uHlZU1NTbv/l97O4fkE2322f9Bm44Uq3JZOsTLm5XDR/yYX7uvfu2+ryuj7rJUlKpVImjnt8lfPKJSvS3p/f0ye8mMX185MkQ7Ya2eqYDd96fNKzTzQ/JpOsSKV+p2wrmawM5+xXwLQFjalvXHUQpzz/dJKk1waD87effCv3/OZnWfbOh3df8dMMHrFtTrz4yvQZNKSsuesbS5m2oDEDu/un5D/KzeTKvPTIvzPj1ZdT26lzdjjoo2WvJ5O0pq2ZPOKbl+SKzx2XB6+/MuP+dVuGbDUyNR06ZNKzT+bN1ydnh4OOzke++r2ytiWTrEi5ueyxXv8kyRsTJ7S6/I3X/vP4zImvlDW3XNKa9v78Xpq/rj17p0tdj1bH9NlgyYekb7wtqzJJayrxO+Xqksn2881+BUyZ31DWuPmz30iSTB73RO6+4qd530dPyRf/fH/Ou+elnPaLa9N/2CaZNO6JXPH545f7JqtS87PuqEQmHr7xD0mSLffcP3V9V36o9JqYn2JpayYGbLxpPn3Frdls173y5uuT8/Rdf81T/7wlMydOSL+hw/OenT6Qrj3Kv3CPTNKacnOxyXv3SJJMemZsJrXyzf0D113R/N8L582p+PysO9qbiYXz5yZZcn7+inTuvuRiu61lVSZ5u3c7E+/2/Gs7Zb8CpsxvKO+JfOtb/MaGxdn+w0fk0K/9TwYM2yRde/TMpu/bM6f9/Np07NI1U194JmP//uey5u4QLwJaKjuTK1A/d06evP3mJMnOhx7fpnVlkta0NZPjH3sgPz56z0x9cVyO+e4v8/Xbnsq5dz2fk370+zQ2LM513/pCrrvg82VtSyZZkXJzuckue2T4ju9PqVTKlWefmGfu/nvq57yZN14bn1svOS9jbr46tR2XXEiypkN5SZdLWtPen9/tIZO0RibXbo6JqIC5DU0p50z7zt3/czjVLkee1GJ5n0FDMmL3UXnyjpvzwoN3Z8eDj17lNptSyoy58zN5cvnfJFB8M+bWpik1yWpeTuXxv/85i+vnp/cGg7PZ+/du07oySWvakskFc2bnd+ecnPmzZuRTV/x1uYtDbvnB/bLBezbPj47eMw/f+IeMPPCj2eS9u690ezLJirQll8d//9f53ZdOzoTHHsyVZ5+w3LLdjj8j4x97IBOffizderV+Xv/bySWtae/P7y5v/a65aMH8FY5Zeg2KLnXLHx0lk7SmvZlsj6Yk8xrKv54ZLSn7FdDYVN55LOsNGfaf/95w49bHvPX4nOmvlzl7TSa8+kouvebmMsezLui06yHpsP5Gq73+0kP4dzzk2HQo81uq/5BJWmpLJsfde1vmzZye9YZs3OpdINYbsnGGbrNjXnr4X3nhgbtXWfZlkhVpSy57rDcgZ/z65rzwwN158aF7M3/WzPToNyBb7XVAhmw1Mt/db5skycBNtyxzdrmkpfb+/O47eGiSpH7O7CycN7fV8/ZnTZ243Nj/kElaam8m26uhzJ5F65T9Cqgt496SSbLhiO1SU1OTUqmU+bNmtHoV6XmzZiRJunSrK3P2UoYNHZq9tzu93N1lHfDPmbV5dWEpq/Mp7NSXns2rTz6Smpqa7PyR41ZjdpmkpbZkcvaU15Jkpefkd+3ZK0my4M1ZZcwuk7Sure+VNTU12WzXvbLZrnst9/iMV1/OnOlT073Pehm85XZlzi6XtNSen99J0n/jTdOpa/csrp+f155+rNUPQyc+/ViSJb+XLk8maam9mWyvjmX2LFqn7FdAj44d0iFZ5aH8PftvkGEj35fxY+7PCw/ck8Fve5NtXLw4Lz96X5JkyDY7lDV3h9SkX49uGTSo9Suusm7qt3huJi6sL+v0krd7+IbfJ0nes/PuWW/Ixm1eXyZpTVsy2Wv9QUmSaeNfSP2cN5uL/VKNixdn0jNLLpLWd/Cqv22QSVakPe+Vy7r3tz9Pkuxy+Inp2KlzWevIJa1pbyY7duqcEXuMyhO3/SVj/3Zdi7I/c9KreeXxh5IkW33ooOWWySStqdT75OrokKSuo0vMtYdnrwIGdu9Y9gtgn9O/nCS56/If55XHH25+vLGhIbdccm7eeG18utT1yE5lfqPa9Nb8sKy2ZHJZjYsX57Fbr02S7HzYx1ZrbpmkNW3J5Oa77ZPO3bpncf2CXP/fZzdfXTpJGhYvys0X/1dmTXkttR07ZdtRh6xyezLJirQll1Nfejb1c5c/l7mxoSF3/vqSPHjdb9Jv6PB86BNnlz23XNKa1f35vaw9T/5campq8shf/phn/31H8+OLFszPdd/6QpoaG7PNPgdn/eGbLbeeTNKaSmRydclk+3n2KqAtIdz0fR/Mvmd+Lbf9/Hv55ScOydCtd0iPfutn0rgnMnPSK+nUtVuO/e4v07Pf+mtkftYNq5uJcff+I3PfmJauPXtn670PWvUKFZ6f4mpLJnr07Z/Dvn5Rrr3gc3nitr/kpYdHZ8jWI1PbsVNee/qxvPn65NR06JBDvvLdso8+kUla05ZcPHjdlXnw+iuz4ZbbpdeAQWlcvCivPPFw5s6Yln5Dh+e0X1ybzmWfgtf2+Vk3vD0TE58Zmxsv/Grzn994bXySJXkcd89tzY+fcPEV6TVgYJJkwy23z4Fnfyu3/PCb+c3njsvwnT6Qur79M37M/ZkzfWoGbLxpDvv6RWXND61lYnVy+ea0KfndOSc3L5v9+qQkyTN3/z0/P+nDzY8f+v/+Jxtuuf1K56d8nr0KGNCtNl1ra1LfWN4FJPb+xDkZsvWO+fcffplXn3w0rz31WHr0Xz87HXJsPnjy51p80royXWtrMqBb7eruOgXV1kwutfTCfCM/fEQ6dem6WnPLJK1payZ3OOijGbjZlvn373+Zl8fcnxcfvDelUik9+2+QkQcclQ8c98kM3WbHsrYlk6xIW3K5xe6jMmvyq5k47vFMfHpsajt3zoBhm2aPE87M+485LZ26dmvT3HJJa96eyYXz5ubVJx9pMW721EmZPXVS858bFy9abvnuJ3wqAzfbMvf+9ud59akxWbxgfnoP3DB7nfL57HXqF1q9cJ9M0prW3idXJ5eNixe1us68mdMzb+b05ba9lEy2X02pVHKJwwq4e9K83D91Qd7JJ7Mmya4bdMueg9v2TQLrBpmk2sgk1UguqTYySbWRybWXc/YrZGT/ru/oCyBJSm/NC62RSaqNTFKN5JJqI5NUG5lceyn7FdK7c22279flHbspRU2S7ft1Se/ODm2hdTJJtZFJqpFcUm1kkmojk2svZb+C9t6wLnUda9b4C6EmSV3Hmuy9ocNaWDmZpNrIJNVILqk2Mkm1kcm1k7JfQV1qO+SgYT3X+GEupSQHDeuZLrX++Vg5maTayCTVSC6pNjJJtZHJtZNnscKG9+qcfYes2U+i9htSl+G9Oq/ROSgOmaTayCTVSC6pNjJJtZHJtY+yvwbsNKBb8wuhUoe6LN3OfkPqsuOAtt3eB2SSaiOTVCO5pNrIJNVGJtcubr23Br385qLcMmFO5jWU2nXIy9JzVw4a1tMnXbSLTFJtZJJqJJdUG5mk2sjk2kHZX8PqG5ty58R5GTtjYWqSNr0Ylo7fvl+X7L1hnXNXqAiZpNrIJNVILqk2Mkm1kcnqp+y/Q2Yvasxj0+szZnp96huXPOUdkjSllKVx75CaNL01vmttTXbo3zUj+3d12wnWCJmk2sgk1UguqTYySbWRyeql7L/DGkulTFvQmCnzGzJlfkNmzJ2fCa++mmFDh6Zfj+4Z2L1jBnbvmAHdalNb807dzZJ1mUxSbWSSaiSXVBuZpNrIZPXp+G7vwLqmtqamOehJMnnynFx6zc3Ze7vTM2hQj3d571gXySTVRiapRnJJtZFJqo1MVh8nRwAAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMDWlUqn0bu/EuqSxVMq0BY2ZMr8hU+Y3ZMbc+Znw6msZNnRI+vXonoHdO2Zg944Z0K02tTU17/busg6QSaqNTFKN5JJqI5NUG5msPsr+O2T2osY8Nr0+Y6bXp75xyVPeIUlTSklqkpTSITVpemt819qa7NC/a0b275renWvfpb2myGSSaiOTVCO5pNrIJNVGJquXsr+G1Tc25c6J8zJ2xsK3ol6+peO379cle29Yly61zrqg/WSSaiOTVCO5pNrIJNVGJqufsr8Gvfzmotw8YU7mN5TaFP63q0lS17EmBw3rmeG9Oldq91gHySTVRiapRnJJtZFJqo1Mrh2U/TXkkWkLcttr89r8KdeKLN3OvkPqstOAbhXYIusamaTayCTVSC6pNjJJtZHJtYeyvwYsfQGsKV4ItJVMUm1kkmokl1QbmaTayOTapeO7vQNF8/Kbi/KHf43N8/ffmYnPjM3EZx7PtJefS1NjY/Y982vZ+xPntFinqakprz7xcJ4b/c+8+NC9ef3l57Nw3px07dErg7fYNjsecmxGHnBkat66auVtr83Lel1qHepCWVYnk0ny7L9vz5N33JzJzz6ZN6dNzvzZs1LbqVP6Ddk4W+w2Kruf8OnU9e2XRCZpm5ffXJTbXpuXaeNfaHMuW3Pf1ZflL9/7apJk58M+liPP/ZFM0mar+155+/9+P3dc+oOVbvvs60Zn/eGbySVtsrqZXKqpqSljbrk6Y265JlOeeyr18+ake+8+GbDx5tlm1CF5/9GnyiRt0p6f3/9vxwFlzfHot36W//n8J2WyQpT9CqpvbMrNE+bkgWsuz7//eGnZ673x2vj87ykHJUm69e6bIVtun269+uSNiRPywgN354UH7s7jf/9zPnbR5enYqXNqktwyYU4+uVVfF7NgpVY3k0ny2K3X5bG/Xpt+Q4dng022TF3ffpk/6428+tSY3HX5j/PwjX/IJ355fTbYZIRMUralmaxJcv81l2d0G3P5dm+8Nj5/+/EFqampybIHqskkbdGe98qlBm2+dQZtsU2ry7r26JlELilfezNZP+fNXHn2CXn50fvSpUfPDNvuvenas3fefH1yJj37RBbOm5P3H32qTFK29v783vGQY1a4bNbkiXnp4X+lpqYm79nxAzJZQcp+Bd05cV7mN5SywaYjsseJn8ngEdtm8IjtctdlP8qYW65e4Xo1NTXZ5L17ZI+TPpPNdt0rHWr/cwuKlx75d37zueMz7t5/5O7Lf5J9Tv9SSknmNZTyz4nzcsBGPd+Bvxlrq9XNZJLscdKZOfDs89Oz/wbLPb5w/txcd8Hn88Rtf8l13zo7Z/7mrzJJ2ZZmspRk4GrkcllNTU255rzPJjU12eHgo/PoTVc1L5NJ2qI975VLbbXXgRn1qa+sdIxcUq72ZLJUKuW355yUlx+9L7sc+fEcePb56dK9R/PyhsWLMuX5p5eMjUxSnvb+/P7oBT9b4bIbLvxKXnr4X9nkfXumz+ChMllByn6FzFrYmLEzFiZJ3nv4icstq+lQs9J1+w0dnk/88vpWl71np92y5ymfy20//14evfmq7HP6l5IseXMeO2NhPjCwu/tT0qr2ZDJJBm+xbauPd+neIwee/a08cdtf8uoTD6d+7px07dFTJlmlZTOZrF4ulzX6D5dm/Jj785Gv/U/mvTG9xXKZpBztfa9sK7lkVdqbyUdu/ENeevjf2ez9H8rh37ioxfKOnTpnyFYjm/8sk6xKpX9+L2vxwvqM/duSHvTeQ49PIpOV5NiIChk7oz6V/5VgiaWla/bUScs9XpPksen1a2hW1nZrMpNLjz6p6dAhtR3/85mhTLIylczktPEv5B8//26G7/SB7PrRU1Y4TiZZlTX5XrkicsnKtDeTo//0qyTJB086q+x1ZJKVWZPvk0/ecXPq58xOt959s9WHDmx+XCYrwzf7FdBYKmXM9PqK3HqiNdNfeSlJWhxOXUoyZnp9dh/UPbU17/SvKlSzNZnJhkUL84+ffSdJsun79kynrv+5YqpMsiKVzGRTY2OuOfesJDU58twfNV+8tDUyycpUMpeTxj2ev/3kW5k/e9aSC+yO2DZbfnD/dKnr0WKsXLIi7c3knBmvZ/JzT6VDbW2Gbf/evPHa+Dx+242ZOenVdOlel6Hb7Jgt9zogHTstf/EzmWRF1nTPeeTGPyRJdjjwqHTs3KX5cZmsDGW/AqYtaEx945p5CSxaMD+j//R/SZJt9jm4xfL6xlKmLWjMwO7+KfmPSmZy4jNjM/pPv0qpVMq8mTMy8anHMm/WjAzZeocced6PW4yXSVpTyUzec+XP8uqTj+Sgc76dfkOHr3K8TLIilczlM/f8Pc/c8/flHuvao1cO+cp3s+PBLS9MJZe0pr2ZXHoufvfe6+WhG36XW394XhobFi83Zr0hG+eEi67IoM23Xu5xmaQ1a7LnzJz0Sl56+F9Jkp0P/ViL5TLZfp65Cpgyv2GNbfvG730lMydOSK8BA7PXqV9Y4fxeBCyrkpmcNWXichc+S5Z8o3/4Ny5K7/UHrXB+mWRZlcrklBeeye3/+/0M2/69+cBxp7dpfpnk7SqRy/WGbJz9z/pGNt9tn/QdNDRJMvWlZ3P35T/JuHv/kWvOPSs1HWqzw4FHtTq/XLKs9mZy/uyZS/7/zZm56ftfzzajDsk+p385fQcPzdQXxuXmi/4rrz75SC4/65h8/up7UtdnvRbzyyTLWpM95+Eb/5hSqZQNtxrZ4sOnZeeXydXnnP0KmDK/YY08kXf86uI8etNV6dila477n/9r8YacLPkHXJMvQtZOlczk1h86MBc+Oi3feWhKvnLzozni3Evy+svP5UdHfzBP3P6XFuNlktZUIpONDQ1vFacOOfK8n6RDh/K2KJOsSCVyuePBR2evU7+QwVtsm269+qRbrz7ZeOT78vEf/z7vP/YTSZJbLv5mGhYvWm49uaQ17c3k0luQNjU0ZKPt3puPff+yDNx0y3Tp3iMbbbdzTvvFtenRb0DmTJ+a+6+5fLl1ZZLWrKme09TUlEdv+lOSZOe3Lsz3djLZfj4mqYC5DU1pqvA27/3dL3L7L76Xjp275ISLrsjGI9/X6rimlDJj7vxMnjynwnvA2mzG3No0pSap4OVUOtTWpu/goXnvYSdk010+mEuO2iPXnv+5bDzyfctdT0ImaU0lMnnnry/JpHGP58OfOzcDNt607PVkkhVZE++Vyxp1xlfywDWXZ97M6Xn1iUcyfMf3Ny+TS1rT3kwue4u9XY48qeXyuh7Z4cCP5t7f/jwvPnB39vnkOc3LZJLWrKn3yRceuDuzpryWTl27ZeSHj2x1TFOSeQ2VblnrFmW/AhqbKnsey+g//Sq3/vDc1HbqnI/94LJssds+KxldkwmvvpJLr7m5ovvA2q3Troekw/obrbHt9x28Ud6z82559l+35fn7786OBx+9zFKZpKVKZPLpO29Jkoy75+959t+3L7ds5qRXkyTP/uu2XPrJQ5Mkp//qxreWyiStW9Pvld17901d3/6ZM31qZr8++W1L5ZKW2pvJ9YYM+89/bzis1TF933r8zelT37ZEJmlpTb1PLr0w39Z7H5yuPXutcFxDhXvWukbZr4DaCt6H976rfp2bvv/1t4r+5Rmxx36rWKOUYUOHZu/tyj93leL758zavLqwlDX1bVWSdO7WPUkyb+bb728uk7RUyUyOf+yBFS6bM/31zJn++tselUlat6bfK5saG1M/d8m3pMt+47qEXNJSezPZf6NN0qWuRxbOm5v5s95odczSx7t0r3vbEpmkpTXxPjl/9sw8fddfkyTvPazlhfmW1bGCPWtdpOxXQI+OHdIhafeh/A9ce0X+8j9fay76W35wVUU/6ZCa9OvRLYMGtby1D+uufovnZuLC+oqfXrJUw6KFmfBW4eq/0SbLLZNJWlOJTH7uT3etcNnt//v93HHpD7LzYR/Lkef+aLllMsmKrOn3ymfu/lsW189PTU1Nhmy1/XLL5JLWtDeTtR07Zqu9DsyYW67OCw/cna33PqjFmBfuvytJMmTrHZd7XCZpzZp4n3zsr9emYdHCrDdk4wzf6QMrHNchSV1Hl5hrD89eBQzs3rHdL4AHr/9tbrzwK20q+smSDxhcoZK3a28m574xLfdfc3nzN1LLmv365Fz9zTPz5rQp6Tt4o2y6657LLZdJWlOJ98nVJZOsSHtzOWvyaxlzyzVZvLC+xbKn7rw113377CTJ9gcctdy1TRK5pHWVeK/c69QvpLZjpzz059/lmXv+sdyye37zs4x/7IF0qK3N+48+dbllMklr1sTP74ffOoR/50OPT03Nir+5l8n28+xVwNtDOPGZsbnxwq82//mN18YnSR687sqMu+e25sdPuPiK9BowMJOefSI3fOeclEqlrLfhsDx5x1/y5B0tr3KeJB+94GernB/am8nF9Qty44Vfyc0X/VcGbbHNW7eTKmXWlEmZNO7xNC5elF4DBubEH/4mnbp0XeX80Fom2prLSs8P7X2vnP/mzFz9zTNzw4VfzuAttk2v9QelYWF9pr70bGa88lKS5D07757Dvv79suaH9mYySdYfvlkO/+YPc90Fn8+VX/hYNtxqZPOt96aNfz4damtz6P/7QQZuttUq54dK//yeNO7xTH72yXSorc1OHzluteanfJ69ChjQrTZda2tS37jkAhIL583Nq08+0mLc7KmTMnvqpOY/N751G576OW823ypl2vjnM2388yuc6+1lv2ttTQZ0q23334FiaW8m6/r2z4Ff/FbGP3pfprzwTKa9/FwWL6xPtx69s9G2O2XEB/fPLkeclK49erbYpkzSmrdnMml7LleXTLIi7X2v7L3Bhtnz5M/mtacey4xXX37rw9DF6d5nvYzYY79sf8CR2W6/w1q9TaRc0pr2ZnKpnQ45Nuu/Z4vcc8VPMn7MA5ny3FPp3qdvtt33I9njxM9k6DY7vn2TMkmrKv3ze+m3+pu9/0Or/CBfJtuvprS0ZdIud0+al/unLsg7+WTWJNl1g27Zc/DbL7ACMkn1kUmqkVxSbWSSaiOTay/n7FfIyP5d39EXQJKU3poXWiOTVBuZpBrJJdVGJqk2Mrn2UvYrpHfn2mzfr8savNHZ8mqSbN+vS3p3dmgLrZNJqo1MUo3kkmojk1QbmVx7KfsVtPeGdanrWLPGXwg1Seo61mTvDR3WwsrJJNVGJqlGckm1kUmqjUyunZT9CupS2yEHDeu5xg9zKSU5aFjPdKn1z8fKySTVRiapRnJJtZFJqo1Mrp08ixU2vFfn7DtkzX4Std+Qugzv1XmNzkFxyCTVRiapRnJJtZFJqo1Mrn2U/TVgpwHdml8IlTrUZel29htSlx0HdKvQVllXyCTVRiapRnJJtZFJqo1Mrl3cem8NevnNRbllwpzMayi165CXpeeuHDSsp0+6aBeZpNrIJNVILqk2Mkm1kcm1g7K/htU3NuXOifMydsbC1CRtejEsHb99vy7Ze8M6565QETJJtZFJqpFcUm1kkmojk9VP2X+HzF7UmMem12fM9PrUNy55yjskaVpmzLJ/7lpbkx36d83I/l3ddoI1QiapNjJJNZJLqo1MUm1ksnop+++wxlIp0xY0Zsr8hkyZ35B5DU1paCqlY4ea1HXskIHdO2Zg944Z0K02tTXv1N0sWZfJJNVGJqlGckm1kUmqjUxWH2UfAAAACsbJEQAAAFAwyj4AAAAUjLIPAAAABaPsAwAAQMEo+wAAAFAwyj4AAAAUjLIPAAAABaPsAwAAQMEo+wAAAFAwyj4AAAAUjLIPAAAABaPsAwAAQMEo+wAAAFAwyj4AAAAUjLIPAAAABaPsAwAAQMEo+wAAAFAwyj4AAAAUjLIPAAAABaPsAwAAQMEo+wAAAFAwyj4AAAAUjLIPAAAABaPsAwAAQMEo+wAAAFAwyj4AAAAUjLIPAAAABaPsAwAAQMEo+wAAAFAwyj4AAAAUjLIPAAAABaPsAwAAQMEo+wAAAFAwyj4AAAAUjLIPAAAABaPsAwAAQMEo+wAAAFAwyj4AAAAUjLIPAAAABaPsAwAAQMEo+wAAAFAwyj4AAAAUjLIPAAAABaPsAwAAQMH8/+ANMeiKlExcAAAAAElFTkSuQmCC\n" - }, - "metadata": {} - } - ] - }, - { - "cell_type": "code", - "source": [ - "#plotting Star Connectivity\n", - "import numpy as np\n", - "\n", - "G = nx.Graph()\n", - "G.add_edges_from(star_connectivity)\n", - "\n", - "# Define the positions of the nodes in a star configuration\n", - "pos = {}\n", - "pos[0] = (0, 0) # Central node\n", - "angle_step = 360 / (len(star_connectivity))\n", - "for i in range(1, 18):\n", - " angle = angle_step * (i - 1)\n", - " radians = np.deg2rad(angle)\n", - " pos[i] = (np.cos(radians), np.sin(radians))\n", - "\n", - "# Plot the graph\n", - "plt.figure(figsize=(10, 10))\n", - "nx.draw(G, pos, with_labels=True, node_size=500, node_color=\"skyblue\", font_size=16, font_color=\"black\", edge_color=\"gray\")\n", - "plt.title(\"Star Connectivity Map\")\n", - "plt.show()" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 1000 - }, - "id": "0AEHYvxACpS7", - "outputId": "62c17d67-b8f0-403c-96ba-41bcc319619f" - }, - "execution_count": 15, - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": [ - "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/sAAAQSCAYAAADwlOr+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3Qc52Hu/2ex6L0TJAACIED0vjMqFClKFItkqljVkuxYtq9jJ44dxzdO++VeuVw7uXHKTeI4jpOba9lWsaolWy4S1W3VmUUn2DvBBrABRCHa/P6QiZBiQ58t3885Oofcnd15SBGz77PvzDsex3EcAQAAAACAkBHhdgAAAAAAADC7KPsAAAAAAIQYyj4AAAAAACGGsg8AAAAAQIih7AMAAAAAEGIo+wAAAAAAhBjKPgAAAAAAIYayDwAAAABAiKHsAwAAAAAQYij7AABgSj7xiU+osLBwyq/bvXu3PB6PHnrooVnPBAAAzkXZBwAEhPb2dt11110qKChQbGyscnNztWbNGn37298+Z7u/+qu/0rPPPjvv+Xp7e/W1r31NdXV1SkxMVFxcnKqrq/Vnf/ZnOnDgwLznmWsHDhzQV7/6VbW0tMzpfn7xi1/oq1/96qy/b2FhoTwej1avXn3B5//jP/5DHo9HHo9Htm3P+v4BAHCbx3Ecx+0QAIDw9tZbb+n666/X4sWL9cADDygnJ0f79u3TO++8ox07dmj79u0T2yYmJuquu+6a19nhnTt3avXq1dq7d6/uvvtuLV++XNHR0Wpra9Njjz2m9PR0bd26dd7yzAfbtmWapr7//e/rE5/4xDnPjYyMaHx8XDExMVN6T8dxdPr0aUVFRcnr9UqSPv/5z+s73/mOZns4UlhYqMOHD2t4eFhdXV3Kyck55/nrrrtO7777roaGhmRZlgzDmNX9AwDgtki3AwAA8M1vflMpKSmyLEupqannPHfkyJE5339/f78SEhIu+Nzo6KjuuOMOHT58WK+99pqWL19+zvPf/OY39Td/8zdznjGQREVFTet1Ho9HsbGxs5zm4q655hpZlqXHH39cX/ziFyce379/v37961/r9ttv19NPPz1veQAAmE+cxg8AcN2OHTtUVVV1XtGXpOzs7Ilfezwe9ff36wc/+MHEKdhnZp337Nmjz33ucyorK1NcXJwyMjJ09913a/fu3ee830MPPSSPx6PXX39dn/vc55Sdna28vLyLZnv66afV2tqqv/zLvzyv6EtScnKyvvnNb57z2JNPPimfz6e4uDhlZmbqYx/7mLq6us7Z5hOf+IQSExPV1dWlD3/4w0pMTFRWVpa+/OUva2xsbGK7M9e5/93f/Z3+/d//XcXFxYqJiZFpmrIs67w8mzdv1l133aX09HTFxsbKMAz99Kc/PW+7EydO6Etf+pIKCwsVExOjvLw8ffzjH1dPT49ee+01maYpSfrkJz858Xd95myKs6/ZHxkZUXp6uj75yU+et4/e3l7Fxsbqy1/+8jl/lrPf5zvf+Y4kTezD4/HIcRwVFhbqtttuO+89h4aGlJKSos9+9rPnPfdBsbGxuuOOO/Too4+e8/hjjz2mtLQ0rVu37rzXtLW16ROf+ISWLFmi2NhY5eTk6FOf+pSOHj16znZf/epX5fF4tHnzZt1zzz1KTk5WRkaGvvjFL2poaOiy2QAAmGvM7AMAXFdQUKC3335bHR0dqq6uvuh2P/rRj/TpT39aV1xxhT7zmc9IkoqLiyVJlmXprbfe0r333qu8vDzt3r1b3/3ud3Xdddeps7NT8fHx57zX5z73OWVlZenBBx9Uf3//Rfd5pij/zu/8zqT+LA899JA++clPyjRN/fVf/7UOHz6sf/qnf9Kbb76p5ubmc77QGBsb07p163TllVfq7/7u7/TSSy/p7//+71VcXKzf//3fP+d9H330UfX19emzn/2sPB6PvvWtb+mOO+7Qzp07J2baN27cqGuuuUa5ubn68z//cyUkJOiJJ57Qhz/8YT399NO6/fbbJUmnTp3SihUrtGnTJn3qU59SY2Ojenp69NOf/lT79+9XRUWFvv71r+vBBx/UZz7zGa1YsUKStGzZsvP+vFFRUbr99tv1zDPP6Hvf+56io6Mnnnv22Wd1+vRp3XvvvRf8u/rsZz+rAwcOaMOGDfrRj3408bjH49HHPvYxfetb39KxY8eUnp4+8dzPfvYz9fb26mMf+9ik/n/cf//9Wrt2rXbs2DHxb+XRRx/VXXfddcEzFDZs2KCdO3fqk5/8pHJycrRx40b9+7//uzZu3Kh33nlHHo/nnO3vueceFRYW6q//+q/1zjvv6J//+Z91/Phx/fCHP5xUPgAA5owDAIDLXnzxRcfr9Tper9e5+uqrnT/90z91XnjhBWd4ePi8bRMSEpwHHnjgvMcHBgbOe+ztt992JDk//OEPJx77/ve/70hyli9f7oyOjl42W0NDg5OSkjKpP8fw8LCTnZ3tVFdXO4ODgxOPP//8844k58EHH5x47IEHHnAkOV//+tfP25/P55v4/a5duxxJTkZGhnPs2LGJx5977jlHkvOzn/1s4rEbbrjBqampcYaGhiYeGx8fd5YtW+YsXbp04rEHH3zQkeQ888wz5/0ZxsfHHcdxHMuyHEnO97///fO2eeCBB5yCgoKJ37/wwgvnZXEcx/nQhz7kLFmy5Lw/y9nv+Qd/8AfOhYYjW7ZscSQ53/3ud895/NZbb3UKCwsncl5MQUGBs379emd0dNTJyclx/tf/+l+O4zhOZ2enI8l5/fXXJ/4tWJY18boL/Tt67LHHHEnOG2+8MfHYV77yFUeSc+utt56z7ec+9zlHktPa2nrJfAAAzDVO4wcAuG7NmjV6++23deutt6q1tVXf+ta3tG7dOuXm5l7wFPQLiYuLm/j1yMiIjh49qpKSEqWmpqqpqem87X/3d393YpG4S+nt7VVSUtKkMti2rSNHjuhzn/vcOdemr1+/XuXl5fr5z39+3mt+7/d+75zfr1ixQjt37jxvu4985CNKS0s7ZztJE9seO3ZMr7zyiu655x719fWpp6dHPT09Onr0qNatW6dt27ZNXErw9NNPq66ubmKm/2wfnLmejFWrVikzM1OPP/74xGPHjx/Xhg0b9JGPfGTK7ydJpaWluvLKK/XII49MPHbs2DH98pe/1Ec/+tFJ5/R6vbrnnnv02GOPSZIeeeQR5efnT/z9fdDZ/46GhobU09Ojq666SpIu+O/oD/7gD875/Re+8AVJ799lAAAAN1H2AQABwTRNPfPMMzp+/Ljee+89/cVf/IX6+vp01113qbOz87KvHxwc1IMPPqj8/HzFxMQoMzNTWVlZOnHihE6ePHne9kVFRZPKlZycrL6+vkltu2fPHklSWVnZec+Vl5dPPH9GbGyssrKyznksLS1Nx48fP+/1ixcvPm87SRPbbt++XY7j6H/+z/+prKysc/77yle+Ium/FjvcsWPHJS+XmKrIyEjdeeedeu6553T69GlJ0jPPPKORkZFpl31J+vjHP64333xz4u/tySef1MjIyKQvqTjj/vvvV2dnp1pbW/Xoo4/q3nvvveiXBceOHdMXv/hFLViwQHFxccrKypr4t3Khf0dLly495/fFxcWKiIg4b60IAADmG2UfABBQoqOjZZqm/uqv/krf/e53NTIyoieffPKyr/vCF76gb37zm7rnnnv0xBNP6MUXX9SGDRuUkZGh8fHx87Y/ewb3UsrLy3Xy5Ent27dvyn+Wy5nMmQWX29b57S3rzvwZv/zlL2vDhg0X/K+kpGTmoS/i3nvvVV9fn375y19Kkp544gmVl5errq5uRu8ZFRU1Mbv/8MMPyzCMC36ZcilXXnmliouL9Ud/9EfatWuX7r///otue8899+g//uM/9Hu/93t65pln9OKLL+pXv/qVJF3w39EHTefMCAAA5gIL9AEAAtaZe58fPHhw4rGLlamnnnpKDzzwgP7+7/9+4rGhoSGdOHFiRhluueUWPfbYY3r44Yf1F3/xF5fctqCgQJK0ZcsWrVq16pzntmzZMvH8XFiyZImk9xfMW7169SW3LS4uVkdHxyW3mWppvfbaa7Vw4UI9/vjjWr58uV555RX95V/+5WVfd6n9pKena/369XrkkUf00Y9+VG+++ab+8R//cUq5zrjvvvv0jW98QxUVFaqvr7/gNsePH9fLL7+sr33ta3rwwQcnHt+2bdtF33fbtm3nnCWyfft2jY+PT9ytAAAAtzCzDwBw3auvvjoxQ322M9c9nz2Tm5CQcMEC7/V6z3uPb3/72+fcxm467rrrLtXU1Oib3/ym3n777fOe7+vrmyi1hmEoOztb//Zv/zZxOrsk/fKXv9SmTZu0fv36GWW5lOzsbF133XX63ve+d86XI2d0d3dP/PrOO+9Ua2urfvKTn5y33Zm/w4SEBEma9JclERERuuuuu/Szn/1MP/rRjzQ6OjqpU/gvt5/f+Z3fUWdnp/7kT/5EXq/3oiv7X86nP/1pfeUrXznny6APOnP2xAf/HV3qC4Yztw4849vf/rYk6aabbppWTgAAZgsz+wAA133hC1/QwMCAbr/9dpWXl2t4eFhvvfWWHn/8cRUWFp5zD3efz6eXXnpJ//AP/6BFixapqKhIV155pW6++Wb96Ec/UkpKiiorK/X222/rpZdeUkZGxoyyRUVF6ZlnntHq1at17bXX6p577tE111yjqKgobdy4UY8++qjS0tL0zW9+U1FRUfqbv/kbffKTn9TKlSt13333Tdx6r7CwUF/60pdm+ld1Sd/5zne0fPly1dTU6Hd/93e1ZMkSHT58WG+//bb279+v1tZWSdKf/Mmf6KmnntLdd9+tT33qU/L5fDp27Jh++tOf6t/+7d9UV1en4uJipaam6t/+7d+UlJSkhIQEXXnllZdc6+AjH/mIvv3tb+srX/mKampqVFFRcdnMPp9PkvSHf/iHWrdu3XmFfv369crIyNCTTz6pm266SdnZ2dP6uykoKNBXv/rVS26TnJysa6+9Vt/61rc0MjKi3Nxcvfjii9q1a9dFX7Nr1y7deuutuvHGG/X222/r4Ycf1v333z+jyxcAAJgVbt4KAAAAx3GcX/7yl86nPvUpp7y83ElMTHSio6OdkpIS5wtf+IJz+PDhc7bdvHmzc+211zpxcXGOpInb8B0/ftz55Cc/6WRmZjqJiYnOunXrnM2bNzsFBQXn3KrvQrdbm4zjx487Dz74oFNTU+PEx8c7sbGxTnV1tfMXf/EXzsGDB8/Z9vHHH3caGhqcmJgYJz093fnoRz/q7N+//5xtHnjgASchIeG8/Zy5pdsZZ25X97d/+7fnbSvJ+cpXvnLOYzt27HA+/vGPOzk5OU5UVJSTm5vr3Hzzzc5TTz11znZHjx51Pv/5zzu5ublOdHS0k5eX5zzwwANOT0/PxDbPPfecU1lZ6URGRp5zy7wP3nrvjPHxcSc/P9+R5HzjG9847/kL3XpvdHTU+cIXvuBkZWU5Ho/ngrfhO3M7u0cfffS85y7mzK33LuVC/xb279/v3H777U5qaqqTkpLi3H333c6BAwfO+7s+8/+ps7PTueuuu5ykpCQnLS3N+fznP3/ObRcBAHCLx3EucN4kAABAgPjSl76k//zP/9ShQ4cUHx/vdhxJ0le/+lV97WtfU3d3tzIzM92OAwDAebhmHwAABKyhoSE9/PDDuvPOOwOm6AMAEAy4Zh8AAAScI0eO6KWXXtJTTz2lo0eP6otf/KLbkQAACCqUfQAAEHA6Ozv10Y9+VNnZ2frnf/7ni94uDwAAXBjX7AMAAAAAEGK4Zh8AAAAAgBBD2QcAAAAAIMRQ9gEAAAAACDGUfQAAAAAAQgxlHwAAAACAEEPZBwAAAAAgxFD2AQAAAAAIMZR9AAAAAABCDGUfAAAAAIAQQ9kHAAAAACDEUPYBAAAAAAgxlH0AAAAAAEIMZR8AAAAAgBBD2QcAAAAAIMRQ9gEAAAAACDGUfQAAAAAAQgxlHwAAAACAEEPZBwAAAAAgxFD2AQAAAAAIMZR9AAAAAABCDGUfAAAAAIAQQ9kHAAAAACDEUPYBAAAAAAgxlH0AAAAAAEIMZR8AAAAAgBBD2QcAAAAAIMRQ9gEAAAAACDGUfQAAAAAAQgxlHwAAAACAEEPZBwAAAAAgxFD2AQAAAAAIMZR9AAAAAABCDGUfAAAAAIAQQ9kHAAAAACDEUPYBAAAAAAgxlH0AAAAAAEIMZR8AAAAAgBBD2QcAAAAAIMRQ9gEAAAAACDGUfQAAAAAAQgxlHwAAAACAEEPZBwAAAAAgxFD2AQAAAAAIMZR9AAAAAABCDGUfAAAAAIAQQ9kHAAAAACDEUPYBAAAAAAgxlH0AAAAAAEIMZR8AAAAAgBBD2QcAAAAAIMRQ9gEAAAAACDGUfQAAAAAAQgxlHwAAAACAEEPZBwAAAAAgxFD2AQAAAAAIMZR9AAAAAABCDGUfAAAAAIAQQ9kHAAAAACDEUPYBAAAAAAgxlH0AAAAAAEIMZR8AAAAAgBBD2QcAAAAAIMRQ9gEAAAAACDGUfQAAAAAAQgxlHwAAAACAEEPZBwAAAAAgxFD2AQAAAAAIMZR9AAAAAABCDGUfAAAAAIAQQ9kHAAAAACDEUPYBAAAAAAgxlH0AAAAAAEIMZR8AAAAAgBBD2QcAAAAAIMREuh0AAADMjTHHUffgmA4NjOrQwKhOjY5rbNyRN8KjxMgI5cRHKic+UllxXnk9HrfjAgCAWeRxHMdxOwQAAJg9J4fH1NIzpOaeIQ2Nvf8xHyFp/Kxtzv59rNejhsxY1WfGKiXaO89pAQDAXKDsAwAQIobGxvVqV79aj56WR9JUPuDPbF+XEaNVuQmK8XKlHwAAwYyyDwBACNjVO6zn9/RpYNSZUsn/II+khEiP1hckqSg5erbiAQCAeUbZBwAgyPm7B7Vhf/+UZ/Mv5sz7rMlLkC8rbhbeEQAAzDfO0QMAIIidKfrS7BT9s99nw/5++bsHZ+ldAQDAfGI1fgAAgtSu3uGJon8xT37l82r62eOX3Obrb+9TVEzsBZ/bsL9f6TFeTukHACDIUPYBAAhCQ2Pjen5P36RP3S+ov0IZ+UUXfC4i4uIr8Hsk/XxPn363Mo1F+wAACCKUfQAAgtCrXf1TWozP/PDH5Lv1vinvx5HUP+rola5+3bQ4acqvBwAA7uAregAAgsyJ02NqPXp61q7RvxxHUuvR0zo5PDZPewQAADNF2QcAIMi0Hh2SZ5736ZHU0jM0z3sFAADTxWn8AAAEkTHHUXPP0JRn9XfYv9Gh7Zt0uv+U4lPTlF/VqLLlqxUZHTOp1zuSmnuGtHxhvLye+f6qAQAATBVlHwCAINI9OKahsamfwN/8/BPnPZaUuUB3fuWfVHbNDZN6j6ExR92DY8qJZ/gAAECg8ziOM1+X/AEAgBlq6RnSr/admvT2v3n43+TxRqjkimuVmpOnkdODOrh1o17+3re0p9WSNzJKn/rXJ7XEuGZS73djfqLqMy98mz4AABA4KPsAAASRX+09pbajQxqf4fs4jqOH//gBdb72Sy0srdIf/vi1y74mQlJtRqxuXJw4w70DAIC5xgJ9AAAEkVOj4zMu+pLk8Xi0+vf+VJJ0cOtGnTjUddnXjEvqH52NvQMAgLlG2QcAIIiMjc/eCXlZRaUTvz55+MCkXjM6i/sHAABzh7IPAEAQ8UbM3kr4AyeOTfw6JmFyp+ZHzuL+AQDA3KHsAwAQRBIjI2btw7vthWclSTGJScoqKLns9hGSEiIZOgAAEAz4xAYAIIjkxEdO+pr9A1va1fn6rzQ2OnrO4+Pj47KefVgvfOebkqRl9/6uvFFRl32/8d/uHwAABD4+sQEACCJTKdvHD+zTw3/8gOKSU7WovFaJGVka6jupw9s368Sh/ZKkuhvv0A2f+ZM52T8AAHAPn9gAAASRrDivYr0eDY1dfqG8haVVuub+z6qrs0Xdu7dpT+t7kuMoMT1L1atvke/W+1S+fM2k9x3r9SgrzjuT+AAAYJ54HMdhWV0AAILI6wf69c7hQc3nB7hH0lUL4rRyUcI87hUAAEwX1+wDABBk6jNj57XoS5Lz2/0CAIDgQNkHACDIpER7VZcRo/m6CZ5HUl1GjFKiOYUfAIBgQdkHACAIrcpNUEKkZ84Lv0dSQqRHq3I5fR8AgGBC2QcAIAjFeCO0viBpzk/ndyStL0hSjJchAwAAwYRPbgAAglRRcrTW5M3tjPvavAQVJUfP6T4AAMDso+wDABDEfFlxE4V/tk7pP/M+a/MS1JgVN0vvCgAA5hO33gMAIATs6h3Wz/f0qX/UmdGp/Weu0V9fkMSMPgAAQYyyDwBAiBgaG9erXf1qPXpaHmlKpf/M9nUZMVqVm8A1+gAABDnKPgDMgzHHUffgmA4NjOrQwKhOjY5rbNyRN8KjxMgI5cRHKic+UllxXnk983VDNYSqk8NjaukZUnPPkIbG3v+Yj5A0Lkdnan2EPBr/7faxXo8aMmNVnxnL7fUwYxzvACAwUPYBYA5dvHT9l7N/T+nCbPpg6Tp6akB79u1TQX6+MhLjKV2YVRzvACCwUPYBYA5wOjUC0cGDB/Xv//7v+sxnPqOFCxe6HQchguMdAASmSLcDAECo2dU7rOf39Glg9P0h71S/UT2zfdvR09pxcpiF0gAELI53ABC4+PoUAGaRv3tQj+/o1cAMV0SX3h8E9486enxHr/zdg7MRDwBmDcc7AAhslH0AmCX+7kFt2N8vaeqzWxdz5n027O9nAAwgYHC8A4DAR9kHgFmwq3d4YuA7Vzbs79eu3uE53QcAXA7HOwAIDlyzDwAzNDQ2ruf39E1qYarRkWG9+9RDat/wnI7s3KqRoUHFp6Yrp6RCvlvuVe262y/6Wo+kn+/p0+9WprGIFQBXTOV4d7Zf/uPX9MYP/0WStOZzf65Vn/7jS27P8Q4AZo6yDwAz9GpX/6SuWT15+ID+3x/coyM7tyghNUMFdVcoOi5eJw93aVfTO4qOi79k2T9zTesrXf26aXHSrP4ZAGAyJnu8O9ue1vf064f/VR6PR5O9CRTHOwCYOco+AMzAidNjaj16+rLbjQwN6j9//y51796mGz77p7r+U38kb1TUxPPDgwPq2bvjsu/jSGo9elrLcuK5LzWAeTXZ493ZhgcH9ORXvqCkzAXKq2pQ56u/mPRrOd4BwMxwXhQAzEDr0SF5JrHda9//J3Xv3qYr7vi4Vn/2T84p+pIUHRevRWU1k9qnR1JLz9DUwwLADEz2eHe2F/7lGzq6d6du/x9/r9jEqc/Qc7wDgOmj7APANI05jpp7hi57OuvYyIjeffIhSdKKj//BjPfrSGruGdLYJE+HBYCZmuzx7mw77Tf19o//rxpuvkfly9dMa78c7wBg+jiNHwCmqXtwTENjlx+Adm1uU/+Jo0rOylHm4iU6tK1THa/8XH3dhxSXnKLChqtUes1qRURM/vvXoTFH3YNjyonnMA5g7k32eHfG6YFTeuprX1RiRpZu+fI3Z7RvjncAMD0cNQFgmg4NjE5uu22dkqTkBYv0q3/+ut74wb+cs0jV6w99W4vKa/Q7f/9DpS7Mm9L+GfwCmA+TPd6d8Yv/81Ud79qjj/39DxSXnDor++d4BwBTw2n8ADBNhwZGJ3UQHTh5TJJ0cHO7Xn/o27ry7k/qv//kHX3ljZ36b999SpkFxTqwuV0PffF+jY2MTGrfEZr64BsApmuyxztJ2vr2q3rv6R+odt3tqrr+QzPeN8c7AJgeyj4ATNOp0XGNT2bD387ij42OqO7GO3Tbn/+NsgqKFZuYpJIrV+q//etTioyJ1eHtm9T6wk8mte9xSf2jk9o7AMzYZI93Q329eubrf6SEtEzd+qd/PSv75ngHANND2QeAaRobn9z1q9HxiRO/vuLOj5/3fOrCPJUvXy1J2v7e65Pe/+gk9w8AMzXZ493zf/eXOnn4gG79s79WQlrGrO2f4x0ATB0XPwHANHkjJncTqvS8gv/6dW7hhbf57eN9PUcmvf/ISe4fAGZqsse7ja/+QhGRkXrnye/rnSe/f85z3bu3SZLsZx/V9nffUFJGtu773/8xqffleAcAU0fZB4BpSoyMUIR02VNbc8tr5fF45DiOBk4cVWpO7nnb9J84KkmKiUuY1L4jJCVEcnIWgPkx2eOdJI2PjmqX/62LPn/8wF4dP7BXqQvzJ7VvjncAMD2UfQCYppz4SLUcvfx2SZkLVFB/pXY3v6Pt776hReW15zw/NjKiXU1vS5Lyqhsmte/x3+4fAObDZI93X3ljx0Wfe/Irn1fTzx7Xms/9uVZ9+o8nvW+OdwAwPXxNCgDTNJXB5w2f+RNJ0mvf/yftbbMnHh8bHdXP/8+DOrZ/t2ISEuW79b452T8AzITbxxu39w8AwYgjJwBMU1acV7Fej4bGLr9wVMmV12rN5/5cG/71f+t7n75F+VUNSszI1oHN7Tp+YK+iYuN07199T0kZ2ZPad6zXo6w470z/CAAwKVM53s02jncAMD3M7APANHk9HjVkxmqyy0at+vQf65PfeUIlV67Ukd3btfmNFzU+PibfLffq84+8rPIVayf1Ph5JDZmx8npYsArA/Jjq8W62cLwDgOljZh8AZqA+M1ZvHx6c9PalV1+v0quvn9E+nd/uFwDm01SPdx9099f+RXd/7V+m9BqOdwAwfczsA8AMpER7VZcRM2+zXR5JdRkxSonmlFYA84vjHQAEF8o+AMzQqtwEJUR65nwA7JGUEOnRqtzJ3Z4PAGYbxzsACB6UfQCYoRhvhNYXJGmul61yJK0vSFKMl0M3AHdwvAOA4MERFABmQVFytNbkze0M1Nq8BBUlR8/pPgDgcjjeAUBwoOwDwCzxZcVNDIBn6xTXM++zNi9BjVlxs/SuADAzHO8AIPCxGj8AzCJfVpzSY7z6+Z4+9Y86MzrV9cw1q+sLkpjhAhBwON4BQGBjZh8AZllRcrQ+XZmm2owYSdOY9XLeHzLXZsTodyvTGPgCCFjnHO8cR3LGp/T6M8dHjncAMPuY2QeAORDrjdBNi5O0LCdeLT1Dau4Z0tDY+yU+QtLZw+Gzf+8dH9X4no369I0rlBHPoBdA4Iv1RmjNoji1P/cjZdWv0MmURZM63sV6PWrIjFV9Ziy31wOAOUDZB4A5lBLt1cpFCVq+MF7dg2M6NDCqQwOj6h8d1+i4o8gIjxIiI5QTH6mc+EhF9J/Qd5//jbpKspRRW+t2fACYlM7OTg0e69atlYuUmp4+qeNdVpxXXs9c38QPAMIXZR8A5oHX45kY4F5SfKaWLFki27ZVS9kHECQsy9KSJUuUkZEhSZM73gEA5hTX7ANAgDEMQ/v27dOhQ4fcjgIAl3Xw4EHt379fpmm6HQUAcBbKPgAEmLKyMiUlJcmyLLejAMBl2bat5ORklZaWuh0FAHAWyj4ABJiIiAj5fD61t7draGjI7TgAcFFDQ0Nqb2+Xz+dTRATDSgAIJByVASAANTY2amxsTK2trW5HAYCLam1t1djYmBobG92OAgD4AMo+AASgpKQkVVRUyLZtOY7jdhwAOI/jOLIsSxUVFUpMTHQ7DgDgAyj7ABCgDMNQT0+Pdu/e7XYUADjP7t27dfToURbmA4AARdkHgABVUFCgrKws2bbtdhQAOI9lWcrKytLixYvdjgIAuADKPgAEKI/HI8MwtGnTJvX19bkdBwAm9Pb2avPmzTJNUx6Px+04AIALoOwDQACrq6tTZGSk/H6/21EAYEJTU5OioqJUW1vrdhQAwEVQ9gEggMXExKi2tlZNTU0aGxtzOw4AaGxsTH6/X7W1tYqJiXE7DgDgIij7ABDgTNNUX1+ftmzZ4nYUANCWLVt06tQpGYbhdhQAwCVQ9gEgwC1YsECLFy9moT4AAcGyLC1evFgLFixwOwoA4BIo+wAQBAzD0K5du9Td3e12FABhrLu7W7t37+Z2ewAQBCj7ABAEKioqlJCQwOw+AFfZtq2EhARVVFS4HQUAcBmUfQAIApGRkWpoaFBra6uGh4fdjgMgDA0PD6u1tVWNjY3yer1uxwEAXAZlHwCChM/n0/DwsNrb292OAiAMtbW1aXh4WD6fz+0oAIBJoOwDQJBITU1VaWmpLMuS4zhuxwEQRhzHkW3bKi0tVUpKittxAACTQNkHgCBiGIYOHz6s/fv3ux0FQBjZt2+fDh8+zMJ8ABBEKPsAEESKi4uVlpYmy7LcjgIgjNi2rfT0dC1ZssTtKACASaLsA0AQ8Xg8MgxDnZ2d6u/vdzsOgDDQ39+vjRs3yjAMeTwet+MAACaJsg8AQaa+vl4ej0fNzc1uRwEQBpqamhQREaH6+nq3owAApoCyDwBBJj4+XtXV1bJtW+Pj427HARDCxsfH5ff7VV1drbi4OLfjAACmgLIPAEHIMAydPHlS27dvdzsKgBC2bds2nTx5koX5ACAIUfYBIAjl5uZq0aJFLNQHYE7Ztq1FixZp0aJFbkcBAEwRZR8AgpRhGNq+fbuOHTvmdhQAIejYsWPavn07s/oAEKQo+wAQpKqrqxUbGyu/3+92FAAhyLZtxcXFqaqqyu0oAIBpoOwDQJCKiopSQ0ODmpubNTIy4nYcACFkZGRELS0tqq+vV1RUlNtxAADTQNkHgCBmGIYGBwfV2dnpdhQAIWTjxo0aHByUYRhuRwEATBNlHwCCWHp6uoqLi1moD8Cssm1bJSUlSk9PdzsKAGCaKPsAEORM01RXV5cOHDjgdhQAIeDAgQPq6upiVh8AghxlHwCC3NKlS5WSkiLbtt2OAiAEWJallJQULV261O0oAIAZoOwDQJCLiIiQz+dTe3u7BgcH3Y4DIIgNDg6qo6NDPp9PEREMEwEgmHEUB4AQ0NDQoPHxcbW2trodBUAQa2lp0fj4uBobG92OAgCYIco+AISAxMREVVZWyrIsOY7jdhwAQchxHNm2raqqKiUkJLgdBwAwQ5R9AAgRpmnq2LFj2rVrl9tRAAShnTt36tixYyzMBwAhgrIPACEiPz9f2dnZ3IYPwLTYtq0FCxYoPz/f7SgAgFlA2QeAEOHxeGSaprZs2aLe3l634wAIIidPntSWLVtkGIY8Ho/bcQAAs4CyDwAhpKamRlFRUfL7/W5HARBE/H6/oqKiVFtb63YUAMAsoewDQAiJiYlRXV2dmpqaNDY25nYcAEFgbGxMTU1NqqurU3R0tNtxAACzhLIPACHGMAydOnVKmzdvdjsKgCCwadMm9ff3yzRNt6MAAGYRZR8AQkx2drYKCgpYqA/ApNi2rcLCQmVlZbkdBQAwiyj7ABCCTNPUnj17dOTIEbejAAhgR44c0Z49e7jdHgCEIMo+AISg8vJyJSYmMrsP4JIsy1JiYqLKy8vdjgIAmGWUfQAIQV6vV42NjWpra9Pp06fdjgMgAJ0+fVptbW1qbGyU1+t1Ow4AYJZR9gEgRPl8Po2MjKitrc3tKAACUFtbm0ZGRuTz+dyOAgCYA5R9AAhRycnJKisrk23bchzH7TgAAojjOLIsS+Xl5UpOTnY7DgBgDlD2ASCEmaapI0eOaO/evW5HARBA9u7dq+7ubhbmA4AQRtkHgBBWVFSkjIwM2bbtdhQAAcSyLGVkZKioqMjtKACAOULZB4AQ5vF4ZBiGOjs7derUKbfjAAgAp06d0qZNm2QYhjwej9txAABzhLIPACGurq5OERERampqcjsKgADQ1NSkiIgI1dfXux0FADCHKPsAEOLi4uJUU1Mjv9+v8fFxt+MAcNH4+Lj8fr9qamoUGxvrdhwAwByi7ANAGDBNU729vdq6davbUQC4aOvWrert7dUVV1zhdhQAwByj7ANAGFi4cKHy8vJYqA8Ic5ZlKS8vTzk5OW5HAQDMMco+AIQJwzC0Y8cOHT161O0oAFxw9OhR7dy5U6Zpuh0FADAPKPsAECaqqqoUFxfH7D4QpmzbVnx8vCorK92OAgCYB5R9AAgTkZGRamhoUEtLi0ZGRtyOA2AejYyMqKWlRQ0NDYqMjHQ7DgBgHnC0B2bZmOOoe3BMhwZGdWhgVKdGxzU27sgb4VFiZIRy4iOVEx+prDivvNzfGPPMMAy99dZb6ujoUENDg9txAMyTjo4ODQ0NyefzuR0FYYrxETD/KPvALDk5PKaWniE19wxpaMyR9P6pM2ff6CxCUstvL5eO9XrUkBmr+sxYpUR75zsuwlRaWpqWLl0q27Yp+0CYcBxHlmVp6dKlSktLczsOwgzjI8A9lH1ghobGxvVqV79aj56WR5Jz1nMfvKP5+Dmvc/TO4UG9fXhQdRkxWpWboBgvV9Zg7hmGoccee0xdXV3Kzc11Ow6AOXbgwAEdPHhQ999/v9tREEYYHwHuo+wDM7Crd1jP7+nTwOj7H2HOZbb/oDPbtx09rR0nh7W+IElFydGzmhH4oJKSEqWmpsq2bco+EAYsy1JqaqqKi4vdjoIwwfgICAx8TQZMk797UI/v6NXAqDPlD7EPciT1jzp6fEev/N2DsxEPuKiIiAj5fD51dHRoYGDA7TgA5tDAwIA6OjpkGIYiIhj2Ye4xPgICB0d9YBr83YPasL9f0tS/rb6YM++zYX8/H2iYcw0NDXIcRy0tLW5HATCHzvyMs0YH5gPjIyCwcBo/MEW7eocnPsgu5PiBvfrWzZNb7fgz//GcinzLznt8w/5+pcd4OWUNcyYhIUFVVVWybVtXX321PKx8DIQcx3Fk27aqqqoUHx/vdhyEuMuNjySp+RdPadvbr+rg1o3q6zmswb4TioqNU1ZBiaqu/5CuvvfTiolPvOjrGR8BU0PZB6ZgaGxcz+/pO2+hmbNFxyWo8ZaPXPQ9juzcqv0bmxWTkKjcyroLbuOR9PM9ffrdyjQWpcGcMQxDbW1t2rFjh0pKStyOA2CW7dixQ8ePH9cdd9zhdhSEuMmMjyTp3ae+r72tlrKKSrWovEbxKWk6dbRbe9tt7d/YLPu5R/WZ//tTJWflXPD1jI+AqaHsA1Pwalf/Za9BS0jL0N1f+5eLPv/9L9wrSapde7ui4xIuuM2Za9Re6erXTYuTZpAYuLi8vDzl5OTItm3KPhCCLMtSTk4OC3Fizk1mfCRJH/rS15W5eIniU869BWT/iWN6+L9/XLtb3tXP/+FB3ffX/37B1zM+AqaGr8SASTpxekytR0/P6Bq0k0cOatvbr0qSjA9/9JLbOpJaj57WyeGxGewRuDiPxyPDMLR161adOHHC7TgAZtGJEye0detWmabJZTqYU1MZHy2u8Z1X9CUpITVdaz//l5Kkbe+8dsn3YHwETB5lH5ik1qNDmulwqemnj8kZH9eC4nItrrn8df0eSS09QzPcK3BxNTU1io6Olt/vdzsKgFnk9/sVExOj6upqt6MgxM3G+EiSIrzvn3AcGXX56/EZHwGTQ9kHJmHMcdTcMzTjlWX9P/uxJMm47dKz+mc4kpp7hjTmzNaatsC5oqOjVVdXp+bmZo2OjrodB8AsGB0dVVNTk+rr6xUdzUJmmDuzNT463X9KL3/vW5KkipU3XnZ7xkfA5HDNPjAJ3YNjGhqb2QfKTv+bOrpvl7xR0WpYf/ekXzc05qh7cEw58fy4Ym6Ypqn33ntPmzZtUk1NjdtxAMxQZ2enBgYGZBiG21EQ4qY7Ptr69qtq/dXTcsYdnTp6RHvbbZ3uP6XSZat00x8+OKn3YHwEXB4/HcAkHBqY+Yyn/dyjkqSKleuUkJYx5f3zYYa5kpmZqaKiIlmWRdkHQoBt2yoqKlJmZqbbURDipjs+OrJzi5p+9vg5j9XddKfW//evKzYpeUr7Z3wEXByn8QOTcGhgdEY/LEOn+tTx0vOSJOO2+6f02gjNzpcNwKUYhqF9+/bp0KFDbkcBMAOHDh3Svn37ZJqm21EQBqY7Plr+0d/TXzd16xvvHtCXn3tPH/rvX9fWN1/W/7lruXb535rUezA+Ai6Psg9MwqnRcY3P4PVtL/xEI0MDSlmwSEuvXjWl145L6h+dyd6ByysrK1NSUpJs23Y7CoAZsCxLSUlJKisrczsKwsBMx0feqChl5Bdpxcd+X5/49o811HtCj//Pz2lkaPCyr2V8BFweZR+YhLHxmV2vf+YU/sZb7lVExNR/7EZnuH/gcrxerxobG9XW1qahIVY4BoLR0NCQ2tvb5fP5pvVZA0zVTMdHZ1tc41P2kjKdPNSl/Z0tk3oN4yPg0vgkACbBGzH9m8oc3rlF+zr879/T/Nb7pvUekTPYPzBZPp9Po6OjamtrczsKgGlobW3V2NiYGhsb3Y6CMDGT8dGFRMXFS5L6j/dManvGR8ClUfaBSUiMjJj2D4v97COSpCXGcqXnFU759RGSEiL5UcXcS0pKUkVFhSzLksPtjICg4jiObNtWeXm5kpKS3I6DMDGT8dEH9R8/qkNbN0qSMhcXX3Z7xkfA5fETAkxCTnzktK5JGxsZUcsvnpIkGR/+6LT2Pf7b/QPzwTAM9fT0aM+ePW5HATAFu3fvVk9PDwvzYV5NZXx0eOcWNf/iKY2cPv9Sse49O/Ton/03jQ6fVn6NoZyllZd9P8ZHwOXxEwJMwnQ/TDb/+kWdOtat2KQUVa1aP+/7B6aqsLBQmZmZsixLhYWFbscBMEm2bSszM1MFBQVuR0EYmcr4pP9Yj574H7+vZ7/5x1pUVqPkBYs0NjKsE4e6dGBzm5zxcWUXler+//0fc7J/IBzxEwJMQlacV7Fej4bGpnZq85mF+epvvENRMbHT2nes16OsOO+0XgtMlcfjkWEYevHFF9XX18fpwEAQ6Ovr06ZNm3TjjTfK4+EaZsyfqYyPsovLtPYP/j/tbn5H3bu368CWdo2Njio+JVXFV1yr6lXr5bv1PkVGx0xq34yPgMuj7AOT4PV41JAZq3cOD2oqdf+Bf3pkRvv1SGrIjJWXwRvmUV1dnV5++WU1NTVp5cqVbscBcBl+v1+RkZGqq6tzOwrCzFTGR4lpmbr+v31pVvbL+AiYHK7ZByapPjN2SkV/Nji/3S8wn2JjY1VbWyu/36+xsTG34wC4hLGxMTU1Nam2tlYxMZObEQVmE+MjIHBR9oFJSon2qi4jRvP1HbJHUl1GjFKiOUUN888wDPX19Wnr1q1uRwFwCVu2bFFfXx8L88E1jI+AwEXZB6ZgVW6CEiI9c/6B5pGUEOnRqtyEOd4TcGE5OTnKz8+XZVluRwFwCbZta/HixVqwYIHbURDGGB8BgYmyD0xBjDdC6wuS5vx0NUfS+oIkxXj5EYV7TNPUrl271NPT43YUABfQ3d2tXbt2yTAMt6MgzDE+AgITPynAFBUlR2tN3tx+o1w0dFBFydFzug/gcioqKhQfHy/btt2OAuACbNtWQkKCKioq3I4CaG/z2xppe31O97E2L4HxETAFlH1gGnxZcROFf7ZOWTvzPkWDB7T5xWf0xhtvzNI7A9MTGRmpxsZGtbS0aHh42O04AM4yPDys1tZWNTQ0KDKSmyvBXa+//rpee+01rSzKmrPx0dq8BDVmxc3SuwLhgU8HYJp8WXFKj/Hq53v61D/qzOjUtTPXoK0vSFJRcqZeHzmuV199VZJ07bXXzkpeYDp8Pp9+85vfqKOjQ42NjW7HAfBb7e3tGh4els/nczsKwtyZon/99ddPjFnmZnzEjD4wVZR9YAaKkqP16co0vdrVr9ajp+WRpvShdmb72owYrcpNmLgG7cy9zSn8cFtqaqpKS0tlWZYaGhrk4Z7GgOscx5Ft2yotLVVqaqrbcRDGLlT0pbkbHwGYGso+MEOx3gjdtDhJy3Li1dIzpOaeIQ2Nvf+RFiFp/Kxtz/59rNejhsxY1WfGXvD2MRR+BArTNPXII4+oq6tLeXl5bscBwt7+/ft16NAh3XDDDW5HQRi7WNE/Y67GRwAmj7IPzJKUaK9WLkrQ8oXx6h4c06GBUR0aGFX/6LhGxx1FRniUEBmhnPhI5cRHKivOK+9lZkkp/AgExcXFSktLk2VZlH0gANi2rbS0NBUXF7sdBWHqckX/bHMxPgIwOZR9YJZ5PZ6JD6zZQOGH2zwejwzD0CuvvKJ169YpPj7e7UhA2Orv79fGjRu1atUqLquBK6ZS9M822+MjAJfHBTBAEFi5cqWuu+46vfrqq6zSD1fU19dLkpqbm90NAoS55uZmeTyeiZ9JYD5Nt+gDcAdfrQFBghl+uCk+Pl7V1dWybVtXX321IiL4rhiYb+Pj4/L7/aquruYMG8w7ij4QfBitAUGEGX64yTRNnThxQjt27HA7ChCWtm/frhMnTsgwDLejIMxQ9IHgxMw+EGSY4YdbFi1apIULF8qyLC1dutTtOEDYsW1bixYtUm5urttREEYo+kDwYmYfCELM8MMNHo9Hpmlq27ZtOn78uNtxgLBy/Phxbdu2jVl9zCuKPhDcKPtAkKLwww3V1dWKjY2VbdtuRwHCim3bio2NVXV1tdtRECYo+kDwo+wDQYzCj/kWFRWl+vp6NTc3a3R01O04QFgYGRlRc3Oz6uvrFRUV5XYchAGKPhAaKPtAkKPwY74ZhqHBwUFt3LjR7ShAWOjs7NTg4CCn8GNeUPSB0MECfUAIYNE+zKeMjAwtWbJEtm2rrq7O7ThAyLMsS8XFxcrIyHA7CkIcRR8ILczsAyGCGX7MJ9M0tX//fh08eNDtKEBIO3DggLq6upjVx5yj6AOhh7IPhBAKP+ZLaWmpkpOTZVmW21GAkGbbtpKTk1VaWup2FIQwij4Qmij7QIih8GM+REREyOfzqb29XUNDQ27HAULS4OCg2tvb5fP5FBHBkA1zg6IPhC4+OYAQROHHfGhsbNT4+LhaWlrcjgKEpNbWVo2Pj6uxsdHtKAhRFH0gtLFAHxCiWLQPcy0xMVEVFRWybVtXXnmlPB6P25GAkOE4jizLUmVlpRITE92OgxBE0QdCHzP7QAhjhh9zzTRNHT16VLt27XI7ChBSdu3apWPHjsk0TbejIARR9IHwwMw+EOKY4cdcWrx4sbKzs2XbtpYsWeJ2HCBkWJal7Oxs5efnux0FIYaiD4QPZvaBMMAMP+aKx+ORYRjavHmzent73Y4DhITe3l5t2bJFpmlyeQxmFUUfCC+UfSBMUPgxV2praxUVFSW/3+92FCAk+P1+RUVFqaamxu0oCCEUfSD8cBo/EEY4pR9zISYmRrW1tWpqatK1114rr9frdiQgaI2NjampqUl1dXWKiYlxOw5CBEUfCE/M7ANhhhl+zAXTNHXq1Clt3rzZ7ShAUNu8ebNOnTolwzDcjoIQQdEHwhcz+0AYYoYfsy07O1sFBQWybVtVVVVuxwGClmVZKigoUHZ2tttREAIo+kB4Y2YfCFPM8GO2GYah3bt3q7u72+0oQFA6cuSI9uzZw+32MCso+gAo+0AYo/BjNlVUVCghIUGWZbkdBQhKtm0rMTFR5eXlbkdBkKPoA5Ao+0DYo/Bjtni9XjU2Nqq1tVXDw8NuxwGCyunTp9Xa2qrGxkYWucSMUPQBnEHZB0Dhx6zx+XwaGRlRW1ub21GAoNLe3q6RkRH5fD63oyCIUfQBnI0F+gBIYtE+zI6UlBSVlZXJtm35fD55PB63IwEBz3EcWZalsrIyJScnux0HQYqiD+CDmNkHMIEZfswGwzB0+PBh7du3z+0oQFDYt2+fjhw5wsJ8mDaKPoALYWYfwDmY4cdMLVmyROnp6bJtW4sXL3Y7DhDwLMtSRkaGioqK3I6CIETRB3AxzOwDOA8z/JgJj8cjwzC0ceNG9ff3ux0HCGinTp1SZ2enDMPgshdMGUUfwKVQ9gFcEIUfM1FfX6+IiAg1NTW5HQUIaM3NzYqIiFBdXZ3bURBkKPoALofT+AFcFKf0Y7ri4uJUXV0tv9+va665RhERfLcMfND4+Lhs21ZNTY3i4uLcjoMgQtEHMBmMvgBcEjP8mC7TNHXy5Elt27bN7ShAQNq6dat6e3tZmA9TQtEHMFnM7AO4LGb4MR2LFi1Sbm7uxC3FAJzLtm3l5uZq4cKFbkdBkKDoA5gKZvYBTAoz/JgOwzC0Y8cOHTt2zO0oQEA5evSoduzYwaw+Jo2iD2CqKPsAJo3Cj6mqqqpSXFycbNt2OwoQUGzbVlxcnKqqqtyOgiBA0QcwHZR9AFNC4cdUREVFqb6+Xs3NzRoZGXE7DhAQRkZG1NLSooaGBkVGckUlLo2iD2C6KPsApozCj6kwDENDQ0PauHGj21GAgNDR0aGhoSH5fD63oyDAUfQBzARfJwOYFhbtw2Slp6erpKRElmWpvr7e7TiA62zbVklJidLT092OggBG0QcwU8zsA5g2ZvgxWYZh6MCBA+rq6nI7CuCqrq4uHThwgIX5cEkUfQCzgZl9ADPCDD8mY+nSpUpJSZm41RgQrmzbVkpKikpKStyOggBF0QcwW5jZBzBjzPDjciIiIuTz+dTR0aHBwUG34wCuGBgYUEdHhwzDUEQEQzCcj6IPYDbxSQNgVlD4cTmNjY1yHEctLS1uRwFc0dLSIsdx1NDQ4HYUBCCKPoDZxmn8AGYNp/TjUhISElRZWSnbtnXVVVfJ4/G4HQmYN47jyLZtVVVVKSEhwe04CDAUfQBzgZl9ALOKGX5cimmaOnbsmHbu3Ol2FGBe7dixQ8ePH5dhGG5HQYCh6AOYK8zsA5h1zPDjYvLy8rRgwQJZlqXi4mK34wDzxrZt5eTkKC8vz+0oCCAUfQBziZl9AHOCGX5ciMfjkWma2rp1q06ePOl2HGBenDhxQlu3bpVhGFy+ggkUfQBzjbIPYM5Q+HEhNTU1io6Olt/vdzsKMC/8fr+io6NVU1PjdhQECIo+gPnAafwA5hSn9OODoqOjVVdXp6amJq1cuVJer9ftSMCcGR0dVXNzs+rq6hQdHe12HAQAij6A+cLMPoA5xww/PsgwDPX392vTpk1uRwHm1KZNm9Tf3y/TNN2OggBA0Qcwn5jZBzAvmOHH2bKyslRYWCjLslRdXe12HGDO2LatoqIiZWZmuh0FLqPoA5hvzOwDmDfM8ONspmlq7969Onz4sNtRgDlx+PBh7d27l9vtgaIPwBWUfQDzisKPM8rKypSYmCjbtt2OAswJy7KUlJSksrIyt6PARRR9AG6h7AOYdxR+SJLX65XP51NbW5tOnz7tdhxgVp0+fVptbW1qbGxkEcowRtEH4CbKPgBXUPghSY2NjRoZGVFbW5vbUYBZ1draqtHRUfl8PrejwCUUfQBuY4E+AK5h0T4kJyervLxclmXJMAx5PB63IwEz5jiObNtWRUWFkpKS3I4DF1D0AQQCZvYBuIoZfpimqe7ubu3du9ftKMCs2LNnj7q7u1mYL0xR9AEECmb2AbiOGf7wVlhYqIyMDFmWpYKCArfjADNm27YyMzNVWFjodhTMM4o+gEBC2QcQECj84cvj8cg0Tb344ovq6+vjtGcEtb6+Pm3atElr167lspQwQ9EHEGg4jR9AwOCU/vBVV1cnr9erpqYmt6MAM9LU1CSv16u6ujq3o2AeUfQBBCJm9gEEFGb4w1NsbKxqamrk9/u1YsUKRUTwXTSCz9jYmPx+v2pqahQbG+t2HMwTij6AQMVoCkDAYYY/PJmmqb6+Pm3ZssXtKMC0bN26VX19fTJN0+0omCcUfQCBjJl9AAGJGf7wk5OTo7y8vIlblgHBxrIs5efnKycnx+0omAcUfQCBjpl9AAGLGf7wY5qmdu7cqZ6eHrejAFPS09OjXbt2cbu9MEHRBxAMKPsAAhqFP7xUVlYqPj5etm27HQWYEtu2FR8fr8rKSrejYI5R9AEEC8o+gIBH4Q8fkZGRamhoUEtLi4aHh92OA0zK8PCwWlpa1NDQoMhIrpAMZRR9AMGEsg8gKFD4w4fP59Pp06fV0dHhdhRgUjo6OnT69GlO4Q9xFH0AwYavnwEEDRbtCw9paWlaunSpLMtSQ0ODPB6P25GAi3IcR5ZlqbS0VKmpqW7HwRyh6AMIRszsAwgqzPCHB9M0dejQIXV1dbkdBbikrq4uHTp0iNvthTCKPoBgxcw+gKDDDH/oKykpUWpqqmzbVl5enttxgIuyLEtpaWkqLi52OwrmAEUfQDBjZh9AUGKGP7R5PB4ZhqGOjg4NDAy4HQe4oIGBAW3cuFGGYXC5SQii6AMIdpR9AEGLwh/aGhoaJEnNzc0uJwEu7My/zfr6eneDYNZR9AGEAk7jBxDUOKU/dMXHx6u6ulq2bWvZsmXMnCKgjI+Py7ZtVVdXKz4+3u04mEUUfQChgpl9AEGPGf7QZRiGTpw4oe3bt7sdBTjHjh07dOLECRbmCzEUfQChhJl9ACGBGf7QlJubq4ULF8q2bS1dutTtOMAEy7K0cOFCLVq0yO0omCUUfQChhpl9ACGDGf7Qc2ahvq1bt+rEiRNuxwEkScePH9e2bdtkmiaXl4QIij6AUETZBxBSKPyhp6amRjExMbJt2+0ogCTJ7/crNjZW1dXVbkfBLKDoAwhVlH0AIYfCH1qioqJUX1+v5uZmjY6Ouh0HYW50dFTNzc2qr69XVFSU23EwQxR9AKGMsg8gJFH4Q4thGBoYGFBnZ6fbURDmOjs7NTAwIMMw3I6CGaLoAwh1LNAHIGSxaF/oyMzM1JIlS2Tbtmpra92OgzBmWZaWLFmijIwMt6NgBij6AMIBM/sAQhoz/KHDMAzt27dPhw4dcjsKwtTBgwe1f/9+brcX5Cj6AMIFZR9AyKPwh4aysjIlJSXJsiy3oyBM2bat5ORklZaWuh0F00TRBxBOKPsAwgKFP/hFRETI5/Opvb1dQ0NDbsdBmBkaGlJ7e7t8Pp8iIhg+BSOKPoBww6cVgLBB4Q9+jY2NGhsbU2trq9tREGZaW1s1NjamxsZGt6NgGij6AMIRC/QBCCss2hfckpKSVFFRIdu2dcUVV8jj8bgdCWHAcRxZlqWKigolJia6HQdTRNEHEK6Y2QcQdpjhD26GYainp0e7d+92OwrCxK5du3T06FEW5gtCFH0A4YyZfQBhiRn+4FVQUKCsrCxZlqWioiK34yAM2LatrKwsLV682O0omAKKPoBwx8w+gLDFDH9w8ng8MgxDmzdvVm9vr9txEOJ6e3u1efNmmabJZSNBhKIPAJR9AGGOwh+c6urqFBkZqaamJrejIMT5/X5FRUWptrbW7SiYJIo+ALyP0/gBhD1O6Q8+MTExqq2tld/v14oVK+T1et2OhBA0NjampqYm1dbWKiYmxu04mASKPgD8F2b2AUDM8Acj0zR16tQpbdmyxe0oCFGbN2/WqVOnZBiG21EwCRR9ADgXM/sA8FvM8AeXBQsWaPHixbIsS5WVlW7HQQiybVuLFy/WggUL3I6Cy6DoA8D5mNkHgLMwwx9cDMPQ7t271d3d7XYUhJju7m7t3r2b2+0FAYo+AFwYZR8APoDCHzwqKiqUkJAg27bdjoIQY1mWEhISVFFR4XYUXAJFHwAujrIPABdA4Q8OkZGRamhoUGtrq4aHh92OgxAxPDys1tZWNTY2svhjAKPoA8ClUfYB4CIo/MHBMAwNDw+rvb3d7SgIEW1tbRoZGZHP53M7Ci6Cog8Al8cCfQBwCSzaF/hSUlJUWloqy7LU2Ngoj8fjdiQEMcdxZNu2ysrKlJKS4nYcXABFHwAmh5l9ALgMZvgDn2maOnz4sPbv3+92FAS5ffv26fDhw9xuL0BR9AFg8pjZB4BJYIY/sC1ZskTp6emyLEv5+flux0EQs21b6enpWrJkidtR8AEUfQCYGmb2AWCSmOEPXB6PR4ZhqLOzU/39/W7HQZDq7+/Xxo0bZRgGl4MEGIo+AEwdZR8ApoDCH7jq6+vl8XjU3NzsdhQEqaamJkVERKi+vt7tKDgLRR8ApofT+MPImOOoe3BMhwZGdWhgVKdGxzU27sgb4VFiZIRy4iOVEx+prDivvMxoABfFKf2BKS4uTtXV1bJtW8uWLVNEBN9nY/LGx8fl9/tVXV2tuLg4t+Pgtyj6wNQw3sfZKPth4OTwmFp6htTcM6ShMUfS+6d0jJ+1TYSklqPv/zrW61FDZqzqM2OVEs39hYELofAHJtM01dLSou3bt6u0tNTtOAgi27Zt08mTJ2WapttR8FsUfWDyGO/jQij7IWxobFyvdvWr9ehpeSQ5Zz03/oFtx895naN3Dg/q7cODqsuI0arcBMV4mSEDPojCH3gWLVqkRYsWybIsyj6mxLZt5ebmatGiRW5HgSj6wGQx3selUPZD1K7eYT2/p08Do+//yDuX2f6DzmzfdvS0dpwc1vqCJBUlR89qRiAUUPgDj2maeu6553Ts2DGlp6e7HQdB4NixY9q+fbtuu+02t6NAFH1gshjv43L4+iYE+bsH9fiOXg2MOlP+of8gR1L/qKPHd/TK3z04G/GAkMOifYGlqqpKsbGx8vv9bkdBkLBtW3FxcaqqqnI7Stij6AOTw3gfk0HZDzH+7kFt2P/+badm+oN/xpn32bC/nwMAcBEU/sARFRWlhoYGNTc3a2RkxO04CHAjIyNqaWlRfX29oqKi3I4T1ij6wOQw3sdkcRp/CNnVOzzxg38pJw7u1+s/+La2v/u6ThzqkhxHSZkLVNh4lVZ87Pe1sLT6oq/dsL9f6TFeTvEBLoBT+gOHYRh6++231dnZqbq6OrfjIIBt3LhRg4ODMgzD7ShhjaIPTM6lxvtjIyPa1fS2tr71inb639TRvTs1PDSg+JQ05Vc16oo7P67yFWsvuw/G+6GDmf0QMTQ2ruf39OlyN9DY2+7XP96zQu888f80PDigpVddp7JrVksej5qff0L/8rE1at/w3EVf75H08z19Oj32wSU/AEjM8AeK9PR0FRcXy7Ist6MgwNm2rZKSEtZ3cBFFH5icy433dzW9pf/8/Tv16x99R71HDqig/kpVXb9eCWmZ2vTGC/rBFz+qn3zjj+U4lz4fgPF+6GBmP0S82tU/qWt2fvKNP9bp/lO64o6P69Y/+9/y/vaUxfHxcb30b3+jV//vP+iZb/yxyq9dp6iY2PNef+aanle6+nXT4qTZ/4MAIYAZ/sBgmqZ+/OMf68CBA6ywjgs6cOCAurq6dO+997odJWxR9IHJu9x43+OJUPUNN2vZfZ9RUePV5zzX9sJP9Pj/+H2998wPVVB/hRpv/shF98N4P3Qwsx8CTpweU+vR05ct+v0njunQto2SpDV/8BcTRV+SIiIitPqzf6qo2DgN9Z1U966tF30fR1Lr0dM6OTw2C+mB0MQMv/uWLl2qlJQU2bbtdhQEKMuylJKSoqVLl7odJSxR9IHJm8x4v/iKFfro337/vKIvSbXrblfjLe9/sdn0/BOX3R/j/dBA2Q8BrUeHLnv6viRFRk/+upv41IxLPu+R1NIzNOn3A8IRhd9dERER8vl8am9v1+Agiw3hXIODg+ro6JDP51NEBMOh+UbRB6ZmsuP9S1lUViNJOnm4a1LbM94Pfny6Bbkxx1Fzz9CkVuKMiU9UYcNVkqQN3/lrjZ21SvX4+Lhe+t63NDI0qNJrblBqTu4l38uR1NwzpLHLXPMDhDsKv7saGho0Pj6ulpYWt6MgwLS0tGh8fFyNjY1uRwk7FH1gaqYy3r+Unr07JUlJmQsmtT3j/eDHNftBrntwTENjk/8BvON//h899If36b1nfqjNv9mgvMp6eSIidGBLh3qPHFTD+nt065/970m919CYo+7BMeXE888IuBSu4XdPYmKiKisrZdu2rrrqKnk8M50XQShwHEe2bauqqkoJCQluxwkrFH1g6qY63r+Qvp7DavrZjyVJ1TfcPOnXMd4PbszsB7lDA6NT2j6rsES//9AvtPSq69R75KA6X/ulNr7ycx3v2qOM/CIt8S1TbOLkF+KY6v6BcMUMv3tM09SxY8e0c+dOt6MgQOzcuVPHjh3jdnvzjKIPTM9Mx9tjo6N6/H98TkOnepVTUqkr7nxgXvcP9/AVTZA7NDCqCEmTvTHG7pZ39ciXP6kIr1cf+avvqdhcrsioaO1ueU8//4f/qae//kfa0/qe7vzKP132vSLEDz8wFczwuyM/P1/Z2dmybVvFxcVux0EAsCxLCxYsUH5+vttRwgZFH5i+qY73P+jZv/qydrz3huJT03X/3/4/RUZNfh0vxvvBjZn9IHdqdHzSP/iDfSf18B9/Qv3He/TRv3tI9TfeoaSMbMUlp6ri2rX61L88rqjYeNnPPaod1m8u+37jkvpHuf8mMBXM8M8/j8cj0zS1ZcsWnTx50u04cNnJkye1detWGYbBZR3zhKIPzMxUxvsf9LO//f9kP/uI4pJT9d/+9UllFUztS2/G+8GNsh/kxsYnf/3O5l9vUP/xHqXlFmhxje+859PzCpVf/f5CRdvffX1S7zk6hf0DeB+Ff/7V1NQoKipKfr/f7Shwmd/vV1RUlGpra92OEhYo+sDMTWW8f7af/8ODeuux/1BsUoo+9a9PalH59I57jPeDF6fxBzlvxORnJU4e2i9Jl7wmPzYpWZI02HtiUu8ZOYX9A/gvnNI/v2JiYlRXV6empiatXLlSXq/X7UhwwdjYmJqamlRXV6foKdyOFtND0Qdmx1TG+2f88h+/pt88/F3FJibrU//6pPIq66e9f8b7wYuZ/SCXGBkx6f+JydkLJUndu7drqK/3vOfHRkZ0YFObJClt0eLLvl+EpIRI/gkB08UM//wyDEP9/f3atGmT21Hgkk2bNqm/v1+mabodJeRR9IHZM5XxviT96p+/rjd++C/vF/3vPqX8qoZp75vxfnDj/1yQy4mPnPQ1PKXX3KDouHiNDA3qmW98SacHTk08NzoyrOf//n/oxKH98kZGqWb1LZd9v/Hf7h/A9FH45092drYKCgpk27bbUeASy7JUWFiorKwst6OENIo+MLumMt5/8Tt/pdcf+vb7p+7PsOhLjPeDHf/ngtxUfvgS0zL14f/v7/TU1/5Q7Rt+qp32W8qrqpc3Mkr7O1vUe+SgPBERuuVP/0rpeYWzvn8AF8Yp/fPHNE099dRTOnLkiLKzs92Og3l0+PBh7d27V3fffbfbUUIaRR+YfZMdb3e+/iu9+p//R5KUkV+kd574T71zge0SUjP0oS99bdb3j8DD/7kglxXnVazXo6GxyS2c0bD+buUsrdCbj3xPu5rf0Y73fi3HcZSUuUD1N92lZff97sQifZfjHR9VRP8JKT5zBn8CABKFf76Ul5crMTFRlmVp/fr1bsfBPLJtW4mJiSorK3M7Ssii6AOzr6enR822X0qrkqJjL7nt4MnjE7/u6mxRV2fLBbdLXZg/6bIf6/UoK451boIVZT/IeT0eNWTG6p3Dg5rsOpkLS6t119e+PbMdO47G92zUd5//jZYsWSLDMFRWVqaICK4MAaaLwj/3vF6vGhsb9c4772j16tWKiYlxOxLmwenTp9XW1qarr76axRnnCEUfmD3j4+PasmWLLMvSrl27FB8fr5xleTocHXvJ8b7v1vvku/W+WcvhkdSQGSsvtykNWpT9EFCfGau3Dw/O7049Hn36xhXqKsmSbdt64oknlJSUJJ/Pp8bGRiUlXXzFfwAXR+Gfez6fT7/+9a/V1tbGQm1hoq2tTSMjI2psnNyZa5gaij4wO/r6+tTU1CS/36++vj7l5+fr9ttvV2VlpfrHPfruxuOXf5NZ5Oj9noHgRdkPASnRXtVlxKjt6OlJz+7PhEdSbUaMMuKjlVFbq9raWh06dEiWZenNN9/UG2+8oYqKChmGoYKCAnn4NhCYEgr/3EpOTlZ5ebls25ZhGByjQpzjOLIsS+Xl5UpOTnY7Tsih6AMz4ziO9uzZI8uytHnzZnm9XtXU1Mg0TeXk5ExslyK5Mt5PieZsqGBG2Q8Rq3ITtOPksPpHnTk9AHgkJUR6tCo34ZzHc3JydMstt2jNmjVqbW2Vbdv6wQ9+oKysLBmGobq6Ok6XBaaAwj+3DMPQj370I+3du1cFBQVux8Ec2rt3r7q7u3XTTTe5HSXkUPSB6Tt9+vTEmLm7u1uZmZlau3at6urqFBt74dl0t8f7CD6U/RAR443Q+oIkPb6jd07340haX5CkGO+Fr82PjY3VlVdeqSuuuEK7d++Wbdv61a9+pZdeekm1tbUyTVMLFiyY04xAqKDwz52ioiJlZGTItm3KfoizLEsZGRkqLCx0O0pIoegD03P48GFZlqW2tjaNjo6qoqJCN910kwoLCy97plmgjPcRPCj7IaQoOVpr8hK0YX//nO1jbV6CipKjL7udx+NRUVGRioqK1NvbO3H9kd/v1+LFi2UYhiorK1koCbgMCv/c8Hg8MgxDGzZs0Lp165SYmOh2JMyBU6dOadOmTVq7di2Xa8wiij4wNaOjo9q0aZNs29bevXuVlJSkZcuWqbGxccqXFwXSeB+Bj7IfYnxZcZKkDfv75ZFm5RSfM++zNi9Bjb99/6lITk7WddddpxUrVkysLPrMM8/ohRdeUENDgwzDUEpKyiwkBUIThX9u1NfX6+WXX1ZTUxN/pyGqqalJXq9XdXV1bkcJGRR9YPJOnjwp27bV3Nys/v5+FRUV6e6771ZZWdmMJrwCcbyPwETZD0G+rDilx3j18z19M76m58w1O+sLkmb8DZ/X61VlZaUqKyvV3d0t27YnFvUrLS2VYRgqLi5m9gW4AAr/7IuNjVVNTY38fr+WL1/OrUNDzPj4uPx+v2pqai56/SumhqIPXJ7jONqxY4ds29bWrVsVHR2turo6GYahrKysWdtPoI73EVgo+yGqKDlan65M06td/Wo9enrK3/qd2b42I0archNm/ZqdrKws3XTTTbrhhhvU3t4uy7L0yCOPKD09XYZhqL6+XnFxfKsInI3CP/tM01Rzc7O2bt2q8vJyt+NgFm3dulW9vb3cXnGWUPSBSxscHFRzc7Ns29bx48e1YMECrV+/XjU1NYqOnpsCHejjfbiPsh/CYr0RumlxkpblxKulZ0jNPUMaGnv/EBAhafysbc/+fazXo4bMWNVnxs757Taio6Pl8/nU2Nio/fv3y7Isvfzyy3rllVdUXV0t0zS1aNGiOc0ABBMK/+xauHCh8vLyZNs2ZT/EWJalvLy8c25dhemh6AMX19XVJdu21dHRIcdxVFlZqdtvv115eXnzcrZqMIz34R7KfhhIifZq5aIELV8Yr+7BMR0aGNWhgVH1j45rdNxRZIRHCZERyomPVE58pLLivPLO86n0Ho9H+fn5ys/P17p16ya+GW1padGiRYtkmqaqqqoUFRU1r7mAQEThn12GYejZZ5/V0aNHlZGR4XYczIKjR49q586duv32292OEvQo+sD5RkZG1NHRIdu2deDAAaWkpGjlypVqaGhQQoI7t6sLhvE+5h9lP4x4PZ6JH/BAlpCQoOXLl2vZsmXavn27LMvSc889d86Cfunp6W7HBFxF4Z89VVVVeuGFF2TbttatW+d2HMwC27YVHx+vyspKt6MENYo+cK5jx47Jsiy1tLRoaGhIJSUluu+++1RSUhIw674Ey3gf84N/BQhYERERKi0tVWlpqY4dOya/36/m5ma9/fbbKi4ulmmaWrp0acAcXIH5RuGfHZGRkWpoaFBTU5NWrVrFGURBbmRkRC0tLfL5fIqMZJgzXRR94H3j4+Patm2bLMvSjh07FBcXp8bGRvl8PiafEPD4FERQSE9P15o1a3Tdddeps7NTlmXpxz/+sVJSUuTz+dTQ0MB9shGWKPyzwzAMvfXWW+ro6FBDQ4PbcTADHR0dGhoaks/ncztK0KLoA9KpU6fU3Nwsv9+vkydPKjc3Vx/+8IdVWVnJl8IIGpR9BJWoqCjV1dWprq5OBw4ckG3beuONN/Taa6+psrJSpmkqPz+f2/chrFD4Zy4tLU1Lly6VbduU/SDmOI4sy9LSpUuVlpbmdpygRNFHOHMcR/v27ZNlWers7FRERIRqampkGAYLRiMoUfYRtBYtWqRbb71Va9asUWtrqyzL0ve//31lZ2fLNE3V1NQoJibG7ZjAvKDwz5xhGHrsscfU1dWl3Nxct+NgGrq6unTw4EHdf//9bkcJShR9hKvTp09P3Ar6yJEjE2eU1tXVcStoBDXKPoJeXFycrrrqKl155ZXatWuXLMvSL37xC23YsEF1dXUyDEPZ2dluxwTmHIV/ZkpKSpSamirLsij7Qcq2baWmpqq4uNjtKEGHoo9wdOTIEdm2rdbWVo2MjKisrEzr1q1TUVERZ4kiJFD2ETI8Ho+WLFmiJUuW6OTJk2pqapLf75dlWSooKJBpmiovL5fXy71EEboo/NMXEREhn8+n1157TWvXrlV8fLzbkTAFAwMD6ujo0PXXX8/CrVNE0Uc4GRsb0+bNm2VZlvbs2aOEhARdddVVamxsVEpKitvxgFlF2UdISklJmRi0bNq0SbZt66mnnlJiYuLECqrJycluxwTmBIV/+hoaGvTaa6+ppaVFy5YtczsOpqC5uVmSWHNhiij6CBe9vb3y+/1qamrSqVOnVFBQoLvuuouJIIQ0yj5CmtfrVXV1taqrq3XkyBFZlqV33nlHv/71r1VWVibTNDlVCyGJwj89CQkJqqqqkm3buvrqqzk2BAnHcWTbtqqqqjgjYwoo+gh1juNMXOK5ZcuWiYWeucQT4YKyj7CRnZ2t9evXa/Xq1Wpra5Nt2/rRj36kjIwMGYah+vp6xcbGuh0TmDUU/ukxDENtbW3asWOHSkpK3I6DSdi+fbtOnDihO++80+0oQYOij1A2ODio1tZW2bato0ePKjs7Wx/60IdYvBlhh7KPsBMTEyPTNGUYhvbu3SvbtrVhwwa9/PLLqqmpkWmaWrhwodsxgVlB4Z+6vLw85eTkyLIsyn6QsG1bOTk5LKw4SRR9hKqDBw/Ksiy1t7drfHxclZWVuvXWW7ktM8IWZR9hy+PxqKCgQAUFBVq3bt3Egn7Nzc3Ky8uTYRiqqqpSZCQ/JghuFP6p8Xg8MgxDzz//vE6cOKHU1FS3I+ESTpw4oa1bt+qWW25hMD8JFH2EmtHRUW3cuFGWZamrq0vJyclasWKFGhsblZiY6HY8wFW0GEBSYmKirr32Wi1fvlxbt26Vbdt69tln9cILL6ihoUGGYSgtLc3tmMC0UfinpqamRhs2bJDf79cNN9zgdhxcgm3biomJUXV1tdtRAh5FH6Hk+PHjsm1bzc3NGhwcVHFxsT7ykY+otLSUO3IAv0XZB84SERGh8vJylZeX6+jRo7JtW01NTXrrrbe0dOlSGYahkpISPkQQlCj8kxcdHa26ujo1NTVp5cqVnOEToEZHR9Xc3Kz6+npFR0e7HSegUfQRCsbHx7V9+3ZZlqXt27crNjZW9fX1MgxDGRkZbscDAg6jF+AiMjIytG7dOq1atUodHR2yLEuPPfaYUlNT5fP51NDQoISEBLdjAlNC4Z880zT13nvvadOmTaqpqXE7Di6gs7NTAwMDMgzD7SgBjaKPYNff36/m5mb5/X6dOHFCCxcu1K233qrq6mpFRUW5HQ8IWJR94DKioqLU0NCghoYGdXV1ybZtvfbaa3rttddUVVUlwzCUl5fHtaIIGhT+ycnMzFRRUZEsy6LsByjbtrVkyRJlZma6HSVgUfQRrBzH0f79+2XbtjZu3CiPx6Pq6moZhsFinMAkUfaBKcjNzVVubq7WrFmjlpYW2battrY25eTkyDAM1dTUcCopggKFf3JM09QTTzyhQ4cOKScnx+04OMuhQ4e0b98+3XPPPW5HCVgUfQSj4eFhtbe3y7ZtHTp0SGlpaVq1apXq6+sVHx/vdjwgqFD2gWmIj4/XsmXLdPXVV2vHjh2yLEvPP/+8NmzYoLq6OpmmyUwTAh6F//LKysqUlJQk27Z18803ux0HZ7EsS0lJSSorK3M7SkCi6CPY9PT0yLIstba2anh4WKWlpbrhhhtUXFzM2ZPANFH2gRnweDwqKSlRSUmJTpw4Ib/fr6amJr333nsqKiqSYRgqLy9nQT8ELAr/pUVERMjn8+nNN9/U6tWrFRsb63YkSBoaGlJ7e7uuueYajq8XQNFHsBgbG9OWLVtk27Z27dql+Ph4maYpn8/HbU+BWUDZB2ZJamqqbrjhBq1cuVKbNm2SZVl68sknlZSUJJ/Pp8bGRiUlJbkdEzgPhf/SGhsb9cYbb6itrU1XXHGF23EgqbW1VWNjY2psbHQ7SsCh6CMY9PX1TUyQ9PX1afHixbrjjjtUUVHB3U+AWcRPEzDLIiMjVVNTo5qaGh06dEi2bevNN9/UG2+8ofLycpmmqYKCAk5JQ0Ch8F9cUlKSysvLZVmWTNPkZ9dljuPItm1VVFTwBeoHUPQRyBzH0e7du2XbtjZt2qTIyEjV1tbKMAzWRAHmCGUfmEM5OTm6+eabtXr1arW1tcmyLP3gBz9QZmamTNNUbW0tpwUjYFD4L840Tf3gBz/Qnj17VFhY6HacsLZ792719PRo/fr1bkcJKBR9BKqhoSG1trbKtm319PQoMzNTN954I2MgYB5Q9oF5EBsbqyuuuEKmaWrPnj2yLEsvvPCCXnrpJb7VRkCh8F9YQUGBMjMzZVkWZd9ltm0rKytLBQUFbkcJGBR9BKJDhw7Jsiy1t7drbGxM5eXlWr9+PWc3AvOIsg/MI4/Ho8LCQhUWFqqvr09NTU3y+/3y+/3Kz8+XaZpcrwbXUfjP5/F4ZJqmXnjhBfX19XH6uEv6+vq0adMm3XjjjZSF36LoI5CMjo5OrFu0b98+JSUl6ZprrmHdIsAlNArAJUlJSVq5cqWWL1+urVu3yrIsPfPMM4qPj1djYyMr0cJVFP7z1dbW6qWXXlJTU9PE3w/ml9/vV2RkpOrq6tyOEhAo+ggUZ9+RaGBgQEVFRbrnnntUWloqr9frdjwgbFH2AZd5vV5VVFSooqJCPT09sm1blmXpzTff1NKlS2WaJveYhSso/OeKjY1VbW2t/H6/li9fzgB2no2NjampqUm1tbWKiYlxO47rKPpwm+M42rFjhyzL0tatWxUTE6P6+noZhqHMzEy34wEQZR8IKGcWrVm1apU6OjpkWZYeeeQRpaWlyTAM1dfXKz4+3u2YCCMU/nMZhiG/36+tW7eqoqLC7ThhZcuWLerr65Npmm5HcR1FH24aGBhQS0uLbNvW8ePHlZOTo1tuuUXV1dWKjo52Ox6As1D2gQAUHR2txsZGNTQ0qKurS5Zl6ZVXXtErr7yi6upqmaap3Nxct2MiTFD4/0tOTo7y8/NlWRZlf57Ztq3FixdrwYIFbkdxFUUfbnAcRwcOHJBlWero6JAkVVVV6Y477lBubi5nHwIBirIPBDCPx6O8vDzl5eVp7dq1E9+kt7a2auHChTJNU9XV1YqKinI7KkIchf+/mKapZ555ZuIWUph73d3d2rVrl+644w63o7iKoo/5NjIyMnGm4cGDB5Wamqrrr79e9fX1SkhIcDsegMug7ANBIiEhQddcc42uvvpqbd++XbZt66c//alefPHFiWvkMjIy3I6JEEbhf19FRYXi4+Nl27ZuvPFGt+OEBdu2lZCQENZnU1D0MZ+OHj0q27bV0tKioaEhLV26VPfff7+Ki4sVERHhdjwAk0TZB4JMRESESktLVVpaquPHj8u2bTU3N+udd97RkiVLZJqmSktL+TDGnKDwS5GRkWpsbJRlWVq1ahXXqM6x4eFhtba2yjTNsL0tKUUf82F8fHzi7kA7d+5UXFycfD6ffD6f0tLS3I4HYBrC81MTCBFpaWlas2aNrr/+em3cuFG2bevxxx9XcnKyfD6fGhsblZiY6HZMhBgKv+Tz+fSb3/xG7e3t8vl8bscJae3t7RoeHg7bv2eKPubaqVOn1NTUJL/fr97eXuXl5en2229XZWVl2H7BBoQKfoKBEHDmvtN1dXU6ePCgLMvSr3/9a73++uuqrKyUYRhavHgxC+hg1oR74U9NTVVpaals21ZjYyM/W3PEcRxZlqXS0lKlpqa6HWfeUfQxVxzH0d69e2VZljZt2iSv16uamhoZhqGFCxe6HQ/ALKHsAyFm4cKFuvXWW89Z0O+hhx5Sdna2DMPgHtWYNeFe+E3T1COPPKL9+/crPz/f7Tghaf/+/Tp8+LBWr17tdpR5R9HHXDh9+rTa2tpkWZa6u7uVkZGhNWvWqL6+XrGxsW7HAzDLKPtAiIqNjdVVV12lK6+8Urt27ZJt2/rlL3+pl156SbW1tTJNU9nZ2W7HRJAL58JfXFystLQ02bZN2Z8jlmUpLS1NxcXFbkeZVxR9zLYjR47Isiy1tbVpZGRE5eXluvHGG1VUVMSZSUAIo+wDIc7j8WjJkiVasmSJent75ff71dTUJNu2VVBQIMMwVFFRIa/X63ZUBKlwLfwej0eGYeiVV17R2rVruQ3VLOvv71dnZ6dWrVoVVmWEoo/ZMjY2pk2bNsmyLO3du1eJiYm66qqr5PP5lJyc7HY8APOAsg+EkeTk5IkB5ObNm2Xbtp5++mklJCSosbFRPp9PKSkpbsdEEArXwl9fX69XXnlFzc3NWr58udtxQkpzc7M8Ho/q6+vdjjJvKPqYDSdPnpz4Yr+/v1+FhYW66667VF5ezhf7QJih7ANhyOv1qqqqSlVVVTpy5Ihs29a7776r3/zmNyorK5NhGFqyZElYzaZh5sKx8MfHx6u6ulp+v1/Lli3jlpezZHx8XLZtq7q6WvHx8W7HmRcUfcyE4zjauXOnbNvWli1bFBUVpbq6OpmmqaysLLfjAXAJZR8Ic9nZ2frQhz6kG264Qe3t7bIsSw8//LDS09NlGIbq6+sVFxfndkwEiXAs/KZpqrW1Vdu3b1dpaanbcULC9u3bdfLkSRmG4XaUeUHRx3QNDg5OLMZ77Nixic/02tpaRUdHux0PgMso+wAkSTExMTIMQz6fT/v27ZNlWXrppZf0yiuvqLq6WqZpatGiRW7HRBAIt8K/aNEiLVy4ULZtU/ZniWVZWrRokXJzc92OMuco+piOAwcOyLIsdXR0aHx8XFVVVbrtttuUn5/PWXkAJlD2AZzD4/Fo8eLFWrx4sdatW6fm5mbZtq2Wlhbl5ubKMAxVVVUpKirK7agIYOFU+D0ej0zT1E9/+lMdP35caWlpbkcKaseOHdP27dt12223uR1lzlH0MRUjIyPauHGjbNtWV1eXUlJSdO2116qhoUGJiYluxwMQgCj7AC4qMTFRK1as0DXXXKNt27bJsiw999xzevHFF9XQ0CCfz6f09HS3YyJAhVPhr66u1osvvijbtrVmzRq34wQ1v9+v2NhYVVVVuR1lTlH0MVnHjh2b+NJ9cHBQJSUluvfee7V06VLWCQFwSZR9AJcVERGhsrIylZWVTQw6mpqa9NZbb6mkpESmaaqkpIRBB84TLoU/KipK9fX1am5u1vXXX6/ISD5ep2NkZETNzc1qaGgI6bOHKPq4nPHxcW3btk22bWv79u2KjY1VQ0ODDMPgS3YAk8ZoBMCUpKena+3atbr++uu1ceNGWZalxx57TCkpKTIMQw0NDdxvHOcIl8JvGIbeeecdbdy4UXV1dW7HCUqdnZ0aHBwM6YX5KPq4lP7+fjU1Ncnv9+vkyZNatGiRbrvtNi6fAzAtlH0A03JmJrO+vl5dXV2ybXtiEFtZWSnTNJWXl8dCQZAUHoU/IyNDxcXFsm2bsj9NlmWpuLg4ZGcuKfq4EMdxtG/fPtm2rY0bNyoiIkLV1dUyDCMsFqkEMHco+wBmLDc3V7m5uVq7du3ELYDa29u1YMECmaapmpoabgGEsCj8hmHo8ccf18GDB7Vw4UK34wSVAwcOqKurS/fee6/bUeYERR8fNDw8PHHL28OHDys9PV2rV6/mlrcAZg1lH8CsiYuL09VXX62rrrpKO3fulGVZ+vnPf64NGzaorq5OhmEoKyvL7ZhwUagX/tLSUiUnJ8uyLN16661uxwkqtm0rJSVFS5cudTvKrKPo42zd3d2ybVutra0aHh5WaWmp1qxZoyVLlnA2HIBZRdkHMOs8Ho+Ki4tVXFyskydPyu/3q6mpSe+9954KCwtlmqbKysrk9XrdjgoXhHLhj4iIkM/n069//WutXbtWsbGxbkcKCoODg2pvb9e1114bcgt9UvQhSWNjY9qyZYssy9Lu3buVkJCgK664Qj6fTykpKW7HAxCiKPsA5lRKSopWrVqllStXatOmTbIsS08++aQSExPl8/nU2Nio5ORkt2NinoVy4W9sbNTrr7+ulpYWXXXVVW7HCQqtra0aHx9XQ0OD21FmFUUfvb29EwvunTp1SosXL9add96piooKvvAGMOco+wDmhdfrVXV1taqrq3X48GHZtq23335bb7zxhsrLy2WapgoLCzmFMYyEauFPTExUZWWlbNvWlVdeyb/py3AcR5ZlqbKyUomJiW7HmTUU/fDlOI52794ty7K0efNmRUVFqba2VoZhaMGCBW7HAxBGKPsA5t2CBQu0fv16rV69Wm1tbbIsSz/84Q+VmZkpwzBUV1fH6c9hIlQLv2EYeuihh7Rr1y4tWbLE7TgBbdeuXTp27Jhuu+02t6PMGop+eBoaGlJra6ts21ZPT4+ysrJ00003qba2VjExMW7HAxCGKPsAXBMTEyPTNGUYhvbu3SvLsvTiiy/q5ZdfVk1NjUzTVE5OjtsxMcdCsfAvXrxY2dnZsm2bsn8ZlmUpOztb+fn5bkeZFRT98HPo0CFZlqX29naNjY2poqJCN998sxYvXsyZPQBcRdkH4DqPx6OCggIVFBSor69v4vrGpqYm5eXlyTRNVVZWKjKSQ1aoCrXC7/F4ZBiGfvnLX6q3t5d1KS6it7dXW7Zs0Yc+9KGQKEUU/fAxOjqqzs5OWZal/fv3Kzk5WcuXL1djY2NIXY4CILgxcgYQUJKSkrRy5UqtWLFCW7ZskW3b+slPfqIXXnhBDQ0N8vl8SktLczsm5kCoFf7a2lq99NJL8vv9uv76692OE5D8fr+ioqJUU1PjdpQZo+iHh+PHj8vv96u5uVkDAwNasmSJPvKRj6i0tDTk7iQBIPhR9gEEpIiICFVUVKiiokI9PT2ybVu2bevNN99UaWmpDMNQSUlJSMwG4r+EUuGPiYlRbW2tmpqadO2117Ly9geMjY2pqalJdXV1QX89M0U/tI2Pj2vHjh2yLEvbtm1TbGys6uvrZRiGMjIy3I4HABdF2QcQ8DIzM3XjjTdq1apV6ujokGVZevTRR5WamirDMNTQ0KD4+Hi3Y2KWhFLhN01Ttm1r8+bNqqqqcjtOQNm8ebNOnTolwzDcjjIjFP3QNTAwoObmZtm2rRMnTignJ0e33HKLampqFBUV5XY8ALgsyj6AoBEdHa3GxkY1NDSoq6tLtm3r1Vdf1auvvqrq6moZhqHc3Fxm+0NAqBT+7OxsFRQUyLZtyv4HWJalgoICZWdnux1l2ij6ocdxHHV1dcmyLG3cuFGSVF1drTvvvJPPFwBBh7IPIOh4PB7l5eUpLy9Pa9eunZh5aW1t1cKFC2UYBjMvISBUCr9hGHr66ad15MiRoC62s+nIkSPas2eP7rrrLrejTBtFP7SMjIyovb1dlmXp0KFDSk1N1fXXX8+ZYwCCGmUfQFCLj4/XNddco2XLlmn79u2ybVs/+9nPtGHDBtXV1ck0Ta6pDGKhUPgrKiqUkJAg27b1oQ99yO04AcGyLCUmJqq8vNztKNNC0Q8dZ9aEaWlp0enTp1VaWqpVq1axJgyAkEDZBxASPB6Pli5dqqVLl56zWvK7776rJUuWyDAMlZWVsVpyEAr2wu/1etXY2Kh3331XN9xwQ9AvRjdTp0+fVltbm6666qqgXLSQoh/8xsfHJ+72snPnTsXHx8swDBmGodTUVLfjAcCsoewDCDlpaWlavXq1rrvuuon7ID/xxBNKSkqSz+dTY2OjkpKS3I6JKQj2wu/z+fSb3/xG7e3tQb8g3Uy1tbVpZGREPp/P7ShTRtEPbn19fWpqapLf71dfX5/y8/N1++23q7KyUpGRDIkBhB6ObABCVmRkpGpra1VbW6uDBw9O3LrvjTfeUEVFhQzDUEFBAadqBolgLvwpKSkqKyuTZVny+Xxh+2/OcRzZtq2ysjIlJye7HWdKKPrByXEc7dmzR7Zta9OmTfJ6vaqpqZFpmsrJyXE7HgDMKco+gLCwcOFC3XLLLVqzZo1aW1tlWZZ+8IMfKCsrS4ZhhMS9vsNBMBd+wzD08MMPa9++fVq8eLHbcVyxd+9eHTlyROvWrXM7ypRQ9IPP6dOn1draKtu21d3drczMTK1du1Z1dXWKjY11Ox4AzAvKPoCwEhsbqyuvvFJXXHGFdu/eLcuy9Ktf/Uovv/yyamtrZRiGFixY4HZMXEKwFv4lS5YoPT1dlmWFbdm3bVsZGRkqKipyO8qkUfSDy+HDh2VZltra2jQ6OqqKigrddNNNKiwsDNszagCEL8o+gLDk8XhUVFSkoqIi9fb2TlzHadu2Fi9eLNM0VVFREZQLiIWDYCz8Ho9HhmHopZde0rp165SYmOh2pHl16tQpdXZ2as2aNUFTuij6wWFsbEydnZ2ybVt79+5VYmKili1bpsbGxqC7XAQAZhNlH0DYS05O1nXXXacVK1Zoy5YtsixLTz/9tBISEtTY2Cifz6eUlBS3Y+IDgrHw19fX65VXXlFzc7NWrFjhdpx51dTUpIiICNXV1bkdZVIo+oHv5MmTsm1bzc3N6u/vV2Fhoe6++26VlZXxRS0AiLIPABO8Xq8qKytVWVmp7u5u2bat9957T7/5zW9UWloq0zS1ZMmSoJmVDAfBVvjj4uJUXV0t27Z1zTXXhM2tIMfHx+X3+1VTU6O4uDi341wWRT9wOY6jHTt2yLZtbd26VdHR0aqrq5NhGMrKynI7HgAEFMo+AFxAVlaWbrrpJt1www1qb2+XZVl6+OGHlZ6eLsMwVF9fHxSlJRwEW+G/4oor1NLSom3btqmsrMztOPNi69at6u3tlWmabke5LIp+YBocHFRLS4ts29axY8e0YMECrV+/XjU1NYqOjnY7HgAEJMo+AFxCdHS0fD6fGhsbtX//flmWpZdfflmvvPKKqqurZZqmFi1a5HbMsBdMhX/hwoXKzc2VZVlhU/Zt21ZeXp4WLlzodpRLougHngMHDsiyLHV0dMhxHFVWVurDH/6w8vLyOMsKAC6Dsg8Ak+DxeJSfn6/8/HytW7dOzc3Nsm1bLS0tWrRokUzTVFVVlaKiotyOGraCqfCbpqlnn31Wx44dU3p6uttx5tTRo0e1Y8cOffjDH3Y7yiVR9APHyMiINm7cKMuydODAAaWkpGjlypVqaGhQQkKC2/EAIGhQ9gFgihISErR8+XItW7ZM27dvl2VZeu655/TCCy+ooaFBhmGEfIELVMFS+KuqqvTCCy/Itm2tXbvW7ThzyrZtxcXFqaqqyu0oF0XRDwzHjh2bWHBvaGhIJSUluu+++1RSUhI261sAwGyi7APANEVERKi0tFSlpaU6duyY/H6/mpub9fbbb6u4uFimaWrp0qUMUudZMBT+yMhINTQ0qKmpSddff33InhEyMjKilpYWNTY2KjIyMIccFH13jY+Pa9u2bbIsSzt27FBcXNzEXVD40hQAZiYwP3kBIMikp6drzZo1uu6669TZ2SnLsvTjH/9YKSkpE9f8c/rp/AmGwu/z+fTWW29p48aNqq+vdzvOnOjo6NDQ0JAMw3A7ygVR9N1z6tQpNTc3y+/36+TJk8rNzdWHP/xhVVZWhuyXXwAw3yj7ADCLoqKiVFdXp7q6uomFpd544w299tprqqyslGmays/PZ2GpeRDohT89PV0lJSWyLCtky75t21q6dKnS0tLcjnIeiv78cxxH+/btk2VZ6uzsVEREhGpqamQYBgudAsAcoOwDwBxZtGiRbrvtNq1du3billHf//73lZ2dLdM0VVNTo5iYGLdjhrRAL/ymaeqxxx5TV1eXcnNz3Y4zq7q6unTgwAHdd999bkc5D0V/fp0+fXriFqZHjhyZOBOqrq6OW5gCwByi7APAHIuLi9PVV1+tq666Sjt37pRt2/rFL36hDRs2qK6uToZhKDs72+2YISuQC39JSYlSUlJk23bIlX3btpWamqqSkhK3o5yDoj9/jhw5Itu21draqpGREZWVlWndunUqKiri7CYAmAeUfQCYJx6PR8XFxSouLtbJkyfl9/vV1NQky7JUWFgowzBUXl4ur9frdtSQE6iFPyIiQoZh6PXXX9fatWtDZpZzYGBAHR0dWrlyZUAtUEnRn3tjY2PavHmzLMvSnj17lJCQoKuuukqNjY1KSUlxOx4AhBXKPgC4ICUlRatWrdLKlSu1adMm2batp556SomJiRMrUScnJ7sdM6QEauFvaGjQa6+9ppaWFl199dVux5kVLS0tchxHDQ0NbkeZQNGfW729vRNfYJ46dUoFBQW68847VVFRwReYAOASyj4AuMjr9aq6ulrV1dU6cuSILMvSO++8o1//+tcqLy+XYRic8jqLArHwJyQkqLKyUrZt66qrrgr6/9eO48i2bVVVVQXMHSgo+nPDcRzt2rVLlmVpy5YtioqKUm1trUzT5NIkAAgAlH0ACBDZ2dlav369Vq9erba2NlmWpR/96EfKyMiQYRiqr69XbGys2zGDXiAWftM01d7erp07d6q4uNjtODOyY8cOHT9+XLfffrvbUSRR9OfC0NDQxKKjR48eVXZ2tm666SbV1tay6CgABBDKPgAEmJiYGJmmKcMwtHfvXtm2rQ0bNujll19WTU2NTNPUwoUL3Y4Z1AKt8Ofl5WnBggWyLCvoy75t28rJyVFeXp7bUSj6s+zgwYOyLEvt7e0aHx9XZWWlbrnlFi1evDjoz0gBgFBE2QeAAOXxeFRQUKCCggKtW7dOTU1N8vv9am5uVl5engzDUFVVlSIjOZRPRyAVfo/HI9M09fOf/1wnT54M2oXMTpw4oa1bt2r9+vWulz+K/uwYHR3Vxo0bZdu29u/fr+TkZK1YsUKNjY1KTEx0Ox4A4BIYIQJAEEhMTNS1116r5cuXa+vWrbIsS88++6xeeOEFNTQ0yDAMpaWluR0z6ARS4a+pqdGGDRvk9/u1atUq13LMhN/vV3R0tGpqalzNQdGfuePHj8u2bTU3N2twcFDFxcX6yEc+otLS0oC6wwIA4OIo+wAQRCIiIlReXq7y8nIdPXpUtm2rqalJb731lpYuXSrDMFRSUsJgfAoCpfBHR0errq5OTU1Nuvbaa4PujI3R0VE1NTWprq5O0dHRruWg6E/f+Pi4tm/fLtu2tW3bNsXGxqq+vl6GYSgjI8PteACAKQqukQQAYEJGRobWrVunVatWqaOjQ5Zl6bHHHlNqaqp8Pp8aGhoCZjX0QBcohd8wDL333nvatGmT67PjU7Vp0yYNDAzINE3XMlD0p6e/v1/Nzc3y+/06ceKEFi5cqFtvvVXV1dWKiopyOx4AYJoo+wAQ5KKiotTQ0KD6+nodOHBAlmXptdde02uvvaaqqiqZpqnc3FzXr6EOdIFQ+LOyslRYWCjbtoOu7FuWpaKiImVmZrqyf4r+1DiOo/3798u2bW3cuFHS+5eSGIah3Nxcl9MBAGYDZR8AQoTH41Fubq5yc3O1du3aiVtjtbW1KScnR6Zpqrq62tVTrANdIBR+0zT15JNP6vDhw1qwYMG87386Dh06pH379unuu+92Zf8U/ckbHh5We3u7bNvWoUOHlJaWplWrVqm+vl7x8fFuxwMAzCLKPgCEoPj4eC1btkxXX321duzYIcuy9LOf/UwvvvjixDW4bs3ABjq3C39ZWZkSExNlWZZuvvnmed33dNm2raSkJJWVlc37vin6k9PT0yPLstTa2qrTp0+rtLRUN9xwg4qLiznrBwBCFGUfAEKYx+NRSUmJSkpKdOLECfn9fjU1Nendd99VUVGRTNNUWVkZC/p9gJuF3+v1yufz6a233tKaNWsUExMzb/uejqGhIbW1tWnZsmXyer3zum+K/qWNj49r8+bNsm1bu3btUnx8vEzTlM/nU2pqqtvxAABzjLIPAGEiNTVVN9xwg1auXKlNmzbJsiw98cQTSkpKks/nU2Njo5KSktyOGTDcLPyNjY1644031NraqiuuuGLe9jsdbW1tGh0dlc/nm9f9UvQvrq+vT01NTfL7/err61N+fr7uuOMOVVRUBN1dHgAA08cRHwDCTGRkpGpqalRTU6NDhw7Jtm29+eabeuONN1ReXi7TNFVQUMCpvXKv8CcnJ6u8vFy2bcs0zYD9f+E4jizLUkVFxbx+UUTRP5/jONqzZ48sy9LmzZvl9XpVW1srwzCUk5PjdjwAgAso+wAQxnJycnTzzTdr9erVamtrk2VZ+sEPfqDMzEyZpqna2lrFxsa6HdNVbhV+0zT1wx/+UHv27FFhYeG87HOq9uzZo56eHn3oQx+at31S9M915jIKy7LU09OjzMxMrVu3jp9dAABlHwAgxcbG6oorrpBpmtq9e7ds29avfvUrvfTSS6qtrZVpmkGzMvxccKPwFxYWKjMzU7ZtB2zZtyxLmZmZ85aPov9fzpyV09bWprGxMZWXl2v9+vWclQMAmEDZBwBM8Hg8KioqUlFRkfr6+iYW9PP7/crPz5dpmmF73e98F36PxyPDMPTiiy+qr68v4NZT6Ovr0+bNm7Vu3bp5KZcUfWl0dHRivY19+/YpKSlJ11xzDettAAAuKPxGawCASUlKStJ1112nFStWaOvWrbIsS88884wSEhLU0NAQlit6z3fhr6ur08svv6ympqaJfQeKpqamievC51q4F/2z76QxMDCgoqIi3XPPPSotLZ33OyAAAIIHZR8AcEler1cVFRWqqKiYuFe3ZVl68803VVpaKsMwwupe3fNZ+GNjY1VTUyO/368VK1YEzC0Sx8bG5Pf75+W68HAt+o7jaMeOHbIsS9u2bVN0dLTq6+tlGIYyMzPdjgcACAKUfQDApGVmZuqmm27SDTfcoPb2dtm2rUceeURpaWkyDEP19fWKj493O+acm8/Cb5qmmpqatGXLFlVUVMzZfqZi69at6uvrk2EYc7qfcCz6AwMDamlpkW3bOn78+MQimtXV1YqOjnY7HgAgiFD2AQBTFh0dLZ/Pp8bGRu3fv1+2beuVV17RK6+8ourqapmmqdzcXLdjzqn5Kvw5OTnKz8+XbdsBU/Yty1J+fv6c3tItnIq+4zg6cOCALMtSR0eHJKmqqkp33HGHcnNzw+asGQDA7KLsAwCmzePxKD8/X/n5+Vq7dq2am5vl9/vV2tqqRYsWyTAMVVdXKyoqyu2oc2K+Cr9hGPrJT34ycWs1N/X09GjXrl2644475mwf4VL0R0ZG1NHRIcuydPDgQaWmpur6669XfX29EhIS3I4HAAhylH0AwKxISEjQ8uXLtWzZMm3fvl22beunP/2pXnzxxYlrjTMyMtyOOevmo/BXVlbqhRdekG3buvHGG2f9/afCtm3Fx8fP2VkG4VD0jx49Ktu21dLSoqGhIS1dulT33XefSkpKAmZdBgBA8KPsAwBmVUREhEpLS1VaWqrjx4/Ltm01NzfrnXfeUXFxsQzDUGlp6f/P3n9Hx3Ul6KHvV1XIOeecQ6HiOcwUI0hRFKVWGKl7kn3HMw5jX3vmja/jGl9fv7U863o89njeW7bf+M60Wh0ldVS3Wi2SEiUqNKW9qwqFDBAgwIBEAETOqKr3B5toUWJAqMKp8P3+6SZQVecTicLZX+1z9g6rUhPowh8VFQWr1QopJY4fP67Zvdurq6toaWmBqqoB2X4xnIu+1+vd2NXi2rVriI+Ph81mg6IoSE9P1zoeERGFIZZ9IiIKmPT0dDQ3N+PYsWPo6OiAlBKvvfYaUlJSNu75T0pK0jqmXwS68CuKgo8//hjt7e2w2Wx+fe3Nam9vx8rKCux2u99fO1yL/vz8PJxOJxwOB2ZnZ1FUVISvfOUraGxsDMgHJkRERPfwLENERAEXFRUFs9kMs9mMkZERCCHw4Ycf4oMPPkBDQwMURUFJSUnIL0QWyMKflpaGmpoaCCFgtVp3/e/K5/NBCIGamhqkpaX59bXDrej7fD7cuHEDUkp0dnZCr9ejqakJqqoiPz9f63hERBQhWPaJiGhX5efn45lnnkFzczPcbjeklHjllVeQk5MDRVFgMpkQGxurdcxtC2ThVxQF3/nOdzA0NISioiK/ve5mDA0NYXR0FCdOnPDr64ZT0V9ZWUFrayuklLh9+zYyMzPR3NwMi8WCuLg4reMREVGEYdknIiJNxMfHY9++fdi7dy8GBgYghMDbb7+NixcvwmQyQVVV5OTkaB1zWwJV+KuqqpCWlgYp5a6XfSEE0tPTUVlZ6bfXDJeif/v2bQgh0NrairW1NdTV1eH06dMoLy8P+atViIgodLHsExGRpnQ6HSoqKlBRUYHZ2Vk4HA44nU5IKVFaWgpFUVBfXw+DwaB11C0JROHX6XRQFAWXLl3CqVOnkJCQsOPX3IzFxUV0dHTg+PHjfiuvoV70PR4Purq6IKXE9evXkZSUhH379sFutyMlJUXreERERCz7REQUPFJSUjbKX3d3N4QQ+MEPfoDExETYbDbY7XakpqZqHXPTAlH4rVYrLl26BJfLhYMHD+749TbD5XIBACwWi19eL5SL/szMzMYHUgsLCygrK8OLL76Iurq6kPtAioiIwhvLPhERBR2DwYDGxkY0Njbi9u3bkFLi008/xUcffYTa2lqoqhoyl0j7u/AnJCTAaDRCSokDBw4E/O/A6/VCSgmj0eiXKwlCsej7fD5cu3YNUkr09PQgOjoaZrMZiqKE7K0mREQU/lj2iYgoqOXk5OCpp57CiRMn0NbWBiEEvvnNbyIzMxOKosBsNiM+Pl7rmI/k78KvKArcbjf6+vpQXV2943yP0t/fj+npabz44os7fq1QK/pLS0toaWmBlBJ37tzZ+FlsamoK6UUkiYgoMrDsExFRSIiNjYWiKLDb7bh58yaEELhw4QLefffdkNjWzJ+Fv7CwEPn5+ZBSBrzsCyGQn5+PgoKCHb1OKBX94eFhCCHQ3t4Or9eLhoYGPPvssyguLg6Jq0mIiIgAln0iIgoxOp0OJSUlKCkpwenTp+FyuSClhMvlQmFhIVRVRWNjI6Kigu8U56/Cf2+hvp/+9KeYmppCenq63zJ+3tTUFK5evYpnnnlmRyU3FIr+2toaOjo6IKXE0NAQUlJS8MQTT8BqtSIpKUnreERERFsWfCMhIiKiTUpKSsLhw4dx8OBBXL16FUII/PjHP8Y777wDq9UKRVECVoS3y1+Fv6mpCefPn4fD4cDJkyf9lu/zpJSIi4uD0Wjc9msEe9G/c+cOHA4HXC4XlpaWUFlZia9+9auorq6GXq/XOh4REdG2sewTEVHI0+v1qK2tRW1tLSYnJzdWS//kk09QVVUFVVVRVVUVNOXNH4U/OjoaFosFLpcLR48e9fuVDOvr63C5XLBYLIiOjt7WawRr0fd6vejr64MQAn19fYiLi9v4cCgjI0PreERERH7Bsk9ERGElMzMTp06dwrFjx9DR0QEhBL773e8iNTUViqLAarUiMTFR65h+KfyKouDTTz9FZ2cnTCaTX/N1dHRgaWkJiqJs6/nBWPQXFhY2bvuYmZlBQUEBnn32WTQ2Nm77Aw0iIqJgxbJPRERh6d7Mt8ViwdDQEKSUGwW0oaEBqqqiqKhI0wXXdlr4s7KyUFFRASGE38u+lBIVFRXIzMzc8nODqej7fD7cunULQgh0dnZCp9PBaDRCURQUFhZqmo2IiCiQWPaJiCjsFRYWorCwEM3NzRtbqbW1tSE3NxeqqqKpqQkxMTGaZNtp4VcUBa+//jpGRkb8thvByMgIbt26hZdffnnLzw2Wor+6urqxVePY2BgyMjJw4sQJWCyWoN+qkYiIyB9Y9omIKGIkJCTgwIED2L9/P/r7+yGlxFtvvYULFy7AbDZDVVVkZWXteq6dFP7a2lokJydDSolz5875JY8QAikpKaipqdnS84Kh6I+Pj0NKCbfbjdXVVdTU1KC5uRkVFRXcNo+IiCIKyz4REUUcnU6HqqoqVFVVYWZmZmNBv88++wzl5eVQFAW1tbUwGAy7lmm7hV+v18Nut+Pjjz9Gc3Mz4uLidpRjeXkZbW1tOHz48JYWNNSy6Hs8HvT09EAIgcHBQSQmJmLPnj2w2+1ITU3d1SxERETBgmWfiIgiWmpqKo4fP44nnngCXV1dkFLijTfeQHJyMmw2G+x2O5KTk3cly3YLv81mw+XLl+F2u7F3794dZWhpaYHX64XNZtv0c7Qq+rOzs3A6nXA4HJifn0dJSQleeOEF1NfX7+oHNURERMGIZZ+IiAhAVFQUmpqa0NTUhLGxMQgh8Mknn+Dy5cuor6+HoigoKysL+KXg2yn8ycnJqK+vhxACe/bs2XZGn88HKSUaGhqQlJS0qefsdtH3+XwYHByEEALd3d2Ijo6GyWSCoijIzc0N+PGJiIhCBcs+ERHRF+Tm5uLpp59Gc3Mz3G43pJR49dVXkZWVBUVRYDabd3y5/KNsp/CrqopXXnkFg4ODKC8v39ZxBwYGMDk5uel7/3ez6C8vL2/8W0xMTCA7OxtnzpyByWRCbGxsQI9NREQUilj2iYiIHiI2NhZ79uyBqqq4fv06pJQ4f/483n33XTQ1NUFVVeTl5QXk2Fst/CUlJcjOzoYQYttlX0qJnJwclJSUPPaxu1X0R0dHIYRAW1sbPB4P6uvr8fTTT6OkpIQL7hERET0Cyz4REdFj6HQ6lJWVoaysDHNzcxv3iTudThQXF0NRFDQ0NCAqyr+n1a0Ufp1OB1VV8fbbb2N2dhYpKSlbOtbs7Cy6u7tx5syZx5boQBf99fV1dHZ2QgiBW7duITk5GQcPHoTNZtu19ROIiIhCHcs+ERHRFiQnJ+PIkSM4fPgwenp6IKXEj370I7zzzjuwWq1QFAVpaWl+O95WCr/JZMLFixfhdDpx9OjRLR3H4XBs3P/+KIEs+lNTU3A4HHC5XFhcXERFRQVeeukl1NbWbmlnACIiImLZJyIi2ha9Xo/6+nrU19djYmICUkpIKfHxxx+jpqYGiqKgqqrKL5eab7bwx8bGwmQyweFw4PDhw5tekd7j8cDpdD72/vdAFH2fz4e+vj5IKdHb24vY2FhYLBYoioKsrCy/HIOIiCgSsezvMo/Ph/ElD0YX1zG6uI75dS88Xh8Meh2SovTIS4hCXkIUsuMNMPBeRCKikJCVlYUnn3wSx48fR3t7O4QQ+M53voP09HTY7XZYrVYkJCTs6BibLfyKokBKiZ6eHtTW1993zpmcNyB63zm8N2VA5tr8xjln/FoP5ufnoarqQ4/v76K/uLgIl8sFKSWmp6eRl5eHc+fOwWg0IiYmZsevT0REu4s9J/jofD6fT+sQkWBm1YOWiWW4Jpax7Ln7V64H4P3cYz7/5ziDDtasOFiy4pAaw72CiYhCic/nw9DQEKSUaG9vBwAYjUYoioLCwsIdzfZvpnT/P9/6Hpayy+DJr/7COccHQAfABz10G+cc3foqEiav43eP73ngOcdfRT+Qfy9ERKQN9pzgxbIfYMseLy4NLcA9ufKr4dXm3Xu8OTMWxwsTEWvg/YpERKHmizPY+fn5UBQFTU1NiI6O3tZrPqx8//qcswyf1wfdlu5zv/tBwBfPOf4o+mtra2hra4OUEiMjI0hLS4OiKH654oGIiLTBnhP8WPYDaGB2FT+7PofFdd+Wfvi/SAcgMUqHs6XJKE/hpY1ERKHI6/Wiv78fQghcvXoVcXFxMJvNUFUVmZmZW369L5bwQJxzbrh+uaOiPzk5CSEE3G43lpeX/b6WARERaYM9JzSw7AeIY3wJF24tbPlTroe59zrNRYmwZ8f74RWJiEgrD1p1XlVV1NTUbGnV+XuFv+7U8xiIy/f7OWet9QMcKc/eUtH3er0buxRcu3YNCQkJsFqtsNvtSE9P90M6IiLSEntO6GDZD4B7b4BA4RuBiCg8fHE/+ZSUFNjtdthsNiQlJW3qNV77pA0D8fkBy7jZc87c3BycTiccDgfm5uZQVFQEVVXR0NCAqCiuB0xEFA7Yc0ILy76fDcyu4rX+2Uc+Znp0CB+88lfo/eQ9zIwNIzYxCYV1Jhz42h+g7vCpTR3n5coUXupCRBRGRkZGIKVEW1sbPB4P6uvroaoqSkpKHnrJ+2bOOQDQduEn+OXrf4uR3g541taQWVwOy5kXcOi3/iEMm1g34GHnHJ/Ph+vXr0NKia6uLhgMBjQ1NUFRFOTnB+4DCCIi2n2bOeeMD/bh6pVLGOpyY6irFeMDvfB6PGj+w3+F47//J5s6DnuO/7Ds+9Gyx4v/1Tn1yHtXbna48PV/8jKWZqaQnJWLYqMNi9N3cLPdCc/6Go7/wT9H8z/6l488zr17W/6gIZ2LWRARhZnl5WW43W4IITA5OYns7GyoqgqTyYTY2NhfP24T5xwA+Omf/1t88t2/hj4qCpXKIcQkJKJffITluRmUWfbi9/77G4iOe/gsyoPOOSsrK3C73ZBSYnx8HJmZmVBVFWazGXFxcX76myAiomCx1XPOF2227LPn+BfLvh+9fWMOrZMrD30DrK0s4y+e24eZ0SGYTn0FL/77v9oYYN3scOGV//2rWJy+g9/772+get/RRx5LB8CUGYszJcl+/W8gIqLg4PP5MDg4CCEEuru7ER0dDZPJBEVRkJub+9hzDgB0XPo5vvUnfwcxCYn4+//rJyisNwMAFqYm8f/8g+cx2teJw7/zh3jqj/+vR2a5d86xxS5CSonW1lasra2hrq4OqqqirKyMC+4REYWxzZxzAED86JsYH+xHQV0TCupMeP9v/xKut17f0sw+e47/8CY6P5le8cA9ufLIx3Rc+jlmRocQl5yKr/zb/3zfTEpxoxXH/+BP8LM//7d476//82PLvg+Ae3IFB/ISuD8lEVEY0ul0KC8vR3l5OWZnZzfuh5dSorCqFhMNJ3B3SPRw7//tXwIAjv7df7pR9AEgMT0Tz/7r/xv/v793Dr987W9w/Pf/BHHJKQ99HR8A98QyPrv4bSQZfNi/fz9sNhtSUh7+HCIiCg+b6Tn3qM/9zn1/1um3/kEwe47/sOz7iXty+bErUt7qcAEACuvNiE9O/dL3q/YeAQBcd3+GuYkxJGflPvKYOgAtE8s4UpC4zdRERBQKUlJScPToURw+fBg9PT149+YsfF7fIwdRM7dHNs475jMvfOn7ZdZ9SM0rxMzoELo/vgjLk88/JoUPxidfwFcai2AwcPBFRBQpNtNz/I09xz94I4QfeHw+uCaWH/sGWF28u3JlQuqDtx5KTMsAcPfSzaHu1sce1wfANbEMD+/EICKKCAaDAbX19fDkV0P3mC36hrvbAADxqenIKCx94GOK6i0AgJFfPfaRdHrcRBKwha0BiYgotG225/gbe45/8IztB+NLHix7Hv+DmJSRBQC4M3T9gd+/c+vXX58aurGpYy97fBhf8mzqsUREFPo2e86ZGr57TknLK3zoY1LzCgAAd4YffF76Ip5ziIgiy2bPOYHAc87Osez7weji+qYeV6keBgAMd7kx/ICZ+09/8MrG/19ZmPP78YmIKPRt9nf+ysI8ACAmPuGhj4mJv3t55Mo8zzlERPRlWv/O1/r4oY5l3w9GF9c39RdZuecwym374fP58Oof/w66PngHy3OzuHNrED//r/8nXD97HYaou/sdP+7yzHv04JuAiCiSbPacEwg85xARRRaec0IbF+jzg/l1L7ybfOxv/qe/wbf++d/F9ZbP8Oof//Z93zv4m/8Agy2fYqizBfEpD76v/4u88GFyfhEjI5uflSEiotA1OW+AFzo8biX+2MQkAMDq0uJDH7O6dHctmdikzW1vxHMOEVFk2ew5JxC8ABbWN9uy6EFY9v3A4938fSxJGdn4B3/zM/R9+gH6xYdYnJ5CUmY2Go6eQVGDBf/xlBEAkFdVv8lX1OH6zRv46zd+to3kREQUaqL3nYM+p+Sxj0vPv/uYmbHhhz5mZnT4vsc+Hs85RESRZLPnnEBZ30LPoi9j2fcDwxb3j9TpdKjedxTV+47e9/XJmwOYmxhDQloGCupNm3w1H0qLi3Hc9Pe3lIGIiELTe1MG3Fzx4XGzLAV1TQCAxek7uDN0/YEr8t/qarn7WJ5ziIjoATZ7zgmUqC32LLofy74fJEXpoQc2fSn/w3z4zf8OANjz3O8gKjpmU8/RQ4fMpHjk5yft8OhERBQKMtfmMbSy/NhzTmpuAYoarbjV4YL77R/g2O//v+77/qDrCmZGhxAVE4u6gyc3dWyec4iIIstmzzmBoAeQGMUl5naCf3t+kJcQtek3wNi1Hix/YdVjz/o6Lv3Nf8VnP/gGMovLcez3/3jTx/b+6vhERBQZtnLOOfp7fwQAeP+Vv8JQl3vj6wvTd/CTP/uXAID9L/89xCWnbOr1eM4hIoosWznn+BvPOTvHvz0/2MoP4Wc/eBWf/fBVFNabkJKdD8/aKm60ScxPjiOzuBx/7398f2MrpEAcn4iIQttWfuc3HnsKB772B/jku/8L/+PvnEHlnsOIiU9A32cfYnluBqWWPWj+R/8qYMcnIqLQttXf+UNd7o0PkwHgzq1BAHc7UPflCxtf/+2/eAUp2Xl+Pz7dj397fpAdb0CcQYdlz+MXkKg9dBLTIzcx1N2KoU43DDExyC6twuHf/kPsf/nvIToufkvHjjPokB1v2G50IiIKIR6PB+PXeqBbT4cvanO3e537P/4jSs17cOX1v8X1VgHv+joyispw9H/7pzj4W/9w07eNAUA0vMjY/MOJiCjEbaXnAMDKwjxutju+9PWZseH7Foz1rK0+9rXYc3ZO5/P5uMShH3wwvIArY0vYzb9MHYB9ufE4UrC1KwGIiCi0zM7OwuFwwOl0Yn5+Hhl7T2Ehtwq7umCSz4v1q07E3+qAzWaD3W5HSsrmLv8nIqLQxZ4Tujiz7yeWrDj8cmxpV4/p+9VxiYgo/Ph8PgwMDEBKie7ubkRHR8NkMkFVVcSmZeJ/dEztbiCdHr952IYulwdXrlzBhx9+iLq6OiiKgvLycuh0XDGZiCgcseeELs7s+9HbN+bQOrmyK5966QCYMmNxpiR5F45GRES7ZXl5GS0tLZBSYnJyEtnZ2VBVFSaTCbGxsRuP0/Kcs7KygtbWVgghMD4+jszMTCiKAovFgrg4Ds6IiMINe05oYtn3oxWPF/+rcwoL676AvhF0ABKjdPiDhnTEGrihAhFROBgZGYEQAm1tbfB6vWhoaICiKCgpKXngrHkwnHN8Ph9u3LgBIQS6urpgMBhgNBqhqiry8/MDmIqIiHZTMJxzaOtY9v1sYHYVr/XPBvw4L1emoDyFqyQREYWy9fV1dHR0QEqJW7duISUlBXa7HTabDUlJj9/LPpjOOfPz83A6nXA4HJidnUVRURFUVUVDQwOionjXIBFRqAumcw5tDst+ADjGl3Dh1kLAXv9UUSJs2VtbtZ+IiILH1NQUpJRwuVxYWlpCRUUFVFVFTU0N9PrNz2R88MEHuDw4gWjTkYBlLV8ewcv7mzb9eK/Xi97eXgghcO3aNSQkJMBqtcJutyM9PT1gOYmIKPDYc0ILy36A3Hsj6AC/XOpy73X4BiAiCk1erxd9fX2QUuLq1auIi4uDxWKBoijIzMzc8ut98MEHeP/993Hs2DEk1qsBOeeULw2j+8KPcOzYMTzxxBNbfp3JyUlIKdHS0oLl5WVUV1dDVVVUVlZu6UMNIiIKHuw5oYNlP4AGZlfx1vW5Hd/bcu/elbOlybykhYgoxCwsLMDlcsHhcGB6ehr5+flQVRVGoxHR0dHbes3PF/17JTxQ55wHHWur1tbW0N7eDiEERkZGkJaWBkVRYLVakZCQsIO0RESkBfac0MCyH2DLHi8uDS3APbmy5U+/7j3enBmL44WJXKSCiChE+Hw+DA0NQQiBjo4OANhYuK6goGBH29Q9qnxvnHMmlgH4AN0Wzhs+L6DTP/Cc44/CD9z9exkeHoYQAu3t7QCAxsZGqKqKwsJCbt9HRBRC2HOCH8v+LplZ9aBlYhmuiWUse+7+lesBeD/3mM//Oc6ggzUrDpasOKTGGHY5LRERbcfq6urGDPbo6CjS09M3tqTzxwz2Zkr32NgY/uc3vg3jky/gJpK+cM7x4d4QSw/dxjknGl4s9Trxm4dtqCjI2faxt2JxcXFji8GpqSnk5eVtXPEQE8PZHSKiUMGeE7xY9neZx+fD+JIHo4vrGF1cx8K6F+teH6L0OiRG6ZGXEIW8hChkxxtg4AwHEVFImJiY2Lg3fWVlBTU1NRv3pvtrtnqzZfutt95Cd3c3/uiP/gjQ6+8750zOL+L6zZsoLS5GZlLCxjknIwb4//y3/4a6ujqcPXt2xxm2wufzob+/H0II9Pb2IjY2dmMtg6ysLL8cg4iIAo89J/hwL5xdZtDpNn7QiYgodHm9XvT09EAIgYGBASQkJEBVVdjtdqSlpfn1WJst2SsrK2htbcX+/fthMNydLfn8OWdkZA5//cbPcNz095Gff//WfjabDVeuXMHJkycRGxv7wNc/cuTuqv+XLl0CAL8Ufp1Oh6qqKlRVVWF6enpjl4JPP/0U5eXlUFUVtbW1XNCPiCjIsecEH/5LEBERbcHc3NzGfvJzc3MoLi7G888/j/r6+oDsJ7+V2fTW1lasra3BZrNt+Th2ux0ffvghWltboarqQx8XiMJ/T1paGk6ePImjR4+is7MTUkq8/vrrSE5Oht1uh81mQ3Jyst+OR0REFM5Y9omIiB7D5/Ph+vXrEEKgu7sbBoMBJpMJiqIgLy8vYMfdStH3+XwQQqCurg4pKSlbPlZKSgrq6uogpYSiKI+8/SCQhR8AoqKiYDKZYDKZMDo6CiEEPv74Y1y+fBl1dXVQVRWlpaVc0I+IiOgRWPaJiIgeYnl5Ga2trRBCYGJiAllZWTh9+jRMJhPi4uICeuyt3h9/48YNjI+P48yZM9s+pqIo+OY3v4kbN26gtLT0kY8NdOG/Jy8vD+fOnUNzczPcbjeklPjGN76B7OxsKIoCs9n80NsOiIiIIhnLPhER0ReMjY1BCIHW1lZ4PJ6Nhet2azZ5OwvhCSGQmZmJsrKybR+3vLwcmZmZkFI+tuwDu1f4ASAuLg579+7Fnj17MDg4CCklfvGLX+DixYswmUxQVRW5ubkBOz4REVGoYdknIiICsL6+jq6uLgghcPPmTSQnJ+PgwYO7fp/4dor+3Nwcurq6cOrUqR19GKHT6aAoCi5cuIDTp08jKSnpsc/ZzcJ/L2N5eTnKy8sxNzcHh8OxsYZCSUkJFEUJ2PoJREREoYRnQiIiimjT09NwOBxwuVxYWFhAeXk5XnrpJdTU1GysaL9btru1ndPphMFggNls3nEGi8WCd999F06nc9MZdrvw35OcnIyjR4/i8OHD6OnpgZQSP/zhD5GYmAir1QpFUZCamrorWYiIiIINyz4REUWcz+/tfvXqVcTExMBsNkNVVc32dt9u0fd6vXA4HGhqavLLOgJxcXFoamqCw+HAoUOHNr3lnVaFHwAMBgMaGhrQ0NCA8fFxSCk3FvWrqamBoiiorKzkgn5ERBRRWPaJiChiLC4uoqWlBVJKTE1NIS8vD2fPnkVTUxNiYmI0y7Xdog8APT09mJube+R2eVulqipcLhd6e3tRV1e36edpWfjvyc7OxpkzZ3DixAm0tbVBCIFvf/vbSE9Ph6IosFgsSEhI2PVcREREu41ln4iIwt7Q0BCEEGhvbwcANDY24rnnnkNRUZHms707KfoAIKVEUVGRX7cAzM/PR1FR0cZWflsRDIUfAGJiYmC322Gz2XDr1i1IKfHee+/h0qVLMBqNUBQFhYWFmmQjIiLaDSz7REQUltbW1tDe3g4pJYaHh5GWloajR4/CarUiMTFR63gAdl70JyYmcO3aNTz33HN+z6YoCn784x9jcnISmZmZW3pusBR+4O6CfsXFxSguLsapU6fgcrkgpURLSwsKCgqgKAqMRiOio6M1y0hERBQILPtERBRWJicnN8rc8vIyqqur8bWvfQ1VVVWbvv98N+y06AN3Z/UTEhLQ0NDg53R3r3545513IKXE6dOnt/z8YCr89yQmJuLQoUM4cOAA+vr6IKXEm2++ifPnz8NisUBRlC1/sEFERBSsWPaJiCjkeb1e9Pb2QkqJ/v5+xMfHw2azQVEUpKenax3vS/xR9FdXV9HS0gJFUQKyzVxUVBSsViucTieOHz++rZnvYCz8AKDX61FTU4OamhpMTU1BSgmXy4UrV66gsrISiqKgpqYmqD4cIiIi2iqWfSIiClnz8/Mbe6zPzs6iqKgIX/nKV9DY2Bi0+6z7o+gDQHt7O1ZWVmC32/2Y7n6KouCTTz5Be3s7rFbrtl4jWAv/Penp6WhubsaxY8fQ0dEBIQRee+01pKSkbNzzn5SUpHVMIiKiLQvOkRAREdFD+Hw+3LhxA1JKdHZ2Qq/Xo6mpCaqqIj8/X+t4j+Svou/z+SCEQE1NTUCvXEhPT0d1dTWEELBYLNtezDDYCz9w90oGs9kMs9mM4eFhSCnx4Ycf4oMPPkBDQwMURUFJSYnmCzoSERFtFss+ERGFhJWVFbS2tkJKidu3byMzMxPNzc0wm82Ij4/XOt5j+avoA3d3FxgdHcXx48f9lO7hVFXFd77zHQwPD+9o9fpQKPz3FBQU4JlnnkFzczPcbjeEEHjllVeQk5MDVVXR1NSE2NhYrWMSERE9Ess+EREFtdu3b0MIgdbWVqytraG2thanT59GeXl5yMyy+rPoA3cX5ktLS0NVVZUf0j1aZWUl0tLSIITY8VZ1oVT4ASA+Ph779u3D3r17MTAwACEEfv7zn+PChQswm81QFAU5OTlaxyQiInogln0iIgo6Ho8HXV1dkFLi+vXrSEpKwr59+2C325GSkqJ1vC3xd9FfXFxEe3s7jh07tisfduj1eiiKgkuXLuHUqVNISEjY0euFWuEH7m7fV1FRgYqKCszMzGysEyGEQGlpKVRVRV1dHQwGg9ZRiYiINrDsExFR0JiZmYHD4YDT6cTCwgJKS0vx4osvhmyR8nfRBwCXywUA214wbzusVisuXbqElpYWHDhwYMevF4qF/57U1NSNf8/u7m4IIfD9738fSUlJsNlsIfmBFBERhSeWfSIi0pTP59u4RLqnpwfR0dFhcYl0IIq+z+eDlBJGo3HHM+xbkZCQgMbGRkgpsX//fr9cURDKhR8ADAYDGhsb0djYiNu3b0NKiStXruDDDz9EbW0tVFUNqVtNiIgo/LDsExGRJpaWluB2uyGlxOTkJHJycvDUU0+FxeJngSj6ANDX14fp6Wm88MILfnvNzVJVFa2trejv7/fbWgGhXvjvufeze+LECbS1tUEIgW9+85vIzMyEoighs4gkERGFF5Z9IiLaVSMjIxBCoK2tDV6vFw0NDXjmmWdQXFwcFrOggSr6wN2F+fLz83e8UN52FBYWIi8vD0IIvy4MGC6FHwBiY2OhKArsdjtu3rwJIQQuXLiAd999N2S2hyQiovDBsk9ERAG3vr6Ojo4OCCEwNDSElJQUPPHEE7BarUhKStI6nt8EsuhPT0+jt7cX586d0+RDEZ1OB1VV8dOf/hTT09NIS0vz22uHU+EH7v5dlZSUoKSkBKdPn95Y0M/lcqGwsBCqqqKxsRFRURyGERFR4PAsQ0REATM1NQUpJVwuF5aWllBZWYmvfvWrqK6uhl6v1zqeXwWy6AN3Z/VjY2PR1NTk99feLKPRiPPnz8PhcODEiRN+fe1wK/z3JCUl4YknnsChQ4fQ29sLKSV+/OMf45133oHVaoWiKEhPT9c6JhERhSGWfSIi8iuv14u+vj4IIdDX14e4uDhYrVbY7XZkZmZqHS8gAl3019fX4XK5YLFYEB0d7ffX36yYmBhYLBY4nU4cOXLE7zPT4Vr4gbtbGNbV1aGurg6Tk5OQUsLpdOKTTz5BVVUVVFVFVVVV2H0IRkRE2mHZJyIiv1hYWIDL5YKUEjMzMygoKMCzzz6LxsZGTQtqoAW66ANAZ2cnFhcXoShKQF5/KxRFwaeffoqurq6AXGUQzoX/nszMTJw+fRrHjx9He3s7hBD47ne/i7S0NNjtdlitViQmJmodk4iIQhzLPhERbZvP58OtW7cghEBnZyd0Oh2MRiMURdFkEbndthtFH7h7CX9FRQWysrICdozNysrKQnl5OYQQAbulIBIKPwBER0fDarXCarViaGgIUsqNn6nGxkYoioKioqKwWLiSiIh2H8s+ERFt2erq6sYWY2NjY8jIyMDx48dhsVh2df93Le1W0R8dHcXNmzfx0ksvBewYW6WqKl5//XWMjo4iLy8vIMeIlMJ/T2FhIQoLC9Hc3IyWlhZIKdHa2oq8vDwoioKmpibExMRoHZOIiEIIyz4REW3axMQEhBBwu91YXV1FTU0NmpubUVFREVGzj7tV9AFACIHk5GTU1tYG9DhbUVtbi+TkZEgp8fTTTwfsOJFW+AEgISEBBw4cwP79+9Hf3w8pJd566y1cuHABZrMZqqoGxRUeREQU/Fj2iYjokTweD3p6eiClxMDAABITE7Fnzx7Y7XakpqZqHW/X7WbRX15eRltbGw4ePBhUC7fp9XrY7XZ8/PHHOHnyJOLi4gJ2rEgs/MDd7fuqqqpQVVWF6elpOBwOOJ1OfPbZZygvL4eiKKitrYXBYNA6KhERBSmWfSIieqDZ2Vk4nU44nU7Mzc2hpKQEzz//POrr6yN2f/DdLPoA4Ha74fF4YLPZAn6srbLZbLh8+TJaW1uxZ8+egB4rUgv/PWlpaThx4gSOHDmCrq4uSCnxxhtvIDk5GTabDXa7HcnJyVrHJCKiIBOZozUiInogn8+HwcFBCCHQ3d2NqKgomEwmqKqK3NxcreNpareLvs/ng5QS9fX1QVnkkpOTUVdXByEEVFUN+G0ckV74ASAqKgpNTU1oamrC2NgYhBD45JNPcPnyZdTX10NRFJSVlUXULTVERPRwLPtERITl5WW43W5IKTExMYHs7Gw8+eSTMJvNiI2N1Tqe5na76APA4OAgJiYmcPbs2V053naoqopvfOMbGBwcRHl5ecCPx8L/a7m5uXj66afR3Ny88d599dVXkZWVBUVRYDabA3p7BRERBT+WfSKiCDY6OgohBNra2uDxeFBfX4+zZ8+itLSUs4O/okXRB+4uzJednY3S0tJdO+ZWlZaWIisrC1LKXSn7AAv/F8XGxmLPnj1QVRXXr1+HlBLnz5/Hu+++i6amJqiqGrAdE4iIKLix7BMRRZj19XV0dnZCSombN28iOTkZBw8ehM1mC8rLxbWkVdGfnZ1Fd3c3nnzyyaD+0EWn00FVVfziF7/A3Nzcrv38sPB/mU6nQ1lZGcrKyjA3Nwen07mxqF9xcTEURUFDQ0PErrdBRBSJ+BufiChCTE9PQ0oJl8uFxcVFVFRU4KWXXkJtbW1QrfQeLLQq+gDgdDoRFRUFs9m8q8fdDpPJhIsXL8LhcODo0aO7dlwW/odLTk7GkSNHcPjwYfT09EAIgR/96Ed45513YLVaoSgK0tLStI5JREQBxrJPRBTGfD4f+vr6IKVEb28vYmNjYbFYoCgK9+p+BC2LvsfjgcPhgMlkCon1EuLi4mAymeB0OnH48OFd3QqOhf/R9Ho96uvrUV9fj4mJCUgpIaXExx9/jJqaGiiKgqqqqqC+eoSIiLaPZZ+IKAwtLi7C5XLB4XBgamoKeXl5OHfuHIxGI2JiYrSOF9S0LPoA0NPTg/n5eaiquuvH3i5FUeBwONDT04OGhoZdPTYL/+ZkZWXhySefxPHjx9He3g4hBL7zne8gPT0ddrsdVqsVCQkJWsckIiI/YtknIgoTPp8PQ0NDkFKivb0dAGA0GvH888+jsLCQs3eboHXRB+4uzFdSUhJSWx3m5eWhuLgYUspdL/sAC/9WxMTEwGazwWq1YmhoCEIIXLp0CZcuXYLRaISqqigoKODvCyKiMMCyT0QU4tbW1tDW1gYpJUZGRpCWloZjx45xpm6LgqHoj4+PY3BwEM8//7wmx98JVVXxwx/+EOPj48jOzt7147Pwb41Op0NRURGKiopw6tQptLS0QEoJt9uN/Px8qKoKo9GI6OhoraMSEdE2sewTEYWoyclJCCHgdruxvLyM6upq/OZv/iYqKyu54N4WBUPRBwApJRITE1FfX69Zhu2qr69HQkICpJQ4c+aMJhlY+LcnMTERBw8exP79+9Hf3w8hBN58802cP39+Y42PzMxMrWMSEdEWsewTEYUQr9eL3t5eCCFw7do1JCQkwG63w263Iz09Xet4ISlYiv7q6ircbjf27NkTktujRUVFwWazQQiBEydOaLY2BAv/9un1elRXV6O6uhpTU1MbW/dduXIFFRUVUFUVNTU1/DCRiChEhN5ogogoAs3Pz2/smz07O4uioiI899xz3Dd7h4Kl6ANAW1sbVldXYbfbNc2xE3a7HR9//DHa2to0/e9g4d+59PR0nDx5EkePHkVnZyeEEHjttdeQkpICu90Om82GpKQkrWMSEdEjcIRIRBSkfD4fbty4ASEEurq6YDAY0NTUBEVRkJ+fr3W8kBdMRd/n80EIgZqaGqSmpmqaZSfS0tJQU1MDKSVsNpumi7yx8PtHVFQUTCYTTCYTRkZGIKXERx99hA8++AD19fVQVRUlJSVc0I+IKAix7BMRBZmVlRW0trZCCIHx8XFkZmbi1KlTMJvNiIuL0zpeWAimog8At27dwtjYGJqbm7WOsmOKouDb3/42bt26heLiYk2zsPD7V35+Ps6dO4fm5uaNBf1eeeUVZGdnQ1VVmEwmxMbGah2TiIh+hWWfiChIjI2NQUqJ1tZWrK2toa6uDmfOnEFZWRlnzfwo2Io+cHe7vYyMDFRUVGgdZccqKyuRnp4OKaXmZR9g4Q+EuLg47Nu3D3v37sXAwACklHj77bdx8eJFmEwmqKqKnJwcrWMSEUU8ln0iIg15PB50dXVBCIEbN24gKSkJ+/fvh81mQ0pKitbxwk4wFv2FhQV0dnbixIkTYfGhjk6ng6IoeO+993Dq1CkkJiZqHYmFP0B0Oh0qKipQUVGB2dnZjQX9pJQoKSmBqqqor6+HwWDQOioRUURi2Sci0sDMzMzGwHhhYQFlZWX4jd/4DdTW1nJgHCDBWPQBwOVyQafTwWKxaB3FbywWCy5dugSXy4VDhw5pHQcAC3+gpaSkbLy3uru7IaXED37wAyQmJsJms8Fut4f0ehRERKGIZZ+IaJf4fD5cu3YNQgj09vYiOjoaZrMZqqoiOztb63hhLViLvtfrhZQSRqMR8fHxWsfxm4SEBBiNRjgcDhw4cCBotmpj4Q88g8GAxsZGNDY2Ynx8HEIIfPrpp/joo49QW1sLRVFQUVERFlexEBEFO5Z9IqIAW1pa2ljM6s6dO8jNzcVTTz0Fk8mk2V7kkSRYiz4A9PX1YWZmBqqqah3F7xRFQUtLC/r6+lBTU6N1nA0s/LsnOzsbTz31FE6ePLmx6Oi3vvUtZGRkQFEUWCyWsPqQi4go2LDsExEFyPDwMIQQaG9vh8/nQ0NDA5599lkUFxdzVmuXBHPRB+4uzFdQUICCggKto/hdYWEhCgoKIKUMqrIPsPDvtpiYGCiKArvdjps3b0JKiYsXL+K9996D0WiEqqph+R4gItIayz4RkR+tra2ho6MDUkoMDQ0hNTUVR44cgdVqDYqFyiJJsBf9O3fuoK+vD88++6zWUQJGURS8+eabmJqaQnp6utZx7sPCv/t0Oh1KSkpQUlKC06dPw+l0wuFwoKWlBYWFhVAUBY2NjYiOjtY6KhFRWGDZJyLygzt37kBKiZaWFiwtLaGqqgpf/epXUV1dHTT3K0eSYC/6AOBwOBAXF4fGxkatowSM0WjE+fPnIaVEc3Oz1nG+hIVfO4mJiTh8+DAOHjyIq1evQkqJn/zkJzh//jwsFgsURUFGRobWMYmIQhrLPhHRNnm93o1Bal9fH+Lj4zlIDQKhUPTX1tbgcrlgtVrDehYzOjoaFosFLpcLx44dQ1RU8A07WPi1pdfrUVtbi9ra2vs+NP3lL3+JqqoqKIrCD02JiLYp+M66RERBbmFhYePy05mZGRQWFuLZZ5/l5adBIBSKPgB0dnZiaWkJiqJoHSXgFEXBlStX0NHRAbPZrHWcB2LhDw4ZGRk4deoUjh07tnE71Pe+9z2kpqbCbrfDZrPxdigioi1g2Sci2gSfz7exsFRHRwf0ej0XlgoyoVL0gbsL81VWVkbEFSCZmZmorKyElDJoyz7Awh9M7l0RYrFYNhY6vXz5Mt5//300NjZCURQudEpEtAks+0REj7C6uorW1lZIKTE2NoaMjAycPHmSW0YFmVAq+sPDwxgaGsJXv/pVraPsGkVR8Nprr2FkZAT5+flax3koFv7gU1BQgGeffRanTp3a2MK0ra0Nubm5UBSFW5gSET0Cyz4R0QOMj49DCAG32421tTXU1taiubkZFRUVnE0KMqFU9IG7s/qpqamorq7WOsquqampQUpKCoQQeOaZZ7SO80gs/MEpPj4e+/fvx759+3Dt2jUIIfDzn/8cFy5cgNlshqqqyM7O1jomEVFQYdknIvoVj8eD7u5uSCkxODiIxMRE7N27F3a7HampqVrHowcItaK/tLSE9vZ2PPHEExG14Jher4fdbseHH36I5ubmoL8qhoU/eOl0OlRWVqKyshIzMzNwOBxwOp0QQqCsrAyKoqCurg4Gg0HrqEREmmPZJ6KINzs7uzFgnJ+fR2lpKV544QXU19dzwBjEQq3oA0BLSwu8Xi+sVqvWUXadzWbDBx98ALfbjX379mkd57FY+INfamoqjh8/jiNHjqCrqwtCCHz/+99HUlISbDYb7HY7UlJStI5JRKQZln0iikg+nw8DAwOQUqK7uxvR0dEwmUxQVRU5OTlax6PHCMWi7/P5IKVEQ0MDkpKStI6z65KSktDQ0AAhBPbu3RsSt8Ow8IcGg8EAo9EIo9GIsbExSClx5coVfPjhh6irq4OqqigrKwuJnzkiIn9i2SeiiLK8vLyxyNPk5CSys7Nx5swZmEwmxMbGah2PNiEUiz4AXLt2DXfu3MGzzz6rdRTNKIqCV155BQMDA6ioqNA6zqaw8IeW3NxcnD17FidPnkRrayuEEHj11VeRmZkJVVVhNpsRFxendUwiol3Bsk9EEWFkZARCCLS3t8Pj8aC+vh7nzp1DSUkJZ3tCSKgWfQCQUiInJwfFxcVaR9FMSUkJcnJyIIQImbIPsPCHotjYWKiqCkVRcOPGDQghcP78ebz77rtoamqCqqrIy8vTOiYRUUCx7BNR2FpfX0dnZyeEELh16xZSUlJw6NAh2Gy2iLyMOtSFctGfmZlBT08PnnrqqYj+cEmn00FRFLz99tuYnZ0NqfupWfhDk06nQ2lpKUpLSzE/Pw+n07mxRktRURFUVUVDQwOiojgkJqLww99sRBR2pqam4HA44HK5sLi4iIqKCrz88suoqamJqBXQw0koF30AcDgciI6ORlNTk9ZRNGcymXDx4kU4HA4cO3ZM6zhbwsIf2pKSkvDEE0/g0KFD6O3thRACP/rRj/DOO+/AarXCbrcjPT1d65hERH7Dsk9EYcHr9aK/vx9CCFy9ehVxcXGwWCxQFAWZmZlax6MdCPWi7/F44HQ6YTabuS4E7l5ebTKZ4HQ68cQTT4Tcjhcs/KFPr9ejrq4OdXV1mJychJQSDocDH3/8Maqrq6GqKiorK/nhMBGFPJZ9Igppi4uLcLlckFJienoa+fn5eOaZZ2A0GhEdHa11PNqhUC/6ANDV1YWFhQUoiqJ1lKChqurGThiNjY1ax9kyFv7wkZmZidOnT+P48eNoa2uDEALf+c53kJaWBkVRYLVakZCQoHVMIqJtYdknopDj8/kwNDQEIQQ6OjoAAEajES+++CIKCgoi+p7ocBIORR+4uzBfWVkZt3T8nJycHJSWlkIIEZJlH2DhDzfR0dGw2WywWq0YGhqClBKXLl3CpUuX0NjYCFVVUVhYyPMLEYUUln0iChmrq6tob2+HEAKjo6NIT0/H8ePHYbFYOPMSZsKl6N++fRvXr1/Hiy++qHWUoKOqKr7//e/j9u3bIftBCAt/+NHpdCgqKkJRURFOnTq1ceVYa2sr8vLyoKoqmpqaeOUYEYUEln0iCnoTExOQUqKlpQUrKyuoqanBiRMnUFlZyVmWMBQuRR8AhBBISkpCXV2d1lGCTl1dHZKSkiClxFNPPaV1nG1j4Q9fCQkJOHjwIA4cOIC+vj5IKfHTn/4U58+f31gTJisrS+uYREQPxbJPREHJ6/Wip6cHQggMDAwgISEBiqJAURSkpaVpHY8CJJyK/srKClpbW7Fv376QW4RuNxgMBthsNly5cgUnTpwI6cULWfjDm06nQ3V1NaqrqzE9PQ0pJVwuFz799FNUVFRAURTU1tZyQT8iCjos+0QUVObm5jb2QZ6bm0NxcTGee+457oMcAcKp6ANAa2sr1tbWYLfbtY4StOx2Oz788EO0tbWF/AKGLPyRIS0tDSdPnsTRo0fR2dkJKSVef/11JCcnw263w2azITk5WeuYREQAWPaJKAj4fD5cv34dQgh0d3fDYDCgqakJqqoiLy9P63i0C8Kt6Pt8PkgpUVdXh5SUFK3jBK2UlBTU1tZCCAG73R7yt+Ww8EeOqKgomEwmmEwmjI6OQgiBjz/+GJcvX0Z9fT0URUFpaWnI/0wTUWhj2ScizaysrMDtdkNKifHxcWRlZeH06dMwmUyIi4vTOh7tknAr+gBw48YN3L59G6dPn9Y6StBTVRXf/OY3cfPmTZSUlGgdZ8dY+CNPXl4ezp07h+bm5o1z2je+8Q1kZ2dDURSYzeaQvk2FiEIXyz4R7bqxsTEIIdDa2or19XXU19fjzJkzKCsr4yxIhAnHog/c3W4vMzMT5eXlWkcJeuXl5cjMzIQQIizKPsDCH6ni4uKwd+9e7NmzB4ODg5BS4he/+AUuXrwIk8kEVVWRm5urdUwiiiAs+0S0K9bX19HV1QUpJW7cuIHk5GQcOHAAdrud9zdGqHAt+vPz8+js7ERzczM/vNoEnU4HRVFw4cIFnD59GklJSVpH8gsW/sil0+lQXl6O8vJyzM7Owul0bqxFU1JSAkVRUF9fz3VoiCjg+FuGiAJqenoaDocDLpcLCwsLKC8vx2/8xm+gtraWK5RHsHAt+gDgdDqh1+thsVi0jhIyzGYz3n33XbhcLhw+fFjrOH7Dwk8pKSk4evQoDh8+jJ6eHkgp8cMf/hCJiYmwWq1QFAWpqalaxySiMMWyT0R+5/P50N/fDyklent7ERMTA7PZDEVRkJ2drXU80lg4F32v1wuHw4GmpiauO7EF8fHxaGpqgpQSBw8eDKstzFj4Cbi71WRDQwMaGhowPj4OKeXGon41NTVQFAWVlZW8GoiI/Ipln4j8ZnFxES0tLZBSYmpqCrm5uTh79iyampoQExOjdTwKAuFc9AGgt7cXs7OzUFVV6yghR1VVuFwuXL16FbW1tVrH8SsWfvq87OxsnDlzBidOnEBbWxuEEPj2t7+N9PR0KIoCq9WK+Ph4rWMSURhg2SeiHRsaGoKUEu3t7fD5fGhsbMRzzz2HoqIizlLQhnAv+sDdhfmKioqQn5+vdZSQk5+fj8LCQgghwq7sAyz89GUxMTGw2+2w2Wy4desWhBB47733cOnSJRiNRiiKgsLCQq1jElEIY9knom1ZW1tDe3s7pJQYHh5Gamoqjhw5AqvVisTERK3jUZCJhKI/OTmJ/v5+fOUrX9E6SshSVRU//vGPcefOHWRkZGgdx+9Y+OlBdDodiouLUVxcjNOnT8PlckFKiZaWFhQUFEBRFBiNRkRHR2sdlYhCDMs+EW3J5OTkxiBkeXkZ1dXV+NrXvoaqqqqwus+W/CcSij5wd1Y/Pj4ejY2NWkcJWY2NjXjnnXcgpcSpU6e0jhMQLPz0KImJiTh06BAOHDiAvr4+CCHw5ptv4vz587BYLFBVNSw/CCOiwGDZJ6LH8nq96O3thZQS/f39iI+Ph81mg6IoSE9P1zoeBbFIKfpra2toaWmBzWbjdlo7EBUVBavVCqfTiWPHjoXtTCYLPz2OXq9HTU0NampqcOfOnY1dba5cuYLKykqoqorq6mp+yE5Ej8QRCRE91Pz8/MbewLOzsygsLMRXvvIVNDY2stDQY0VK0QeA9vZ2LC8vQ1EUraOEPLvdjk8++QQdHR1hvX0hCz9tVkZGBpqbm3H06FF0dnZCCIHvfe97SE1Nhd1uh9VqRVJSktYxiSgIcbRORPfx+Xy4ceMGpJTo7OyEXq9HU1MTFEVBQUGB1vEoRERS0ff5fBBCoLq6mle6+EFGRgaqqqoghAjrsg+w8NPWREdHw2w2w2w2Y3h4GFJKXL58Ge+//z4aGhqgqiqKi4u5MC4RbWDZJyIAwMrKysYWQLdv396YSTCbzdwCiLYkkoo+AAwPD2NkZARf+9rXtI4SNlRVxXe/+10MDQ2F/WrkLPy0HQUFBXjmmWfQ3NwMt9sNIQS+/vWvIycnB6qqoqmpCbGxsVrHJCKNsewTRbjbt29DSgm32421tTXU1tbi9OnTKC8v5+wAbVmkFX0AEEIgLS0NVVVVWkcJG1VVVUhNTYWUMuzLPsDCT9sXHx+Pffv2Ye/evRgYGIAQAj//+c9x4cIFmM1mKIqCnJwcrWMSkUZY9okikMfjQXd3N4QQuH79OhITE7Fv3z7YbDakpqZqHY9CVCQW/cXFRbS3t+Po0aNcKMuP9Ho9FEXBBx98gObmZiQkJGgdKeBY+GkndDodKioqUFFRgZmZmY31doQQKC0thaqqqKurg8Fg0DoqEe0iln2iCDI7OwuHwwGn04n5+XmUlpbixRdf5ACAdiwSiz4AtLS0AACsVqu2QcKQ1WrF+++/j5aWFhw4cEDrOLuChZ/8ITU1deN3cVdXF6SU+P73v4+kpCTYbDbY7XakpKRoHZOIdgHLPlGY8/l8G5f29fT0bCzww0v7yF8itej7fD5IKdHY2IjExESt44SdxMRENDQ0QEqJ/fv3R8xtRSz85C8GgwFGoxFGoxG3b9+GEAJXrlzBhx9+iNraWqiqylv2iMIcyz5RmFpaWoLb7YaUEpOTk8jJycFTTz3FRXvIryK16ANAf38/pqam8Nxzz2kdJWypqoq2tjb09/dH1JoILPzkbzk5OTh79ixOnjyJ1tZWSCnxzW9+E5mZmVAUBRaLBXFxcVrHJCI/Y9knCjMjIyMQQqCtrQ1erxcNDQ145plnuB0P+V0kF33g7sJ8eXl5KCoq0jpK2CoqKkJubi6klBFV9gEWfgqM2NhYqKoKRVE2ttm9cOEC3n33XTQ1NUFVVeTn52sdk4j8hGWfKAysr6+jo6MDQggMDQ0hJSUFhw8fhs1mQ1JSktbxKAxFetGfnp5Gb28vnn76aX6IFkA6nQ6qquKtt97C9PQ00tLStI60q1j4KVB0Oh1KS0tRWlqK06dPbyzo53K5UFRUBEVR0NjYiKgoVgWiUMZ3MFEIm5qagpQSLpcLS0tLqKysxMsvv4yamhquDE4BE+lFHwAcDgdiY2PR1NSkdZSw19TUhAsXLsDhcODEiRNax9l1LPwUaElJSXjiiSdw6NAh9Pb2QkqJH//4x3jnnXdgtVqhKArS09O1jklE28CyTxRivF4v+vr6IIRAX18f4uLiYLFYoCgKMjMztY5HYY5F/+6VNE6nExaLBTExMVrHCXsxMTEwm81wuVw4cuRIRM40svDTbtDr9airq0NdXR0mJychpYTT6cQnn3yC6upqKIqCqqoqTiYQhZDIO2MShaiFhQW4XC44HA5MT0+joKAAzzzzDIxGI6Kjo7WORxGARf+urq4uLC4uQlEUraNEDFVV8dlnn6Grqytir6Zg4afdlJmZidOnT+P48eNob2+HEALf/e53kZaWBrvdDqvVyl1IiEIAyz5REPP5fLh16xaklOjo6IBOp4PRaISiKCgsLNQ6HkUQFv1fE0KgvLwcWVlZWkeJGFlZWSgvL4eUMmLLPsDCT7svOjoaVqsVVqsVQ0NDkFJunA8aGxuhKAqKioq4dglRkGLZJwpCq6uraGtrg5QSo6OjSE9Px/Hjx2GxWJCQkKB1PIowLPq/Njo6ips3b+Kll17SOkrEURQFb7zxBsbGxpCbm6t1HM2w8JNWCgsLUVhYiObmZrS0tEBKidbWVuTl5UFRFDQ1NfHWJqIgw7JPFEQmJiYghIDb7cbq6ipqampw4sQJVFZW8lNz0gSL/v2klEhOTkZtba3WUSJObW0tkpOTIYTA008/rXUcTbHwk5YSEhJw4MAB7N+/H/39/ZBS4q233sKFCxdgNpuhqiqvfCIKEiz7RBrzeDzo6emBlBIDAwNISEiAqqqw2+0Rt80UBRcW/fstLy+jtbUVBw8e5AJVGjAYDLDZbPjkk0/Q3NyM2NhYrSNpioWftKbT6VBVVYWqqipMT0/D4XDA6XTis88+Q3l5ORRFQW1tLQwGg9ZRiSIWyz6RRubm5jZOjHNzcygpKcHzzz+P+vr6iFxtmoILi/6Xtba2wuPxwGazaR0lYtntdly+fBlutxt79uzROo7mWPgpWKSlpeHEiRM4cuQIurq6IKXEG2+8geTkZNhsNtjtdiQnJ2sdkyjisFEQ7SKfz4fBwUFIKdHV1YWoqCiYTCaoqhrR96BScGHR/zKfzwchBOrq6jhg1VBycjLq6+shpYSqqry9CSz8FFyioqLQ1NSEpqYmjI6OQkqJTz75BJcvX0Z9fT0URUFZWRnfu0S7hGWfaBcsLy/D7XZDSomJiQlkZ2fjySefhNlsjvhLUSm4sOg/2PXr1zExMYGzZ89qHSXiKYqCV199FdevX0dZWZnWcYICCz8Fo7y8PDz99NM4efIkWltbIYTAq6++iqysLCiKArPZjLi4OK1jEoU1ln2iABodHYUQAm1tbfB4PKivr8fZs2dRWlrKT7Up6LDoP5wQAllZWSgtLdU6SsQrKytDVlYWpJQs+5/Dwk/BKi4uDnv27IGqqrh+/TqEEDh//jzeffddNDU1QVVV5OXlaR2TKCyx7BP52fr6Ojo7OyGlxM2bN5GcnIyDBw/CZrPx8l8KWiz6Dzc3N4fu7m6cPn2aH9IFAZ1OB0VRcP78eczNzfH36uew8FMw0+l0KCsrQ1lZGebm5uB0OjfWLiouLoaqqly3iMjP+G4i8pPp6WlIKeFyubC4uIjy8nK89NJLqK2t5crdFNRY9B/N6XTCYDDAZDJpHYV+xWw2491334XT6dwouHQXCz+FguTkZBw5cgSHDh1Cb28vhBD44Q9/iISEhI0F/bgjEdHOsewT7YDP50NfXx+klOjt7UVsbCwsFgsUReEesxQSWPQfzePxwOFwwGQy8d7SIBIXF4empiY4HA4cPnyYH6h+AQs/hQqDwYD6+nrU19djYmICUkoIIfDRRx+hpqYGqqqisrKSV1URbRPLPtE2LC4uwuVyweFwYGpqCnl5eTh37hyMRiNiYmK0jke0KSz6j9fb24u5uTkoiqJ1FPoCVVXhdDrR09OD+vp6reMEHRZ+CjVZWVl48skncfz4cbS3t0MIgW9/+9tIT0+HoiiwWCxISEjQOiZRSGHZJ9okn8+H4eFhCCHQ3t4OAGhsbMTzzz+PwsJCfupMIYVFf3OEECguLubiUUEoLy8PxcXFkFKy7D8ECz+FopiYGNhsNlitVgwNDUEIgffeew/vvfcejEYjVFVFQUEBx11Em8CyT/QYa2trG58wj4yMIC0tDceOHYPFYkFiYqLW8Yi2jEV/cyYmJjAwMIDnn39e6yj0EIqi4Ec/+hEmJiZ469RDsPBTqNLpdCgqKkJRURFOnTqFlpYWSCnhdruRn58PVVVhNBoRHR2tdVSioMWyT/QQk5OTkFKipaUFy8vLqK6uxm/+5m+isrKS94dSyGLR3zwhBBISEjhrHMQaGhrwzjvvQEqJJ598Uus4QYuFn0JdYmIiDh48iP3792+slfTmm2/i/PnzG2slZWZmah2TKOiw7BN9jtfr3VgV9tq1a4iPj4fdbofdbkd6errW8Yh2hEV/81ZXV+F2u6GqKreBCmJRUVGwWq2QUuL48eNcM+URWPgpHOj1etTU1KCmpgZTU1MbuyBduXIFFRUVUFUVNTU1nJQh+hWOYIgAzM/Pb+z3Ojs7i6KiIjz33HNoaGjgQJ/CAov+1rS1tWFlZQV2u13rKPQYiqLg448/Rnt7O2w2m9ZxghoLP4WT9PR0NDc349ixY+jo6ICUEq+99hpSUlJgt9ths9mQlJSkdUwiTbHFUMTy+Xy4ceMGhBDo6uqCwWBAU1MTFEVBfn6+1vGI/IZFf2t8Ph+klKipqeE+zyEgLS0NNTU1EELAarVy0a7HYOGncBMVFQWz2Qyz2YyRkREIIfDhhx/igw8+QENDAxRFQUlJCX83UERi2aeIs7KygtbWVgghMD4+jszMTDQ3N8NisXAfbQo7LPpbd+vWLYyOjuLEiRNaR6FNUhQF3/nOdzA0NISioiKt4wQ9Fn4KV/n5+XjmmWfuW9DvlVdeQU5ODhRFgclkQmxsrNYxiXYNyz5FjNu3b0MIgdbWVqytraGurg5PPvkkysvL+WkvhSUW/e2RUiI9PR2VlZVaR6FNqqqqQlpaGoQQLPubxMJP4SwuLg779u3D3r17MTAwACkl3n77bVy8eBEmkwmqqiInJ0frmEQBx7JPYc3j8aCrqwtCCNy4cQNJSUnYt28f7HY7UlJStI5HFDAs+tuzsLCAjo4OHD9+nB8ChhCdTgdFUXDp0iWcPn0aCQkJWkcKCSz8FO50Oh0qKipQUVGB2dlZOBwOOJ1OSClRWloKRVFQX18Pg8GgdVSigGDZp7A0MzOz8Qt9YWEBZWVlePHFF1FXV8df6BT2WPS3z+VyAQAsFou2QWjLrFYrLl26BJfLhYMHD2odJ2Sw8FOkSElJ2Tgvdnd3Q0qJH/zgB0hMTITNZoPdbkdqaqrWMYn8imWfwobP58O1a9cgpURPTw+io6NhNpuhqiqys7O1jke0K1j0t8/r9cLhcMBoNHJmOAQlJCTAaDRCSon9+/dz660tYOGnSGIwGNDY2IjGxkbcvn0bUkp8+umn+Oijj1BbWwtFUVBRUcGruygssOxTyFtaWtpYhOXOnTvIzc3FU089BZPJxD2XKaKw6O9MX18fpqen8eKLL2odhbZJURS43W709/ejurpa6zghhYWfIlFOTg6eeuopnDx5cmPx5m9961vIyMiAoiiwWCyIj4/XOibRtrHsU8gaHh6GEALt7e3wer1obGzEs88+i+LiYn4aSxGHRX/npJQoKChAYWGh1lFomwoLC5Gfnw8hBMv+NrDwU6SKiYmBoiiw2+24efMmpJS4ePEi3nvvPRiNRqiqioKCAq1jEm0Zyz6FlLW1NXR0dEBKiaGhIaSmpuKJJ56AzWZDYmKi1vGINMGiv3NTU1O4evUqnnnmGa2j0A7odDqoqoo333wTU1NTSE9P1zpSyGHhp0im0+lQUlKCkpISnDp1Ci6XCw6HAy0tLSgsLISiKGhsbER0dLTWUYk2hWWfQsKdO3cgpURLSwuWlpZQVVWFr371q6iuruZ9mRTRWPT9Q0qJuLg4GI1GraPQDhmNRpw/fx4OhwMnT57UOk5IYuEnApKSknD48GEcPHgQV69ehZQSP/nJT3D+/HlYLBYoioKMjAytYxI9Ess+BS2v17vxy7Wvrw/x8fH85Ur0OSz6/rG+vg6XywWLxcLZmjAQHR0Ni8UCl8uFo0ePIiqKQ53tYOEnukuv16O2tha1tbUbk08ulwu//OUvUVVVBUVROPlEQYtnQAo6CwsLcDqdcDgcmJmZQWFhIZ599lleNkX0OSz6/tPR0YGlpSUoiqJ1FPITRVFw5coVdHZ2wmQyaR0nZLHwE90vIyMDp06dwrFjx9DR0QEhBL73ve8hNTUVdrudt5VS0GHZjyAenw/jSx6MLq5jdHEd8+teeLw+GPQ6JEXpkZcQhbyEKGTHG2DY5QXufD7fxoIoHR0d0Ov1XBCF6CFY9P1LSonKykpkZmZqHYX8JDMzExUVFRBCsOzvEAs/0Zfdu4LIYrFgaGgIUkpcvnwZ77//PhobG6EoimYLRgfzeJ92H8t+BJhZ9aBlYhmuiWUse3wAAD0A7+ceowfQMnn3/8cZdLBmxcGSFYfUGENAs62urqK1tRVSSoyNjSEjIwMnT57kVidED8Gi718jIyO4desWXn75Za2jkJ+pqorXXnsNIyMjyM/P1zpOSGPhJ3q4wsJCFBYW4tSpUxtbQbe1tSE3NxeqqqKpqWlXtoIO5vE+aYdlP4wte7y4NLQA9+QKdAB8n/ue9wuP9d73PB+ujC3hl2NLMGfG4nhhImIN/r0PaXx8HEIIuN1urK2toaamBs3NzaioqOC2eUQPwaLvf0IIpKSkoKamRuso5Gc1NTVISUmBlBLnzp3TOk7IY+EnerT4+Hjs378f+/btw7Vr1yCEwFtvvYULFy7AbDZDURRkZ2f7/bjBPN4n7bHsh6mB2VX87PocFtfvvuV9j3n8F917fOvkCvpnVnG2NBnlKTv7VNLj8aC7uxtSSgwODiIxMRF79+6F3W5Hamrqjl6bKNyx6Pvf8vIy2tracPjwYS6sFIb0ej3sdjs++ugjNDc3Iy4uTutIIY+Fn+jxdDodKisrUVlZiZmZGTgcDjidTnz22WcoKyuDqqqora2FwbDz2fRgHO9TcGHZD0OO8SVcuLXwpU/3tsMHYGHdh9f6Z9FclAh79tYvrZ+dnd34RTc/P4+SkhK88MILqK+v98svOqJwx6IfGC0tLfB6vbDZbFpHoQCx2Wz44IMP4Ha7sXfvXq3jhAUWfqLNS01NxfHjx3HkyBF0dXVBCIE33ngDSUlJGwv6paSkbOu1g228T8GJZT/M3HvjAzt/499z73Xuve5mfgH4fD4MDg5CCIHu7m5ER0fDZDJBURTk5ub6KRlR+GPRDwyfzwcpJRoaGpCUlKR1HAqQpKQk1NfXQwiBPXv28DYxP2HhJ9oag8EAo9EIo9GIsbExSCnxy1/+EpcvX0ZdXR1UVUVZWdmmf0cFy3ifgh/LfhgZmF3Fdz5y4+qVSxjqcmOoqxXjA73wejxo/sN/heO//yePfH7fpx/gw2/9D9zqcGF1aRHp+UVoPP40jv7eP0Nswt3B8IVbC8iINTz0Ep/l5WW43W4IITA5OYns7GycOXMGJpMJsbGxfv9vJgpnLPqBMzAwgMnJSd7LHQFUVcUrr7yCwcFBlJeXax0nbLDwE21Pbm4uzp49i5MnT6K1tRVCCLz66qvIysqCoigwm82PvO1op+N9r9cL11uvw/XWGxjt7cDywhwSUtOQXVYD48lz2P/S7z12vE+hg2U/TCx7vPjZ9Tl8+sbX8fF3/3rLz//oW/8Tb/2XP4VOp0OZdR+SMrMx6LqC9//2L9Hx3s/wD/7mZ0hMz4QOwFvX5/AHDen3LeIxOjoKIQTa2trg8XhQX1+Pc+fOoaSkhDMpRNvAoh9YUkrk5OSgpKRE6ygUYCUlJcjOzoYQgmXfz1j4ibYvNjYWqqpCURTcuHEDQgicP38e7777LpqamqCqKvLy8u57zk7H+8tzs3j1j38bA85fIjYpGaUmFXHJqZi9PYLhnjasLMxh/0u/99DxPoUelv0wcWloAYvrPuRW1eHw7/xjFNQ1oaDOhPf/9i/heuv1Rz53uLsVP/+v/w56gwG/+5ffQu3BkwCA1aVFvPrHv4P+zy7jx//xn+O3/vzrG/f0vDe0gOaCeHR2dkIIgVu3biElJQWHDh2CzWbjZbFEO8CiH1izs7Po7u7GmTNn+GFkBNDpdFBVFW+//TZmZ2e3fX8sPRgLP9HO6HQ6lJaWorS0FHNzc3A6nRtrXRUVFUFVVTQ0NCAqKmpH432fz4dv/snvYsD5S+x54e/gqT/+9xtX7gLA+toqRq923n0sfj3eP1OSHMj/fAowlv0wML3igXtyBQCgPvc7931Pp3/8QPb9r/83+Hw+KM98baPoA0BMfAJe+Hd/iT9/RkH7uz/D7YGryCmvhg+Ae2IZbT/5JpbujKOiogIvv/wyampquKI10Q6x6Aeew+HYWEeEIoPJZMLFixfhdDpx9OhRreOEHRZ+Iv9ITk7GkSNHcPjwYfT09EBKiR/96Ed455130GDfi7b0BgDbG+87fvIdXJMfo3r/MTz3b//zl74fFR2DogbLxp99ANyTKziQl4DUGC6oHapY9sOAe3J52ytxrq+tovvDiwAA85MvfOn76QXFKDXvwaDrCjovvYWc8j/61Xd8yLYexjP1BcjMzNxudCL6HBb9wPN4PHA6nVxHJMLExsbCZDLB4XDg8OHD3AkmAFj4ifxHr9ejvr4e9fX1mJiYgJQSLVOr8KV6odvmxNon3/tfAIAnfvefbPo5OgAtE8s4UpC4rWOS9lj2Q5zH54NrYnnbK3FOXO/H2vIiANz3ad7nFTZYMOi6guGetl9/UafHTEoB0jIytnlkIvo8Fv3d0d3djfn5eaiqqnUU2mWKokBKiZ6eHjQ0NGgdJyyx8BP5X1ZWFppPn0ZX6yRWvNt7jbnJ2xjp7YDeYECpWcWdW4NovfATTA3fRGxCIoqNNtQfPYOo6PsX5PMBcE0s41B+Agy87S0kseyHuPElD5Y92990Y2roBgAgLjkVsYkPvs8+LbcQAHDnV4+9Z9njw/iSB3kJ/DEi2gkW/d0jhEBpaSlycnK0jkK7LDc3FyUlJRBCsOwHEAs/kf+NL3m2XfQBbNyLn5CaAfHjb+Hn/+X/hGd97b7HZBSV4bf/8yvIr2m87+sc74c23mAd4kYX13f0/JXFeQB3789/mJiEu5furCzM+f34RJGORX/33L59G9evX4eiKFpHIY2oqorBwUGMj49rHSWsHTlyBEePHsWlS5dw+fJlreMQhbydjrcXZ6bu/u/sFH76n/4N6o8+iX/2+mX8+48G8I9eeRvFRjvu3BrE1//Jy1iYvuP345N2WPZD3Ojiumb/iHrwzU+0Eyz6u0tKicTERNTX12sdhTRSX1+PxMRECCG0jhL2WPiJ/Gen432f7+5VwN71dZSYVPzWf/pb5FXVIzYhCSUmBX/vf3wfSZnZmJsYw5U3vn7fczneD20s+yFuft2LHVzVs7HlxurS4kMfs7q4cPexifdvveEFsLC+k6MTRS4W/d21srICt9sNm83GxdkimMFggM1mg9vtxurqqtZxwh4LP5F/+Gu8DwB7XvjdL38/MQnWp34DAND/6Qf3fY/j/dDGsh/iPN7t368P3F1tHwCW52awsjD/wMdMjw3d99jPW9/h8YkiEYv+7mtra8Pa2hrsdrvWUUhjdrsda2traG1t1TpKRGDhJ9q5nY73M4pKf/3/C0sf+Jj0X319dmLsS9/jeD90seyHOMMm9tV8lKyyKkTH3b1f/1ZnywMfM/SrrxfWfXlP6qgdHp8o0rDo7z6fzwchBGpra5Gamqp1HNJYamoqampqIKXcuLSVAouFn2hndjzeL6ncWIh78QH35H/+67EJX95mj+P90MWyH+KSovQ7+keMio5B3eGTAAD3L37wpe9PDd/Ejda79zY2HDt73/f0ABKj+CNEtFks+tq4efMmbt++zYX5aIOqqhgbG8PNmze1jhIxWPiJtm+n431DVBQajj4FAOj7wmX69/RdeR8AUNRou+/rHO+HNv7Lhbi8hKgd3cMDAEf+7j+FTqeD483voufjdze+vrq0iB/8hz+C1+OB8cTTyCmvvu953l8dn4gej0VfO0IIZGRkoKKiQusoFCQqKiqQkZEBKaXWUSIKCz/R9vhjvH/09/4IhqhoiB99C12Xz9/3vcvf+P9isOVT6A0G7H/p9+77Hsf7oY3/ciHui2++oS43fvJn/3Ljz3duDQIAPvvBq+i+fGHj67/9F68gJTsPAFBYb8ZTf/wf8NZ/+VN8459+DeX2A0hMz8Kg6wrmJsaQXVaFr/yb/7yp4xPRl7Hoa2d+fh6dnZ04efIkdDpehkh36XQ6KIqCixcv4vTp00hM/PJlqxQYR44cAQBcunQJAPg7kWgT/DHezymvxnN/+l/wg//rn+HVP/otFDZYkF5QjLG+bowPXoXeYMCz//rPkVfd8NjjU+jgv1yIy443IM6gw7Ln7n2HKwvzuNnu+NLjZsaGMTM2vPFnz9r9qxAf+u1/iLzqenz4zf+Omx0urC0tIjWvEEf/t3+Go7/3Rxv3+XxenEGH7Hiuak30KCz62nK5XNDr9bBYLFpHoSBjsVjw3nvvwel04vDhw1rHiSgs/ERb46/xvv3cV5FTUYvLr/wVBl2fYrS3Awlp6WhqfgaHf+cfo9ho++JLcrwf4lj2Q5xBp4M1Kw5XxpbgA1ChHMSfOce39VpVe4+gau+RTT1WB8CaFQcDZ8qIHopFX1terxdSSjQ1NSE+Pl7rOBRk4uPjYTQa4XA4cPDgQej1vLNxN7HwE22eP8f7xY1W/Naff31Tj+V4P/TxzBYGLFlx2O31hH2/Oi4RPRiLvvauXr2K2dlZqKqqdRQKUqqqYmZmBlevXtU6SkTiPfxEm8fxPm0Hy34YSI0xwJwZi936zE0HwJwZi9QYXtJD9CAs+sFBCIHCwkLk5+drHYWCVEFBAQoLC7lQn4ZY+Ik2h+N92g6W/TBxvDARiVG6gP8C0AFIjNLheCEXMyJ6EBb94HDnzh309/dzVp8eS1EU9PX14c6dB+89TYHHwk+0ORzv01ax7IeJWIMeZ0uTA355jw/A2dJkxBr4o0P0RSz6wUNKifj4eDQ2NmodhYJcY2Mj4uPjObuvMRZ+osfjeJ+2iv+CYaQ8JQbNRYH9BO5UUSLKU2ICegyiUMSiHzzW1tbgcrlgtVoRFcV1aOnRoqOjYbFY0NLSgrW1Na3jRDQWfqLH43iftoJlP8zYs+M3fgH46xKfe69zqigRtmyuaE30RSz6waWjowPLy8uw2+1aR6EQoSgKlpaW0NHRoXWUiMfCT/R4HO/TZnHKIwzZs+OREWvAW9fnsLDu29GlPvfu2TlbmsxP+IgegEU/+AghUFVVhYyMDK2jUIjIyMhAVVUVpJSwWCxax4l43JaP6PE43qfN4Mx+mCpPicHvN6TDlBkLYOuf+t17vCkzFn/QkM43PtEDsOgHn6GhIQwPD3NhPtoyRVE2fn5Ie5zhJ3o8jvfpcTizH8biDHqcKUnGgbwEtEwswzWxjGXP3c/99AC8n3vs5/8cZ9DBmhUHS1Yct9sgeggW/eAkpURqaiqqqqq0jkIhprq6GqmpqRBC4Nlnn9U6DoEz/ESbwfE+PQrLfgRIjTHgSEEiDuUnYHzJg9HFdYwurmNh3Yt1rw9Reh0So/TIS4hCXkIUsuMNMOh2axdPotDDoh+clpaW0N7ejiNHjkCv54VrtDV6vR52ux2XL1/GqVOnEB/Pe1aDAQs/0eZwvE8PwrIfQQw63cYbnIi2h0U/eLW0tMDn88FqtWodhUKUzWbD+++/j5aWFuzfv1/rOPQrLPxEm8fxPn0efwqIiDaJRT94+Xw+SCnR0NCAxMTAbklE4SsxMRGNjY2QUmLfvn3QcdYraLDwExFtHa9zJCLaBBb94Hbt2jXcuXOHC/PRjimKgjt37uDatWtaR6Ev4KJ9RERbw5l9IqLHYNEPfkII5ObmoqioSOsoFOKKi4uRm5sLKSUqKyu1jkNfwBl+IqLN48w+EdEjsOgHv5mZGfT29kJVVV52TTum0+mgKAp6enowMzOjdRx6AM7wExFtDss+EdFDsOiHBiklYmJi0NTUpHUUChMmkwnR0dFwOBxaR6GHYOEnIno8XsZPRPQALPqhYX19HS6XC2azGTExMVrHoTARExMDs9kMp9OJI0eOwGDgHtTBiJf0ExE9Gmf2iYi+gEU/dHR1dWFhYQGKomgdhcKMqqpYWFhAV1eX1lHoETjDT0T0cJzZJyL6HBb90CKlRFlZGbKzs7WOQmEmOzsbZWVlEELAaDRqHYcegTP8REQPxpl9IqJfYdEPLWNjY7hx4wa326OAURQFN27cwNjYmNZR6DE4w09E9GUs+0REYNEPRUIIJCUloba2VusoFKbq6uqQlJQEKaXWUWgTWPiJiO7Hsk9EEY9FP/SsrKygtbUVdrudi6dRwBgMBthsNrS2tmJlZUXrOLQJLPxERL/Gsk9EEY1FPzS53W6sr6/DZrNpHYXCnN1ux9raGlpbW7WOQpvEwk9EdBcX6COiiMWiH5p8Ph+klKirq0NKSorWcSjMpaSkoK6uDkIIKIoCnU6ndSTaBC7aR0TEmX0iilAs+qHr+vXrGB8f58J8tGsURcH4+Dhu3LihdRTaAs7wE1Gk48w+EUUcFv3QJqVEVlYWysrKtI5CEaK8vByZmZkQQqC0tFTrOLQFnOEnokjGsk9EEYVFP7TNzc2hq6sLp06d4uXUtGt0Oh1UVcX58+cxPz+PpKQkrSPRFrDwE1Gk4mX8RBQxWPRDn9PphMFggNls1joKRRiz2QyDwQCn06l1FNoGXtJPRJGIM/tEFBFY9EOf1+uFw+FAU1MT4uLitI5DESYuLg5NTU1wOBw4dOgQ9HrOl4QazvATUaThmYqIwh6Lfnjo6enB3NwcF+YjzaiqitnZWfT29modhbaJM/xEFEk4s09EYY1FP3xIKVFcXIy8vDyto1CEysvLQ1FREYQQqKur0zoObRNn+IkoUnBmn4jCFot++JiYmMC1a9egKIrWUSjCqaqKa9euYXJyUusotAOc4SeiSMCyT0RhiUU/vEgpkZCQgIaGBq2jUIRraGhAQkICpJRaR6EdYuEnonDHsk9EYYdFP7ysrq6ipaUFVqsVUVG8+4y0FRUVBavVipaWFqytrWkdh3aIhZ+IwhnLPhGFFRb98NPe3o6VlRVewk9Bw263Y3l5Ge3t7VpHIT9g4SeicMUpEiIKGyz64cfn80EIgZqaGqSlpWkdhwgAkJ6ejurqagghYLFYoNPptI5EO8RF+4goHHFmn4jCAot+eBoaGsLo6Chn9SnoqKqKkZERDA8Pax2F/IQz/EQUbjizT0Qhj0U/fEkpkZaWhqqqKq2jEN2nsrISaWlpEEKgsLBQ6zjkJ5zhJ6Jwwpl9IgppLPrha3FxEe3t7VAUhZdJU9DR6/VQFAXt7e1YXFzUOg75EWf4iShcsOwTUchi0Q9vLpcLAGC1WjVOQvRg9342W1patA1CfsfCT0ThgJfxE1FIYtEPbz6fD1JKGI1GJCQkaB2H6IESEhLQ2NgIKSX279/PK1DCDC/pJ6JQx5l9Igo5LPrhr6+vD9PT01yYj4KeqqqYmppCf3+/1lEoADjDT0ShjDP7RBRSWPQjgxAC+fn5XPiMgl5hYSHy8vIghOBCkmGKM/xEFKo4s09EIYNFPzJMTU3h6tWrXJiPQoJOp4Oqqujt7cX09LTWcShAOMNPRKGIZZ+IQgKLfuRwOByIjY1FU1OT1lGINsVoNCI2NhZSSq2jUACx8BNRqGHZJ6Kgx6IfOdbX1+FyuWCxWBAdHa11HKJNiYmJgcVigcvlwvr6utZxKIBY+IkolLDsE1FQY9GPLJ2dnVhcXOTCfBRyFEXB4uIiOjs7tY5CAcbCT0Shggv0EVHQYtGPPEIIVFRUICsrS+soRFuSlZWF8vJySClhMpm0jkMBxkX7iCgUcGafiIISi37kGRkZwa1btzirTyFLVVXcvHkTo6OjWkehXcAZfiIKdiz7RBR0WPQjk5QSycnJqK2t1ToK0bbU1tYiOTkZQgito9AuYeEnomDGsk9EQYVFPzItLy+jra0Ndrsdej1PTRSa9Ho97HY72trasLy8rHUc2iUs/EQUrDiiIqKgwaIfudxuNzweD2w2m9ZRiHbEZrPB4/HA7XZrHYV2EQs/EQUjLtBHREGBRT9y+Xw+CCFQX1+P5ORkreMQ7UhycjLq6+shpcSePXug0+m0jkS7hIv2EVGw4cw+EWmORT+yDQ4OYnJyEqqqah2FyC8URcHExAQGBwe1jkK7jDP8RBRMOLNPRJpi0SchBLKzs1FSUqJ1FCK/KC0tRXZ2NqSUKC8v1zoO7TLO8BNRsODMPhFphkWfZmdn0d3dDVVVebkzhQ2dTgdFUdDV1YW5uTmt45AGOMNPRMGAZZ+INMGiTwDgdDoRHR0Nk8mkdRQivzKbzYiKioLD4dA6CmmEhZ+ItMbL+Ilo17HoEwB4PB44HA6YTCbExsZqHYfIr2JjY2EymeB0OnH48GEYDAatI5EGeEk/EWmJM/tEtKtY9Omenp4ezM/PQ1EUraMQBYSqqpibm0NPT4/WUUhDnOEnIq1wZp+Idg2LPn2eEAIlJSXIzc3VOgpRQOTm5qKkpARSSjQ0NGgdhzTEGX4i0gJn9oloV7Do0+eNj49jcHCQ2+1R2FMUBQMDAxgfH9c6CmmMM/xEtNtY9oko4Fj06YuklEhMTER9fb3WUYgCqr6+HomJiZBSah2FggALPxHtJpZ9IgooFn36otXVVbjdbthsNi5aRmEvKioKVqsVbrcbq6urWsehIMDCT0S7hWWfiAKGRZ8epK2tDaurq7Db7VpHIdoVdrsdq6uraGtr0zoKBQkWfiLaDVygj4gCgkWfHsTn80EIgZqaGqSmpmodh2hXpKWloaamBlJK2Gw26HQ6rSNREOCifUQUaJzZJyK/Y9Gnh7l16xbGxsa4MB9FHEVRMDo6ilu3bmkdhYIIZ/iJKJA4s09EfsWiT48ihEBGRgYqKiq0jkK0qyorK5Geng4pJYqLi7WOQ0GEM/xEFCic2Sciv2HRp0dZWFhAZ2cnFEXhZcwUcXQ6HRRFQUdHBxYWFrSOQ0GGM/xEFAgs+0TkFyz69DhOpxM6nQ4Wi0XrKESasFgs0Ol0cLlcWkehIMTCT0T+xsv4iWjHWPTpcbxeLxwOB4xGI+Lj47WOQ6SJhIQEGI1GSClx4MAB6PWcc6H78ZJ+IvInnmWIaEdY9Gkzrl69ipmZGS7MRxFPURTMzMygr69P6ygUpDjDT0T+wpl9Ito2Fn3aLCklCgoKUFBQoHUUIk0VFhaioKBgYwtKogfhDD8R+QNn9oloW1j0abPu3LmDvr4+zuoT/YqiKOjr68OdO3e0jkJBjDP8RLRTLPtEtGUs+rQVUkrExcWhsbFR6yhEQcFoNCIuLg4Oh0PrKBTkWPiJaCdY9oloS1j0aSvW1tbQ0tICq9WK6OhoreMQBYXo6GhYLBa4XC6sra1pHYeCHAs/EW0Xyz4RbRqLPm1VR0cHlpaWoCiK1lGIgoqiKFhaWkJnZ6fWUSgEsPAT0XZwgT4i2hQWfdoOKSUqKyuRkZGhdRSioJKZmYnKykoIIWA2m7WOQyGAi/YR0VZxZp+IHotFn7ZjeHgYQ0NDXJiP6CEURcHQ0BCGh4e1jkIhgjP8RLQVLPtE9Egs+rRdQgikpqaiurpa6yhEQammpgapqamQUmodhUIICz8RbRbLPhE9FIs+bdfS0hLa29tht9uh1/NUQ/Qger0edrsdbW1tWFpa0joOhRAWfiLaDI7AiOiBWPRpJ1paWuD1emGz2bSOQhTUrFYrvF4v3G631lEoxLDwE9HjcIE+IvoSFn3aCZ/PByklGhsbkZiYqHUcoqCWlJSEhoYGCCGwd+9e6HQ6rSNRCOGifUT0KJzZJ6L7sOjTTl27dg137tzhdntEm6SqKu7cuYOBgQGto1AI4gw/ET0MZ/aJaAOLPvmDlBK5ubkoLi7WOgpRSCguLkZOTg6EEKioqNA6DoUgzvAT0YNwZp+IALDok3/MzMygp6cHiqLwcmSiTdLpdFBVFT09PZidndU6DoUozvAT0Rex7BMRiz75jcPhQHR0NEwmk9ZRiEJKU1MToqOj4XA4tI5CIYyFn4g+j5fxE0U4Fn3yF4/HA6fTCbPZjJiYGK3jEIWU2NhYmM1mOJ1OPPHEEzAYDFpHohDFS/qJ6B7O7BNFMBZ98qeuri4sLCxAVVWtoxCFJEVRMD8/j+7ubq2jUIjjDD8RAZzZJ4pYLPrkb1JKlJWVITs7W+soRCEpJycHpaWlEEKgsbFR6zgU4jjDT0Sc2SeKQCz65G+3b9/G9evXud0e0Q6pqorr16/j9u3bWkehMMAZfqLIxrJPFGFY9CkQhBBISkpCXV2d1lGIQlpdXR2SkpIgpdQ6CoUJFn6iyMWyTxRBWPQpEFZWVtDa2gqbzcZFxYh2yGAwwGazwe12Y2VlRes4FCZY+IkiE8s+UYRg0adAaW1txdraGux2u9ZRiMKC3W7H2toa2tratI5CYYSFnyjycIE+ogjAok+B4vP5IKVEXV0dUlJStI5DFBZSUlJQW1sLIQTsdjt0Op3WkShMcNE+osjCmX2iMMeiT4F048YN3L59mwvzEfmZqqq4ffs2bt68qXUUCjOc4SeKHJzZJwpjLPoUaEIIZGZmory8XOsoRGGlvLwcmZmZEEKgpKRE6zgUZjjDTxQZOLNPFKZY9CnQ5ufn0dXVBUVReJkxkZ/pdDooioLOzk7Mz89rHYfCEGf4icIfyz5RGGLRp93gdDqh1+thsVi0jkIUlsxmM/R6PZxOp9ZRKEyx8BOFN17GTxRmWPRpN3i9XjgcDjQ1NSEuLk7rOERhKT4+Hk1NTXA4HDh06BD0es7RkP/xkn6i8MWzBlEYYdGn3dLb24vZ2Vmoqqp1FKKwpqoqZmdn0dvbq3UUCmOc4ScKT5zZJwoTLPq0m4QQKCoqQn5+vtZRiMJafn4+CgsLN7a4JAoUzvAThR/O7BOFARZ92k2Tk5O4du0at9sj2iWqqqK/vx+Tk5NaR6Ewxxl+ovDCsk8U4lj0abdJKREfH4/GxkatoxBFhMbGRsTHx0NKqXUUigAs/EThg2WfKISx6NNuW1tbQ0tLC6xWK6KieCcY0W6IioqC1WpFS0sL1tbWtI5DEYCFnyg8sOwThSgWfdJCe3s7lpeXeQk/0S5TFAXLy8tob2/XOgpFCBZ+otDHaRmiEMSiT1rw+XwQQqC6uhrp6elaxyGKKOnp6aiuroaUElarVes4FCG4aB9RaOPMPlGIYdEnrQwPD2NkZITb7RFpRFEUDA8PY2hoSOsoFEE4w08UujizTxRCWPRJS0IIpKWlobKyUusoRBGpqqoKaWlpkFKisLBQ6zgUQTjDTxSaOLNPFCJY9ElLi4uLaG9vh6Io0Ot56iDSgl6vh91uR3t7OxYXF7WOQxGGM/xEoYcjNqIQwKJPWmtpaQEA3itMpDGr1Qqfz7fxniTaTSz8RKGFl/ETBTkWfdKaz+eDlBKNjY1ISEjQOg5RREtMTERjYyOklNi/fz90Op3WkSjC8JJ+otDBsk/kZx6fD+NLHowurmN0cR3z6154vD4Y9DokRemRlxCFvIQoZMcbYHjMII1Fn4JBf38/pqam8Pzzz2sdhYhwd6G+1tZW9Pf3o6qqSus4FIG2U/j9OT4ios1h2Sfyk5lVD1omluGaWMayxwfg7n0y3s89Rg+gZfLu/48z6GDNioMlKw6pMYYvvR6LPgULIQTy8vK4IBhRkCgqKkJeXh6klCz7pJnNFn5/j4+IaPNY9ol2aNnjxaWhBbgnV6AD4Pvc97xfeKz3vuf5cGVsCb8cW4I5MxbHCxMRa7i7jAaLPgWL6elp9Pb24ty5c7xcmChI6HQ6KIqCt956C9PT00hLS9M6EkWoRxX+QIyPiGhrWPaJdmBgdhU/uz6HxfW7pzDfYx7/Rfce3zq5gv6ZVZwtTcYN1y9Z9CloOBwOxMbGwmg0ah2FiD6nqakJFy5cgMPhwIkTJ7SOQxHsQYU/EOOj8pQYPyUmihws+0Tb5BhfwoVbC1/6tHo7fAAW1n14rX8Wa4MTLPoUFNbX1+F0OmGxWBATw0EWUTCJiYmB2WyGy+XCkSNHEBXFIR1p5/OFfyQ6HQNx+X4fHzUXJcKeHb/TqEQRhdfEEG3DvaIP7PxEds+914k2HUFiveqnVyXavq6uLiwuLkJRFK2jENEDqKqKhYUFdHV1aR2FCEeOHEFd8/MYiMsH4P/x0YVbC3CML/npVYkiA8s+0RYNzK5uFP1AuXBrAQOzqwE9BtHjCCFQXl6OrKwsraMQ0QNkZWWhvLwcUkqtoxBhYHYVA/H5AT0Gx0dEW8Nrvoi2YNnjxc+uz2FisA+9Vy5hqMuNoa5WjA/0wuvxoPkP/xWO//6fPPC506ND6Pno4q+e48ZYfzc8a6tQvvJbeOHf/eV9j9UBeOv6HP6gIZ2L0pAmRkdHcfPmTbz00ktaRyGiR1AUBW+88QbGxsaQm5urdRyKUDsZH138n/8J7/71nz/y9f/4B58gp7ya4yOiLWLZJ9qCS0MLWFz34ZdvfB2ffPevt/Tc9nd/irf+4k839dh796i9N7SAMyXJ20hKtDNSSiQnJ6O2tlbrKET0CLW1tUhOToYQAk8//bTWcShC7WR8dE9+TSPyax+8GGxc0t2xEMdHRFvDsk+0SdMrHrgnVwAAeVV1OPw7/xgFdU0oqDPh/b/9S7jeev2Rz88oLMX+r/4+CutMKKgzoe3CT3Dpb/7rQx/vA+CeXMGBvATuM0u7anl5Ga2trTh48CD0es6cEAUzg8EAm82GTz75BM3NzYiNjdU6EkWYnY6P7mk4+hRO/sN/8djHcXxEtHks+0Sb5J5c3lhZVn3ud+77nk7/+P3HG46eQcPRMxt/7njvrcc+RwegZWIZRwoSt5iWaPvcbjc8Hg9sNpvWUYhoE+x2Oy5fvgy32409e/ZoHYcizE7HR9vB8RHR5nDKhmgTPD4fXBPLfltZdrN8AFwTy/D4dvvIFKl8Ph+klKirq0NyMi+RJAoFycnJqK+vhxACPp4vaBdxfEQU3DizT7QJ40seLHu0OaEse3wYX/IgL4FvVwq8wcFBTExM4OzZs1pHIaItUBQFr776Kq5fv46ysjKt41CE8Of4aLi7Fb/4q/+AxZlpxCWloKCuCfVPnEZsYtIDH8/xEdHj8d1BtAmji+uaH58nM9oNUkpkZWWhtLRU6yhEtAVlZWXIysqCEIJln3aNP8dHXZffQdfld+77WlxSCs79i/8I29MvP/T4HB8RPRzfHUSbMLq4Dj0ArwbH1kP7DxsoMszNzaGrqwtPPvkkdLrA3GdJRIGh0+mgKArOnz+Pubk53oZDu8If46OMojKc/if/FjUHTyA9vxgAMHatBx98/a/Q/eF5vPHv/gl0egOsT7143/M4PiJ6PN6zT7QJ8+teTYo+cPcEurCu1dEpkjgcDkRFRcFkMmkdhYi2wWw2w2AwwOl0ah2FIoQ/xke2p1/C0d/7IxTUNiE+JQ3xKWkos+zF3/lv38b+r/4+AOCtv/hTrK+t3vc8jo+IHo9ln2gTPF5tF4BZ1/j4FP48Hg+cTidMJhPi4uK0jkNE2xAXF4empiY4HA54PB6t41AECPT46OQ/+BfQGwxYmJrAzTbHl77P8RHRo7HsE22CIUBbx2xWlMbHp/DX09ODubk5KIqidRQi2gFVVTE3N4fe3l6to1AECPT4KCE1HYnpWQCAmdsjX/o+x0dEj8ayT7QJSVF6zd4segCJUXyrUmBJKVFcXIy8vDytoxDRDuTl5aG4uBhCCK2jUAQI9PjI6/FgeX4OABCbcP+q/BwfET0e3yFEm5CXEKXpPftcaZYCaXx8HAMDA1BVVesoROQHiqJgYGAAExMTWkehMBfo8VHXB7/A2vIidDodihrM932P4yOix2PZJ9oErU8mWh+fwpuUEomJiaivr9c6ChH5QUNDAxISEiCl1DoKhbmdjk+mR27B9dYbWFtZ/tL3Oi79HD/4f/8xAMB85kUkZ+X6/fhE4Y7vEKJNyI43IM6gw7Ln7kIwQ11u/OTP/uXG9+/cGgQAfPaDV9F9+cLG13/7L15BSvbdy6Jnx0fxrT/5uxvfm7k9DADo+uAd/PfffXLj68/+6/8bhfW//vQ6zqBDdrzB7/9NRACwuroKt9sNVVURFcVTAlE4iIqKgs1mgxACx48fR0xMjNaRKEztdHy0ODuF1//0D/HjP/s/UFDbhJScfKyvLGPsWg8mb1wDAFQoh/CVf/OfvnRsjo+IHo8jO6JNMOh0sGbF4crYEnwAVhbmcbP9y6vCzowNY2ZseOPPns9tE+NZW33gcxamJrAw9etLLVcW5jf+vw6ANSsOBu55TgHS1taG1dVV2O12raMQkR/Z7XZ89NFHaG9vh81m0zoOhamdjo9Scwtx5O/+77jV0YLJmwMY7m6FZ20NCWkZqDt8CuYzL8B06ivQ6++/GJnjI6LNYdkn2iRLVhx+ObYEAKhQDuLPnONben56QcmWn+P71XGJAsHn80FKiZqaGqSlpWkdh4j8KC0tDTU1NRBCwGq1QsdSRAGyk/FRYloGnvyn/27Lx+T4iGhzeM8+0SalxhhgzozFbg2XdADMmbFIjeElahQYt27dwujoKLfbIwpTqqpidHQUQ0NDWkehMMbxEVHwYtkn2oLjhYlIjNIF/ISmA5AYpcPxwsQAH4kimZQS6enpqKys1DoKEQVAZWUl0tPTuQ0fBRzHR0TBiWWfaAtiDXqcLU2GL8DH8QE4W5qMWAPfohQYCwsL6OjogKIovLyXKEzpdDooioKOjg4sLi5qHYfCGMdHRMGJ7xSiLSpPiUFzUWA/UT5VlIjyFK6eTIHjcrmg0+lgsVi0jkJEAXTvPe5yubQNQmGP4yOi4MOyT7QN9uz4jROav+ZE773OqaJE2LLj/fSqRF/m9XrhcDhgNBqRkJCgdRwiCqCEhAQYjUZIKeH1erWOQ2GO4yOi4MKyT7RN9ux4vFyZ4pd71O7dg/ZyZQpPZBRwfX19mJ6e5sJ8RBFCVVVMT0+jv79f6ygUATg+IgoeLPtEO1CeEoPfb0iHKTMWwNY/xb73eFNmLP6gIZ2XptGukFKioKAAhYWFWkchol1QUFCA/Px8LtRHu4bjI6LgEKV1AKJQF2fQ40xJMg7kJaBlYhmuiWUse+4uUaMH8PmLJj//5ziDDtasOFiy4rh9DO2aqakpXL16Fc8884zWUYhol+h0OqiqijfffBNTU1NIT0/XOhJFAI6PiLTHsk/kJ6kxBhwpSMSh/ASML3kwuriO0cV1LKx7se71IUqvQ2KUHnkJUchLiEJ2vAEGroJOu0xKibi4OBiNRq2jENEuMhqNOH/+PBwOB06ePKl1HIogHB8RaYdln8jPDDrdxgmLKJisr6/D5XLBYrEgOjpa6zhEtIuio6NhsVjgcrlw9OhRREXxHEW7i+Mjot3He/aJiCJER0cHlpaWuDAfUYRSFAWLi4vo7OzUOgoREe0Cln0iogghpURlZSUyMzO1jkJEGsjMzERFRQUX6iMiihAs+0REEWBkZAS3bt3irD5RhFNVFbdu3cLIyIjWUYiIKMBY9omIIoAQAikpKaipqdE6ChFpqKamBikpKZzdJyKKACz7RERhbmlpCW1tbbDb7dDr+WufKJLp9XrY7Xa0tbVheXlZ6zhERBRAHPUREYU5t9sNr9cLm82mdRQiCgI2mw1erxctLS1aRyEiogBi2SciCmM+nw9CCDQ0NCApKUnrOEQUBJKSklBfXw8pJXw+n9ZxiIgoQFj2iYjC2MDAAO7cucOF+YjoPqqqYnJyEgMDA1pHISKiAGHZJyIKY0II5OTkoKSkROsoRBRESkpKkJ2dDSml1lGIiChAWPaJiMLU7Owsenp6oCgKdDqd1nGIKIjodDqoqoru7m7Mzs5qHYeIiAKAZZ+IKEw5HA5ER0fDZDJpHYWIgpDJZEJ0dDQcDofWUYiIKABY9omIwpDH44HT6YTJZEJsbKzWcYgoCMXGxsJkMsHpdMLj8Wgdh4iI/Ixln4goDHV3d2N+fh6qqmodhYiCmKqqmJ+fR3d3t9ZRiIjIz1j2iYjCkBACpaWlyMnJ0ToKEQWxnJwclJaWcqE+IqIwxLJPRBRmbt++jevXr3NWn4g2RVEUDA4OYnx8XOsoRETkRyz7RERhRkqJpKQk1NXVaR2FiEJAfX09EhMTIYTQOgoREfkRyz4RURhZWVmB2+2GzWaDwWDQOg4RhQCDwQCbzQa3243V1VWt4xARkZ+w7BMRhZG2tjasra3BbrdrHYWIQojdbsfa2hpaW1u1jkJERH7Csk9EFCZ8Ph+EEKitrUVKSorWcYgohKSmpqK2thZSSvh8Pq3jEBGRH7DsExGFiZs3b+L27dtcmI+ItkVRFIyNjeHmzZtaRyEiIj9g2SciChNCCGRmZqK8vFzrKEQUgioqKpCRkcFt+IiIwgTLPhFRGJifn0dnZycURYFOp9M6DhGFIJ1OB0VR0NHRgYWFBa3jEBHRDrHsExGFAZfLBb1eD7PZrHUUIgphFosFer0eTqdT6yhERLRDLPtERCHO6/VCSommpibEx8drHYeIQlh8fDyMRiMcDge8Xq/WcYiIaAdY9omIQtzVq1cxOzvLhfmIyC9UVcXMzAyuXr2qdRQiItoBln0iohAnhEBhYSHy8/O1jkJEYaCgoACFhYVcqI+IKMSx7BMRhbA7d+6gv7+fs/pE5FeKoqCvrw937tzROgoREW0Tyz4RUQiTUiI+Ph6NjY1aRyGiMNLY2Ij4+HjO7hMRhTCWfSKiELW2tgaXywWr1YqoqCit4xBRGImOjobFYkFLSwvW1ta0jkNERNvAsk9EFKLa29uxvLwMu92udRQiCkOKomBpaQkdHR1aRyEiom1g2SciClFSSlRVVSEjI0PrKEQUhjIyMlBVVQUhhNZRiIhoG1j2iYhC0NDQEIaHh7kwHxEFlKIoGB4extDQkNZRiIhoi1j2iYhCkJQSqampqKqq0joKEYWx6upqpKamcqE+IqIQxLJPRBRiFhcX0d7eDkVRoNfz1zgRBY5er4fdbkd7ezuWlpa0jkNERFvAUSIRUYhpaWmBz+eD1WrVOgoRRQCbzQav14uWlhatoxAR0Raw7BMRhRCfzwcpJRoaGpCYmKh1HCKKAImJiWhsbISUEj6fT+s4RES0SSz7REQhpL+/H1NTU1yYj4h2laIouHPnDq5du6Z1FCIi2iSWfSKiECKlRG5uLoqKirSOQkQRpLi4GLm5udyGj4gohLDsExGFiOnpafT29kJVVeh0Oq3jEFEE0el0UBQFvb29mJmZ0ToOERFtAss+EVGIcDgciImJQVNTk9ZRiCgCmUwmxMTEwOFwaB2FiIg24f/f3r1G2XWW9wH/nznj0UijS2RJ9ViWLSm4lSwjxrY0gQU1Tg02C0xSqBdZTTGs0mXcxiS0lCyg7aoJrJUCDrQmYQViJzZJswBjoLWxkxrZGEPwBd1lk/EN62JJlpiRbV1mNCPPOacfZAmNrtbMmcvZ/v2+nbPfvd9nvjxn/2fv/W5hH6ABDA4OZu3ateno6EhLS8t4lwO8BrW0tKSjoyNr1qxJpVIZ73IAOAVhH6ABdHV1pbe318J8wLhavnx5ent709XVNd6lAHAKwj5AA1i1alUWLlyY2bNnj3cpwGvYnDlzsmDBAgv1ATQAYR9ggtu5c2e2bNmS5cuXj3cpAOns7MyWLVuyc+fO8S4FgJMQ9gEmuJUrV2batGlZtGjReJcCkEWLFmXq1KlZtWrVeJcCwEkI+wAT2MDAQDZs2JBLLrkk5XJ5vMsBSLlczrJly7Jhw4YMDAyMdzkAnICwdyh9PAAAEaRJREFUDzCBrV+/PoODg1m2bNl4lwJw2CWXXJKXX345GzZsGO9SADgBYR9ggqrValm1alUuuOCCTJs2bbzLAThs+vTpWbx4cVauXJlarTbe5QBwHMI+wAS1efPmdHd3W5gPmJA6OzvT3d2dLVu2jHcpAByHsA8wQa1atSqzZ8/OggULxrsUgGMsWLAgs2bN8ho+gAlK2AeYgPbu3Zuurq4sX748pVJpvMsBOEapVEpnZ2e6urqyb9++8S4HgKMI+wAT0Jo1a1Iul9PR0THepQCcUEdHR8rlctasWTPepQBwFGEfYIKpVqtZvXp1li5dmtbW1vEuB+CEWltbs3Tp0qxevTrVanW8ywHgCMI+wATz5JNPZu/evens7BzvUgBOqbOzM3v27MlTTz013qUAcARhH2CCWbVqVc4999y0t7ePdykAp9Te3p558+ZZqA9gghH2ASaQnp6ePPvss163BzSUzs7OPPvss9m1a9d4lwLAK5rHuwCA14JKrZbu/ZXs6BvMjr7B7BusplKtpdxUytTmprRPaU77lOasXbU6U6ZMyZIlS8a7ZIBXbcmSJbn33nuzcuXKXPGOd7yqfjdncjllbxsBGDXCPsAo2n2gknU9/Vnb05/+Si3JwVuqjlzGqinJukMXw2ZemPY3z0tvtZQZY1wrwHA1NzdnybLfyLoXX07Xhl0ZeKXJnazftZZLuXh2ay6a3ZoZLeUxrhig+IR9gFHQX6nmgW29Wb9rIKUktSO2Hb1e9ZDPLa3Z2dKar/78xXTMmpTLz2nLpLInroCJ61C/e2zmhanNqB4O+snJ+11/pZZHdu7Pwzv363cAo0DYB6izjXsO5O7Ne9M3eDDi104x/miHxm/YNZBf7D6Qq+ZPy8LpLXWtEaAeju53pabTC+v6HcDo8e9TgDpa3b0/t/9iT/oGa6cd8o9WS9I7WMvtv9iT1d3761EeQN3odwATm7APUCeru/dnxdbeJKd/Nf9EDh1nxdZeJ8DAhKHfAUx8buMHqIONew7kG/+wPk8/8kC2da3Ptq4N6d74VKqVSq64/lO5/NqPH7NPtVrNc4+tylMP/TC/WPmT/HLj0xno3ZvWqdMzd9HSXPJb/zoXvfPqlF5ZrXrF1t6cOansFldgXA2n353Iw9++NXd9/pNJkuXveX+uvuGmJPodQD0I+wAj1F+p5u7Ne/PoHbflp9+8+VXv98LWTfnah65KkkyeMTPzLujI5Om/lhe2bc4zjz6YZx59MBvu/T95/xdvS/MZLSkluWfz3nx4yUyLWAHjYrj97nhe2Lop/+/Ln0mpVEqtNvT+AP0OYOSEfYARemBbb/oGaznr/MW59AMfydzFSzN38Rvyo1tvytp7vn3C/UqlUl7XeWku/eBH8k/f9JtpKv/q1VPPrv5p/vqj/yZP/OQHefC2P83brvvDw8+0/nBbb9553rQx+MsAhhpuvztatVrNHZ/+g6RUysXv/p2s+f7tQ7brdwAjJ+wDjMBLA5Ws3zWQJOl87weGbCs1lU6676xzF+bav/jecbf9+rK35LIPfTQr/vzzWXP37XnbdX+Y5OAJ8PpdA3lz+xTvpQbG1Ej63dEe+sbN2bT2kfz2p76Q3hd6jjtGvwMYGfdFAYzA+l39Ob1T3Fdv7qKlSZLdO7cP+b6UZF1P/yjNCnB89ep33ZueyQ/+/H9k4bI3503v+9BJx+p3AMMn7AMMU6VWy9qe/rqtRH20ni3PJkmmzT5ryPe1JGt7+lOpjdbMAEPVq99VK5XcccPvJynl6htuOrwA6YnodwDDJ+wDDFP3/kr6K6NzAnpgf18e+tZfJkle/7Z3H7O9v1JL9/7KqMwNcLR69bsf/81X8tzjq3PlR/5LZp278FXto98BDI+wDzBMO/oGR+3Yd37+E3lx2+ZMn9Oe3/x3/2nM5wc4Uj36zY5nunLf127M/I7OvPl3rxvz+QFea4R9gGHa0Tc4Kk30/lu+lDXfvz3Nk1rzu1/4y7T92pnHjGmKk19g7Iy031UGB3PHDb+fUlNTrv70n6ap6dUfTb8DGB5hH2CY9g1WU63zMX/yt1/NfV/9fJpbJuWaL349Cy5643HHVZP0DtZ7doDjG2m/e+Cv/le2P7Ehb//3n8icBeef1r76HcDwePUewDBVqvV9Xv+hb92Sv/ufN6R8Rkve/ye3ZtFb3nbS8YN1nh/gREba7/7xgXuSJE/8+N48+dP7hmx7cftzSZIn/2FFbv7wv0ySXHfLnUPG6HcAp0/YBxim8mm+V/pkHr79r/L9G//rK0H/tiy+9MpT7tNcx/kBTqZe/W7TukdPuG1vzy+zt+eXx92m3wGcPmEfYJimNjelKRnxrfyPfufruesLnzoc9C9466mDflOStmZPYgFjY6T97qPf+tEJt933tRtz/81/kuXveX+uvuGmY7brdwDDo3MCDFP7lOYRB/2ffe9/587PfeK0gn5y8IS7fYr/1wJjox79brj0O4Dh0TkBhunok89tXetz5+c+efjzC1s3JUl+9t2/yRM/XnH4+2u+9PVMn9Oe7U8+lv/7xx9PrVbLmefMz+P335XH77/ruHO97zNfOeX8AKNlpP2u3vMDcGo6J8AwzZlcTmu5lP7KwYWjBnr35bnHVx8zbvfO7dm9c/vhz5WXDyRJ+vfuSa12cN/uTU+ne9PTJ5zr6LDfWi5lzuTyiP8GgFdjpP1uJPQ7gOEp1Q6daQJw2h7c3ptHdu7PWDbSUpI3nTU5l81tG8NZKYLnn38+N998c6677rqcffbZ410ODUa/A2gsntkHGIGLZreO6YlvktRemRdgLOl3AI1F2AcYgRkt5XTMmpSxeilUKUnHrEmZ0eKWVmBs6XcAjUXYBxihy89pS1tzadRPgEtJ2ppLufwct7MC40O/A2gcwj7ACE0qN+Wq+dNG/fbWWpKr5k/LpLLWDYwP/Q6gceigAHWwcHpLrpg3ulegrpzXloXTW0Z1DoBT0e8AGoOwD1Any+ZMPnwCXK9bXA8d58p5bblkzuQ6HRVgZPQ7gImvebwLACiSZXMm58xJ5dyzeW96B2sjutX10DOrV82f5goXMOHodwATmyv7AHW2cHpLrl0yM2+YNSnJ6V/1OjT+DbMm5cNLZjrxBSYs/Q5g4irVarWxfmUqwGvG7gOVrOvpz9qe/vRXDrbbpiTVI8Yc+bm1XMrFs1tz0exWr5tixCq1Wrr3V7KjbzA7+gaza19fNj+3NfPPnZdZU6ekfUpz2qc0Z87kcsqlsXqhGkWl3wFMLMI+wBg4OnT1DlYzWK2luamUtuYmoYu6OnHoquXgtdRamlISuhgV+h3AxCDsA0BB9FeqeWBbb9bvGngl0r96h8Z3zJqUy89p88ozAGhwwj4AFMDGPQdy9+a96bNQGgAQYR8AGt7q7v1ZsbX3tK/mn8ih41wxry3LvAINABqSe/QAoIEdCvpJfYL+kcdZsbU3q7v31+moAMBYEvYBoEFt3HPgcNAfLSu29mbjngOjOgcAUH9u4weABtRfqeaWf3wxm595Ok898kC2da3Ptq4N6d74VKqVSq64/lO5/NqPH3ffJ396Xx6//+48/+Tj2dP9fPp2v5TyGWdk1rwFWfSWt+efX/N7aZs5K8mvnuH/8JKZFu0DgAbSPN4FAACn74FtvekbrOXhO27LQ9+8+bT2Xfd33826v/9OZp27MGe97oK0zZyVvpdeyHM/X5sf3fblrLrzG7n2L76Xs163OLUkvYO1/HBbb9553rTR+WMAgLoT9gGgwbw0UMn6XQNJkvbzF+fSD3wkcxcvzdzFb8iPbr0pa+/59kn3v/SD1+ddH/ujTJt91pDvB/r25buf+Y95bMVd+e5nP5br//rvkxx8hn/9roG8uX1KZrSUR+VvAgDqS9gHgAazflf/4RXzO9/7gSHbSk2lU+4/d9HS434/acrUvOtjn81jK+7Kc4+tSv++vWmdevBqfinJup7+XDa3bYTVAwBjwcN3ANBAKrVa1vb0123l/aM1lQ9euS81NaXc/KtrArUka3v6U7HUDwA0BGEfABpI9/5K+iujE7gHDwzkB1/54yTJ+W+8LGe0Th6yvb9SS/f+yqjMDQDUl9v4AaCB7OgbrNuxtnWtz0PfuiW1Wi29L+7Ktp+vS+9LuzLvwotz9ae/fML526c4fQCAic6vNQA0kB19g2lKUq3DsV7asS1rvn/7kO/Of+Nlee9/+2Jm/JOzjxnflPr+swEAGD3CPgA0kH2D1boE/SS58F+8K59b051qpZLdO7fnmZ89mPu+dmNu+p235n2f/UqWvv23h4yvJukdrNfsAMBo8sw+ADSQSrX+z+s3lcuZOffcdL7nmvyHW+9OUsp3/uij2duz85ixg6MwPwBQf8I+ADSQ8qt4td5IzJx7Xn59+VtyoK83Tz/y4DHbm0d5fgCgPoR9AGggU5ubRv3Hu2XylCRJ74s9Q75vStLW7NQBABqBX2wAaCDtU5rr9sz+8QweGMjmdY8mSWaf97oh26qvzA8ATHzCPgA0kJGG7X0vdOeRO25L/769x2zb/cvn8+3/fn32dO/IzLnn5fw3XVb3+QGAsVGq1WpW2gGABlGp1fJnj72Q/srBn+9tXetz5+c+eXj7C1s3pfelXZlx1txMn/Or1+dd86WvZ/qc9ry4fUtufPeylM9oydmLXp+ZZ5+bpJaXdmzP9ic2pPLygUyf055/+2ffzNn/7PVD5m4tl/IHS89MueS5fQCY6Px7HgAaSLlUysWzW/PIzv2pJRno3ZfnHl99zLjdO7dn987thz9XXj6QJGmbOTvv+s+fzaY1D2fHM13p3vhUXh7oz+SpM3Le0mVZ/NZ35Df+1QfTOnXakOOVklw8u1XQB4AG4co+ADSY3Qcq+erPXxzzeX/vwpmZ0VIe83kBgNPnmX0AaDAzWsrpmDUpY3WNvZSkY9YkQR8AGoiwDwAN6PJz2tLWXBr1wF9K0tZcyuXntI3yTABAPQn7ANCAJpWbctX8aRntZ/FqSa6aPy2Tyk4ZAKCR+OUGgAa1cHpLrpg3ulfcr5zXloXTW0Z1DgCg/oR9AGhgy+ZMPhz463VL/6HjXDmvLZfMmVynowIAY8lq/ABQABv3HMg9m/emd7A2olv7Dz2jf9X8aa7oA0ADE/YBoCD6K9U8sK0363cNpJScVug/NL5j1qRcfk6bZ/QBoMEJ+wBQMLsPVLKupz9re/rTXzn4M9+UpHrEmCM/t5ZLuXh2ay6a3er1egBQEMI+ABRUpVZL9/5KdvQNZkffYHoHqxms1tLcVEpbc1PapzSnfUpz5kwup1wa7Zf4AQBjSdgHAACAgvFAHgAAABSMsA8AAAAFI+wDAABAwQj7AAAAUDDCPgAAABSMsA8AAAAFI+wDAABAwQj7AAAAUDDCPgAAABSMsA8AAAAFI+wDAABAwQj7AAAAUDDCPgAAABSMsA8AAAAFI+wDAABAwQj7AAAAUDDCPgAAABSMsA8AAAAFI+wDAABAwQj7AAAAUDDCPgAAABSMsA8AAAAFI+wDAABAwQj7AAAAUDDCPgAAABSMsA8AAAAFI+wDAABAwQj7AAAAUDDCPgAAABSMsA8AAAAFI+wDAABAwQj7AAAAUDDCPgAAABSMsA8AAAAFI+wDAABAwQj7AAAAUDDCPgAAABSMsA8AAAAFI+wDAABAwQj7AAAAUDDCPgAAABSMsA8AAAAFI+wDAABAwQj7AAAAUDDCPgAAABSMsA8AAAAFI+wDAABAwQj7AAAAUDDCPgAAABSMsA8AAAAFI+wDAABAwQj7AAAAUDDCPgAAABSMsA8AAAAFI+wDAABAwQj7AAAAUDDCPgAAABSMsA8AAAAFI+wDAABAwQj7AAAAUDDCPgAAABSMsA8AAAAFI+wDAABAwQj7AAAAUDDCPgAAABSMsA8AAAAFI+wDAABAwQj7AAAAUDDCPgAAABSMsA8AAAAFI+wDAABAwQj7AAAAUDDCPgAAABSMsA8AAAAFI+wDAABAwQj7AAAAUDDCPgAAABSMsA8AAAAFI+wDAABAwfx/B/W5VoBRw9UAAAAASUVORK5CYII=\n" - }, - "metadata": {} - } - ] - }, - { - "cell_type": "code", - "source": [ - "#Grid Preferences\n", - "preferences_grid = Preferences(\n", - " custom_hardware_settings=CustomHardwareSettings(\n", - " basis_gates=[\"cx\", \"u\"],\n", - " connectivity_map=grid_connectivity,\n", - " ),\n", - " random_seed=-1,\n", - ")\n", - "\n", - "\n", - "#Star Preferences\n", - "preferences_star = Preferences(\n", - " custom_hardware_settings=CustomHardwareSettings(basis_gates=[\"cx\", \"u\"],\n", - " connectivity_map=star_connectivity,),\n", - " random_seed=-1,\n", - ")" - ], - "metadata": { - "id": "1ogjh7qTGJd3" - }, - "execution_count": 16, - "outputs": [] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": { - "id": "_3KIstIjC_Ms" - }, - "outputs": [], - "source": [ - "# define synthesis engine constraints\n", - "constraints = Constraints(optimization_parameter=\"cx\", max_width=max_width)" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": { - "id": "wviSbVIqsavi" - }, - "outputs": [], - "source": [ - "# define models with different preferences\n", - "model = set_constraints(model, constraints)\n", - "model_grid = set_preferences(model, preferences_grid)\n", - "model_star = set_preferences(model, preferences_star)\n", - "\n", - "\n", - "# write models to files\n", - "write_qmod(model_grid, \"hardware_aware_mcx_grid\")\n", - "write_qmod(model_star, \"hardware_aware_mcx_star\")" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "hWP-uuNmsf5g", - "outputId": "762decbc-3005-4419-bb7e-6e14571db2a3" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Opening: https://platform.classiq.io/circuit/4e728c67-0064-4699-87cd-e689b15937e7?version=0.42.0\n" - ] - } - ], - "source": [ - "qprog_grid= synthesize(model_grid)\n", - "show(qprog_grid)" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "7-1tx3a3squr", - "outputId": "65034a5d-dd40-42e4-b045-88e2a9401c37" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Synthesized MCX cx-count for grid connectivity is 117\n", - "Opening: https://platform.classiq.io/circuit/4e728c67-0064-4699-87cd-e689b15937e7?version=0.42.0\n" - ] - } - ], - "source": [ - "circuit_grid = QuantumProgram.from_qprog(qprog_grid)\n", - "\n", - "print(f\"Synthesized MCX cx-count for grid connectivity is {circuit_grid.transpiled_circuit.count_ops['cx']}\")\n", - "circuit_grid.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "cYcpNdbos3is", - "outputId": "fd1c4e8b-623a-425f-bebe-a39d7f051f7f" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Opening: https://platform.classiq.io/circuit/b94a1120-5b81-4a27-a949-b90e018518e0?version=0.42.0\n" - ] - } - ], - "source": [ - "qprog_star = synthesize(model_star)\n", - "show(qprog_star)" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "FySbcicutSXk", - "outputId": "c1d536d1-67e4-4f99-95d1-60884614ed2d" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Synthesized MCX cx-count for star connectivity is 114\n", - "Opening: https://platform.classiq.io/circuit/b94a1120-5b81-4a27-a949-b90e018518e0?version=0.42.0\n" - ] - } - ], - "source": [ - "circuit_star = QuantumProgram.from_qprog(qprog_star)\n", - "\n", - "print(f\"Synthesized MCX cx-count for star connectivity is {circuit_star.transpiled_circuit.count_ops['cx']}\")\n", - "circuit_star.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "4p-TBa9ztebZ", - "outputId": "39293b2b-7081-4267-f3b5-005f37ee830b" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Synthesized Depth for grid connectivity is 82\n" - ] - } - ], - "source": [ - "print(f\"Synthesized Depth for grid connectivity is {circuit_grid.transpiled_circuit.depth}\")" + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "S5a8KVmhRyCm" + }, + "source": [ + "# HW-aware Synthesis of MCX\n", + "\n", + "This tutorial consists of two parts,\n", + "1. How to create a 10-CONTROL MCX gate with Classiq\n", + "2. Classiq's Hardware-Aware Synthesis capability\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "AE1ksqSMC_MY" + }, + "source": [ + "## 1. How to create a 10-CONTROL MCX gate with Classiq" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "CiCAjWxbC_Ma" + }, + "source": [ + "To create an MCX gate with 10 control qubits using Classiq, we will first define a quantum function called `my_mcx`, whose arguments are an array of qubits (of any size) to be used as control, and a single qubit argument to be used as the target." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "id": "N55CY8rJo6nu" + }, + "outputs": [], + "source": [ + "# importing all the necessary libraries from classiq\n", + "\n", + "from math import pi\n", + "\n", + "from classiq import *" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "id": "8jxKs0RkpLqf" + }, + "outputs": [], + "source": [ + "# define MCX quantum function\n", + "\n", + "\n", + "@qfunc\n", + "def my_mcx(ctrl: QArray[QBit], target: QBit) -> None:\n", + " control(ctrl, lambda: X(target))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "DxI88JO1C_Mh" + }, + "source": [ + "Then, to create an MCX gate with 10 control qubits we will create a quantum main function that will simply execute our `my_mcx` function with 10 qubits allocated to the control argument." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "id": "NIxnhfOgpSSI" + }, + "outputs": [], + "source": [ + "# define the MCX parameters within the quantum 'main' function\n", + "\n", + "\n", + "@qfunc\n", + "def main(ctrl: Output[QArray[QBit]], target: Output[QBit]) -> None:\n", + " allocate(10, ctrl)\n", + " allocate(1, target)\n", + " my_mcx(ctrl, target)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Iu8uortFC_Mi" + }, + "source": [ + "To build our model we will use the `create_model` function:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "id": "iHVgE7SCpZBL" + }, + "outputs": [], + "source": [ + "# build a model\n", + "model = create_model(main)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "CTi8GIBrC_Mk" + }, + "source": [ + "To constrain a circuit to only 20 qubits and optimize for circuit depth, we pass the max width and optimization parameter to a `Constraints` object and update our model" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "id": "zbzL6MksC_Ml" + }, + "outputs": [], + "source": [ + "from classiq import write_qmod\n", + "\n", + "constraints = Constraints(\n", + " max_width=20, optimization_parameter=OptimizationParameter.DEPTH\n", + ")\n", + "model = set_constraints(model, constraints)\n", + "\n", + "write_qmod(model, \"mcx_10_ctrl_depth\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "bpBmDJcBC_Mm" + }, + "source": [ + "We can now synthesize our model, create a quantum program and view it:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "OebNdwj-C_Mn", + "outputId": "d6b32f26-36b9-42a8-f8d0-629dbcd5598d" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Opening: http://localhost:4200/circuit/0a38090c-f137-4276-893b-6f9a21f47668?version=0.0.0\n" + ] + } + ], + "source": [ + "qprog = synthesize(model)\n", + "show(qprog)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "HDdeZAmNC_Mo" + }, + "source": [ + "Additionally, To get the transpiled circuit from our qprog object and print its depth:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "4Ykj96NcC_Mp", + "outputId": "759f30d6-34e5-4e17-9e68-ec112c1ef074" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Synthesized MCX depth is 52\n" + ] + } + ], + "source": [ + "circuit = QuantumProgram.from_qprog(qprog)\n", + "print(f\"Synthesized MCX depth is {circuit.transpiled_circuit.depth}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "rF_sE_vHC_Mq" + }, + "source": [ + "# 2. Classiq's Hardware-Aware Synthesis capability" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "74aCfp3IC_Mq" + }, + "source": [ + "In the above section we have seen how to create a MCX circuit, add constraints to it and optimize its depth in Classiq. In this section we will check the hardware-aware synthesis capability of Classiq. In this example we will implement and synthesize a simple MCX (Multiple Control-X) circuit with two different HW-aware configuration settings using Classiq's synthesis engine.\n", + "\n", + "The two different fictitious hardware created here demonstrates how to insert your own custom-designed machine. For comparison, we create two types of hardware with `cx, u` basis gates. The difference between them manifests in the connectivity map: one has grid connectivity while the other has star connectivity.\n", + "\n", + "The two fictitious hardware created are using two different simulators: Classiq's Simulator and IonQ's Simulator. We will compare the depth of the circuit and we will optimise the number of cnot gates as it is important in quantum computation because they cause more errors and are very expensive.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "id": "kDz3GbcKEwwB" + }, + "outputs": [], + "source": [ + "# define MCX quantum function\n", + "\n", + "\n", + "@qfunc\n", + "def my_mcx(ctrl: QArray[QBit], target: QBit) -> None:\n", + " control(ctrl, lambda: X(target))" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "id": "yOzokSMZEw78" + }, + "outputs": [], + "source": [ + "# define the MCX parameters within the quantum 'main' function\n", + "\n", + "\n", + "@qfunc\n", + "def main(ctrl: Output[QArray[QBit]], target: Output[QBit]) -> None:\n", + " allocate(12, ctrl)\n", + " allocate(1, target)\n", + " my_mcx(ctrl, target)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "id": "5bGo7UFBEw_V" + }, + "outputs": [], + "source": [ + "# build a model\n", + "model = create_model(main)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "id": "NlxS3xSTC_Mr" + }, + "outputs": [], + "source": [ + "# define the hardware parameters\n", + "max_width = 18\n", + "\n", + "# Grid Connectivity\n", + "grid_connectivity = [\n", + " [0, 1],\n", + " [1, 2],\n", + " [2, 3],\n", + " [3, 4],\n", + " [4, 5], # Row 1\n", + " [6, 7],\n", + " [7, 8],\n", + " [8, 9],\n", + " [9, 10],\n", + " [10, 11], # Row 2\n", + " [12, 13],\n", + " [13, 14],\n", + " [14, 15],\n", + " [15, 16],\n", + " [16, 17], # Row 3\n", + " [0, 6],\n", + " [6, 12], # Column 1\n", + " [1, 7],\n", + " [7, 13], # Column 2\n", + " [2, 8],\n", + " [8, 14], # Column 3\n", + " [3, 9],\n", + " [9, 15], # Column 4\n", + " [4, 10],\n", + " [10, 16], # Column 5\n", + " [5, 11],\n", + " [11, 17], # Column 6\n", + "]\n", + "\n", + "# Star Connectivity\n", + "star_connectivity = [[0, i] for i in range(1, max_width - 1)]" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 659 + }, + "id": "qVDIz-txBcRS", + "outputId": "62566d81-b841-4eb0-e4fa-046f1a6151bd" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/sAAAKCCAYAAACOIsmHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAABTaklEQVR4nO3deZiVdcE//vcw7MMqoIAgkhvuuGSWmqaoueWaW2oupWW2mG3fenKpp+wpzbZfPdmTmq2uaS4tam6Fu4gr7qCyCQjINsDMnN8fyATOAGeYgx5uXq/r6krO/bnvz83hfc7M+5x7qSmVSqUAAAAAhdHh3d4BAAAAoLKUfQAAACgYZR8AAAAKRtkHAACAglH2AQAAoGCUfQAAACgYZR8AAAAKRtkHAACAglH2AQAAoGCUfQBYgSuuuCI1NTUZP378KsduvPHGOfnkk9f4PhXN+eefn5qamtVat6amJueff35ldwgACkLZB2C1PfXUU/noRz+a97znPenevXv69++fD37wg7npppvatd1Fixblu9/9bkaMGJGuXbtmgw02yEEHHZTXXnutrPXffPPNfOc738nOO++c3r17p0uXLhk2bFiOOeaY3HLLLe3at0qor6/PJZdckve9733p3bt3unbtms033zxnnXVWnnvuuXd79ypu/vz5Of/883PXXXet0XlGjx6d888/P7Nmzarodvfaa6/U1NRks802a3X5bbfdlpqamtTU1OTaa6+t6NwAsLo6vts7AMDaa8KECZkzZ04+/vGPZ/DgwZk/f36uu+66fOQjH8kvf/nLnH766W3e5uLFi3PQQQdl9OjR+eQnP5ntttsuM2fOzAMPPJDZs2dnyJAhK13/hRdeyP77758JEybk8MMPz0knnZQePXrk1Vdfza233pqDDz44V155ZU488cRV7suJJ56YY489Nl26dGnz32NFpk+fng9/+MN55JFHcvDBB+f4449Pjx498uyzz+ZPf/pTLr300ixatKhi81WD+fPn54ILLkiypDgv67/+67/yta99bbW2u2DBgnTs+J9fZUaPHp0LLrggJ598cvr06bO6u9uqrl275oUXXsiDDz6YXXbZZbllv//979O1a9fU19dXdE4AaA9lH4DVduCBB+bAAw9c7rGzzjorO+20U374wx+uVtm/5JJLcvfdd+df//pXi1K1Kg0NDTn88MMzderU3H333dltt92WW37eeeflH//4RxobG1e6nXnz5qWuri61tbWpra1t899hZU4++eSMGTMm1157bY488sjlln3729/ON77xjYrOV+06duy4XGFvi65du1Z4b1Zsk002SUNDQ/74xz8ul8v6+vr8+c9/zkEHHZTrrrvuHdsfAFgVh/EDUFG1tbUZOnTocodS//Of/0yHDh1y7rnnLjf2D3/4Q2pqavKLX/wiSdLU1JQf//jHOfzww7PLLrukoaEh8+fPL3vua665Jk8++WS++c1vtij6S+2333454IADmv+89Lz8u+++O2eeeWbWX3/95qMHWjtnv1Qq5b//+78zZMiQdO/ePR/60Ify1FNPlbV/DzzwQG655ZacdtppLYp+knTp0iUXXXTRco/985//zB577JG6urr06dMnhx56aJ555pnlxiw97/2FF15o/la7d+/eOeWUU1o8fzU1NTnrrLNyww03ZJtttkmXLl2y9dZb529/+1uL/Zk4cWJOPfXUbLDBBs3jLrvsshbj6uvrc/7552fzzTdP165dM2jQoBxxxBF58cUXM378+AwYMCBJcsEFFzQf7r70XPu3n7O/zTbb5EMf+lCLOZqamrLhhhvmqKOOWu7vsux2vvzlLydJhg8f3jzP+PHjs+eee2b77bdvsc0k2WKLLbL//vu3uuztjjvuuFx11VVpampqfuymm27K/Pnzc/TRR7cYP2HChJx55pnZYost0q1bt/Tr1y8f/ehHW1wDYmnO7rnnnpxxxhnp169fevXqlZNOOikzZ84sa98A4O2UfQDabd68eZk+fXpefPHFXHLJJfnrX/+affbZp3n53nvvnTPPPDMXXnhhHn300STJ5MmT89nPfjajRo3Kpz71qSTJ008/nUmTJmW77bbL6aefnrq6utTV1WW77bbLnXfeucr9WHqtgBNOOKHNf4czzzwzTz/9dM4999yVHlZ+7rnn5pvf/Ga23377/OAHP8h73vOe7Lfffpk3b94q5/jLX/6SJGWdQpAkt99+e/bff/+8/vrrOf/88/PFL34xo0ePzm677dbqRQOPPvrozJkzJxdeeGGOPvroXHHFFc2Hzy/rX//6V84888wce+yx+f73v5/6+voceeSRmTFjRvOYqVOnZtddd83tt9+es846Kz/+8Y+z6aab5rTTTsuPfvSj5nGNjY05+OCDc8EFF2SnnXbKxRdfnM9//vOZPXt2nnzyyQwYMKD5w5zDDz88v/3tb/Pb3/42RxxxRKt/52OOOSb33HNPpkyZ0mKfJ02alGOPPbbV9Y444ogcd9xxSZYcHbJ0ngEDBuTEE0/M448/nieffHK5dR566KE899xzZefl+OOPz+TJk5e79sAf/vCH7LPPPll//fVbjH/ooYcyevToHHvssfnJT36ST33qU7njjjuy1157tfoh1llnnZVnnnkm559/fk466aT8/ve/z2GHHZZSqVTW/gHAckoA0E5nnHFGKUkpSalDhw6lo446qvTGG28sN2bevHmlTTfdtLT11luX6uvrSwcddFCpV69epQkTJjSPuf7660tJSv369Sttttlmpcsvv7x0+eWXlzbbbLNS586dS2PHjl3pfuywww6lPn36tHh87ty5pWnTpjX/b/bs2c3LLr/88lKS0u67715qaGhYbr2ly15++eVSqVQqvf7666XOnTuXDjrooFJTU1PzuK9//eulJKWPf/zjK92/ww8/vJSkNHPmzJWOW2rkyJGl9ddfvzRjxozmx8aOHVvq0KFD6aSTTmp+7LzzzislKZ166qkt5uvXr99yjyUpde7cufTCCy8st80kpZ/+9KfNj5122mmlQYMGlaZPn77c+scee2ypd+/epfnz55dKpVLpsssuKyUp/fCHP2yx/0ufo2nTppWSlM4777wWY5bu+1LPPvtsi30plUqlM888s9SjR4/meZf+XZbd5g9+8IPl/r2WmjVrVqlr166lr371q8s9/rnPfa5UV1dXmjt3bov9Wtaee+5Z2nrrrUulUqm08847l0477bRSqVQqzZw5s9S5c+fSb37zm9Kdd95ZSlK65pprmtdbdl+Xuu+++0pJSldeeWXzY0tzttNOO5UWLVrU/Pj3v//9UpLSjTfeuNL9A4DW+GYfgHb7whe+kNtuuy2/+c1vcsABB6SxsbHFRea6d++eK664Is8880w++MEP5pZbbskll1ySjTbaqHnM3LlzkyRz5szJHXfckZNPPjknn3xybr/99pRKpXz/+99f6X68+eab6dGjR4vHv/GNb2TAgAHN/zv++ONbjPnkJz+5yvPzb7/99ixatCif/exnlzv0/Atf+MJK11t2/5KkZ8+eqxw7efLkPPbYYzn55JOz3nrrNT++3XbbZd99982tt97aYp2lR0gstccee2TGjBnN8y41atSobLLJJstts1evXnnppZeSLDlV4brrrsshhxySUqmU6dOnN/9v//33z+zZs5uP0LjuuuvSv3//fPazn22xP6tzS73NN988I0eOzFVXXdX8WGNjY6699toccsgh6datW5u32bt37xx66KH54x//2PwteWNjY6666qocdthhqaurK3tbxx9/fK6//vosWrQo1157bWpra3P44Ye3OnbZfV28eHFmzJiRTTfdNH369Gl+/pZ1+umnp1OnTs1//vSnP52OHTu2+m8NAKui7APQbiNGjMioUaNy0kkn5eabb87cuXObi+Kydtttt3z605/Ogw8+mP333z+nnnrqcsuXlqPddtstQ4cObX58o402yu67757Ro0evdD969uzZ/IHBss4888zcdtttue2227LBBhu0uu7w4cNX+fecMGFCkrS4BduAAQPSt2/fVa7fq1evJEs+zCh3ri222KLFsi233DLTp09vcerAsh+cJGnep7ef9/32cUvHLh03bdq0zJo1K5deeulyH5IMGDAgp5xySpLk9ddfT5K8+OKL2WKLLVb7InutOeaYY/Lvf/87EydOTJLcddddef3113PMMces9jZPOumkvPLKK7n33nuTLPngZurUqWWfUrHUsccem9mzZ+evf/1rfv/73+fggw9e4Yc3CxYsyLnnnpuhQ4emS5cu6d+/fwYMGJBZs2Zl9uzZLca/PVc9evTIoEGDWj1lAwBWRdkHoOKOOuqo5vOhl7Vw4cLm851ffPHFFuctDx48OElaLeTrr7/+Ki9WNmLEiMyaNau5JC61+eabZ9SoURk1atQKr+C+Ot8Yt9WIESOSJE888cQa2f6Kjkx4+4cuqxq39AJ0J5xwQvOHJG//34ougFgJxxxzTEqlUq655pokydVXX53evXvnwx/+8Gpvc//9988GG2yQ3/3ud0mS3/3udxk4cGBGjRrVpu0MGjQoe+21Vy6++OLcc889rR4lstRnP/vZfOc738nRRx+dq6++Ov/4xz9y2223pV+/fstd5A8A1gRlH4CKW7BgQZK0+PbyvPPOyzPPPJOLLrooL7/8cosL4W277bbp1KlTi7KeJJMmTWq+qvuKHHzwwUmW3Pd8TRg2bFiS5Pnnn1/u8WnTppV11fRDDjkkSZoLZzlzPfvssy2WjRs3Lv3792/T4edtMWDAgPTs2TONjY3NH5K8/X9LL0i3ySab5Nlnn83ixYtXuL22Hs4/fPjw7LLLLrnqqqvS0NCQ66+/Pocddli6dOmy0vVWNk9tbW2OP/74XHvttZk5c2ZuuOGGHHfccat1a8Xjjz8+9957b3r16tXi1pPLuvbaa/Pxj388F198cY466qjsu+++2X333Ze7U8Wy3p6ruXPnZvLkydl4443bvI8AoOwDsNqWHsq9rMWLF+fKK69Mt27dstVWWzU//sADD+Siiy7KF77whZxzzjn58pe/nJ/97Ge5++67m8f07NkzBx54YEaPHp1x48Y1P/7MM89k9OjR2XfffVe6P0cffXS22mqrfPvb387999/f6pi3f8vdFqNGjUqnTp3y05/+dLntLHt1+pV5//vfnw9/+MP5v//7v9xwww0tli9atChf+tKXkiz5BnnkyJH5zW9+s1w5fPLJJ/OPf/xjpSWzvWpra3PkkUfmuuuua3EF+2TJhxtLHXnkkZk+fXp+9rOftRi39Dnq3r17kqyw5LbmmGOOyf3335/LLrss06dPL+sQ/qUffqxonhNPPDEzZ87MGWeckblz567WXRuSJUeunHfeefn5z3+ezp07r3BcbW1ti7z99Kc/TWNjY6vjL7300uU+NPnFL36RhoaG5W4VCQDlqtwJdgCsc84444y8+eab+eAHP5gNN9wwU6ZMye9///uMGzcuF198cfPF8urr6/Pxj388m222Wb7zne8kWXLP9ZtuuimnnHJKnnjiieai9t3vfjd33HFH9t5773zuc59LkvzkJz/Jeuutl69//esr3Z9OnTrlz3/+c/bff//svvvuOeKII5rvUT9x4sT85S9/ySuvvJKDDjpotf6+AwYMyJe+9KVceOGFOfjgg3PggQdmzJgx+etf/5r+/fuXtY0rr7wy++23X4444ogccsgh2WeffVJXV5fnn38+f/rTnzJ58uRcdNFFSZIf/OAHOeCAA/L+978/p512WhYsWJCf/vSn6d27d/P95deU733ve7nzzjvzvve9L5/85Cez1VZb5Y033sijjz6a22+/PW+88UaSJefCX3nllfniF7+YBx98MHvssUfmzZuX22+/PWeeeWYOPfTQ5g9+rrrqqmy++eZZb731ss0222SbbbZZ4fxHH310vvSlL+VLX/pS1ltvvbIOt99pp52SLLkg47HHHptOnTrlkEMOac7WDjvskG222SbXXHNNttxyy+y4446r9dyU+/wffPDB+e1vf5vevXtnq622yn333Zfbb789/fr1a3X8okWLss8+++Too4/Os88+m5///OfZfffd85GPfGS19hOAddy7cxMAAIrgj3/8Y2nUqFGlDTbYoNSxY8dS3759S6NGjWpxq7Czzz67VFtbW3rggQeWe/zhhx8udezYsfTpT396uccfeeSR0qhRo0p1dXWlnj17lg499NDSc889V/Z+zZo1q/Stb32rtMMOO5R69OhR6ty5c2no0KGlo446qnTTTTctN3bpbc8eeuihFtt5+633SqVSqbGxsXTBBReUBg0aVOrWrVtpr732Kj355JOlYcOGrfLWe0vNnz+/dNFFF5Xe+973Nu/fZpttVvrsZz+73C3xSqVS6fbbby/ttttupW7dupV69epVOuSQQ0pPP/30cmOW3r5u2rRpq9z/JKXPfOYzLfaptf2fOnVq6TOf+Uxp6NChpU6dOpUGDhxY2meffUqXXnppi7/PN77xjdLw4cObxx111FGlF198sXnM6NGjSzvttFOpc+fOy90y7+233lvWbrvtVkpS+sQnPtHq8rRyO79vf/vbpQ033LDUoUOHVm/Dt/R2dt/97ndb3WZrlr313oq0duu9mTNnlk455ZRS//79Sz169Cjtv//+pXHjxrV4rpf+O919992l008/vdS3b99Sjx49Sh/72MeWu+0iALRFTanUjuMZAQDWIj/+8Y9z9tlnZ/z48a3eleDdcMUVV+SUU07JQw89lJ133vnd3h0ACsI5+wDAOqFUKuXXv/519txzz6op+gCwpjhnHwAotHnz5uUvf/lL7rzzzjzxxBO58cYb3+1dAoA1TtkHAApt2rRpOf7449OnT598/etfd8E7ANYJztkHAACAgnHOPgAAABSMsg8AAAAFo+wDAABAwSj7AAAAUDDKPgAAABSMsg8AAAAFo+wDAABAwSj7AAAAUDDKPgAAABSMsg8AAAAFo+wDAABAwSj7AAAAUDDKPgAAABSMsg8AAAAFo+wDAABAwSj7AAAAUDDKPgAAABSMsg8AAAAFo+wDAABAwSj7AAAAUDDKPgAAABSMsg8AAAAFo+wDAABAwSj7AAAAUDDKPgAAABSMsg8AAAAFo+wDAABAwSj7AAAAUDDKPgAAABSMsg8AAAAFo+wDAABAwSj7AAAAUDDKPgAAABSMsg8AAAAFo+wDAABAwSj7AAAAUDDKPgAAABSMsg8AAAAFo+wDAABAwXR8t3dgXdNYKmXagsZMmd+QKfMbMrehKY1NpdR2qEmPjh0ysHvHDOzeMQO61aa2pubd3l3WATJJtZFJqpFcUm1kkmojk9WnplQqld7tnVgXzF7UmMem12fM9PrUNy55yjskaVpmzLJ/7lpbkx36d83I/l3Tu3PtO7y3rAtkkmojk1QjuaTayCTVRiarl7K/htU3NuXOifMydsbC1CRpy5O9dPz2/bpk7w3r0qXWWRe0n0xSbWSSaiSXVBuZpNrIZPVT9tegl99clJsnzMn8hlKbwv92NUnqOtbkoGE9M7xX50rtHusgmaTayCTVSC6pNjJJtZHJtYOyv4Y8Mm1BbnttXps/5VqRpdvZd0hddhrQrQJbZF0jk1QbmaQaySXVRiapNjK59lD214ClL4A1xQuBtpJJqo1MUo3kkmojk1QbmVy7uBp/hb385qKyXgBP3HZj7rv6skx+7qk0Ll6cfkOHZ+QBR2b3j30qtZ06rXTd216bl/W61DrUhbKsKpPTxr+Q5++/MxOfGZuJzzyeaS8/l6bGxux75tey9yfOKWsOmaQtVpXJxsWL8/Kj9+W50f/MS4/8OzNeeSmL6uene+++Gbr1jtnlyJMyYo/9VjqHTNJWq8rlmFuvzfP33ZnJzz2VOdOnZsGcWenUtVsGDNs0W3/owLz/2E+kS/ceK51DLmmLcn+nXNZff3RB7rnyZ0lS1s9xmaQtysnkNeedlUdvumqlY75136vp1KVrq8tksrKU/Qqqb2zKzRPmrPKQlpt+8I2M/uOl6dCxYzbZefd07l6XFx/6V/72k29l3D1/z6k/vyaduq74E62aJLdMmJNPbtXXxSxYqXIyef81l2f0Hy9t1zwySbnKyeTLj47Orz99VJKkZ//1M2zk+9K5W/e8/vJzeeaev+eZe/6eXY44KYd946LUrODWPTJJW5STyweuvTyvjH0oA4ZvnsEjtk333n0zd8a0vPLEw3ntqTF5+MY/5PT/+0t6DRi4wnnkknKV+zvlsiaMfTD3/u7nqampSbkH7sok5WprJoeN3CX9hg5vdVmHDiu+Ar9MVpayX0F3Tpy3yotUPHXnrRn9x0vTuXtdTv/Vjdlwy+2TJPNmzsj/nXFExj/2QG77xfdy4NkXrHAbpSTzGkr558R5OWCjnpX9S1Ao5WRy4KYjsseJn8ngEdtm8IjtctdlP8qYW65u0zwySbnKyWRNTYdss8/B+cBxp2f4ju9fbtnjf/9zrvqvT+fB66/MsJG7ZMeDj2l1GzJJW5STywPP/lb6b/SedO/dd7nH5816I7/74kkZ/9gDueWH5+a4C1f84alcUq5yMrmsRQvm55rzPpue/TfIkK13yNN33lrWejJJudqayfcedkJ2+shxbZ5HJivLxyUVMmthY8bOWLjKF8Bdl/0oSbLXyZ9rLvpJUte3Xw79f/+TJLnvql+nfs6bK91OKcnYGQsze1FjO/aaIis3k+89/MQcePb5GXnAkVl/+Gap6dD6N6WrIpOsSrmZ3GSXPfKxH1zeougnyXb7H54dDzk2SfLozSv/UEomKUe5udxo251aFP0kqeuzXvY76xtJkufvv2uV88klq1JuJpf195/9d2a88lIO/6+L07VH2wqSTLIqq5PJ9pDJylH2K2TsjPqsqiLNfn1yXntqTJJk+wOObLF84x12Te+BG6Zh0cKM+/ftq5yzJslj0+tXY29ZF5STyUqTSVamUpkcvMW2SZLZUyeucqxMsiqVyGWH2iUHSnbsVN45pnLJyrQ1ky89/O/c96f/yw4HH50Ru++7WnPKJCvjd8q1l7JfAY2lUsZMr1/lp12Txj2RJOnWu2/W23BYq2OGbDkySTL5rbErU0oyZnp9Gt1QgbcpN5OVJpOsSCUzOf2Vl5IkPftvsMqxMsnKVCKXC+fNzR2//H6SZMs9P1zWOnLJirQ1kwvnz821F3w+PfoNyCFf+s5qzyuTrMjqvk+++PC/cssPz8313/5i/vbTb+epf96ShkULy15fJivDOfsVMG1BY+obVx3EmZMmJEn6DNxwhWN6DxycJHnjrbGrUt9YyrQFjRnY3T8l/1FuJtcEmaQ1lcrknOlT8+hNf0qSbLPPwWWtI5OsyOrk8rn77szYv12XUlMpc2e8nleeeDgL583N5h/YOwd87tyytyOXtKatmbz1kvMzc+KEnHDxb9KtV592zS2TtGZ1f36PaeVUu579N8iR5/04W+y2T1nbkMn288xVwJT5DWWNWzhvbpKkc7fuKxzTuVvdkrFz57Rpfi8CllVuJtfk/DLJsiqRycaGhlz1X2emfu6bGbjpVtnlyI+3aX6Z5O1WJ5evv/Rsi9tKbX/AkTnoi99K15692jy/XLKstmTyufvuzIPX/Sbb7X94tv7QgRWbXyZZVlvfJwdttk0O/vJ22XSXD6bPwCFZvHBBJj/3VO745fczYexD+e3ZJ+bUn1+T9+y8W9nzy+Tq88xVwJT5DemQpOldmLtD3v1iR/WRSapNJTJ5w3e/lBcfvCfd+6yX439wWdnnR8skK7I6udz9Y5/K7h/7VBoXL86sKa/l6bv/ljv/74d5bvQ/c+JFV2T4Th8oaztySWvKzWT9nDdz/be+kLq+/fORr1xYkbllkta09X1y9xM+tdyfu9T1yGa77pVN37dnfnfOx/P0XX/NzRd9I5/7012r3JZMtp+yXwFzG5rKegF0qeuRZMntUVZk0YJ5S8aWeSXVppQyY+78TJ5c/pEAFN+MubVpSk3yjl9ORSZpXXszedMPvp6Hb/h9uvXqk9N+fk0GDNuk7HVlkhVpTy5rO3VKv6HDs8cJn86w7XfJ/558QK765pk55/r70qlrt1WuL5e0ptxM3nzRNzJ76qQc971fpa5vv4rMLZO0plK/U9bU1GTUp76Sp+/6ayY/91RmTZm40lObkyUfMMxreDe+uioOZb8CGpvKO4+l76CNkiSzp05a4ZjZUyYtN3bVajLh1Vdy6TU3lzmedUGnXQ9Jh/XLzVClySQttSeTt/zw3Iz+46/StWfvnPrzazJ4xHZt3IJM0rpKvVdutO1OWf89W2Tqi+Py2tOPtXrbyJbkkpbKzeRTd96aDh075v5rLs/911y+3LJp459Pkjx8wx/ywgP3pGe/9XPc935VxuwySUuV/J1ywPDNm/979tRJqyz7SdJQZs+idcp+BdSWeV/ywSOW3C5q/qw38sbECa1ekf+1Zx5bMnbLcn+ZLWXY0KHZe7vTyxzPuuCfM2vz6sJS3o1v9mWS1qxuJv/6owvyr9/9Il179MqpP78mQ7YauRqzyyStq+R7Zae3rsczb+b0MteQS1pqSyabGhry8iOjV7h85qRXMnPSK+kzaGiZs8skLVXyfXL+rDea/3vpEc+r0rHMnkXrlP0K6NGxQ1nnsvTeYHCGbL1DXntqTMb+9bp86BNfXG75+DH3Z/aUienYuUtG7DaqrLk7pCb9enTLoEHlvWBYN/RbPDcTF9a/S+fsyyQtrU4m//aTb+WeK3+2pOj/4toM3XqH1ZpbJlmRSr1Xzps5I1OeeypJ0n+j8k4xkUtaU24mz7vnxRUuu+a8s/LoTVdl3zO/lr0/cU7Zc8skrank75SP//2GJEtOVx4wbNNVju+QpK6jO8W3h2evAgZ271j2C2CvU7+QJLnrip9k4jNjmx+fN+uN3HjhV5Mk7z/mtLKv6Nv01vywrLZkstJkkta0NZP/+P++m7uv+OmSQ/fbUfQTmWTFys3l1JeezZhbr83ihfUtlk2b8GL+8NXT0rBoYYZuu3MGbrZVWXPLJa3x85tq05ZMTnr2iTx999/S2LD8RfWampry0A2/y9//v+8kST5w7CdT26nTKrcnk+3n2auAtoRw6w8dmA8c98mM/uOv8ouPH5BNdtkjnbt1zwsP3pv6ObMzbOQu2ffTX1tj87NuaEsmJj4ztvmDpiR547XxSZIHr7sy4+65rfnxEy6+Ir0GDKz4/Kwb2pKJp+/+W+789SVJkn5Dh+f+q3+d+1sZV9enXw48+4KKz8+6o9xczHtjeq7+r0/nhu+ck8FbbJteGwxO4+JFmTVlYiaNezylpqasP3zzHF/WedFtn591x7udiXd7fqpPWzIxc9Kr+d05H0+3Xn0yeMR26dFvQOrnzM7UF8Zl1pTXkiTbf/iI7HP6l9fI/LTk2auAAd1q07W2JvWN5V1A4pAvfzfDtt8l9199WSY8/lCaGhqy3pCNs9cpn8tuH/tU2beTSpKutTUZ0K12dXedgmpLJhfOm5tXn3ykxeOzp05a7mKSjYsXlTW3TNKatmRyweyZzf898enHMvHpx1od12fQ0LLKvkyyIuXmcv1Ntsh+n/l6xo+5P9PGv5BJzz6RxoaGdO/dJ5vs8sFss/dB2ekjx6Vj5y5lzy2XtKatv1NWkkzSmrZkctDmW2e348/IxKcfy7Txz2fC2AeTUik91huQbUYdkp0+clxG7L5v2XPLZPvVlEollzisgLsnzcv9UxfknXwya5LsukG37Dm47h2clbWFTFJtZJJqJJdUG5mk2sjk2ss5+xUysn/Xd/QFkCSlt+aF1sgk1UYmqUZySbWRSaqNTK69lP0K6d25Ntv36/KO3eisJsn2/bqkd2eHttA6maTayCTVSC6pNjJJtZHJtZeyX0F7b1iXuo41a/yFUJOkrmNN9t7QYS2snExSbWSSaiSXVBuZpNrI5NpJ2a+gLrUdctCwnmv8MJdSkoOG9UyXWv98rJxMUm1kkmokl1QbmaTayOTaybNYYcN7dc6+Q9bsJ1H7DanL8F7lX7GfdZtMUm1kkmokl1QbmaTayOTaR9lfA3Ya0K35hVCpQ12Wbme/IXXZcUC3Cm2VdYVMUm1kkmokl1QbmaTayOTaxa331qCX31yUWybMybyGUrsOeVl67spBw3r6pIt2kUmqjUxSjeSSaiOTVBuZXDso+2tYfWNT7pw4L2NnLExN0qYXw9Lx2/frkr03rHPuChUhk1QbmaQaySXVRiapNjJZ/ZT9d8jsRY15bHp9xkyvT33jkqe8Q5KmlLI07h1Sk6a3xnetrckO/btmZP+ubjvBGiGTVBuZpBrJJdVGJqk2Mlm9lP13WGOplGkLGjNlfkOmzG/IjLnzM+HVVzNs6ND069E9A7t3zMDuHTOgW21qa96pu1myLpNJqo1MUo3kkmojk1Qbmaw+Hd/tHVjX1NbUNAc9SSZPnpNLr7k5e293egYN6vEu7x3rIpmk2sgk1UguqTYySbWRyerj5AgAAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACkbZBwAAgIJR9gEAAKBglH0AAAAoGGUfAAAACqamVCqV3u2dWJc0lkqZtqAxU+Y3ZMr8hsyYOz8TXn0tw4YOSb8e3TOwe8cM7N4xA7rVpram5t3eXdYBMkm1kUmqkVxSbWSSaiOT1UfZf4fMXtSYx6bXZ8z0+tQ3LnnKOyRpSilJTZJSOqQmTW+N71pbkx36d83I/l3Tu3Ptu7TXFJlMUm1kkmokl1QbmaTayGT1UvbXsPrGptw5cV7Gzlj4VtTLt3T89v26ZO8N69Kl1lkXtJ9MUm1kkmokl1QbmaTayGT1U/bXoJffXJSbJ8zJ/IZSm8L/djVJ6jrW5KBhPTO8V+dK7R7rIJmk2sgk1UguqTYySbWRybWDsr+GPDJtQW57bV6bP+VakaXb2XdIXXYa0K0CW2RdI5NUG5mkGskl1UYmqTYyufZQ9teApS+ANcULgbaSSaqNTFKN5JJqI5NUG5lcu3R8t3egaF5+c1FZL4CGxYvywLVX5InbbszrLz2XxfUL0r3Pehm46ZbZ6ZBjs93+h69w3dtem5f1utQ61IWyrCqTMye9ku8fvFNZ2zr9Vzdm+E4faPG4TNIW5b5Pzpr8Wu7+zU/zwgN3Z9aUiUmplJ79N8jGO+6aPU74dAZtvs0K15VJ2qqcXM6aMjF3X/GTPDf6n5k9dVK61PXIhiO2yweO+2RG7LHfKueQS9ri5TcX5Q//Gpvn778zE58Zm4nPPJ5pLz+XpsbG7Hvm17L3J85Z6fovPHB37v3dL/LaU2OyaMH89B00JFvvfXD2OvXz6dK9RxKZpG2Wvk9OG/9Cm3M5a8rEPPuv299aZ2ymvjgujYsXZefDPpYjz/1R8ziZrCxlv4LqG5ty84Q5qzykZfbUSbnsM0fn9ZeeTV2ffhm2/S7p3K17Zk+dmJcfvT+du3VfadmvSXLLhDn55FZ9XcyClSonk5271WXHQ45Z4TZef+m5vPbUmCW/1G61fatjZJJylfs++coTj+SyM4/Kwnlz02v9Qdls173SoUNtJj33ZMbcfHXG/u36HPud/822+x7a6voySVuUk8tXnxqTy886Jgtmz0zP/htki932yfxZb+Slh/+d5++/K3t/8kvZ99NfXek8ckm5lmbygWsuz7//eGmb1//X7/43t/zwm6mpqcnGO+yaHv0GZPyY+3PXZT/KU/+8OWf8+ubU9e0nk5Rt2ffJ+6+5PKPbmMsn77gpt1z8zVWOk8nKUvYr6M6J81Z5kYrF9Qvy608flWnjn88+Z3wlHzr1C6nt1Kl5+aIF8zP9lRdXOk8pybyGUv45cV4O2KhnZXaeQionk3V9++WjF/xshcsv/+yxSZLt9js8nbvVtTpGJilXOZlMkj//9zlZOG9udjnipHzkq99rfp9samrK7f/7P7nz/36Y6//7nIz44P7p1KVri/VlkrZYVS4XL6zP7798ShbMnpnt9jssR53/k3TquuQw01efGpMrPnts/vmri7LxDu/LZrvutcJ55JJyLc3kBpuOyB4nfiaDR2ybwSO2y12X/Shjbrl6petOGvd4br3k3HSorc1JP/pdtthtVJIlv2NeefaJefHBe3LDd7+Uj/3gcpmkbMu+Tw5cjVyut+GwvP/YT2TDEdtl8Ijt8sRtN+bOX1/SYpxMVpaPSypk1sLGjJ2xcJW/wN51+Y8zbfzz2eWIkzLqjC8vV/STpHO37hm8xbarnK+UZOyMhZm9qHH1d5pCKzeTKzP79cl5/r47kyQ7H/axlY6VSVal3EzOm/VGpjz/VJJk38/8v+XeJzt06JBRZ3wlnbp2S/2c2Zn28nMr3I5MUo5ycvnUnbdm9pSJ6dqzdw77xkXNRT9Jhm69Q/b+5JLDVv956UWrnE8uWZVlM/new0/MgWefn5EHHJn1h2+Wmg41q1z/rst/nFKplJ0+clxz0U+W/I555Lk/Sk2HDnnyjpvz+svPJ5FJVu3t75Ork8ut9jogH/nKhdnpI8dl0OZbp0Ptir9zlsnKUfYrZOyM+qwq5o2LF+eBa65Ikuxx0mfaPWdNksem17d7OxRTOZlclUf/8seUmpqywSYjstG2qz6vXyZZmXIz2bFz+efpde/Tb6XLZZJVKSeXrz01Jkmy4Zbbp1vP3i2Wb/q+PZMkE8Y+mDnTp65yTrlkZdrz87th8aKMu/f2JMn2Hz6yxfK+g4dm2Pa7JEmevvOW5sdlkpWpxO+UbSWTlaHsV0BjqZQx0+tX+W3VxHGPZ96sGek1YGD6b/SeTHn+6dz+yx/kz/99Tv72k29l3L3/SFNTU9nzlpKMmV6fRjdU4G3KzeSqPHLTn5IkOx+68m/1l5JJVqQtmezSvUc23mHXJMlt/9+FaVy8uHlZU1NTbv/l97O4fkE2322f9Bm44Uq3JZOsTLm5XDR/yYX7uvfu2+ryuj7rJUlKpVImjnt8lfPKJSvS3p/f0ye8mMX185MkQ7Ya2eqYDd96fNKzTzQ/JpOsSKV+p2wrmawM5+xXwLQFjalvXHUQpzz/dJKk1waD87effCv3/OZnWfbOh3df8dMMHrFtTrz4yvQZNKSsuesbS5m2oDEDu/un5D/KzeTKvPTIvzPj1ZdT26lzdjjoo2WvJ5O0pq2ZPOKbl+SKzx2XB6+/MuP+dVuGbDUyNR06ZNKzT+bN1ydnh4OOzke++r2ytiWTrEi5ueyxXv8kyRsTJ7S6/I3X/vP4zImvlDW3XNKa9v78Xpq/rj17p0tdj1bH9NlgyYekb7wtqzJJayrxO+Xqksn2881+BUyZ31DWuPmz30iSTB73RO6+4qd530dPyRf/fH/Ou+elnPaLa9N/2CaZNO6JXPH545f7JqtS87PuqEQmHr7xD0mSLffcP3V9V36o9JqYn2JpayYGbLxpPn3Frdls173y5uuT8/Rdf81T/7wlMydOSL+hw/OenT6Qrj3Kv3CPTNKacnOxyXv3SJJMemZsJrXyzf0D113R/N8L582p+PysO9qbiYXz5yZZcn7+inTuvuRiu61lVSZ5u3c7E+/2/Gs7Zb8CpsxvKO+JfOtb/MaGxdn+w0fk0K/9TwYM2yRde/TMpu/bM6f9/Np07NI1U194JmP//uey5u4QLwJaKjuTK1A/d06evP3mJMnOhx7fpnVlkta0NZPjH3sgPz56z0x9cVyO+e4v8/Xbnsq5dz2fk370+zQ2LM513/pCrrvg82VtSyZZkXJzuckue2T4ju9PqVTKlWefmGfu/nvq57yZN14bn1svOS9jbr46tR2XXEiypkN5SZdLWtPen9/tIZO0RibXbo6JqIC5DU0p50z7zt3/czjVLkee1GJ5n0FDMmL3UXnyjpvzwoN3Z8eDj17lNptSyoy58zN5cvnfJFB8M+bWpik1yWpeTuXxv/85i+vnp/cGg7PZ+/du07oySWvakskFc2bnd+ecnPmzZuRTV/x1uYtDbvnB/bLBezbPj47eMw/f+IeMPPCj2eS9u690ezLJirQll8d//9f53ZdOzoTHHsyVZ5+w3LLdjj8j4x97IBOffizderV+Xv/bySWtae/P7y5v/a65aMH8FY5Zeg2KLnXLHx0lk7SmvZlsj6Yk8xrKv54ZLSn7FdDYVN55LOsNGfaf/95w49bHvPX4nOmvlzl7TSa8+kouvebmMsezLui06yHpsP5Gq73+0kP4dzzk2HQo81uq/5BJWmpLJsfde1vmzZye9YZs3OpdINYbsnGGbrNjXnr4X3nhgbtXWfZlkhVpSy57rDcgZ/z65rzwwN158aF7M3/WzPToNyBb7XVAhmw1Mt/db5skycBNtyxzdrmkpfb+/O47eGiSpH7O7CycN7fV8/ZnTZ243Nj/kElaam8m26uhzJ5F65T9Cqgt496SSbLhiO1SU1OTUqmU+bNmtHoV6XmzZiRJunSrK3P2UoYNHZq9tzu93N1lHfDPmbV5dWEpq/Mp7NSXns2rTz6Smpqa7PyR41ZjdpmkpbZkcvaU15Jkpefkd+3ZK0my4M1ZZcwuk7Sure+VNTU12WzXvbLZrnst9/iMV1/OnOlT073Pehm85XZlzi6XtNSen99J0n/jTdOpa/csrp+f155+rNUPQyc+/ViSJb+XLk8maam9mWyvjmX2LFqn7FdAj44d0iFZ5aH8PftvkGEj35fxY+7PCw/ck8Fve5NtXLw4Lz96X5JkyDY7lDV3h9SkX49uGTSo9Suusm7qt3huJi6sL+v0krd7+IbfJ0nes/PuWW/Ixm1eXyZpTVsy2Wv9QUmSaeNfSP2cN5uL/VKNixdn0jNLLpLWd/Cqv22QSVakPe+Vy7r3tz9Pkuxy+Inp2KlzWevIJa1pbyY7duqcEXuMyhO3/SVj/3Zdi7I/c9KreeXxh5IkW33ooOWWySStqdT75OrokKSuo0vMtYdnrwIGdu9Y9gtgn9O/nCS56/If55XHH25+vLGhIbdccm7eeG18utT1yE5lfqPa9Nb8sKy2ZHJZjYsX57Fbr02S7HzYx1ZrbpmkNW3J5Oa77ZPO3bpncf2CXP/fZzdfXTpJGhYvys0X/1dmTXkttR07ZdtRh6xyezLJirQll1Nfejb1c5c/l7mxoSF3/vqSPHjdb9Jv6PB86BNnlz23XNKa1f35vaw9T/5campq8shf/phn/31H8+OLFszPdd/6QpoaG7PNPgdn/eGbLbeeTNKaSmRydclk+3n2KqAtIdz0fR/Mvmd+Lbf9/Hv55ScOydCtd0iPfutn0rgnMnPSK+nUtVuO/e4v07Pf+mtkftYNq5uJcff+I3PfmJauPXtn670PWvUKFZ6f4mpLJnr07Z/Dvn5Rrr3gc3nitr/kpYdHZ8jWI1PbsVNee/qxvPn65NR06JBDvvLdso8+kUla05ZcPHjdlXnw+iuz4ZbbpdeAQWlcvCivPPFw5s6Yln5Dh+e0X1ybzmWfgtf2+Vk3vD0TE58Zmxsv/Grzn994bXySJXkcd89tzY+fcPEV6TVgYJJkwy23z4Fnfyu3/PCb+c3njsvwnT6Qur79M37M/ZkzfWoGbLxpDvv6RWXND61lYnVy+ea0KfndOSc3L5v9+qQkyTN3/z0/P+nDzY8f+v/+Jxtuuf1K56d8nr0KGNCtNl1ra1LfWN4FJPb+xDkZsvWO+fcffplXn3w0rz31WHr0Xz87HXJsPnjy51p80royXWtrMqBb7eruOgXV1kwutfTCfCM/fEQ6dem6WnPLJK1payZ3OOijGbjZlvn373+Zl8fcnxcfvDelUik9+2+QkQcclQ8c98kM3WbHsrYlk6xIW3K5xe6jMmvyq5k47vFMfHpsajt3zoBhm2aPE87M+485LZ26dmvT3HJJa96eyYXz5ubVJx9pMW721EmZPXVS858bFy9abvnuJ3wqAzfbMvf+9ud59akxWbxgfnoP3DB7nfL57HXqF1q9cJ9M0prW3idXJ5eNixe1us68mdMzb+b05ba9lEy2X02pVHKJwwq4e9K83D91Qd7JJ7Mmya4bdMueg9v2TQLrBpmk2sgk1UguqTYySbWRybWXc/YrZGT/ru/oCyBJSm/NC62RSaqNTFKN5JJqI5NUG5lceyn7FdK7c22279flHbspRU2S7ft1Se/ODm2hdTJJtZFJqpFcUm1kkmojk2svZb+C9t6wLnUda9b4C6EmSV3Hmuy9ocNaWDmZpNrIJNVILqk2Mkm1kcm1k7JfQV1qO+SgYT3X+GEupSQHDeuZLrX++Vg5maTayCTVSC6pNjJJtZHJtZNnscKG9+qcfYes2U+i9htSl+G9Oq/ROSgOmaTayCTVSC6pNjJJtZHJtY+yvwbsNKBb8wuhUoe6LN3OfkPqsuOAtt3eB2SSaiOTVCO5pNrIJNVGJtcubr23Br385qLcMmFO5jWU2nXIy9JzVw4a1tMnXbSLTFJtZJJqJJdUG5mk2sjk2kHZX8PqG5ty58R5GTtjYWqSNr0Ylo7fvl+X7L1hnXNXqAiZpNrIJNVILqk2Mkm1kcnqp+y/Q2Yvasxj0+szZnp96huXPOUdkjSllKVx75CaNL01vmttTXbo3zUj+3d12wnWCJmk2sgk1UguqTYySbWRyeql7L/DGkulTFvQmCnzGzJlfkNmzJ2fCa++mmFDh6Zfj+4Z2L1jBnbvmAHdalNb807dzZJ1mUxSbWSSaiSXVBuZpNrIZPXp+G7vwLqmtqamOehJMnnynFx6zc3Ze7vTM2hQj3d571gXySTVRiapRnJJtZFJqo1MVh8nRwAAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMMo+AAAAFIyyDwAAAAWj7AMAAEDBKPsAAABQMDWlUqn0bu/EuqSxVMq0BY2ZMr8hU+Y3ZMbc+Znw6msZNnRI+vXonoHdO2Zg944Z0K02tTU17/busg6QSaqNTFKN5JJqI5NUG5msPsr+O2T2osY8Nr0+Y6bXp75xyVPeIUlTSklqkpTSITVpemt819qa7NC/a0b275renWvfpb2myGSSaiOTVCO5pNrIJNVGJquXsr+G1Tc25c6J8zJ2xsK3ol6+peO379cle29Yly61zrqg/WSSaiOTVCO5pNrIJNVGJqufsr8Gvfzmotw8YU7mN5TaFP63q0lS17EmBw3rmeG9Oldq91gHySTVRiapRnJJtZFJqo1Mrh2U/TXkkWkLcttr89r8KdeKLN3OvkPqstOAbhXYIusamaTayCTVSC6pNjJJtZHJtYeyvwYsfQGsKV4ItJVMUm1kkmokl1QbmaTayOTapeO7vQNF8/Kbi/KHf43N8/ffmYnPjM3EZx7PtJefS1NjY/Y982vZ+xPntFinqakprz7xcJ4b/c+8+NC9ef3l57Nw3px07dErg7fYNjsecmxGHnBkat66auVtr83Lel1qHepCWVYnk0ny7L9vz5N33JzJzz6ZN6dNzvzZs1LbqVP6Ddk4W+w2Kruf8OnU9e2XRCZpm5ffXJTbXpuXaeNfaHMuW3Pf1ZflL9/7apJk58M+liPP/ZFM0mar+155+/9+P3dc+oOVbvvs60Zn/eGbySVtsrqZXKqpqSljbrk6Y265JlOeeyr18+ake+8+GbDx5tlm1CF5/9GnyiRt0p6f3/9vxwFlzfHot36W//n8J2WyQpT9CqpvbMrNE+bkgWsuz7//eGnZ673x2vj87ykHJUm69e6bIVtun269+uSNiRPywgN354UH7s7jf/9zPnbR5enYqXNqktwyYU4+uVVfF7NgpVY3k0ny2K3X5bG/Xpt+Q4dng022TF3ffpk/6428+tSY3HX5j/PwjX/IJ355fTbYZIRMUralmaxJcv81l2d0G3P5dm+8Nj5/+/EFqampybIHqskkbdGe98qlBm2+dQZtsU2ry7r26JlELilfezNZP+fNXHn2CXn50fvSpUfPDNvuvenas3fefH1yJj37RBbOm5P3H32qTFK29v783vGQY1a4bNbkiXnp4X+lpqYm79nxAzJZQcp+Bd05cV7mN5SywaYjsseJn8ngEdtm8IjtctdlP8qYW65e4Xo1NTXZ5L17ZI+TPpPNdt0rHWr/cwuKlx75d37zueMz7t5/5O7Lf5J9Tv9SSknmNZTyz4nzcsBGPd+Bvxlrq9XNZJLscdKZOfDs89Oz/wbLPb5w/txcd8Hn88Rtf8l13zo7Z/7mrzJJ2ZZmspRk4GrkcllNTU255rzPJjU12eHgo/PoTVc1L5NJ2qI975VLbbXXgRn1qa+sdIxcUq72ZLJUKuW355yUlx+9L7sc+fEcePb56dK9R/PyhsWLMuX5p5eMjUxSnvb+/P7oBT9b4bIbLvxKXnr4X9nkfXumz+ChMllByn6FzFrYmLEzFiZJ3nv4icstq+lQs9J1+w0dnk/88vpWl71np92y5ymfy20//14evfmq7HP6l5IseXMeO2NhPjCwu/tT0qr2ZDJJBm+xbauPd+neIwee/a08cdtf8uoTD6d+7px07dFTJlmlZTOZrF4ulzX6D5dm/Jj785Gv/U/mvTG9xXKZpBztfa9sK7lkVdqbyUdu/ENeevjf2ez9H8rh37ioxfKOnTpnyFYjm/8sk6xKpX9+L2vxwvqM/duSHvTeQ49PIpOV5NiIChk7oz6V/5VgiaWla/bUScs9XpPksen1a2hW1nZrMpNLjz6p6dAhtR3/85mhTLIylczktPEv5B8//26G7/SB7PrRU1Y4TiZZlTX5XrkicsnKtDeTo//0qyTJB086q+x1ZJKVWZPvk0/ecXPq58xOt959s9WHDmx+XCYrwzf7FdBYKmXM9PqK3HqiNdNfeSlJWhxOXUoyZnp9dh/UPbU17/SvKlSzNZnJhkUL84+ffSdJsun79kynrv+5YqpMsiKVzGRTY2OuOfesJDU58twfNV+8tDUyycpUMpeTxj2ev/3kW5k/e9aSC+yO2DZbfnD/dKnr0WKsXLIi7c3knBmvZ/JzT6VDbW2Gbf/evPHa+Dx+242ZOenVdOlel6Hb7Jgt9zogHTstf/EzmWRF1nTPeeTGPyRJdjjwqHTs3KX5cZmsDGW/AqYtaEx945p5CSxaMD+j//R/SZJt9jm4xfL6xlKmLWjMwO7+KfmPSmZy4jNjM/pPv0qpVMq8mTMy8anHMm/WjAzZeocced6PW4yXSVpTyUzec+XP8uqTj+Sgc76dfkOHr3K8TLIilczlM/f8Pc/c8/flHuvao1cO+cp3s+PBLS9MJZe0pr2ZXHoufvfe6+WhG36XW394XhobFi83Zr0hG+eEi67IoM23Xu5xmaQ1a7LnzJz0Sl56+F9Jkp0P/ViL5TLZfp65Cpgyv2GNbfvG730lMydOSK8BA7PXqV9Y4fxeBCyrkpmcNWXichc+S5Z8o3/4Ny5K7/UHrXB+mWRZlcrklBeeye3/+/0M2/69+cBxp7dpfpnk7SqRy/WGbJz9z/pGNt9tn/QdNDRJMvWlZ3P35T/JuHv/kWvOPSs1HWqzw4FHtTq/XLKs9mZy/uyZS/7/zZm56ftfzzajDsk+p385fQcPzdQXxuXmi/4rrz75SC4/65h8/up7UtdnvRbzyyTLWpM95+Eb/5hSqZQNtxrZ4sOnZeeXydXnnP0KmDK/YY08kXf86uI8etNV6dila477n/9r8YacLPkHXJMvQtZOlczk1h86MBc+Oi3feWhKvnLzozni3Evy+svP5UdHfzBP3P6XFuNlktZUIpONDQ1vFacOOfK8n6RDh/K2KJOsSCVyuePBR2evU7+QwVtsm269+qRbrz7ZeOT78vEf/z7vP/YTSZJbLv5mGhYvWm49uaQ17c3k0luQNjU0ZKPt3puPff+yDNx0y3Tp3iMbbbdzTvvFtenRb0DmTJ+a+6+5fLl1ZZLWrKme09TUlEdv+lOSZOe3Lsz3djLZfj4mqYC5DU1pqvA27/3dL3L7L76Xjp275ISLrsjGI9/X6rimlDJj7vxMnjynwnvA2mzG3No0pSap4OVUOtTWpu/goXnvYSdk010+mEuO2iPXnv+5bDzyfctdT0ImaU0lMnnnry/JpHGP58OfOzcDNt607PVkkhVZE++Vyxp1xlfywDWXZ97M6Xn1iUcyfMf3Ny+TS1rT3kwue4u9XY48qeXyuh7Z4cCP5t7f/jwvPnB39vnkOc3LZJLWrKn3yRceuDuzpryWTl27ZeSHj2x1TFOSeQ2VblnrFmW/AhqbKnsey+g//Sq3/vDc1HbqnI/94LJssds+KxldkwmvvpJLr7m5ovvA2q3Troekw/obrbHt9x28Ud6z82559l+35fn7786OBx+9zFKZpKVKZPLpO29Jkoy75+959t+3L7ds5qRXkyTP/uu2XPrJQ5Mkp//qxreWyiStW9Pvld17901d3/6ZM31qZr8++W1L5ZKW2pvJ9YYM+89/bzis1TF933r8zelT37ZEJmlpTb1PLr0w39Z7H5yuPXutcFxDhXvWukbZr4DaCt6H976rfp2bvv/1t4r+5Rmxx36rWKOUYUOHZu/tyj93leL758zavLqwlDX1bVWSdO7WPUkyb+bb728uk7RUyUyOf+yBFS6bM/31zJn++tselUlat6bfK5saG1M/d8m3pMt+47qEXNJSezPZf6NN0qWuRxbOm5v5s95odczSx7t0r3vbEpmkpTXxPjl/9sw8fddfkyTvPazlhfmW1bGCPWtdpOxXQI+OHdIhafeh/A9ce0X+8j9fay76W35wVUU/6ZCa9OvRLYMGtby1D+uufovnZuLC+oqfXrJUw6KFmfBW4eq/0SbLLZNJWlOJTH7uT3etcNnt//v93HHpD7LzYR/Lkef+aLllMsmKrOn3ymfu/lsW189PTU1Nhmy1/XLL5JLWtDeTtR07Zqu9DsyYW67OCw/cna33PqjFmBfuvytJMmTrHZd7XCZpzZp4n3zsr9emYdHCrDdk4wzf6QMrHNchSV1Hl5hrD89eBQzs3rHdL4AHr/9tbrzwK20q+smSDxhcoZK3a28m574xLfdfc3nzN1LLmv365Fz9zTPz5rQp6Tt4o2y6657LLZdJWlOJ98nVJZOsSHtzOWvyaxlzyzVZvLC+xbKn7rw113377CTJ9gcctdy1TRK5pHWVeK/c69QvpLZjpzz059/lmXv+sdyye37zs4x/7IF0qK3N+48+dbllMklr1sTP74ffOoR/50OPT03Nir+5l8n28+xVwNtDOPGZsbnxwq82//mN18YnSR687sqMu+e25sdPuPiK9BowMJOefSI3fOeclEqlrLfhsDx5x1/y5B0tr3KeJB+94GernB/am8nF9Qty44Vfyc0X/VcGbbHNW7eTKmXWlEmZNO7xNC5elF4DBubEH/4mnbp0XeX80Fom2prLSs8P7X2vnP/mzFz9zTNzw4VfzuAttk2v9QelYWF9pr70bGa88lKS5D07757Dvv79suaH9mYySdYfvlkO/+YPc90Fn8+VX/hYNtxqZPOt96aNfz4damtz6P/7QQZuttUq54dK//yeNO7xTH72yXSorc1OHzluteanfJ69ChjQrTZda2tS37jkAhIL583Nq08+0mLc7KmTMnvqpOY/N751G576OW823ypl2vjnM2388yuc6+1lv2ttTQZ0q23334FiaW8m6/r2z4Ff/FbGP3pfprzwTKa9/FwWL6xPtx69s9G2O2XEB/fPLkeclK49erbYpkzSmrdnMml7LleXTLIi7X2v7L3Bhtnz5M/mtacey4xXX37rw9DF6d5nvYzYY79sf8CR2W6/w1q9TaRc0pr2ZnKpnQ45Nuu/Z4vcc8VPMn7MA5ny3FPp3qdvtt33I9njxM9k6DY7vn2TMkmrKv3ze+m3+pu9/0Or/CBfJtuvprS0ZdIud0+al/unLsg7+WTWJNl1g27Zc/DbL7ACMkn1kUmqkVxSbWSSaiOTay/n7FfIyP5d39EXQJKU3poXWiOTVBuZpBrJJdVGJqk2Mrn2UvYrpHfn2mzfr8savNHZ8mqSbN+vS3p3dmgLrZNJqo1MUo3kkmojk1QbmVx7KfsVtPeGdanrWLPGXwg1Seo61mTvDR3WwsrJJNVGJqlGckm1kUmqjUyunZT9CupS2yEHDeu5xg9zKSU5aFjPdKn1z8fKySTVRiapRnJJtZFJqo1Mrp08ixU2vFfn7DtkzX4Std+Qugzv1XmNzkFxyCTVRiapRnJJtZFJqo1Mrn2U/TVgpwHdml8IlTrUZel29htSlx0HdKvQVllXyCTVRiapRnJJtZFJqo1Mrl3cem8NevnNRbllwpzMayi165CXpeeuHDSsp0+6aBeZpNrIJNVILqk2Mkm1kcm1g7K/htU3NuXOifMydsbC1CRtejEsHb99vy7Ze8M6565QETJJtZFJqpFcUm1kkmojk9VP2X+HzF7UmMem12fM9PrUNy55yjskaVpmzLJ/7lpbkx36d83I/l3ddoI1QiapNjJJNZJLqo1MUm1ksnop+++wxlIp0xY0Zsr8hkyZ35B5DU1paCqlY4ea1HXskIHdO2Zg944Z0K02tTXv1N0sWZfJJNVGJqlGckm1kUmqjUxWH2UfAAAACsbJEQAAAFAwyj4AAAAUjLIPAAAABaPsAwAAQMEo+wAAAFAwyj4AAAAUjLIPAAAABaPsAwAAQMEo+wAAAFAwyj4AAAAUjLIPAAAABaPsAwAAQMEo+wAAAFAwyj4AAAAUjLIPAAAABaPsAwAAQMEo+wAAAFAwyj4AAAAUjLIPAAAABaPsAwAAQMEo+wAAAFAwyj4AAAAUjLIPAAAABaPsAwAAQMEo+wAAAFAwyj4AAAAUjLIPAAAABaPsAwAAQMEo+wAAAFAwyj4AAAAUjLIPAAAABaPsAwAAQMEo+wAAAFAwyj4AAAAUjLIPAAAABaPsAwAAQMEo+wAAAFAwyj4AAAAUjLIPAAAABaPsAwAAQMEo+wAAAFAwyj4AAAAUjLIPAAAABaPsAwAAQMH8/+ANMeiKlExcAAAAAElFTkSuQmCC", + "text/plain": [ + "
" ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "EVxTVGqf1HIS", - "outputId": "53561623-3c04-4931-d8f3-b6d82c680be5" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Synthesized Depth for star connectivity is 191\n" - ] - } - ], - "source": [ - "print(f\"Synthesized Depth for star connectivity is {circuit_star.transpiled_circuit.depth}\")" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Plotting Grid Connectivity\n", + "import matplotlib.pyplot as plt\n", + "import networkx as nx\n", + "\n", + "G = nx.Graph()\n", + "G.add_edges_from(grid_connectivity)\n", + "\n", + "# Define the positions of the nodes in a 3x6 grid\n", + "pos = {}\n", + "for i in range(3):\n", + " for j in range(6):\n", + " pos[i * 6 + j] = (j, -i) # (x, y) coordinates\n", + "\n", + "# Plot the graph\n", + "plt.figure(figsize=(10, 6))\n", + "nx.draw(\n", + " G,\n", + " pos,\n", + " with_labels=True,\n", + " node_size=500,\n", + " node_color=\"skyblue\",\n", + " font_size=16,\n", + " font_color=\"black\",\n", + " edge_color=\"gray\",\n", + ")\n", + "plt.title(\"3x6 Grid Connectivity Map\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "0AEHYvxACpS7", + "outputId": "62c17d67-b8f0-403c-96ba-41bcc319619f" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/sAAAQSCAYAAADwlOr+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3Qc52Hu/2ex6L0TJAACIED0vjMqFClKFItkqljVkuxYtq9jJ44dxzdO++VeuVw7uXHKTeI4jpOba9lWsaolWy4S1W3VmUUn2DvBBrABRCHa/P6QiZBiQ58t3885Oofcnd15SBGz77PvzDsex3EcAQAAAACAkBHhdgAAAAAAADC7KPsAAAAAAIQYyj4AAAAAACGGsg8AAAAAQIih7AMAAAAAEGIo+wAAAAAAhBjKPgAAAAAAIYayDwAAAABAiKHsAwAAAAAQYij7AABgSj7xiU+osLBwyq/bvXu3PB6PHnrooVnPBAAAzkXZBwAEhPb2dt11110qKChQbGyscnNztWbNGn37298+Z7u/+qu/0rPPPjvv+Xp7e/W1r31NdXV1SkxMVFxcnKqrq/Vnf/ZnOnDgwLznmWsHDhzQV7/6VbW0tMzpfn7xi1/oq1/96qy/b2FhoTwej1avXn3B5//jP/5DHo9HHo9Htm3P+v4BAHCbx3Ecx+0QAIDw9tZbb+n666/X4sWL9cADDygnJ0f79u3TO++8ox07dmj79u0T2yYmJuquu+6a19nhnTt3avXq1dq7d6/uvvtuLV++XNHR0Wpra9Njjz2m9PR0bd26dd7yzAfbtmWapr7//e/rE5/4xDnPjYyMaHx8XDExMVN6T8dxdPr0aUVFRcnr9UqSPv/5z+s73/mOZns4UlhYqMOHD2t4eFhdXV3Kyck55/nrrrtO7777roaGhmRZlgzDmNX9AwDgtki3AwAA8M1vflMpKSmyLEupqannPHfkyJE5339/f78SEhIu+Nzo6KjuuOMOHT58WK+99pqWL19+zvPf/OY39Td/8zdznjGQREVFTet1Ho9HsbGxs5zm4q655hpZlqXHH39cX/ziFyce379/v37961/r9ttv19NPPz1veQAAmE+cxg8AcN2OHTtUVVV1XtGXpOzs7Ilfezwe9ff36wc/+MHEKdhnZp337Nmjz33ucyorK1NcXJwyMjJ09913a/fu3ee830MPPSSPx6PXX39dn/vc55Sdna28vLyLZnv66afV2tqqv/zLvzyv6EtScnKyvvnNb57z2JNPPimfz6e4uDhlZmbqYx/7mLq6us7Z5hOf+IQSExPV1dWlD3/4w0pMTFRWVpa+/OUva2xsbGK7M9e5/93f/Z3+/d//XcXFxYqJiZFpmrIs67w8mzdv1l133aX09HTFxsbKMAz99Kc/PW+7EydO6Etf+pIKCwsVExOjvLw8ffzjH1dPT49ee+01maYpSfrkJz858Xd95myKs6/ZHxkZUXp6uj75yU+et4/e3l7Fxsbqy1/+8jl/lrPf5zvf+Y4kTezD4/HIcRwVFhbqtttuO+89h4aGlJKSos9+9rPnPfdBsbGxuuOOO/Too4+e8/hjjz2mtLQ0rVu37rzXtLW16ROf+ISWLFmi2NhY5eTk6FOf+pSOHj16znZf/epX5fF4tHnzZt1zzz1KTk5WRkaGvvjFL2poaOiy2QAAmGvM7AMAXFdQUKC3335bHR0dqq6uvuh2P/rRj/TpT39aV1xxhT7zmc9IkoqLiyVJlmXprbfe0r333qu8vDzt3r1b3/3ud3Xdddeps7NT8fHx57zX5z73OWVlZenBBx9Uf3//Rfd5pij/zu/8zqT+LA899JA++clPyjRN/fVf/7UOHz6sf/qnf9Kbb76p5ubmc77QGBsb07p163TllVfq7/7u7/TSSy/p7//+71VcXKzf//3fP+d9H330UfX19emzn/2sPB6PvvWtb+mOO+7Qzp07J2baN27cqGuuuUa5ubn68z//cyUkJOiJJ57Qhz/8YT399NO6/fbbJUmnTp3SihUrtGnTJn3qU59SY2Ojenp69NOf/lT79+9XRUWFvv71r+vBBx/UZz7zGa1YsUKStGzZsvP+vFFRUbr99tv1zDPP6Hvf+56io6Mnnnv22Wd1+vRp3XvvvRf8u/rsZz+rAwcOaMOGDfrRj3408bjH49HHPvYxfetb39KxY8eUnp4+8dzPfvYz9fb26mMf+9ik/n/cf//9Wrt2rXbs2DHxb+XRRx/VXXfddcEzFDZs2KCdO3fqk5/8pHJycrRx40b9+7//uzZu3Kh33nlHHo/nnO3vueceFRYW6q//+q/1zjvv6J//+Z91/Phx/fCHP5xUPgAA5owDAIDLXnzxRcfr9Tper9e5+uqrnT/90z91XnjhBWd4ePi8bRMSEpwHHnjgvMcHBgbOe+ztt992JDk//OEPJx77/ve/70hyli9f7oyOjl42W0NDg5OSkjKpP8fw8LCTnZ3tVFdXO4ODgxOPP//8844k58EHH5x47IEHHnAkOV//+tfP25/P55v4/a5duxxJTkZGhnPs2LGJx5977jlHkvOzn/1s4rEbbrjBqampcYaGhiYeGx8fd5YtW+YsXbp04rEHH3zQkeQ888wz5/0ZxsfHHcdxHMuyHEnO97///fO2eeCBB5yCgoKJ37/wwgvnZXEcx/nQhz7kLFmy5Lw/y9nv+Qd/8AfOhYYjW7ZscSQ53/3ud895/NZbb3UKCwsncl5MQUGBs379emd0dNTJyclx/tf/+l+O4zhOZ2enI8l5/fXXJ/4tWJY18boL/Tt67LHHHEnOG2+8MfHYV77yFUeSc+utt56z7ec+9zlHktPa2nrJfAAAzDVO4wcAuG7NmjV6++23deutt6q1tVXf+ta3tG7dOuXm5l7wFPQLiYuLm/j1yMiIjh49qpKSEqWmpqqpqem87X/3d393YpG4S+nt7VVSUtKkMti2rSNHjuhzn/vcOdemr1+/XuXl5fr5z39+3mt+7/d+75zfr1ixQjt37jxvu4985CNKS0s7ZztJE9seO3ZMr7zyiu655x719fWpp6dHPT09Onr0qNatW6dt27ZNXErw9NNPq66ubmKm/2wfnLmejFWrVikzM1OPP/74xGPHjx/Xhg0b9JGPfGTK7ydJpaWluvLKK/XII49MPHbs2DH98pe/1Ec/+tFJ5/R6vbrnnnv02GOPSZIeeeQR5efnT/z9fdDZ/46GhobU09Ojq666SpIu+O/oD/7gD875/Re+8AVJ799lAAAAN1H2AQABwTRNPfPMMzp+/Ljee+89/cVf/IX6+vp01113qbOz87KvHxwc1IMPPqj8/HzFxMQoMzNTWVlZOnHihE6ePHne9kVFRZPKlZycrL6+vkltu2fPHklSWVnZec+Vl5dPPH9GbGyssrKyznksLS1Nx48fP+/1ixcvPm87SRPbbt++XY7j6H/+z/+prKysc/77yle+Ium/FjvcsWPHJS+XmKrIyEjdeeedeu6553T69GlJ0jPPPKORkZFpl31J+vjHP64333xz4u/tySef1MjIyKQvqTjj/vvvV2dnp1pbW/Xoo4/q3nvvveiXBceOHdMXv/hFLViwQHFxccrKypr4t3Khf0dLly495/fFxcWKiIg4b60IAADmG2UfABBQoqOjZZqm/uqv/krf/e53NTIyoieffPKyr/vCF76gb37zm7rnnnv0xBNP6MUXX9SGDRuUkZGh8fHx87Y/ewb3UsrLy3Xy5Ent27dvyn+Wy5nMmQWX29b57S3rzvwZv/zlL2vDhg0X/K+kpGTmoS/i3nvvVV9fn375y19Kkp544gmVl5errq5uRu8ZFRU1Mbv/8MMPyzCMC36ZcilXXnmliouL9Ud/9EfatWuX7r///otue8899+g//uM/9Hu/93t65pln9OKLL+pXv/qVJF3w39EHTefMCAAA5gIL9AEAAtaZe58fPHhw4rGLlamnnnpKDzzwgP7+7/9+4rGhoSGdOHFiRhluueUWPfbYY3r44Yf1F3/xF5fctqCgQJK0ZcsWrVq16pzntmzZMvH8XFiyZImk9xfMW7169SW3LS4uVkdHxyW3mWppvfbaa7Vw4UI9/vjjWr58uV555RX95V/+5WVfd6n9pKena/369XrkkUf00Y9+VG+++ab+8R//cUq5zrjvvvv0jW98QxUVFaqvr7/gNsePH9fLL7+sr33ta3rwwQcnHt+2bdtF33fbtm3nnCWyfft2jY+PT9ytAAAAtzCzDwBw3auvvjoxQ322M9c9nz2Tm5CQcMEC7/V6z3uPb3/72+fcxm467rrrLtXU1Oib3/ym3n777fOe7+vrmyi1hmEoOztb//Zv/zZxOrsk/fKXv9SmTZu0fv36GWW5lOzsbF133XX63ve+d86XI2d0d3dP/PrOO+9Ua2urfvKTn5y33Zm/w4SEBEma9JclERERuuuuu/Szn/1MP/rRjzQ6OjqpU/gvt5/f+Z3fUWdnp/7kT/5EXq/3oiv7X86nP/1pfeUrXznny6APOnP2xAf/HV3qC4Yztw4849vf/rYk6aabbppWTgAAZgsz+wAA133hC1/QwMCAbr/9dpWXl2t4eFhvvfWWHn/8cRUWFp5zD3efz6eXXnpJ//AP/6BFixapqKhIV155pW6++Wb96Ec/UkpKiiorK/X222/rpZdeUkZGxoyyRUVF6ZlnntHq1at17bXX6p577tE111yjqKgobdy4UY8++qjS0tL0zW9+U1FRUfqbv/kbffKTn9TKlSt13333Tdx6r7CwUF/60pdm+ld1Sd/5zne0fPly1dTU6Hd/93e1ZMkSHT58WG+//bb279+v1tZWSdKf/Mmf6KmnntLdd9+tT33qU/L5fDp27Jh++tOf6t/+7d9UV1en4uJipaam6t/+7d+UlJSkhIQEXXnllZdc6+AjH/mIvv3tb+srX/mKampqVFFRcdnMPp9PkvSHf/iHWrdu3XmFfv369crIyNCTTz6pm266SdnZ2dP6uykoKNBXv/rVS26TnJysa6+9Vt/61rc0MjKi3Nxcvfjii9q1a9dFX7Nr1y7deuutuvHGG/X222/r4Ycf1v333z+jyxcAAJgVbt4KAAAAx3GcX/7yl86nPvUpp7y83ElMTHSio6OdkpIS5wtf+IJz+PDhc7bdvHmzc+211zpxcXGOpInb8B0/ftz55Cc/6WRmZjqJiYnOunXrnM2bNzsFBQXn3KrvQrdbm4zjx487Dz74oFNTU+PEx8c7sbGxTnV1tfMXf/EXzsGDB8/Z9vHHH3caGhqcmJgYJz093fnoRz/q7N+//5xtHnjgASchIeG8/Zy5pdsZZ25X97d/+7fnbSvJ+cpXvnLOYzt27HA+/vGPOzk5OU5UVJSTm5vr3Hzzzc5TTz11znZHjx51Pv/5zzu5ublOdHS0k5eX5zzwwANOT0/PxDbPPfecU1lZ6URGRp5zy7wP3nrvjPHxcSc/P9+R5HzjG9847/kL3XpvdHTU+cIXvuBkZWU5Ho/ngrfhO3M7u0cfffS85y7mzK33LuVC/xb279/v3H777U5qaqqTkpLi3H333c6BAwfO+7s+8/+ps7PTueuuu5ykpCQnLS3N+fznP3/ObRcBAHCLx3EucN4kAABAgPjSl76k//zP/9ShQ4cUHx/vdhxJ0le/+lV97WtfU3d3tzIzM92OAwDAebhmHwAABKyhoSE9/PDDuvPOOwOm6AMAEAy4Zh8AAAScI0eO6KWXXtJTTz2lo0eP6otf/KLbkQAACCqUfQAAEHA6Ozv10Y9+VNnZ2frnf/7ni94uDwAAXBjX7AMAAAAAEGK4Zh8AAAAAgBBD2QcAAAAAIMRQ9gEAAAAACDGUfQAAAAAAQgxlHwAAAACAEEPZBwAAAAAgxFD2AQAAAAAIMZR9AAAAAABCDGUfAAAAAIAQQ9kHAAAAACDEUPYBAAAAAAgxlH0AAAAAAEIMZR8AAAAAgBBD2QcAAAAAIMRQ9gEAAAAACDGUfQAAAAAAQgxlHwAAAACAEEPZBwAAAAAgxFD2AQAAAAAIMZR9AAAAAABCDGUfAAAAAIAQQ9kHAAAAACDEUPYBAAAAAAgxlH0AAAAAAEIMZR8AAAAAgBBD2QcAAAAAIMRQ9gEAAAAACDGUfQAAAAAAQgxlHwAAAACAEEPZBwAAAAAgxFD2AQAAAAAIMZR9AAAAAABCDGUfAAAAAIAQQ9kHAAAAACDEUPYBAAAAAAgxlH0AAAAAAEIMZR8AAAAAgBBD2QcAAAAAIMRQ9gEAAAAACDGUfQAAAAAAQgxlHwAAAACAEEPZBwAAAAAgxFD2AQAAAAAIMZR9AAAAAABCDGUfAAAAAIAQQ9kHAAAAACDEUPYBAAAAAAgxlH0AAAAAAEIMZR8AAAAAgBBD2QcAAAAAIMRQ9gEAAAAACDGUfQAAAAAAQgxlHwAAAACAEEPZBwAAAAAgxFD2AQAAAAAIMZR9AAAAAABCDGUfAAAAAIAQQ9kHAAAAACDEUPYBAAAAAAgxlH0AAAAAAEIMZR8AAAAAgBBD2QcAAAAAIMRQ9gEAAAAACDGUfQAAAAAAQgxlHwAAAACAEEPZBwAAAAAgxFD2AQAAAAAIMZR9AAAAAABCDGUfAAAAAIAQQ9kHAAAAACDEUPYBAAAAAAgxlH0AAAAAAEIMZR8AAAAAgBBD2QcAAAAAIMREuh0AAADMjTHHUffgmA4NjOrQwKhOjY5rbNyRN8KjxMgI5cRHKic+UllxXnk9HrfjAgCAWeRxHMdxOwQAAJg9J4fH1NIzpOaeIQ2Nvf8xHyFp/Kxtzv59rNejhsxY1WfGKiXaO89pAQDAXKDsAwAQIobGxvVqV79aj56WR9JUPuDPbF+XEaNVuQmK8XKlHwAAwYyyDwBACNjVO6zn9/RpYNSZUsn/II+khEiP1hckqSg5erbiAQCAeUbZBwAgyPm7B7Vhf/+UZ/Mv5sz7rMlLkC8rbhbeEQAAzDfO0QMAIIidKfrS7BT9s99nw/5++bsHZ+ldAQDAfGI1fgAAgtSu3uGJon8xT37l82r62eOX3Obrb+9TVEzsBZ/bsL9f6TFeTukHACDIUPYBAAhCQ2Pjen5P36RP3S+ov0IZ+UUXfC4i4uIr8Hsk/XxPn363Mo1F+wAACCKUfQAAgtCrXf1TWozP/PDH5Lv1vinvx5HUP+rola5+3bQ4acqvBwAA7uAregAAgsyJ02NqPXp61q7RvxxHUuvR0zo5PDZPewQAADNF2QcAIMi0Hh2SZ5736ZHU0jM0z3sFAADTxWn8AAAEkTHHUXPP0JRn9XfYv9Gh7Zt0uv+U4lPTlF/VqLLlqxUZHTOp1zuSmnuGtHxhvLye+f6qAQAATBVlHwCAINI9OKahsamfwN/8/BPnPZaUuUB3fuWfVHbNDZN6j6ExR92DY8qJZ/gAAECg8ziOM1+X/AEAgBlq6RnSr/admvT2v3n43+TxRqjkimuVmpOnkdODOrh1o17+3re0p9WSNzJKn/rXJ7XEuGZS73djfqLqMy98mz4AABA4KPsAAASRX+09pbajQxqf4fs4jqOH//gBdb72Sy0srdIf/vi1y74mQlJtRqxuXJw4w70DAIC5xgJ9AAAEkVOj4zMu+pLk8Xi0+vf+VJJ0cOtGnTjUddnXjEvqH52NvQMAgLlG2QcAIIiMjc/eCXlZRaUTvz55+MCkXjM6i/sHAABzh7IPAEAQ8UbM3kr4AyeOTfw6JmFyp+ZHzuL+AQDA3KHsAwAQRBIjI2btw7vthWclSTGJScoqKLns9hGSEiIZOgAAEAz4xAYAIIjkxEdO+pr9A1va1fn6rzQ2OnrO4+Pj47KefVgvfOebkqRl9/6uvFFRl32/8d/uHwAABD4+sQEACCJTKdvHD+zTw3/8gOKSU7WovFaJGVka6jupw9s368Sh/ZKkuhvv0A2f+ZM52T8AAHAPn9gAAASRrDivYr0eDY1dfqG8haVVuub+z6qrs0Xdu7dpT+t7kuMoMT1L1atvke/W+1S+fM2k9x3r9SgrzjuT+AAAYJ54HMdhWV0AAILI6wf69c7hQc3nB7hH0lUL4rRyUcI87hUAAEwX1+wDABBk6jNj57XoS5Lz2/0CAIDgQNkHACDIpER7VZcRo/m6CZ5HUl1GjFKiOYUfAIBgQdkHACAIrcpNUEKkZ84Lv0dSQqRHq3I5fR8AgGBC2QcAIAjFeCO0viBpzk/ndyStL0hSjJchAwAAwYRPbgAAglRRcrTW5M3tjPvavAQVJUfP6T4AAMDso+wDABDEfFlxE4V/tk7pP/M+a/MS1JgVN0vvCgAA5hO33gMAIATs6h3Wz/f0qX/UmdGp/Weu0V9fkMSMPgAAQYyyDwBAiBgaG9erXf1qPXpaHmlKpf/M9nUZMVqVm8A1+gAABDnKPgDMgzHHUffgmA4NjOrQwKhOjY5rbNyRN8KjxMgI5cRHKic+UllxXnk983VDNYSqk8NjaukZUnPPkIbG3v+Yj5A0Lkdnan2EPBr/7faxXo8aMmNVnxnL7fUwYxzvACAwUPYBYA5dvHT9l7N/T+nCbPpg6Tp6akB79u1TQX6+MhLjKV2YVRzvACCwUPYBYA5wOjUC0cGDB/Xv//7v+sxnPqOFCxe6HQchguMdAASmSLcDAECo2dU7rOf39Glg9P0h71S/UT2zfdvR09pxcpiF0gAELI53ABC4+PoUAGaRv3tQj+/o1cAMV0SX3h8E9486enxHr/zdg7MRDwBmDcc7AAhslH0AmCX+7kFt2N8vaeqzWxdz5n027O9nAAwgYHC8A4DAR9kHgFmwq3d4YuA7Vzbs79eu3uE53QcAXA7HOwAIDlyzDwAzNDQ2ruf39E1qYarRkWG9+9RDat/wnI7s3KqRoUHFp6Yrp6RCvlvuVe262y/6Wo+kn+/p0+9WprGIFQBXTOV4d7Zf/uPX9MYP/0WStOZzf65Vn/7jS27P8Q4AZo6yDwAz9GpX/6SuWT15+ID+3x/coyM7tyghNUMFdVcoOi5eJw93aVfTO4qOi79k2T9zTesrXf26aXHSrP4ZAGAyJnu8O9ue1vf064f/VR6PR5O9CRTHOwCYOco+AMzAidNjaj16+rLbjQwN6j9//y51796mGz77p7r+U38kb1TUxPPDgwPq2bvjsu/jSGo9elrLcuK5LzWAeTXZ493ZhgcH9ORXvqCkzAXKq2pQ56u/mPRrOd4BwMxwXhQAzEDr0SF5JrHda9//J3Xv3qYr7vi4Vn/2T84p+pIUHRevRWU1k9qnR1JLz9DUwwLADEz2eHe2F/7lGzq6d6du/x9/r9jEqc/Qc7wDgOmj7APANI05jpp7hi57OuvYyIjeffIhSdKKj//BjPfrSGruGdLYJE+HBYCZmuzx7mw77Tf19o//rxpuvkfly9dMa78c7wBg+jiNHwCmqXtwTENjlx+Adm1uU/+Jo0rOylHm4iU6tK1THa/8XH3dhxSXnKLChqtUes1qRURM/vvXoTFH3YNjyonnMA5g7k32eHfG6YFTeuprX1RiRpZu+fI3Z7RvjncAMD0cNQFgmg4NjE5uu22dkqTkBYv0q3/+ut74wb+cs0jV6w99W4vKa/Q7f/9DpS7Mm9L+GfwCmA+TPd6d8Yv/81Ud79qjj/39DxSXnDor++d4BwBTw2n8ADBNhwZGJ3UQHTh5TJJ0cHO7Xn/o27ry7k/qv//kHX3ljZ36b999SpkFxTqwuV0PffF+jY2MTGrfEZr64BsApmuyxztJ2vr2q3rv6R+odt3tqrr+QzPeN8c7AJgeyj4ATNOp0XGNT2bD387ij42OqO7GO3Tbn/+NsgqKFZuYpJIrV+q//etTioyJ1eHtm9T6wk8mte9xSf2jk9o7AMzYZI93Q329eubrf6SEtEzd+qd/PSv75ngHANND2QeAaRobn9z1q9HxiRO/vuLOj5/3fOrCPJUvXy1J2v7e65Pe/+gk9w8AMzXZ493zf/eXOnn4gG79s79WQlrGrO2f4x0ATB0XPwHANHkjJncTqvS8gv/6dW7hhbf57eN9PUcmvf/ISe4fAGZqsse7ja/+QhGRkXrnye/rnSe/f85z3bu3SZLsZx/V9nffUFJGtu773/8xqffleAcAU0fZB4BpSoyMUIR02VNbc8tr5fF45DiOBk4cVWpO7nnb9J84KkmKiUuY1L4jJCVEcnIWgPkx2eOdJI2PjmqX/62LPn/8wF4dP7BXqQvzJ7VvjncAMD2UfQCYppz4SLUcvfx2SZkLVFB/pXY3v6Pt776hReW15zw/NjKiXU1vS5Lyqhsmte/x3+4fAObDZI93X3ljx0Wfe/Irn1fTzx7Xms/9uVZ9+o8nvW+OdwAwPXxNCgDTNJXB5w2f+RNJ0mvf/yftbbMnHh8bHdXP/8+DOrZ/t2ISEuW79b452T8AzITbxxu39w8AwYgjJwBMU1acV7Fej4bGLr9wVMmV12rN5/5cG/71f+t7n75F+VUNSszI1oHN7Tp+YK+iYuN07199T0kZ2ZPad6zXo6w470z/CAAwKVM53s02jncAMD3M7APANHk9HjVkxmqyy0at+vQf65PfeUIlV67Ukd3btfmNFzU+PibfLffq84+8rPIVayf1Ph5JDZmx8npYsArA/Jjq8W62cLwDgOljZh8AZqA+M1ZvHx6c9PalV1+v0quvn9E+nd/uFwDm01SPdx9099f+RXd/7V+m9BqOdwAwfczsA8AMpER7VZcRM2+zXR5JdRkxSonmlFYA84vjHQAEF8o+AMzQqtwEJUR65nwA7JGUEOnRqtzJ3Z4PAGYbxzsACB6UfQCYoRhvhNYXJGmul61yJK0vSFKMl0M3AHdwvAOA4MERFABmQVFytNbkze0M1Nq8BBUlR8/pPgDgcjjeAUBwoOwDwCzxZcVNDIBn6xTXM++zNi9BjVlxs/SuADAzHO8AIPCxGj8AzCJfVpzSY7z6+Z4+9Y86MzrV9cw1q+sLkpjhAhBwON4BQGBjZh8AZllRcrQ+XZmm2owYSdOY9XLeHzLXZsTodyvTGPgCCFjnHO8cR3LGp/T6M8dHjncAMPuY2QeAORDrjdBNi5O0LCdeLT1Dau4Z0tDY+yU+QtLZw+Gzf+8dH9X4no369I0rlBHPoBdA4Iv1RmjNoji1P/cjZdWv0MmURZM63sV6PWrIjFV9Ziy31wOAOUDZB4A5lBLt1cpFCVq+MF7dg2M6NDCqQwOj6h8d1+i4o8gIjxIiI5QTH6mc+EhF9J/Qd5//jbpKspRRW+t2fACYlM7OTg0e69atlYuUmp4+qeNdVpxXXs9c38QPAMIXZR8A5oHX45kY4F5SfKaWLFki27ZVS9kHECQsy9KSJUuUkZEhSZM73gEA5hTX7ANAgDEMQ/v27dOhQ4fcjgIAl3Xw4EHt379fpmm6HQUAcBbKPgAEmLKyMiUlJcmyLLejAMBl2bat5ORklZaWuh0FAHAWyj4ABJiIiAj5fD61t7draGjI7TgAcFFDQ0Nqb2+Xz+dTRATDSgAIJByVASAANTY2amxsTK2trW5HAYCLam1t1djYmBobG92OAgD4AMo+AASgpKQkVVRUyLZtOY7jdhwAOI/jOLIsSxUVFUpMTHQ7DgDgAyj7ABCgDMNQT0+Pdu/e7XYUADjP7t27dfToURbmA4AARdkHgABVUFCgrKws2bbtdhQAOI9lWcrKytLixYvdjgIAuADKPgAEKI/HI8MwtGnTJvX19bkdBwAm9Pb2avPmzTJNUx6Px+04AIALoOwDQACrq6tTZGSk/H6/21EAYEJTU5OioqJUW1vrdhQAwEVQ9gEggMXExKi2tlZNTU0aGxtzOw4AaGxsTH6/X7W1tYqJiXE7DgDgIij7ABDgTNNUX1+ftmzZ4nYUANCWLVt06tQpGYbhdhQAwCVQ9gEgwC1YsECLFy9moT4AAcGyLC1evFgLFixwOwoA4BIo+wAQBAzD0K5du9Td3e12FABhrLu7W7t37+Z2ewAQBCj7ABAEKioqlJCQwOw+AFfZtq2EhARVVFS4HQUAcBmUfQAIApGRkWpoaFBra6uGh4fdjgMgDA0PD6u1tVWNjY3yer1uxwEAXAZlHwCChM/n0/DwsNrb292OAiAMtbW1aXh4WD6fz+0oAIBJoOwDQJBITU1VaWmpLMuS4zhuxwEQRhzHkW3bKi0tVUpKittxAACTQNkHgCBiGIYOHz6s/fv3ux0FQBjZt2+fDh8+zMJ8ABBEKPsAEESKi4uVlpYmy7LcjgIgjNi2rfT0dC1ZssTtKACASaLsA0AQ8Xg8MgxDnZ2d6u/vdzsOgDDQ39+vjRs3yjAMeTwet+MAACaJsg8AQaa+vl4ej0fNzc1uRwEQBpqamhQREaH6+nq3owAApoCyDwBBJj4+XtXV1bJtW+Pj427HARDCxsfH5ff7VV1drbi4OLfjAACmgLIPAEHIMAydPHlS27dvdzsKgBC2bds2nTx5koX5ACAIUfYBIAjl5uZq0aJFLNQHYE7Ztq1FixZp0aJFbkcBAEwRZR8AgpRhGNq+fbuOHTvmdhQAIejYsWPavn07s/oAEKQo+wAQpKqrqxUbGyu/3+92FAAhyLZtxcXFqaqqyu0oAIBpoOwDQJCKiopSQ0ODmpubNTIy4nYcACFkZGRELS0tqq+vV1RUlNtxAADTQNkHgCBmGIYGBwfV2dnpdhQAIWTjxo0aHByUYRhuRwEATBNlHwCCWHp6uoqLi1moD8Cssm1bJSUlSk9PdzsKAGCaKPsAEORM01RXV5cOHDjgdhQAIeDAgQPq6upiVh8AghxlHwCC3NKlS5WSkiLbtt2OAiAEWJallJQULV261O0oAIAZoOwDQJCLiIiQz+dTe3u7BgcH3Y4DIIgNDg6qo6NDPp9PEREMEwEgmHEUB4AQ0NDQoPHxcbW2trodBUAQa2lp0fj4uBobG92OAgCYIco+AISAxMREVVZWyrIsOY7jdhwAQchxHNm2raqqKiUkJLgdBwAwQ5R9AAgRpmnq2LFj2rVrl9tRAAShnTt36tixYyzMBwAhgrIPACEiPz9f2dnZ3IYPwLTYtq0FCxYoPz/f7SgAgFlA2QeAEOHxeGSaprZs2aLe3l634wAIIidPntSWLVtkGIY8Ho/bcQAAs4CyDwAhpKamRlFRUfL7/W5HARBE/H6/oqKiVFtb63YUAMAsoewDQAiJiYlRXV2dmpqaNDY25nYcAEFgbGxMTU1NqqurU3R0tNtxAACzhLIPACHGMAydOnVKmzdvdjsKgCCwadMm9ff3yzRNt6MAAGYRZR8AQkx2drYKCgpYqA/ApNi2rcLCQmVlZbkdBQAwiyj7ABCCTNPUnj17dOTIEbejAAhgR44c0Z49e7jdHgCEIMo+AISg8vJyJSYmMrsP4JIsy1JiYqLKy8vdjgIAmGWUfQAIQV6vV42NjWpra9Pp06fdjgMgAJ0+fVptbW1qbGyU1+t1Ow4AYJZR9gEgRPl8Po2MjKitrc3tKAACUFtbm0ZGRuTz+dyOAgCYA5R9AAhRycnJKisrk23bchzH7TgAAojjOLIsS+Xl5UpOTnY7DgBgDlD2ASCEmaapI0eOaO/evW5HARBA9u7dq+7ubhbmA4AQRtkHgBBWVFSkjIwM2bbtdhQAAcSyLGVkZKioqMjtKACAOULZB4AQ5vF4ZBiGOjs7derUKbfjAAgAp06d0qZNm2QYhjwej9txAABzhLIPACGurq5OERERampqcjsKgADQ1NSkiIgI1dfXux0FADCHKPsAEOLi4uJUU1Mjv9+v8fFxt+MAcNH4+Lj8fr9qamoUGxvrdhwAwByi7ANAGDBNU729vdq6davbUQC4aOvWrert7dUVV1zhdhQAwByj7ANAGFi4cKHy8vJYqA8Ic5ZlKS8vTzk5OW5HAQDMMco+AIQJwzC0Y8cOHT161O0oAFxw9OhR7dy5U6Zpuh0FADAPKPsAECaqqqoUFxfH7D4QpmzbVnx8vCorK92OAgCYB5R9AAgTkZGRamhoUEtLi0ZGRtyOA2AejYyMqKWlRQ0NDYqMjHQ7DgBgHnC0B2bZmOOoe3BMhwZGdWhgVKdGxzU27sgb4VFiZIRy4iOVEx+prDivvNzfGPPMMAy99dZb6ujoUENDg9txAMyTjo4ODQ0NyefzuR0FYYrxETD/KPvALDk5PKaWniE19wxpaMyR9P6pM2ff6CxCUstvL5eO9XrUkBmr+sxYpUR75zsuwlRaWpqWLl0q27Yp+0CYcBxHlmVp6dKlSktLczsOwgzjI8A9lH1ghobGxvVqV79aj56WR5Jz1nMfvKP5+Dmvc/TO4UG9fXhQdRkxWpWboBgvV9Zg7hmGoccee0xdXV3Kzc11Ow6AOXbgwAEdPHhQ999/v9tREEYYHwHuo+wDM7Crd1jP7+nTwOj7H2HOZbb/oDPbtx09rR0nh7W+IElFydGzmhH4oJKSEqWmpsq2bco+EAYsy1JqaqqKi4vdjoIwwfgICAx8TQZMk797UI/v6NXAqDPlD7EPciT1jzp6fEev/N2DsxEPuKiIiAj5fD51dHRoYGDA7TgA5tDAwIA6OjpkGIYiIhj2Ye4xPgICB0d9YBr83YPasL9f0tS/rb6YM++zYX8/H2iYcw0NDXIcRy0tLW5HATCHzvyMs0YH5gPjIyCwcBo/MEW7eocnPsgu5PiBvfrWzZNb7fgz//GcinzLznt8w/5+pcd4OWUNcyYhIUFVVVWybVtXX321PKx8DIQcx3Fk27aqqqoUHx/vdhyEuMuNjySp+RdPadvbr+rg1o3q6zmswb4TioqNU1ZBiaqu/5CuvvfTiolPvOjrGR8BU0PZB6ZgaGxcz+/pO2+hmbNFxyWo8ZaPXPQ9juzcqv0bmxWTkKjcyroLbuOR9PM9ffrdyjQWpcGcMQxDbW1t2rFjh0pKStyOA2CW7dixQ8ePH9cdd9zhdhSEuMmMjyTp3ae+r72tlrKKSrWovEbxKWk6dbRbe9tt7d/YLPu5R/WZ//tTJWflXPD1jI+AqaHsA1Pwalf/Za9BS0jL0N1f+5eLPv/9L9wrSapde7ui4xIuuM2Za9Re6erXTYuTZpAYuLi8vDzl5OTItm3KPhCCLMtSTk4OC3Fizk1mfCRJH/rS15W5eIniU869BWT/iWN6+L9/XLtb3tXP/+FB3ffX/37B1zM+AqaGr8SASTpxekytR0/P6Bq0k0cOatvbr0qSjA9/9JLbOpJaj57WyeGxGewRuDiPxyPDMLR161adOHHC7TgAZtGJEye0detWmabJZTqYU1MZHy2u8Z1X9CUpITVdaz//l5Kkbe+8dsn3YHwETB5lH5ik1qNDmulwqemnj8kZH9eC4nItrrn8df0eSS09QzPcK3BxNTU1io6Olt/vdzsKgFnk9/sVExOj6upqt6MgxM3G+EiSIrzvn3AcGXX56/EZHwGTQ9kHJmHMcdTcMzTjlWX9P/uxJMm47dKz+mc4kpp7hjTmzNaatsC5oqOjVVdXp+bmZo2OjrodB8AsGB0dVVNTk+rr6xUdzUJmmDuzNT463X9KL3/vW5KkipU3XnZ7xkfA5HDNPjAJ3YNjGhqb2QfKTv+bOrpvl7xR0WpYf/ekXzc05qh7cEw58fy4Ym6Ypqn33ntPmzZtUk1NjdtxAMxQZ2enBgYGZBiG21EQ4qY7Ptr69qtq/dXTcsYdnTp6RHvbbZ3uP6XSZat00x8+OKn3YHwEXB4/HcAkHBqY+Yyn/dyjkqSKleuUkJYx5f3zYYa5kpmZqaKiIlmWRdkHQoBt2yoqKlJmZqbbURDipjs+OrJzi5p+9vg5j9XddKfW//evKzYpeUr7Z3wEXByn8QOTcGhgdEY/LEOn+tTx0vOSJOO2+6f02gjNzpcNwKUYhqF9+/bp0KFDbkcBMAOHDh3Svn37ZJqm21EQBqY7Plr+0d/TXzd16xvvHtCXn3tPH/rvX9fWN1/W/7lruXb535rUezA+Ai6Psg9MwqnRcY3P4PVtL/xEI0MDSlmwSEuvXjWl145L6h+dyd6ByysrK1NSUpJs23Y7CoAZsCxLSUlJKisrczsKwsBMx0feqChl5Bdpxcd+X5/49o811HtCj//Pz2lkaPCyr2V8BFweZR+YhLHxmV2vf+YU/sZb7lVExNR/7EZnuH/gcrxerxobG9XW1qahIVY4BoLR0NCQ2tvb5fP5pvVZA0zVTMdHZ1tc41P2kjKdPNSl/Z0tk3oN4yPg0vgkACbBGzH9m8oc3rlF+zr879/T/Nb7pvUekTPYPzBZPp9Po6OjamtrczsKgGlobW3V2NiYGhsb3Y6CMDGT8dGFRMXFS5L6j/dManvGR8ClUfaBSUiMjJj2D4v97COSpCXGcqXnFU759RGSEiL5UcXcS0pKUkVFhSzLksPtjICg4jiObNtWeXm5kpKS3I6DMDGT8dEH9R8/qkNbN0qSMhcXX3Z7xkfA5fETAkxCTnzktK5JGxsZUcsvnpIkGR/+6LT2Pf7b/QPzwTAM9fT0aM+ePW5HATAFu3fvVk9PDwvzYV5NZXx0eOcWNf/iKY2cPv9Sse49O/Ton/03jQ6fVn6NoZyllZd9P8ZHwOXxEwJMwnQ/TDb/+kWdOtat2KQUVa1aP+/7B6aqsLBQmZmZsixLhYWFbscBMEm2bSszM1MFBQVuR0EYmcr4pP9Yj574H7+vZ7/5x1pUVqPkBYs0NjKsE4e6dGBzm5zxcWUXler+//0fc7J/IBzxEwJMQlacV7Fej4bGpnZq85mF+epvvENRMbHT2nes16OsOO+0XgtMlcfjkWEYevHFF9XX18fpwEAQ6Ovr06ZNm3TjjTfK4+EaZsyfqYyPsovLtPYP/j/tbn5H3bu368CWdo2Njio+JVXFV1yr6lXr5bv1PkVGx0xq34yPgMuj7AOT4PV41JAZq3cOD2oqdf+Bf3pkRvv1SGrIjJWXwRvmUV1dnV5++WU1NTVp5cqVbscBcBl+v1+RkZGqq6tzOwrCzFTGR4lpmbr+v31pVvbL+AiYHK7ZByapPjN2SkV/Nji/3S8wn2JjY1VbWyu/36+xsTG34wC4hLGxMTU1Nam2tlYxMZObEQVmE+MjIHBR9oFJSon2qi4jRvP1HbJHUl1GjFKiOUUN888wDPX19Wnr1q1uRwFwCVu2bFFfXx8L88E1jI+AwEXZB6ZgVW6CEiI9c/6B5pGUEOnRqtyEOd4TcGE5OTnKz8+XZVluRwFwCbZta/HixVqwYIHbURDGGB8BgYmyD0xBjDdC6wuS5vx0NUfS+oIkxXj5EYV7TNPUrl271NPT43YUABfQ3d2tXbt2yTAMt6MgzDE+AgITPynAFBUlR2tN3tx+o1w0dFBFydFzug/gcioqKhQfHy/btt2OAuACbNtWQkKCKioq3I4CaG/z2xppe31O97E2L4HxETAFlH1gGnxZcROFf7ZOWTvzPkWDB7T5xWf0xhtvzNI7A9MTGRmpxsZGtbS0aHh42O04AM4yPDys1tZWNTQ0KDKSmyvBXa+//rpee+01rSzKmrPx0dq8BDVmxc3SuwLhgU8HYJp8WXFKj/Hq53v61D/qzOjUtTPXoK0vSFJRcqZeHzmuV199VZJ07bXXzkpeYDp8Pp9+85vfqKOjQ42NjW7HAfBb7e3tGh4els/nczsKwtyZon/99ddPjFnmZnzEjD4wVZR9YAaKkqP16co0vdrVr9ajp+WRpvShdmb72owYrcpNmLgG7cy9zSn8cFtqaqpKS0tlWZYaGhrk4Z7GgOscx5Ft2yotLVVqaqrbcRDGLlT0pbkbHwGYGso+MEOx3gjdtDhJy3Li1dIzpOaeIQ2Nvf+RFiFp/Kxtz/59rNejhsxY1WfGXvD2MRR+BArTNPXII4+oq6tLeXl5bscBwt7+/ft16NAh3XDDDW5HQRi7WNE/Y67GRwAmj7IPzJKUaK9WLkrQ8oXx6h4c06GBUR0aGFX/6LhGxx1FRniUEBmhnPhI5cRHKivOK+9lZkkp/AgExcXFSktLk2VZlH0gANi2rbS0NBUXF7sdBWHqckX/bHMxPgIwOZR9YJZ5PZ6JD6zZQOGH2zwejwzD0CuvvKJ169YpPj7e7UhA2Orv79fGjRu1atUqLquBK6ZS9M822+MjAJfHBTBAEFi5cqWuu+46vfrqq6zSD1fU19dLkpqbm90NAoS55uZmeTyeiZ9JYD5Nt+gDcAdfrQFBghl+uCk+Pl7V1dWybVtXX321IiL4rhiYb+Pj4/L7/aquruYMG8w7ij4QfBitAUGEGX64yTRNnThxQjt27HA7ChCWtm/frhMnTsgwDLejIMxQ9IHgxMw+EGSY4YdbFi1apIULF8qyLC1dutTtOEDYsW1bixYtUm5urttREEYo+kDwYmYfCELM8MMNHo9Hpmlq27ZtOn78uNtxgLBy/Phxbdu2jVl9zCuKPhDcKPtAkKLwww3V1dWKjY2VbdtuRwHCim3bio2NVXV1tdtRECYo+kDwo+wDQYzCj/kWFRWl+vp6NTc3a3R01O04QFgYGRlRc3Oz6uvrFRUV5XYchAGKPhAaKPtAkKPwY74ZhqHBwUFt3LjR7ShAWOjs7NTg4CCn8GNeUPSB0MECfUAIYNE+zKeMjAwtWbJEtm2rrq7O7ThAyLMsS8XFxcrIyHA7CkIcRR8ILczsAyGCGX7MJ9M0tX//fh08eNDtKEBIO3DggLq6upjVx5yj6AOhh7IPhBAKP+ZLaWmpkpOTZVmW21GAkGbbtpKTk1VaWup2FIQwij4Qmij7QIih8GM+REREyOfzqb29XUNDQ27HAULS4OCg2tvb5fP5FBHBkA1zg6IPhC4+OYAQROHHfGhsbNT4+LhaWlrcjgKEpNbWVo2Pj6uxsdHtKAhRFH0gtLFAHxCiWLQPcy0xMVEVFRWybVtXXnmlPB6P25GAkOE4jizLUmVlpRITE92OgxBE0QdCHzP7QAhjhh9zzTRNHT16VLt27XI7ChBSdu3apWPHjsk0TbejIARR9IHwwMw+EOKY4cdcWrx4sbKzs2XbtpYsWeJ2HCBkWJal7Oxs5efnux0FIYaiD4QPZvaBMMAMP+aKx+ORYRjavHmzent73Y4DhITe3l5t2bJFpmlyeQxmFUUfCC+UfSBMUPgxV2praxUVFSW/3+92FCAk+P1+RUVFqaamxu0oCCEUfSD8cBo/EEY4pR9zISYmRrW1tWpqatK1114rr9frdiQgaI2NjampqUl1dXWKiYlxOw5CBEUfCE/M7ANhhhl+zAXTNHXq1Clt3rzZ7ShAUNu8ebNOnTolwzDcjoIQQdEHwhcz+0AYYoYfsy07O1sFBQWybVtVVVVuxwGClmVZKigoUHZ2tttREAIo+kB4Y2YfCFPM8GO2GYah3bt3q7u72+0oQFA6cuSI9uzZw+32MCso+gAo+0AYo/BjNlVUVCghIUGWZbkdBQhKtm0rMTFR5eXlbkdBkKPoA5Ao+0DYo/Bjtni9XjU2Nqq1tVXDw8NuxwGCyunTp9Xa2qrGxkYWucSMUPQBnEHZB0Dhx6zx+XwaGRlRW1ub21GAoNLe3q6RkRH5fD63oyCIUfQBnI0F+gBIYtE+zI6UlBSVlZXJtm35fD55PB63IwEBz3EcWZalsrIyJScnux0HQYqiD+CDmNkHMIEZfswGwzB0+PBh7du3z+0oQFDYt2+fjhw5wsJ8mDaKPoALYWYfwDmY4cdMLVmyROnp6bJtW4sXL3Y7DhDwLMtSRkaGioqK3I6CIETRB3AxzOwDOA8z/JgJj8cjwzC0ceNG9ff3ux0HCGinTp1SZ2enDMPgshdMGUUfwKVQ9gFcEIUfM1FfX6+IiAg1NTW5HQUIaM3NzYqIiFBdXZ3bURBkKPoALofT+AFcFKf0Y7ri4uJUXV0tv9+va665RhERfLcMfND4+Lhs21ZNTY3i4uLcjoMgQtEHMBmMvgBcEjP8mC7TNHXy5Elt27bN7ShAQNq6dat6e3tZmA9TQtEHMFnM7AO4LGb4MR2LFi1Sbm7uxC3FAJzLtm3l5uZq4cKFbkdBkKDoA5gKZvYBTAoz/JgOwzC0Y8cOHTt2zO0oQEA5evSoduzYwaw+Jo2iD2CqKPsAJo3Cj6mqqqpSXFycbNt2OwoQUGzbVlxcnKqqqtyOgiBA0QcwHZR9AFNC4cdUREVFqb6+Xs3NzRoZGXE7DhAQRkZG1NLSooaGBkVGckUlLo2iD2C6KPsApozCj6kwDENDQ0PauHGj21GAgNDR0aGhoSH5fD63oyDAUfQBzARfJwOYFhbtw2Slp6erpKRElmWpvr7e7TiA62zbVklJidLT092OggBG0QcwU8zsA5g2ZvgxWYZh6MCBA+rq6nI7CuCqrq4uHThwgIX5cEkUfQCzgZl9ADPCDD8mY+nSpUpJSZm41RgQrmzbVkpKikpKStyOggBF0QcwW5jZBzBjzPDjciIiIuTz+dTR0aHBwUG34wCuGBgYUEdHhwzDUEQEQzCcj6IPYDbxSQNgVlD4cTmNjY1yHEctLS1uRwFc0dLSIsdx1NDQ4HYUBCCKPoDZxmn8AGYNp/TjUhISElRZWSnbtnXVVVfJ4/G4HQmYN47jyLZtVVVVKSEhwe04CDAUfQBzgZl9ALOKGX5cimmaOnbsmHbu3Ol2FGBe7dixQ8ePH5dhGG5HQYCh6AOYK8zsA5h1zPDjYvLy8rRgwQJZlqXi4mK34wDzxrZt5eTkKC8vz+0oCCAUfQBziZl9AHOCGX5ciMfjkWma2rp1q06ePOl2HGBenDhxQlu3bpVhGFy+ggkUfQBzjbIPYM5Q+HEhNTU1io6Olt/vdzsKMC/8fr+io6NVU1PjdhQECIo+gPnAafwA5hSn9OODoqOjVVdXp6amJq1cuVJer9ftSMCcGR0dVXNzs+rq6hQdHe12HAQAij6A+cLMPoA5xww/PsgwDPX392vTpk1uRwHm1KZNm9Tf3y/TNN2OggBA0Qcwn5jZBzAvmOHH2bKyslRYWCjLslRdXe12HGDO2LatoqIiZWZmuh0FLqPoA5hvzOwDmDfM8ONspmlq7969Onz4sNtRgDlx+PBh7d27l9vtgaIPwBWUfQDzisKPM8rKypSYmCjbtt2OAswJy7KUlJSksrIyt6PARRR9AG6h7AOYdxR+SJLX65XP51NbW5tOnz7tdhxgVp0+fVptbW1qbGxkEcowRtEH4CbKPgBXUPghSY2NjRoZGVFbW5vbUYBZ1draqtHRUfl8PrejwCUUfQBuY4E+AK5h0T4kJyervLxclmXJMAx5PB63IwEz5jiObNtWRUWFkpKS3I4DF1D0AQQCZvYBuIoZfpimqe7ubu3du9ftKMCs2LNnj7q7u1mYL0xR9AEECmb2AbiOGf7wVlhYqIyMDFmWpYKCArfjADNm27YyMzNVWFjodhTMM4o+gEBC2QcQECj84cvj8cg0Tb344ovq6+vjtGcEtb6+Pm3atElr167lspQwQ9EHEGg4jR9AwOCU/vBVV1cnr9erpqYmt6MAM9LU1CSv16u6ujq3o2AeUfQBBCJm9gEEFGb4w1NsbKxqamrk9/u1YsUKRUTwXTSCz9jYmPx+v2pqahQbG+t2HMwTij6AQMVoCkDAYYY/PJmmqb6+Pm3ZssXtKMC0bN26VX19fTJN0+0omCcUfQCBjJl9AAGJGf7wk5OTo7y8vIlblgHBxrIs5efnKycnx+0omAcUfQCBjpl9AAGLGf7wY5qmdu7cqZ6eHrejAFPS09OjXbt2cbu9MEHRBxAMKPsAAhqFP7xUVlYqPj5etm27HQWYEtu2FR8fr8rKSrejYI5R9AEEC8o+gIBH4Q8fkZGRamhoUEtLi4aHh92OA0zK8PCwWlpa1NDQoMhIrpAMZRR9AMGEsg8gKFD4w4fP59Pp06fV0dHhdhRgUjo6OnT69GlO4Q9xFH0AwYavnwEEDRbtCw9paWlaunSpLMtSQ0ODPB6P25GAi3IcR5ZlqbS0VKmpqW7HwRyh6AMIRszsAwgqzPCHB9M0dejQIXV1dbkdBbikrq4uHTp0iNvthTCKPoBgxcw+gKDDDH/oKykpUWpqqmzbVl5enttxgIuyLEtpaWkqLi52OwrmAEUfQDBjZh9AUGKGP7R5PB4ZhqGOjg4NDAy4HQe4oIGBAW3cuFGGYXC5SQii6AMIdpR9AEGLwh/aGhoaJEnNzc0uJwEu7My/zfr6eneDYNZR9AGEAk7jBxDUOKU/dMXHx6u6ulq2bWvZsmXMnCKgjI+Py7ZtVVdXKz4+3u04mEUUfQChgpl9AEGPGf7QZRiGTpw4oe3bt7sdBTjHjh07dOLECRbmCzEUfQChhJl9ACGBGf7QlJubq4ULF8q2bS1dutTtOMAEy7K0cOFCLVq0yO0omCUUfQChhpl9ACGDGf7Qc2ahvq1bt+rEiRNuxwEkScePH9e2bdtkmiaXl4QIij6AUETZBxBSKPyhp6amRjExMbJt2+0ogCTJ7/crNjZW1dXVbkfBLKDoAwhVlH0AIYfCH1qioqJUX1+v5uZmjY6Ouh0HYW50dFTNzc2qr69XVFSU23EwQxR9AKGMsg8gJFH4Q4thGBoYGFBnZ6fbURDmOjs7NTAwIMMw3I6CGaLoAwh1LNAHIGSxaF/oyMzM1JIlS2Tbtmpra92OgzBmWZaWLFmijIwMt6NgBij6AMIBM/sAQhoz/KHDMAzt27dPhw4dcjsKwtTBgwe1f/9+brcX5Cj6AMIFZR9AyKPwh4aysjIlJSXJsiy3oyBM2bat5ORklZaWuh0F00TRBxBOKPsAwgKFP/hFRETI5/Opvb1dQ0NDbsdBmBkaGlJ7e7t8Pp8iIhg+BSOKPoBww6cVgLBB4Q9+jY2NGhsbU2trq9tREGZaW1s1NjamxsZGt6NgGij6AMIRC/QBCCss2hfckpKSVFFRIdu2dcUVV8jj8bgdCWHAcRxZlqWKigolJia6HQdTRNEHEK6Y2QcQdpjhD26GYainp0e7d+92OwrCxK5du3T06FEW5gtCFH0A4YyZfQBhiRn+4FVQUKCsrCxZlqWioiK34yAM2LatrKwsLV682O0omAKKPoBwx8w+gLDFDH9w8ng8MgxDmzdvVm9vr9txEOJ6e3u1efNmmabJZSNBhKIPAJR9AGGOwh+c6urqFBkZqaamJrejIMT5/X5FRUWptrbW7SiYJIo+ALyP0/gBhD1O6Q8+MTExqq2tld/v14oVK+T1et2OhBA0NjampqYm1dbWKiYmxu04mASKPgD8F2b2AUDM8Acj0zR16tQpbdmyxe0oCFGbN2/WqVOnZBiG21EwCRR9ADgXM/sA8FvM8AeXBQsWaPHixbIsS5WVlW7HQQiybVuLFy/WggUL3I6Cy6DoA8D5mNkHgLMwwx9cDMPQ7t271d3d7XYUhJju7m7t3r2b2+0FAYo+AFwYZR8APoDCHzwqKiqUkJAg27bdjoIQY1mWEhISVFFR4XYUXAJFHwAujrIPABdA4Q8OkZGRamhoUGtrq4aHh92OgxAxPDys1tZWNTY2svhjAKPoA8ClUfYB4CIo/MHBMAwNDw+rvb3d7SgIEW1tbRoZGZHP53M7Ci6Cog8Al8cCfQBwCSzaF/hSUlJUWloqy7LU2Ngoj8fjdiQEMcdxZNu2ysrKlJKS4nYcXABFHwAmh5l9ALgMZvgDn2maOnz4sPbv3+92FAS5ffv26fDhw9xuL0BR9AFg8pjZB4BJYIY/sC1ZskTp6emyLEv5+flux0EQs21b6enpWrJkidtR8AEUfQCYGmb2AWCSmOEPXB6PR4ZhqLOzU/39/W7HQZDq7+/Xxo0bZRgGl4MEGIo+AEwdZR8ApoDCH7jq6+vl8XjU3NzsdhQEqaamJkVERKi+vt7tKDgLRR8ApofT+MPImOOoe3BMhwZGdWhgVKdGxzU27sgb4VFiZIRy4iOVEx+prDivvMxoABfFKf2BKS4uTtXV1bJtW8uWLVNEBN9nY/LGx8fl9/tVXV2tuLg4t+Pgtyj6wNQw3sfZKPth4OTwmFp6htTcM6ShMUfS+6d0jJ+1TYSklqPv/zrW61FDZqzqM2OVEs39hYELofAHJtM01dLSou3bt6u0tNTtOAgi27Zt08mTJ2WapttR8FsUfWDyGO/jQij7IWxobFyvdvWr9ehpeSQ5Zz03/oFtx895naN3Dg/q7cODqsuI0arcBMV4mSEDPojCH3gWLVqkRYsWybIsyj6mxLZt5ebmatGiRW5HgSj6wGQx3selUPZD1K7eYT2/p08Do+//yDuX2f6DzmzfdvS0dpwc1vqCJBUlR89qRiAUUPgDj2maeu6553Ts2DGlp6e7HQdB4NixY9q+fbtuu+02t6NAFH1gshjv43L4+iYE+bsH9fiOXg2MOlP+of8gR1L/qKPHd/TK3z04G/GAkMOifYGlqqpKsbGx8vv9bkdBkLBtW3FxcaqqqnI7Stij6AOTw3gfk0HZDzH+7kFt2P/+badm+oN/xpn32bC/nwMAcBEU/sARFRWlhoYGNTc3a2RkxO04CHAjIyNqaWlRfX29oqKi3I4T1ij6wOQw3sdkcRp/CNnVOzzxg38pJw7u1+s/+La2v/u6ThzqkhxHSZkLVNh4lVZ87Pe1sLT6oq/dsL9f6TFeTvEBLoBT+gOHYRh6++231dnZqbq6OrfjIIBt3LhRg4ODMgzD7ShhjaIPTM6lxvtjIyPa1fS2tr71inb639TRvTs1PDSg+JQ05Vc16oo7P67yFWsvuw/G+6GDmf0QMTQ2ruf39OlyN9DY2+7XP96zQu888f80PDigpVddp7JrVksej5qff0L/8rE1at/w3EVf75H08z19Oj32wSU/AEjM8AeK9PR0FRcXy7Ist6MgwNm2rZKSEtZ3cBFFH5icy433dzW9pf/8/Tv16x99R71HDqig/kpVXb9eCWmZ2vTGC/rBFz+qn3zjj+U4lz4fgPF+6GBmP0S82tU/qWt2fvKNP9bp/lO64o6P69Y/+9/y/vaUxfHxcb30b3+jV//vP+iZb/yxyq9dp6iY2PNef+aanle6+nXT4qTZ/4MAIYAZ/sBgmqZ+/OMf68CBA6ywjgs6cOCAurq6dO+997odJWxR9IHJu9x43+OJUPUNN2vZfZ9RUePV5zzX9sJP9Pj/+H2998wPVVB/hRpv/shF98N4P3Qwsx8CTpweU+vR05ct+v0njunQto2SpDV/8BcTRV+SIiIitPqzf6qo2DgN9Z1U966tF30fR1Lr0dM6OTw2C+mB0MQMv/uWLl2qlJQU2bbtdhQEKMuylJKSoqVLl7odJSxR9IHJm8x4v/iKFfro337/vKIvSbXrblfjLe9/sdn0/BOX3R/j/dBA2Q8BrUeHLnv6viRFRk/+upv41IxLPu+R1NIzNOn3A8IRhd9dERER8vl8am9v1+Agiw3hXIODg+ro6JDP51NEBMOh+UbRB6ZmsuP9S1lUViNJOnm4a1LbM94Pfny6Bbkxx1Fzz9CkVuKMiU9UYcNVkqQN3/lrjZ21SvX4+Lhe+t63NDI0qNJrblBqTu4l38uR1NwzpLHLXPMDhDsKv7saGho0Pj6ulpYWt6MgwLS0tGh8fFyNjY1uRwk7FH1gaqYy3r+Unr07JUlJmQsmtT3j/eDHNftBrntwTENjk/8BvON//h899If36b1nfqjNv9mgvMp6eSIidGBLh3qPHFTD+nt065/970m919CYo+7BMeXE888IuBSu4XdPYmKiKisrZdu2rrrqKnk8M50XQShwHEe2bauqqkoJCQluxwkrFH1g6qY63r+Qvp7DavrZjyVJ1TfcPOnXMd4PbszsB7lDA6NT2j6rsES//9AvtPSq69R75KA6X/ulNr7ycx3v2qOM/CIt8S1TbOLkF+KY6v6BcMUMv3tM09SxY8e0c+dOt6MgQOzcuVPHjh3jdnvzjKIPTM9Mx9tjo6N6/H98TkOnepVTUqkr7nxgXvcP9/AVTZA7NDCqCEmTvTHG7pZ39ciXP6kIr1cf+avvqdhcrsioaO1ueU8//4f/qae//kfa0/qe7vzKP132vSLEDz8wFczwuyM/P1/Z2dmybVvFxcVux0EAsCxLCxYsUH5+vttRwgZFH5i+qY73P+jZv/qydrz3huJT03X/3/4/RUZNfh0vxvvBjZn9IHdqdHzSP/iDfSf18B9/Qv3He/TRv3tI9TfeoaSMbMUlp6ri2rX61L88rqjYeNnPPaod1m8u+37jkvpHuf8mMBXM8M8/j8cj0zS1ZcsWnTx50u04cNnJkye1detWGYbBZR3zhKIPzMxUxvsf9LO//f9kP/uI4pJT9d/+9UllFUztS2/G+8GNsh/kxsYnf/3O5l9vUP/xHqXlFmhxje+859PzCpVf/f5CRdvffX1S7zk6hf0DeB+Ff/7V1NQoKipKfr/f7Shwmd/vV1RUlGpra92OEhYo+sDMTWW8f7af/8ODeuux/1BsUoo+9a9PalH59I57jPeDF6fxBzlvxORnJU4e2i9Jl7wmPzYpWZI02HtiUu8ZOYX9A/gvnNI/v2JiYlRXV6empiatXLlSXq/X7UhwwdjYmJqamlRXV6foKdyOFtND0Qdmx1TG+2f88h+/pt88/F3FJibrU//6pPIq66e9f8b7wYuZ/SCXGBkx6f+JydkLJUndu7drqK/3vOfHRkZ0YFObJClt0eLLvl+EpIRI/gkB08UM//wyDEP9/f3atGmT21Hgkk2bNqm/v1+mabodJeRR9IHZM5XxviT96p+/rjd++C/vF/3vPqX8qoZp75vxfnDj/1yQy4mPnPQ1PKXX3KDouHiNDA3qmW98SacHTk08NzoyrOf//n/oxKH98kZGqWb1LZd9v/Hf7h/A9FH45092drYKCgpk27bbUeASy7JUWFiorKwst6OENIo+MLumMt5/8Tt/pdcf+vb7p+7PsOhLjPeDHf/ngtxUfvgS0zL14f/v7/TU1/5Q7Rt+qp32W8qrqpc3Mkr7O1vUe+SgPBERuuVP/0rpeYWzvn8AF8Yp/fPHNE099dRTOnLkiLKzs92Og3l0+PBh7d27V3fffbfbUUIaRR+YfZMdb3e+/iu9+p//R5KUkV+kd574T71zge0SUjP0oS99bdb3j8DD/7kglxXnVazXo6GxyS2c0bD+buUsrdCbj3xPu5rf0Y73fi3HcZSUuUD1N92lZff97sQifZfjHR9VRP8JKT5zBn8CABKFf76Ul5crMTFRlmVp/fr1bsfBPLJtW4mJiSorK3M7Ssii6AOzr6enR822X0qrkqJjL7nt4MnjE7/u6mxRV2fLBbdLXZg/6bIf6/UoK451boIVZT/IeT0eNWTG6p3Dg5rsOpkLS6t119e+PbMdO47G92zUd5//jZYsWSLDMFRWVqaICK4MAaaLwj/3vF6vGhsb9c4772j16tWKiYlxOxLmwenTp9XW1qarr76axRnnCEUfmD3j4+PasmWLLMvSrl27FB8fr5xleTocHXvJ8b7v1vvku/W+WcvhkdSQGSsvtykNWpT9EFCfGau3Dw/O7049Hn36xhXqKsmSbdt64oknlJSUJJ/Pp8bGRiUlXXzFfwAXR+Gfez6fT7/+9a/V1tbGQm1hoq2tTSMjI2psnNyZa5gaij4wO/r6+tTU1CS/36++vj7l5+fr9ttvV2VlpfrHPfruxuOXf5NZ5Oj9noHgRdkPASnRXtVlxKjt6OlJz+7PhEdSbUaMMuKjlVFbq9raWh06dEiWZenNN9/UG2+8oYqKChmGoYKCAnn4NhCYEgr/3EpOTlZ5ebls25ZhGByjQpzjOLIsS+Xl5UpOTnY7Tsih6AMz4ziO9uzZI8uytHnzZnm9XtXU1Mg0TeXk5ExslyK5Mt5PieZsqGBG2Q8Rq3ITtOPksPpHnTk9AHgkJUR6tCo34ZzHc3JydMstt2jNmjVqbW2Vbdv6wQ9+oKysLBmGobq6Ok6XBaaAwj+3DMPQj370I+3du1cFBQVux8Ec2rt3r7q7u3XTTTe5HSXkUPSB6Tt9+vTEmLm7u1uZmZlau3at6urqFBt74dl0t8f7CD6U/RAR443Q+oIkPb6jd07340haX5CkGO+Fr82PjY3VlVdeqSuuuEK7d++Wbdv61a9+pZdeekm1tbUyTVMLFiyY04xAqKDwz52ioiJlZGTItm3KfoizLEsZGRkqLCx0O0pIoegD03P48GFZlqW2tjaNjo6qoqJCN910kwoLCy97plmgjPcRPCj7IaQoOVpr8hK0YX//nO1jbV6CipKjL7udx+NRUVGRioqK1NvbO3H9kd/v1+LFi2UYhiorK1koCbgMCv/c8Hg8MgxDGzZs0Lp165SYmOh2JMyBU6dOadOmTVq7di2Xa8wiij4wNaOjo9q0aZNs29bevXuVlJSkZcuWqbGxccqXFwXSeB+Bj7IfYnxZcZKkDfv75ZFm5RSfM++zNi9Bjb99/6lITk7WddddpxUrVkysLPrMM8/ohRdeUENDgwzDUEpKyiwkBUIThX9u1NfX6+WXX1ZTUxN/pyGqqalJXq9XdXV1bkcJGRR9YPJOnjwp27bV3Nys/v5+FRUV6e6771ZZWdmMJrwCcbyPwETZD0G+rDilx3j18z19M76m58w1O+sLkmb8DZ/X61VlZaUqKyvV3d0t27YnFvUrLS2VYRgqLi5m9gW4AAr/7IuNjVVNTY38fr+WL1/OrUNDzPj4uPx+v2pqai56/SumhqIPXJ7jONqxY4ds29bWrVsVHR2turo6GYahrKysWdtPoI73EVgo+yGqKDlan65M06td/Wo9enrK3/qd2b42I0archNm/ZqdrKws3XTTTbrhhhvU3t4uy7L0yCOPKD09XYZhqL6+XnFxfKsInI3CP/tM01Rzc7O2bt2q8vJyt+NgFm3dulW9vb3cXnGWUPSBSxscHFRzc7Ns29bx48e1YMECrV+/XjU1NYqOnpsCHejjfbiPsh/CYr0RumlxkpblxKulZ0jNPUMaGnv/EBAhafysbc/+fazXo4bMWNVnxs757Taio6Pl8/nU2Nio/fv3y7Isvfzyy3rllVdUXV0t0zS1aNGiOc0ABBMK/+xauHCh8vLyZNs2ZT/EWJalvLy8c25dhemh6AMX19XVJdu21dHRIcdxVFlZqdtvv115eXnzcrZqMIz34R7KfhhIifZq5aIELV8Yr+7BMR0aGNWhgVH1j45rdNxRZIRHCZERyomPVE58pLLivPLO86n0Ho9H+fn5ys/P17p16ya+GW1padGiRYtkmqaqqqoUFRU1r7mAQEThn12GYejZZ5/V0aNHlZGR4XYczIKjR49q586duv32292OEvQo+sD5RkZG1NHRIdu2deDAAaWkpGjlypVqaGhQQoI7t6sLhvE+5h9lP4x4PZ6JH/BAlpCQoOXLl2vZsmXavn27LMvSc889d86Cfunp6W7HBFxF4Z89VVVVeuGFF2TbttatW+d2HMwC27YVHx+vyspKt6MENYo+cK5jx47Jsiy1tLRoaGhIJSUluu+++1RSUhIw674Ey3gf84N/BQhYERERKi0tVWlpqY4dOya/36/m5ma9/fbbKi4ulmmaWrp0acAcXIH5RuGfHZGRkWpoaFBTU5NWrVrFGURBbmRkRC0tLfL5fIqMZJgzXRR94H3j4+Patm2bLMvSjh07FBcXp8bGRvl8PiafEPD4FERQSE9P15o1a3Tdddeps7NTlmXpxz/+sVJSUuTz+dTQ0MB9shGWKPyzwzAMvfXWW+ro6FBDQ4PbcTADHR0dGhoaks/ncztK0KLoA9KpU6fU3Nwsv9+vkydPKjc3Vx/+8IdVWVnJl8IIGpR9BJWoqCjV1dWprq5OBw4ckG3beuONN/Taa6+psrJSpmkqPz+f2/chrFD4Zy4tLU1Lly6VbduU/SDmOI4sy9LSpUuVlpbmdpygRNFHOHMcR/v27ZNlWers7FRERIRqampkGAYLRiMoUfYRtBYtWqRbb71Va9asUWtrqyzL0ve//31lZ2fLNE3V1NQoJibG7ZjAvKDwz5xhGHrsscfU1dWl3Nxct+NgGrq6unTw4EHdf//9bkcJShR9hKvTp09P3Ar6yJEjE2eU1tXVcStoBDXKPoJeXFycrrrqKl155ZXatWuXLMvSL37xC23YsEF1dXUyDEPZ2dluxwTmHIV/ZkpKSpSamirLsij7Qcq2baWmpqq4uNjtKEGHoo9wdOTIEdm2rdbWVo2MjKisrEzr1q1TUVERZ4kiJFD2ETI8Ho+WLFmiJUuW6OTJk2pqapLf75dlWSooKJBpmiovL5fXy71EEboo/NMXEREhn8+n1157TWvXrlV8fLzbkTAFAwMD6ujo0PXXX8/CrVNE0Uc4GRsb0+bNm2VZlvbs2aOEhARdddVVamxsVEpKitvxgFlF2UdISklJmRi0bNq0SbZt66mnnlJiYuLECqrJycluxwTmBIV/+hoaGvTaa6+ppaVFy5YtczsOpqC5uVmSWHNhiij6CBe9vb3y+/1qamrSqVOnVFBQoLvuuouJIIQ0yj5CmtfrVXV1taqrq3XkyBFZlqV33nlHv/71r1VWVibTNDlVCyGJwj89CQkJqqqqkm3buvrqqzk2BAnHcWTbtqqqqjgjYwoo+gh1juNMXOK5ZcuWiYWeucQT4YKyj7CRnZ2t9evXa/Xq1Wpra5Nt2/rRj36kjIwMGYah+vp6xcbGuh0TmDUU/ukxDENtbW3asWOHSkpK3I6DSdi+fbtOnDihO++80+0oQYOij1A2ODio1tZW2bato0ePKjs7Wx/60IdYvBlhh7KPsBMTEyPTNGUYhvbu3SvbtrVhwwa9/PLLqqmpkWmaWrhwodsxgVlB4Z+6vLw85eTkyLIsyn6QsG1bOTk5LKw4SRR9hKqDBw/Ksiy1t7drfHxclZWVuvXWW7ktM8IWZR9hy+PxqKCgQAUFBVq3bt3Egn7Nzc3Ky8uTYRiqqqpSZCQ/JghuFP6p8Xg8MgxDzz//vE6cOKHU1FS3I+ESTpw4oa1bt+qWW25hMD8JFH2EmtHRUW3cuFGWZamrq0vJyclasWKFGhsblZiY6HY8wFW0GEBSYmKirr32Wi1fvlxbt26Vbdt69tln9cILL6ihoUGGYSgtLc3tmMC0UfinpqamRhs2bJDf79cNN9zgdhxcgm3biomJUXV1tdtRAh5FH6Hk+PHjsm1bzc3NGhwcVHFxsT7ykY+otLSUO3IAv0XZB84SERGh8vJylZeX6+jRo7JtW01NTXrrrbe0dOlSGYahkpISPkQQlCj8kxcdHa26ujo1NTVp5cqVnOEToEZHR9Xc3Kz6+npFR0e7HSegUfQRCsbHx7V9+3ZZlqXt27crNjZW9fX1MgxDGRkZbscDAg6jF+AiMjIytG7dOq1atUodHR2yLEuPPfaYUlNT5fP51NDQoISEBLdjAlNC4Z880zT13nvvadOmTaqpqXE7Di6gs7NTAwMDMgzD7SgBjaKPYNff36/m5mb5/X6dOHFCCxcu1K233qrq6mpFRUW5HQ8IWJR94DKioqLU0NCghoYGdXV1ybZtvfbaa3rttddUVVUlwzCUl5fHtaIIGhT+ycnMzFRRUZEsy6LsByjbtrVkyRJlZma6HSVgUfQRrBzH0f79+2XbtjZu3CiPx6Pq6moZhsFinMAkUfaBKcjNzVVubq7WrFmjlpYW2battrY25eTkyDAM1dTUcCopggKFf3JM09QTTzyhQ4cOKScnx+04OMuhQ4e0b98+3XPPPW5HCVgUfQSj4eFhtbe3y7ZtHTp0SGlpaVq1apXq6+sVHx/vdjwgqFD2gWmIj4/XsmXLdPXVV2vHjh2yLEvPP/+8NmzYoLq6OpmmyUwTAh6F//LKysqUlJQk27Z18803ux0HZ7EsS0lJSSorK3M7SkCi6CPY9PT0yLIstba2anh4WKWlpbrhhhtUXFzM2ZPANFH2gRnweDwqKSlRSUmJTpw4Ib/fr6amJr333nsqKiqSYRgqLy9nQT8ELAr/pUVERMjn8+nNN9/U6tWrFRsb63YkSBoaGlJ7e7uuueYajq8XQNFHsBgbG9OWLVtk27Z27dql+Ph4maYpn8/HbU+BWUDZB2ZJamqqbrjhBq1cuVKbNm2SZVl68sknlZSUJJ/Pp8bGRiUlJbkdEzgPhf/SGhsb9cYbb6itrU1XXHGF23EgqbW1VWNjY2psbHQ7SsCh6CMY9PX1TUyQ9PX1afHixbrjjjtUUVHB3U+AWcRPEzDLIiMjVVNTo5qaGh06dEi2bevNN9/UG2+8ofLycpmmqYKCAk5JQ0Ch8F9cUlKSysvLZVmWTNPkZ9dljuPItm1VVFTwBeoHUPQRyBzH0e7du2XbtjZt2qTIyEjV1tbKMAzWRAHmCGUfmEM5OTm6+eabtXr1arW1tcmyLP3gBz9QZmamTNNUbW0tpwUjYFD4L840Tf3gBz/Qnj17VFhY6HacsLZ792719PRo/fr1bkcJKBR9BKqhoSG1trbKtm319PQoMzNTN954I2MgYB5Q9oF5EBsbqyuuuEKmaWrPnj2yLEsvvPCCXnrpJb7VRkCh8F9YQUGBMjMzZVkWZd9ltm0rKytLBQUFbkcJGBR9BKJDhw7Jsiy1t7drbGxM5eXlWr9+PWc3AvOIsg/MI4/Ho8LCQhUWFqqvr09NTU3y+/3y+/3Kz8+XaZpcrwbXUfjP5/F4ZJqmXnjhBfX19XH6uEv6+vq0adMm3XjjjZSF36LoI5CMjo5OrFu0b98+JSUl6ZprrmHdIsAlNArAJUlJSVq5cqWWL1+urVu3yrIsPfPMM4qPj1djYyMr0cJVFP7z1dbW6qWXXlJTU9PE3w/ml9/vV2RkpOrq6tyOEhAo+ggUZ9+RaGBgQEVFRbrnnntUWloqr9frdjwgbFH2AZd5vV5VVFSooqJCPT09sm1blmXpzTff1NKlS2WaJveYhSso/OeKjY1VbW2t/H6/li9fzgB2no2NjampqUm1tbWKiYlxO47rKPpwm+M42rFjhyzL0tatWxUTE6P6+noZhqHMzEy34wEQZR8IKGcWrVm1apU6OjpkWZYeeeQRpaWlyTAM1dfXKz4+3u2YCCMU/nMZhiG/36+tW7eqoqLC7ThhZcuWLerr65Npmm5HcR1FH24aGBhQS0uLbNvW8ePHlZOTo1tuuUXV1dWKjo52Ox6As1D2gQAUHR2txsZGNTQ0qKurS5Zl6ZVXXtErr7yi6upqmaap3Nxct2MiTFD4/0tOTo7y8/NlWRZlf57Ztq3FixdrwYIFbkdxFUUfbnAcRwcOHJBlWero6JAkVVVV6Y477lBubi5nHwIBirIPBDCPx6O8vDzl5eVp7dq1E9+kt7a2auHChTJNU9XV1YqKinI7KkIchf+/mKapZ555ZuIWUph73d3d2rVrl+644w63o7iKoo/5NjIyMnGm4cGDB5Wamqrrr79e9fX1SkhIcDsegMug7ANBIiEhQddcc42uvvpqbd++XbZt66c//alefPHFiWvkMjIy3I6JEEbhf19FRYXi4+Nl27ZuvPFGt+OEBdu2lZCQENZnU1D0MZ+OHj0q27bV0tKioaEhLV26VPfff7+Ki4sVERHhdjwAk0TZB4JMRESESktLVVpaquPHj8u2bTU3N+udd97RkiVLZJqmSktL+TDGnKDwS5GRkWpsbJRlWVq1ahXXqM6x4eFhtba2yjTNsL0tKUUf82F8fHzi7kA7d+5UXFycfD6ffD6f0tLS3I4HYBrC81MTCBFpaWlas2aNrr/+em3cuFG2bevxxx9XcnKyfD6fGhsblZiY6HZMhBgKv+Tz+fSb3/xG7e3t8vl8bscJae3t7RoeHg7bv2eKPubaqVOn1NTUJL/fr97eXuXl5en2229XZWVl2H7BBoQKfoKBEHDmvtN1dXU6ePCgLMvSr3/9a73++uuqrKyUYRhavHgxC+hg1oR74U9NTVVpaals21ZjYyM/W3PEcRxZlqXS0lKlpqa6HWfeUfQxVxzH0d69e2VZljZt2iSv16uamhoZhqGFCxe6HQ/ALKHsAyFm4cKFuvXWW89Z0O+hhx5Sdna2DMPgHtWYNeFe+E3T1COPPKL9+/crPz/f7Tghaf/+/Tp8+LBWr17tdpR5R9HHXDh9+rTa2tpkWZa6u7uVkZGhNWvWqL6+XrGxsW7HAzDLKPtAiIqNjdVVV12lK6+8Urt27ZJt2/rlL3+pl156SbW1tTJNU9nZ2W7HRJAL58JfXFystLQ02bZN2Z8jlmUpLS1NxcXFbkeZVxR9zLYjR47Isiy1tbVpZGRE5eXluvHGG1VUVMSZSUAIo+wDIc7j8WjJkiVasmSJent75ff71dTUJNu2VVBQIMMwVFFRIa/X63ZUBKlwLfwej0eGYeiVV17R2rVruQ3VLOvv71dnZ6dWrVoVVmWEoo/ZMjY2pk2bNsmyLO3du1eJiYm66qqr5PP5lJyc7HY8APOAsg+EkeTk5IkB5ObNm2Xbtp5++mklJCSosbFRPp9PKSkpbsdEEArXwl9fX69XXnlFzc3NWr58udtxQkpzc7M8Ho/q6+vdjjJvKPqYDSdPnpz4Yr+/v1+FhYW66667VF5ezhf7QJih7ANhyOv1qqqqSlVVVTpy5Ihs29a7776r3/zmNyorK5NhGFqyZElYzaZh5sKx8MfHx6u6ulp+v1/Lli3jlpezZHx8XLZtq7q6WvHx8W7HmRcUfcyE4zjauXOnbNvWli1bFBUVpbq6OpmmqaysLLfjAXAJZR8Ic9nZ2frQhz6kG264Qe3t7bIsSw8//LDS09NlGIbq6+sVFxfndkwEiXAs/KZpqrW1Vdu3b1dpaanbcULC9u3bdfLkSRmG4XaUeUHRx3QNDg5OLMZ77Nixic/02tpaRUdHux0PgMso+wAkSTExMTIMQz6fT/v27ZNlWXrppZf0yiuvqLq6WqZpatGiRW7HRBAIt8K/aNEiLVy4ULZtU/ZniWVZWrRokXJzc92OMuco+piOAwcOyLIsdXR0aHx8XFVVVbrtttuUn5/PWXkAJlD2AZzD4/Fo8eLFWrx4sdatW6fm5mbZtq2Wlhbl5ubKMAxVVVUpKirK7agIYOFU+D0ej0zT1E9/+lMdP35caWlpbkcKaseOHdP27dt12223uR1lzlH0MRUjIyPauHGjbNtWV1eXUlJSdO2116qhoUGJiYluxwMQgCj7AC4qMTFRK1as0DXXXKNt27bJsiw999xzevHFF9XQ0CCfz6f09HS3YyJAhVPhr66u1osvvijbtrVmzRq34wQ1v9+v2NhYVVVVuR1lTlH0MVnHjh2b+NJ9cHBQJSUluvfee7V06VLWCQFwSZR9AJcVERGhsrIylZWVTQw6mpqa9NZbb6mkpESmaaqkpIRBB84TLoU/KipK9fX1am5u1vXXX6/ISD5ep2NkZETNzc1qaGgI6bOHKPq4nPHxcW3btk22bWv79u2KjY1VQ0ODDMPgS3YAk8ZoBMCUpKena+3atbr++uu1ceNGWZalxx57TCkpKTIMQw0NDdxvHOcIl8JvGIbeeecdbdy4UXV1dW7HCUqdnZ0aHBwM6YX5KPq4lP7+fjU1Ncnv9+vkyZNatGiRbrvtNi6fAzAtlH0A03JmJrO+vl5dXV2ybXtiEFtZWSnTNJWXl8dCQZAUHoU/IyNDxcXFsm2bsj9NlmWpuLg4ZGcuKfq4EMdxtG/fPtm2rY0bNyoiIkLV1dUyDCMsFqkEMHco+wBmLDc3V7m5uVq7du3ELYDa29u1YMECmaapmpoabgGEsCj8hmHo8ccf18GDB7Vw4UK34wSVAwcOqKurS/fee6/bUeYERR8fNDw8PHHL28OHDys9PV2rV6/mlrcAZg1lH8CsiYuL09VXX62rrrpKO3fulGVZ+vnPf64NGzaorq5OhmEoKyvL7ZhwUagX/tLSUiUnJ8uyLN16661uxwkqtm0rJSVFS5cudTvKrKPo42zd3d2ybVutra0aHh5WaWmp1qxZoyVLlnA2HIBZRdkHMOs8Ho+Ki4tVXFyskydPyu/3q6mpSe+9954KCwtlmqbKysrk9XrdjgoXhHLhj4iIkM/n069//WutXbtWsbGxbkcKCoODg2pvb9e1114bcgt9UvQhSWNjY9qyZYssy9Lu3buVkJCgK664Qj6fTykpKW7HAxCiKPsA5lRKSopWrVqllStXatOmTbIsS08++aQSExPl8/nU2Nio5ORkt2NinoVy4W9sbNTrr7+ulpYWXXXVVW7HCQqtra0aHx9XQ0OD21FmFUUfvb29EwvunTp1SosXL9add96piooKvvAGMOco+wDmhdfrVXV1taqrq3X48GHZtq23335bb7zxhsrLy2WapgoLCzmFMYyEauFPTExUZWWlbNvWlVdeyb/py3AcR5ZlqbKyUomJiW7HmTUU/fDlOI52794ty7K0efNmRUVFqba2VoZhaMGCBW7HAxBGKPsA5t2CBQu0fv16rV69Wm1tbbIsSz/84Q+VmZkpwzBUV1fH6c9hIlQLv2EYeuihh7Rr1y4tWbLE7TgBbdeuXTp27Jhuu+02t6PMGop+eBoaGlJra6ts21ZPT4+ysrJ00003qba2VjExMW7HAxCGKPsAXBMTEyPTNGUYhvbu3SvLsvTiiy/q5ZdfVk1NjUzTVE5OjtsxMcdCsfAvXrxY2dnZsm2bsn8ZlmUpOztb+fn5bkeZFRT98HPo0CFZlqX29naNjY2poqJCN998sxYvXsyZPQBcRdkH4DqPx6OCggIVFBSor69v4vrGpqYm5eXlyTRNVVZWKjKSQ1aoCrXC7/F4ZBiGfvnLX6q3t5d1KS6it7dXW7Zs0Yc+9KGQKEUU/fAxOjqqzs5OWZal/fv3Kzk5WcuXL1djY2NIXY4CILgxcgYQUJKSkrRy5UqtWLFCW7ZskW3b+slPfqIXXnhBDQ0N8vl8SktLczsm5kCoFf7a2lq99NJL8vv9uv76692OE5D8fr+ioqJUU1PjdpQZo+iHh+PHj8vv96u5uVkDAwNasmSJPvKRj6i0tDTk7iQBIPhR9gEEpIiICFVUVKiiokI9PT2ybVu2bevNN99UaWmpDMNQSUlJSMwG4r+EUuGPiYlRbW2tmpqadO2117Ly9geMjY2pqalJdXV1QX89M0U/tI2Pj2vHjh2yLEvbtm1TbGys6uvrZRiGMjIy3I4HABdF2QcQ8DIzM3XjjTdq1apV6ujokGVZevTRR5WamirDMNTQ0KD4+Hi3Y2KWhFLhN01Ttm1r8+bNqqqqcjtOQNm8ebNOnTolwzDcjjIjFP3QNTAwoObmZtm2rRMnTignJ0e33HKLampqFBUV5XY8ALgsyj6AoBEdHa3GxkY1NDSoq6tLtm3r1Vdf1auvvqrq6moZhqHc3Fxm+0NAqBT+7OxsFRQUyLZtyv4HWJalgoICZWdnux1l2ij6ocdxHHV1dcmyLG3cuFGSVF1drTvvvJPPFwBBh7IPIOh4PB7l5eUpLy9Pa9eunZh5aW1t1cKFC2UYBjMvISBUCr9hGHr66ad15MiRoC62s+nIkSPas2eP7rrrLrejTBtFP7SMjIyovb1dlmXp0KFDSk1N1fXXX8+ZYwCCGmUfQFCLj4/XNddco2XLlmn79u2ybVs/+9nPtGHDBtXV1ck0Ta6pDGKhUPgrKiqUkJAg27b1oQ99yO04AcGyLCUmJqq8vNztKNNC0Q8dZ9aEaWlp0enTp1VaWqpVq1axJgyAkEDZBxASPB6Pli5dqqVLl56zWvK7776rJUuWyDAMlZWVsVpyEAr2wu/1etXY2Kh3331XN9xwQ9AvRjdTp0+fVltbm6666qqgXLSQoh/8xsfHJ+72snPnTsXHx8swDBmGodTUVLfjAcCsoewDCDlpaWlavXq1rrvuuon7ID/xxBNKSkqSz+dTY2OjkpKS3I6JKQj2wu/z+fSb3/xG7e3tQb8g3Uy1tbVpZGREPp/P7ShTRtEPbn19fWpqapLf71dfX5/y8/N1++23q7KyUpGRDIkBhB6ObABCVmRkpGpra1VbW6uDBw9O3LrvjTfeUEVFhQzDUEFBAadqBolgLvwpKSkqKyuTZVny+Xxh+2/OcRzZtq2ysjIlJye7HWdKKPrByXEc7dmzR7Zta9OmTfJ6vaqpqZFpmsrJyXE7HgDMKco+gLCwcOFC3XLLLVqzZo1aW1tlWZZ+8IMfKCsrS4ZhhMS9vsNBMBd+wzD08MMPa9++fVq8eLHbcVyxd+9eHTlyROvWrXM7ypRQ9IPP6dOn1draKtu21d3drczMTK1du1Z1dXWKjY11Ox4AzAvKPoCwEhsbqyuvvFJXXHGFdu/eLcuy9Ktf/Uovv/yyamtrZRiGFixY4HZMXEKwFv4lS5YoPT1dlmWFbdm3bVsZGRkqKipyO8qkUfSDy+HDh2VZltra2jQ6OqqKigrddNNNKiwsDNszagCEL8o+gLDk8XhUVFSkoqIi9fb2TlzHadu2Fi9eLNM0VVFREZQLiIWDYCz8Ho9HhmHopZde0rp165SYmOh2pHl16tQpdXZ2as2aNUFTuij6wWFsbEydnZ2ybVt79+5VYmKili1bpsbGxqC7XAQAZhNlH0DYS05O1nXXXacVK1Zoy5YtsixLTz/9tBISEtTY2Cifz6eUlBS3Y+IDgrHw19fX65VXXlFzc7NWrFjhdpx51dTUpIiICNXV1bkdZVIo+oHv5MmTsm1bzc3N6u/vV2Fhoe6++26VlZXxRS0AiLIPABO8Xq8qKytVWVmp7u5u2bat9957T7/5zW9UWloq0zS1ZMmSoJmVDAfBVvjj4uJUXV0t27Z1zTXXhM2tIMfHx+X3+1VTU6O4uDi341wWRT9wOY6jHTt2yLZtbd26VdHR0aqrq5NhGMrKynI7HgAEFMo+AFxAVlaWbrrpJt1www1qb2+XZVl6+OGHlZ6eLsMwVF9fHxSlJRwEW+G/4oor1NLSom3btqmsrMztOPNi69at6u3tlWmabke5LIp+YBocHFRLS4ts29axY8e0YMECrV+/XjU1NYqOjnY7HgAEJMo+AFxCdHS0fD6fGhsbtX//flmWpZdfflmvvPKKqqurZZqmFi1a5HbMsBdMhX/hwoXKzc2VZVlhU/Zt21ZeXp4WLlzodpRLougHngMHDsiyLHV0dMhxHFVWVurDH/6w8vLyOMsKAC6Dsg8Ak+DxeJSfn6/8/HytW7dOzc3Nsm1bLS0tWrRokUzTVFVVlaKiotyOGraCqfCbpqlnn31Wx44dU3p6uttx5tTRo0e1Y8cOffjDH3Y7yiVR9APHyMiINm7cKMuydODAAaWkpGjlypVqaGhQQkKC2/EAIGhQ9gFgihISErR8+XItW7ZM27dvl2VZeu655/TCCy+ooaFBhmGEfIELVMFS+KuqqvTCCy/Itm2tXbvW7ThzyrZtxcXFqaqqyu0oF0XRDwzHjh2bWHBvaGhIJSUluu+++1RSUhI261sAwGyi7APANEVERKi0tFSlpaU6duyY/H6/mpub9fbbb6u4uFimaWrp0qUMUudZMBT+yMhINTQ0qKmpSddff33InhEyMjKilpYWNTY2KjIyMIccFH13jY+Pa9u2bbIsSzt27FBcXNzEXVD40hQAZiYwP3kBIMikp6drzZo1uu6669TZ2SnLsvTjH/9YKSkpE9f8c/rp/AmGwu/z+fTWW29p48aNqq+vdzvOnOjo6NDQ0JAMw3A7ygVR9N1z6tQpNTc3y+/36+TJk8rNzdWHP/xhVVZWhuyXXwAw3yj7ADCLoqKiVFdXp7q6uomFpd544w299tprqqyslGmays/PZ2GpeRDohT89PV0lJSWyLCtky75t21q6dKnS0tLcjnIeiv78cxxH+/btk2VZ6uzsVEREhGpqamQYBgudAsAcoOwDwBxZtGiRbrvtNq1du3billHf//73lZ2dLdM0VVNTo5iYGLdjhrRAL/ymaeqxxx5TV1eXcnNz3Y4zq7q6unTgwAHdd999bkc5D0V/fp0+fXriFqZHjhyZOBOqrq6OW5gCwByi7APAHIuLi9PVV1+tq666Sjt37pRt2/rFL36hDRs2qK6uToZhKDs72+2YISuQC39JSYlSUlJk23bIlX3btpWamqqSkhK3o5yDoj9/jhw5Itu21draqpGREZWVlWndunUqKiri7CYAmAeUfQCYJx6PR8XFxSouLtbJkyfl9/vV1NQky7JUWFgowzBUXl4ur9frdtSQE6iFPyIiQoZh6PXXX9fatWtDZpZzYGBAHR0dWrlyZUAtUEnRn3tjY2PavHmzLMvSnj17lJCQoKuuukqNjY1KSUlxOx4AhBXKPgC4ICUlRatWrdLKlSu1adMm2batp556SomJiRMrUScnJ7sdM6QEauFvaGjQa6+9ppaWFl199dVux5kVLS0tchxHDQ0NbkeZQNGfW729vRNfYJ46dUoFBQW68847VVFRwReYAOASyj4AuMjr9aq6ulrV1dU6cuSILMvSO++8o1//+tcqLy+XYRic8jqLArHwJyQkqLKyUrZt66qrrgr6/9eO48i2bVVVVQXMHSgo+nPDcRzt2rVLlmVpy5YtioqKUm1trUzT5NIkAAgAlH0ACBDZ2dlav369Vq9erba2NlmWpR/96EfKyMiQYRiqr69XbGys2zGDXiAWftM01d7erp07d6q4uNjtODOyY8cOHT9+XLfffrvbUSRR9OfC0NDQxKKjR48eVXZ2tm666SbV1tay6CgABBDKPgAEmJiYGJmmKcMwtHfvXtm2rQ0bNujll19WTU2NTNPUwoUL3Y4Z1AKt8Ofl5WnBggWyLCvoy75t28rJyVFeXp7bUSj6s+zgwYOyLEvt7e0aHx9XZWWlbrnlFi1evDjoz0gBgFBE2QeAAOXxeFRQUKCCggKtW7dOTU1N8vv9am5uVl5engzDUFVVlSIjOZRPRyAVfo/HI9M09fOf/1wnT54M2oXMTpw4oa1bt2r9+vWulz+K/uwYHR3Vxo0bZdu29u/fr+TkZK1YsUKNjY1KTEx0Ox4A4BIYIQJAEEhMTNS1116r5cuXa+vWrbIsS88++6xeeOEFNTQ0yDAMpaWluR0z6ARS4a+pqdGGDRvk9/u1atUq13LMhN/vV3R0tGpqalzNQdGfuePHj8u2bTU3N2twcFDFxcX6yEc+otLS0oC6wwIA4OIo+wAQRCIiIlReXq7y8nIdPXpUtm2rqalJb731lpYuXSrDMFRSUsJgfAoCpfBHR0errq5OTU1Nuvbaa4PujI3R0VE1NTWprq5O0dHRruWg6E/f+Pi4tm/fLtu2tW3bNsXGxqq+vl6GYSgjI8PteACAKQqukQQAYEJGRobWrVunVatWqaOjQ5Zl6bHHHlNqaqp8Pp8aGhoCZjX0QBcohd8wDL333nvatGmT67PjU7Vp0yYNDAzINE3XMlD0p6e/v1/Nzc3y+/06ceKEFi5cqFtvvVXV1dWKiopyOx4AYJoo+wAQ5KKiotTQ0KD6+nodOHBAlmXptdde02uvvaaqqiqZpqnc3FzXr6EOdIFQ+LOyslRYWCjbtoOu7FuWpaKiImVmZrqyf4r+1DiOo/3798u2bW3cuFHS+5eSGIah3Nxcl9MBAGYDZR8AQoTH41Fubq5yc3O1du3aiVtjtbW1KScnR6Zpqrq62tVTrANdIBR+0zT15JNP6vDhw1qwYMG87386Dh06pH379unuu+92Zf8U/ckbHh5We3u7bNvWoUOHlJaWplWrVqm+vl7x8fFuxwMAzCLKPgCEoPj4eC1btkxXX321duzYIcuy9LOf/UwvvvjixDW4bs3ABjq3C39ZWZkSExNlWZZuvvnmed33dNm2raSkJJWVlc37vin6k9PT0yPLstTa2qrTp0+rtLRUN9xwg4qLiznrBwBCFGUfAEKYx+NRSUmJSkpKdOLECfn9fjU1Nendd99VUVGRTNNUWVkZC/p9gJuF3+v1yufz6a233tKaNWsUExMzb/uejqGhIbW1tWnZsmXyer3zum+K/qWNj49r8+bNsm1bu3btUnx8vEzTlM/nU2pqqtvxAABzjLIPAGEiNTVVN9xwg1auXKlNmzbJsiw98cQTSkpKks/nU2Njo5KSktyOGTDcLPyNjY1644031NraqiuuuGLe9jsdbW1tGh0dlc/nm9f9UvQvrq+vT01NTfL7/err61N+fr7uuOMOVVRUBN1dHgAA08cRHwDCTGRkpGpqalRTU6NDhw7Jtm29+eabeuONN1ReXi7TNFVQUMCpvXKv8CcnJ6u8vFy2bcs0zYD9f+E4jizLUkVFxbx+UUTRP5/jONqzZ48sy9LmzZvl9XpVW1srwzCUk5PjdjwAgAso+wAQxnJycnTzzTdr9erVamtrk2VZ+sEPfqDMzEyZpqna2lrFxsa6HdNVbhV+0zT1wx/+UHv27FFhYeG87HOq9uzZo56eHn3oQx+at31S9M915jIKy7LU09OjzMxMrVu3jp9dAABlHwAgxcbG6oorrpBpmtq9e7ds29avfvUrvfTSS6qtrZVpmkGzMvxccKPwFxYWKjMzU7ZtB2zZtyxLmZmZ85aPov9fzpyV09bWprGxMZWXl2v9+vWclQMAmEDZBwBM8Hg8KioqUlFRkfr6+iYW9PP7/crPz5dpmmF73e98F36PxyPDMPTiiy+qr68v4NZT6Ovr0+bNm7Vu3bp5KZcUfWl0dHRivY19+/YpKSlJ11xzDettAAAuKPxGawCASUlKStJ1112nFStWaOvWrbIsS88884wSEhLU0NAQlit6z3fhr6ur08svv6ympqaJfQeKpqamievC51q4F/2z76QxMDCgoqIi3XPPPSotLZ33OyAAAIIHZR8AcEler1cVFRWqqKiYuFe3ZVl68803VVpaKsMwwupe3fNZ+GNjY1VTUyO/368VK1YEzC0Sx8bG5Pf75+W68HAt+o7jaMeOHbIsS9u2bVN0dLTq6+tlGIYyMzPdjgcACAKUfQDApGVmZuqmm27SDTfcoPb2dtm2rUceeURpaWkyDEP19fWKj493O+acm8/Cb5qmmpqatGXLFlVUVMzZfqZi69at6uvrk2EYc7qfcCz6AwMDamlpkW3bOn78+MQimtXV1YqOjnY7HgAgiFD2AQBTFh0dLZ/Pp8bGRu3fv1+2beuVV17RK6+8ourqapmmqdzcXLdjzqn5Kvw5OTnKz8+XbdsBU/Yty1J+fv6c3tItnIq+4zg6cOCALMtSR0eHJKmqqkp33HGHcnNzw+asGQDA7KLsAwCmzePxKD8/X/n5+Vq7dq2am5vl9/vV2tqqRYsWyTAMVVdXKyoqyu2oc2K+Cr9hGPrJT34ycWs1N/X09GjXrl2644475mwf4VL0R0ZG1NHRIcuydPDgQaWmpur6669XfX29EhIS3I4HAAhylH0AwKxISEjQ8uXLtWzZMm3fvl22beunP/2pXnzxxYlrjTMyMtyOOevmo/BXVlbqhRdekG3buvHGG2f9/afCtm3Fx8fP2VkG4VD0jx49Ktu21dLSoqGhIS1dulT33XefSkpKAmZdBgBA8KPsAwBmVUREhEpLS1VaWqrjx4/Ltm01NzfrnXfeUXFxsQzDUGlp6f/P3n9Hx3Ul6KHvV1XIOeecQ6HiOcwUI0hRFKVWGKl7kn3HMw5jX3vmja/jGl9fv7U863o89njeW7bf+M60Wh0ldVS3Wi2SEiUqNKW9qwqFDBAgwIBEAETOqKr3B5toUWJAqMKp8P3+6SZQVecTicLZX+1z9g6rUhPowh8VFQWr1QopJY4fP67Zvdurq6toaWmBqqoB2X4xnIu+1+vd2NXi2rVriI+Ph81mg6IoSE9P1zoeERGFIZZ9IiIKmPT0dDQ3N+PYsWPo6OiAlBKvvfYaUlJSNu75T0pK0jqmXwS68CuKgo8//hjt7e2w2Wx+fe3Nam9vx8rKCux2u99fO1yL/vz8PJxOJxwOB2ZnZ1FUVISvfOUraGxsDMgHJkRERPfwLENERAEXFRUFs9kMs9mMkZERCCHw4Ycf4oMPPkBDQwMURUFJSUnIL0QWyMKflpaGmpoaCCFgtVp3/e/K5/NBCIGamhqkpaX59bXDrej7fD7cuHEDUkp0dnZCr9ejqakJqqoiPz9f63hERBQhWPaJiGhX5efn45lnnkFzczPcbjeklHjllVeQk5MDRVFgMpkQGxurdcxtC2ThVxQF3/nOdzA0NISioiK/ve5mDA0NYXR0FCdOnPDr64ZT0V9ZWUFrayuklLh9+zYyMzPR3NwMi8WCuLg4reMREVGEYdknIiJNxMfHY9++fdi7dy8GBgYghMDbb7+NixcvwmQyQVVV5OTkaB1zWwJV+KuqqpCWlgYp5a6XfSEE0tPTUVlZ6bfXDJeif/v2bQgh0NrairW1NdTV1eH06dMoLy8P+atViIgodLHsExGRpnQ6HSoqKlBRUYHZ2Vk4HA44nU5IKVFaWgpFUVBfXw+DwaB11C0JROHX6XRQFAWXLl3CqVOnkJCQsOPX3IzFxUV0dHTg+PHjfiuvoV70PR4Purq6IKXE9evXkZSUhH379sFutyMlJUXreERERCz7REQUPFJSUjbKX3d3N4QQ+MEPfoDExETYbDbY7XakpqZqHXPTAlH4rVYrLl26BJfLhYMHD+749TbD5XIBACwWi19eL5SL/szMzMYHUgsLCygrK8OLL76Iurq6kPtAioiIwhvLPhERBR2DwYDGxkY0Njbi9u3bkFLi008/xUcffYTa2lqoqhoyl0j7u/AnJCTAaDRCSokDBw4E/O/A6/VCSgmj0eiXKwlCsej7fD5cu3YNUkr09PQgOjoaZrMZiqKE7K0mREQU/lj2iYgoqOXk5OCpp57CiRMn0NbWBiEEvvnNbyIzMxOKosBsNiM+Pl7rmI/k78KvKArcbjf6+vpQXV2943yP0t/fj+npabz44os7fq1QK/pLS0toaWmBlBJ37tzZ+FlsamoK6UUkiYgoMrDsExFRSIiNjYWiKLDb7bh58yaEELhw4QLefffdkNjWzJ+Fv7CwEPn5+ZBSBrzsCyGQn5+PgoKCHb1OKBX94eFhCCHQ3t4Or9eLhoYGPPvssyguLg6Jq0mIiIgAln0iIgoxOp0OJSUlKCkpwenTp+FyuSClhMvlQmFhIVRVRWNjI6Kigu8U56/Cf2+hvp/+9KeYmppCenq63zJ+3tTUFK5evYpnnnlmRyU3FIr+2toaOjo6IKXE0NAQUlJS8MQTT8BqtSIpKUnreERERFsWfCMhIiKiTUpKSsLhw4dx8OBBXL16FUII/PjHP8Y777wDq9UKRVECVoS3y1+Fv6mpCefPn4fD4cDJkyf9lu/zpJSIi4uD0Wjc9msEe9G/c+cOHA4HXC4XlpaWUFlZia9+9auorq6GXq/XOh4REdG2sewTEVHI0+v1qK2tRW1tLSYnJzdWS//kk09QVVUFVVVRVVUVNOXNH4U/OjoaFosFLpcLR48e9fuVDOvr63C5XLBYLIiOjt7WawRr0fd6vejr64MQAn19fYiLi9v4cCgjI0PreERERH7Bsk9ERGElMzMTp06dwrFjx9DR0QEhBL773e8iNTUViqLAarUiMTFR65h+KfyKouDTTz9FZ2cnTCaTX/N1dHRgaWkJiqJs6/nBWPQXFhY2bvuYmZlBQUEBnn32WTQ2Nm77Aw0iIqJgxbJPRERh6d7Mt8ViwdDQEKSUGwW0oaEBqqqiqKhI0wXXdlr4s7KyUFFRASGE38u+lBIVFRXIzMzc8nODqej7fD7cunULQgh0dnZCp9PBaDRCURQUFhZqmo2IiCiQWPaJiCjsFRYWorCwEM3NzRtbqbW1tSE3NxeqqqKpqQkxMTGaZNtp4VcUBa+//jpGRkb8thvByMgIbt26hZdffnnLzw2Wor+6urqxVePY2BgyMjJw4sQJWCyWoN+qkYiIyB9Y9omIKGIkJCTgwIED2L9/P/r7+yGlxFtvvYULFy7AbDZDVVVkZWXteq6dFP7a2lokJydDSolz5875JY8QAikpKaipqdnS84Kh6I+Pj0NKCbfbjdXVVdTU1KC5uRkVFRXcNo+IiCIKyz4REUUcnU6HqqoqVFVVYWZmZmNBv88++wzl5eVQFAW1tbUwGAy7lmm7hV+v18Nut+Pjjz9Gc3Mz4uLidpRjeXkZbW1tOHz48JYWNNSy6Hs8HvT09EAIgcHBQSQmJmLPnj2w2+1ITU3d1SxERETBgmWfiIgiWmpqKo4fP44nnngCXV1dkFLijTfeQHJyMmw2G+x2O5KTk3cly3YLv81mw+XLl+F2u7F3794dZWhpaYHX64XNZtv0c7Qq+rOzs3A6nXA4HJifn0dJSQleeOEF1NfX7+oHNURERMGIZZ+IiAhAVFQUmpqa0NTUhLGxMQgh8Mknn+Dy5cuor6+HoigoKysL+KXg2yn8ycnJqK+vhxACe/bs2XZGn88HKSUaGhqQlJS0qefsdtH3+XwYHByEEALd3d2Ijo6GyWSCoijIzc0N+PGJiIhCBcs+ERHRF+Tm5uLpp59Gc3Mz3G43pJR49dVXkZWVBUVRYDabd3y5/KNsp/CrqopXXnkFg4ODKC8v39ZxBwYGMDk5uel7/3ez6C8vL2/8W0xMTCA7OxtnzpyByWRCbGxsQI9NREQUilj2iYiIHiI2NhZ79uyBqqq4fv06pJQ4f/483n33XTQ1NUFVVeTl5QXk2Fst/CUlJcjOzoYQYttlX0qJnJwclJSUPPaxu1X0R0dHIYRAW1sbPB4P6uvr8fTTT6OkpIQL7hERET0Cyz4REdFj6HQ6lJWVoaysDHNzcxv3iTudThQXF0NRFDQ0NCAqyr+n1a0Ufp1OB1VV8fbbb2N2dhYpKSlbOtbs7Cy6u7tx5syZx5boQBf99fV1dHZ2QgiBW7duITk5GQcPHoTNZtu19ROIiIhCHcs+ERHRFiQnJ+PIkSM4fPgwenp6IKXEj370I7zzzjuwWq1QFAVpaWl+O95WCr/JZMLFixfhdDpx9OjRLR3H4XBs3P/+KIEs+lNTU3A4HHC5XFhcXERFRQVeeukl1NbWbmlnACIiImLZJyIi2ha9Xo/6+nrU19djYmICUkpIKfHxxx+jpqYGiqKgqqrKL5eab7bwx8bGwmQyweFw4PDhw5tekd7j8cDpdD72/vdAFH2fz4e+vj5IKdHb24vY2FhYLBYoioKsrCy/HIOIiCgSsezvMo/Ph/ElD0YX1zG6uI75dS88Xh8Meh2SovTIS4hCXkIUsuMNMPBeRCKikJCVlYUnn3wSx48fR3t7O4QQ+M53voP09HTY7XZYrVYkJCTs6BibLfyKokBKiZ6eHtTW1993zpmcNyB63zm8N2VA5tr8xjln/FoP5ufnoarqQ4/v76K/uLgIl8sFKSWmp6eRl5eHc+fOwWg0IiYmZsevT0REu4s9J/jofD6fT+sQkWBm1YOWiWW4Jpax7Ln7V64H4P3cYz7/5ziDDtasOFiy4pAaw72CiYhCic/nw9DQEKSUaG9vBwAYjUYoioLCwsIdzfZvpnT/P9/6Hpayy+DJr/7COccHQAfABz10G+cc3foqEiav43eP73ngOcdfRT+Qfy9ERKQN9pzgxbIfYMseLy4NLcA9ufKr4dXm3Xu8OTMWxwsTEWvg/YpERKHmizPY+fn5UBQFTU1NiI6O3tZrPqx8//qcswyf1wfdlu5zv/tBwBfPOf4o+mtra2hra4OUEiMjI0hLS4OiKH654oGIiLTBnhP8WPYDaGB2FT+7PofFdd+Wfvi/SAcgMUqHs6XJKE/hpY1ERKHI6/Wiv78fQghcvXoVcXFxMJvNUFUVmZmZW369L5bwQJxzbrh+uaOiPzk5CSEE3G43lpeX/b6WARERaYM9JzSw7AeIY3wJF24tbPlTroe59zrNRYmwZ8f74RWJiEgrD1p1XlVV1NTUbGnV+XuFv+7U8xiIy/f7OWet9QMcKc/eUtH3er0buxRcu3YNCQkJsFqtsNvtSE9P90M6IiLSEntO6GDZD4B7b4BA4RuBiCg8fHE/+ZSUFNjtdthsNiQlJW3qNV77pA0D8fkBy7jZc87c3BycTiccDgfm5uZQVFQEVVXR0NCAqCiuB0xEFA7Yc0ILy76fDcyu4rX+2Uc+Znp0CB+88lfo/eQ9zIwNIzYxCYV1Jhz42h+g7vCpTR3n5coUXupCRBRGRkZGIKVEW1sbPB4P6uvroaoqSkpKHnrJ+2bOOQDQduEn+OXrf4uR3g541taQWVwOy5kXcOi3/iEMm1g34GHnHJ/Ph+vXr0NKia6uLhgMBjQ1NUFRFOTnB+4DCCIi2n2bOeeMD/bh6pVLGOpyY6irFeMDvfB6PGj+w3+F47//J5s6DnuO/7Ds+9Gyx4v/1Tn1yHtXbna48PV/8jKWZqaQnJWLYqMNi9N3cLPdCc/6Go7/wT9H8z/6l488zr17W/6gIZ2LWRARhZnl5WW43W4IITA5OYns7GyoqgqTyYTY2NhfP24T5xwA+Omf/1t88t2/hj4qCpXKIcQkJKJffITluRmUWfbi9/77G4iOe/gsyoPOOSsrK3C73ZBSYnx8HJmZmVBVFWazGXFxcX76myAiomCx1XPOF2227LPn+BfLvh+9fWMOrZMrD30DrK0s4y+e24eZ0SGYTn0FL/77v9oYYN3scOGV//2rWJy+g9/772+get/RRx5LB8CUGYszJcl+/W8gIqLg4PP5MDg4CCEEuru7ER0dDZPJBEVRkJub+9hzDgB0XPo5vvUnfwcxCYn4+//rJyisNwMAFqYm8f/8g+cx2teJw7/zh3jqj/+vR2a5d86xxS5CSonW1lasra2hrq4OqqqirKyMC+4REYWxzZxzAED86JsYH+xHQV0TCupMeP9v/xKut17f0sw+e47/8CY6P5le8cA9ufLIx3Rc+jlmRocQl5yKr/zb/3zfTEpxoxXH/+BP8LM//7d476//82PLvg+Ae3IFB/ISuD8lEVEY0ul0KC8vR3l5OWZnZzfuh5dSorCqFhMNJ3B3SPRw7//tXwIAjv7df7pR9AEgMT0Tz/7r/xv/v793Dr987W9w/Pf/BHHJKQ99HR8A98QyPrv4bSQZfNi/fz9sNhtSUh7+HCIiCg+b6Tn3qM/9zn1/1um3/kEwe47/sOz7iXty+bErUt7qcAEACuvNiE9O/dL3q/YeAQBcd3+GuYkxJGflPvKYOgAtE8s4UpC4zdRERBQKUlJScPToURw+fBg9PT149+YsfF7fIwdRM7dHNs475jMvfOn7ZdZ9SM0rxMzoELo/vgjLk88/JoUPxidfwFcai2AwcPBFRBQpNtNz/I09xz94I4QfeHw+uCaWH/sGWF28u3JlQuqDtx5KTMsAcPfSzaHu1sce1wfANbEMD+/EICKKCAaDAbX19fDkV0P3mC36hrvbAADxqenIKCx94GOK6i0AgJFfPfaRdHrcRBKwha0BiYgotG225/gbe45/8IztB+NLHix7Hv+DmJSRBQC4M3T9gd+/c+vXX58aurGpYy97fBhf8mzqsUREFPo2e86ZGr57TknLK3zoY1LzCgAAd4YffF76Ip5ziIgiy2bPOYHAc87Osez7weji+qYeV6keBgAMd7kx/ICZ+09/8MrG/19ZmPP78YmIKPRt9nf+ysI8ACAmPuGhj4mJv3t55Mo8zzlERPRlWv/O1/r4oY5l3w9GF9c39RdZuecwym374fP58Oof/w66PngHy3OzuHNrED//r/8nXD97HYaou/sdP+7yzHv04JuAiCiSbPacEwg85xARRRaec0IbF+jzg/l1L7ybfOxv/qe/wbf++d/F9ZbP8Oof//Z93zv4m/8Agy2fYqizBfEpD76v/4u88GFyfhEjI5uflSEiotA1OW+AFzo8biX+2MQkAMDq0uJDH7O6dHctmdikzW1vxHMOEVFk2ew5JxC8ABbWN9uy6EFY9v3A4938fSxJGdn4B3/zM/R9+gH6xYdYnJ5CUmY2Go6eQVGDBf/xlBEAkFdVv8lX1OH6zRv46zd+to3kREQUaqL3nYM+p+Sxj0vPv/uYmbHhhz5mZnT4vsc+Hs85RESRZLPnnEBZ30LPoi9j2fcDwxb3j9TpdKjedxTV+47e9/XJmwOYmxhDQloGCupNm3w1H0qLi3Hc9Pe3lIGIiELTe1MG3Fzx4XGzLAV1TQCAxek7uDN0/YEr8t/qarn7WJ5ziIjoATZ7zgmUqC32LLofy74fJEXpoQc2fSn/w3z4zf8OANjz3O8gKjpmU8/RQ4fMpHjk5yft8OhERBQKMtfmMbSy/NhzTmpuAYoarbjV4YL77R/g2O//v+77/qDrCmZGhxAVE4u6gyc3dWyec4iIIstmzzmBoAeQGMUl5naCf3t+kJcQtek3wNi1Hix/YdVjz/o6Lv3Nf8VnP/gGMovLcez3/3jTx/b+6vhERBQZtnLOOfp7fwQAeP+Vv8JQl3vj6wvTd/CTP/uXAID9L/89xCWnbOr1eM4hIoosWznn+BvPOTvHvz0/2MoP4Wc/eBWf/fBVFNabkJKdD8/aKm60ScxPjiOzuBx/7398f2MrpEAcn4iIQttWfuc3HnsKB772B/jku/8L/+PvnEHlnsOIiU9A32cfYnluBqWWPWj+R/8qYMcnIqLQttXf+UNd7o0PkwHgzq1BAHc7UPflCxtf/+2/eAUp2Xl+Pz7dj397fpAdb0CcQYdlz+MXkKg9dBLTIzcx1N2KoU43DDExyC6twuHf/kPsf/nvIToufkvHjjPokB1v2G50IiIKIR6PB+PXeqBbT4cvanO3e537P/4jSs17cOX1v8X1VgHv+joyispw9H/7pzj4W/9w07eNAUA0vMjY/MOJiCjEbaXnAMDKwjxutju+9PWZseH7Foz1rK0+9rXYc3ZO5/P5uMShH3wwvIArY0vYzb9MHYB9ufE4UrC1KwGIiCi0zM7OwuFwwOl0Yn5+Hhl7T2Ehtwq7umCSz4v1q07E3+qAzWaD3W5HSsrmLv8nIqLQxZ4Tujiz7yeWrDj8cmxpV4/p+9VxiYgo/Ph8PgwMDEBKie7ubkRHR8NkMkFVVcSmZeJ/dEztbiCdHr952IYulwdXrlzBhx9+iLq6OiiKgvLycuh0XDGZiCgcseeELs7s+9HbN+bQOrmyK5966QCYMmNxpiR5F45GRES7ZXl5GS0tLZBSYnJyEtnZ2VBVFSaTCbGxsRuP0/Kcs7KygtbWVgghMD4+jszMTCiKAovFgrg4Ds6IiMINe05oYtn3oxWPF/+rcwoL676AvhF0ABKjdPiDhnTEGrihAhFROBgZGYEQAm1tbfB6vWhoaICiKCgpKXngrHkwnHN8Ph9u3LgBIQS6urpgMBhgNBqhqiry8/MDmIqIiHZTMJxzaOtY9v1sYHYVr/XPBvw4L1emoDyFqyQREYWy9fV1dHR0QEqJW7duISUlBXa7HTabDUlJj9/LPpjOOfPz83A6nXA4HJidnUVRURFUVUVDQwOionjXIBFRqAumcw5tDst+ADjGl3Dh1kLAXv9UUSJs2VtbtZ+IiILH1NQUpJRwuVxYWlpCRUUFVFVFTU0N9PrNz2R88MEHuDw4gWjTkYBlLV8ewcv7mzb9eK/Xi97eXgghcO3aNSQkJMBqtcJutyM9PT1gOYmIKPDYc0ILy36A3Hsj6AC/XOpy73X4BiAiCk1erxd9fX2QUuLq1auIi4uDxWKBoijIzMzc8ut98MEHeP/993Hs2DEk1qsBOeeULw2j+8KPcOzYMTzxxBNbfp3JyUlIKdHS0oLl5WVUV1dDVVVUVlZu6UMNIiIKHuw5oYNlP4AGZlfx1vW5Hd/bcu/elbOlybykhYgoxCwsLMDlcsHhcGB6ehr5+flQVRVGoxHR0dHbes3PF/17JTxQ55wHHWur1tbW0N7eDiEERkZGkJaWBkVRYLVakZCQsIO0RESkBfac0MCyH2DLHi8uDS3APbmy5U+/7j3enBmL44WJXKSCiChE+Hw+DA0NQQiBjo4OANhYuK6goGBH29Q9qnxvnHMmlgH4AN0Wzhs+L6DTP/Cc44/CD9z9exkeHoYQAu3t7QCAxsZGqKqKwsJCbt9HRBRC2HOCH8v+LplZ9aBlYhmuiWUse+7+lesBeD/3mM//Oc6ggzUrDpasOKTGGHY5LRERbcfq6urGDPbo6CjS09M3tqTzxwz2Zkr32NgY/uc3vg3jky/gJpK+cM7x4d4QSw/dxjknGl4s9Trxm4dtqCjI2faxt2JxcXFji8GpqSnk5eVtXPEQE8PZHSKiUMGeE7xY9neZx+fD+JIHo4vrGF1cx8K6F+teH6L0OiRG6ZGXEIW8hChkxxtg4AwHEVFImJiY2Lg3fWVlBTU1NRv3pvtrtnqzZfutt95Cd3c3/uiP/gjQ6+8750zOL+L6zZsoLS5GZlLCxjknIwb4//y3/4a6ujqcPXt2xxm2wufzob+/H0II9Pb2IjY2dmMtg6ysLL8cg4iIAo89J/hwL5xdZtDpNn7QiYgodHm9XvT09EAIgYGBASQkJEBVVdjtdqSlpfn1WJst2SsrK2htbcX+/fthMNydLfn8OWdkZA5//cbPcNz095Gff//WfjabDVeuXMHJkycRGxv7wNc/cuTuqv+XLl0CAL8Ufp1Oh6qqKlRVVWF6enpjl4JPP/0U5eXlUFUVtbW1XNCPiCjIsecEH/5LEBERbcHc3NzGfvJzc3MoLi7G888/j/r6+oDsJ7+V2fTW1lasra3BZrNt+Th2ux0ffvghWltboarqQx8XiMJ/T1paGk6ePImjR4+is7MTUkq8/vrrSE5Oht1uh81mQ3Jyst+OR0REFM5Y9omIiB7D5/Ph+vXrEEKgu7sbBoMBJpMJiqIgLy8vYMfdStH3+XwQQqCurg4pKSlbPlZKSgrq6uogpYSiKI+8/SCQhR8AoqKiYDKZYDKZMDo6CiEEPv74Y1y+fBl1dXVQVRWlpaVc0I+IiOgRWPaJiIgeYnl5Ga2trRBCYGJiAllZWTh9+jRMJhPi4uICeuyt3h9/48YNjI+P48yZM9s+pqIo+OY3v4kbN26gtLT0kY8NdOG/Jy8vD+fOnUNzczPcbjeklPjGN76B7OxsKIoCs9n80NsOiIiIIhnLPhER0ReMjY1BCIHW1lZ4PJ6Nhet2azZ5OwvhCSGQmZmJsrKybR+3vLwcmZmZkFI+tuwDu1f4ASAuLg579+7Fnj17MDg4CCklfvGLX+DixYswmUxQVRW5ubkBOz4REVGoYdknIiICsL6+jq6uLgghcPPmTSQnJ+PgwYO7fp/4dor+3Nwcurq6cOrUqR19GKHT6aAoCi5cuIDTp08jKSnpsc/ZzcJ/L2N5eTnKy8sxNzcHh8OxsYZCSUkJFEUJ2PoJREREoYRnQiIiimjT09NwOBxwuVxYWFhAeXk5XnrpJdTU1GysaL9btru1ndPphMFggNls3nEGi8WCd999F06nc9MZdrvw35OcnIyjR4/i8OHD6OnpgZQSP/zhD5GYmAir1QpFUZCamrorWYiIiIINyz4REUWcz+/tfvXqVcTExMBsNkNVVc32dt9u0fd6vXA4HGhqavLLOgJxcXFoamqCw+HAoUOHNr3lnVaFHwAMBgMaGhrQ0NCA8fFxSCk3FvWrqamBoiiorKzkgn5ERBRRWPaJiChiLC4uoqWlBVJKTE1NIS8vD2fPnkVTUxNiYmI0y7Xdog8APT09mJube+R2eVulqipcLhd6e3tRV1e36edpWfjvyc7OxpkzZ3DixAm0tbVBCIFvf/vbSE9Ph6IosFgsSEhI2PVcREREu41ln4iIwt7Q0BCEEGhvbwcANDY24rnnnkNRUZHms707KfoAIKVEUVGRX7cAzM/PR1FR0cZWflsRDIUfAGJiYmC322Gz2XDr1i1IKfHee+/h0qVLMBqNUBQFhYWFmmQjIiLaDSz7REQUltbW1tDe3g4pJYaHh5GWloajR4/CarUiMTFR63gAdl70JyYmcO3aNTz33HN+z6YoCn784x9jcnISmZmZW3pusBR+4O6CfsXFxSguLsapU6fgcrkgpURLSwsKCgqgKAqMRiOio6M1y0hERBQILPtERBRWJicnN8rc8vIyqqur8bWvfQ1VVVWbvv98N+y06AN3Z/UTEhLQ0NDg53R3r3545513IKXE6dOnt/z8YCr89yQmJuLQoUM4cOAA+vr6IKXEm2++ifPnz8NisUBRlC1/sEFERBSsWPaJiCjkeb1e9Pb2QkqJ/v5+xMfHw2azQVEUpKenax3vS/xR9FdXV9HS0gJFUQKyzVxUVBSsViucTieOHz++rZnvYCz8AKDX61FTU4OamhpMTU1BSgmXy4UrV66gsrISiqKgpqYmqD4cIiIi2iqWfSIiClnz8/Mbe6zPzs6iqKgIX/nKV9DY2Bi0+6z7o+gDQHt7O1ZWVmC32/2Y7n6KouCTTz5Be3s7rFbrtl4jWAv/Penp6WhubsaxY8fQ0dEBIQRee+01pKSkbNzzn5SUpHVMIiKiLQvOkRAREdFD+Hw+3LhxA1JKdHZ2Qq/Xo6mpCaqqIj8/X+t4j+Svou/z+SCEQE1NTUCvXEhPT0d1dTWEELBYLNtezDDYCz9w90oGs9kMs9mM4eFhSCnx4Ycf4oMPPkBDQwMURUFJSYnmCzoSERFtFss+ERGFhJWVFbS2tkJKidu3byMzMxPNzc0wm82Ij4/XOt5j+avoA3d3FxgdHcXx48f9lO7hVFXFd77zHQwPD+9o9fpQKPz3FBQU4JlnnkFzczPcbjeEEHjllVeQk5MDVVXR1NSE2NhYrWMSERE9Ess+EREFtdu3b0MIgdbWVqytraG2thanT59GeXl5yMyy+rPoA3cX5ktLS0NVVZUf0j1aZWUl0tLSIITY8VZ1oVT4ASA+Ph779u3D3r17MTAwACEEfv7zn+PChQswm81QFAU5OTlaxyQiInogln0iIgo6Ho8HXV1dkFLi+vXrSEpKwr59+2C325GSkqJ1vC3xd9FfXFxEe3s7jh07tisfduj1eiiKgkuXLuHUqVNISEjY0euFWuEH7m7fV1FRgYqKCszMzGysEyGEQGlpKVRVRV1dHQwGg9ZRiYiINrDsExFR0JiZmYHD4YDT6cTCwgJKS0vx4osvhmyR8nfRBwCXywUA214wbzusVisuXbqElpYWHDhwYMevF4qF/57U1NSNf8/u7m4IIfD9738fSUlJsNlsIfmBFBERhSeWfSIi0pTP59u4RLqnpwfR0dFhcYl0IIq+z+eDlBJGo3HHM+xbkZCQgMbGRkgpsX//fr9cURDKhR8ADAYDGhsb0djYiNu3b0NKiStXruDDDz9EbW0tVFUNqVtNiIgo/LDsExGRJpaWluB2uyGlxOTkJHJycvDUU0+FxeJngSj6ANDX14fp6Wm88MILfnvNzVJVFa2trejv7/fbWgGhXvjvufeze+LECbS1tUEIgW9+85vIzMyEoighs4gkERGFF5Z9IiLaVSMjIxBCoK2tDV6vFw0NDXjmmWdQXFwcFrOggSr6wN2F+fLz83e8UN52FBYWIi8vD0IIvy4MGC6FHwBiY2OhKArsdjtu3rwJIQQuXLiAd999N2S2hyQiovDBsk9ERAG3vr6Ojo4OCCEwNDSElJQUPPHEE7BarUhKStI6nt8EsuhPT0+jt7cX586d0+RDEZ1OB1VV8dOf/hTT09NIS0vz22uHU+EH7v5dlZSUoKSkBKdPn95Y0M/lcqGwsBCqqqKxsRFRURyGERFR4PAsQ0REATM1NQUpJVwuF5aWllBZWYmvfvWrqK6uhl6v1zqeXwWy6AN3Z/VjY2PR1NTk99feLKPRiPPnz8PhcODEiRN+fe1wK/z3JCUl4YknnsChQ4fQ29sLKSV+/OMf45133oHVaoWiKEhPT9c6JhERhSGWfSIi8iuv14u+vj4IIdDX14e4uDhYrVbY7XZkZmZqHS8gAl3019fX4XK5YLFYEB0d7ffX36yYmBhYLBY4nU4cOXLE7zPT4Vr4gbtbGNbV1aGurg6Tk5OQUsLpdOKTTz5BVVUVVFVFVVVV2H0IRkRE2mHZJyIiv1hYWIDL5YKUEjMzMygoKMCzzz6LxsZGTQtqoAW66ANAZ2cnFhcXoShKQF5/KxRFwaeffoqurq6AXGUQzoX/nszMTJw+fRrHjx9He3s7hBD47ne/i7S0NNjtdlitViQmJmodk4iIQhzLPhERbZvP58OtW7cghEBnZyd0Oh2MRiMURdFkEbndthtFH7h7CX9FRQWysrICdozNysrKQnl5OYQQAbulIBIKPwBER0fDarXCarViaGgIUsqNn6nGxkYoioKioqKwWLiSiIh2H8s+ERFt2erq6sYWY2NjY8jIyMDx48dhsVh2df93Le1W0R8dHcXNmzfx0ksvBewYW6WqKl5//XWMjo4iLy8vIMeIlMJ/T2FhIQoLC9Hc3IyWlhZIKdHa2oq8vDwoioKmpibExMRoHZOIiEIIyz4REW3axMQEhBBwu91YXV1FTU0NmpubUVFREVGzj7tV9AFACIHk5GTU1tYG9DhbUVtbi+TkZEgp8fTTTwfsOJFW+AEgISEBBw4cwP79+9Hf3w8pJd566y1cuHABZrMZqqoGxRUeREQU/Fj2iYjokTweD3p6eiClxMDAABITE7Fnzx7Y7XakpqZqHW/X7WbRX15eRltbGw4ePBhUC7fp9XrY7XZ8/PHHOHnyJOLi4gJ2rEgs/MDd7fuqqqpQVVWF6elpOBwOOJ1OfPbZZygvL4eiKKitrYXBYNA6KhERBSmWfSIieqDZ2Vk4nU44nU7Mzc2hpKQEzz//POrr6yN2f/DdLPoA4Ha74fF4YLPZAn6srbLZbLh8+TJaW1uxZ8+egB4rUgv/PWlpaThx4gSOHDmCrq4uSCnxxhtvIDk5GTabDXa7HcnJyVrHJCKiIBOZozUiInogn8+HwcFBCCHQ3d2NqKgomEwmqKqK3NxcreNpareLvs/ng5QS9fX1QVnkkpOTUVdXByEEVFUN+G0ckV74ASAqKgpNTU1oamrC2NgYhBD45JNPcPnyZdTX10NRFJSVlUXULTVERPRwLPtERITl5WW43W5IKTExMYHs7Gw8+eSTMJvNiI2N1Tqe5na76APA4OAgJiYmcPbs2V053naoqopvfOMbGBwcRHl5ecCPx8L/a7m5uXj66afR3Ny88d599dVXkZWVBUVRYDabA3p7BRERBT+WfSKiCDY6OgohBNra2uDxeFBfX4+zZ8+itLSUs4O/okXRB+4uzJednY3S0tJdO+ZWlZaWIisrC1LKXSn7AAv/F8XGxmLPnj1QVRXXr1+HlBLnz5/Hu+++i6amJqiqGrAdE4iIKLix7BMRRZj19XV0dnZCSombN28iOTkZBw8ehM1mC8rLxbWkVdGfnZ1Fd3c3nnzyyaD+0EWn00FVVfziF7/A3Nzcrv38sPB/mU6nQ1lZGcrKyjA3Nwen07mxqF9xcTEURUFDQ0PErrdBRBSJ+BufiChCTE9PQ0oJl8uFxcVFVFRU4KWXXkJtbW1QrfQeLLQq+gDgdDoRFRUFs9m8q8fdDpPJhIsXL8LhcODo0aO7dlwW/odLTk7GkSNHcPjwYfT09EAIgR/96Ed45513YLVaoSgK0tLStI5JREQBxrJPRBTGfD4f+vr6IKVEb28vYmNjYbFYoCgK9+p+BC2LvsfjgcPhgMlkCon1EuLi4mAymeB0OnH48OFd3QqOhf/R9Ho96uvrUV9fj4mJCUgpIaXExx9/jJqaGiiKgqqqqqC+eoSIiLaPZZ+IKAwtLi7C5XLB4XBgamoKeXl5OHfuHIxGI2JiYrSOF9S0LPoA0NPTg/n5eaiquuvH3i5FUeBwONDT04OGhoZdPTYL/+ZkZWXhySefxPHjx9He3g4hBL7zne8gPT0ddrsdVqsVCQkJWsckIiI/YtknIgoTPp8PQ0NDkFKivb0dAGA0GvH888+jsLCQs3eboHXRB+4uzFdSUhJSWx3m5eWhuLgYUspdL/sAC/9WxMTEwGazwWq1YmhoCEIIXLp0CZcuXYLRaISqqigoKODvCyKiMMCyT0QU4tbW1tDW1gYpJUZGRpCWloZjx45xpm6LgqHoj4+PY3BwEM8//7wmx98JVVXxwx/+EOPj48jOzt7147Pwb41Op0NRURGKiopw6tQptLS0QEoJt9uN/Px8qKoKo9GI6OhoraMSEdE2sewTEYWoyclJCCHgdruxvLyM6upq/OZv/iYqKyu54N4WBUPRBwApJRITE1FfX69Zhu2qr69HQkICpJQ4c+aMJhlY+LcnMTERBw8exP79+9Hf3w8hBN58802cP39+Y42PzMxMrWMSEdEWsewTEYUQr9eL3t5eCCFw7do1JCQkwG63w263Iz09Xet4ISlYiv7q6ircbjf27NkTktujRUVFwWazQQiBEydOaLY2BAv/9un1elRXV6O6uhpTU1MbW/dduXIFFRUVUFUVNTU1/DCRiChEhN5ogogoAs3Pz2/smz07O4uioiI899xz3Dd7h4Kl6ANAW1sbVldXYbfbNc2xE3a7HR9//DHa2to0/e9g4d+59PR0nDx5EkePHkVnZyeEEHjttdeQkpICu90Om82GpKQkrWMSEdEjcIRIRBSkfD4fbty4ASEEurq6YDAY0NTUBEVRkJ+fr3W8kBdMRd/n80EIgZqaGqSmpmqaZSfS0tJQU1MDKSVsNpumi7yx8PtHVFQUTCYTTCYTRkZGIKXERx99hA8++AD19fVQVRUlJSVc0I+IKAix7BMRBZmVlRW0trZCCIHx8XFkZmbi1KlTMJvNiIuL0zpeWAimog8At27dwtjYGJqbm7WOsmOKouDb3/42bt26heLiYk2zsPD7V35+Ps6dO4fm5uaNBf1eeeUVZGdnQ1VVmEwmxMbGah2TiIh+hWWfiChIjI2NQUqJ1tZWrK2toa6uDmfOnEFZWRlnzfwo2Io+cHe7vYyMDFRUVGgdZccqKyuRnp4OKaXmZR9g4Q+EuLg47Nu3D3v37sXAwACklHj77bdx8eJFmEwmqKqKnJwcrWMSEUU8ln0iIg15PB50dXVBCIEbN24gKSkJ+/fvh81mQ0pKitbxwk4wFv2FhQV0dnbixIkTYfGhjk6ng6IoeO+993Dq1CkkJiZqHYmFP0B0Oh0qKipQUVGB2dnZjQX9pJQoKSmBqqqor6+HwWDQOioRUURi2Sci0sDMzMzGwHhhYQFlZWX4jd/4DdTW1nJgHCDBWPQBwOVyQafTwWKxaB3FbywWCy5dugSXy4VDhw5pHQcAC3+gpaSkbLy3uru7IaXED37wAyQmJsJms8Fut4f0ehRERKGIZZ+IaJf4fD5cu3YNQgj09vYiOjoaZrMZqqoiOztb63hhLViLvtfrhZQSRqMR8fHxWsfxm4SEBBiNRjgcDhw4cCBotmpj4Q88g8GAxsZGNDY2Ynx8HEIIfPrpp/joo49QW1sLRVFQUVERFlexEBEFO5Z9IqIAW1pa2ljM6s6dO8jNzcVTTz0Fk8mk2V7kkSRYiz4A9PX1YWZmBqqqah3F7xRFQUtLC/r6+lBTU6N1nA0s/LsnOzsbTz31FE6ePLmx6Oi3vvUtZGRkQFEUWCyWsPqQi4go2LDsExEFyPDwMIQQaG9vh8/nQ0NDA5599lkUFxdzVmuXBHPRB+4uzFdQUICCggKto/hdYWEhCgoKIKUMqrIPsPDvtpiYGCiKArvdjps3b0JKiYsXL+K9996D0WiEqqph+R4gItIayz4RkR+tra2ho6MDUkoMDQ0hNTUVR44cgdVqDYqFyiJJsBf9O3fuoK+vD88++6zWUQJGURS8+eabmJqaQnp6utZx7sPCv/t0Oh1KSkpQUlKC06dPw+l0wuFwoKWlBYWFhVAUBY2NjYiOjtY6KhFRWGDZJyLygzt37kBKiZaWFiwtLaGqqgpf/epXUV1dHTT3K0eSYC/6AOBwOBAXF4fGxkatowSM0WjE+fPnIaVEc3Oz1nG+hIVfO4mJiTh8+DAOHjyIq1evQkqJn/zkJzh//jwsFgsURUFGRobWMYmIQhrLPhHRNnm93o1Bal9fH+Lj4zlIDQKhUPTX1tbgcrlgtVrDehYzOjoaFosFLpcLx44dQ1RU8A07WPi1pdfrUVtbi9ra2vs+NP3lL3+JqqoqKIrCD02JiLYp+M66RERBbmFhYePy05mZGRQWFuLZZ5/l5adBIBSKPgB0dnZiaWkJiqJoHSXgFEXBlStX0NHRAbPZrHWcB2LhDw4ZGRk4deoUjh07tnE71Pe+9z2kpqbCbrfDZrPxdigioi1g2Sci2gSfz7exsFRHRwf0ej0XlgoyoVL0gbsL81VWVkbEFSCZmZmorKyElDJoyz7Awh9M7l0RYrFYNhY6vXz5Mt5//300NjZCURQudEpEtAks+0REj7C6uorW1lZIKTE2NoaMjAycPHmSW0YFmVAq+sPDwxgaGsJXv/pVraPsGkVR8Nprr2FkZAT5+flax3koFv7gU1BQgGeffRanTp3a2MK0ra0Nubm5UBSFW5gSET0Cyz4R0QOMj49DCAG32421tTXU1taiubkZFRUVnE0KMqFU9IG7s/qpqamorq7WOsquqampQUpKCoQQeOaZZ7SO80gs/MEpPj4e+/fvx759+3Dt2jUIIfDzn/8cFy5cgNlshqqqyM7O1jomEVFQYdknIvoVj8eD7u5uSCkxODiIxMRE7N27F3a7HampqVrHowcItaK/tLSE9vZ2PPHEExG14Jher4fdbseHH36I5ubmoL8qhoU/eOl0OlRWVqKyshIzMzNwOBxwOp0QQqCsrAyKoqCurg4Gg0HrqEREmmPZJ6KINzs7uzFgnJ+fR2lpKV544QXU19dzwBjEQq3oA0BLSwu8Xi+sVqvWUXadzWbDBx98ALfbjX379mkd57FY+INfamoqjh8/jiNHjqCrqwtCCHz/+99HUlISbDYb7HY7UlJStI5JRKQZln0iikg+nw8DAwOQUqK7uxvR0dEwmUxQVRU5OTlax6PHCMWi7/P5IKVEQ0MDkpKStI6z65KSktDQ0AAhBPbu3RsSt8Ow8IcGg8EAo9EIo9GIsbExSClx5coVfPjhh6irq4OqqigrKwuJnzkiIn9i2SeiiLK8vLyxyNPk5CSys7Nx5swZmEwmxMbGah2PNiEUiz4AXLt2DXfu3MGzzz6rdRTNKIqCV155BQMDA6ioqNA6zqaw8IeW3NxcnD17FidPnkRrayuEEHj11VeRmZkJVVVhNpsRFxendUwiol3Bsk9EEWFkZARCCLS3t8Pj8aC+vh7nzp1DSUkJZ3tCSKgWfQCQUiInJwfFxcVaR9FMSUkJcnJyIIQImbIPsPCHotjYWKiqCkVRcOPGDQghcP78ebz77rtoamqCqqrIy8vTOiYRUUCx7BNR2FpfX0dnZyeEELh16xZSUlJw6NAh2Gy2iLyMOtSFctGfmZlBT08PnnrqqYj+cEmn00FRFLz99tuYnZ0NqfupWfhDk06nQ2lpKUpLSzE/Pw+n07mxRktRURFUVUVDQwOiojgkJqLww99sRBR2pqam4HA44HK5sLi4iIqKCrz88suoqamJqBXQw0koF30AcDgciI6ORlNTk9ZRNGcymXDx4kU4HA4cO3ZM6zhbwsIf2pKSkvDEE0/g0KFD6O3thRACP/rRj/DOO+/AarXCbrcjPT1d65hERH7Dsk9EYcHr9aK/vx9CCFy9ehVxcXGwWCxQFAWZmZlax6MdCPWi7/F44HQ6YTabuS4E7l5ebTKZ4HQ68cQTT4Tcjhcs/KFPr9ejrq4OdXV1mJychJQSDocDH3/8Maqrq6GqKiorK/nhMBGFPJZ9Igppi4uLcLlckFJienoa+fn5eOaZZ2A0GhEdHa11PNqhUC/6ANDV1YWFhQUoiqJ1lKChqurGThiNjY1ax9kyFv7wkZmZidOnT+P48eNoa2uDEALf+c53kJaWBkVRYLVakZCQoHVMIqJtYdknopDj8/kwNDQEIQQ6OjoAAEajES+++CIKCgoi+p7ocBIORR+4uzBfWVkZt3T8nJycHJSWlkIIEZJlH2DhDzfR0dGw2WywWq0YGhqClBKXLl3CpUuX0NjYCFVVUVhYyPMLEYUUln0iChmrq6tob2+HEAKjo6NIT0/H8ePHYbFYOPMSZsKl6N++fRvXr1/Hiy++qHWUoKOqKr7//e/j9u3bIftBCAt/+NHpdCgqKkJRURFOnTq1ceVYa2sr8vLyoKoqmpqaeOUYEYUEln0iCnoTExOQUqKlpQUrKyuoqanBiRMnUFlZyVmWMBQuRR8AhBBISkpCXV2d1lGCTl1dHZKSkiClxFNPPaV1nG1j4Q9fCQkJOHjwIA4cOIC+vj5IKfHTn/4U58+f31gTJisrS+uYREQPxbJPREHJ6/Wip6cHQggMDAwgISEBiqJAURSkpaVpHY8CJJyK/srKClpbW7Fv376QW4RuNxgMBthsNly5cgUnTpwI6cULWfjDm06nQ3V1NaqrqzE9PQ0pJVwuFz799FNUVFRAURTU1tZyQT8iCjos+0QUVObm5jb2QZ6bm0NxcTGee+457oMcAcKp6ANAa2sr1tbWYLfbtY4StOx2Oz788EO0tbWF/AKGLPyRIS0tDSdPnsTRo0fR2dkJKSVef/11JCcnw263w2azITk5WeuYREQAWPaJKAj4fD5cv34dQgh0d3fDYDCgqakJqqoiLy9P63i0C8Kt6Pt8PkgpUVdXh5SUFK3jBK2UlBTU1tZCCAG73R7yt+Ww8EeOqKgomEwmmEwmjI6OQgiBjz/+GJcvX0Z9fT0URUFpaWnI/0wTUWhj2ScizaysrMDtdkNKifHxcWRlZeH06dMwmUyIi4vTOh7tknAr+gBw48YN3L59G6dPn9Y6StBTVRXf/OY3cfPmTZSUlGgdZ8dY+CNPXl4ezp07h+bm5o1z2je+8Q1kZ2dDURSYzeaQvk2FiEIXyz4R7bqxsTEIIdDa2or19XXU19fjzJkzKCsr4yxIhAnHog/c3W4vMzMT5eXlWkcJeuXl5cjMzIQQIizKPsDCH6ni4uKwd+9e7NmzB4ODg5BS4he/+AUuXrwIk8kEVVWRm5urdUwiiiAs+0S0K9bX19HV1QUpJW7cuIHk5GQcOHAAdrud9zdGqHAt+vPz8+js7ERzczM/vNoEnU4HRVFw4cIFnD59GklJSVpH8gsW/sil0+lQXl6O8vJyzM7Owul0bqxFU1JSAkVRUF9fz3VoiCjg+FuGiAJqenoaDocDLpcLCwsLKC8vx2/8xm+gtraWK5RHsHAt+gDgdDqh1+thsVi0jhIyzGYz3n33XbhcLhw+fFjrOH7Dwk8pKSk4evQoDh8+jJ6eHkgp8cMf/hCJiYmwWq1QFAWpqalaxySiMMWyT0R+5/P50N/fDyklent7ERMTA7PZDEVRkJ2drXU80lg4F32v1wuHw4GmpiauO7EF8fHxaGpqgpQSBw8eDKstzFj4Cbi71WRDQwMaGhowPj4OKeXGon41NTVQFAWVlZW8GoiI/Ipln4j8ZnFxES0tLZBSYmpqCrm5uTh79iyampoQExOjdTwKAuFc9AGgt7cXs7OzUFVV6yghR1VVuFwuXL16FbW1tVrH8SsWfvq87OxsnDlzBidOnEBbWxuEEPj2t7+N9PR0KIoCq9WK+Ph4rWMSURhg2SeiHRsaGoKUEu3t7fD5fGhsbMRzzz2HoqIizlLQhnAv+sDdhfmKioqQn5+vdZSQk5+fj8LCQgghwq7sAyz89GUxMTGw2+2w2Wy4desWhBB47733cOnSJRiNRiiKgsLCQq1jElEIY9knom1ZW1tDe3s7pJQYHh5Gamoqjhw5AqvVisTERK3jUZCJhKI/OTmJ/v5+fOUrX9E6SshSVRU//vGPcefOHWRkZGgdx+9Y+OlBdDodiouLUVxcjNOnT8PlckFKiZaWFhQUFEBRFBiNRkRHR2sdlYhCDMs+EW3J5OTkxiBkeXkZ1dXV+NrXvoaqqqqwus+W/CcSij5wd1Y/Pj4ejY2NWkcJWY2NjXjnnXcgpcSpU6e0jhMQLPz0KImJiTh06BAOHDiAvr4+CCHw5ptv4vz587BYLFBVNSw/CCOiwGDZJ6LH8nq96O3thZQS/f39iI+Ph81mg6IoSE9P1zoeBbFIKfpra2toaWmBzWbjdlo7EBUVBavVCqfTiWPHjoXtTCYLPz2OXq9HTU0NampqcOfOnY1dba5cuYLKykqoqorq6mp+yE5Ej8QRCRE91Pz8/MbewLOzsygsLMRXvvIVNDY2stDQY0VK0QeA9vZ2LC8vQ1EUraOEPLvdjk8++QQdHR1hvX0hCz9tVkZGBpqbm3H06FF0dnZCCIHvfe97SE1Nhd1uh9VqRVJSktYxiSgIcbRORPfx+Xy4ceMGpJTo7OyEXq9HU1MTFEVBQUGB1vEoRERS0ff5fBBCoLq6mle6+EFGRgaqqqoghAjrsg+w8NPWREdHw2w2w2w2Y3h4GFJKXL58Ge+//z4aGhqgqiqKi4u5MC4RbWDZJyIAwMrKysYWQLdv396YSTCbzdwCiLYkkoo+AAwPD2NkZARf+9rXtI4SNlRVxXe/+10MDQ2F/WrkLPy0HQUFBXjmmWfQ3NwMt9sNIQS+/vWvIycnB6qqoqmpCbGxsVrHJCKNsewTRbjbt29DSgm32421tTXU1tbi9OnTKC8v5+wAbVmkFX0AEEIgLS0NVVVVWkcJG1VVVUhNTYWUMuzLPsDCT9sXHx+Pffv2Ye/evRgYGIAQAj//+c9x4cIFmM1mKIqCnJwcrWMSkUZY9okikMfjQXd3N4QQuH79OhITE7Fv3z7YbDakpqZqHY9CVCQW/cXFRbS3t+Po0aNcKMuP9Ho9FEXBBx98gObmZiQkJGgdKeBY+GkndDodKioqUFFRgZmZmY31doQQKC0thaqqqKurg8Fg0DoqEe0iln2iCDI7OwuHwwGn04n5+XmUlpbixRdf5ACAdiwSiz4AtLS0AACsVqu2QcKQ1WrF+++/j5aWFhw4cEDrOLuChZ/8ITU1deN3cVdXF6SU+P73v4+kpCTYbDbY7XakpKRoHZOIdgHLPlGY8/l8G5f29fT0bCzww0v7yF8itej7fD5IKdHY2IjExESt44SdxMRENDQ0QEqJ/fv3R8xtRSz85C8GgwFGoxFGoxG3b9+GEAJXrlzBhx9+iNraWqiqylv2iMIcyz5RmFpaWoLb7YaUEpOTk8jJycFTTz3FRXvIryK16ANAf38/pqam8Nxzz2kdJWypqoq2tjb09/dH1JoILPzkbzk5OTh79ixOnjyJ1tZWSCnxzW9+E5mZmVAUBRaLBXFxcVrHJCI/Y9knCjMjIyMQQqCtrQ1erxcNDQ145plnuB0P+V0kF33g7sJ8eXl5KCoq0jpK2CoqKkJubi6klBFV9gEWfgqM2NhYqKoKRVE2ttm9cOEC3n33XTQ1NUFVVeTn52sdk4j8hGWfKAysr6+jo6MDQggMDQ0hJSUFhw8fhs1mQ1JSktbxKAxFetGfnp5Gb28vnn76aX6IFkA6nQ6qquKtt97C9PQ00tLStI60q1j4KVB0Oh1KS0tRWlqK06dPbyzo53K5UFRUBEVR0NjYiKgoVgWiUMZ3MFEIm5qagpQSLpcLS0tLqKysxMsvv4yamhquDE4BE+lFHwAcDgdiY2PR1NSkdZSw19TUhAsXLsDhcODEiRNax9l1LPwUaElJSXjiiSdw6NAh9Pb2QkqJH//4x3jnnXdgtVqhKArS09O1jklE28CyTxRivF4v+vr6IIRAX18f4uLiYLFYoCgKMjMztY5HYY5F/+6VNE6nExaLBTExMVrHCXsxMTEwm81wuVw4cuRIRM40svDTbtDr9airq0NdXR0mJychpYTT6cQnn3yC6upqKIqCqqoqTiYQhZDIO2MShaiFhQW4XC44HA5MT0+joKAAzzzzDIxGI6Kjo7WORxGARf+urq4uLC4uQlEUraNEDFVV8dlnn6Grqytir6Zg4afdlJmZidOnT+P48eNob2+HEALf/e53kZaWBrvdDqvVyl1IiEIAyz5REPP5fLh16xaklOjo6IBOp4PRaISiKCgsLNQ6HkUQFv1fE0KgvLwcWVlZWkeJGFlZWSgvL4eUMmLLPsDCT7svOjoaVqsVVqsVQ0NDkFJunA8aGxuhKAqKioq4dglRkGLZJwpCq6uraGtrg5QSo6OjSE9Px/Hjx2GxWJCQkKB1PIowLPq/Njo6ips3b+Kll17SOkrEURQFb7zxBsbGxpCbm6t1HM2w8JNWCgsLUVhYiObmZrS0tEBKidbWVuTl5UFRFDQ1NfHWJqIgw7JPFEQmJiYghIDb7cbq6ipqampw4sQJVFZW8lNz0gSL/v2klEhOTkZtba3WUSJObW0tkpOTIYTA008/rXUcTbHwk5YSEhJw4MAB7N+/H/39/ZBS4q233sKFCxdgNpuhqiqvfCIKEiz7RBrzeDzo6emBlBIDAwNISEiAqqqw2+0Rt80UBRcW/fstLy+jtbUVBw8e5AJVGjAYDLDZbPjkk0/Q3NyM2NhYrSNpioWftKbT6VBVVYWqqipMT0/D4XDA6XTis88+Q3l5ORRFQW1tLQwGg9ZRiSIWyz6RRubm5jZOjHNzcygpKcHzzz+P+vr6iFxtmoILi/6Xtba2wuPxwGazaR0lYtntdly+fBlutxt79uzROo7mWPgpWKSlpeHEiRM4cuQIurq6IKXEG2+8geTkZNhsNtjtdiQnJ2sdkyjisFEQ7SKfz4fBwUFIKdHV1YWoqCiYTCaoqhrR96BScGHR/zKfzwchBOrq6jhg1VBycjLq6+shpYSqqry9CSz8FFyioqLQ1NSEpqYmjI6OQkqJTz75BJcvX0Z9fT0URUFZWRnfu0S7hGWfaBcsLy/D7XZDSomJiQlkZ2fjySefhNlsjvhLUSm4sOg/2PXr1zExMYGzZ89qHSXiKYqCV199FdevX0dZWZnWcYICCz8Fo7y8PDz99NM4efIkWltbIYTAq6++iqysLCiKArPZjLi4OK1jEoU1ln2iABodHYUQAm1tbfB4PKivr8fZs2dRWlrKT7Up6LDoP5wQAllZWSgtLdU6SsQrKytDVlYWpJQs+5/Dwk/BKi4uDnv27IGqqrh+/TqEEDh//jzeffddNDU1QVVV5OXlaR2TKCyx7BP52fr6Ojo7OyGlxM2bN5GcnIyDBw/CZrPx8l8KWiz6Dzc3N4fu7m6cPn2aH9IFAZ1OB0VRcP78eczNzfH36uew8FMw0+l0KCsrQ1lZGebm5uB0OjfWLiouLoaqqly3iMjP+G4i8pPp6WlIKeFyubC4uIjy8nK89NJLqK2t5crdFNRY9B/N6XTCYDDAZDJpHYV+xWw2491334XT6dwouHQXCz+FguTkZBw5cgSHDh1Cb28vhBD44Q9/iISEhI0F/bgjEdHOsewT7YDP50NfXx+klOjt7UVsbCwsFgsUReEesxQSWPQfzePxwOFwwGQy8d7SIBIXF4empiY4HA4cPnyYH6h+AQs/hQqDwYD6+nrU19djYmICUkoIIfDRRx+hpqYGqqqisrKSV1URbRPLPtE2LC4uwuVyweFwYGpqCnl5eTh37hyMRiNiYmK0jke0KSz6j9fb24u5uTkoiqJ1FPoCVVXhdDrR09OD+vp6reMEHRZ+CjVZWVl48skncfz4cbS3t0MIgW9/+9tIT0+HoiiwWCxISEjQOiZRSGHZJ9okn8+H4eFhCCHQ3t4OAGhsbMTzzz+PwsJCfupMIYVFf3OEECguLubiUUEoLy8PxcXFkFKy7D8ECz+FopiYGNhsNlitVgwNDUEIgffeew/vvfcejEYjVFVFQUEBx11Em8CyT/QYa2trG58wj4yMIC0tDceOHYPFYkFiYqLW8Yi2jEV/cyYmJjAwMIDnn39e6yj0EIqi4Ec/+hEmJiZ469RDsPBTqNLpdCgqKkJRURFOnTqFlpYWSCnhdruRn58PVVVhNBoRHR2tdVSioMWyT/QQk5OTkFKipaUFy8vLqK6uxm/+5m+isrKS94dSyGLR3zwhBBISEjhrHMQaGhrwzjvvQEqJJ598Uus4QYuFn0JdYmIiDh48iP3792+slfTmm2/i/PnzG2slZWZmah2TKOiw7BN9jtfr3VgV9tq1a4iPj4fdbofdbkd6errW8Yh2hEV/81ZXV+F2u6GqKreBCmJRUVGwWq2QUuL48eNcM+URWPgpHOj1etTU1KCmpgZTU1MbuyBduXIFFRUVUFUVNTU1nJQh+hWOYIgAzM/Pb+z3Ojs7i6KiIjz33HNoaGjgQJ/CAov+1rS1tWFlZQV2u13rKPQYiqLg448/Rnt7O2w2m9ZxghoLP4WT9PR0NDc349ixY+jo6ICUEq+99hpSUlJgt9ths9mQlJSkdUwiTbHFUMTy+Xy4ceMGhBDo6uqCwWBAU1MTFEVBfn6+1vGI/IZFf2t8Ph+klKipqeE+zyEgLS0NNTU1EELAarVy0a7HYOGncBMVFQWz2Qyz2YyRkREIIfDhhx/igw8+QENDAxRFQUlJCX83UERi2aeIs7KygtbWVgghMD4+jszMTDQ3N8NisXAfbQo7LPpbd+vWLYyOjuLEiRNaR6FNUhQF3/nOdzA0NISioiKt4wQ9Fn4KV/n5+XjmmWfuW9DvlVdeQU5ODhRFgclkQmxsrNYxiXYNyz5FjNu3b0MIgdbWVqytraGurg5PPvkkysvL+WkvhSUW/e2RUiI9PR2VlZVaR6FNqqqqQlpaGoQQLPubxMJP4SwuLg779u3D3r17MTAwACkl3n77bVy8eBEmkwmqqiInJ0frmEQBx7JPYc3j8aCrqwtCCNy4cQNJSUnYt28f7HY7UlJStI5HFDAs+tuzsLCAjo4OHD9+nB8ChhCdTgdFUXDp0iWcPn0aCQkJWkcKCSz8FO50Oh0qKipQUVGB2dlZOBwOOJ1OSClRWloKRVFQX18Pg8GgdVSigGDZp7A0MzOz8Qt9YWEBZWVlePHFF1FXV8df6BT2WPS3z+VyAQAsFou2QWjLrFYrLl26BJfLhYMHD2odJ2Sw8FOkSElJ2Tgvdnd3Q0qJH/zgB0hMTITNZoPdbkdqaqrWMYn8imWfwobP58O1a9cgpURPTw+io6NhNpuhqiqys7O1jke0K1j0t8/r9cLhcMBoNHJmOAQlJCTAaDRCSon9+/dz660tYOGnSGIwGNDY2IjGxkbcvn0bUkp8+umn+Oijj1BbWwtFUVBRUcGruygssOxTyFtaWtpYhOXOnTvIzc3FU089BZPJxD2XKaKw6O9MX18fpqen8eKLL2odhbZJURS43W709/ejurpa6zghhYWfIlFOTg6eeuopnDx5cmPx5m9961vIyMiAoiiwWCyIj4/XOibRtrHsU8gaHh6GEALt7e3wer1obGzEs88+i+LiYn4aSxGHRX/npJQoKChAYWGh1lFomwoLC5Gfnw8hBMv+NrDwU6SKiYmBoiiw2+24efMmpJS4ePEi3nvvPRiNRqiqioKCAq1jEm0Zyz6FlLW1NXR0dEBKiaGhIaSmpuKJJ56AzWZDYmKi1vGINMGiv3NTU1O4evUqnnnmGa2j0A7odDqoqoo333wTU1NTSE9P1zpSyGHhp0im0+lQUlKCkpISnDp1Ci6XCw6HAy0tLSgsLISiKGhsbER0dLTWUYk2hWWfQsKdO3cgpURLSwuWlpZQVVWFr371q6iuruZ9mRTRWPT9Q0qJuLg4GI1GraPQDhmNRpw/fx4OhwMnT57UOk5IYuEnApKSknD48GEcPHgQV69ehZQSP/nJT3D+/HlYLBYoioKMjAytYxI9Ess+BS2v17vxy7Wvrw/x8fH85Ur0OSz6/rG+vg6XywWLxcLZmjAQHR0Ni8UCl8uFo0ePIiqKQ53tYOEnukuv16O2tha1tbUbk08ulwu//OUvUVVVBUVROPlEQYtnQAo6CwsLcDqdcDgcmJmZQWFhIZ599lleNkX0OSz6/tPR0YGlpSUoiqJ1FPITRVFw5coVdHZ2wmQyaR0nZLHwE90vIyMDp06dwrFjx9DR0QEhBL73ve8hNTUVdrudt5VS0GHZjyAenw/jSx6MLq5jdHEd8+teeLw+GPQ6JEXpkZcQhbyEKGTHG2DY5QXufD7fxoIoHR0d0Ov1XBCF6CFY9P1LSonKykpkZmZqHYX8JDMzExUVFRBCsOzvEAs/0Zfdu4LIYrFgaGgIUkpcvnwZ77//PhobG6EoimYLRgfzeJ92H8t+BJhZ9aBlYhmuiWUse3wAAD0A7+ceowfQMnn3/8cZdLBmxcGSFYfUGENAs62urqK1tRVSSoyNjSEjIwMnT57kVidED8Gi718jIyO4desWXn75Za2jkJ+pqorXXnsNIyMjyM/P1zpOSGPhJ3q4wsJCFBYW4tSpUxtbQbe1tSE3NxeqqqKpqWlXtoIO5vE+aYdlP4wte7y4NLQA9+QKdAB8n/ue9wuP9d73PB+ujC3hl2NLMGfG4nhhImIN/r0PaXx8HEIIuN1urK2toaamBs3NzaioqOC2eUQPwaLvf0IIpKSkoKamRuso5Gc1NTVISUmBlBLnzp3TOk7IY+EnerT4+Hjs378f+/btw7Vr1yCEwFtvvYULFy7AbDZDURRkZ2f7/bjBPN4n7bHsh6mB2VX87PocFtfvvuV9j3n8F917fOvkCvpnVnG2NBnlKTv7VNLj8aC7uxtSSgwODiIxMRF79+6F3W5Hamrqjl6bKNyx6Pvf8vIy2tracPjwYS6sFIb0ej3sdjs++ugjNDc3Iy4uTutIIY+Fn+jxdDodKisrUVlZiZmZGTgcDjidTnz22WcoKyuDqqqora2FwbDz2fRgHO9TcGHZD0OO8SVcuLXwpU/3tsMHYGHdh9f6Z9FclAh79tYvrZ+dnd34RTc/P4+SkhK88MILqK+v98svOqJwx6IfGC0tLfB6vbDZbFpHoQCx2Wz44IMP4Ha7sXfvXq3jhAUWfqLNS01NxfHjx3HkyBF0dXVBCIE33ngDSUlJGwv6paSkbOu1g228T8GJZT/M3HvjAzt/499z73Xuve5mfgH4fD4MDg5CCIHu7m5ER0fDZDJBURTk5ub6KRlR+GPRDwyfzwcpJRoaGpCUlKR1HAqQpKQk1NfXQwiBPXv28DYxP2HhJ9oag8EAo9EIo9GIsbExSCnxy1/+EpcvX0ZdXR1UVUVZWdmmf0cFy3ifgh/LfhgZmF3Fdz5y4+qVSxjqcmOoqxXjA73wejxo/sN/heO//yePfH7fpx/gw2/9D9zqcGF1aRHp+UVoPP40jv7eP0Nswt3B8IVbC8iINTz0Ep/l5WW43W4IITA5OYns7GycOXMGJpMJsbGxfv9vJgpnLPqBMzAwgMnJSd7LHQFUVcUrr7yCwcFBlJeXax0nbLDwE21Pbm4uzp49i5MnT6K1tRVCCLz66qvIysqCoigwm82PvO1op+N9r9cL11uvw/XWGxjt7cDywhwSUtOQXVYD48lz2P/S7z12vE+hg2U/TCx7vPjZ9Tl8+sbX8fF3/3rLz//oW/8Tb/2XP4VOp0OZdR+SMrMx6LqC9//2L9Hx3s/wD/7mZ0hMz4QOwFvX5/AHDen3LeIxOjoKIQTa2trg8XhQX1+Pc+fOoaSkhDMpRNvAoh9YUkrk5OSgpKRE6ygUYCUlJcjOzoYQgmXfz1j4ibYvNjYWqqpCURTcuHEDQgicP38e7777LpqamqCqKvLy8u57zk7H+8tzs3j1j38bA85fIjYpGaUmFXHJqZi9PYLhnjasLMxh/0u/99DxPoUelv0wcWloAYvrPuRW1eHw7/xjFNQ1oaDOhPf/9i/heuv1Rz53uLsVP/+v/w56gwG/+5ffQu3BkwCA1aVFvPrHv4P+zy7jx//xn+O3/vzrG/f0vDe0gOaCeHR2dkIIgVu3biElJQWHDh2CzWbjZbFEO8CiH1izs7Po7u7GmTNn+GFkBNDpdFBVFW+//TZmZ2e3fX8sPRgLP9HO6HQ6lJaWorS0FHNzc3A6nRtrXRUVFUFVVTQ0NCAqKmpH432fz4dv/snvYsD5S+x54e/gqT/+9xtX7gLA+toqRq923n0sfj3eP1OSHMj/fAowlv0wML3igXtyBQCgPvc7931Pp3/8QPb9r/83+Hw+KM98baPoA0BMfAJe+Hd/iT9/RkH7uz/D7YGryCmvhg+Ae2IZbT/5JpbujKOiogIvv/wyampquKI10Q6x6Aeew+HYWEeEIoPJZMLFixfhdDpx9OhRreOEHRZ+Iv9ITk7GkSNHcPjwYfT09EBKiR/96Ed455130GDfi7b0BgDbG+87fvIdXJMfo3r/MTz3b//zl74fFR2DogbLxp99ANyTKziQl4DUGC6oHapY9sOAe3J52ytxrq+tovvDiwAA85MvfOn76QXFKDXvwaDrCjovvYWc8j/61Xd8yLYexjP1BcjMzNxudCL6HBb9wPN4PHA6nVxHJMLExsbCZDLB4XDg8OHD3AkmAFj4ifxHr9ejvr4e9fX1mJiYgJQSLVOr8KV6odvmxNon3/tfAIAnfvefbPo5OgAtE8s4UpC4rWOS9lj2Q5zH54NrYnnbK3FOXO/H2vIiANz3ad7nFTZYMOi6guGetl9/UafHTEoB0jIytnlkIvo8Fv3d0d3djfn5eaiqqnUU2mWKokBKiZ6eHjQ0NGgdJyyx8BP5X1ZWFppPn0ZX6yRWvNt7jbnJ2xjp7YDeYECpWcWdW4NovfATTA3fRGxCIoqNNtQfPYOo6PsX5PMBcE0s41B+Agy87S0kseyHuPElD5Y92990Y2roBgAgLjkVsYkPvs8+LbcQAHDnV4+9Z9njw/iSB3kJ/DEi2gkW/d0jhEBpaSlycnK0jkK7LDc3FyUlJRBCsOwHEAs/kf+NL3m2XfQBbNyLn5CaAfHjb+Hn/+X/hGd97b7HZBSV4bf/8yvIr2m87+sc74c23mAd4kYX13f0/JXFeQB3789/mJiEu5furCzM+f34RJGORX/33L59G9evX4eiKFpHIY2oqorBwUGMj49rHSWsHTlyBEePHsWlS5dw+fJlreMQhbydjrcXZ6bu/u/sFH76n/4N6o8+iX/2+mX8+48G8I9eeRvFRjvu3BrE1//Jy1iYvuP345N2WPZD3Ojiumb/iHrwzU+0Eyz6u0tKicTERNTX12sdhTRSX1+PxMRECCG0jhL2WPiJ/Gen432f7+5VwN71dZSYVPzWf/pb5FXVIzYhCSUmBX/vf3wfSZnZmJsYw5U3vn7fczneD20s+yFuft2LHVzVs7HlxurS4kMfs7q4cPexifdvveEFsLC+k6MTRS4W/d21srICt9sNm83GxdkimMFggM1mg9vtxurqqtZxwh4LP5F/+Gu8DwB7XvjdL38/MQnWp34DAND/6Qf3fY/j/dDGsh/iPN7t368P3F1tHwCW52awsjD/wMdMjw3d99jPW9/h8YkiEYv+7mtra8Pa2hrsdrvWUUhjdrsda2traG1t1TpKRGDhJ9q5nY73M4pKf/3/C0sf+Jj0X319dmLsS9/jeD90seyHOMMm9tV8lKyyKkTH3b1f/1ZnywMfM/SrrxfWfXlP6qgdHp8o0rDo7z6fzwchBGpra5Gamqp1HNJYamoqampqIKXcuLSVAouFn2hndjzeL6ncWIh78QH35H/+67EJX95mj+P90MWyH+KSovQ7+keMio5B3eGTAAD3L37wpe9PDd/Ejda79zY2HDt73/f0ABKj+CNEtFks+tq4efMmbt++zYX5aIOqqhgbG8PNmze1jhIxWPiJtm+n431DVBQajj4FAOj7wmX69/RdeR8AUNRou+/rHO+HNv7Lhbi8hKgd3cMDAEf+7j+FTqeD483voufjdze+vrq0iB/8hz+C1+OB8cTTyCmvvu953l8dn4gej0VfO0IIZGRkoKKiQusoFCQqKiqQkZEBKaXWUSIKCz/R9vhjvH/09/4IhqhoiB99C12Xz9/3vcvf+P9isOVT6A0G7H/p9+77Hsf7oY3/ciHui2++oS43fvJn/3Ljz3duDQIAPvvBq+i+fGHj67/9F68gJTsPAFBYb8ZTf/wf8NZ/+VN8459+DeX2A0hMz8Kg6wrmJsaQXVaFr/yb/7yp4xPRl7Hoa2d+fh6dnZ04efIkdDpehkh36XQ6KIqCixcv4vTp00hM/PJlqxQYR44cAQBcunQJAPg7kWgT/DHezymvxnN/+l/wg//rn+HVP/otFDZYkF5QjLG+bowPXoXeYMCz//rPkVfd8NjjU+jgv1yIy443IM6gw7Ln7n2HKwvzuNnu+NLjZsaGMTM2vPFnz9r9qxAf+u1/iLzqenz4zf+Omx0urC0tIjWvEEf/t3+Go7/3Rxv3+XxenEGH7Hiuak30KCz62nK5XNDr9bBYLFpHoSBjsVjw3nvvwel04vDhw1rHiSgs/ERb46/xvv3cV5FTUYvLr/wVBl2fYrS3Awlp6WhqfgaHf+cfo9ho++JLcrwf4lj2Q5xBp4M1Kw5XxpbgA1ChHMSfOce39VpVe4+gau+RTT1WB8CaFQcDZ8qIHopFX1terxdSSjQ1NSE+Pl7rOBRk4uPjYTQa4XA4cPDgQej1vLNxN7HwE22eP8f7xY1W/Naff31Tj+V4P/TxzBYGLFlx2O31hH2/Oi4RPRiLvvauXr2K2dlZqKqqdRQKUqqqYmZmBlevXtU6SkTiPfxEm8fxPm0Hy34YSI0xwJwZi936zE0HwJwZi9QYXtJD9CAs+sFBCIHCwkLk5+drHYWCVEFBAQoLC7lQn4ZY+Ik2h+N92g6W/TBxvDARiVG6gP8C0AFIjNLheCEXMyJ6EBb94HDnzh309/dzVp8eS1EU9PX14c6dB+89TYHHwk+0ORzv01ax7IeJWIMeZ0uTA355jw/A2dJkxBr4o0P0RSz6wUNKifj4eDQ2NmodhYJcY2Mj4uPjObuvMRZ+osfjeJ+2iv+CYaQ8JQbNRYH9BO5UUSLKU2ICegyiUMSiHzzW1tbgcrlgtVoRFcV1aOnRoqOjYbFY0NLSgrW1Na3jRDQWfqLH43iftoJlP8zYs+M3fgH46xKfe69zqigRtmyuaE30RSz6waWjowPLy8uw2+1aR6EQoSgKlpaW0NHRoXWUiMfCT/R4HO/TZnHKIwzZs+OREWvAW9fnsLDu29GlPvfu2TlbmsxP+IgegEU/+AghUFVVhYyMDK2jUIjIyMhAVVUVpJSwWCxax4l43JaP6PE43qfN4Mx+mCpPicHvN6TDlBkLYOuf+t17vCkzFn/QkM43PtEDsOgHn6GhIQwPD3NhPtoyRVE2fn5Ie5zhJ3o8jvfpcTizH8biDHqcKUnGgbwEtEwswzWxjGXP3c/99AC8n3vs5/8cZ9DBmhUHS1Yct9sgeggW/eAkpURqaiqqqqq0jkIhprq6GqmpqRBC4Nlnn9U6DoEz/ESbwfE+PQrLfgRIjTHgSEEiDuUnYHzJg9HFdYwurmNh3Yt1rw9Reh0So/TIS4hCXkIUsuMNMOh2axdPotDDoh+clpaW0N7ejiNHjkCv54VrtDV6vR52ux2XL1/GqVOnEB/Pe1aDAQs/0eZwvE8PwrIfQQw63cYbnIi2h0U/eLW0tMDn88FqtWodhUKUzWbD+++/j5aWFuzfv1/rOPQrLPxEm8fxPn0efwqIiDaJRT94+Xw+SCnR0NCAxMTAbklE4SsxMRGNjY2QUmLfvn3QcdYraLDwExFtHa9zJCLaBBb94Hbt2jXcuXOHC/PRjimKgjt37uDatWtaR6Ev4KJ9RERbw5l9IqLHYNEPfkII5ObmoqioSOsoFOKKi4uRm5sLKSUqKyu1jkNfwBl+IqLN48w+EdEjsOgHv5mZGfT29kJVVV52TTum0+mgKAp6enowMzOjdRx6AM7wExFtDss+EdFDsOiHBiklYmJi0NTUpHUUChMmkwnR0dFwOBxaR6GHYOEnIno8XsZPRPQALPqhYX19HS6XC2azGTExMVrHoTARExMDs9kMp9OJI0eOwGDgHtTBiJf0ExE9Gmf2iYi+gEU/dHR1dWFhYQGKomgdhcKMqqpYWFhAV1eX1lHoETjDT0T0cJzZJyL6HBb90CKlRFlZGbKzs7WOQmEmOzsbZWVlEELAaDRqHYcegTP8REQPxpl9IqJfYdEPLWNjY7hx4wa326OAURQFN27cwNjYmNZR6DE4w09E9GUs+0REYNEPRUIIJCUloba2VusoFKbq6uqQlJQEKaXWUWgTWPiJiO7Hsk9EEY9FP/SsrKygtbUVdrudi6dRwBgMBthsNrS2tmJlZUXrOLQJLPxERL/Gsk9EEY1FPzS53W6sr6/DZrNpHYXCnN1ux9raGlpbW7WOQpvEwk9EdBcX6COiiMWiH5p8Ph+klKirq0NKSorWcSjMpaSkoK6uDkIIKIoCnU6ndSTaBC7aR0TEmX0iilAs+qHr+vXrGB8f58J8tGsURcH4+Dhu3LihdRTaAs7wE1Gk48w+EUUcFv3QJqVEVlYWysrKtI5CEaK8vByZmZkQQqC0tFTrOLQFnOEnokjGsk9EEYVFP7TNzc2hq6sLp06d4uXUtGt0Oh1UVcX58+cxPz+PpKQkrSPRFrDwE1Gk4mX8RBQxWPRDn9PphMFggNls1joKRRiz2QyDwQCn06l1FNoGXtJPRJGIM/tEFBFY9EOf1+uFw+FAU1MT4uLitI5DESYuLg5NTU1wOBw4dOgQ9HrOl4QazvATUaThmYqIwh6Lfnjo6enB3NwcF+YjzaiqitnZWfT29modhbaJM/xEFEk4s09EYY1FP3xIKVFcXIy8vDyto1CEysvLQ1FREYQQqKur0zoObRNn+IkoUnBmn4jCFot++JiYmMC1a9egKIrWUSjCqaqKa9euYXJyUusotAOc4SeiSMCyT0RhiUU/vEgpkZCQgIaGBq2jUIRraGhAQkICpJRaR6EdYuEnonDHsk9EYYdFP7ysrq6ipaUFVqsVUVG8+4y0FRUVBavVipaWFqytrWkdh3aIhZ+IwhnLPhGFFRb98NPe3o6VlRVewk9Bw263Y3l5Ge3t7VpHIT9g4SeicMUpEiIKGyz64cfn80EIgZqaGqSlpWkdhwgAkJ6ejurqagghYLFYoNPptI5EO8RF+4goHHFmn4jCAot+eBoaGsLo6Chn9SnoqKqKkZERDA8Pax2F/IQz/EQUbjizT0Qhj0U/fEkpkZaWhqqqKq2jEN2nsrISaWlpEEKgsLBQ6zjkJ5zhJ6Jwwpl9IgppLPrha3FxEe3t7VAUhZdJU9DR6/VQFAXt7e1YXFzUOg75EWf4iShcsOwTUchi0Q9vLpcLAGC1WjVOQvRg9342W1patA1CfsfCT0ThgJfxE1FIYtEPbz6fD1JKGI1GJCQkaB2H6IESEhLQ2NgIKSX279/PK1DCDC/pJ6JQx5l9Igo5LPrhr6+vD9PT01yYj4KeqqqYmppCf3+/1lEoADjDT0ShjDP7RBRSWPQjgxAC+fn5XPiMgl5hYSHy8vIghOBCkmGKM/xEFKo4s09EIYNFPzJMTU3h6tWrXJiPQoJOp4Oqqujt7cX09LTWcShAOMNPRKGIZZ+IQgKLfuRwOByIjY1FU1OT1lGINsVoNCI2NhZSSq2jUACx8BNRqGHZJ6Kgx6IfOdbX1+FyuWCxWBAdHa11HKJNiYmJgcVigcvlwvr6utZxKIBY+IkolLDsE1FQY9GPLJ2dnVhcXOTCfBRyFEXB4uIiOjs7tY5CAcbCT0Shggv0EVHQYtGPPEIIVFRUICsrS+soRFuSlZWF8vJySClhMpm0jkMBxkX7iCgUcGafiIISi37kGRkZwa1btzirTyFLVVXcvHkTo6OjWkehXcAZfiIKdiz7RBR0WPQjk5QSycnJqK2t1ToK0bbU1tYiOTkZQgito9AuYeEnomDGsk9EQYVFPzItLy+jra0Ndrsdej1PTRSa9Ho97HY72trasLy8rHUc2iUs/EQUrDiiIqKgwaIfudxuNzweD2w2m9ZRiHbEZrPB4/HA7XZrHYV2EQs/EQUjLtBHREGBRT9y+Xw+CCFQX1+P5ORkreMQ7UhycjLq6+shpcSePXug0+m0jkS7hIv2EVGw4cw+EWmORT+yDQ4OYnJyEqqqah2FyC8URcHExAQGBwe1jkK7jDP8RBRMOLNPRJpi0SchBLKzs1FSUqJ1FCK/KC0tRXZ2NqSUKC8v1zoO7TLO8BNRsODMPhFphkWfZmdn0d3dDVVVebkzhQ2dTgdFUdDV1YW5uTmt45AGOMNPRMGAZZ+INMGiTwDgdDoRHR0Nk8mkdRQivzKbzYiKioLD4dA6CmmEhZ+ItMbL+Ilo17HoEwB4PB44HA6YTCbExsZqHYfIr2JjY2EymeB0OnH48GEYDAatI5EGeEk/EWmJM/tEtKtY9Omenp4ezM/PQ1EUraMQBYSqqpibm0NPT4/WUUhDnOEnIq1wZp+Idg2LPn2eEAIlJSXIzc3VOgpRQOTm5qKkpARSSjQ0NGgdhzTEGX4i0gJn9oloV7Do0+eNj49jcHCQ2+1R2FMUBQMDAxgfH9c6CmmMM/xEtNtY9oko4Fj06YuklEhMTER9fb3WUYgCqr6+HomJiZBSah2FggALPxHtJpZ9IgooFn36otXVVbjdbthsNi5aRmEvKioKVqsVbrcbq6urWsehIMDCT0S7hWWfiAKGRZ8epK2tDaurq7Db7VpHIdoVdrsdq6uraGtr0zoKBQkWfiLaDVygj4gCgkWfHsTn80EIgZqaGqSmpmodh2hXpKWloaamBlJK2Gw26HQ6rSNREOCifUQUaJzZJyK/Y9Gnh7l16xbGxsa4MB9FHEVRMDo6ilu3bmkdhYIIZ/iJKJA4s09EfsWiT48ihEBGRgYqKiq0jkK0qyorK5Geng4pJYqLi7WOQ0GEM/xEFCic2Sciv2HRp0dZWFhAZ2cnFEXhZcwUcXQ6HRRFQUdHBxYWFrSOQ0GGM/xEFAgs+0TkFyz69DhOpxM6nQ4Wi0XrKESasFgs0Ol0cLlcWkehIMTCT0T+xsv4iWjHWPTpcbxeLxwOB4xGI+Lj47WOQ6SJhIQEGI1GSClx4MAB6PWcc6H78ZJ+IvInnmWIaEdY9Gkzrl69ipmZGS7MRxFPURTMzMygr69P6ygUpDjDT0T+wpl9Ito2Fn3aLCklCgoKUFBQoHUUIk0VFhaioKBgYwtKogfhDD8R+QNn9oloW1j0abPu3LmDvr4+zuoT/YqiKOjr68OdO3e0jkJBjDP8RLRTLPtEtGUs+rQVUkrExcWhsbFR6yhEQcFoNCIuLg4Oh0PrKBTkWPiJaCdY9oloS1j0aSvW1tbQ0tICq9WK6OhoreMQBYXo6GhYLBa4XC6sra1pHYeCHAs/EW0Xyz4RbRqLPm1VR0cHlpaWoCiK1lGIgoqiKFhaWkJnZ6fWUSgEsPAT0XZwgT4i2hQWfdoOKSUqKyuRkZGhdRSioJKZmYnKykoIIWA2m7WOQyGAi/YR0VZxZp+IHotFn7ZjeHgYQ0NDXJiP6CEURcHQ0BCGh4e1jkIhgjP8RLQVLPtE9Egs+rRdQgikpqaiurpa6yhEQammpgapqamQUmodhUIICz8RbRbLPhE9FIs+bdfS0hLa29tht9uh1/NUQ/Qger0edrsdbW1tWFpa0joOhRAWfiLaDI7AiOiBWPRpJ1paWuD1emGz2bSOQhTUrFYrvF4v3G631lEoxLDwE9HjcIE+IvoSFn3aCZ/PByklGhsbkZiYqHUcoqCWlJSEhoYGCCGwd+9e6HQ6rSNRCOGifUT0KJzZJ6L7sOjTTl27dg137tzhdntEm6SqKu7cuYOBgQGto1AI4gw/ET0MZ/aJaAOLPvmDlBK5ubkoLi7WOgpRSCguLkZOTg6EEKioqNA6DoUgzvAT0YNwZp+IALDok3/MzMygp6cHiqLwcmSiTdLpdFBVFT09PZidndU6DoUozvAT0Rex7BMRiz75jcPhQHR0NEwmk9ZRiEJKU1MToqOj4XA4tI5CIYyFn4g+j5fxE0U4Fn3yF4/HA6fTCbPZjJiYGK3jEIWU2NhYmM1mOJ1OPPHEEzAYDFpHohDFS/qJ6B7O7BNFMBZ98qeuri4sLCxAVVWtoxCFJEVRMD8/j+7ubq2jUIjjDD8RAZzZJ4pYLPrkb1JKlJWVITs7W+soRCEpJycHpaWlEEKgsbFR6zgU4jjDT0Sc2SeKQCz65G+3b9/G9evXud0e0Q6pqorr16/j9u3bWkehMMAZfqLIxrJPFGFY9CkQhBBISkpCXV2d1lGIQlpdXR2SkpIgpdQ6CoUJFn6iyMWyTxRBWPQpEFZWVtDa2gqbzcZFxYh2yGAwwGazwe12Y2VlRes4FCZY+IkiE8s+UYRg0adAaW1txdraGux2u9ZRiMKC3W7H2toa2tratI5CYYSFnyjycIE+ogjAok+B4vP5IKVEXV0dUlJStI5DFBZSUlJQW1sLIQTsdjt0Op3WkShMcNE+osjCmX2iMMeiT4F048YN3L59mwvzEfmZqqq4ffs2bt68qXUUCjOc4SeKHJzZJwpjLPoUaEIIZGZmory8XOsoRGGlvLwcmZmZEEKgpKRE6zgUZjjDTxQZOLNPFKZY9CnQ5ufn0dXVBUVReJkxkZ/pdDooioLOzk7Mz89rHYfCEGf4icIfyz5RGGLRp93gdDqh1+thsVi0jkIUlsxmM/R6PZxOp9ZRKEyx8BOFN17GTxRmWPRpN3i9XjgcDjQ1NSEuLk7rOERhKT4+Hk1NTXA4HDh06BD0es7RkP/xkn6i8MWzBlEYYdGn3dLb24vZ2Vmoqqp1FKKwpqoqZmdn0dvbq3UUCmOc4ScKT5zZJwoTLPq0m4QQKCoqQn5+vtZRiMJafn4+CgsLN7a4JAoUzvAThR/O7BOFARZ92k2Tk5O4du0at9sj2iWqqqK/vx+Tk5NaR6Ewxxl+ovDCsk8U4lj0abdJKREfH4/GxkatoxBFhMbGRsTHx0NKqXUUigAs/EThg2WfKISx6NNuW1tbQ0tLC6xWK6KieCcY0W6IioqC1WpFS0sL1tbWtI5DEYCFnyg8sOwThSgWfdJCe3s7lpeXeQk/0S5TFAXLy8tob2/XOgpFCBZ+otDHaRmiEMSiT1rw+XwQQqC6uhrp6elaxyGKKOnp6aiuroaUElarVes4FCG4aB9RaOPMPlGIYdEnrQwPD2NkZITb7RFpRFEUDA8PY2hoSOsoFEE4w08UujizTxRCWPRJS0IIpKWlobKyUusoRBGpqqoKaWlpkFKisLBQ6zgUQTjDTxSaOLNPFCJY9ElLi4uLaG9vh6Io0Ot56iDSgl6vh91uR3t7OxYXF7WOQxGGM/xEoYcjNqIQwKJPWmtpaQEA3itMpDGr1Qqfz7fxniTaTSz8RKGFl/ETBTkWfdKaz+eDlBKNjY1ISEjQOg5RREtMTERjYyOklNi/fz90Op3WkSjC8JJ+otDBsk/kZx6fD+NLHowurmN0cR3z6154vD4Y9DokRemRlxCFvIQoZMcbYHjMII1Fn4JBf38/pqam8Pzzz2sdhYhwd6G+1tZW9Pf3o6qqSus4FIG2U/j9OT4ios1h2Sfyk5lVD1omluGaWMayxwfg7n0y3s89Rg+gZfLu/48z6GDNioMlKw6pMYYvvR6LPgULIQTy8vK4IBhRkCgqKkJeXh6klCz7pJnNFn5/j4+IaPNY9ol2aNnjxaWhBbgnV6AD4Pvc97xfeKz3vuf5cGVsCb8cW4I5MxbHCxMRa7i7jAaLPgWL6elp9Pb24ty5c7xcmChI6HQ6KIqCt956C9PT00hLS9M6EkWoRxX+QIyPiGhrWPaJdmBgdhU/uz6HxfW7pzDfYx7/Rfce3zq5gv6ZVZwtTcYN1y9Z9CloOBwOxMbGwmg0ah2FiD6nqakJFy5cgMPhwIkTJ7SOQxHsQYU/EOOj8pQYPyUmihws+0Tb5BhfwoVbC1/6tHo7fAAW1n14rX8Wa4MTLPoUFNbX1+F0OmGxWBATw0EWUTCJiYmB2WyGy+XCkSNHEBXFIR1p5/OFfyQ6HQNx+X4fHzUXJcKeHb/TqEQRhdfEEG3DvaIP7PxEds+914k2HUFiveqnVyXavq6uLiwuLkJRFK2jENEDqKqKhYUFdHV1aR2FCEeOHEFd8/MYiMsH4P/x0YVbC3CML/npVYkiA8s+0RYNzK5uFP1AuXBrAQOzqwE9BtHjCCFQXl6OrKwsraMQ0QNkZWWhvLwcUkqtoxBhYHYVA/H5AT0Gx0dEW8Nrvoi2YNnjxc+uz2FisA+9Vy5hqMuNoa5WjA/0wuvxoPkP/xWO//6fPPC506ND6Pno4q+e48ZYfzc8a6tQvvJbeOHf/eV9j9UBeOv6HP6gIZ2L0pAmRkdHcfPmTbz00ktaRyGiR1AUBW+88QbGxsaQm5urdRyKUDsZH138n/8J7/71nz/y9f/4B58gp7ya4yOiLWLZJ9qCS0MLWFz34ZdvfB2ffPevt/Tc9nd/irf+4k839dh796i9N7SAMyXJ20hKtDNSSiQnJ6O2tlbrKET0CLW1tUhOToYQAk8//bTWcShC7WR8dE9+TSPyax+8GGxc0t2xEMdHRFvDsk+0SdMrHrgnVwAAeVV1OPw7/xgFdU0oqDPh/b/9S7jeev2Rz88oLMX+r/4+CutMKKgzoe3CT3Dpb/7rQx/vA+CeXMGBvATuM0u7anl5Ga2trTh48CD0es6cEAUzg8EAm82GTz75BM3NzYiNjdU6EkWYnY6P7mk4+hRO/sN/8djHcXxEtHks+0Sb5J5c3lhZVn3ud+77nk7/+P3HG46eQcPRMxt/7njvrcc+RwegZWIZRwoSt5iWaPvcbjc8Hg9sNpvWUYhoE+x2Oy5fvgy32409e/ZoHYcizE7HR9vB8RHR5nDKhmgTPD4fXBPLfltZdrN8AFwTy/D4dvvIFKl8Ph+klKirq0NyMi+RJAoFycnJqK+vhxACPp4vaBdxfEQU3DizT7QJ40seLHu0OaEse3wYX/IgL4FvVwq8wcFBTExM4OzZs1pHIaItUBQFr776Kq5fv46ysjKt41CE8Of4aLi7Fb/4q/+AxZlpxCWloKCuCfVPnEZsYtIDH8/xEdHj8d1BtAmji+uaH58nM9oNUkpkZWWhtLRU6yhEtAVlZWXIysqCEIJln3aNP8dHXZffQdfld+77WlxSCs79i/8I29MvP/T4HB8RPRzfHUSbMLq4Dj0ArwbH1kP7DxsoMszNzaGrqwtPPvkkdLrA3GdJRIGh0+mgKArOnz+Pubk53oZDu8If46OMojKc/if/FjUHTyA9vxgAMHatBx98/a/Q/eF5vPHv/gl0egOsT7143/M4PiJ6PN6zT7QJ8+teTYo+cPcEurCu1dEpkjgcDkRFRcFkMmkdhYi2wWw2w2AwwOl0ah2FIoQ/xke2p1/C0d/7IxTUNiE+JQ3xKWkos+zF3/lv38b+r/4+AOCtv/hTrK+t3vc8jo+IHo9ln2gTPF5tF4BZ1/j4FP48Hg+cTidMJhPi4uK0jkNE2xAXF4empiY4HA54PB6t41AECPT46OQ/+BfQGwxYmJrAzTbHl77P8RHRo7HsE22CIUBbx2xWlMbHp/DX09ODubk5KIqidRQi2gFVVTE3N4fe3l6to1AECPT4KCE1HYnpWQCAmdsjX/o+x0dEj8ayT7QJSVF6zd4segCJUXyrUmBJKVFcXIy8vDytoxDRDuTl5aG4uBhCCK2jUAQI9PjI6/FgeX4OABCbcP+q/BwfET0e3yFEm5CXEKXpPftcaZYCaXx8HAMDA1BVVesoROQHiqJgYGAAExMTWkehMBfo8VHXB7/A2vIidDodihrM932P4yOix2PZJ9oErU8mWh+fwpuUEomJiaivr9c6ChH5QUNDAxISEiCl1DoKhbmdjk+mR27B9dYbWFtZ/tL3Oi79HD/4f/8xAMB85kUkZ+X6/fhE4Y7vEKJNyI43IM6gw7Ln7kIwQ11u/OTP/uXG9+/cGgQAfPaDV9F9+cLG13/7L15BSvbdy6Jnx0fxrT/5uxvfm7k9DADo+uAd/PfffXLj68/+6/8bhfW//vQ6zqBDdrzB7/9NRACwuroKt9sNVVURFcVTAlE4iIqKgs1mgxACx48fR0xMjNaRKEztdHy0ODuF1//0D/HjP/s/UFDbhJScfKyvLGPsWg8mb1wDAFQoh/CVf/OfvnRsjo+IHo8jO6JNMOh0sGbF4crYEnwAVhbmcbP9y6vCzowNY2ZseOPPns9tE+NZW33gcxamJrAw9etLLVcW5jf+vw6ANSsOBu55TgHS1taG1dVV2O12raMQkR/Z7XZ89NFHaG9vh81m0zoOhamdjo9Scwtx5O/+77jV0YLJmwMY7m6FZ20NCWkZqDt8CuYzL8B06ivQ6++/GJnjI6LNYdkn2iRLVhx+ObYEAKhQDuLPnONben56QcmWn+P71XGJAsHn80FKiZqaGqSlpWkdh4j8KC0tDTU1NRBCwGq1QsdSRAGyk/FRYloGnvyn/27Lx+T4iGhzeM8+0SalxhhgzozFbg2XdADMmbFIjeElahQYt27dwujoKLfbIwpTqqpidHQUQ0NDWkehMMbxEVHwYtkn2oLjhYlIjNIF/ISmA5AYpcPxwsQAH4kimZQS6enpqKys1DoKEQVAZWUl0tPTuQ0fBRzHR0TBiWWfaAtiDXqcLU2GL8DH8QE4W5qMWAPfohQYCwsL6OjogKIovLyXKEzpdDooioKOjg4sLi5qHYfCGMdHRMGJ7xSiLSpPiUFzUWA/UT5VlIjyFK6eTIHjcrmg0+lgsVi0jkJEAXTvPe5yubQNQmGP4yOi4MOyT7QN9uz4jROav+ZE773OqaJE2LLj/fSqRF/m9XrhcDhgNBqRkJCgdRwiCqCEhAQYjUZIKeH1erWOQ2GO4yOi4MKyT7RN9ux4vFyZ4pd71O7dg/ZyZQpPZBRwfX19mJ6e5sJ8RBFCVVVMT0+jv79f6ygUATg+IgoeLPtEO1CeEoPfb0iHKTMWwNY/xb73eFNmLP6gIZ2XptGukFKioKAAhYWFWkchol1QUFCA/Px8LtRHu4bjI6LgEKV1AKJQF2fQ40xJMg7kJaBlYhmuiWUse+4uUaMH8PmLJj//5ziDDtasOFiy4rh9DO2aqakpXL16Fc8884zWUYhol+h0OqiqijfffBNTU1NIT0/XOhJFAI6PiLTHsk/kJ6kxBhwpSMSh/ASML3kwuriO0cV1LKx7se71IUqvQ2KUHnkJUchLiEJ2vAEGroJOu0xKibi4OBiNRq2jENEuMhqNOH/+PBwOB06ePKl1HIogHB8RaYdln8jPDDrdxgmLKJisr6/D5XLBYrEgOjpa6zhEtIuio6NhsVjgcrlw9OhRREXxHEW7i+Mjot3He/aJiCJER0cHlpaWuDAfUYRSFAWLi4vo7OzUOgoREe0Cln0iogghpURlZSUyMzO1jkJEGsjMzERFRQUX6iMiihAs+0REEWBkZAS3bt3irD5RhFNVFbdu3cLIyIjWUYiIKMBY9omIIoAQAikpKaipqdE6ChFpqKamBikpKZzdJyKKACz7RERhbmlpCW1tbbDb7dDr+WufKJLp9XrY7Xa0tbVheXlZ6zhERBRAHPUREYU5t9sNr9cLm82mdRQiCgI2mw1erxctLS1aRyEiogBi2SciCmM+nw9CCDQ0NCApKUnrOEQUBJKSklBfXw8pJXw+n9ZxiIgoQFj2iYjC2MDAAO7cucOF+YjoPqqqYnJyEgMDA1pHISKiAGHZJyIKY0II5OTkoKSkROsoRBRESkpKkJ2dDSml1lGIiChAWPaJiMLU7Owsenp6oCgKdDqd1nGIKIjodDqoqoru7m7Mzs5qHYeIiAKAZZ+IKEw5HA5ER0fDZDJpHYWIgpDJZEJ0dDQcDofWUYiIKABY9omIwpDH44HT6YTJZEJsbKzWcYgoCMXGxsJkMsHpdMLj8Wgdh4iI/Ixln4goDHV3d2N+fh6qqmodhYiCmKqqmJ+fR3d3t9ZRiIjIz1j2iYjCkBACpaWlyMnJ0ToKEQWxnJwclJaWcqE+IqIwxLJPRBRmbt++jevXr3NWn4g2RVEUDA4OYnx8XOsoRETkRyz7RERhRkqJpKQk1NXVaR2FiEJAfX09EhMTIYTQOgoREfkRyz4RURhZWVmB2+2GzWaDwWDQOg4RhQCDwQCbzQa3243V1VWt4xARkZ+w7BMRhZG2tjasra3BbrdrHYWIQojdbsfa2hpaW1u1jkJERH7Csk9EFCZ8Ph+EEKitrUVKSorWcYgohKSmpqK2thZSSvh8Pq3jEBGRH7DsExGFiZs3b+L27dtcmI+ItkVRFIyNjeHmzZtaRyEiIj9g2SciChNCCGRmZqK8vFzrKEQUgioqKpCRkcFt+IiIwgTLPhFRGJifn0dnZycURYFOp9M6DhGFIJ1OB0VR0NHRgYWFBa3jEBHRDrHsExGFAZfLBb1eD7PZrHUUIgphFosFer0eTqdT6yhERLRDLPtERCHO6/VCSommpibEx8drHYeIQlh8fDyMRiMcDge8Xq/WcYiIaAdY9omIQtzVq1cxOzvLhfmIyC9UVcXMzAyuXr2qdRQiItoBln0iohAnhEBhYSHy8/O1jkJEYaCgoACFhYVcqI+IKMSx7BMRhbA7d+6gv7+fs/pE5FeKoqCvrw937tzROgoREW0Tyz4RUQiTUiI+Ph6NjY1aRyGiMNLY2Ij4+HjO7hMRhTCWfSKiELW2tgaXywWr1YqoqCit4xBRGImOjobFYkFLSwvW1ta0jkNERNvAsk9EFKLa29uxvLwMu92udRQiCkOKomBpaQkdHR1aRyEiom1g2SciClFSSlRVVSEjI0PrKEQUhjIyMlBVVQUhhNZRiIhoG1j2iYhC0NDQEIaHh7kwHxEFlKIoGB4extDQkNZRiIhoi1j2iYhCkJQSqampqKqq0joKEYWx6upqpKamcqE+IqIQxLJPRBRiFhcX0d7eDkVRoNfz1zgRBY5er4fdbkd7ezuWlpa0jkNERFvAUSIRUYhpaWmBz+eD1WrVOgoRRQCbzQav14uWlhatoxAR0Raw7BMRhRCfzwcpJRoaGpCYmKh1HCKKAImJiWhsbISUEj6fT+s4RES0SSz7REQhpL+/H1NTU1yYj4h2laIouHPnDq5du6Z1FCIi2iSWfSKiECKlRG5uLoqKirSOQkQRpLi4GLm5udyGj4gohLDsExGFiOnpafT29kJVVeh0Oq3jEFEE0el0UBQFvb29mJmZ0ToOERFtAss+EVGIcDgciImJQVNTk9ZRiCgCmUwmxMTEwOFwaB2FiIg24f/f3r1G2XWW9wH/nznj0UijS2RJ9ViWLSm4lSwjxrY0gQU1Tg02C0xSqBdZTTGs0mXcxiS0lCyg7aoJrJUCDrQmYQViJzZJswBjoLWxkxrZGEPwBd1lk/EN62JJlpiRbV1mNCPPOacfZAmNrtbMmcvZ/v2+nbPfvd9nvjxn/2fv/W5hH6ABDA4OZu3ateno6EhLS8t4lwO8BrW0tKSjoyNr1qxJpVIZ73IAOAVhH6ABdHV1pbe318J8wLhavnx5ent709XVNd6lAHAKwj5AA1i1alUWLlyY2bNnj3cpwGvYnDlzsmDBAgv1ATQAYR9ggtu5c2e2bNmS5cuXj3cpAOns7MyWLVuyc+fO8S4FgJMQ9gEmuJUrV2batGlZtGjReJcCkEWLFmXq1KlZtWrVeJcCwEkI+wAT2MDAQDZs2JBLLrkk5XJ5vMsBSLlczrJly7Jhw4YMDAyMdzkAnICwdyh9PAAAEaRJREFUDzCBrV+/PoODg1m2bNl4lwJw2CWXXJKXX345GzZsGO9SADgBYR9ggqrValm1alUuuOCCTJs2bbzLAThs+vTpWbx4cVauXJlarTbe5QBwHMI+wAS1efPmdHd3W5gPmJA6OzvT3d2dLVu2jHcpAByHsA8wQa1atSqzZ8/OggULxrsUgGMsWLAgs2bN8ho+gAlK2AeYgPbu3Zuurq4sX748pVJpvMsBOEapVEpnZ2e6urqyb9++8S4HgKMI+wAT0Jo1a1Iul9PR0THepQCcUEdHR8rlctasWTPepQBwFGEfYIKpVqtZvXp1li5dmtbW1vEuB+CEWltbs3Tp0qxevTrVanW8ywHgCMI+wATz5JNPZu/evens7BzvUgBOqbOzM3v27MlTTz013qUAcARhH2CCWbVqVc4999y0t7ePdykAp9Te3p558+ZZqA9gghH2ASaQnp6ePPvss163BzSUzs7OPPvss9m1a9d4lwLAK5rHuwCA14JKrZbu/ZXs6BvMjr7B7BusplKtpdxUytTmprRPaU77lOasXbU6U6ZMyZIlS8a7ZIBXbcmSJbn33nuzcuXKXPGOd7yqfjdncjllbxsBGDXCPsAo2n2gknU9/Vnb05/+Si3JwVuqjlzGqinJukMXw2ZemPY3z0tvtZQZY1wrwHA1NzdnybLfyLoXX07Xhl0ZeKXJnazftZZLuXh2ay6a3ZoZLeUxrhig+IR9gFHQX6nmgW29Wb9rIKUktSO2Hb1e9ZDPLa3Z2dKar/78xXTMmpTLz2nLpLInroCJ61C/e2zmhanNqB4O+snJ+11/pZZHdu7Pwzv363cAo0DYB6izjXsO5O7Ne9M3eDDi104x/miHxm/YNZBf7D6Qq+ZPy8LpLXWtEaAeju53pabTC+v6HcDo8e9TgDpa3b0/t/9iT/oGa6cd8o9WS9I7WMvtv9iT1d3761EeQN3odwATm7APUCeru/dnxdbeJKd/Nf9EDh1nxdZeJ8DAhKHfAUx8buMHqIONew7kG/+wPk8/8kC2da3Ptq4N6d74VKqVSq64/lO5/NqPH7NPtVrNc4+tylMP/TC/WPmT/HLj0xno3ZvWqdMzd9HSXPJb/zoXvfPqlF5ZrXrF1t6cOansFldgXA2n353Iw9++NXd9/pNJkuXveX+uvuGmJPodQD0I+wAj1F+p5u7Ne/PoHbflp9+8+VXv98LWTfnah65KkkyeMTPzLujI5Om/lhe2bc4zjz6YZx59MBvu/T95/xdvS/MZLSkluWfz3nx4yUyLWAHjYrj97nhe2Lop/+/Ln0mpVEqtNvT+AP0OYOSEfYARemBbb/oGaznr/MW59AMfydzFSzN38Rvyo1tvytp7vn3C/UqlUl7XeWku/eBH8k/f9JtpKv/q1VPPrv5p/vqj/yZP/OQHefC2P83brvvDw8+0/nBbb9553rQx+MsAhhpuvztatVrNHZ/+g6RUysXv/p2s+f7tQ7brdwAjJ+wDjMBLA5Ws3zWQJOl87weGbCs1lU6676xzF+bav/jecbf9+rK35LIPfTQr/vzzWXP37XnbdX+Y5OAJ8PpdA3lz+xTvpQbG1Ej63dEe+sbN2bT2kfz2p76Q3hd6jjtGvwMYGfdFAYzA+l39Ob1T3Fdv7qKlSZLdO7cP+b6UZF1P/yjNCnB89ep33ZueyQ/+/H9k4bI3503v+9BJx+p3AMMn7AMMU6VWy9qe/rqtRH20ni3PJkmmzT5ryPe1JGt7+lOpjdbMAEPVq99VK5XcccPvJynl6htuOrwA6YnodwDDJ+wDDFP3/kr6K6NzAnpgf18e+tZfJkle/7Z3H7O9v1JL9/7KqMwNcLR69bsf/81X8tzjq3PlR/5LZp278FXto98BDI+wDzBMO/oGR+3Yd37+E3lx2+ZMn9Oe3/x3/2nM5wc4Uj36zY5nunLf127M/I7OvPl3rxvz+QFea4R9gGHa0Tc4Kk30/lu+lDXfvz3Nk1rzu1/4y7T92pnHjGmKk19g7Iy031UGB3PHDb+fUlNTrv70n6ap6dUfTb8DGB5hH2CY9g1WU63zMX/yt1/NfV/9fJpbJuWaL349Cy5643HHVZP0DtZ7doDjG2m/e+Cv/le2P7Ehb//3n8icBeef1r76HcDwePUewDBVqvV9Xv+hb92Sv/ufN6R8Rkve/ye3ZtFb3nbS8YN1nh/gREba7/7xgXuSJE/8+N48+dP7hmx7cftzSZIn/2FFbv7wv0ySXHfLnUPG6HcAp0/YBxim8mm+V/pkHr79r/L9G//rK0H/tiy+9MpT7tNcx/kBTqZe/W7TukdPuG1vzy+zt+eXx92m3wGcPmEfYJimNjelKRnxrfyPfufruesLnzoc9C9466mDflOStmZPYgFjY6T97qPf+tEJt933tRtz/81/kuXveX+uvuGmY7brdwDDo3MCDFP7lOYRB/2ffe9/587PfeK0gn5y8IS7fYr/1wJjox79brj0O4Dh0TkBhunok89tXetz5+c+efjzC1s3JUl+9t2/yRM/XnH4+2u+9PVMn9Oe7U8+lv/7xx9PrVbLmefMz+P335XH77/ruHO97zNfOeX8AKNlpP2u3vMDcGo6J8AwzZlcTmu5lP7KwYWjBnr35bnHVx8zbvfO7dm9c/vhz5WXDyRJ+vfuSa12cN/uTU+ne9PTJ5zr6LDfWi5lzuTyiP8GgFdjpP1uJPQ7gOEp1Q6daQJw2h7c3ptHdu7PWDbSUpI3nTU5l81tG8NZKYLnn38+N998c6677rqcffbZ410ODUa/A2gsntkHGIGLZreO6YlvktRemRdgLOl3AI1F2AcYgRkt5XTMmpSxeilUKUnHrEmZ0eKWVmBs6XcAjUXYBxihy89pS1tzadRPgEtJ2ppLufwct7MC40O/A2gcwj7ACE0qN+Wq+dNG/fbWWpKr5k/LpLLWDYwP/Q6gceigAHWwcHpLrpg3ulegrpzXloXTW0Z1DoBT0e8AGoOwD1Any+ZMPnwCXK9bXA8d58p5bblkzuQ6HRVgZPQ7gImvebwLACiSZXMm58xJ5dyzeW96B2sjutX10DOrV82f5goXMOHodwATmyv7AHW2cHpLrl0yM2+YNSnJ6V/1OjT+DbMm5cNLZjrxBSYs/Q5g4irVarWxfmUqwGvG7gOVrOvpz9qe/vRXDrbbpiTVI8Yc+bm1XMrFs1tz0exWr5tixCq1Wrr3V7KjbzA7+gaza19fNj+3NfPPnZdZU6ekfUpz2qc0Z87kcsqlsXqhGkWl3wFMLMI+wBg4OnT1DlYzWK2luamUtuYmoYu6OnHoquXgtdRamlISuhgV+h3AxCDsA0BB9FeqeWBbb9bvGngl0r96h8Z3zJqUy89p88ozAGhwwj4AFMDGPQdy9+a96bNQGgAQYR8AGt7q7v1ZsbX3tK/mn8ih41wxry3LvAINABqSe/QAoIEdCvpJfYL+kcdZsbU3q7v31+moAMBYEvYBoEFt3HPgcNAfLSu29mbjngOjOgcAUH9u4weABtRfqeaWf3wxm595Ok898kC2da3Ptq4N6d74VKqVSq64/lO5/NqPH3ffJ396Xx6//+48/+Tj2dP9fPp2v5TyGWdk1rwFWfSWt+efX/N7aZs5K8mvnuH/8JKZFu0DgAbSPN4FAACn74FtvekbrOXhO27LQ9+8+bT2Xfd33826v/9OZp27MGe97oK0zZyVvpdeyHM/X5sf3fblrLrzG7n2L76Xs163OLUkvYO1/HBbb9553rTR+WMAgLoT9gGgwbw0UMn6XQNJkvbzF+fSD3wkcxcvzdzFb8iPbr0pa+/59kn3v/SD1+ddH/ujTJt91pDvB/r25buf+Y95bMVd+e5nP5br//rvkxx8hn/9roG8uX1KZrSUR+VvAgDqS9gHgAazflf/4RXzO9/7gSHbSk2lU+4/d9HS434/acrUvOtjn81jK+7Kc4+tSv++vWmdevBqfinJup7+XDa3bYTVAwBjwcN3ANBAKrVa1vb0123l/aM1lQ9euS81NaXc/KtrArUka3v6U7HUDwA0BGEfABpI9/5K+iujE7gHDwzkB1/54yTJ+W+8LGe0Th6yvb9SS/f+yqjMDQDUl9v4AaCB7OgbrNuxtnWtz0PfuiW1Wi29L+7Ktp+vS+9LuzLvwotz9ae/fML526c4fQCAic6vNQA0kB19g2lKUq3DsV7asS1rvn/7kO/Of+Nlee9/+2Jm/JOzjxnflPr+swEAGD3CPgA0kH2D1boE/SS58F+8K59b051qpZLdO7fnmZ89mPu+dmNu+p235n2f/UqWvv23h4yvJukdrNfsAMBo8sw+ADSQSrX+z+s3lcuZOffcdL7nmvyHW+9OUsp3/uij2duz85ixg6MwPwBQf8I+ADSQ8qt4td5IzJx7Xn59+VtyoK83Tz/y4DHbm0d5fgCgPoR9AGggU5ubRv3Hu2XylCRJ74s9Q75vStLW7NQBABqBX2wAaCDtU5rr9sz+8QweGMjmdY8mSWaf97oh26qvzA8ATHzCPgA0kJGG7X0vdOeRO25L/769x2zb/cvn8+3/fn32dO/IzLnn5fw3XVb3+QGAsVGq1WpW2gGABlGp1fJnj72Q/srBn+9tXetz5+c+eXj7C1s3pfelXZlx1txMn/Or1+dd86WvZ/qc9ry4fUtufPeylM9oydmLXp+ZZ5+bpJaXdmzP9ic2pPLygUyf055/+2ffzNn/7PVD5m4tl/IHS89MueS5fQCY6Px7HgAaSLlUysWzW/PIzv2pJRno3ZfnHl99zLjdO7dn987thz9XXj6QJGmbOTvv+s+fzaY1D2fHM13p3vhUXh7oz+SpM3Le0mVZ/NZ35Df+1QfTOnXakOOVklw8u1XQB4AG4co+ADSY3Qcq+erPXxzzeX/vwpmZ0VIe83kBgNPnmX0AaDAzWsrpmDUpY3WNvZSkY9YkQR8AGoiwDwAN6PJz2tLWXBr1wF9K0tZcyuXntI3yTABAPQn7ANCAJpWbctX8aRntZ/FqSa6aPy2Tyk4ZAKCR+OUGgAa1cHpLrpg3ulfcr5zXloXTW0Z1DgCg/oR9AGhgy+ZMPhz463VL/6HjXDmvLZfMmVynowIAY8lq/ABQABv3HMg9m/emd7A2olv7Dz2jf9X8aa7oA0ADE/YBoCD6K9U8sK0363cNpJScVug/NL5j1qRcfk6bZ/QBoMEJ+wBQMLsPVLKupz9re/rTXzn4M9+UpHrEmCM/t5ZLuXh2ay6a3er1egBQEMI+ABRUpVZL9/5KdvQNZkffYHoHqxms1tLcVEpbc1PapzSnfUpz5kwup1wa7Zf4AQBjSdgHAACAgvFAHgAAABSMsA8AAAAFI+wDAABAwQj7AAAAUDDCPgAAABSMsA8AAAAFI+wDAABAwQj7AAAAUDDCPgAAABSMsA8AAAAFI+wDAABAwQj7AAAAUDDCPgAAABSMsA8AAAAFI+wDAABAwQj7AAAAUDDCPgAAABSMsA8AAAAFI+wDAABAwQj7AAAAUDDCPgAAABSMsA8AAAAFI+wDAABAwQj7AAAAUDDCPgAAABSMsA8AAAAFI+wDAABAwQj7AAAAUDDCPgAAABSMsA8AAAAFI+wDAABAwQj7AAAAUDDCPgAAABSMsA8AAAAFI+wDAABAwQj7AAAAUDDCPgAAABSMsA8AAAAFI+wDAABAwQj7AAAAUDDCPgAAABSMsA8AAAAFI+wDAABAwQj7AAAAUDDCPgAAABSMsA8AAAAFI+wDAABAwQj7AAAAUDDCPgAAABSMsA8AAAAFI+wDAABAwQj7AAAAUDDCPgAAABSMsA8AAAAFI+wDAABAwQj7AAAAUDDCPgAAABSMsA8AAAAFI+wDAABAwQj7AAAAUDDCPgAAABSMsA8AAAAFI+wDAABAwQj7AAAAUDDCPgAAABSMsA8AAAAFI+wDAABAwQj7AAAAUDDCPgAAABSMsA8AAAAFI+wDAABAwQj7AAAAUDDCPgAAABSMsA8AAAAFI+wDAABAwQj7AAAAUDDCPgAAABSMsA8AAAAFI+wDAABAwfx/B/W5VoBRw9UAAAAASUVORK5CYII=", + "text/plain": [ + "
" ] - }, - { - "cell_type": "markdown", - "source": [ - "**Conclusion:** Given the connectivity of the hardware and its preferences the engince optimizes the constraints of the model. In this case the constraits were `max_width` which is the maximum number of qubits it can use and the number of `cx gates`. Our main aim is to minimize the number of cx gates.\n", - "\n", - "With `Star Connectivity` the minimum number of cx gates required after transpiling the circuit is just 114 and depth of the circuit turned out to be 191.\n", - "\n", - "Whereas with `Grid Connectivity` the minimum number of cx gates required after transpiling the circuit is 117 and depth of the circuit is 82.\n", - "\n", - "Looking at the both the cases we can come to a conclusion that star connectivity is more favourable to synthesize and execute a `mcx circuit`.\n", - "\n" - ], - "metadata": { - "id": "b043xgbpHGEO" - } - }, - { - "cell_type": "code", - "source": [], - "metadata": { - "id": "0oDCHQ3Pczgt" - }, - "execution_count": null, - "outputs": [] + }, + "metadata": {}, + "output_type": "display_data" } - ], - "metadata": { + ], + "source": [ + "# plotting Star Connectivity\n", + "import numpy as np\n", + "\n", + "G = nx.Graph()\n", + "G.add_edges_from(star_connectivity)\n", + "\n", + "# Define the positions of the nodes in a star configuration\n", + "pos = {}\n", + "pos[0] = (0, 0) # Central node\n", + "angle_step = 360 / (len(star_connectivity))\n", + "for i in range(1, 18):\n", + " angle = angle_step * (i - 1)\n", + " radians = np.deg2rad(angle)\n", + " pos[i] = (np.cos(radians), np.sin(radians))\n", + "\n", + "# Plot the graph\n", + "plt.figure(figsize=(10, 10))\n", + "nx.draw(\n", + " G,\n", + " pos,\n", + " with_labels=True,\n", + " node_size=500,\n", + " node_color=\"skyblue\",\n", + " font_size=16,\n", + " font_color=\"black\",\n", + " edge_color=\"gray\",\n", + ")\n", + "plt.title(\"Star Connectivity Map\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "id": "1ogjh7qTGJd3" + }, + "outputs": [], + "source": [ + "# Grid Preferences\n", + "preferences_grid = Preferences(\n", + " custom_hardware_settings=CustomHardwareSettings(\n", + " basis_gates=[\"cx\", \"u\"],\n", + " connectivity_map=grid_connectivity,\n", + " ),\n", + " random_seed=-1,\n", + ")\n", + "\n", + "\n", + "# Star Preferences\n", + "preferences_star = Preferences(\n", + " custom_hardware_settings=CustomHardwareSettings(\n", + " basis_gates=[\"cx\", \"u\"],\n", + " connectivity_map=star_connectivity,\n", + " ),\n", + " random_seed=-1,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "id": "_3KIstIjC_Ms" + }, + "outputs": [], + "source": [ + "# define synthesis engine constraints\n", + "constraints = Constraints(optimization_parameter=\"cx\", max_width=max_width)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "id": "wviSbVIqsavi" + }, + "outputs": [], + "source": [ + "# define models with different preferences\n", + "model = set_constraints(model, constraints)\n", + "model_grid = set_preferences(model, preferences_grid)\n", + "model_star = set_preferences(model, preferences_star)\n", + "\n", + "\n", + "# write models to files\n", + "write_qmod(model_grid, \"hardware_aware_mcx_grid\")\n", + "write_qmod(model_star, \"hardware_aware_mcx_star\")" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { "colab": { - "provenance": [] - }, - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.5" + "base_uri": "https://localhost:8080/" + }, + "id": "hWP-uuNmsf5g", + "outputId": "762decbc-3005-4419-bb7e-6e14571db2a3" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Opening: http://localhost:4200/circuit/74f4c802-631d-4f39-b68b-3b95397e67bd?version=0.0.0\n" + ] + } + ], + "source": [ + "qprog_grid = synthesize(model_grid)\n", + "show(qprog_grid)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "7-1tx3a3squr", + "outputId": "65034a5d-dd40-42e4-b045-88e2a9401c37" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Synthesized MCX cx-count for grid connectivity is 117\n", + "Opening: http://localhost:4200/circuit/74f4c802-631d-4f39-b68b-3b95397e67bd?version=0.0.0\n" + ] + } + ], + "source": [ + "circuit_grid = QuantumProgram.from_qprog(qprog_grid)\n", + "\n", + "print(\n", + " f\"Synthesized MCX cx-count for grid connectivity is {circuit_grid.transpiled_circuit.count_ops['cx']}\"\n", + ")\n", + "circuit_grid.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cYcpNdbos3is", + "outputId": "fd1c4e8b-623a-425f-bebe-a39d7f051f7f" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Opening: http://localhost:4200/circuit/d47721d8-f737-4e07-be84-ad204e5df08d?version=0.0.0\n" + ] + } + ], + "source": [ + "qprog_star = synthesize(model_star)\n", + "show(qprog_star)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "FySbcicutSXk", + "outputId": "c1d536d1-67e4-4f99-95d1-60884614ed2d" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Synthesized MCX cx-count for star connectivity is 114\n", + "Opening: http://localhost:4200/circuit/d47721d8-f737-4e07-be84-ad204e5df08d?version=0.0.0\n" + ] } + ], + "source": [ + "circuit_star = QuantumProgram.from_qprog(qprog_star)\n", + "\n", + "print(\n", + " f\"Synthesized MCX cx-count for star connectivity is {circuit_star.transpiled_circuit.count_ops['cx']}\"\n", + ")\n", + "circuit_star.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "4p-TBa9ztebZ", + "outputId": "39293b2b-7081-4267-f3b5-005f37ee830b" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Synthesized Depth for grid connectivity is 82\n" + ] + } + ], + "source": [ + "print(\n", + " f\"Synthesized Depth for grid connectivity is {circuit_grid.transpiled_circuit.depth}\"\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "EVxTVGqf1HIS", + "outputId": "53561623-3c04-4931-d8f3-b6d82c680be5" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Synthesized Depth for star connectivity is 191\n" + ] + } + ], + "source": [ + "print(\n", + " f\"Synthesized Depth for star connectivity is {circuit_star.transpiled_circuit.depth}\"\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "b043xgbpHGEO" + }, + "source": [ + "**Conclusion:** Given the connectivity of the hardware and its preferences the engince optimizes the constraints of the model. In this case the constraits were `max_width` which is the maximum number of qubits it can use and the number of `cx gates`. Our main aim is to minimize the number of cx gates.\n", + "\n", + "With `Star Connectivity` the minimum number of cx gates required after transpiling the circuit is just 114 and depth of the circuit turned out to be 191.\n", + "\n", + "Whereas with `Grid Connectivity` the minimum number of cx gates required after transpiling the circuit is 117 and depth of the circuit is 82.\n", + "\n", + "Looking at the both the cases we can come to a conclusion that star connectivity is more favourable to synthesize and execute a `mcx circuit`.\n", + "\n" + ] + } + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" }, - "nbformat": 4, - "nbformat_minor": 0 + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.4" + } + }, + "nbformat": 4, + "nbformat_minor": 4 } diff --git a/community/basic_examples/hw_aware_synthesis/mcx_10_ctrl_depth.qmod b/community/basic_examples/hw_aware_synthesis/mcx_10_ctrl_depth.qmod index 293534ae..2b24a6a7 100644 --- a/community/basic_examples/hw_aware_synthesis/mcx_10_ctrl_depth.qmod +++ b/community/basic_examples/hw_aware_synthesis/mcx_10_ctrl_depth.qmod @@ -9,4 +9,3 @@ qfunc main(output ctrl: qbit[], output target: qbit) { allocate<1>(target); my_mcx(ctrl, target); } - diff --git a/community/basic_examples/hw_aware_synthesis/mcx_10_ctrl_depth.synthesis_options.json b/community/basic_examples/hw_aware_synthesis/mcx_10_ctrl_depth.synthesis_options.json index 1c4b772e..e5062f9d 100644 --- a/community/basic_examples/hw_aware_synthesis/mcx_10_ctrl_depth.synthesis_options.json +++ b/community/basic_examples/hw_aware_synthesis/mcx_10_ctrl_depth.synthesis_options.json @@ -3,4 +3,4 @@ "max_width": 20, "optimization_parameter": "depth" } -} \ No newline at end of file +} diff --git a/community/basic_examples/vqe/vqe.ipynb b/community/basic_examples/vqe/vqe.ipynb index 56771c63..3479c185 100644 --- a/community/basic_examples/vqe/vqe.ipynb +++ b/community/basic_examples/vqe/vqe.ipynb @@ -15,7 +15,7 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -23,26 +23,27 @@ "\n", "from classiq import *\n", "\n", - "#Defining the Hamiltonian from the problem\n", - "HAMILTONIAN = QConstant(\"HAMILTONIAN\", List[PauliTerm], \n", - " [ \n", - " PauliTerm([Pauli.Z], 1),\n", - " PauliTerm([Pauli.X], 0.1)])\n", + "# Defining the Hamiltonian from the problem\n", + "HAMILTONIAN = QConstant(\n", + " \"HAMILTONIAN\", List[PauliTerm], [PauliTerm([Pauli.Z], 1), PauliTerm([Pauli.X], 0.1)]\n", + ")\n", "\n", - "#Defining the Ansatz for the Problem\n", + "\n", + "# Defining the Ansatz for the Problem\n", "@qfunc\n", "def main(q: Output[QBit], angles: CArray[CReal, 1]) -> None:\n", " allocate(1, q)\n", - " RY(angles[0], q) \n", + " RY(angles[0], q)\n", + "\n", "\n", - "#Defining the Variational Quantum Eigensolver primitives with proper paramters\n", + "# Defining the Variational Quantum Eigensolver primitives with proper paramters\n", "@cfunc\n", "def cmain() -> None:\n", " res = vqe(\n", - " HAMILTONIAN, #Hamiltonian of the problem\n", - " False, #Maximize Parameter\n", + " HAMILTONIAN, # Hamiltonian of the problem\n", + " False, # Maximize Parameter\n", " [],\n", - " optimizer=Optimizer.COBYLA, # Classical Optimizer\n", + " optimizer=Optimizer.COBYLA, # Classical Optimizer\n", " max_iteration=1000,\n", " tolerance=0.001,\n", " step_size=0,\n", @@ -51,6 +52,7 @@ " )\n", " save({\"result\": res})\n", "\n", + "\n", "qmod = create_model(main, classical_execution_function=cmain)\n", "qprog = synthesize(qmod)\n", "write_qmod(qmod, name=\"vqe_primitives\")" @@ -65,14 +67,14 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Opening: https://platform.classiq.io/circuit/8758a1e5-bd68-4be4-896e-7fd4e98d9a95?version=0.42.0\n" + "Opening: https://platform.classiq.io/circuit/4b5a812b-24e6-4165-a09d-4dfcc2d9b523?version=0.42.0\n" ] } ], @@ -89,7 +91,7 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -100,15 +102,15 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Minimal energy of the Hamiltonian -1.015625\n", - "Optimal parameters for the Ansatz {'angles_0': 3.2430102953668842}\n" + "Minimal energy of the Hamiltonian -1.01240234375\n", + "Optimal parameters for the Ansatz {'angles_0': 9.566986160448005}\n" ] } ], @@ -287,7 +289,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -301,9 +303,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.1" + "version": "3.11.8" } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 4 } diff --git a/community/basic_examples/vqe/vqe_primitives.qmod b/community/basic_examples/vqe/vqe_primitives.qmod index 9a094c96..3d669341 100644 --- a/community/basic_examples/vqe/vqe_primitives.qmod +++ b/community/basic_examples/vqe/vqe_primitives.qmod @@ -17,4 +17,4 @@ qfunc main(output q: qbit) { cscope ``` res = vqe(HAMILTONIAN, False, [], optimizer=Optimizer.COBYLA, max_iteration=1000, tolerance=0.001, step_size=0, skip_compute_variance=False, alpha_cvar=1.0) save({'result': res}) -``` \ No newline at end of file +``` diff --git a/community/basic_examples/vqe/vqe_primitives.synthesis_options.json b/community/basic_examples/vqe/vqe_primitives.synthesis_options.json index 9e26dfee..0967ef42 100644 --- a/community/basic_examples/vqe/vqe_primitives.synthesis_options.json +++ b/community/basic_examples/vqe/vqe_primitives.synthesis_options.json @@ -1 +1 @@ -{} \ No newline at end of file +{} diff --git a/functions/function_usage_examples/arithmetic/arithmetic_expression/arithmetic_expression_example.json b/functions/function_usage_examples/arithmetic/arithmetic_expression/arithmetic_expression_example.metadata.json similarity index 100% rename from functions/function_usage_examples/arithmetic/arithmetic_expression/arithmetic_expression_example.json rename to functions/function_usage_examples/arithmetic/arithmetic_expression/arithmetic_expression_example.metadata.json diff --git a/functions/function_usage_examples/arithmetic/bitwise_and/bitwise_and_2vars_example.json b/functions/function_usage_examples/arithmetic/bitwise_and/bitwise_and_2vars_example.metadata.json similarity index 100% rename from functions/function_usage_examples/arithmetic/bitwise_and/bitwise_and_2vars_example.json rename to functions/function_usage_examples/arithmetic/bitwise_and/bitwise_and_2vars_example.metadata.json diff --git a/functions/function_usage_examples/arithmetic/bitwise_and/bitwise_and_integer_example.json b/functions/function_usage_examples/arithmetic/bitwise_and/bitwise_and_integer_example.metadata.json similarity index 100% rename from functions/function_usage_examples/arithmetic/bitwise_and/bitwise_and_integer_example.json rename to functions/function_usage_examples/arithmetic/bitwise_and/bitwise_and_integer_example.metadata.json diff --git a/functions/function_usage_examples/arithmetic/bitwise_invert/bitwise_invert_example.json b/functions/function_usage_examples/arithmetic/bitwise_invert/bitwise_invert_example.metadata.json similarity index 100% rename from functions/function_usage_examples/arithmetic/bitwise_invert/bitwise_invert_example.json rename to functions/function_usage_examples/arithmetic/bitwise_invert/bitwise_invert_example.metadata.json diff --git a/functions/function_usage_examples/arithmetic/bitwise_or/bitwise_or_2vars_example.json b/functions/function_usage_examples/arithmetic/bitwise_or/bitwise_or_2vars_example.metadata.json similarity index 100% rename from functions/function_usage_examples/arithmetic/bitwise_or/bitwise_or_2vars_example.json rename to functions/function_usage_examples/arithmetic/bitwise_or/bitwise_or_2vars_example.metadata.json diff --git a/functions/function_usage_examples/arithmetic/bitwise_or/bitwise_or_integer_example.json b/functions/function_usage_examples/arithmetic/bitwise_or/bitwise_or_integer_example.metadata.json similarity index 100% rename from functions/function_usage_examples/arithmetic/bitwise_or/bitwise_or_integer_example.json rename to functions/function_usage_examples/arithmetic/bitwise_or/bitwise_or_integer_example.metadata.json diff --git a/functions/function_usage_examples/arithmetic/bitwise_xor/bitwise_xor_2vars_example.json b/functions/function_usage_examples/arithmetic/bitwise_xor/bitwise_xor_2vars_example.metadata.json similarity index 100% rename from functions/function_usage_examples/arithmetic/bitwise_xor/bitwise_xor_2vars_example.json rename to functions/function_usage_examples/arithmetic/bitwise_xor/bitwise_xor_2vars_example.metadata.json diff --git a/functions/function_usage_examples/arithmetic/bitwise_xor/bitwise_xor_integer_example.json b/functions/function_usage_examples/arithmetic/bitwise_xor/bitwise_xor_integer_example.metadata.json similarity index 100% rename from functions/function_usage_examples/arithmetic/bitwise_xor/bitwise_xor_integer_example.json rename to functions/function_usage_examples/arithmetic/bitwise_xor/bitwise_xor_integer_example.metadata.json diff --git a/functions/function_usage_examples/arithmetic/comparator/comparator_2vars_example.json b/functions/function_usage_examples/arithmetic/comparator/comparator_2vars_example.metadata.json similarity index 100% rename from functions/function_usage_examples/arithmetic/comparator/comparator_2vars_example.json rename to functions/function_usage_examples/arithmetic/comparator/comparator_2vars_example.metadata.json diff --git a/functions/function_usage_examples/arithmetic/comparator/comparator_integer_example.json b/functions/function_usage_examples/arithmetic/comparator/comparator_integer_example.metadata.json similarity index 100% rename from functions/function_usage_examples/arithmetic/comparator/comparator_integer_example.json rename to functions/function_usage_examples/arithmetic/comparator/comparator_integer_example.metadata.json diff --git a/functions/function_usage_examples/arithmetic/extremum/maximum_float_example.json b/functions/function_usage_examples/arithmetic/extremum/maximum_float_example.metadata.json similarity index 100% rename from functions/function_usage_examples/arithmetic/extremum/maximum_float_example.json rename to functions/function_usage_examples/arithmetic/extremum/maximum_float_example.metadata.json diff --git a/functions/function_usage_examples/arithmetic/extremum/minimum_2vars_example.json b/functions/function_usage_examples/arithmetic/extremum/minimum_2vars_example.metadata.json similarity index 100% rename from functions/function_usage_examples/arithmetic/extremum/minimum_2vars_example.json rename to functions/function_usage_examples/arithmetic/extremum/minimum_2vars_example.metadata.json diff --git a/functions/function_usage_examples/arithmetic/modulo/modulo_example.json b/functions/function_usage_examples/arithmetic/modulo/modulo_example.metadata.json similarity index 100% rename from functions/function_usage_examples/arithmetic/modulo/modulo_example.json rename to functions/function_usage_examples/arithmetic/modulo/modulo_example.metadata.json diff --git a/functions/function_usage_examples/arithmetic/multiplication/multiplication_2vars_example.json b/functions/function_usage_examples/arithmetic/multiplication/multiplication_2vars_example.metadata.json similarity index 100% rename from functions/function_usage_examples/arithmetic/multiplication/multiplication_2vars_example.json rename to functions/function_usage_examples/arithmetic/multiplication/multiplication_2vars_example.metadata.json diff --git a/functions/function_usage_examples/arithmetic/multiplication/multiplication_float_example.json b/functions/function_usage_examples/arithmetic/multiplication/multiplication_float_example.metadata.json similarity index 100% rename from functions/function_usage_examples/arithmetic/multiplication/multiplication_float_example.json rename to functions/function_usage_examples/arithmetic/multiplication/multiplication_float_example.metadata.json diff --git a/functions/function_usage_examples/arithmetic/negation/negation_example.json b/functions/function_usage_examples/arithmetic/negation/negation_example.metadata.json similarity index 100% rename from functions/function_usage_examples/arithmetic/negation/negation_example.json rename to functions/function_usage_examples/arithmetic/negation/negation_example.metadata.json diff --git a/functions/function_usage_examples/arithmetic/subtraction/subtraction_2vars_example.json b/functions/function_usage_examples/arithmetic/subtraction/subtraction_2vars_example.metadata.json similarity index 100% rename from functions/function_usage_examples/arithmetic/subtraction/subtraction_2vars_example.json rename to functions/function_usage_examples/arithmetic/subtraction/subtraction_2vars_example.metadata.json diff --git a/functions/function_usage_examples/arithmetic/subtraction/subtraction_float_example.json b/functions/function_usage_examples/arithmetic/subtraction/subtraction_float_example.metadata.json similarity index 100% rename from functions/function_usage_examples/arithmetic/subtraction/subtraction_float_example.json rename to functions/function_usage_examples/arithmetic/subtraction/subtraction_float_example.metadata.json diff --git a/functions/function_usage_examples/mcx/mcx_example.json b/functions/function_usage_examples/mcx/mcx_example.metadata.json similarity index 100% rename from functions/function_usage_examples/mcx/mcx_example.json rename to functions/function_usage_examples/mcx/mcx_example.metadata.json diff --git a/functions/open_library_definitions/grover_operator.qmod b/functions/open_library_definitions/grover_operator.qmod index 489de704..2fc6318c 100644 --- a/functions/open_library_definitions/grover_operator.qmod +++ b/functions/open_library_definitions/grover_operator.qmod @@ -1,7 +1,7 @@ qfunc grover_operator(packed_vars: qbit[]) { oracle(packed_vars); - grover_diffuser(packed_vars); U<0, 0, 0, pi>(packed_vars[0]); } diff --git a/functions/open_library_definitions/grover_search.qmod b/functions/open_library_definitions/grover_search.qmod index 3b9563bc..13284f92 100644 --- a/functions/open_library_definitions/grover_search.qmod +++ b/functions/open_library_definitions/grover_search.qmod @@ -1,10 +1,10 @@ qfunc grover_search(packed_vars: qbit[]) { hadamard_transform(packed_vars); power (reps) { - grover_operator(packed_vars); } } diff --git a/functions/open_library_definitions/qsvt_inversion.qmod b/functions/open_library_definitions/qsvt_inversion.qmod index da4481dd..1a3057a7 100644 --- a/functions/open_library_definitions/qsvt_inversion.qmod +++ b/functions/open_library_definitions/qsvt_inversion.qmod @@ -1,7 +1,7 @@ qfunc qsvt_inversion(qvar: qbit[], aux: qbit) { - qsvt(qvar, aux); } diff --git a/functions/qmod_library_reference/classiq_open_library/grover_operator/grover_operator.json b/functions/qmod_library_reference/classiq_open_library/grover_operator/grover_operator.metadata.json similarity index 100% rename from functions/qmod_library_reference/classiq_open_library/grover_operator/grover_operator.json rename to functions/qmod_library_reference/classiq_open_library/grover_operator/grover_operator.metadata.json diff --git a/functions/qmod_library_reference/classiq_open_library/grover_operator/grover_operator.qmod b/functions/qmod_library_reference/classiq_open_library/grover_operator/grover_operator.qmod index 60daaedf..49dffa89 100644 --- a/functions/qmod_library_reference/classiq_open_library/grover_operator/grover_operator.qmod +++ b/functions/qmod_library_reference/classiq_open_library/grover_operator/grover_operator.qmod @@ -7,12 +7,12 @@ qfunc main(output x: qnum<2, False, 0>, output y: qnum<2, False, 0>) { allocate<4>(packed_vars); hadamard_transform(packed_vars); power (2) { - grover_operator(arg0); - }, lambda(arg0) { - hadamard_transform(arg0); + grover_operator(vars); + }, lambda(vars) { + hadamard_transform(vars); }>(packed_vars); } packed_vars -> {x, y}; diff --git a/functions/qmod_library_reference/classiq_open_library/hadamard_transform/hadamard_transform.json b/functions/qmod_library_reference/classiq_open_library/hadamard_transform/hadamard_transform.metadata.json similarity index 100% rename from functions/qmod_library_reference/classiq_open_library/hadamard_transform/hadamard_transform.json rename to functions/qmod_library_reference/classiq_open_library/hadamard_transform/hadamard_transform.metadata.json diff --git a/functions/qmod_library_reference/classiq_open_library/linear_pauli_rotations/linear_pauli_rotations.json b/functions/qmod_library_reference/classiq_open_library/linear_pauli_rotations/linear_pauli_rotations.metadata.json similarity index 100% rename from functions/qmod_library_reference/classiq_open_library/linear_pauli_rotations/linear_pauli_rotations.json rename to functions/qmod_library_reference/classiq_open_library/linear_pauli_rotations/linear_pauli_rotations.metadata.json diff --git a/functions/qmod_library_reference/classiq_open_library/qct_qst/qct_qst_type1.json b/functions/qmod_library_reference/classiq_open_library/qct_qst/qct_qst_type1.metadata.json similarity index 100% rename from functions/qmod_library_reference/classiq_open_library/qct_qst/qct_qst_type1.json rename to functions/qmod_library_reference/classiq_open_library/qct_qst/qct_qst_type1.metadata.json diff --git a/functions/qmod_library_reference/classiq_open_library/qct_qst/qct_qst_type2.json b/functions/qmod_library_reference/classiq_open_library/qct_qst/qct_qst_type2.metadata.json similarity index 100% rename from functions/qmod_library_reference/classiq_open_library/qct_qst/qct_qst_type2.json rename to functions/qmod_library_reference/classiq_open_library/qct_qst/qct_qst_type2.metadata.json diff --git a/functions/qmod_library_reference/classiq_open_library/qct_qst/qct_type2.json b/functions/qmod_library_reference/classiq_open_library/qct_qst/qct_type2.metadata.json similarity index 100% rename from functions/qmod_library_reference/classiq_open_library/qct_qst/qct_type2.json rename to functions/qmod_library_reference/classiq_open_library/qct_qst/qct_type2.metadata.json diff --git a/functions/qmod_library_reference/classiq_open_library/qct_qst/qst_type2.json b/functions/qmod_library_reference/classiq_open_library/qct_qst/qst_type2.metadata.json similarity index 100% rename from functions/qmod_library_reference/classiq_open_library/qct_qst/qst_type2.json rename to functions/qmod_library_reference/classiq_open_library/qct_qst/qst_type2.metadata.json diff --git a/functions/qmod_library_reference/classiq_open_library/qft/qft.json b/functions/qmod_library_reference/classiq_open_library/qft/qft.metadata.json similarity index 100% rename from functions/qmod_library_reference/classiq_open_library/qft/qft.json rename to functions/qmod_library_reference/classiq_open_library/qft/qft.metadata.json diff --git a/functions/qmod_library_reference/classiq_open_library/qpe/qpe.json b/functions/qmod_library_reference/classiq_open_library/qpe/qpe.metadata.json similarity index 100% rename from functions/qmod_library_reference/classiq_open_library/qpe/qpe.json rename to functions/qmod_library_reference/classiq_open_library/qpe/qpe.metadata.json diff --git a/functions/qmod_library_reference/classiq_open_library/qpe/qpe_flexible.json b/functions/qmod_library_reference/classiq_open_library/qpe/qpe_flexible.metadata.json similarity index 100% rename from functions/qmod_library_reference/classiq_open_library/qpe/qpe_flexible.json rename to functions/qmod_library_reference/classiq_open_library/qpe/qpe_flexible.metadata.json diff --git a/functions/qmod_library_reference/classiq_open_library/qsvt/qsvt.ipynb b/functions/qmod_library_reference/classiq_open_library/qsvt/qsvt.ipynb index ac0db60c..44484637 100644 --- a/functions/qmod_library_reference/classiq_open_library/qsvt/qsvt.ipynb +++ b/functions/qmod_library_reference/classiq_open_library/qsvt/qsvt.ipynb @@ -229,7 +229,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "0.0 + 0.57226496\u00b7x + 0.0\u00b7x\u00b2 - 0.5134161\u00b7x\u00b3 + 0.0\u00b7x\u2074 - 1.05884886\u00b7x\u2075\n" + "0.0 + 0.57226496·x + 0.0·x² - 0.5134161·x³ + 0.0·x⁴ - 1.05884886·x⁵\n" ] } ], @@ -276,9 +276,7 @@ "\n", "execution_preferences = ExecutionPreferences(\n", " num_shots=1,\n", - " backend_preferences=ClassiqBackendPreferences(\n", - " backend_name=\"aer_simulator_statevector\"\n", - " ),\n", + " backend_preferences=ClassiqBackendPreferences(backend_name=\"simulator_statevector\"),\n", ")\n", "\n", "constraints = Constraints(max_width=13)\n", @@ -327,7 +325,7 @@ "source": [ "## References\n", "\n", - "[1]: Andr\u00e1s Gily\u00e9n, Yuan Su, Guang Hao Low, and Nathan Wiebe. 2019. Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing (STOC 2019). Association for Computing Machinery, New York, NY, USA, 193\u2013204 https://doi.org/10.1145/3313276.3316366.\n", + "[1]: András Gilyén, Yuan Su, Guang Hao Low, and Nathan Wiebe. 2019. Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing (STOC 2019). Association for Computing Machinery, New York, NY, USA, 193–204 https://doi.org/10.1145/3313276.3316366.\n", "\n", "[2]: Stamatopoulos, Nikitas, and William J. Zeng. \"Derivative pricing using quantum signal processing.\" arXiv preprint arXiv:2307.14310 (2023).\n" ] diff --git a/functions/qmod_library_reference/classiq_open_library/qsvt/qsvt.json b/functions/qmod_library_reference/classiq_open_library/qsvt/qsvt.metadata.json similarity index 100% rename from functions/qmod_library_reference/classiq_open_library/qsvt/qsvt.json rename to functions/qmod_library_reference/classiq_open_library/qsvt/qsvt.metadata.json diff --git a/functions/qmod_library_reference/classiq_open_library/qsvt/qsvt.qmod b/functions/qmod_library_reference/classiq_open_library/qsvt/qsvt.qmod index bc1e779f..fa1889b0 100644 --- a/functions/qmod_library_reference/classiq_open_library/qsvt/qsvt.qmod +++ b/functions/qmod_library_reference/classiq_open_library/qsvt/qsvt.qmod @@ -12,12 +12,12 @@ qfunc u_sqrt(a: qnum, ref: qnum, res: qbit) { qfunc qsvt_sqrt_polynomial(state: qnum, ref: qnum, ind: qbit, qsvt_aux: qbit) { full_reg: qbit[]; {ind, ref, state} -> full_reg; - qsvt(full_reg, qsvt_aux); full_reg -> {ind, ref, state}; } diff --git a/functions/qmod_library_reference/classiq_open_library/special_state_preparations/inplace_prepare_int.json b/functions/qmod_library_reference/classiq_open_library/special_state_preparations/inplace_prepare_int.metadata.json similarity index 100% rename from functions/qmod_library_reference/classiq_open_library/special_state_preparations/inplace_prepare_int.json rename to functions/qmod_library_reference/classiq_open_library/special_state_preparations/inplace_prepare_int.metadata.json diff --git a/functions/qmod_library_reference/classiq_open_library/special_state_preparations/prepare_bell_state.json b/functions/qmod_library_reference/classiq_open_library/special_state_preparations/prepare_bell_state.metadata.json similarity index 100% rename from functions/qmod_library_reference/classiq_open_library/special_state_preparations/prepare_bell_state.json rename to functions/qmod_library_reference/classiq_open_library/special_state_preparations/prepare_bell_state.metadata.json diff --git a/functions/qmod_library_reference/classiq_open_library/special_state_preparations/prepare_exponential_state.json b/functions/qmod_library_reference/classiq_open_library/special_state_preparations/prepare_exponential_state.metadata.json similarity index 100% rename from functions/qmod_library_reference/classiq_open_library/special_state_preparations/prepare_exponential_state.json rename to functions/qmod_library_reference/classiq_open_library/special_state_preparations/prepare_exponential_state.metadata.json diff --git a/functions/qmod_library_reference/classiq_open_library/special_state_preparations/prepare_ghz_state.json b/functions/qmod_library_reference/classiq_open_library/special_state_preparations/prepare_ghz_state.metadata.json similarity index 100% rename from functions/qmod_library_reference/classiq_open_library/special_state_preparations/prepare_ghz_state.json rename to functions/qmod_library_reference/classiq_open_library/special_state_preparations/prepare_ghz_state.metadata.json diff --git a/functions/qmod_library_reference/classiq_open_library/special_state_preparations/prepare_int.json b/functions/qmod_library_reference/classiq_open_library/special_state_preparations/prepare_int.metadata.json similarity index 100% rename from functions/qmod_library_reference/classiq_open_library/special_state_preparations/prepare_int.json rename to functions/qmod_library_reference/classiq_open_library/special_state_preparations/prepare_int.metadata.json diff --git a/functions/qmod_library_reference/qmod_core_library/hamiltonian_evolution/exponentiation/exponentiation.json b/functions/qmod_library_reference/qmod_core_library/hamiltonian_evolution/exponentiation/exponentiation.metadata.json similarity index 100% rename from functions/qmod_library_reference/qmod_core_library/hamiltonian_evolution/exponentiation/exponentiation.json rename to functions/qmod_library_reference/qmod_core_library/hamiltonian_evolution/exponentiation/exponentiation.metadata.json diff --git a/functions/qmod_library_reference/qmod_core_library/hamiltonian_evolution/qdrift/qdrift.json b/functions/qmod_library_reference/qmod_core_library/hamiltonian_evolution/qdrift/qdrift.metadata.json similarity index 100% rename from functions/qmod_library_reference/qmod_core_library/hamiltonian_evolution/qdrift/qdrift.json rename to functions/qmod_library_reference/qmod_core_library/hamiltonian_evolution/qdrift/qdrift.metadata.json diff --git a/functions/qmod_library_reference/qmod_core_library/hamiltonian_evolution/suzuki_trotter/suzuki_trotter.json b/functions/qmod_library_reference/qmod_core_library/hamiltonian_evolution/suzuki_trotter/suzuki_trotter.metadata.json similarity index 100% rename from functions/qmod_library_reference/qmod_core_library/hamiltonian_evolution/suzuki_trotter/suzuki_trotter.json rename to functions/qmod_library_reference/qmod_core_library/hamiltonian_evolution/suzuki_trotter/suzuki_trotter.metadata.json diff --git a/functions/qmod_library_reference/qmod_core_library/prepare_state_and_amplitudes/prepare_amplitudes.json b/functions/qmod_library_reference/qmod_core_library/prepare_state_and_amplitudes/prepare_amplitudes.metadata.json similarity index 100% rename from functions/qmod_library_reference/qmod_core_library/prepare_state_and_amplitudes/prepare_amplitudes.json rename to functions/qmod_library_reference/qmod_core_library/prepare_state_and_amplitudes/prepare_amplitudes.metadata.json diff --git a/functions/qmod_library_reference/qmod_core_library/prepare_state_and_amplitudes/prepare_state.json b/functions/qmod_library_reference/qmod_core_library/prepare_state_and_amplitudes/prepare_state.metadata.json similarity index 100% rename from functions/qmod_library_reference/qmod_core_library/prepare_state_and_amplitudes/prepare_state.json rename to functions/qmod_library_reference/qmod_core_library/prepare_state_and_amplitudes/prepare_state.metadata.json diff --git a/functions/qmod_library_reference/qmod_core_library/prepare_state_and_amplitudes/prepare_state_and_amplitudes.ipynb b/functions/qmod_library_reference/qmod_core_library/prepare_state_and_amplitudes/prepare_state_and_amplitudes.ipynb index 892a5b9b..a8bb7eaf 100644 --- a/functions/qmod_library_reference/qmod_core_library/prepare_state_and_amplitudes/prepare_state_and_amplitudes.ipynb +++ b/functions/qmod_library_reference/qmod_core_library/prepare_state_and_amplitudes/prepare_state_and_amplitudes.ipynb @@ -109,8 +109,8 @@ "## Example 1: Loading Point Mass (PMF) Function\n", "\n", "This example generates a quantum program whose output state probabilities are an approximation to the PMF given.\n", - "That is, the probability of measuring the state $|000\u27e9$ is $0.05$, $|001\u27e9$ is $0.11$,...\n", - ", and the probability to measure $|111\u27e9$ is $0.06$." + "That is, the probability of measuring the state $|000⟩$ is $0.05$, $|001⟩$ is $0.11$,...\n", + ", and the probability to measure $|111⟩$ is $0.06$." ] }, { @@ -247,9 +247,7 @@ " prepare_amplitudes(amplitudes=amps.tolist(), bound=0, out=x)\n", "\n", "\n", - "backend_preferences = ClassiqBackendPreferences(\n", - " backend_name=\"aer_simulator_statevector\"\n", - ")\n", + "backend_preferences = ClassiqBackendPreferences(backend_name=\"simulator_statevector\")\n", "execution_preferences = ExecutionPreferences(\n", " num_shots=1, backend_preferences=backend_preferences\n", ")\n", diff --git a/functions/qmod_library_reference/qmod_core_library/standard_gates/CRX.json b/functions/qmod_library_reference/qmod_core_library/standard_gates/CRX.metadata.json similarity index 100% rename from functions/qmod_library_reference/qmod_core_library/standard_gates/CRX.json rename to functions/qmod_library_reference/qmod_core_library/standard_gates/CRX.metadata.json diff --git a/functions/qmod_library_reference/qmod_core_library/standard_gates/CX.json b/functions/qmod_library_reference/qmod_core_library/standard_gates/CX.metadata.json similarity index 100% rename from functions/qmod_library_reference/qmod_core_library/standard_gates/CX.json rename to functions/qmod_library_reference/qmod_core_library/standard_gates/CX.metadata.json diff --git a/functions/qmod_library_reference/qmod_core_library/standard_gates/PHASE.json b/functions/qmod_library_reference/qmod_core_library/standard_gates/PHASE.metadata.json similarity index 100% rename from functions/qmod_library_reference/qmod_core_library/standard_gates/PHASE.json rename to functions/qmod_library_reference/qmod_core_library/standard_gates/PHASE.metadata.json diff --git a/functions/qmod_library_reference/qmod_core_library/standard_gates/R.json b/functions/qmod_library_reference/qmod_core_library/standard_gates/R.metadata.json similarity index 100% rename from functions/qmod_library_reference/qmod_core_library/standard_gates/R.json rename to functions/qmod_library_reference/qmod_core_library/standard_gates/R.metadata.json diff --git a/functions/qmod_library_reference/qmod_core_library/standard_gates/RZ.json b/functions/qmod_library_reference/qmod_core_library/standard_gates/RZ.metadata.json similarity index 100% rename from functions/qmod_library_reference/qmod_core_library/standard_gates/RZ.json rename to functions/qmod_library_reference/qmod_core_library/standard_gates/RZ.metadata.json diff --git a/functions/qmod_library_reference/qmod_core_library/standard_gates/RZZ.json b/functions/qmod_library_reference/qmod_core_library/standard_gates/RZZ.metadata.json similarity index 100% rename from functions/qmod_library_reference/qmod_core_library/standard_gates/RZZ.json rename to functions/qmod_library_reference/qmod_core_library/standard_gates/RZZ.metadata.json diff --git a/functions/qmod_library_reference/qmod_core_library/standard_gates/SWAP.json b/functions/qmod_library_reference/qmod_core_library/standard_gates/SWAP.metadata.json similarity index 100% rename from functions/qmod_library_reference/qmod_core_library/standard_gates/SWAP.json rename to functions/qmod_library_reference/qmod_core_library/standard_gates/SWAP.metadata.json diff --git a/functions/qmod_library_reference/qmod_core_library/standard_gates/U.json b/functions/qmod_library_reference/qmod_core_library/standard_gates/U.metadata.json similarity index 100% rename from functions/qmod_library_reference/qmod_core_library/standard_gates/U.json rename to functions/qmod_library_reference/qmod_core_library/standard_gates/U.metadata.json diff --git a/functions/qmod_library_reference/qmod_core_library/standard_gates/X.json b/functions/qmod_library_reference/qmod_core_library/standard_gates/X.metadata.json similarity index 100% rename from functions/qmod_library_reference/qmod_core_library/standard_gates/X.json rename to functions/qmod_library_reference/qmod_core_library/standard_gates/X.metadata.json diff --git a/functions/qmod_library_reference/qmod_core_library/unitary/unitary.json b/functions/qmod_library_reference/qmod_core_library/unitary/unitary.metadata.json similarity index 100% rename from functions/qmod_library_reference/qmod_core_library/unitary/unitary.json rename to functions/qmod_library_reference/qmod_core_library/unitary/unitary.metadata.json diff --git a/research/rainbow_options_bruteforce_method/rainbow_options_bruteforce_method.ipynb b/research/rainbow_options_bruteforce_method/rainbow_options_bruteforce_method.ipynb index b1ee0e8d..e241b41d 100644 --- a/research/rainbow_options_bruteforce_method/rainbow_options_bruteforce_method.ipynb +++ b/research/rainbow_options_bruteforce_method/rainbow_options_bruteforce_method.ipynb @@ -69,7 +69,6 @@ "metadata": {}, "outputs": [], "source": [ - "\n", "MU = MU_LOG_RET * dt\n", "CHOLESKY = np.linalg.cholesky(COV) * np.sqrt(dt)\n", "SCALING_FACTOR = 1 / CHOLESKY[0, 0]" @@ -150,8 +149,12 @@ "source": [ "from IPython.display import Markdown\n", "\n", - "if K >= max(S0*np.exp(np.dot(CHOLESKY,[grid_points[-1]]*2) + MU)):\n", - " display(Markdown(' K always greater than the maximum asset values. Stop the run, the payoff is 0'))" + "if K >= max(S0 * np.exp(np.dot(CHOLESKY, [grid_points[-1]] * 2) + MU)):\n", + " display(\n", + " Markdown(\n", + " \" K always greater than the maximum asset values. Stop the run, the payoff is 0\"\n", + " )\n", + " )" ] }, { @@ -179,10 +182,12 @@ "source": [ "FRAC_PLACES = 1\n", "\n", + "\n", "def round_factor(a):\n", " precision_factor = 2 ** (FRAC_PLACES)\n", " return np.floor(a * precision_factor) / precision_factor\n", "\n", + "\n", "def floor_factor(a):\n", " precision_factor = 2 ** (FRAC_PLACES)\n", " return np.floor(a * precision_factor) / precision_factor" @@ -232,7 +237,7 @@ "source": [ "from functools import reduce\n", "\n", - "from classiq import QNum, get_expression_numeric_attributes, qfunc, Output\n", + "from classiq import Output, QNum, get_expression_numeric_attributes, qfunc\n", "from classiq.qmod.symbolic import max as qmax\n", "\n", "a = STEP_X / SCALING_FACTOR\n", @@ -329,8 +334,20 @@ }, "outputs": [], "source": [ - "from classiq import QBit, Constraints, synthesize, create_model, allocate, inplace_prepare_state, within_apply, control, bind, show\n", - "from classiq.qmod.symbolic import sqrt, exp\n", + "from classiq import (\n", + " Constraints,\n", + " QBit,\n", + " allocate,\n", + " bind,\n", + " control,\n", + " create_model,\n", + " inplace_prepare_state,\n", + " show,\n", + " synthesize,\n", + " within_apply,\n", + ")\n", + "from classiq.qmod.symbolic import exp, sqrt\n", + "\n", "\n", "def get_payoff_expression(x, size, fraction_digits):\n", " payoff = sqrt(\n", @@ -345,6 +362,7 @@ " )\n", " return payoff\n", "\n", + "\n", "def get_payoff_expression_normalized(x: QNum, size, fraction_digits):\n", " x_max = 1 - 1 / (2**size)\n", " payoff_max = get_payoff_expression(x_max, size, fraction_digits)\n", @@ -444,7 +462,7 @@ }, "outputs": [], "source": [ - "from classiq import cfunc, Z\n", + "from classiq import Z, cfunc\n", "from classiq.qmod.builtins.classical_execution_primitives import iqae, save\n", "\n", "\n", @@ -452,6 +470,7 @@ "def qmci_oracle(ind: QBit):\n", " Z(ind)\n", "\n", + "\n", "@cfunc\n", "def cmain():\n", " iqae_res = iqae(epsilon=0.01, alpha=0.05)\n", @@ -465,7 +484,8 @@ "metadata": {}, "outputs": [], "source": [ - "from classiq import CInt, QCallable, grover_operator, power, QArray\n", + "from classiq import CInt, QArray, QCallable, grover_operator, power\n", + "\n", "\n", "@qfunc\n", "def grover_algorithm(\n", @@ -533,6 +553,7 @@ "from classiq import execute, write_qmod\n", "from classiq.execution import ExecutionPreferences\n", "\n", + "\n", "def synthesize_and_execute(post_process):\n", " constraints = Constraints(max_width=25)\n", " qmod = create_model(\n", @@ -581,10 +602,11 @@ "source": [ "import sympy\n", "\n", + "\n", "def parse_result_bruteforce(iqae_res):\n", " payoff_expression = f\"sqrt(max({S0[0]} * exp({STEP_X / SCALING_FACTOR * (2 ** (MAX_NUM_QUBITS - MAX_FRAC_PLACES))} * x + ({MU[0]+MIN_X*CHOLESKY[0].sum()})), {K}))\"\n", " payoff_func = sympy.lambdify(sympy.symbols(\"x\"), payoff_expression)\n", - " payoff_max = payoff_func(1 - 1 / (2**MAX_NUM_QUBITS)) \n", + " payoff_max = payoff_func(1 - 1 / (2**MAX_NUM_QUBITS))\n", "\n", " option_value = iqae_res.estimation * (payoff_max**2) - K\n", " confidence_interval = np.array(iqae_res.confidence_interval) * (payoff_max**2) - K\n", diff --git a/research/rainbow_options_bruteforce_method/rainbow_options_bruteforce_method.qmod b/research/rainbow_options_bruteforce_method/rainbow_options_bruteforce_method.qmod index 0b70cc22..388c7914 100644 --- a/research/rainbow_options_bruteforce_method/rainbow_options_bruteforce_method.qmod +++ b/research/rainbow_options_bruteforce_method/rainbow_options_bruteforce_method.qmod @@ -44,10 +44,10 @@ qfunc grover_algorithm(output ind_reg: qbit) { full_reg: qbit[]; allocate<5>(full_reg); - grover_algorithm(full_reg); state_reg: qbit[]; full_reg -> {state_reg, ind_reg}; @@ -56,4 +56,4 @@ qfunc main(output ind_reg: qbit) { cscope ``` iqae_res = iqae(epsilon=0.01, alpha=0.05) save({'iqae_res': iqae_res}) -``` \ No newline at end of file +``` diff --git a/research/rainbow_options_bruteforce_method/rainbow_options_bruteforce_method.synthesis_options.json b/research/rainbow_options_bruteforce_method/rainbow_options_bruteforce_method.synthesis_options.json index 3975d8b2..29a83131 100644 --- a/research/rainbow_options_bruteforce_method/rainbow_options_bruteforce_method.synthesis_options.json +++ b/research/rainbow_options_bruteforce_method/rainbow_options_bruteforce_method.synthesis_options.json @@ -2,4 +2,4 @@ "constraints": { "max_width": 25 } -} \ No newline at end of file +} diff --git a/research/rainbow_options_direct_method/rainbow_options_direct_method.qmod b/research/rainbow_options_direct_method/rainbow_options_direct_method.qmod index 94b1621b..66a02338 100644 --- a/research/rainbow_options_direct_method/rainbow_options_direct_method.qmod +++ b/research/rainbow_options_direct_method/rainbow_options_direct_method.qmod @@ -75,10 +75,10 @@ qfunc grover_algorithm(output ind_reg: qbit) { full_reg: qbit[]; allocate<10>(full_reg); - grover_algorithm(full_reg); state_reg: qbit[]; full_reg -> {state_reg, ind_reg}; diff --git a/research/rainbow_options_integration_method/rainbow_options_integration_method.qmod b/research/rainbow_options_integration_method/rainbow_options_integration_method.qmod index 4a3a0cce..a2cc2ef9 100644 --- a/research/rainbow_options_integration_method/rainbow_options_integration_method.qmod +++ b/research/rainbow_options_integration_method/rainbow_options_integration_method.qmod @@ -67,10 +67,10 @@ qfunc grover_algorithm(output ind_reg: qbit) { full_reg: qbit[]; allocate<10>(full_reg); - grover_algorithm(full_reg); state_reg: qbit[]; full_reg -> {state_reg, ind_reg}; diff --git a/tutorials/classiq_concepts/analyze/analyze.ipynb b/tutorials/classiq_concepts/analyze/analyze.ipynb index 5a2b316b..f43e257f 100644 --- a/tutorials/classiq_concepts/analyze/analyze.ipynb +++ b/tutorials/classiq_concepts/analyze/analyze.ipynb @@ -95,6 +95,9 @@ }, { "cell_type": "markdown", + "metadata": { + "collapsed": false + }, "source": [ "The high-level functional design approach of Classiq enables analyzing quantum circuits on different level of functionalities. You can view your circuit only on the functional building blocks level, e.g. `hadamard_transform` and `Arithmetic` in the example below, or you can zoom in to the actual gate-level implementations:\n", "
\n", @@ -106,10 +109,7 @@ " \n", "
\n", "This is especially helpful in large circuits.\n" - ], - "metadata": { - "collapsed": false - } + ] }, { "cell_type": "markdown", @@ -135,24 +135,24 @@ }, { "cell_type": "markdown", + "metadata": { + "collapsed": false + }, "source": [ "On the other hand, **the transpiled circuit is the circuit that is sent for execution** which is further optimized by eliminating functional blocks that have no influence on the circuit like the two blocks that cancel each other. The transpiled circuit contains only the set of gates defined by the optimization preferences. It is possible to view the transpiled circuit by downloading the circuit `as Transpiled QASM` and uploading it to the visualization tool:\n", "
\n", " \n", "
" - ], - "metadata": { - "collapsed": false - } + ] }, { "cell_type": "markdown", - "source": [ - "The Quantum program can be downloaded in various formats including QASM, JPEG, JSON, and LaTeX code. To do this, click the download button as illustrated in the preceding image" - ], "metadata": { "collapsed": false - } + }, + "source": [ + "The Quantum program can be downloaded in various formats including QASM, JPEG, JSON, and LaTeX code. To do this, click the download button as illustrated in the preceding image" + ] }, { "cell_type": "markdown", @@ -179,6 +179,29 @@ "source": [ "After analyzing the quantum circuit one would usually want to either adapt the model or to execute the circuit on a simulator or on real hardware. Continue to Execute chapter to understand how to do that.\n" ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Verify Your Understanding - Recommended Exercise" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Open the above example in the IDE and from the Quantum Program tab, export the circuit as a LaTeX file. View it in a LaTeX Editor (it is recommended to use [Overleaf](https://www.overleaf.com/) - a free, easy to use online LaTeX editor)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "write_qmod(create_model(main), \"analyze\")" + ] } ], "metadata": { diff --git a/tutorials/classiq_concepts/analyze/analyze.metadata.json b/tutorials/classiq_concepts/analyze/analyze.metadata.json new file mode 100644 index 00000000..90dcb3cc --- /dev/null +++ b/tutorials/classiq_concepts/analyze/analyze.metadata.json @@ -0,0 +1,7 @@ +{ + "friendly_name": "Analyze - Classiq Visualization Tool", + "description": "Demonstration of the Classiq visualization tool", + "problem_domain_tags": [], + "qmod_type": ["function"], + "level": ["basic", "demos"] +} diff --git a/tutorials/classiq_concepts/analyze/analyze.qmod b/tutorials/classiq_concepts/analyze/analyze.qmod new file mode 100644 index 00000000..2f4f6848 --- /dev/null +++ b/tutorials/classiq_concepts/analyze/analyze.qmod @@ -0,0 +1,5 @@ +qfunc main(output x: qnum, output y: qnum) { + allocate<4>(x); + hadamard_transform(x); + y = (x ** 2) + 1; +} diff --git a/tutorials/classiq_concepts/analyze/analyze.synthesis_options.json b/tutorials/classiq_concepts/analyze/analyze.synthesis_options.json new file mode 100644 index 00000000..0967ef42 --- /dev/null +++ b/tutorials/classiq_concepts/analyze/analyze.synthesis_options.json @@ -0,0 +1 @@ +{} diff --git a/tutorials/classiq_concepts/design/classical_variables_and_operations/classical_variables_and_operations.json b/tutorials/classiq_concepts/design/classical_variables_and_operations/classical_variables_and_operations.metadata.json similarity index 100% rename from tutorials/classiq_concepts/design/classical_variables_and_operations/classical_variables_and_operations.json rename to tutorials/classiq_concepts/design/classical_variables_and_operations/classical_variables_and_operations.metadata.json diff --git a/tutorials/classiq_concepts/design/design/design.ipynb b/tutorials/classiq_concepts/design/design/design.ipynb index 7dd7558b..487e66c2 100644 --- a/tutorials/classiq_concepts/design/design/design.ipynb +++ b/tutorials/classiq_concepts/design/design/design.ipynb @@ -11,11 +11,11 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "The first step in quantum software development is designing your software, your algorithm. Classiq features a unique high-level modeling language called Qmod, that naturally captures the core concepts of quantum algorithm design. There are two ways to design in Qmod:\n", + "The first step in quantum software development is to design your software and your algorithm. Classiq features a unique high-level modeling language called Qmod that naturally captures the core concepts of quantum algorithm design. There are two ways to design in Qmod:\n", "* Directly, via the Classiq IDE using the Qmod native syntax\n", - "* With Classiq Python SDK package, that gives access to the Qmod language via Python\n", + "* With the Classiq Python SDK package, which gives access to the Qmod language via Python\n", "\n", - "Once you finished designing your algorithm you send it to the Classiq synthesis engine (compiler) to create a concrete quantum circuit implementation - a quantum program." + "Once you finish designing your algorithm, you send it to the Classiq synthesis engine (compiler) to create a concrete quantum circuit implementation - a quantum program." ] }, { @@ -29,9 +29,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Let's get started and understand Qmod through a concrete example. \n", + "First, understand Qmod through an example. \n", "\n", - "Our task is to design a quantum algorithm that computes the arithemtic operation $y=x^2+1$ coherently, for a quantum variable $|x\\rangle$ that is a superpostion of all the numbers between $0$ and $7$:\n", + "The task is to design a quantum algorithm that coherently computes the arithmetic operation $y=x^2+1$, for a quantum variable $|x\\rangle$ that is a superposition of all the numbers between $0$ and $7$:\n", "$\\begin{equation}\n", "|x\\rangle = \\frac{1}{\\sqrt{8}}(|0\\rangle+|1\\rangle+\\dots +|7\\rangle.\n", "\\end{equation}$\n", @@ -47,7 +47,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Sounds complicated? The following code in Qmod with a few lines creates the desired algorithm with Classiq:" + "This may sound complicated, but the following few lines of code in Qmod create the desired algorithm with Classiq:" ] }, { @@ -78,7 +78,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "and the desired quantum program can be synthesized and viewed:" + "Synthesize and view the quantum program:" ] }, { @@ -128,43 +128,43 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "The above code is a quantum model written in Qmod. A model is composed of quantum functions with at least one quantum function called `main`. In Python, quantum functions are defined using regular Python functions decorated with `@qfunc`, and in the native Qmod syntax they are defined with the `qfunc` keyword. \n", + "The above code is a quantum model written in Qmod. A model is composed of quantum functions with at least one quantum function called `main`. Define quantum functions in Python using regular Python functions decorated with `@qfunc`, and in the native Qmod syntax define them with the `qfunc` keyword. \n", "\n", - "Quantum functions manipulate quantum objects which are represented using quantum variables. Every variable needs to be declared and initialized before it is used. \n", + "Quantum functions manipulate quantum objects that are represented using quantum variables. Declare and initialize each variable before it is used. \n", "\n", - "The following explains these principles:" + "The following points explain the principles:" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "**1) There must be a `qfunc` decorator in Python or keyword in the native syntax**\n", + "**1) Include a `qfunc` decorator in Python or keyword in the native syntax**\n", "\n", - "We can see the `qfunc` decorator (`@qfunc`) in the Python implementation, and the corresponding keyword in the native implementation. This in Qmod that we are dealing with quantum functions that manipulate quantum objects. \n", + "You can see the `qfunc` decorator (`@qfunc`) in the Python implementation and the corresponding keyword in the native implementation. This indicates to Qmod that we are dealing with quantum functions that manipulate quantum objects. \n", "\n", - "**2) There must be a `main` function**\n", + "**2) Include a `main` function**\n", "\n", - "Every quantum algorithm written in Qmod must have a `main` function. From this `main` function the quantum program is created using the `synthesize(create_model(main))` command in Python, or just by pressing the Synthesis button in the IDE.\n", + "Every quantum algorithm written in Qmod must have a `main` function. From this `main` function, create the quantum program using the `synthesize(create_model(main))` command in Python or by clicking Synthesis in the IDE.\n", "\n", - "**3) The arguments of the `main` function must be declared as `output`s**\n", + "**3) Declare the arguments of the `main` function as `output`s**\n", "\n", - "In the above example, there are two arguments of the `main` function: `x` and `y`, both are quantum variables. The type of both them is `QNum`(`qnum` in the native syntax) which stands for a quantum number (see [Quantum Variables](./quantum_variables.ipynb)). In addition to the type, the variables of the `main` function must be declared as `output` which indicates these quantum variables are not initialized outside the scope of the function.\n", + "In the above example, the two arguments of the `main` function—`x` and `y`—are both quantum variables. Their type is `QNum`(`qnum` in the native syntax), which announces a quantum number (see [Quantum Variables](./quantum_variables.ipynb)). In addition to the type, declare the variables of the `main` function as `output`, indicating that these quantum variables are not initialized outside the scope of the function.\n", "
\n", " Types of Quantum Variables \n", - "In Qmod there are 3 types of quantum variables:\n", + "Qmod has these types of quantum variables:\n", "\n", - "1. `QBit` (`qbit`)\n", - "2. `QArray[QBit]` (`qbit[]`)\n", - "3. `QNum` (`qnum`)\n", + "* `QBit` (`qbit`)\n", + "* `QArray[QBit]` (`qbit[]`)\n", + "* `QNum` (`qnum`)\n", "
\n", "\n", "\n", - "**4) Every quantum variable needs to be declared before it is used**\n", + "**4) Declare each quantum variable before using it**\n", "\n", - "Here we declare the the variables `x` and `y` as arguments of the `main` function, but we could also declare variables in the scope of a function (see [Quantum Variables](./quantum_variables.ipynb)).\n", + "You can declare the variables `x` and `y` as arguments of the `main` function or in the scope of a function (see [Quantum Variables](./quantum_variables.ipynb)).\n", "
\n", - " Declaration within a Scope of a Function \n", + " Declaration Within the Scope of a Function \n", "You can declare a quantum variable within the scope of a function with \n", "\n", "=== Python\n", @@ -175,22 +175,22 @@ "\n", "
\n", "\n", - "**5) Every quantum variable needs to be initialized**\n", + "**5) Initialize each quantum variable**\n", "\n", - "After a quantum variable is declared it needs to be initialized. There are several ways to initialize quantum variables, and in the above example we can see two ways:\n", + "After declaring a quantum variable, initialize it using one of several ways. Two are shown in the example above:\n", "\n", "* `x` is initialized with the `allocate` operation.\n", "* `y` i initialized with the `|=` (`=` in native) numeric assignment.\n", "\n", "
\n", " Types of Initializations \n", - "There are a few ways to initialize a quantum variable:\n", + "Ways to initialize a quantum variable:\n", "\n", - "1. With `allocate` or `allocate_num` \n", - "2. With `prepare_int`, `prepare_state` or `prepare_amplitudes`\n", - "3. As the result of a numeric operation, like in the example above\n", - "4. With the `bind` operation (`->` in native)\n", - "5. With any function that declares its quantum variable argument as `output`\n", + "* With `allocate` or `allocate_num` \n", + "* With `prepare_int`, `prepare_state`, or `prepare_amplitudes`\n", + "* As the result of a numeric operation, as in the example above\n", + "* With the `bind` operation (`->` in native)\n", + "* With any function that declares its quantum variable argument as `output`\n", "\n", "
" ] @@ -200,12 +200,26 @@ "metadata": {}, "source": [ "## Next Steps\n", - "Now that you are familiar with the foundations of Qmod, you can continue to understand it in a bit more detail, with:\n", + "Now that you are familiar with the foundations of Qmod, you can continue with\n", "* Quantum Variables and Functions\n", "* Quantum Operations\n", "* Classical Control Flow" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Verify Your Understanding - Recommended Exercise" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Write within the IDE with the native Qmod syntax a quantum algorithm that coherently calculates $y=2x+4z+2$ where $x$ and $z$ are quantum numbers represented with 5 qubits each, and they are initialized in a superposition of all possible values." + ] + }, { "cell_type": "code", "execution_count": 3, @@ -241,7 +255,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.9" + "version": "3.11.7" }, "vscode": { "interpreter": { diff --git a/tutorials/classiq_concepts/design/design/design.json b/tutorials/classiq_concepts/design/design/design.metadata.json similarity index 100% rename from tutorials/classiq_concepts/design/design/design.json rename to tutorials/classiq_concepts/design/design/design.metadata.json diff --git a/tutorials/classiq_concepts/design/quantum_operations/quantum_operations.json b/tutorials/classiq_concepts/design/quantum_operations/quantum_operations.metadata.json similarity index 100% rename from tutorials/classiq_concepts/design/quantum_operations/quantum_operations.json rename to tutorials/classiq_concepts/design/quantum_operations/quantum_operations.metadata.json diff --git a/tutorials/classiq_concepts/design/quantum_variables_and_functions/quantum_variables_and_functions.ipynb b/tutorials/classiq_concepts/design/quantum_variables_and_functions/quantum_variables_and_functions.ipynb index 6e62e018..403b663d 100644 --- a/tutorials/classiq_concepts/design/quantum_variables_and_functions/quantum_variables_and_functions.ipynb +++ b/tutorials/classiq_concepts/design/quantum_variables_and_functions/quantum_variables_and_functions.ipynb @@ -11,27 +11,27 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "In Qmod there are three types of quantum objects which are represented by quantum variables:\n", - "1. **Qubit** (quantum bit) \n", + "In Qmod these types of quantum objects are represented by quantum variables:\n", + "* **Qubit** (quantum bit) \n", "\n", " * Written as `QBit` in the Python SDK\n", " * Written as `qbit` in the native syntax\n", "\n", - "2. **Qubit Array** \n", + "* **Qubit Array** \n", "\n", - " A sequence of qubits, should be thought of as a quantum register with definite number of qubits.\n", + " A sequence of qubits, considered as a quantum register with a definite number of qubits.\n", " \n", " * Written as `QArray` in the Python SDK\n", " * Written as `qbit[]` in the native syntax\n", " \n", - "3. **Quantum Number** \n", + "* **Quantum Number** \n", "\n", - " A qubit array (quantum register) that represents numbers. The numbers can be positive and negative integers, and it can be fixed point numbers (e.g. $-5.25$). The quantum number object has a definite number of qubits (as every qubit array), and it has 2 properties for its numeric representation: if the number is signed or not (only positive or it represents negative numbers as well) and how many fractional digits it has (where is the decimal point).\n", + " A qubit array (quantum register) that represents numbers. The numbers can be positive and negative integers, and can be fixed point (e.g., $-5.25$). The quantum number object has a definite number of qubits (as does every qubit array), and it has two properties for its numeric representation: if the number is signed or not (only positive or it represents negative numbers as well) and how many fractional digits it has (where is the decimal point).\n", "\n", " * Written as `QNum` in the Python SDK\n", " * Written as `qnum` in the native syntax\n", "\n", - "As explained in the [Design page](../design/design.ipynb), every quantum variable needs to be declared and initialized before it is used." + "As explained in the [Design page](../design.ipynb), you must declare and then initialize each quantum variable." ] }, { @@ -45,27 +45,27 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Let's get started and understand these quantum variables through a concrete example.\n", + "First, understand these quantum variables through a concrete example.\n", "\n", - "Our task is to design a quantum algorithm that flips the most significant bit (MSB) of a quantum number and to verify this.\n", + "The task is to design a quantum algorithm that flips the most significant bit (MSB) of a quantum number and then verify the new number.\n", "\n", "
\n", " What is the MSB? \n", "\n", - "In a binary representation, every number can be represented by a bit string (a sequence of 0's and 1's). For example, the number $6$ can be represented by the bit string $110$. How come? In order to understand it we move bit by bit and sum up the multiplication of the bit value times $2$ to the power of the bit position.\n", + "In a binary representation, every number can be represented by a bit string (a sequence of zeros and ones). For example, the number $6$ can be represented by the bit string $110$. How? To understand it better, move one bit at a time and sum up the multiplication of the bit value times $2$ to the power of the bit position.\n", "\n", - "We start with the right most bit called the least significant bit (LSB) since its position is the 0th position and sum $0\\times 2^0 =0$ plus $1\\times 2^1=2$ for the middle bit plus $1\\times 2^2=4$ for the left most bit - the most significant bit (MSB) since its contribution to the sum is the most significant.\n", + "Start with the rightmost bit, called the least significant bit (LSB) since its position is the 0th position. Sum $0\\times 2^0 =0$ plus $1\\times 2^1=2$ for the middle bit plus $1\\times 2^2=4$ for the leftmost bit—the most significant bit (MSB) since its contribution to the sum is the most significant.\n", "\n", "
\n", "\n", - "How to approach that? We will have a function called `flip_msb` that will receive a Qubit Array, and we will flip its MSB. This function will be called from the `main` function with some Quantum Number, and then we will verify we receive the correct number using a Qubit indicator.\n" + "This is how to handle it. Use the `flip_msb` function that receives a qubit array and flips its MSB. Call this function from the `main` function with some quantum number, and then verify the number using a qubit indicator.\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "The `flip_msb` function receives a `QArray` variable named `reg` (shortcut for register), and it flips its MSB using the `X` gate. This gate operates on the qubit at the last position of the Qubit Array `reg` where the counting starts from $0$. One can see the property `len` of the register `reg` is used as part of the function." + "The `flip_msb` function receives a `QArray` variable named `reg` (shortcut for register), and it flips its MSB using the `X` gate. This gate operates on the qubit at the last position of the qubit array `reg` where the counting starts from $0$. The property `len` of the register `reg` is used as part of the function." ] }, { @@ -93,18 +93,18 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "An important thing to note is that the variable `reg` is not initialized within the scope of the function `flip_msb`. This can be seen by the lack of the `output` declaration in the scope of the function, and it means that `reg` is initialized before it is called in the function. \n", + "Note that the variable `reg` is not initialized within the scope of the function `flip_msb`. This can be seen by the lack of the `output` declaration in the scope of the function, and it means that `reg` is initialized before it is called in the function. \n", "\n", "Now to the `main` function. \n", "\n", - "We have only one variable as an argument for the function which is the indicator if we manage to flip the MSB or not. This is a Qubit variable named `indicator`. \n", + "There is only one variable as an argument for the function, which is the indicator, regardless of whether the MSB successfully flips. This is a qubit variable named `indicator`. \n", "\n", - "Within the function itself we declare and initialize a Quantum Number named `x` with $4$ qubits. A general initialziation with `allocate` initializes the Quantum Number to the state $|0\\rangle = |0000\\rangle$ (this is true for Qubits and Qubit Arrays as well). The function `flip_msb` acts on the Quantum Number `x` in order to flip its MSB and to create the state $|1000\\rangle = |8\\rangle$.\n", + "Within the function itself, declare and initialize a quantum number named `x` with $4$ qubits. A general initialization with `allocate` initializes the quantum number to the state $|0\\rangle = |0000\\rangle$. (This is true for both qubits and qubit arrays). The function `flip_msb` acts on the quantum number `x`, flipping its MSB and creating the state $|1000\\rangle = |8\\rangle$.\n", "\n", "
\n", " NOTE \n", "\n", - "As we don't declare if the Quantum Number is signed or not, or how many fractional digits it has, it is just initialized with no fractional digits and is not signed (see [`allocate_num`](https://docs.classiq.io/latest/reference-manual/platform/qmod/language-reference/quantum-types/) for initializing a Quantum Number with these options). \n", + "There is no need to declare if the quantum number is signed nor the number of its fractional digits. It is initialized with no fractional digits and is not signed (see [`allocate_num`](https://docs.classiq.io/latest/reference-manual/platform/qmod/language-reference/quantum-types/) for initializing a quantum number with these options). \n", "\n", "
" ] @@ -140,7 +140,7 @@ "metadata": {}, "source": [ "\n", - "Finally, we initialize the `indicator` qubit with the numeric assignment of the expression $x==8$. That is, if indeed we manage to flip the MSB of `x` and to transform it to the state `|8\\rangle` then the state od the qubit `indicator` will be equal $|1\\rangle$ otherwise it will equal $|0\\rangle (i.e. indicating if we manage to complete the `flip_msb` operation or not)." + "Finally, initialize the `indicator` qubit with the numeric assignment of the expression $x==8$. That is, if you flip the MSB of `x` and transform it to the state `|8\\rangle`, then the state of the qubit `indicator` equals $|1\\rangle$; otherwise, it equals $|0\\rangle (i.e., indicating if the `flip_msb` operation succeeded)." ] }, { @@ -148,8 +148,8 @@ "metadata": {}, "source": [ "
\n", - " `flip_msb` receives a Quantum Number or a Quantum Array? \n", - "One might notice that the function `flip_msb` is called with a Quantum Number `x` from the `main` function, whilst it is declared with a quantum array named `reg`. This demonstrates that quantum numbers can be cast to quantum arrays if they have the same number of qubits. In `main` we are intrested in the manupulation of an arithmetic quantum object - a quantum number, whilst in the function `flip_msb` we are just interested in treating the quantum number as a qubit array, without its numeric description, and to apply a specific gate on one of its qubits.\n", + " Does `flip_msb` receive a quantum number or a quantum array? \n", + "Note that the function `flip_msb` is called with the quantum number `x` from the `main` function, whilst it is declared with a quantum array named `reg`. This demonstrates that quantum numbers can be cast to quantum arrays if they have the same number of qubits. In `main` you want to manipulate an arithmetic quantum object—a quantum number—whilst in the function `flip_msb` you just want to treat the quantum number as a qubit array, without its numeric description, and to apply a specific gate on one of its qubits.\n", "
" ] }, @@ -157,7 +157,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "That's it! Now we want to check if indeed we managed to flip the MSB. The desired quantum program can be synthesized and viewed:" + "That's it! Now, to check if the MSB flipped successfully, synthesize and view the quantum program:" ] }, { @@ -200,7 +200,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "And then the quantum program can be executed to receive the results:" + "Execute the quantum program to receive the results:" ] }, { @@ -244,7 +244,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "And indeed we managed to flip the MSB as indicated by the `indicator` variable." + "You did flip the MSB as indicated by the `indicator` variable." ] }, { @@ -260,11 +260,25 @@ "source": [ "The following summarizes the main takeaways from the example in terms of quantum variables and functions:\n", "\n", - "* There are 3 types of quantum objects in Qmod: a qubit, a qubit array, and a quantum number. Objects can be cast from one to another (as `x` being cast from quantum number in the `main` function to qubit array in the `flip_msb` function)\n", - "* Quantum objects are represented by quantum variables. Each variable needs to be declared and initialized before it is used. The initialization can be done in several ways, here we see two options: with the `allocate` function (the initialization of `x`) or with a numeric assignment (the initializaiton of `indicator`).\n", + "* Types of quantum objects in Qmod: qubit, qubit array, and quantum number. Objects can be cast from one to another (as `x` is cast from the quantum number in the `main` function to a qubit array with the `flip_msb` function).\n", + "* Quantum objects are represented by quantum variables. Each variable needs to be declared and initialized before it is used. The initialization can be done in several ways, and here are two options: with the `allocate` function (the initialization of `x`) or with a numeric assignment (the initialization of `indicator`).\n", "* Quantum variables that are arguments of a function can be declared with the `Output` modifier and initialized within the scope of a function (like `indicator` in the `main` function). Without the `Output` modifier they must be initialized outside the scope of the function (like `reg` in the `flip_msb`) function.\n", - "* Quantum variables can be declared and initialized within a function (like `x` in the `main` function)\n", - "* The quantum program is always generated from the `main` function, even when further quantum functions are used. The execution results of the quantum program are interperted only for the arguments of the `main` function (like for `indicator` in the above example)\n" + "* Quantum variables can be declared and initialized within a function (like `x` in the `main` function).\n", + "* The quantum program is always generated from the `main` function, even when further quantum functions are used. The execution results of the quantum program are interpreted only for the arguments of the `main` function (like `indicator` in the above example).\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Verify Your Understanding - Recommended Exercise" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create another quantum function `flip_lsb` that flips the least significant bit." ] }, { @@ -302,7 +316,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.9" + "version": "3.11.7" }, "vscode": { "interpreter": { diff --git a/tutorials/classiq_concepts/design/quantum_variables_and_functions/quantum_variables_and_functions.json b/tutorials/classiq_concepts/design/quantum_variables_and_functions/quantum_variables_and_functions.metadata.json similarity index 100% rename from tutorials/classiq_concepts/design/quantum_variables_and_functions/quantum_variables_and_functions.json rename to tutorials/classiq_concepts/design/quantum_variables_and_functions/quantum_variables_and_functions.metadata.json diff --git a/tutorials/classiq_concepts/execute/execute.ipynb b/tutorials/classiq_concepts/execute/execute.ipynb index 6caf9f16..2e28f7ce 100644 --- a/tutorials/classiq_concepts/execute/execute.ipynb +++ b/tutorials/classiq_concepts/execute/execute.ipynb @@ -489,6 +489,20 @@ "All the above should enable one to analyze the results and post-process them in Python as needed." ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Verify Your Understanding - Recommended Exercise" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Adapt the code such that the quantum number $x$ is allocated with 8 qubits. Then, execute the algorithm with 5096 shots and post process the results from your Python SDK. Plot a graph of all the measured values of $x$ and $y$ with the corresponding axes (make sure you receive the graph of $y=x^2+1$)." + ] + }, { "cell_type": "code", "execution_count": 13, @@ -522,7 +536,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.9" + "version": "3.11.7" }, "vscode": { "interpreter": { diff --git a/tutorials/classiq_concepts/execute/execute.json b/tutorials/classiq_concepts/execute/execute.metadata.json similarity index 100% rename from tutorials/classiq_concepts/execute/execute.json rename to tutorials/classiq_concepts/execute/execute.metadata.json diff --git a/tutorials/classiq_concepts/optimize/optimize.ipynb b/tutorials/classiq_concepts/optimize/optimize.ipynb index 72ce7843..729edff4 100644 --- a/tutorials/classiq_concepts/optimize/optimize.ipynb +++ b/tutorials/classiq_concepts/optimize/optimize.ipynb @@ -11,7 +11,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "In the previous chapter we focused on how to design quantum algorithms with the Qmod language. Once a quantum algorithm is designed, it can be compiled into a quantum circuit implementation that can be executed on quantum computers or simulators. This is done by the Classiq synthesis engine. In this chapter we cover how to use and utilize the Classiq synthesis engine in the IDE and the Python SDK through concrete examples." + "The previous section focused on how to design quantum algorithms with the Qmod language. Once you have designed a quantum algorithm, the Classiq synthesis engine compiles it into a quantum circuit ready for implementation on quantum computers or simulators. This section covers how to use the Classiq synthesis engine in the IDE and the Python SDK through concrete examples." ] }, { @@ -25,23 +25,23 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "In most cases, a specific quantum model can be compiled to many, sometime infinite number of quantum circuits that might differ in their properties. Some will have more qubits with smaller circuit depth, some will have all the qubits connected to each other whilst other will not, and some will have a fewer number of 2-qubit gates than others. \n", + "In most cases, a specific quantum model can be compiled to many or sometimes an infinite number of quantum circuits that might differ in their properties. Some may have more qubits with smaller circuit depth, some may have all the qubits connected to each other whilst others do not, and some may have fewer 2-qubit gates than others. \n", "\n", - "The Classiq synthesis engine receives the quantum model as an input, together with the constraints and preferences of the desired quantum program, and outputs a quantum program implementation of the quantum model that satisfies the constraints and preferences.\n", + "The Classiq synthesis engine receives the quantum model as input together with the constraints and preferences of the desired quantum program, and outputs a quantum program implementation of the quantum model that satisfies the constraints and preferences.\n", "\n", - "Some of the current available constraints options for the Synthesis engine are:\n", + "Some of the available constraint options for the synthesis engine:\n", "* Optimization parameter - either to optimize for circuit width or circuit depth;\n", "* Maximal gate count - maximum allowed number of a specific 1- or 2-qubit gate;\n", "* Maximal circuit width or circuit depth.\n", "\n", - "And some of the available preferences:\n", + "Some of the available preferences:\n", "* Compiling the quantum circuit for a specific quantum processor;\n", "* The desired connectivity map of the quantum circuit;\n", - "* The output format of the quantum circuit, e.g. `QASM` or `QIR`.\n", + "* The output format of the quantum circuit, e.g., `QASM` or `QIR`.\n", "\n", - "A full list of possible [constraints](https://docs.classiq.io/latest/classiq_101/classiq_concepts/optimize/) and [preferences](https://docs.classiq.io/latest/reference-manual/platform/synthesis/constraints/) is available in the reference manual. \n", + "See a full list of [constraints](https://docs.classiq.io/latest/classiq_101/classiq_concepts/optimize/) and [preferences](https://docs.classiq.io/latest/reference-manual/platform/synthesis/constraints/) in the reference manual. \n", "\n", - "In the following we cover how to apply constraints and preferences through a concrete example." + "This section covers how to apply constraints and preferences through an actual example." ] }, { @@ -55,7 +55,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Let's go back to the example covered in the 'Design - The Qmod language' tutorial, where the task is to create a quantum algorithm that calculates in a superposition the arithmetic expression $y=x^2+1$. \n", + "The task covered in the 'Design - The Qmod Language' tutorial is to create a quantum algorithm that calculates the arithmetic expression $y=x^2+1$ in a superposition. \n", "\n", "The following model written in Qmod implements the desired task:" ] @@ -88,7 +88,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Which one can always directly synthesize without any constraints or preferences:" + "You can always directly synthesize it without any constraints or preferences:" ] }, { @@ -120,7 +120,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "But in the following we cover how to do apply constraints and preferences. We first cover how to apply these in the IDE and then in the Python SDK." + "Now, apply constraints and preferences; first in the IDE, and then in the Python SDK." ] }, { @@ -134,7 +134,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "In the IDE, once your model is completed, you can directly synthesize your algorithm with the default constraints and preferences by pressing the `Synthesize` button:\n", + "In the IDE, once your model is complete, you can directly synthesize your algorithm with the default constraints and preferences by clicking `Synthesize`:\n", "\n", "\n", "
\n", @@ -146,13 +146,13 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "However, if you do want to apply some constraints and preferences, this can be done easily by adapting the parameters on the right-hand side of the screen and then synthesizing your model:\n", + "To apply constraints and preferences, adapt the parameters on the right of the window and then synthesize your model:\n", "\n", "
\n", " \n", "
\n", "\n", - "All the constraints and preferences that are available in the IDE can also be configured in the Python SDK as we cover next." + "Below, see how to configure the constraints and preferences in the Python SDK." ] }, { @@ -166,7 +166,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "The synthesis engine receives an underlying Qmod representation of the quantum model that is constructed in the Python SDK using the `create_model` function:" + "The synthesis engine receives an underlying Qmod representation of the quantum model that you construct in the Python SDK using the `create_model` function:" ] }, { @@ -189,9 +189,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "This `quantum_model` can be directly synthesized with the command `synthesize(quantum_model)` to return the quantum program implementation. However, if we want to apply some constraints and preferences we need to adapt the `quantum_model` representation.\n", + "You can synthesize this `quantum_model` directly with the command `synthesize(quantum_model)` to return the quantum program implementation. However, to apply constraints and preferences, first adapt the `quantum_model` representation.\n", "\n", - "First, assume that we want to receive a circuit implementation with minimal number of qubits and with maximal circuit depth of $500$. So we can apply these as constraints to our `quantum_model`:" + "Create a circuit with the minimum number of qubits and a maximum circuit depth of $500$ by applying these constraints to the `quantum_model`:" ] }, { @@ -216,7 +216,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Then the `quantum_model` can be then synthesized as usual:" + "Synthesize the `quantum_model` as usual:" ] }, { @@ -239,7 +239,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "And the parameters of the circuit implementation can be extracted:" + "Extract the parameters of the circuit implementation:" ] }, { @@ -273,15 +273,15 @@ "metadata": {}, "source": [ "
\n", - " Compilation vs. Transpilation \n", - "The synthesis engine is a compiler that compiles a high-level functional model to one specific circuit out of many possible implementations. A transpiler on the other hand, transforms one circuit implementation to another one. Its use can be to change from a circuit representation with a given basis gate set to another one, or to further optimize a given circuit implementation with basic optimization procedures like cancellation of two identical Hermitian gates applied consequently. \n", + " Compilation versus Transpilation \n", + "The synthesis engine is a compiler that compiles a high-level functional model to one specific circuit out of many possible implementations. A transpiler, on the other hand, transforms one circuit implementation to another. Its use can be to change from a circuit representation with a given basis gate set to another one, or to further optimize a given circuit implementation with basic optimization procedures such as cancellation of two identical Hermitian gates applied consequently. \n", "
\n", "\n", - "It is **highly recommended** to complete the following exercise in order to experience by yourself for the first time how the same quantum algorithm can be compiled into two different circuit implementation that can substantially differ from each other.\n", + "It is **highly recommended** that you complete the following exercise yourself, to experience for the first time how the one quantum algorithm can be compiled into two different circuit implementations that can substantially differ from one other.\n", "\n", "
\n", " Recommended Exercise \n", - "Modify the constraints above such that you optimize the circuit for minimal circuit depth using maximum 25 qubits. What are the circuit depth and width you receive? Are they different than the above example? Try to analyze the two quantum circuits using `show(quantum_program)` and figure our which functional building block is implemented differently. \n", + "Modify the constraints above to optimize the circuit for minimum circuit depth using maximum 25 qubits. What circuit depth and width do you receive? Are they different than shown above? Analyze the two quantum circuits using `show(quantum_program)` and determine which functional building block is implemented differently. \n", "
\n", "\n" ] @@ -290,7 +290,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Assume now that we want to execute the above quantum model on the IBM quantum processor `ibm_brisbane`. It is recommended to pass this information to the synthesis engine so the quantum program will be most adequate for the desired quantum computer. This is done by adding the following preference and re-synthesizing `quantum_model`:" + "For the purpose of the exercise, assume that you will execute the quantum model on the `ibm_brisbane` IBM quantum processor. Pass this information to the synthesis engine so the quantum program is built appropriately. Do it by adding this preference and resynthesizing `quantum_model`:" ] }, { @@ -320,10 +320,35 @@ "source": [ "
\n", " Optional Exercise \n", - "Extract the circuit depth and width of the above quantum program. How do these differ from the previous values? Try to think why they differ in such a way. It is good to know that the `IBM Brisbane` device as specific limited connectivity between its qubits, so there might be a certain overhead in applying some 2-qubit gates...\n", + "Extract the circuit depth and width of the above quantum program. How do they differ from the previous values? Consider why they differ in such a way. (It is helpful to know that the `IBM Brisbane` device has specific limited connectivity between its qubits, so there might be a certain overhead in applying some 2-qubit gates.)\n", "
\n", "\n", - "So now you have a quantum program that implements the quantum model that calculates $y=x^2+1$ in a superposition, that is optimized for a specific real quantum computer. It only remains to follow the next chapters and to see how to actually run it on that computer with Classiq. But first we want to deep dive to the Analysis capabilities of Classiq." + "So now you have a quantum program that implements the quantum model that calculates $y=x^2+1$ in a superposition, optimized for a specific real quantum computer. The following sections show how to actually run it on that computer with Classiq. But first, dive deeply into the Classiq analysis capabilities." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Verify Your Understanding - Recommended Exercise" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Synthesize 3 different implementations of an MCX (multi-control-x) with 5 control qubits and 1 target qubit (you should use the control quantum operation for implementing an MCX, follow [this](https://docs.classiq.io/latest/explore/functions/function_usage_examples/mcx/mcx_example/) tutorial that can be open in the IDE). One implementation should be optimized for minimized depth, the other for minimized width, and the third somewhere in between (choose yourself what is the maximal width / depth you apply). \n", + "\n", + "Export the 3 implementations as LaTeX files on the hierarchy level that demonstrates the differences between the implementations. Aggregate the implementations in 1 file and export it as a PDF and explain the key differences (it is recommended to use [Overleaf](https://www.overleaf.com/) - a free, easy to use online LaTeX editor)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Advanced Exercise\n", + "\n", + "Synthesize 5 different implementations of an MCX with 20 control qubits and 1 target qubit. Compare the circuit width and circuit depth required for each implementation." ] }, { @@ -359,7 +384,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.9" + "version": "3.11.7" }, "vscode": { "interpreter": { diff --git a/tutorials/classiq_concepts/optimize/optimize.json b/tutorials/classiq_concepts/optimize/optimize.metadata.json similarity index 100% rename from tutorials/classiq_concepts/optimize/optimize.json rename to tutorials/classiq_concepts/optimize/optimize.metadata.json diff --git a/tutorials/classiq_concepts/repeat/repeat.json b/tutorials/classiq_concepts/repeat/repeat.metadata.json similarity index 100% rename from tutorials/classiq_concepts/repeat/repeat.json rename to tutorials/classiq_concepts/repeat/repeat.metadata.json diff --git a/tutorials/discrete_quantum_walk/quantum_walk_circle.json b/tutorials/discrete_quantum_walk/quantum_walk_circle.metadata.json similarity index 100% rename from tutorials/discrete_quantum_walk/quantum_walk_circle.json rename to tutorials/discrete_quantum_walk/quantum_walk_circle.metadata.json diff --git a/tutorials/discrete_quantum_walk/quantum_walk_circle_balanced_coin.json b/tutorials/discrete_quantum_walk/quantum_walk_circle_balanced_coin.metadata.json similarity index 100% rename from tutorials/discrete_quantum_walk/quantum_walk_circle_balanced_coin.json rename to tutorials/discrete_quantum_walk/quantum_walk_circle_balanced_coin.metadata.json diff --git a/tutorials/discrete_quantum_walk/quantum_walk_circle_balanced_coin.qmod b/tutorials/discrete_quantum_walk/quantum_walk_circle_balanced_coin.qmod index 9937b876..6e3491a2 100644 --- a/tutorials/discrete_quantum_walk/quantum_walk_circle_balanced_coin.qmod +++ b/tutorials/discrete_quantum_walk/quantum_walk_circle_balanced_coin.qmod @@ -25,8 +25,8 @@ qfunc main(output x: qnum) { allocate<1>(coin); H(coin); S(coin); - discrete_quantum_walk(output x: qbit[]) { allocate<4>(x); coin: qbit[]; prepare_state<[0.25, 0.25, 0.25, 0.25], 0.0>(coin); - discrete_quantum_walk(arg0); - }>(arg0); + discrete_quantum_walk(coin); + }>(coin); }, [lambda() { moving_one_hamming_dist<0>(x); }, lambda() { diff --git a/tutorials/exponentiation/exponentiation.json b/tutorials/exponentiation/exponentiation.metadata.json similarity index 100% rename from tutorials/exponentiation/exponentiation.json rename to tutorials/exponentiation/exponentiation.metadata.json diff --git a/tutorials/exponentiation/exponentiation_minimize_error.json b/tutorials/exponentiation/exponentiation_minimize_error.metadata.json similarity index 100% rename from tutorials/exponentiation/exponentiation_minimize_error.json rename to tutorials/exponentiation/exponentiation_minimize_error.metadata.json diff --git a/tutorials/getting_started/part5_grover.ipynb b/tutorials/getting_started/part5_grover.ipynb index 0ff21547..54433872 100644 --- a/tutorials/getting_started/part5_grover.ipynb +++ b/tutorials/getting_started/part5_grover.ipynb @@ -273,7 +273,7 @@ "### 6. Execute the ciruit\n", "\n", "1. When the circuit opens in the IDE, press \"Execute\". \n", - "2. Pick the AER simulator from the \"Classiq\" provider.\n", + "2. Pick the \"simulator\" from the \"Classiq\" provider.\n", "3. Execute the job.\n", "4. Validate the results.\n", "
\n", diff --git a/tutorials/hardware_aware_mcx/hardware_aware_mcx_all_to_all.json b/tutorials/hardware_aware_mcx/hardware_aware_mcx_all_to_all.metadata.json similarity index 100% rename from tutorials/hardware_aware_mcx/hardware_aware_mcx_all_to_all.json rename to tutorials/hardware_aware_mcx/hardware_aware_mcx_all_to_all.metadata.json diff --git a/tutorials/hardware_aware_mcx/hardware_aware_mcx_linear.json b/tutorials/hardware_aware_mcx/hardware_aware_mcx_linear.metadata.json similarity index 100% rename from tutorials/hardware_aware_mcx/hardware_aware_mcx_linear.json rename to tutorials/hardware_aware_mcx/hardware_aware_mcx_linear.metadata.json diff --git a/tutorials/hello_many_worlds/hello_many_worlds.ipynb b/tutorials/hello_many_worlds/hello_many_worlds.ipynb index 0ff7b90b..4f6a4572 100644 --- a/tutorials/hello_many_worlds/hello_many_worlds.ipynb +++ b/tutorials/hello_many_worlds/hello_many_worlds.ipynb @@ -11,13 +11,13 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "With Classiq (as perhaps in quantum) there are many parallel worlds one can work with. These refer to the IDE - Python SDK interfaces. In the following we run the same 'Hello World' example in different flows of the steps design-optimize-analyze-execute between the IDE and the Python SDK:\n", + "With Classiq (as, perhaps, with quantum computing) there are many parallel worlds in which to work; specifically, the IDE and Python SDK interfaces. The 'Hello World' example below runs in different flows of the design-optimize-analyze-execute steps between the IDE and the Python SDK:\n", "\n", "1. [All in IDE](#all-in-ide)\n", "2. [Design (SDK) - Optimize (SDK) - Analyze (IDE) - Execute (SDK)](#design-sdk---optimize-sdk---analyze-ide---execute-sdk)\n", "3. [Design (SDK) - Optimize (SDK) - Analyze (IDE) - Execute (IDE)](#design-sdk---optimize-sdk---analyze-ide---execute-ide)\n", "\n", - "The 'Hello World' example calculates in a superposition the simple arithmetic operation $y=x^2+1$ - an example that is covered in depth in the Classiq 101." + "The 'Hello World' example calculates the simple arithmetic operation $y=x^2+1$ in a superposition. This example is covered in depth in Classiq 101." ] }, { @@ -31,7 +31,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Copy and paste the following code in the `Model` tab in the IDE, then press `Synthesize` as the GIF belows shows:\n", + "Copy and paste the following code in the `Model` tab in the IDE, then click `Synthesize` as shown in the GIF:\n", "```\n", "qfunc main(output x: qnum, output y:qnum){\n", " allocate<4>(x);\n", @@ -54,7 +54,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Check that you receive 2 blocks in the quantum circuit: `hadamard_transform` and `Arithmetic`, then press `Execute`:" + "Check that you receive two blocks in the quantum circuit: `hadamard_transform` and `Arithmetic`, then click `Execute`:" ] }, { @@ -70,7 +70,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "In the `Execution` tab, choose the simulator under the Classiq provider (and make sure that other options are unmarked). Change the job name to be 'hello world' and press `Run`:" + "In the `Execution` tab, under the Classiq provider, choose the simulator (and make sure that other options are not selected). Change the job name to 'hello world' and click `Run`:" ] }, { @@ -86,7 +86,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "In the `Jobs` tab check the results by hovering over the histogram bars and verifying you receive 16 bars, and each bar encapsulates the correct relation between $x$ and $y$, i.e. $y=x^2+1$:" + "In the `Jobs` tab, check the results by hovering over the histogram bars and verifying you receive 16 bars. Each bar encapsulates the correct relation between $x$ and $y$; i.e., $y=x^2+1$:" ] }, { @@ -102,7 +102,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "That's it! You just completed designing, optimizing, running ans executing your first quantum algorithm with the Classiq IDE!" + "That's it! You just completed designing, optimizing, analyzing, and executing your first quantum algorithm with the Classiq IDE." ] }, { @@ -147,7 +147,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Then run the following in order to optimize your algorithm from the Python SDK:" + "Optimize your algorithm by running this code from the Python SDK:" ] }, { @@ -170,7 +170,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Analyze your quantum circuit in the IDE by running the following code in Python and opening the popped up link:" + "Analyze your quantum circuit in the IDE by running this code in Python and opening the pop-up link:" ] }, { @@ -210,7 +210,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Finally, execute your code from the Python SDK by running the following code:" + "Execute your code in the Python SDK by running this:" ] }, { @@ -245,7 +245,7 @@ "source": [ "Check that you receive 16 pairs of `{'x': , 'y': }` and that the values indeed follow the connection $y=x^2+1$. \n", "\n", - "That's it! You just completed your first quantum algorithm from the Python SDK!" + "That's it! You just completed your first quantum algorithm in the Python SDK." ] }, { @@ -259,9 +259,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Now let's run the same example in a mixed flow of the previous two:\n", + "Now, run the same example using a mixed flow of the previous two:\n", "\n", - "Design your hello world quantum algorithm by running the following code in your favorite Python SDK environment (after installing Classiq):" + "Design your hello world quantum algorithm by running this code in your favorite Python SDK environment (after installing Classiq):" ] }, { @@ -292,7 +292,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Then run the following in order to optimize your algorithm from the Python SDK:" + "Optimize your algorithm by running this code in the Python SDK:" ] }, { @@ -315,7 +315,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Analyze your quantum circuit in the IDE by running the following code in Python and opening the popped up link:" + "Analyze your quantum circuit in the IDE by running this code in Python and opening the pop-up link:" ] }, { @@ -355,7 +355,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Check that you receive 2 blocks in the quantum circuit: `hadamard_transform` and `Arithmetic`, then press `Execute`:" + "Check that you receive two blocks in the quantum circuit: `hadamard_transform` and `Arithmetic`, then click `Execute`:" ] }, { @@ -371,7 +371,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "In the `Execution` tab, choose the simulator under the Classiq provider (and make sure that other options are unmarked). Change the job name to be 'hello world' and press `Run`:" + "In the `Execution` tab, under the Classiq provider, choose the simulator (and make sure that other options are not selected). Change the job name to 'hello world' and click `Run`:" ] }, { @@ -387,7 +387,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "In the `Jobs` tab check the results by hovering over the histogram bars and verifying you receive 16 bars, and each bar encapsulates the correct relation between $x$ and $y$, i.e. $y=x^2+1$:" + "In the `Jobs` tab, check the results by hovering over the histogram bars and verifying you receive 16 bars. Each bar encapsulates the correct relation between $x$ and $y$; i.e., $y=x^2+1$:" ] }, { @@ -403,9 +403,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "That's it! You just completed the hello world example in a mixed flow of IDE and Python SDK!\n", + "That's it! You just completed the hello world example in a mixed flow of IDE and Python SDK.\n", "\n", - "You are ready to continue to the Classiq 101, enjoy!" + "You are ready to continue with Classiq 101. Enjoy!" ] }, { diff --git a/tutorials/linear_combination_of_unitaries/linear_combination_of_unitaries.ipynb b/tutorials/linear_combination_of_unitaries/linear_combination_of_unitaries.ipynb index 87fdc578..14b9d904 100644 --- a/tutorials/linear_combination_of_unitaries/linear_combination_of_unitaries.ipynb +++ b/tutorials/linear_combination_of_unitaries/linear_combination_of_unitaries.ipynb @@ -13,47 +13,51 @@ "id": "3f25ec81", "metadata": {}, "source": [ - "Quantum computing is based on the principles of quantum mechanics, which includes an important feature: unitarity. The operations we are able to execute in a quantum circuit are unitary. Would this mean that problems requiring non-unitary operations are out of hand for quantum computers? This is the task solved by the Linear Combination of Unitaries (LCU) algorithm [[1](#childs_paper), [2](#childs_notes)]. Lets dive in more details about what can be done with this algorithm.\n", + "Quantum computing is based on the principles of quantum mechanics, which includes an important feature: unitarity. The operations that evolve quantum states on quantum computers are unitary. Would this mean that problems requiring non-unitary operations are out of hand for quantum computers? This is the task solved by the Linear Combination of Unitaries (LCU) algorithm [[1](#childs_paper), [2](#childs_notes)]. \n", "\n", - "Given a non-unitary matrix $A$ that can be decomposed into\n", + "Given a non-unitary matrix $A$ that can be decomposed into a sum of unitary matrices as follows:\n", "\n", "\\begin{equation}\n", " A = \\sum_{i=0}^{2^n-1} \\alpha_i U_i,\n", "\\end{equation}\n", "\n", - "where $\\alpha_i$ are real, positive coefficients and $U_i$ are unitary matrices. The LCU algorithm can execute the action of $A$, up to a normalization factor, in a subspace of a bigger quantum circuit.\n", + "where $\\alpha_i$ are real, positive coefficients and $U_i$ are unitary matrices, the LCU algorithm applies the action of $A$, up to a normalization factor, on a desired quantum state. \n", "\n", - "The way LCU do this is by using auxiliary (control) qubits to project the operation given by $A$, up to normalization. The first step of the LCU is to prepare the state on the auxiliary qubits using the function PREPARE:\n", + "It does so by embedding the matrix $A$ in a bigger unitary. The first step of the LCU is to prepare the following state on an auxiliary quantum register according to the coefficients $\\alpha_i$ using the function PREPARE:\n", "\n", "\\begin{equation}\n", " |\\psi_0\\rangle = PREPARE|0\\rangle = \\sum_i \\sqrt{\\frac{\\alpha_i}{\\lambda}}|i\\rangle,\n", "\\end{equation}\n", "\n", - "where $\\lambda = \\sum_i |\\alpha_i|$ is a normalization factor. After that, the control qubits are entangled with the target qubits with the SELECT operation:\n", + "where $\\lambda = \\sum_i |\\alpha_i|$ is a normalization factor. This quantum register with the prepared state is used as a controller for the next step. Then, according to the controller quantum register, the following state is being prepared:\n", "\n", "\\begin{equation}\n", " SELECT|i\\rangle|\\psi\\rangle = |i\\rangle U_i |\\psi\\rangle,\n", "\\end{equation}\n", "\n", - "where $|\\psi\\rangle$ is a general quantum state. The final step is to have the PREPARE operation reversed. This way, the quantum circuit has the following effect on the qubits:\n", + "where $|\\psi\\rangle$ is the desired quantum state the matrix $A$ should be applied on. The final step is to have the PREPARE operation inversed such that the following desired state is created: \n", "\n", "\\begin{equation}\n", " LCU|0\\rangle|\\psi\\rangle = PREPARE^{-1}\\, SELECT\\, PREPARE |0\\rangle|\\psi\\rangle = V |0\\rangle |\\psi\\rangle,\n", "\\end{equation}\n", "\n", - "where V can be represented as\n", + "where $V$ can be represented as\n", "\n", "\n", "$$V = \\begin{bmatrix}A & \\cdot \\\\ \\cdot & \\cdot \\end{bmatrix}.$$\n", "\n", "\n", - "This is called the Block Encoding of the matrix A. This way, if we project the control qubits in the $|0\\rangle$ state, we would obtain\n", + "This is called the Block Encoding of the matrix A. By projecting the controller quantum register on the $|0\\rangle$ state the desired outcome is obtained:\n", "\n", "\\begin{equation}\n", " \\left(|0\\rangle\\langle0|\\otimes I\\right)LCU|0\\rangle|\\phi\\rangle = |0\\rangle\\frac{A}{\\lambda}|\\psi\\rangle.\n", "\\end{equation}\n", "\n", - "Therefore, the action of the sequence of operations over the target qubit will be the non-unitary operation $A$, up to a normalization factor. A more detailed mathematical description of the circuit can be seen below and in [[1](#childs_paper)]. It is also important to notice that the projection onto the $|0\\rangle$ state depends on a success probability, detailed in [[1]](https://arxiv.org/abs/1202.5822). Overall, the general circuit of the LCU would look like this:" + "Therefore, the action of the sequence of operations over the target qubit will be the non-unitary operation $A$, up to a normalization factor. \n", + "\n", + "Detailed mathematical description of the algorithm can be seen [below](#mathematical-description) and in refernce [[1](#childs_paper)]. It is also important to notice that the projection onto the $|0\\rangle$ state depends on a success probability, detailed in [[1]](https://arxiv.org/abs/1202.5822).\n", + "\n", + "Overall, a scheme of the algorithm looks like:" ] }, { @@ -61,7 +65,9 @@ "id": "24bce818", "metadata": {}, "source": [ - "![LCU_circuit](https://docs.classiq.io/resources/LCU_Circuit.png)" + "
\n", + " \n", + "
" ] }, { @@ -78,8 +84,8 @@ "metadata": {}, "source": [ "Now that we know how the LCU algorithm works, it's time to implement it on Classiq. For that, we will be using two important functions:\n", - "* [Within-Apply](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/within-apply/ )\n", - "* [Prepare state](https://docs.classiq.io/latest/tutorials/tutorials/prepare-state/prepare-state/?h=prepare_state)\n", + "* [Within-Apply](https://docs.classiq.io/latest/reference-manual/platform/qmod/language-reference/statements/within-apply/)\n", + "* [Prepare state](https://docs.classiq.io/latest/reference-manual/platform/qmod/library-reference/core-library-functions/prepare_state_and_amplitudes/prepare_state_and_amplitudes/)\n", "\n", "\n", "\n", @@ -94,7 +100,7 @@ "\n", "
\n", "\n", - "The Prepare state function realizes the initial state preparation step of a quantum algorithm, given a bound for the error and the probabilities of the quantum states. Using [this tutorial](https://docs.classiq.io/latest/tutorials/tutorials/prepare-state/prepare-state/?h=prepare_state), one can play with this function." + "The Prepare state function realizes the initial state preparation step of a quantum algorithm, given a bound for the error and the probabilities of the quantum states. Using [this tutorial](https://docs.classiq.io/latest/reference-manual/platform/qmod/library-reference/core-library-functions/prepare_state_and_amplitudes/prepare_state_and_amplitudes/), one can play with this function." ] }, { @@ -116,33 +122,26 @@ "id": "c01e0f46", "metadata": {}, "source": [ - "Now that the operations are identified, we just need to build them and then use the Within-Apply function. The SELECT operation can be build using the [control](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/quantum-operators/) statement, and the [QFT function](https://docs.classiq.io/latest/tutorials/functions/function-usage-examples/qft/qft/):" + "Now that the operations are identified, we just need to build them and then use the Within-Apply function. The SELECT operation can be build using the [control](https://docs.classiq.io/latest/reference-manual/platform/qmod/language-reference/statements/control/) statement, and the [QFT function](https://docs.classiq.io/latest/explore/functions/qmod_library_reference/classiq_open_library/qft/qft/):" ] }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 1, "id": "58e277dd", "metadata": {}, "outputs": [], "source": [ "from classiq import *\n", + "\n", + "\n", "@qfunc\n", "def lcu_controllers(controller: QNum, psi: QNum):\n", - " control(\n", - " ctrl= controller==0,\n", - " operand= lambda: apply_to_all(IDENTITY,psi)\n", - " )\n", + " control(ctrl=controller == 0, operand=lambda: apply_to_all(IDENTITY, psi))\n", "\n", - " control(\n", - " ctrl= controller==1,\n", - " operand= lambda: qft(psi)\n", - " )\n", + " control(ctrl=controller == 1, operand=lambda: qft(psi))\n", "\n", - " control(\n", - " ctrl=controller==2,\n", - " operand= lambda: invert(lambda: qft(psi))\n", - " )" + " control(ctrl=controller == 2, operand=lambda: invert(lambda: qft(psi)))" ] }, { @@ -173,25 +172,31 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 2, "id": "82854a21", "metadata": {}, "outputs": [], "source": [ "@qfunc\n", "def main(controller: Output[QNum], psi: Output[QNum]):\n", - " #Defining the error bound and probability distribution\n", + "\n", + " # Defining the error bound and probability distribution\n", " error_bound = 0.01\n", - " controller_probabilities= [0.5,0.25,0.25,0]\n", - " #Allocating the target and control qubits, respectively\n", - " allocate(2,psi)\n", + " controller_probabilities = [0.5, 0.25, 0.25, 0]\n", + "\n", + " # Allocating the target and control qubits, respectively\n", + " allocate(2, psi)\n", + " allocate(2, controller)\n", "\n", - " allocate(2,controller)\n", - " #Executing the Within-Apply function, the SELECT function is defined by lcu_controllers and the PREPARE function is defined by the inplace_prepare_state function.\n", + " # Executing the Within-Apply function, the SELECT function is defined by lcu_controllers and the PREPARE function is defined by the inplace_prepare_state function.\n", " within_apply(\n", - " compute=lambda: inplace_prepare_state(probabilities=controller_probabilities,bound=error_bound,target=controller),\n", - " action= lambda:lcu_controllers(controller,psi)\n", - " )\n", + " compute=lambda: inplace_prepare_state(\n", + " probabilities=controller_probabilities, bound=error_bound, target=controller\n", + " ),\n", + " action=lambda: lcu_controllers(controller, psi),\n", + " )\n", + "\n", + "\n", "quantum_model = create_model(main)\n", "quantum_program = synthesize(quantum_model)" ] @@ -297,36 +302,35 @@ ], "source": [ "from classiq import *\n", + "\n", + "\n", "@qfunc\n", "def lcu_controllers(controller: QNum, psi: QNum):\n", - " control(\n", - " ctrl= controller==0,\n", - " operand= lambda: apply_to_all(IDENTITY,psi)\n", - " )\n", + " control(ctrl=controller == 0, operand=lambda: apply_to_all(IDENTITY, psi))\n", + "\n", + " control(ctrl=controller == 1, operand=lambda: qft(psi))\n", + "\n", + " control(ctrl=controller == 2, operand=lambda: invert(lambda: qft(psi)))\n", "\n", - " control(\n", - " ctrl= controller==1,\n", - " operand= lambda: qft(psi)\n", - " )\n", "\n", - " control(\n", - " ctrl=controller==2,\n", - " operand= lambda: invert(lambda: qft(psi))\n", - " )\n", "@qfunc\n", "def main(controller: Output[QNum], psi: Output[QNum]):\n", - " #Defining the error bound and probability distribution\n", + " # Defining the error bound and probability distribution\n", " error_bound = 0.01\n", - " controller_probabilities= [0.5,0.25,0.25,0]\n", - " #Allocating the target and control qubits, respectively\n", - " allocate(2,psi)\n", + " controller_probabilities = [0.5, 0.25, 0.25, 0]\n", + " # Allocating the target and control qubits, respectively\n", + " allocate(2, psi)\n", "\n", - " allocate(2,controller)\n", - " #Executing the Within-Apply function, the SELECT function is defined by lcu_controllers and the PREPARE function is defined by the inplace_prepare_state function.\n", + " allocate(2, controller)\n", + " # Executing the Within-Apply function, the SELECT function is defined by lcu_controllers and the PREPARE function is defined by the inplace_prepare_state function.\n", " within_apply(\n", - " compute=lambda: inplace_prepare_state(probabilities=controller_probabilities,bound=error_bound,target=controller),\n", - " action= lambda:lcu_controllers(controller,psi)\n", - " )\n", + " compute=lambda: inplace_prepare_state(\n", + " probabilities=controller_probabilities, bound=error_bound, target=controller\n", + " ),\n", + " action=lambda: lcu_controllers(controller, psi),\n", + " )\n", + "\n", + "\n", "quantum_model = create_model(main)\n", "quantum_program = synthesize(quantum_model)\n", "\n", @@ -348,16 +352,18 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "id": "5937706e", "metadata": {}, "outputs": [], - "source": [] + "source": [ + "write_qmod(quantum_model, \"linear_combination_of_unitaries\")" + ] } ], "metadata": { "kernelspec": { - "display_name": "Python 3 (ipykernel)", + "display_name": "Python 3.11.7 ('classiq')", "language": "python", "name": "python3" }, @@ -371,7 +377,12 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.13" + "version": "3.11.7" + }, + "vscode": { + "interpreter": { + "hash": "529b62266d4f537a408698cf820854c65fe877011c7661f0f70aa11c4383fddc" + } } }, "nbformat": 4, diff --git a/tutorials/linear_combination_of_unitaries/linear_combination_of_unitaries.json b/tutorials/linear_combination_of_unitaries/linear_combination_of_unitaries.json new file mode 100644 index 00000000..d2b374de --- /dev/null +++ b/tutorials/linear_combination_of_unitaries/linear_combination_of_unitaries.json @@ -0,0 +1,7 @@ +{ + "friendly_name": "LCU - Linear Combination of Unitaries", + "description": "Demonstration of the LCU algorithm for a specific example", + "problem_domain_tags": [], + "qmod_type": ["algorithm"], + "level": ["basic", "demos"] +} diff --git a/tutorials/linear_combination_of_unitaries/linear_combination_of_unitaries.qmod b/tutorials/linear_combination_of_unitaries/linear_combination_of_unitaries.qmod new file mode 100644 index 00000000..0584981d --- /dev/null +++ b/tutorials/linear_combination_of_unitaries/linear_combination_of_unitaries.qmod @@ -0,0 +1,23 @@ +qfunc lcu_controllers(controller: qnum, psi: qnum) { + control (controller == 0) { + apply_to_all(psi); + } + control (controller == 1) { + qft(psi); + } + control (controller == 2) { + invert { + qft(psi); + } + } +} + +qfunc main(output controller: qnum, output psi: qnum) { + allocate<2>(psi); + allocate<2>(controller); + within { + inplace_prepare_state<[0.5, 0.25, 0.25, 0], 0.01>(controller); + } apply { + lcu_controllers(controller, psi); + } +} diff --git a/tutorials/linear_combination_of_unitaries/linear_combination_of_unitaries.synthesis_options.json b/tutorials/linear_combination_of_unitaries/linear_combination_of_unitaries.synthesis_options.json new file mode 100644 index 00000000..0967ef42 --- /dev/null +++ b/tutorials/linear_combination_of_unitaries/linear_combination_of_unitaries.synthesis_options.json @@ -0,0 +1 @@ +{} diff --git a/tutorials/mcx/mcx_14_ctrl_cx.json b/tutorials/mcx/mcx_14_ctrl_cx.metadata.json similarity index 100% rename from tutorials/mcx/mcx_14_ctrl_cx.json rename to tutorials/mcx/mcx_14_ctrl_cx.metadata.json diff --git a/tutorials/mcx/mcx_14_ctrl_depth.json b/tutorials/mcx/mcx_14_ctrl_depth.metadata.json similarity index 100% rename from tutorials/mcx/mcx_14_ctrl_depth.json rename to tutorials/mcx/mcx_14_ctrl_depth.metadata.json diff --git a/tutorials/mcx/mcx_14_ctrl_hardware.json b/tutorials/mcx/mcx_14_ctrl_hardware.metadata.json similarity index 100% rename from tutorials/mcx/mcx_14_ctrl_hardware.json rename to tutorials/mcx/mcx_14_ctrl_hardware.metadata.json diff --git a/tutorials/mcx/mcx_50_ctrl.json b/tutorials/mcx/mcx_50_ctrl.metadata.json similarity index 100% rename from tutorials/mcx/mcx_50_ctrl.json rename to tutorials/mcx/mcx_50_ctrl.metadata.json diff --git a/tutorials/phase_kickback/phase_kickback.ipynb b/tutorials/phase_kickback/phase_kickback.ipynb index 19eb5c6d..c7530925 100644 --- a/tutorials/phase_kickback/phase_kickback.ipynb +++ b/tutorials/phase_kickback/phase_kickback.ipynb @@ -11,27 +11,27 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Phase kickback [[1](#childs),[2](#LinLin),[3](#Wolf)] is an important and highly used primitive in quantum computing, and it deals with kicking the result of a function to the phase of a quantum state so it can be smartly manipulated with constructive and destructive interferences in order to achieve the desired result. Every quantum algortihm can be decomposed into 3 steps: 1)Encoding the data; 2) Manipulating the data; and 3) Extracting the result. The phase kickback primitive is a key step in the manipulaiton of the data that enables the extraction of the result. See the [Deutch-Jozsa](https://github.com/Classiq/classiq-library/blob/main/algorithms/deutsch_jozsa/deutsch_jozsa.ipynb) and [Simon's](https://github.com/Classiq/classiq-library/blob/main/algorithms/simon/simon.ipynb) algortihms for concrete examples of the applications of it.\n", + "Phase kickback [[1](#childs),[2](#LinLin),[3](#Wolf)] is an important and highly used primitive in quantum computing. It deals with kicking the result of a function to the phase of a quantum state so it can be smartly manipulated with constructive and destructive interferences to achieve the desired result. Every quantum algortihm can be decomposed into these steps: 1) Encoding the data; 2) Manipulating the data; and 3) Extracting the result. The phase kickback primitive is a key step in the manipulation of the data that enables extracting the result. See the [Deutsch-Jozsa](https://github.com/Classiq/classiq-library/blob/main/algorithms/deutsch_jozsa/deutsch_jozsa.ipynb) and [Simon's](https://github.com/Classiq/classiq-library/blob/main/algorithms/simon/simon.ipynb) algorithms for concrete examples.\n", "\n", - "The standard way [[4](#NielsenChuang)] of applying a classical function $f:\\{0,1\\}^n \\rightarrow \\{0,1\\}$ on quantum states is with the oracle model: \n", + "The standard way [[4](#NielsenChuang)] to apply a classical function $f:\\{0,1\\}^n \\rightarrow \\{0,1\\}$ on quantum states is with the oracle model: \n", "$\\begin{equation}\n", "O_f (|x \\rangle_n|y \\rangle_1) = |x \\rangle_n|y \\oplus f(x) \\rangle_1\n", "\\end{equation}$\n", - "with $|x \\rangle$ and $|y \\rangle$ being the argument and target quantum states respectively, and $\\oplus$ being affition modolu $2$, or the XOR operation. The phase kickback primitive takes the oracle $O_f$ as an input, and performs the follwoing operation:\n", + "with $|x \\rangle$ and $|y \\rangle$ as the argument and target quantum states, respectively, and $\\oplus$ as the addition modolu $2$ or the XOR operation. The phase kickback primitive takes the oracle $O_f$ as input, and performs this operation:\n", "$\\begin{equation}\n", "|x \\rangle\\rightarrow (-1)^{f(x)}|x \\rangle\n", "\\end{equation}$\n", - "This can obviously be applied on a superposition of states such that:\n", + "This can be applied on a superposition of state:\n", "$\\begin{equation}\n", "\\sum_{i=0}^{2^n-1}\\alpha_i|x_i \\rangle\\rightarrow (-1)^{f(x_i)}\\alpha_i|x_i \\rangle\n", "\\end{equation}$\n", - "with $\\alpha_i$ being the amplitude of the $|x_i \\rangle$ state.\n", + "with $\\alpha_i$ as the amplitude of the $|x_i \\rangle$ state.\n", "\n", - "How this is happening? It's quite simple actually (hence the beuty of it), all needed is to apply the oracle $O_f$ on the state target quantum state $|- \\rangle=\\frac{1}{\\sqrt{2}}|0 \\rangle-\\frac{1}{\\sqrt{2}}|1 \\rangle$ such that:\n", + "How does this happen? Its beauty lies in its simplicity: applying the oracle $O_f$ to the state target quantum state $|- \\rangle=\\frac{1}{\\sqrt{2}}|0 \\rangle-\\frac{1}{\\sqrt{2}}|1 \\rangle$:\n", "$\\begin{equation}\n", "O_f|x \\rangle |- \\rangle = (-1)^{f(x)}|x \\rangle |- \\rangle\n", "\\end{equation}$\n", - "and then effectively the desired transformation $|x \\rangle\\rightarrow (-1)^{f(x)}|x \\rangle$ is achieved. " + "then effectively achieving the desired transformation $|x \\rangle\\rightarrow (-1)^{f(x)}|x \\rangle$. " ] }, { @@ -47,7 +47,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Let's see how this actually works! (Go to the [Mathemtaical Description](#mathematical-description) for full mathematical description)" + "See full details in the [mathematical description](#mathematical-description)." ] }, { @@ -55,12 +55,12 @@ "metadata": {}, "source": [ "**Classiq Concepts**\n", - "* [Within-Apply](https://docs.classiq.io/latest/reference-manual/platform/qmod/language-reference/statements/within-apply/ )\n", - "* [In-Place XOR](https://docs.classiq.io/latest/reference-manual/platform/qmod/language-reference/statements/numeric-assignment/ )\n", + "* [within-apply](https://docs.classiq.io/latest/reference-manual/platform/qmod/language-reference/statements/within-apply/ )\n", + "* [in-place XOR](https://docs.classiq.io/latest/reference-manual/platform/qmod/language-reference/statements/numeric-assignment/ )\n", "\n", "**Related Algorithms**\n", - "* [Deutch-Jozsa Algorithm](https://github.com/Classiq/classiq-library/blob/main/algorithms/deutsch_jozsa/deutsch_jozsa.ipynb)\n", - "* [Simon's Algorithm](https://github.com/Classiq/classiq-library/blob/main/algorithms/simon/simon.ipynb)" + "* [Deutsch-Jozsa algorithm](https://github.com/Classiq/classiq-library/blob/main/algorithms/deutsch_jozsa/deutsch_jozsa.ipynb)\n", + "* [Simon's algorithm](https://github.com/Classiq/classiq-library/blob/main/algorithms/simon/simon.ipynb)" ] }, { @@ -70,13 +70,13 @@ "
\n", " NOTE \n", "\n", - "Sometimes another trick is refered as phase kickback ([video 1](https://www.youtube.com/watch?v=iLcQ-X6QzvU), [video 2](https://www.youtube.com/watch?v=455pmYaZXKw)). This is when applying a unitary $U$ with eigensystem $U| phi \\rangle=e^{i\\phi}|phi\\rangle$ which is controlled by a qubit in the $| + \\rangle=\\frac{1}{\\sqrt{2}}|0\\rangle+\\frac{1}{\\sqrt{2}}|1\\rangle$, the phase of the eigenvalue of $U$ is kicked-back to a relative phase in the controlled qubit:\n", + "Another trick is phase kickback ([video 1](https://www.youtube.com/watch?v=iLcQ-X6QzvU), [video 2](https://www.youtube.com/watch?v=455pmYaZXKw)). A unitary $U$ is applied to an eigensystem $U| phi \\rangle=e^{i\\phi}|phi\\rangle$ which is controlled by a qubit in the $| + \\rangle=\\frac{1}{\\sqrt{2}}|0\\rangle+\\frac{1}{\\sqrt{2}}|1\\rangle$, and the phase of the eigenvalue of $U$ is kicked back to a relative phase in the controlled qubit:\n", "$\\begin{equation}\n", "CU| + \\rangle| \\phi \\rangle=\\frac{1}{\\sqrt2}(|0\\rangle| \\phi \\rangle + e^{i\\phi}|1\\rangle| \\phi \\rangle) = \\frac{1}{\\sqrt{2}}(|0\\rangle+e^{i\\phi}|1\\rangle)| \\phi \\rangle\n", "\\end{equation}$\n", "\n", - "This is a good trick to know as well, but it is not what is commonly referred to Phase Kickback in the literature [[1](#childs),[2](#LinLin),[3](#Wolf)]\n", - "
" + "This useful trick is not the same as the Phase Kickback described in the literature [[1](#childs),[2](#LinLin),[3](#Wolf)]\n", + "." ] }, { @@ -90,14 +90,14 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "In Classiq as in any proper devleoping platform, it is recomended to think and design your code on the functional level in terms of functions. The above figure directs us to what functional building blocks we need to have so now we will implement them one function at a time and then connect them." + "When using the Classiq system (as for any development platform), it is recommended to design your code at the functional level in terms of functions. The above figure indicates which functional building blocks you need, so you can now implement them, one function at a time, and then connect them." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "First we start with the **Prepare** $| - \\rangle$ building block implemented with the `prepare_minus` function. It is implemented by sequentially apllying the `X` (NOT) gate that transforms $|0\\rangle$ into $X|0\\rangle=|1\\rangle$, and then applying the Hadmard `H` gate that takes the $|1\\rangle$ state into the desired $H|1\\rangle=| - \\rangle$ state:" + "Start with the **Prepare** $| - \\rangle$ building block using the `prepare_minus` function. It is implemented by sequentially applying the `X` (NOT) gate that transforms $|0\\rangle$ into $X|0\\rangle=|1\\rangle$, and then applying the Hadamard `H` gate that takes the $|1\\rangle$ state into the desired $H|1\\rangle=| - \\rangle$ state:" ] }, { @@ -136,7 +136,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Then we need to define the oracle function that implements $O_f| x \\rangle| target \\rangle=| x \\rangle |target \\oplus f(x)\\rangle$. We will implement it for the function $f(x)= (x==0)$, such that the output is $1$ only if the input $x$ equals $0$. That is \n", + "Now, define the oracle function that implements $O_f| x \\rangle| target \\rangle=| x \\rangle |target \\oplus f(x)\\rangle$ for the function $f(x)= (x==0)$, such that the output is $1$ only if the input $x$ equals $0$.\n", "$\\begin{equation}\n", "O_f(| x \\rangle| target \\rangle) = | x \\rangle |target \\oplus (x==0)\\rangle\n", "\\end{equation}$" @@ -155,7 +155,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "With Classiq the XOR operation ($\\oplus$) is impleneted intuitively with `^=` :" + "With Classiq, the XOR operation ($\\oplus$) is implemented intuitively with `^=` :" ] }, { @@ -183,7 +183,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Now we want to combine the two building blocks for preforming the phase kickback. Notice that the we not interested in the $| - \\rangle$ state and its only purpose is for the implementation of $| x \\rangle\\rightarrow (-1)^{f(x)}| x \\rangle$. For such cases (that are common in quantum computing) the QMOD language offers the `Within-Apply` ([read more](https://docs.classiq.io/latest/reference-manual/platform/qmod/language-reference/statements/within-apply/ ) ) statment. Everything we want only for the use of another specific function we apply in the `Within`, and we use it for the specific thing we are interested at in the `Apply`" + "Combine the two building blocks for performing the phase kickback. You are not interested in the $| - \\rangle$ state as its only purpose is to implement $| x \\rangle\\rightarrow (-1)^{f(x)}| x \\rangle$. For such cases (that are common in quantum computing), the Qmod language offers the `within-apply` ([read more](https://docs.classiq.io/latest/reference-manual/platform/qmod/language-reference/statements/within-apply/ ) ) statement. Apply everything intended for use by another specific function in the `within`, and use it for the specific thing in the `apply`" ] }, { @@ -227,7 +227,7 @@ "\n", "Note! \n", "\n", - "In the native QMOD syntax in the IDE the following would look like:\n", + "This is how the native Qmod syntax in the IDE looks:\n", "\n", "```\n", "qfunc oracle_phase_kickback(x:qnum){\n", @@ -235,7 +235,7 @@ " within{prepare_minus(target);} apply{oracle_function(x,target);}\n", "}\n", "```\n", - "which is a bit more intuitive.\n", + "which is more intuitive.\n", "" ] }, @@ -243,7 +243,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Now we are ready to apply our `oracle_phase_kickback` function. Because we are dealing with quantum algortihms we want to utilize the power of quantum parallelism so we will apply the `oracle_phase_kickback` on a superposition of numbers. Creating a superposition is commonly done with the Hadamrd transform in quantum computing, which is just applying the Hadamrd gate `H` on all the qubits, and it's application on the $|0\\rangle$ state is:\n", + "Now you can use the `oracle_phase_kickback` function. To utilize the power of quantum parallelism, apply the `oracle_phase_kickback` on a superposition of numbers. Creating a superposition is commonly done with the Hadamard transform in quantum computing, which means applying the Hadamard gate `H` on all the qubits. Its application on the $|0\\rangle$ state:\n", "$\\begin{equation}\n", "H^{\\otimes n}|0\\rangle_n = \\frac{1}{\\sqrt{2^n}}\\sum_{i=0}^{2^n-1}| i \\rangle_n\n", "\\end{equation}$" @@ -263,11 +263,11 @@ "metadata": {}, "source": [ "\n", - "Therefore our phase kickback primitive is construct of\n", + "Therefore, the phase kickback primitive is constructed of this:\n", "\n", - "1. Initializing the `qnum` type with $4$ qubits using the `allocate` function such that $| x \\rangle=|0\\rangle$\n", - "2. Applying the Hadamrd transform on it using the `hadamard_transform` function such that $| x \\rangle = \\frac{1}{\\sqrt{2^n}}\\sum_{i=0}^{2^n-1}| i \\rangle_n$\n", - "3. Applying the Phase Kickback primitive with the `oracle_phase_kickback` function such that $| x \\rangle = \\frac{1}{\\sqrt{2^n}}\\sum_{i=0}^{2^n-1}(-1)^{i==0}| i \\rangle_n$" + "1. Initializing the `qnum` type with $4$ qubits using the `allocate` function such that $| x \\rangle=|0\\rangle$.\n", + "2. Applying the Hadamard transform using the `hadamard_transform` function such that $| x \\rangle = \\frac{1}{\\sqrt{2^n}}\\sum_{i=0}^{2^n-1}| i \\rangle_n$.\n", + "3. Applying the phase kickback primitive with the `oracle_phase_kickback` function such that $| x \\rangle = \\frac{1}{\\sqrt{2^n}}\\sum_{i=0}^{2^n-1}(-1)^{i==0}| i \\rangle_n$." ] }, { @@ -319,11 +319,11 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Now let's varify that our quantum program actually does what we expect it to do. Remember - we expect to receive a $(-)$ phase only for the state $|0\\rangle$, that is:\n", + "Verify that the quantum program actually operates as expected; receiving a $(-)$ phase only for the state $|0\\rangle$, that is:\n", "$\\begin{equation}\n", "| x \\rangle = \\frac{1}{\\sqrt{2^4}}(|1\\rangle+| 2 \\rangle+\\dots +| 15 \\rangle-|0\\rangle)\n", "\\end{equation}$\n", - "In order to check this we will use the built-in Classiq state vector simulator from the IDE:" + "To check, use the built-in Classiq state vector simulator from the IDE:" ] }, { @@ -339,10 +339,10 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "And indeed we see that only for the zero state we receive the $(-)$ phase as expected! That's really cool isn't it?\n", - "Note that in the result we see bit strings of 5 bits rather than just 4 - this includes the `target` qubit measurment that always result 0.\n", + "Indeed, see that you receive the $(-)$ phase only for the zero state, as expected.\n", + "The result shows bit strings of five bits rather than just four. This includes the `target` qubit measurement that always results in 0.\n", "\n", - "To see how this phase kickback is actually implemented in practice see the Deutch-Josza example and Simon's example (TODO links)" + "To see how this phase kickback is actually implemented in practice see the [Deutsch-Josza example](https://github.com/Classiq/classiq-library/blob/main/algorithms/deutsch_jozsa/deutsch_jozsa.ipynb) and [Simon's example](https://github.com/Classiq/classiq-library/blob/main/algorithms/simon/simon.ipynb)." ] }, { @@ -356,35 +356,35 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Our starting point is the defintion \n", + "The starting point is the definition \n", "$\\begin{equation}\n", "O_f (| x \\rangle_n| y \\rangle_1) = | x \\rangle_n|y \\oplus f(x)\\rangle_1\n", "\\end{equation}$\n", "for $f:\\{0,1\\}^n \\rightarrow \\{0,1\\}$.\n", "\n", - "Applying $O_f$ on $| x \\rangle| - \\rangle$ results:\n", + "Applying $O_f$ on $| x \\rangle| - \\rangle$ results in this:\n", "$\\begin{equation}\n", "O_f (| x \\rangle| - \\rangle) = \\frac{1}{\\sqrt{2}}(| x \\rangle |0 \\oplus f(x)\\rangle - | x \\rangle |1 \\oplus f(x)\\rangle)\n", "\\end{equation}$\n", "\n", "The expression $0 \\oplus f(x)$ equals $f(x)$ because $0\\oplus0=0$ and $0\\oplus1=1$.\n", "\n", - "The expression $1\\oplus f(x)$ equals $\\overline{f(x)}$ i.e. `NOT` $f(x)$ since $1\\oplus1=0$ and $1\\oplus0=1$.\n", + "The expression $1\\oplus f(x)$ equals $\\overline{f(x)}$; i.e., `NOT` $f(x)$ since $1\\oplus1=0$ and $1\\oplus0=1$.\n", "\n", "Therefore:\n", "\n", "$\\begin{equation}\n", - "O_f (| x \\rangle| - \\rangle) = | x \\rangle\\frac{1}{\\sqrt{2}}(|f(x)\\rangle - |\\overline{f(x)}\\rangle)\n", + "O_f (| x \\rangle| - \\rangle) = | x \\rangle\\frac{1}{\\sqrt{2}}(|f(x)\\rangle - |\\overline{f(x)}\\rangle).\n", "\\end{equation}$\n", "\n", "If $f(x)=0$ the target state is $\\frac{1}{\\sqrt{2}}(|0\\rangle - |1\\rangle) = | - \\rangle = (-1)^{f(x)}| - \\rangle$.\n", "\n", - "If $f(x)=1$ the target state is $\\frac{1}{\\sqrt{2}}(|1\\rangle - |0\\rangle) = -| - \\rangle = = (-1)^{f(x)}| - \\rangle$.\n", + "If $f(x)=1$ the target state is $\\frac{1}{\\sqrt{2}}(|1\\rangle - |0\\rangle) = -| - \\rangle = (-1)^{f(x)}| - \\rangle$.\n", "\n", "Therefore:\n", "\n", "$\\begin{equation}\n", - "O_f (| x \\rangle| - \\rangle) = (-1)^{f(x)}| x \\rangle| - \\rangle\n", + "O_f (| x \\rangle| - \\rangle) = (-1)^{f(x)}| x \\rangle| - \\rangle.\n", "\\end{equation}$\n", "\n" ] @@ -393,7 +393,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## All Code Together" + "## All the Code Together" ] }, { @@ -516,7 +516,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Refernces " + "## References " ] }, { diff --git a/tutorials/phase_kickback/phase_kickback.json b/tutorials/phase_kickback/phase_kickback.metadata.json similarity index 100% rename from tutorials/phase_kickback/phase_kickback.json rename to tutorials/phase_kickback/phase_kickback.metadata.json diff --git a/tutorials/prepare_state/prepare_state.json b/tutorials/prepare_state/prepare_state.metadata.json similarity index 100% rename from tutorials/prepare_state/prepare_state.json rename to tutorials/prepare_state/prepare_state.metadata.json diff --git a/tutorials/technology_demonstrations/arithmetic_expressions/arithmetic_demo_12_qubits.json b/tutorials/technology_demonstrations/arithmetic_expressions/arithmetic_demo_12_qubits.metadata.json similarity index 100% rename from tutorials/technology_demonstrations/arithmetic_expressions/arithmetic_demo_12_qubits.json rename to tutorials/technology_demonstrations/arithmetic_expressions/arithmetic_demo_12_qubits.metadata.json diff --git a/tutorials/technology_demonstrations/arithmetic_expressions/arithmetic_demo_12_qubits.qmod b/tutorials/technology_demonstrations/arithmetic_expressions/arithmetic_demo_12_qubits.qmod index c90b9c72..b6ccd2f0 100644 --- a/tutorials/technology_demonstrations/arithmetic_expressions/arithmetic_demo_12_qubits.qmod +++ b/tutorials/technology_demonstrations/arithmetic_expressions/arithmetic_demo_12_qubits.qmod @@ -5,4 +5,3 @@ qfunc main(output z: qnum) { prepare_int<1>(y); z = (((2 * x) + y) + max(3 * y, 2)) > 4; } - diff --git a/tutorials/technology_demonstrations/arithmetic_expressions/arithmetic_demo_12_qubits.synthesis_options.json b/tutorials/technology_demonstrations/arithmetic_expressions/arithmetic_demo_12_qubits.synthesis_options.json index b90a8354..d9217744 100644 --- a/tutorials/technology_demonstrations/arithmetic_expressions/arithmetic_demo_12_qubits.synthesis_options.json +++ b/tutorials/technology_demonstrations/arithmetic_expressions/arithmetic_demo_12_qubits.synthesis_options.json @@ -6,4 +6,4 @@ "preferences": { "random_seed": 424788457 } -} \ No newline at end of file +} diff --git a/tutorials/technology_demonstrations/arithmetic_expressions/arithmetic_demo_9_qubits.json b/tutorials/technology_demonstrations/arithmetic_expressions/arithmetic_demo_9_qubits.metadata.json similarity index 100% rename from tutorials/technology_demonstrations/arithmetic_expressions/arithmetic_demo_9_qubits.json rename to tutorials/technology_demonstrations/arithmetic_expressions/arithmetic_demo_9_qubits.metadata.json diff --git a/tutorials/technology_demonstrations/arithmetic_expressions/arithmetic_demo_9_qubits.qmod b/tutorials/technology_demonstrations/arithmetic_expressions/arithmetic_demo_9_qubits.qmod index c90b9c72..b6ccd2f0 100644 --- a/tutorials/technology_demonstrations/arithmetic_expressions/arithmetic_demo_9_qubits.qmod +++ b/tutorials/technology_demonstrations/arithmetic_expressions/arithmetic_demo_9_qubits.qmod @@ -5,4 +5,3 @@ qfunc main(output z: qnum) { prepare_int<1>(y); z = (((2 * x) + y) + max(3 * y, 2)) > 4; } - diff --git a/tutorials/technology_demonstrations/arithmetic_expressions/arithmetic_demo_9_qubits.synthesis_options.json b/tutorials/technology_demonstrations/arithmetic_expressions/arithmetic_demo_9_qubits.synthesis_options.json index 63d39997..d0862a5e 100644 --- a/tutorials/technology_demonstrations/arithmetic_expressions/arithmetic_demo_9_qubits.synthesis_options.json +++ b/tutorials/technology_demonstrations/arithmetic_expressions/arithmetic_demo_9_qubits.synthesis_options.json @@ -6,4 +6,4 @@ "preferences": { "random_seed": 424788457 } -} \ No newline at end of file +} diff --git a/tutorials/technology_demonstrations/arithmetic_expressions/arithmetic_expressions.ipynb b/tutorials/technology_demonstrations/arithmetic_expressions/arithmetic_expressions.ipynb index d6c1eccf..3b2a7451 100644 --- a/tutorials/technology_demonstrations/arithmetic_expressions/arithmetic_expressions.ipynb +++ b/tutorials/technology_demonstrations/arithmetic_expressions/arithmetic_expressions.ipynb @@ -26,19 +26,21 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 2, "id": "674d1423-6ac5-4f6b-8328-7073a72c0a28", - "metadata": { - "execution": { - "iopub.execute_input": "2024-05-07T14:00:16.789628Z", - "iopub.status.busy": "2024-05-07T14:00:16.788315Z", - "iopub.status.idle": "2024-05-07T14:00:19.713422Z", - "shell.execute_reply": "2024-05-07T14:00:19.712748Z" - } - }, + "metadata": {}, "outputs": [], "source": [ - "from classiq import Output, QBit, QNum, prepare_int, create_model, qfunc, synthesize, execute\n", + "from classiq import (\n", + " Output,\n", + " QBit,\n", + " QNum,\n", + " create_model,\n", + " execute,\n", + " prepare_int,\n", + " qfunc,\n", + " synthesize,\n", + ")\n", "from classiq.qmod.symbolic import max\n", "\n", "\n", @@ -74,22 +76,15 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 3, "id": "ba0e933a-9878-4ce2-b5af-2e4c65638f60", - "metadata": { - "execution": { - "iopub.execute_input": "2024-05-07T14:00:19.716687Z", - "iopub.status.busy": "2024-05-07T14:00:19.715919Z", - "iopub.status.idle": "2024-05-07T14:00:26.267367Z", - "shell.execute_reply": "2024-05-07T14:00:26.266648Z" - } - }, + "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Opening: https://platform.classiq.io/circuit/737ef5dd-eba0-49f5-9a61-25814ca2f523?version=0.42.0\n", + "Opening: http://localhost:4200/circuit/9ffbb18e-8a8e-480b-9091-713d83e03db4?version=0.0.0\n", "The result of the arithmetic calculation: [{'z': 1.0}: 2048]\n" ] } @@ -116,7 +111,7 @@ "job = execute(qprog)\n", "result = job.result()\n", "parsed_counts = result[0].value.parsed_counts\n", - "print(\"The result of the arithmetic calculation: \",parsed_counts)\n", + "print(\"The result of the arithmetic calculation: \", parsed_counts)\n", "\n", "\n", "write_qmod(qmod, \"arithmetic_demo_9_qubits\")" @@ -132,22 +127,15 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 4, "id": "77d24a43-5114-46a0-8309-33af8fdc75fb", - "metadata": { - "execution": { - "iopub.execute_input": "2024-05-07T14:00:26.272358Z", - "iopub.status.busy": "2024-05-07T14:00:26.271131Z", - "iopub.status.idle": "2024-05-07T14:00:33.694219Z", - "shell.execute_reply": "2024-05-07T14:00:33.693482Z" - } - }, + "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Opening: https://platform.classiq.io/circuit/00705127-ab37-41d3-b8a6-71939bf39146?version=0.42.0\n", + "Opening: http://localhost:4200/circuit/9cfdfb42-91dd-4ccb-a9cd-126ad43d404c?version=0.0.0\n", "The result of the arithmetic calculation: [{'z': 1.0}: 2048]\n" ] } @@ -162,7 +150,7 @@ "job = execute(qprog)\n", "result = job.result()\n", "parsed_counts = result[0].value.parsed_counts\n", - "print(\"The result of the arithmetic calculation: \",parsed_counts)\n", + "print(\"The result of the arithmetic calculation: \", parsed_counts)\n", "\n", "\n", "write_qmod(qmod, \"arithmetic_demo_12_qubits\")" @@ -189,20 +177,28 @@ " \n", " Allocated values:\n", " \n", - " $$x = 2\\\\ y = 1$$\n", + " $$x = 2, \\,\\,\\, y = 1$$\n", " \n", " \n", " Expression Calculation:\n", "\n", - " $$2 \\cdot x + y = 2 \\cdot 2 + 1 = 4 + 1 = 5 \\\\ 3 \\cdot y = 3 \\cdot 1 = 3 \\\\ \\max(3 \\cdot y, 2) = \\max(3, 2) = 3$$\n", + " $$2 \\cdot x + y = 2 \\cdot 2 + 1 = 4 + 1 = 5 \\,\\,\\, 3 \\cdot y = 3 \\cdot 1 = 3 \\,\\,\\, \\max(3 \\cdot y, 2) = \\max(3, 2) = 3$$\n", " \n", " Therefore:\n", " \n", " $$2 \\cdot x + y + \\max(3 \\cdot y, 2) = 5 + 3 = 8$$\n", " \n", " As $$8 > 4 \\implies \\text{True}$$\n", - " Z is assigned the value True : $Z \\implies 1$" + " z is assigned the value True : $z \\implies 1$" ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "6115ec77-8405-42e2-b0d3-a00b163deb63", + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { @@ -221,7 +217,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.1" + "version": "3.11.7" } }, "nbformat": 4, diff --git a/tutorials/technology_demonstrations/discrete_quantum_walk_circle/discrete_quantum_walk_circle.ipynb b/tutorials/technology_demonstrations/discrete_quantum_walk_circle/discrete_quantum_walk_circle.ipynb new file mode 100644 index 00000000..51b2260d --- /dev/null +++ b/tutorials/technology_demonstrations/discrete_quantum_walk_circle/discrete_quantum_walk_circle.ipynb @@ -0,0 +1,808 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "6d913177-eafe-488f-a2fc-8ccedf0f4be1", + "metadata": {}, + "source": [ + "# Discrete Quantum Walk on a Circle" + ] + }, + { + "cell_type": "markdown", + "id": "af0afde2-d59c-4186-a34f-142a5265f095", + "metadata": {}, + "source": [ + "This notebook demonstrates the capabilities of the synthesis engine for a walk operator on a circle. The walk operator acts on two quantum variables: a coin qubit and a position quantum number. The core part of the walk operator is the increment quantum function, which is implemented here via a series of multi-controlled X operation." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "b877ca03-2aad-4ae2-86b8-bc136a7ab38d", + "metadata": {}, + "outputs": [], + "source": [ + "import time\n", + "\n", + "from classiq import *" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "0d686f49-3780-46d3-962a-f689469ffbcf", + "metadata": {}, + "outputs": [], + "source": [ + "transpilation_options = {\"classiq\": \"custom\", \"qiskit\": 3}\n", + "NUM_QUBITS_MIN = 5\n", + "NUM_QUBITS_MAX = 12" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "49791668-1241-4781-8edc-124269a1f4bf", + "metadata": {}, + "outputs": [], + "source": [ + "@qfunc\n", + "def my_mcx(x: QNum, y: QBit):\n", + " control(x == 2**x.size - 1, lambda: X(y))\n", + "\n", + "\n", + "@qfunc\n", + "def increment(x: QArray[QBit]):\n", + " repeat(x.len - 1, lambda i: my_mcx(x[0 : x.len - 1 - i], x[x.len - 1 - i]))\n", + " X(x[0])\n", + "\n", + "\n", + "@qfunc\n", + "def single_step_walk(\n", + " x: QNum, # position\n", + "):\n", + " coin = QNum(\"coin\")\n", + " allocate(1, coin)\n", + " H(coin)\n", + " control(coin == 0, lambda: increment(x)),\n", + " control(coin == 1, lambda: invert(lambda: increment(x)))" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "10c1fca5-0b5a-4c0a-ae6e-29bbc9d6841d", + "metadata": {}, + "outputs": [], + "source": [ + "from classiq import CustomHardwareSettings, Preferences\n", + "\n", + "preferences = Preferences(\n", + " custom_hardware_settings=CustomHardwareSettings(basis_gates=[\"cx\", \"u\"]),\n", + " transpilation_option=transpilation_options[\"classiq\"],\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "fa293f48-1aff-4467-a825-40989b359aa8", + "metadata": {}, + "source": [ + "## Synthesizing with two Different Optimization Scenarios " + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "e626a11c-40b6-4f53-ae44-541b7841a9fb", + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "\n", + "from classiq import (\n", + " Constraints,\n", + " OptimizationParameter,\n", + " QuantumProgram,\n", + " set_constraints,\n", + " set_preferences,\n", + " synthesize,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "2f121566-d943-463c-a0e4-6a2141a3d009", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "5 ======\n", + "time: 3.6095149517059326\n", + "time 2.083699941635132\n", + "6 ======\n", + "time: 4.189702272415161\n", + "time 2.097536087036133\n", + "7 ======\n", + "time: 7.209691762924194\n", + "time 3.0989890098571777\n", + "8 ======\n", + "time: 10.247850179672241\n", + "time 4.106258869171143\n", + "9 ======\n", + "time: 20.30021905899048\n", + "time 5.183635234832764\n", + "10 ======\n", + "time: 44.32120895385742\n", + "time 7.1332621574401855\n", + "11 ======\n", + "time: 77.35208916664124\n", + "time 9.147570848464966\n" + ] + } + ], + "source": [ + "classiq_depths_opt_width = []\n", + "classiq_cx_counts_opt_width = []\n", + "classiq_widths_opt_width = []\n", + "classiq_times_opt_width = []\n", + "\n", + "classiq_cx_counts_opt_cx = []\n", + "classiq_depths_opt_cx = []\n", + "classiq_widths_opt_cx = []\n", + "classiq_times_opt_cx = []\n", + "\n", + "\n", + "for num_qubits in range(NUM_QUBITS_MIN, NUM_QUBITS_MAX):\n", + "\n", + " print(num_qubits, \"======\")\n", + " start_time = time.time()\n", + "\n", + " @qfunc\n", + " def main(x: Output[QNum]):\n", + " allocate_num(num_qubits, False, 0, x)\n", + " single_step_walk(x)\n", + "\n", + " qmod = create_model(main)\n", + " qprog = synthesize(qmod)\n", + "\n", + " # width optimization\n", + " constraints = Constraints(\n", + " optimization_parameter=OptimizationParameter.WIDTH,\n", + " )\n", + " qmod = set_constraints(qmod, constraints=constraints)\n", + " qmod = set_preferences(qmod, preferences=preferences)\n", + " quantum_program = synthesize(qmod)\n", + " end_time = time.time() - start_time\n", + " circuit = QuantumProgram.from_qprog(quantum_program)\n", + " classiq_widths_opt_width.append(circuit.data.width)\n", + " classiq_depths_opt_width.append(circuit.transpiled_circuit.depth)\n", + " classiq_cx_counts_opt_width.append(circuit.transpiled_circuit.count_ops[\"cx\"])\n", + " classiq_times_opt_width.append(end_time)\n", + " print(\"time:\", end_time)\n", + " # CX Optimization with a Constrained Width\n", + " constraints = Constraints(\n", + " optimization_parameter=\"cx\",\n", + " max_width=2 * num_qubits, # setting some bound\n", + " )\n", + " qmod = set_constraints(qmod, constraints=constraints)\n", + " qmod = set_preferences(qmod, preferences=preferences)\n", + " start_time = time.time()\n", + " quantum_program = synthesize(qmod)\n", + " end_time = time.time() - start_time\n", + " circuit = QuantumProgram.from_qprog(quantum_program)\n", + " classiq_widths_opt_cx.append(circuit.data.width)\n", + " classiq_depths_opt_cx.append(circuit.transpiled_circuit.depth)\n", + " classiq_cx_counts_opt_cx.append(circuit.transpiled_circuit.count_ops[\"cx\"])\n", + " classiq_times_opt_cx.append(end_time)\n", + " print(\"time\", end_time)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "bbfc20ad-e02e-41d7-8f58-699d46556e6a", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "classiq depths: [419, 749, 1195, 1773, 2499, 3389, 4099]\n", + "classiq cx_counts: [274, 514, 850, 1298, 1874, 2594, 3194]\n", + "classiq widths: [6, 7, 8, 9, 10, 11, 13]\n", + "[3.6095149517059326, 4.189702272415161, 7.209691762924194, 10.247850179672241, 20.30021905899048, 44.32120895385742, 77.35208916664124]\n", + "classiq depths: [193, 245, 335, 419, 509, 602, 704]\n", + "classiq cx_counts: [120, 152, 200, 260, 352, 436, 552]\n", + "classiq widths: [8, 9, 11, 12, 14, 15, 17]\n", + "[2.083699941635132, 2.097536087036133, 3.0989890098571777, 4.106258869171143, 5.183635234832764, 7.1332621574401855, 9.147570848464966]\n" + ] + } + ], + "source": [ + "print(\"classiq depths:\", classiq_depths_opt_width)\n", + "print(\"classiq cx_counts:\", classiq_cx_counts_opt_width)\n", + "print(\"classiq widths:\", classiq_widths_opt_width)\n", + "print(classiq_times_opt_width)\n", + "\n", + "print(\"classiq depths:\", classiq_depths_opt_cx)\n", + "print(\"classiq cx_counts:\", classiq_cx_counts_opt_cx)\n", + "print(\"classiq widths:\", classiq_widths_opt_cx)\n", + "print(classiq_times_opt_cx)" + ] + }, + { + "cell_type": "markdown", + "id": "8762fb46-9f6c-481b-9894-2b8adb415c3e", + "metadata": {}, + "source": [ + "## Comparing to Qiskit Implementation\n", + "\n", + "The qiskit data was generated using qiskit version 1.0.0. To run the qiskit code uncomment the commented cells below." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "c224f0cd-471e-4431-9f19-b61b6296ca8b", + "metadata": {}, + "outputs": [], + "source": [ + "qiskit_cx_counts = [900, 2376, 5388, 11472, 23700, 48216]\n", + "qiskit_depths = [1645, 4222, 9485, 20122, 41509, 84398]\n", + "qiskit_widths = [6, 7, 8, 9, 10, 11]\n", + "qiskit_times = [\n", + " 0.43783092498779297,\n", + " 3.743027925491333,\n", + " 17.858744144439697,\n", + " 73.1058611869812,\n", + " 293.51222825050354,\n", + " 1222.052798986435,\n", + "]" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "2615c5af-eb5b-48bf-b3f5-ca184de4bac4", + "metadata": {}, + "outputs": [], + "source": [ + "# from qiskit import QuantumCircuit, QuantumRegister, transpile\n", + "\n", + "# def get_incerement_circuit(num_qubits):\n", + "\n", + "# incerement_circuit= QuantumCircuit(num_qubits)\n", + "# for j in range(num_qubits - 1):\n", + "# incerement_circuit.mcx([k for k in range(num_qubits - 1-j)], num_qubits-1-j)\n", + "# incerement_circuit.x(0)\n", + "\n", + "# return incerement_circuit\n", + "\n", + "# # building the q_walk_step, the first qubit is the coin\n", + "# qiskit_cx_counts = []\n", + "# qiskit_depths = []\n", + "# qiskit_widths = []\n", + "# qiskit_times = []\n", + "\n", + "\n", + "# for num_qubits in range(NUM_QUBITS_MIN,NUM_QUBITS_MAX):\n", + "\n", + "# start_time = time.time()\n", + "# q_walk_step = QuantumCircuit(num_qubits+1)\n", + "# q_walk_step.h(0)\n", + "# q_walk_step.append(get_incerement_circuit(num_qubits).control(1, ctrl_state=1),\n", + "# [k for k in range(num_qubits+1)])\n", + "# q_walk_step.append(get_incerement_circuit(num_qubits).inverse().control(1, ctrl_state=0),\n", + "# [k for k in range(num_qubits+1)])\n", + "# transpiled_cir = transpile(\n", + "# q_walk_step,\n", + "# basis_gates=[\"u\", \"cx\"],\n", + "# optimization_level=transpilation_options[\"qiskit\"],\n", + "# )\n", + "# print(time.time()-start_time, \", \",num_qubits)\n", + "# print(transpiled_cir.depth())\n", + "# qiskit_depths.append(transpiled_cir.depth())\n", + "# qiskit_cx_counts.append(transpiled_cir.count_ops()[\"cx\"])\n", + "# qiskit_widths.append(transpiled_cir.width())\n", + "# qiskit_times.append(time.time()-start_time)\n", + "\n", + "\n", + "# print(qiskit_cx_counts)\n", + "# print(qiskit_depths)\n", + "# print(qiskit_widths)\n", + "# print(qiskit_times)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "c209edb9-4c2c-4c58-b8e3-761d39a961f0", + "metadata": {}, + "outputs": [], + "source": [ + "num_qubits_classiq = range(NUM_QUBITS_MIN, NUM_QUBITS_MAX)\n", + "num_qubits_qiskit = num_qubits_classiq[0 : len(qiskit_cx_counts)]" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "7657cf6b-26cd-486b-ac67-483f019b91ce", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAHGCAYAAAA8BFyAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAACzxElEQVR4nOzdd3iUVdrH8e/MpFdIIwkJCaE3pRdBAyIodmAt74oL6lqxru4KuqviWkDFFZa4KipgWVYRRNe1Ic1C70onhRRSSe/JzHn/eDJDkplAJplkUu7Pdc1F8tQzAZJfznPOfXRKKYUQQgghhGhVemc3QAghhBCiM5IQJoQQQgjhBBLChBBCCCGcQEKYEEIIIYQTSAgTQgghhHACCWFCCCGEEE4gIUwIIYQQwglcnN2Aji4nJ4fvvvuO6OhoPD09nd0cIYQQQjRCWVkZSUlJXHnllQQFBbXIPSSEOUhcXBxxcXFW2/Pz80lPT3dCi4QQQgjRXB999BG33XZbi1xbJxXzW9Yvv/zChAkT+OijjxgwYICzmyOEEEKIRjh69CizZs3i559/Zvz48S1yD+kJa2HmR5ADBgxg+PDhTm6NEEIIIezRkkOJZGC+EEIIIYQTSAgTQgghhHACCWFCCCGEEE4gIUwIIYQQwgkkhAkhhBBCOIGEMCGEEEIIJ5AQJoQQQgjhBFInrA2rrq6murra2c0QQrRDer0eV1dXdDqds5sihGiAhLA2qLS0lJycHEpKSpzdFCFEO+bq6oqvry9BQUEYDAZnN0cIUY+EMAdpaO3IsrIyu65TWVlJSkoKrq6uhIWF4e7uLr/JCiHsopTCaDRSXFxMfn4+ZWVlREZGShAToo2REOYgc+fOZe7cuVbb9+3bx4gRIxp9naysLAwGA1FRUfINUwjRLD4+Pvj7+5OcnExOTg7dunVzdpOEELXIwPw2RClFaWkp/v7+EsCEEA7h6emJn58fRUVFKKWc3RwhRC0SwtqQqqoqjEZjiy4WKoTofHx9famqqqKqqsrZTRFC1CIhrA0xmUwA0gsmhHAo8/cU8/cYIUTbICGsDZKB+EIIR5LvKUK0TRLChBBCCCGcQEKYEEIIIYQTSAgTQgghhHACCWFCNNLEiRPR6XSWV1JSkrObJIQQoh2TECY6hR9++IGAgABefvnlJl9j3bp1pKenExERYfe5q1atwt/fn48++shq35YtW3juuefYsmVLk9smhBCi/ZEQ1gkppSgpKWnUq6MUd/z888/Jy8vj448/bvI1AgICCA0NbVIJkU8//ZTCwkL+85//WO3bsmULCxYskBAmhBCdjCxb1AmVlpbi4+PTqGOLi4vx9vZu4Ra1vDvvvJO9e/dy7733OuX+Dz74INnZ2TaXthJCCNE5SQgTncKIESPYsWOH0+4/bdo0pk2b5rT7CyGEaHvkcWQn9+mzmXz5YnGd16fPZjq7WRe0detWJk+ejK+vL76+vowaNYoVK1awZcuWOoPn58yZU+fz6Ohoq2vl5ubyt7/9jcGDB+Pr64uPjw8jR47kmWee4fDhw41qT/37mO+dlJRUZ9vEiRMt55jbumDBAgAWLFhQ51h5PCmEEB2b9IS1I0qByQFLvxkrz33s4eaNp1vDjxuNlWB0bf499a7gqKLdq1evZtasWXTv3p0PPviA4cOHk5qayl//+lfLMePGjWPdunV4enqycOFCUlJSGD16tNW1SkpKGDt2LPn5+SxdupSRI0dSUVHBd999x9NPP80HH3zQqFmQS5YsITo6mtdee401a9YwbNgwPD098fHxIT09nW3btjFz5sw651xyySWkp6fz2muvsXjxYh5//HGeeOIJy/6AgICmf5GEEEK0eRLC2hFTFWxe2vzrlFVe+Bizrf8CT7fm33PSw2BwwHXOnDnDPffcg1KKL7/8kqFDhwIQFRXF119/TUxMDABubm6EhoYC4O/vT3l5uc3rrVmzhpMnT/Lqq69y6623WrYPGjSIsrIyli9f3qh2rVq1itdff51vvvmGSy+9tM6+0NBQm4HK3Ebz+DwfHx9Lm4UQQnR88jhStCvvvfcexcXFXHLJJZYAZubp6ckf//hHu66XnZ0NQHJystW+WbNm8fzzz1/wGq+99hp/+9vf+Pbbb60CmBBCCNEQ6QlzkLi4OOLi4qy2l5WVOeweeletR6m5SkqApxt3bOz94IjJkXoHPNIEbSwYaAPtbRkwYIBd15s0aRI6nY5ly5aRk5PDfffdx4QJE9Dr9URFRfGHP/zhvOe/+OKL/PWvf+Wdd97hkksuseveQgghOjfpCXOQuXPncuTIEavX2rVrHXYPnU57pOeIl1l5ZQll9V7llSWW/Y66n6PGg6WmpgIQHBxsc7+9j/NGjhzJBx98QEBAAKtXryY2NpbQ0FDuvvtudu3add5zFyxYwHPPPQfAq6++SmlpqV33FkII0blJCOvkbl7Qjeuf9qnzunlBN2c364IcWUR21qxZpKWlsXr1aqZPn05RURHvvvsuY8aM4dFHH23wvK+//pqdO3cyevRoTp48yZNPPumwNgkhhOj4JISJdsW8ZJB5LFd9GRkZTbquu7s7t956K+vWrSMzM5OFCxfi4uLCkiVL2LBhg81zvvzyS4YPH87KlSvx8PAgLi6OjRs3Nun+QgghOh8JYZ2Ql5cXxcXFjXp5eXk5u7l1xMbGArB3716b+48ePWrX9davX8+yZcvqbPPz8+PJJ59k9uzZAOzfv9/mud26aT2GAwYM4O9//ztKKe644w4KCgrsaoNeb/3fsKCggJycHLuuI4QQon2RENYJ6XQ6vL29G/XSOWowl4PcddddeHt7s337dg4cOFBnX1lZGe+++65d1ztw4ACvv/46lZXWdTuqqrSibD169Ljgdf70pz9xySWXkJKSwsMP2zd7okuXLoBWs8zsD3/4A1dffbVd1xFCCNG+SAgT7Up4eDjLly9Hp9Nxww038Pnnn5OcnMwvv/zCNddcY3NpoIyMDMvjS6PRSEZGBrm5uZb9iYmJ3HDDDWzatImkpCR+/fVX/v73v/PRRx8xZswYZsyYAWi9UxkZGRiNRkB7JGp+/FlaWsqiRYtwdXXlgw8+YPXq1WRkZFBRUVHnfpWVlWRkZNTpLTP37n377bccOXKEH374gY0bNzJp0qQW+AoKIYRoM5RoUXv37lWA2rt37wWPLSsrU0eOHFFlZWWt0LL2bfPmzeryyy9XPj4+ysfHR11yySVq/fr1avPmzQpQsbGxlmMBq5d5f35+vlq5cqW67rrrVHh4uHJxcVFBQUFq1KhRaunSpaq0tNRyndmzZ9u8llJKPfvsszb3rVixwub22bNn13k///rXv1SvXr2Ui4uLCgsLU/fee68qKipq6S+j6CTke4sQ9rPn53dT6ZRy4DQzYWXfvn2MGDGCvXv3Mnz48PMeW15eTmJiIj179sTDw6OVWtixbNmyhUmTJhEbGytrLwpRQ763CGE/e35+N5U8jhRCCCGEcAIJYUIIIYQQTiAhTHQI9Qfc2xoAL4QQQrQlEsJEh5CSkkJYWBgzZ84EYPv27YSFhfHII484uWVCCCGEbbKAt+gQoqOjHbqUkRBCCNHSpCdMCCGEEMIJJIQJIYQQQjiBhDAhhBBCCCeQECaEEEII4QQSwoQQQgghnEBmR9aTlJTE8OHD6dGjR53tPXr04Msvv3RSq4QQQgjR0UgIs+H6669n5cqVzm6GEEIIIToweRwphBBCCOEE7S6Ebdu2jX79+qHT6UhKSnJ2c4QQQgghmqTdhLCysjIef/xxLrvsMk6cOGHXud9++y1TpkwhICAAb29vhg8fzrJlyzCZTDaPP3HiBNOnT2f48OEMGjSIhx56iKysLEe8DSGEEEIIoJ2EsPj4eIYOHcratWv55ptv7Dp30aJFTJs2DQ8PDzZs2MD+/fuZMmUKDz30EDfeeCPV1dV1jjcYDBiNRhYuXMi+ffvYsGEDBw4cYNy4ceTl5TnybbUpKSkppKSkOLsZDhcdHY1Op7O8RNty7NixOn8/EydOtPsavXv3lr9jIUS71C5C2OHDh5k8eTK//fYbU6ZMafR5P/30E/PmzWPgwIGsW7eOESNG0LdvXxYtWsTdd9/Nf//7XxYtWlTnnMjISHbu3Em/fv0ACA8PZ/ny5SQkJPDmm2869H21FSkpKUycOJGJEyd2uCC2e/du0tPTnd2MRistLWXEiBGMHDmSsrIyZzfHbi+++CIBAQFs2rSpUcf36dOH9PR01q5d2+AxSUlJPPfccw1OltmxY0e7+jtuSH5+Ps899xxvvPGGs5sihGgl7SKEXXPNNbz55pv4+PjYdd5zzz0HwEMPPYSrq2udfY8//jgAr7zyygV/2PXv3x8/Pz927Nhh1/3bA3MAS0hIICEhocMFseDgYEJDQ53djEY7fPgw+/btY+/evRw+fNjZzbHbv//9b/Ly8li3bl2jjjcYDISGhhIQENDgMUlJSSxYsKDBEBYUFNSu/o4bkp+fz4IFCySECdGJtIsQZjAY7D4nOzubLVu2ADB58mSr/f369SMiIoLCwsI6jzgLCgqorKy02Qaj0Wh3O9qy2gFMHxyCPjikQwax9mTo0KHcfPPN3HzzzQwdOtTZzbHbn//8Z8aMGcMdd9zh7KYIIUSb1y5CWFPs2bMHk8mEq6srvXr1snlM//79Ae2Rldkjjzxi9Vv86dOnycvLO+8PxYqKCgoLC61excXFzX8zLaB+APP9y9P4/uVpCWJO5urqyieffMInn3yCi0v7K+M3Z84cduzYwYgRI5zdFCGEaPM6bAiLj48HtMdRer3ttxkWFlbnWLPXXnvNMhuypKSEuXPnEhgYyNy5cxu838svv4y/v7/VKzY21hFvx6FsBTB9QCD6gMB2E8RSUlKYO3cuMTExuLu74+fnx4gRI3jiiSc4cOBAo69TVFTEqlWruP766+nVqxceHh4EBgYyZcqU866QsHv3bn73u98RHR2Nu7s73bp149prr2XFihXk5+fXOTY3N5e//e1vDB48GF9fX3x8fBg5ciTPPPNMnUeOc+bMqTPA3NyTW1tVVRWLFi2if//+uLu7ExwczO9+9zsOHz7cqPNrq3+8Tqdjzpw5dY4ZNGgQkZGRdbatXLnSajD9li1bznsds61btzJ58mR8fX3x8/Pj0ksv5auvvmqwjTqdjkmTJlnOrX0P83CD+kwmE6+88gp9+vTB3d2dyMhI5s2bR1VV1Xm/Hg3ZuXMnN910E6Ghobi5uREeHs6tt97Kvn376hyXlJRk9XVJTk5m9uzZhIeH4+7uTs+ePZk/fz4lJSV1zo2OjqZnz56A9ktfY76WQogOQLVDgAJUYmJig8e8+OKLClC9evVq8Jh7771XAWrq1KmWbQcPHlT33nuvGjx4sBoyZIjq3r27mjlzpjp+/Ph521ReXq4KCgqsXlu3blWA2rt37wXfV1lZmTpy5IgqKyuzud9kMqniyqpmvY7FJ6ieMTEKUPrgEOX/6hLV9b2P6rz8X12i9MEhClA9Y2LUsfiEZt/XZDJd8P031rZt21TXrl1VaGio+vjjj1ViYqLas2ePevTRRy3/NvLz8+ucY95e3+rVqxWgbrrpJrV9+3aVlJSktm3bpmbPnq0AtXDhQqtzvv76a2UwGNRVV12lfvrpJ5WUlKR++eUXNX36dAWoZ5991nJscXGx6tOnjwoODlarV69WJ0+eVL/99ptavHix8vDwUFFRUZZj8/PzVXp6uho3bpwC1ObNm+vc12g0qmuuuUYBasaMGWr37t0qMTFRrVy5UvXo0UONHDlSAeqNN95Q6enpqqKi4rxfx/z8fPXDDz8oQIWFhan09PQ6X7fjx49bvm67d++2bC8tLVXp6ekqOjpavfXWW+rs2bOqoqJCpaenqzfeeEMBavbs2Vb3+/e//630er2KjIxU69atU0lJSernn39WkyZNUnfeeacCVGxsbJ1z0tPT1dq1axWgxo0bp9LT0y2voqKiOsea23rfffepF154QZ08eVLt2rVLXXnllQpQjzzyyHm/HrbExcUpvV6vRo0apTZu3KhOnz6tvvvuO3XRRRcpFxcXtXLlSsux1dXVddrbr18/FRMTo5YsWaJOnTqlDh06pO677z4FqFGjRqni4mLLuVlZWWrXrl0KUBEREXXeZ/1/y01xoe8tQghre/fubfTP76Zqf887WthFF13EW2+9Zfd57u7uuLu7W223dzLB+ZRWG4n88JMmn2/KPUvRKy9iys6q0wNWn7lHrOiVF0lMSGDg2LENHttYKbffgrdr8/+5FRQUMHPmTPLz89mxYwejR48GtJ6EESNGUFpayjvvvINSqlHX8/b25rLLLuOTTz6xlDeIiopi3LhxpKWl8cwzz3D77bcTHh5uOWfRokUYjUY+/PBDgoKCLOesWbOGwYMH17n+mjVrOHnyJK+++iq33nqrZfugQYMoKytj+fLllm3m3lM3NzebbY2Li+N///sfI0eO5NNPP7WMlYyOjsbf35/p06dbrtOYger+/v5MnjyZyMhIUlJSyMjIqPPIvfaMxc8//5yRI0cC4OnpSVJSEqmpqdxyyy106dIFgNDQUPz9/W3e68yZM9xzzz0opfjyyy8t94mKiuJ///sfMTExNs+rPWjfzc2tUe/LaDTy9NNPWz5fvXo1ISEhLF++nEWLFtn8f2rL9u3befjhhwkODmbDhg2W99ajRw+GDRtG3759ufvuu7n44osZOnSo1SSD48ePs3TpUh566CHLNf/1r3+RmZnJ559/zrPPPstrr70GaD325t4x83WEEB1fh30c6efnB3DemY+lpaUADf7gEG3Pe++9R3p6OmPGjLEEsNruuusu/P39G10v6rrrrrM85qpv7NixVFZWsmHDhjrbs7OzAUhOTq6z3WAw8MYbb3D11Vdf8FiAWbNm8fzzzzeqnYBl1ty9995rNVnlhhtusFp0vrFuvPFGQAtata1bt47f//73Nvd9/vnnxMbGWgLYhbz33nsUFxdzySWXWI2t9PT05I9//GOT2m7LnXfeWefzrl270qdPH0pLSzl58mSjr/Pyyy9jNBqZPXu21feI4OBgZs2aRVVVFQsXLrR5vqenp1VbAB588EEA3n777XZZhkQI4TgdtifMPBg/Ozsbk8lkc1yYubZQQwP32xovFwMpt9/SrGukzriOaVOuIDEhgaJXXrTZw1W7x6xnTAzfbPiBiHrjguzl5WL/DFdbvv/+ewBGjRplc//o0aOtxmRdyN69e1myZAnbt28nOzvbUsDXPEs2LS2tzvGTJ0/myJEjTJkyhccff5xZs2ZZAtCVV15Z59hJkyah0+lYtmwZOTk53HfffUyYMAG9Xk9UVBR/+MMfGtXG1NRUEhISAGwOetfpdPTr189m2LuQ6dOn889//pP169ezYMECQBtzt3//ftavX8/333/P0aNHOX78uKV+3vr16xvddtDGczXUdoABAwbY3e6G9O7d22qbuXeqsQWXjUYjGzduBLAZ9mtvN/+brK9Hjx54e3tbbTf3KBYXF7Nv3z7Gjx/fqDYJITqeDtsTNmLECPR6PVVVVVYD782OHTsGNPwD3R5xcXEMHDjQ6jVz5sxmX9tMp9Ph7erSrFe/mJ5s3bKFmJgYTNlZWtjKPWu5R+0AFhMTw9YtW+gX07PZ93VUJfPTp08DWk+EI3zyySeMGTOGr776ioceeoiNGzdy4MABDhw4wH333QdgVbLk5ZdfZvbs2eTn5/P0008TFRXF0KFDWbRokaXny2zkyJF88MEHBAQEsHr1amJjYwkNDeXuu+9m165djW5namqq5eOG3ntTH2FddtllBAQEcOjQIUvQ+/zzzxk7dizdu3fnuuuus2wzt2XPnj3ccMMNdrff0W23JTDQ+rG5eaZpY8vM5OTkWHrKQ0JCbB7TrVs3QAt2hYWFVvsbOs/Pz8/yyLn236sQovPpsCEsJCTEMjPR/BttbcePHyc1NRVfX1+uuuqqZt9v7ty5HDlyxOp1vkrgzhIZGckWG0GsfgDbsmWL1cy4jqSyspIHHngAo9HIm2++ycMPP8yIESPo3bs3vXv3brCAqLe3NytXriQxMZGXXnqJoUOHcvDgQebNm0f//v3ZvHlzneNnzZpFWloaq1evZvr06RQVFfHuu+8yZswYHn30Ubvb3djxbo1lMBgsQWv9+vWA9ijSPMas/uPKL774gmHDhjXp34aj225Le1i6qDW+DkKItq/DhjCAZ599FoBly5ZZrRG5ePFiQCsu6eXl1eptczZbQaw9BLCoqCgAqx6npvj111/Jzc0FYOrUqXaf36NHD+bPn8/+/fv57bffmDZtGrm5udx+++1Wx7q7u3Prrbeybt06MjMzWbhwIS4uLixZssRqzJktERERlo8beu8ZGRl2vwczc+D6/PPPyc7O5ueff7aErylTpuDl5cXu3btJS0vj888/t+xrLHP7W6LtLSEoKMjyfSEzM9PmMebtXbp0sYxBtbW/voKCAku5jNp/r0KIzqfdhLDs7GwyMjLqfLO2ta222NhYXnzxRQ4fPsz06dPZt28fJ06cYN68eSxfvpyrr76a+fPnt9ZbaHPqB7G2HsDgXFhq6FHe7t27ueKKK9i5c+cFr2Uymc67v/5YMDNbtcgGDRrEunXr8Pb2Ji0tzVJnbv369SxbtqzOsX5+fjz55JPMnj0bgP3791+wrREREZYZhHv37rXar5Ti+PHjF7xOQ6ZOnYqXlxfbtm3j3XffZeDAgZaxkp6enlx11VUopVixYgVbt26161EkYOmVttV2gKNHjzZ4rq3xnGVlZWRkZFzw77CpDAaDZaWNhv4tmf8N1h8HaJaSkmJVDwy0QtKgzZwePny4Zbut91lZWUlGRkaTa5wJTX4abHsPfngNygoad05xDuz6SDsn1/6hlkI0SrsJYaNGjSIsLMxSYBW0gbH1t9X31FNP8fXXX1NWVsbll1/OsGHD+O6771iyZAlffvllu6xK7ki1g1hbD2CgzX4MDQ1l165dNoPYa6+9xv79+xu15M+gQYMsvR1ff/11nX0lJSVW28w+++wz1qxZY7VdKYXRaMTX15euXbsCcODAAV5//XWbS2GZf7A2dlbjI488AsA777xjNbbpiy++aNKgfDNPT0+uvPJKTCYTf//73y09Y2bmnq+XXnqJyMhILrroIruuf9ddd+Ht7c327dutAmxZWRnvvvtug+eaZ2DWDjRvvfUWYWFhlJeX29UOe8yfPx+9Xs+qVausBvRnZ2fz0Ucf4erqyrx582yeX1ZWxooVK6y2x8XFAXDPPffg6elp2W6egVn7ff7vf/8jLCzMMquzoKCASZMmMWrUqGb9fXcWxio4sRn2/gdKGzcnA2WCpJ2w60MobFsdtKIjarEKZJ3MsmXL1IABA6xe0dHRDivW2pKSk5NVcnJyq9+3KbZt26a6dOmiwsLC1OrVq1VSUpLavXu3uuuuu5TBYFBfffWV5disrCyVnp5uKeRpLoBptmjRIgWorl27qnfffVedPHlSbd26VV166aXK3d1dAerxxx+vU/w0KipKubq6queff17t379fJSUlqc2bN6upU6cqQC1ZssRy/WeffVYB6qqrrlIbN25UiYmJ6tChQ+r5559Xer1ejRkzxnLd+sVa165dq9LT01V1dbVSqm6x1pkzZ6o9e/aopKQktWrVKjV48GBLUdIVK1Y06ev6wQcfWL5O+/fvr7MvNzdXubi4KEA9+uijVufWL9Z68803WxVUNRdr7dGjh1q3bp06ffq0pVhrbGxsnYKstQuUVlZWqpCQEOXh4aG2bNmiDh06pIYMGaJGjx6tlFLq7NmzVn/HZ8+eVUopVVRUZPNr2ljmYq0jRoxQP/zwgzp9+rT6/vvvLcVabX2tN2/ebCnIOmrUKLV06VIVHx+vfvvtN0ux1pEjR9Yp1mo2dOhQBajPPvtMHT9+XF1++eUqIiLC8m9kzZo1lvf52muvNfp9dMZirSV5Sv3yrlI/va1UTqJSG17VXqXnqX1bUarUzg+V2rJMqfQj2rkbXlXq7OnWarVoS1qjWKuEsBZmz19iZ/xG2VTJycnq/vvvV9HR0crNzU11795dXX/99WrXrl11jouKirL80Kr9qu3DDz9UI0aMUB4eHsrDw0MNGTJELVy4UD311FN1zjFXsD969Kh67rnn1KhRo5Sfn59yc3NTUVFR6vrrr7eqcp+fn69WrlyprrvuOhUeHq5cXFxUUFCQ5YdzaWmp5Vhzlf76r9orQ1RWVqqXX35Z9e3bV7m5uamQkBB12223qeTkZMv5TQ1h5qAVHR1tc//kyZMVoLZs2WK1zxw86r9qrx5gPu7yyy9XPj4+ysvLSw0fPly98847atOmTXXOu+WWW+qct3XrVjVq1Cjl7u6uunbtqqZNm6ZOnDihlFKWAFf7Za68bw7B5/v7v5AdO3ao3/3udyokJES5urqq0NBQdfPNNzf4f9r8tYiNjVVnz55V9913n+revbtydXVVUVFR6sknn7Sq9m/266+/qokTJyovLy/l6+urLr300jr/pjMzM9XAgQNVjx491NGjRxv9Hjrj95ask0od/V6pqpqFIxoTwgozlTq4XqmKmnwsIaxza40QplNKpum0pH379jFixAj27t1bZ/yHLeXl5SQmJtKzZ088PDxaqYWio5gzZw6rVq1ixYoVst6gE23ZsoVJkyYRGxt7wfU7W0tn/N6iTKCrNeDmB21xAsbfDZ4N1Oeuf87P70B5IQy/GQKaVgtZtGP2/PxuqnYzJkwIIYRoLF0Tfro15RwhmkP+yQkhhBBCOIGEMCHaueLiYjIyMizrEBYUFJCRkWFzRqZoOUajkYyMDEvtOXN5CfPnQghRX+euz+BAcXFxlqnntckCvaKlvfbaa5Y1HwEeffRRHn30UTZv3szEiROd17BOJiUlhZ49e1o+3759O2FhYW1qbJgQom2REOYgc+fOZe7cuVbbzQP7hGgpzz33HM8995yzm9HpRUdHy3JEQgi7yONIIYQQQggnkBAmhBBCCOEEEsKEEEIIIZxAQpgQQgghhBPIwHwHkdmRQgghhLCHhDAHkdmRQgjRtlSWQv0Jq5WloK/5yefubX1OVRmYTNrH5nOry6GiRPvYzVMq6wvHkRAmhBCiQ9r1kbb2Y227Pz738RVPWJ9z8AvIT6277dCX5z4+39qTQthLQpgQQogOacI99p8z8lbtT6UUpaWlVvtNQElJ3W1eXl7odDr7byY6PQlhQgghRD2lpaX4+Pg06tji4mK8vW082xTiAuTJthBCCCGEE0hPmOjQoqOjOX36tOVzWVZGCGGvT5/NxMOtbk9XeWUJNy/o5qQWiY5CQpjo0Hbv3o3RaCQsLMzZTWmU0tJSLr30UnQ6HT/99BOenp7OblKHs3LlSpKSkpgzZw7R0dHObo5oBzzcvPF0k8eNwvEkhDlIe64TVlRUxIYNG8jNzSUgIIApU6bg6+vr7GY5RHBwsLObYJfDhw+zb98+y8cjR450cos6npUrV7J161YmTpwoIUwI4VQSwhykPdYJKykp4amnnuL999+nuLjYst3Hx4c777yTl156SQabtrKhQ4dy8803Wz4WQgjRcUkI66RKSkq44oor2LFjBwC93P3o6+nP8bICEooLWbp0Kbt27eKHH36QINaKXF1d+eSTT5zdDCE6vfIiZ7dAdAYyO7KTeuqpp9ixYwcBLu581ncqBy6+iTX9ruTgxTfxWd+pBLi4s2PHDp566ilnN9WmlJQU5s6dS0xMDO7u7vj5+TFixAieeOIJDhw40OjrFBUVsWrVKq6//np69eqFh4cHgYGBTJkyhS+//LLB83bv3s3vfvc7oqOjcXd3p1u3blx77bWsWLGC/Pz8Osfm5ubyt7/9jcGDB+Pr64uPjw8jR47kmWee4fDhw5bj5syZg06ns7y2bNlidd+qqioWLVpE//79cXd3Jzg4mN/97nccPny4Uec3pDFfzy1bttS5vk6nszzOs7XPnvvn5uYyf/58Bg4ciKenJ/7+/owfP553330Xo9FY59iJEyfWuc+pU6d47bXXGDJkCF5eXnTt2pUbbriBQ4cO1TnvueeeQ6fTsXXrVgAmTZpU5zpCAJQVwNENsH3luW3llSWU1XuVV5Y0eA0hGk2JFrV3714FqL17917w2LKyMnXkyBFVVlZmc7/JZFKm0vJmvwoys5WPj48C1Gd9p6riMX+0eq3pO1UBytfXVxVkZjf/viaTw76m27ZtU127dlWhoaHq448/VomJiWrPnj3q0UcfVYACVH5+fp1zzNvrW716tQLUTTfdpLZv366SkpLUtm3b1OzZsxWgFi5caHXO119/rQwGg7rqqqvUTz/9pJKSktQvv/yipk+frgD17LPPWo4tLi5Wffr0UcHBwWr16tXq5MmT6rffflOLFy9WHh4eKioqynJsfn6+Sk9PV+PGjVOA2rx5c537Go1Gdc011yhAzZgxQ+3evVslJiaqlStXqh49eqiRI0cqQL3xxhsqPT1dVVRUOPTrWVFRodLT09Wf//xnBag+ffqo1NRUpZRSFRUV6siRIyowMFAtXrzYrvufOHFC9ejRQ/n4+Ki4uDgVHx+vDh48qB544AEFqKuvvrrOtc6ePavS09NVRESEAlRsbKy6+eab63w9unbtqjw9PdWWLVss5xUVFdX5+q5du1alp6dbXh3Zhb63CKVK8pQ6/K1SPyxWasOrSn35YrHl3/+FXsXFxc5uvmgB9vz8bip5HNmelFdSOunBZl/mq9xEiouL6eXux5VdIm0ec1WXSGLc/UgoKuSrCbdyQ0DPZt3Ta/My8HRv1jUACgoKmDlzJvn5+ezYsYPRo0cDWimKESNGUFpayjvvvNPoUhTe3t5cdtllfPLJJ5bekKioKMaNG0daWhrPPPMMt99+O+Hh4ZZzFi1ahNFo5MMPPyQoKMhyzpo1axg8eHCd669Zs4aTJ0/y6quvcuutt1q2Dxo0iLKyMpYvX27Z5u/vj7+/P25ubjbbGhcXx//+9z9GjhzJp59+isFgsLx3f39/pk+fbrlOaGhoo96/PV9PNzc3QkNDeeGFF/jmm2/47bffWLJkCa+88gpubm4888wzDB8+nMcee6zRPUtGo5GZM2eSnJzM6tWr63yN4uLiKCgo4OOPP+avf/0rr7zyCgABAQEAlvdfUlLCf/7zH8s9o6OjLb1hs2bN4sSJE3h6euLj44OPj4/l6xsQENDor5PouEpyIXEHZB49t1ZkQA8IuRh42qlNE52API7shPKqKwDo6+nf4A9LnU5H35oF0szHtwXvvfce6enpjBkzxhIYarvrrrvw92/4fdV33XXXsXXrVpvHjx07lsrKSjZs2FBne3Z2NgDJycl1thsMBt544w2uvvrqCx4LMGvWLJ5//vlGtRPgjTfeAODee++1BBCzG264gR49ejT6WmZN+Xq6ubmxatUqXFxcWLx4MZs3b2blypVs3LiRFStW2PVo74svvuDXX38lNDSUW265xWr/Y489BsA///lP8vLybF7jgQcesLrn9ddfT2RkJKmpqaxdu7bR7RGdR3E2/PoVbH8fMo5oASywJ4z8PQy/Gbr39aK4uLhRLy8vL2e/HdFOSU9Ye+LhpvUoNVPo+vXw+585UVaAUsrmD02lFCfKCrTjX3wQrxtvbN5NPWz37tjr+++/B2DUqFE2948ePdpqTNaF7N27lyVLlrB9+3ays7Oprq4GoLKyEoC0tLQ6x0+ePJkjR44wZcoUHn/8cWbNmmUJQFdeeWWdY83jjpYtW0ZOTg733XcfEyZMQK/XExUVxR/+8IdGtTE1NZWEhAQAm7NtdTod/fr1sxn2zqepX8/hw4czf/58/v73vzNr1iyKiop466236N69e5PuP3LkSJv/DocOHYqbmxvl5eX8+OOP3HDDDVbHDBgwwOa1R44cSUpKClu3bmXWrFl2tUt0XEVZkLAdsk+e2xbUC3qOBf9a5QR1Op1MShItTnrC2hGdTofO073Zr6nXXo2Pjw/xFYV8l59i817f5qeQUFGIr68vU6+9uvn3ddDAZ3P1e0fV//rkk08YM2YMX331FQ899BAbN27kwIEDHDhwgPvuuw84F8bMXn75ZWbPnk1+fj5PP/00UVFRDB06lEWLFll6vsxGjhzJBx98QEBAAKtXryY2NpbQ0FDuvvtudu3a1eh2pqamWj5u6L035dFac76ef/vb37j44os5c+YMQ4cO5fe//32T7x8SEmJzv8FgIDAwsM6x9TV0rvk91f7aCU1+Gmx7D354TRuI3hkUpMOBz2HnB+cCWEgfGPMHGDq9bgATorVICHOQuLg4Bg4caPWaOXOms5tmxdfXlzvvvBOAexK28k1esmUMlVKKb/KSuSdem0F2xx13dJjCrfVVVlbywAMPYDQaefPNN3n44YcZMWIEvXv3pnfv3paxR/V5e3uzcuVKEhMTeemllxg6dCgHDx5k3rx59O/fn82bN9c5ftasWaSlpbF69WqmT59OUVER7777LmPGjOHRRx+1u92NHe/W0lxdXZk6dSoAO3bssBSZbSvaytepLTFWwYnNsPc/UGr76a5NBelwcD1sjYNNb8D2FVpvkqm6pVrqOPlpsP8z2P0x5MQDOujWH8bOgYtuAF/bGV6IViEhzEHmzp3LkSNHrF5tdTzKSy+9xNixY8mtruCmE99z8cE1/O74d1x8cA03nfiePGMFY8eO5aWXXnJ2U+uIiooCsOpxaopff/2V3NxcAEuYsEePHj2YP38++/fv57fffmPatGnk5uZy++23Wx3r7u7Orbfeyrp168jMzGThwoW4uLiwZMkSqzFntkRERFg+bui9Z2Rk2P0emvP13L9/P3FxccyePZuqqipuv/12ysvLm3T/zMxMm/uNRiNnz56tc2x9DZ1rfk+1v3admckEh76ArJMw1I7fDTOOwp5/Q2WJFlrGzoHwwZC4Hfb8B6orL3gJp8hLgb2fwp7VcDYJdDoIGwTj7oAh14JPkLNbKISEsE7L29ubH374gYcffhhfX18SKgrrPIJ8+OGH22ShVnNYauhR3u7du7niiivYuXPnBa9lMpnOu7/+WDAzW7XIBg0axLp16/D29iYtLY2srCwA1q9fz7Jldcfx+fn58eSTTzJ79mxACzMXEhERQUxMDKCNYatPKcXx48cveJ36mvr1rKysZPbs2Tz55JO89957jB49miNHjjB//vwm3X/37t02/z4OHDhAZWUlHh4eXHbZZTavcfToUZvb9+zZA0BsbGyd7Xq99be97OxsCgsL7Wp7e6OM2iO3sXMgMLpx55Tmw5FvwdVTC25dI8CrC0SNgphLoDBD61lrK5TSAtee/8DeTyAvGXR6CB8C4+6CQdPA23YHtxBOISGsE/P29mbJkiWkpaWxdu1ali9fztq1a0lLS2PJkiVtLoCBNlsvNDSUXbt22QwOr732Gvv372/Ukj+DBg2yzGr6+uuv6+wrKSmx2mb22WefsWbNGqvtSimMRiO+vr507doV0ELE66+/bjWuDLTCq0CjZzU+8sgjALzzzjtWBUy/+OILuwflQ9O/ngsWLMDV1ZWnnnoKg8HAqlWr8PDwYMmSJVaPY8/nhhtuYPDgwWRlZbF69Wqr/f/4xz8AePDBBy1f0/r+9a9/WT16/PLLL0lNTaV79+5WQwK6dOkCaH/HZn369OGFF16wfP7iiy/Ss2dPPvjgg0a/l7bO4AIx48HFjjkySTvAZISwweDqUXdf5DDQG+DMb1Du5PyqFOQkwO5/a48e81NBZ4CIi+GSu2DglVp4FKLNabEKZEIp5dhirUKzbds21aVLFxUWFqZWr16tkpKS1O7du9Vdd92lDAaD+uqrryzHZmVlqfT0dEtRxfqFORctWqQA1bVrV/Xuu++qkydPqq1bt6pLL71Uubu7K0A9/vjjdYqPRkVFKVdXV/X888+r/fv3q6SkJLV582Y1dapW4HbJkiWW6z/77LMKUFdddZXauHGjSkxMVIcOHVLPP/+80uv1asyYMZbr1i/Wai4mWl1drZSqW6x15syZas+ePSopKUmtWrVKDR48WF155ZUKUCtWrGixr2d6erratGmTcnNzUxs2bFClpaWWts+bN08BqkePHioxMVGdPXu2Ufc/fvy4ioyMVN7e3mrZsmUqPj5eHTp0qMFirWZRUVEKUHPmzFG33HKL5evRULFWszfeeEMB6rbbblPx8fHqH//4hwLU119/bTnG29tbAWrw4MF2fS3bKlvfWza8qr1K822fYzIqtXmpdkxOou1jdv9b25+02/FtbgyTSanME0rt+ODc+9n4D6WObVSqrNA5bRIdR2sUa5UQ1sIkhLWM5ORkdf/996vo6Gjl5uamunfvrq6//nq1a9euOseZf1DXf9X24YcfqhEjRigPDw/l4eGhhgwZohYuXKieeuqpOueYK9gfPXpUPffcc2rUqFHKz89Pubm5qaioKHX99ddbVbnPz89XK1euVNddd50KDw9XLi4uKigoSI0aNUotXbrUEmKUUpYq/fVfiYmJlmMqKyvVyy+/rPr27avc3NxUSEiIuu2221RycrLlfHtDmD1fz/ptM9/LVttjY2Mbff+zZ8+qefPmqX79+il3d3fl6+urxo0bp9555x1LCK3P/HebmJioli9froYOHao8PT2Vv7+/uu6669SBAwdsnldRUaEefPBBFRISolxdXVWvXr3U66+/XueYRx55RPn4+Fhtb6+aEsKKc84dU1Zg+5jD32r7D/23BRp9HiaTUhnHlNq+sm74OrFZqXIpXi8cpDVCmE4pmULUkvbt28eIESPYu3cvw4cPP++x5eXlJCYm0rNnTzw8PM57rBD1zZkzh1WrVrFixQrmzJnj7Oa0uOjoaE6fPk1iYqJlDUthm63vLT+8pu0bfzfU1GWuIzseDn6ufXz5Y9qjx/rif9aqzfuFwuhWKMVmMkHmMe0xaYk2pwaDm/ZotMcIcJOaqcKB7Pn53VRSrFUIIYQVY80wRp3OdgADMLhqf7b0ohomozZLM3EHlOVr21zcIXI49BiuTRwQoj2SECaEEKJNMhm1gf9JO88N/nf11Hq9IodpQUyI9kxCmBDtnHn9urKyMkBblDsjI4OAgIAGFwNvz3Jzc6msrLTMEM3OzsbDw4Pg4GCrNTVF0xlq/ukopYUhW71hRm2Cr8PDkLEazvwKSbugokjb5uYFPUZCxFD7ZngK0ZZJiQoh2rnXXnuNsLAwPv30UwAeffRRwsLC2LZtm5Nb1jJmzJhBWFiYZTmi0aNHExYWRkqK7SW4RNPULulQWWL7mIqa7Z5dbO+3l7EKkvfCL8vh+EYtgLl5Q99J2ti16NESwETHIj1hQrRzzz33HM8995yzm9FqtmzZ4uwmdApeXbUeruoKbRC8h5/1MaU1g+P97F+2tI7qSkg9AMl7oLJU2+buq4Wu8CFajTMhOiL5py2EEMKKTg/BfSD9N8hNtq6yX12hVcxHpy2E3RTVFZCyXwtfVTUrXnn6Q/QYbYmhhiYECNFRSAhzkLi4OOLi4qy2m8fpCCFEe9NzjDYrMf037ePaY79S9mtjxcIH2y5xcT5VZZC8D1L2nZtZ6dVVC1+hAyR8ic5DQpiDzJ07l7lz51ptN9cZEUIIZ6ssA52x3rZS0Nf8JHCvt1KZV1cYOBUOfwv710KfWG2MVvZJSNgGvt2g7+V23L9UG/OVsv9cCQzvAOg5Drr103rfhOhMJIS1QVI/VwjhSObvKb9+CWXZdfft/vjcx1c8YX1u2CAtjCXuhIPrtfDk4Q89x0LU6MaN16oogdO7tXFfpmptm0+wdo2QvlotMiE6IwlhbYh5en1VVRWenlJ9UAjhGBUV2jO/Mbe54NKE7/r+4TB0uv3nlRdp4Svt0Lnw5dtN6/kK7iXhSwgJYW2Iq6sr7u7uFBQU4Ovri06+QwkhmsloNJKbm4u3tzcuTUhgSilKS0sbdayXlxc6nY6yAq3G15nfQNU8/vQP08JXYE8JX0KYSQhrY4KCgkhLSyM1NRV/f39cXV0ljAkh7KKUwmg0UlZWRkFBASaTibCwsCZdq7S0FB8fn0Ydm5VaTPZv3qQfBmXStnWJ0MJXQA8JX0LUJyGsjfHz04rx5OTkkJaW5uTWCCHaM4PBgJeXFyEhIa2yesLOVeBRc5uAHlr46hrZ4rcVot2SENYG+fn54efnR1VVlWVpFiGEsIder3d4T/qnz2bi4VZ3CmV5ZQk3L+gGgEJ73NhzHHQJd9htheiwJIS1Ya6urri6ujq7GUIIAYCHmzee9UJYbSNugfBerdggIdo5qcoihBDCIfybuXyREJ2NhDAhhBBCCCeQx5FCCCFsKsqCw5ud3QohOi4JYUIIIeooyoKE7dryRGWV57aXV5ZYHWtrmxCicSSECSGEAOqGL7OQvuc+Ns+CFEI4hoQwIYTo5GyFr279IWYc4OG0ZgnR4UkIE0KITup84cs7UPtcKS+Ki4sbdT0vL68WaKUQHZeEMCGE6GQaE77MdDod3t4N1wYTQjSdhDAHiYuLIy4uzmp7WVmZE1ojhBDW7AlfQoiWJyHMQebOncvcuXOttu/bt48RI0Y4oUVCiAspL4LTu+FsEpQXgk6vhZHwwdD9oo6z4LSELyHaJglhQohOKT8VDnyufdwnVltw2lgFqQfh2AbISYCLrge9wbntbA4JX0K0bRLChBCdTnUFHPpS+3PItVowMet/BVQUQ/YprZes51jntbOpJHwJ0T60SAhTSvH++++zf/9+oqKiuOeee/D392+JWwkhhN0yj0NlKbh6Qkg/6/2Rw8+FsKiRoG8nv65K+BKifWnWt5bdu3czdqz2a+I///lPHnjgAQBuvfVWPvvsM5RSALz77rvs3r0bPz+/ZjZXCCGaryhL+9Ozi+1xX15dtD+rKyA3BYJ6tlbLmkbClxDtU7NC2KeffkpAQABLlizh6quvBmDTpk2sWbMGHx8fnnzySSorK1m8eDFxcXHMnz/fIY0WQojmqPn9sMGB93rXcx8XZ7XdECbhS4j2rVkh7LvvvmPRokX8/ve/t2x799130el0/OMf/+Cuu+4CIDg4mPfff19CmBCiTTD3dJUX2t5fXnDu44o2uDSihC8hOgZ9c04+deoUl112meXz6upqvvnmG3x9fbn99tst26+44gpOnz7dnFsJIYTDBPfResEqirXyFPWlHz73sbGq1Zp1QUVZcPAL2PnBuQDWrT+Mu0ObYCABTIj2pVk9Ye7u7pZxXwAbNmygoKCAWbNm4ebmVue40tLS5txKCCEcxqsL9JoAp36Co9/DoGnQJQKqyuHMr5D2K7h5aYP3Da4XvFyLk54vITqmZoWwnj178uOPP9KnTx9AG5yv0+m49dZb6xx39OhRQkNDm3MrIYRwqOgx4OkPiTth7ydaoVZlAv/uMPx3EP/LuRmUziLhS4iOrVkh7LbbbuORRx7h4MGDJCcn8+2339KjRw+mTZtmOSY/P58XXnjBMotSCCHaim79tVd1hdYL5uoJLjWd+JU1nfe+wa3fLglfQnQOzQphDzzwAOvXr2fZsmUAeHp6WgbmAyxYsIDFixdTUlLCE0880fzWCiFEC3Bx115mxiooy9eq5XeJaL12SPgSonNpVgjz9PTkxx9/5McffyQ7O5tx48bRvXt3y/4rrriC6OhoAK655ppmNVQIIRwpPw1cPWyHm7OJYDJC6EDtmJYm4UuIzqnZdaB1Oh2xsbE2911yySWMGDECD49W+C4mhBB2OPkj6PUw4pa6242V2ngwF3fofWnLtkHClxCdW7NKVDz//PPnnfWYlZWFl5cXl1xyCfHx8c25lRBCOFxeChzdoIWhsgLIOgm7/wOVJTBsJnj4tsx9pdSEEAKaGcIWLFhAcXFxg/v9/f0tY8IeffTR5txKCCEcqscwCOmjPXrc/W/YsRLif4agaBh3J/iHO/6eEr6EELU163Fk7Rphtnh4ePDYY49xxRVXMGnSpObcSgghHMo8M7I1yGNHIYQtDhkTdiF5eXlSrFUI0a4ppRr9fczLywudTifhSwhxXnaFsFWrVrFq1ao626ZPn16nOn59JSUl/Pbbb1x00UVNa6ETVVVVMWDAAKqrq0lKSnJ2c4QQTlRaWoqPj0+jjk1PKCbzkLeELyHEedkVwpKSktiyZUudbdu2bbvgeSEhIbz22mt2Nawt+Ne//kV8fDxRUVHObooQoh3ZvRo8a343lfAlhGiIXSFszpw5TJw4EdC65idPnsxnn31GQECAzeP1ej1dunRhwIABuLg0+8lnqyosLOTVV19l0qRJJCQkOLs5Qog25NNnM/Fw866zrbyyhJsXdLN8LuFLCHEhdiWjqKioOr1CSinGjx9PSEiIwxvmbIsWLeLWW28lOztbQpgQog4PN28864Ww2sbMgpAerdggIUS71KwSFSaTqdUD2LZt2+jXrx86na7FxmmlpaWxatUqnnrqqRa5vhCiY5PeLyFEYzQrhDVWXl4el19+ebOuUVZWxuOPP85ll13GiRMn7Dr322+/ZcqUKQQEBODt7c3w4cNZtmwZJpPJ5vHPPPMMDz/8MF27dm1Wm4UQQgghGtIqIayyspKtW7c2+fz4+HiGDh3K2rVr+eabb+w6d9GiRUybNg0PDw82bNjA/v37mTJlCg899BA33ngj1dXVdY4/fPgwmzZt4uGHH25ye4UQHUtFMRzf5OxWCCE6mmaPlv/yyy9ZtmwZBw4cIC8vr8HepeY4fPgwkydP5pVXXmn0FHGAn376iXnz5jFw4EDWrVuHq6sroAWzvLw8li9fzqJFi3j66act5zz55JM8++yzst6lEILKMji9C1L2Q0mtEmHllSVWx9raJoQQ59OsEPbBBx9wxx13XLByPjSuqGtDrrnmGq6//nq7z3vuuecAeOihhywBzOzxxx9n+fLlvPLKK/zpT3/C09OTLVu2cPr0af7whz80ua1CiPavugKS98LpPdqC3gD+oef2154FKYQQTdWsEPbKK68QFRXFkiVLGDNmDAEBATZLUWRkZNC9e/cm38dgMNh9TnZ2tqWm2eTJk6329+vXj4iICFJTU/nmm2+YMWMGmzZtoqysjOHDh1uOS05Opri4mKFDhwKwa9eu8xanFUK0X8YqSD0ASbugqkzb5hMCvceDRzfgLme2TgjR0TQrhJ06dYr//ve/TJky5bzHubu7c9lllzXnVnbbs2cPJpMJV1dXevXqZfOY/v37k5qayu7du5kxYwbPP/88zz//fJ1j5syZw5YtWzhw4MB571dRUUFFRYXV9vMtcC6EaBtMRkg7BIk7wPxU0SsAeo2HkL6g04FSXo3+/+zl5dWCrRVCdBTNCmFdu3alX79+jTpu8+bNzbmV3eLj4wEIDg5Gr7c9/yAsLKzOsc3x8ssvs2DBgmZfRwjRepQJ0o9AwjYoL9S2efhBzCUQOhBqf+vQ6XR4ezdcG0wIIezVrNmRN954I9u3b7/gcSUlJVY9TC2tsFD7jurp6dngMebfVgsKCqz2ffzxxwwdOpQvv/ySM2fOMHToUB577LEGrzV//nwKCgqsXs2ZFSqEaBlKQeZx2L4SjnyrBTA3b+g3GS65E8IH1w1gQgjREprVE7Zw4UJmzpwJwO9+97sGx24VFxezYMECnnnmmebcrlXddttt3HbbbY0+3t3dHXd3d6vt9szmFEK0LKXgbCLE/wxFWdo2Vw+IGg2Rw8Dgev7zhRDCkZoVwqZPn055eTm///3vuffee+nRoweBgYFWMyErKyub1cim8PPzA7Qirw0pLdXmnPv7+7dKm4RoD8oKIHkf5J2G8iIwVYO7LwREQfQo8Ozi7BY2TV4KnPoZCtK0zw1u0GMERI0EF+vfn4QQosU1K4SZZx+C9vjvt99+a/DY5pSoaArzYPzs7GxMJpPNcWHp6el1jm2OuLg44uLirLafLwQK0dbkJsOBddpYqZjxEBwDOr22/dRPkHEEht8E/uHObmnjFaRrPV+5p7XP9S4QOVTr/XKT8fNCCCdqdrHWtWvXEhAQcN5jzp49y0033dTcW9llxIgR6PV6qqqqiI+Pp0+fPlbHHDt2DIBRo0Y1+35z585l7ty5Vtv37dvHiBEjmn19IVrDic1az1f0WOg55tx270DQG+Do93B0A4yd7bw2NlZxNsT/AtmntM91euh+EfQcC+4ySkAI0QY0O4SNHz/+got4Z2ZmNqqgqyOFhIQQGxvL5s2b2bhxo1UIO378OKmpqfj6+nLVVVe1atuEaKtK87Q/u4RZ7/Ov2VacrVWSd2t4zotTleZpsx0zjtZs0EHYQIgZ134fpQohOqZmzf9JSUm5YAAD6NatW4ssZ3Qhzz77LADLli2zWiNy8eLFAPz5z3+Wmj5C1PAN1v4sPmu9r6TWtibUT25x5YVaT932988FsJC+MG4ODJomAUwI0fY0K4Q1tgp+VVUVmzY1b/Xb7OxsMjIyyMjIOO+22mJjY3nxxRc5fPgw06dPZ9++fZw4cYJ58+axfPlyrr76aubPn9+sdgnRkfSfoj2qS9yhlXAwVmmFTM8mwYkt2jFdI7VB7W1FZQkc3wzb3tMKrioFgT1h9O1w0fXao1QhhGiLmv04sjFyc3OZMmUKRqOxydcYNWoUp0+frrNt9OjRlo8betz51FNPMWzYMBYvXszll19OVVUVffv2ZcmSJcydO7dJSyLZIgPzRUfgG6LVyTq9V6ufZawCdEDNfy+fYBh4pTNbeE5VOZzeDSn7atoJdImA3pdCl6avkiaEEK2m2Qt4N4atYqj2SkpKavK506ZNY9q0ac1uw/nIwHzREVSVw+FvICdBK90Q0lebTZifAhWl2jZXD+e2sbpSC16nd2sLbQP4dYNel2plNFp5IrYQQjRZs0LYnDlzGlV6QinV6iUqhBD2UQr2fwaFGRA9RutRMvMNhqyT2nirgVdCUPOrutjNWA1pByFpJ1RqJf7wDtLWdwzuLeFLCNH+NPtx5E033WS1NJBSiuzsbOLj4zlx4gTXXHMNQUFBzb2VEKIF5SVrAQy0Hq/6QvrAqR/h4Bcw6jat96k1mIyQfhgStkNFkbbNs4sWvrr100pPCCFEe9TsELZ06dLzzpD85ZdfmD9/Pm+//XZzbyWEaEGFmdqfbl7g2kD5Ca8ArQTEmV9bPoQpBZnHtFpfZfnaNndfrdRE2CCtbpkQQrRnzQphK1asuOCSP+PHj2fevHk88cQT/Pvf/27O7YQQreE8j/XMj/zKi1ru9kpBdrxW5b4kR9vm6qkVWe1+MRhaZTqREEK0vGZ9O5s9u3FlswcNGsSGDRuac6s2T2ZHivbOq6v2Z2WJNuDd1nqKJbnan+7ejr+/UtrSQvE/n3ss6uIOUaMgcji4tKGyGEII4Qit8jvl/v37KSkpaY1bOY3MjhTtXWC09iiyslRbwDtmXN39OYlQWhPCQvo69t75adralPmp2ucGVy14RY1y/mxMIYRoKc0KYcnJyQ3uMxqN5OXlsWfPHp599lkGDx7cnFsJIVqYwRUGXwMH10Pidm1bt77a2KvcFG1QPkDkMC2wOUJhptbzdTZR+1xngIiLtdmZLdHbJoQQbUmzQlh0dHSjSk/odDree++95txKCNEKAqJgzGxI3gMZR7RyEMqk9ZB16a4tgB0U0/z7lJzVBtxnndA+1+kgfIg27svDr/nXF0KI9qDZjyO7d+9us+q8wWDA39+foUOHct999zFq1Kjm3koI0Qq8ukD/K1rm2mX5WqmJ9CNYqvCHDoCYS86NSRNCiM6i2SFsz549jVrEWwjRMSilKC0tbdSxXl5e6HQ6Koq19SjTDmk9a6AVWO01XlsKSQghOqNmhbCZM2fi4SGjZkFmR4rOo7S0FB8fn0Ydm5tdTM5hb1L2g6la2xYQBb0mgH9YCzZSCCHagWaFsDVr1jiqHe2ezI4Uwtr2FeBWM2zUP1wLXwE9nNsmIYRoKxxWouL48eN8//33nD59GoCoqCimTp1Kv379HHULIUQb8+mzmXi41Z3GWF5Zws0LtHL6xirwiYDeEyCwp6zvKIQ9dmZm89BP2zlVWMSBm26gh2/jeqBF+9HsEFZYWMg999zTYK/YTTfdxNtvv33ByvpCiPbHw80bT7eGa0kMmgY9h0r4EsIeZdXVvLj3IG8fOY5RqQsen19RwcbUdL5NSWVf9lnO1IzZ7ObpyZhuwdw3qD/DggJbutmiCZoVwioqKpg6dSq7du1Cr9cTHR1Nt27ab8CZmZkkJSXx6aefkpSUxI8//oibm5S8FqIz6dZXApgQ9kgsLOKW7zdTYTLx6dRJzPxu0wXPeeSXnfw3KYWpkeH8Y/wYon19KKis5LuUNF498BvrEk6zfOJ4buwZ1QrvQNijWSFs2bJl7Nmzh6effppHHnmEoKCgOvtzcnJ44403WLhwIXFxcTz22GPNaqwQQgjRkR3LL+Cy8FCeGzUMH1fXRp83OKArH0+OxaDXW7YNCQyg2qR45cCv/H3PAQlhbVCzQtjq1av529/+xrPPPmtzf1BQEC+88AIGg4GPP/5YQpgQHUB5obNbIETHNTUinGk9Iuw65/5B/fEwGOoEMLOhQQEAZJeXO6R9wrGaFcKOHz/Ov//97wsed9ttt/H6668351ZCCCerroTTu+DYL+e2lVdarwlra5sQonFsBakLGdut4Vqde7JyAJgYLjVh2qJmhTClFPpG/INpzNJG7Z3UCRMdlTLBmcPaGo+VJWAynttnngUphGg7jCYTZ0pL+eRUIkt+PcL40BAWXzLa2c0SNjQrhPXt25e1a9fy5JNPnve4Tz/9lD59+jTnVm2e1AkTHVFuMpzYDMXZ2ueeXaDXKOBpZ7ZKCNGQ53bvZ9lvRzEpRTdPD14fP5pZfXp1is6Q9qhZIeymm27imWeeQa/Xc//991tV0S4qKmLZsmU8//zzPP/8881qqBCi9ZTkwsmtkBOvfe7iDj3HQeRQ0Bm8KC4ubtR1vLy8Wq6RQggrDw0ZwKy+vcgoLeOr0yn86ZddrDmVxFuxlxDuLf8f25pmhbBHH32U//znP8ybN4+//e1v9OvXz7KOZGZmJsePH6e6upohQ4bwyCOPOKTBQoiWU1WmLbCdekB7DKnTQfehEDMO3Czfv3V4ezdcG0yIltSUAqbH8gp48Kft7Ms5y5fTrmBCWMd9jB7o4UGghwe9/f2YENaNGD9f5u3Yw7T/fc9PN16Dn1vjZ1yKltesEObp6ckPP/zA7Nmz+fbbb/n111+tjpk2bRorV66UNSaFaMNMRi14JWyH6ppJVEEx0CcWvKXGo2gD7C1gCtrYqGW/HWXh/kNUGE0t3MK26a7+fVj66xFSikv4+GQ89w/q7+wmiVqaXTE/ODiYr7/+mv3799tctmjYsGHNbqQQomUopT1yPLkVSvO0bT5B0GciBEY7s2VCnNOUAqa55RXc/P1mkoqKWTZhHM/vPUBKceebuWvQ6+nXxZ8zJaXszsqWENbGOGztyGHDhkngEqIdKcrSBt3npWifu3lpC2yHDwad/bPkhWgxTSlgmlZSQncfL1ZPmUiwpwfP7z3Qso10kqKqKj6LT2RGz2j83W2vSuPtov2or+qkvYFtmcNCmC1lZWV4enq25C2EEHaqKNbKTZz5Tftcb4AeIyF6tDYAX4i2pikFTAd27cKqyy9roRa1HXnlFTy+bTdRvr5c3t12LbBjefkA9PTzbcWWicZoVghLT0/n2muvRSmFr68vW7durbN/xowZuLq68uabbxIRYd9/ICGEYxmr4PQereCqsUrb1q0/9L4UPP2d2zYhzqcpBUybck57tvLYSZshbG18EqcKi9DrdNzcq6cTWibOp1kh7IMPPmD//v0MHjyYG2+80Wr/zJkzWbhwIaNHj2bPnj2Eh4c353ZCtLqyAvhleeOOjRwO/S5v2fY0hVKQcRRO/QQVRdo2/zDoMwm6yH9JIdqcnLJyq8kHOeUVuBsMAHTzOveESV9T/+ur0yn8fsMW/jiwHz19fThbXsF3Kaks/fUoep2OF0YPZ3Bg19Z7E6JRmhXCvvvuO6666iq++OILXG08p//jH//I//3f/zFt2jReeuklli1b1pzbtWlSMb9j8/QHncH2vuoKrZJ8W5xFmJ8KJ7ZAYYb2uYcv9I6Fbv208hNCiLZn8n+/tZpEcMV/v7V8nHvnbZaPI3y82TXzOtbEJ/FTegb3bv2FgopKXPV6wr29uLlXT+4a0IehQW3wG5RoXgj79ddfWbt2rc0AZubt7c2zzz7LAw880JxbtXlSMb9jG35zw4/sfvsf5CRA2IDWbdP5lOXDyR8h64T2ucEVosdCj+Hax0KItuvgzTfadXxvfz/mD7+I+VzUIu1JSdFm70RGRrbI9TuzZoWwgoICoqOjL3hcnz59LH+JQrQnegP4dtP+tKWiBDJPaJXkDbYnJrWq6gpI3AHJ+0AZAR10HwIx48Fd6qsKIeyUkpLCxIkTAdiyZYsEMQdrVggLDAwkMTGRHj16nPe4hIQE/Pz8mnMrIZzC3QfG3N7wfnNl+UgnV2cxmeDMIYj/Rat6DxDQQxv35Rvs3LYJIdoncwBLSEgAYOLEiRLEHKxZ00cmTJjAvHnzKClpuABecXExTz/9NJdeemlzbiVEm2MyQtohrbK8ZxfntSMnEXaugmM/aAHMKwCGTodhN0kAE0I0Te0Apg8OQR8cQkJCAhMnTpQnWw7UrJ6wxx9/nAkTJtCvXz9mz57NqFGjCA7WvutnZ2eza9cuVq1aRVZWFj///LNDGixEW5F5XBuQHzncOfcvzoGTW+Bskva5qwfEXALdL2748akQQlxI/QDm+5enASh65UVLEJMeMcdoVggbO3YsS5cu5ZFHHmHhwoU2j9HpdPzzn/9kzJgxzbmVEG1Oyn7wDoDAqNa9b2UpJPyi9cIppVW3jxwGPcdpQUwIIZrKVgDTB2gzK33/8rQEMQdrdjW7Bx54gB9//JFrrrkGT09PlFIopfD09OTaa6/l559/5v7773dEW4VoMwrSoTC9dXvBTNWQtAt+eRdSD2oBLLgPjLsD+k6SANbZ7czMZvRnXxLw/sckFxU7uzmiHTpfAAPQBwRq2+TRpMM4ZNmicePG8eWXX2IymcjJyQEgKCgIfSerWCw6j5R92hI/YQNb/l5KaaUmTv2oFY8FbcZm34nQVX4J7fTKqqt5ce9B3j5y3KrA5/nsycrhjUOH2ZmVTUlVNVG+PsyMieKhIQMtRUHbEnsKmJrlVVRQWbNeovncvIoKMku12StBHu6drrJ+Qy4UwMzMQUx6xBzDoWtH6vV6QkJCHHlJIdqc1ixLUZCuFVstSNM+d/fRFtkOGyTFVgUkFhZxy/ebqTCZ+HTqJGZ+t6lR530Wn8j9P25nWFAgH1x+GaFenvzvdCrP79nPt8lprJ82udELZbcWewqYmv1h44/8kpFVZ9vsTT9ZPj5w0w308PVxcEvbh0qjkdPFJSQUFBJfWMTBk6cs4VS0Hocv4D179mxSU1PZuHGjoy8tRJuQdlArSxHRgmUpygu1ZYYyjmqf610gahREj2ob9chE23Asv4DLwkN5btSwRoemxMIiHvp5BwHu7qyZOgl/d+0f1INDBlBpMvLC3oM8vXMvSyaMbcmm283eAqYA/716ikPb0N6KllYajSQXl5BQWER8YRGJNX8mFBSRUlKCqV7Posvj89C/8iKm7CyKXnnRZm+YKfcsRTXHxMTESC9YMzk8hO3atYsTJ044+rJCtAkmozYeK6gneHVx/PWrK7UFtk/v0caAgfbIs9el2pJDQtQ2NSKcaT0i7Drn9YOHqTCa+P3AGEsAM/vjgL68euBXPj6ZwJ+HDiHCRyr8mrXVoqVVJhPJRcXWQauwiJTikvM+ovZ2cSHGz5cYP196+fnS088Xn0mX8shNMzmdmGgVxCSAOZ7DQ1hnJWtHdg5ZJ1qmLIUywZnDEP+zdn2ALhHauC+/UMfeS3Qc9o5nMppMfHVa6825LNz6H5afmxvDggLZkZnNF0nJzB3chtbiciJnFy2tMplIKS4hvqCQhJqAZX4lNyJo9awXtHrVfB7i6YHOxriG4Vu3Wt6vOYgBEsBagIQwB5G1IzuH5H1aWYoAB5alyE3Wxn0V1wxd8fSHPrHazEcZ9yUc6VRhEQWVlQD08be9ikkffz92ZGazP/tsazatzao/YB1okQHp1SaT5dGhVdAqKqb6PEHLy8VAT19fYvzrBy0/ujUQtM4nMjKSLVu21AligASwFiAhTIhGMpel6DfZMeGoJBdOboWceO1zF3foOVar+aWX/5miBSQVFlk+tjWbsPb2JClz4fCipdU1PVrmcGV+fJhQWMTpCwQtT4PBdo+Wvy+hnp52B60LqR/EAAlgLcDh3+rDw8MpLy939GWFcDr/MLjiieZfp6oMEnZA6n7tMaROp1W5j7kE3Lyaf30hGlJUVQWAQafDtYFHmV4G7cdCYU2PWWfV1KKlRnPQKiq2zDxMLNIGw58uLqHKZGrwnh4GAz39fOjl50dMvUeHoV6e6Fu5a7x2EIO2NRauo3B4CLM1KzIvL4+ZM2eyaVPjpk8L0R4opSgtLW3UsV5eXiiTjtQDkLAdqmt+TwnsqY378rYuxyOEcJLGFi01B7GLxo3j0kWLyfTwIqmo+IJBK9rXx9KbFePnSy9/7dFhmBOC1oWYg5j5Y+FYdoUwg8FAenq63bXAKisr2bp1q13nCNHWlZaW4uPTuBpDiQeLObPbm9I87XPvIC18BUa3WPOEsOJbU8bCqBRVJpPN3rBSozYt18+tc9ZCaUrR0vy0NP732MOWY90NeqJ9rQfCx/j5Eu7t1eaC1oVI+Go5doUwpRRGo9GuG5w5c4a7777brnOE6Gh+/Qo83bTHjTHjIXwISKFu0dqi/c7VOcksLbNZgsJcsDO6kxYxzSgto6S62u7zAj3ciYsdz7gB/dtl0BLOYffjyMmTJ/Phhx82asbfihUrePzxxykoKGhS44RoLz59NhMPt7o/0MorS7h5QTdAC1zRoyF6jDYAXwhn6O3ni5+bK4WVVZwsKLQZwk4WFAIwLLjjPyOvNBo5dDaP3dk57MrMZnd2DmdKSjE99LgULRWtwu4QNn78eMaPH89f/vIXnnnmGVxcrC+RlpbG3XffzXfffYdSCnd3dyo7+SBP0bF5uHnj6dZwYcsxf4Cg8FZskBA2GPR6ro2K5N8nE/jxTAaTuofV2V9YWcn+nLPodTquj+54gSKjtIzdWdnszsphd1YOB86epcJYd/yWQafj4j596PfOe6x/eC6ZKclStFS0GLtD2Isvvsgdd9zBHXfcwVdffcWHH37IoEGDLPvfe+89nnjiCQoLC1FKcdVVV7FgwQLGjBnj0IYL0Z54+ju7BUJo/nTxYD6LT+LfJxN47OJBdcZ+vXv0BBVGE7f16UVkI8c7tlVVJhOHc/PYnZXDrprglVxv7UmAAHd3RoUEMTokiFEhwQwLCsTbVfvR+PSIi6VoqWhRdoWwFStW4O/vzyWXXMLBgweZN28eo0eP5plnnuGWW27hvvvuY8OGDSil6NKlC6+//jpz5syhsLCQ2bNnt9R7EEKITiunrNyqYnpOeQXuBgNgXQ8sxs+XJRPGMPenHdz0/WYWjBpGqKcnX51OZeG+QwwNDOClse2vwHROWTl7ss8Frv05ZymtrjuGWQcM6NrFErhGhwQR4+fbYI0tKVoqWppOqfNUh2uEH3/8keuuu46SkhKUUiiluO6663jrrbcICwu78AU6OHPF/L179zJ8uIPXuhFOVVJSYpkd+eWLxVaPI8sqS7j+aW1/cXEx3t6yDl9rSispZdmvR9iUlk5KcQmuej19u/hxW59e/KFf7w4zcPriT9eTYqOHxyz3zttsbt+dlcMbhw6zMzObkuoqevj4MDMmmoeHDMTDxdBSzXUIo8nE0bwCdmdn1/R05ZBQqxCtmb+bGyODAy2Ba3hwEH5ujVvovLb6yxZJAOscWuPnd7PqhGVlZbF48WKKirR//DqdjoULF/KXv/zFIY0Toq2qroRjtUrilVda/xC0tU20jh0ZWfzfD1pZnAWjhhEbHkpJVRUrjp3kT9t28X1KGqsmX9ZgwdL25ODNNzbpvFEhQXx8RWyTzk1J0dafbK0Qkl9RYQlbe7Jy2JudQ7GNGYx9u/gxOiSYUSFBjAoOpm8XP4eEbSlaKlqKXSHszjvvZMmSJfj6+vLJJ5/w4IMPkpubC0BsbCwDBw5k4cKFhISEMGfOnJZorxBOl5sMR76FvJxz28yzIIXzFVZWMXvTTxRUVvLexAlMjzm30Oerl4wmo7SM/yWnsvTQER4fOtiJLW2fzL1C0DJhxKQUx/MLLIPnd2VlW2Zs1ubj4sKIkKCa8VzBjAwOpIt7y009lqKloiXYFcJWrVrFE088wYIFC/jss89QSuHt7c3ChQsti1dPnz6dO++8k7Vr17J8+XJCQ0MpKSlh8eLFPPPMMy3yJoRoDdWVcOpHSD2gfe7he97DhZOsTzxNdnk5QR7u3NCzh9X+uwf243/JqSz77SgPDhlgGTslLqz+YzlHLGJdWFnF3uxzgWtv9lnLIuO19fLztQSuUSFB9O/ij6GVezIlfAlHs7tY64QJEygoKEApRWxsLO+//z49e/a0HHPFFVfw22+/8eCDDzJo0CCWLl3KFVdcwYIFCySEiXYrNxmOfgdlNSXvul8MvS/zovjOxi1y7OUli0K2lt9ytWUJonx9bD6KiqkpWFpQWclP6ZlcESG1QxqjfiV5wO5FrJVSxBcWWQbP787K4WhePvUHJnu5GBgepPVyjQoJYmRwEEGeHi3wroRwLrvHhOXn5+Pl5cXChQt58MEHbR7j5+fHBx98wLp167j//vvrlLAQoj0xVsLJn7TFtkHr/RpwFQRGAehwdZfB9m2NeaagoYGxQF61ahv+djZPQlgj2FrKB2hwEWuz4qoq9uectfRy7ck6S25FhdX1o3x8LIFrdEgwgwK64NIBxusJcSF2h7DY2Fjee+89YmJiLnjsjBkzmDBhAvfcc0+TGteexMXFERcXZ7W9rKzMCa0RjpCXoo39svR+XQR9YqXifVtnXm6noRmDycXnei8z5P/nBZ1vLcXai1hPnDiRD//7FaluHlpB1OwcDufmW5XPcDfoGRoYyOhu2uD5USFBVmU0hOgs7CpRodfrycjIsHsB74yMDLp37273upMdgZSoaH+MlXDqZ0jZp33u7gsDr5TFttuLpMIiRq39L0alWHvl5VZV4eft2MM7R44DMKtvL5ZOGOuMZrYLjVnMunb1eFvHdPf2qunl0spEDAnoipuMwxPtQJsrUREbG4tbrerKjb6Jiws9elgPkBWirclLren9ytc+Dx8CfSdK71d7Eu3ny19HXMyCPQd47JedxF06jktCQ8irqOSjk/F8ePwUwR4eZJeX13k0KepqTAAD0AcEWnrETNlZVC5+mTvffpcrhgxmVEgw3b1lPKQQDbHrO9DmzZs5fPgwhw4dAsDDw4PRo0fbPHbbtm1kZmYyffp0goKCSExMbH5rhWghxqqa3q+92ufuvjBwKgT2PP95om165KJB9PDx4R+HDnPdNz/gotNhVIrRIcGsvfJyXtp3iOwMbQalsK2supryJjy9CPPy4slhF8lMQiEawa4QZjQaufzyy8nJ0QokRUdHEx8fb/PYkydPcueddzJt2jQ++eQTqRYu2qz8NK33q1SbVEf4YOg7SXq/2rvpMVFMj4misLKKgsoKurq74+OqVUvPLi8HYFBAV2c2sU0przayOzubn9Iz+Tk9k73ZZ6l48E/oa3q46i9ibSaLWQvRdHb3hGVnZ+Pn58dzzz3HrFmzGjx2/PjxTJkyha+//pr/+7//48svv2x2Y4VwJGMVxP8MyebeLx8YMBWCLjznRLQjfm6udZaqKauuJqmoCHeDnnHdgp3YMueqMBrZm53DT+mZ/JKexe7sbCqMpjrHRERGMizuLb5//BGyUlKsgpgEMCGax64Q9v333+Pp6ckvv/xywbITvXv35ttvvyUuLo5HHnmEb775hmnTpjWrsUI4Sv3er7BBWu+Xq5Qi6hB2ZmbT1d2Nvl38rfb9kHqGCqOJm3tFt2iF9bam0mhkX85ZfknP4uf0THZlZVNW73FjqKcnE8K6MT6sG5eGdaOnrw86nY6UsSPrLGJdu0SFBDAhms6uELZz507uuOMOu+p+zZ07l82bN7Ny5UoJYcLpjFUQ/wsk79E+d/eBAVMgqJdz2yUc67nd+3HV6/ny6ivqbC+pqublfYfwd3PjmZHDnNS61lFtMrE/J5df0jP5KSOTnZlZlFbXDV3BHh5MCOvGhLAQJoSF0tvPF52N+mq11040BzFAApgQzWRXCDt+/HiTqt7fddddPPDAA3afJ4Qj5Z+p6f3SljuV3q8O7ueMTP70y07u7N8XPzdXfs3N45X9v5JZVsanUycR3sFm7RlNJg7l5lnGdO3IyLJa5DrQw53xod2YEKqFrn5d/GyGLlvqBzFAApgQzWRXCMvLyyMqKurCB9bTu3dvMjIy7D5PCEcwVkPCL3B6D6DAzVsb+xUsvV8d1j0D+xHi5cGmtHQ+jU9Eh45IH2+u6tGduYMHEOjR/pO3SSl+qxW6tmVkUVRVVeeYLm5u2uPF0BAuDetG/65dbC7l1Fi1gxi0zALeQnQmdoUwLy8v9E1YSsJgMOAi9XiEExSkw+FvzvV+hQ6EfpPAVQp0d2jmmZEdiUkpjubl1wld+fUWuvZzc+WSbiFMqBnTNSiga7NCly3mIGb+WAjRdHYlo+7du3Ps2LFGLVlU29GjR+nevbtd5wjRHDZ7v6ZAcG9nt0x0JCkpKUDLhBGlFMfyC/g5PZOfM7QZjPXXXfRxdWFcrdA1JKArhlZYc1HClxCOYXfF/Pfee4+rr77arpu8//77lu5r0XEYKyF5P2SfgNJ8MBnB3Ru8g7QyDxEXO6ddBelw5BsoMfd+DYB+l0vvF0ByUTFvHTnOj2cySCsppdxYTbiXF7HhoTxy0SCiatZdFBdmrigPjnksp5TiZEEhv2RkWspGmOuZmXm7uDCmWzCXhnVjQlg3Lg4MkIWuhWjH7Aphd9xxB6NHj+att97ivvvua9Q5b775JuvXr2fXrl1NaqBom0rzYN8acPOE6LHgG6yFsJxEiP8JijJbP4SZqiFhGyTtRuv98oL+UyFEer8A+PFMBv+3YQvVSjFv2BCujOyOi17PT+mZPL/nAJ/FJ7H2qsmMCglydlPbvNpL+gBMnDjR7iCmlCKhsIifM7L4OT2DX9KzrBYU9zQYGF0rdA0LCsRVQpcQHYZdIWzkyJHcfvvtzJ07l++//56HH36Yyy67zGqcmMlk4qeffmLJkiV88cUXzJkzhxEjRji04cJ5jJU1AcwLRtwKhlr/irwDtTCUdaJ121SQrs18LDmrfd6tP/SbrIVEoXl6517KjEYev3gQj1082LK9bxd/XPR6HvtlJ3/6ZSc/Tb/Gia1s++qvqQiQkJDQqCB2uqi4ZkxXBj+lZ5JeWjd0uRv0jA4J1h4vhnZjWHAg7rLYtRAdlt2j5d9++22SkpJYv349X3zxBW5ubvTq1YsuXboAkJ+fT3x8PJWVlSilmDJlCm+++aaj2y2cKHEXlBdqMwwNNv4F9RyrvVqDqRoStsPpXaDMvV9TIKRP69y/PUkoLAJgVIh1lXhz79fhvHxyyysIkDUVbbK1qDVoRUttBbHU4hLLQPqfMzJJKS6pcz03vZ6RIUFMCNV6ukYGB+HhIqFLiM7C7hDm4eHBxo0bmT9/PnFxcZSXl3PkyBGr4zw9PXnsscdYsGABBvlNrsNQJjjzK+gN0LWHc9tSmAGHv4USbSlTrffrci2ICWuDArqyJzuHY/kFTI2sO1HmeF4BADqQnpcG2Apg5uV7fP/ytCWIjRo/gateX8ohBUlFxXWu4aLTMSI4qKZAajdGhQThJTPHhei0mvS/38XFhVdffZUnnniCL774gh07dpCZmYlOp6Nbt26MGzeO66+/npCQEEe3VzhZcQ5UloBXABgrIH4X5MRDRSm4ukOXCIgaBT4tOKzIZITE7ZC0U+v9cvXUer+69W25e3YEiy8Zxa0btrD4wG/08PHmysjuGHQ6fsnI4q+7tAU0x4d2w9tVQkF95wtgAPqAQEsQy0xJ5sMH7sH3L0/jGhjEsKBALq1ZCmhMSLB8fYUQFjqllHJ2Izqyffv2MWLECPbu3cvw4cOd3ZxmSz+s1d3y8AV04BMMUSO1IJSfCqd+0h4RDrm+ZYqhFmZqMx+Lzb1f/WrGfknvV6OUVFXzr8NHWXroCCXV1eh0Okw13wIGB3Tlw8mXyQzJei4UwGqrvaB1WI8oNm7exAA7S/oIIdqG1vj5Lb+SCbtU1owjLi8C3xC4+EYw14L0CQIPPziwDn77H4z/o+PCkckIiTtqer9MNb1fV2ghTDROfkUFc3/awXcpacwd3J8boqNwN+jZlpFFVlkZcwcP6FQLWjdWYUUlJfWW/2kMTxcDPq6uLdAiIURHIXOd69m/fz933303F198MUOHDqVv377cddddZGZmOrtpbYKx1qooEcPOBTCzoBjw6qrNoEw/7Jh7FmXBro+0R5DKBCF9YdwcCWD2UErxu+82801yKo8OGciCUcMZHhzIoICu3D2wHxcHBjJ23Vd8n5Lm7KY6nVKKI3n5LD10mGu/3sDEn3ZS/tDj6INDMGVnaT1duWetzqvdCyZrKgohGkNCWD0ff/wxBw8eZNOmTRw4cIDt27ezZ88ebrrpJmc3rU2oPRvSx/YTGXy7aX8WNnO5UJNRq/u16yMoztZ6v4ZcCxddr1XAF433Y3om+3K04DB3yACr/ddGR+Lr6sqsH7Zy6GxuazfP6Uqrq/kuOZUntu3i4k/XM+Hz//HcngNsy8jCqBQDYmJ48L0VhEdF2QxiEsCEEE0hjyPr6dWrF5MnTyYwUEsYgYGB3HnnnTz66KPk5+dbSnF0Vu61hgu5NLAGsoub9mdVue39jVGUpc18LM7SPg/uoz1+dJfw1SQHawJYiKcHXRt45NjH34/4wiI+PH6KVy8Z3ZrNc4rTRcV8n5LGhtQz/JyeSbnRaNnnYTBwaVg3pkSEMyWyu2Wc3BNDf7KMDyt65cU6JSokgAkh7NXuQti2bdu44447OHHiBImJiURHRzv0+vfff7/VtqKiIjw9PfH2lgTgW2vCa2UpeAdYH1NZqv3p2kBIOx+TURv3lbijZuyXB/SrGfvl4HWIO6XzfQnNCz2fqVdAtKOoMpnYkZnF9yln2JCaxon8wjr7I328mRoRztTI7owP62azdIR58eraQQyQACaEaJJ2E8LKysr461//ypIlSzDW+o21Mb799lsWL17M3r17qaiooF+/ftx555088MADVtX+69u+fTtvvvkmr776Kq4yyBbvQG3MV2me1kvVNcL6GHPVev9w+65dnK3NvCyS3i+H6+XvB0BmWTmFlZX4ublZHXOyQAslIZ5NSM9tVGZpGT+knuH71DS2pGVQVHVuUKNBp2Nst2CmRHZnakR3+nXxQ9eIpF8/iAESwIQQTdIuQlh8fDxXX301FRUVfPPNN0ydOrXR5y5atIh58+Zx7bXXsmHDBnx9fXnvvfd46KGH+P7771m3bh0uNn7j/fzzz3nggQfIy8vjmWeeafRamZ1B9FitTETqQeg+FGrn2JwELaC5ekLYoMZdz2SEpF3nBt67emhlJ7r1l94vR5nUPYwQTw+yysp5+8hx/jx0SJ39P6SesYSw66KdXIW3GUxKsT/nrNbblZLGgXrj24I9PLgiIpwpkeFMCg/D3906jDZG7SAGjlnAWwjR+bSLEHb48GEmT57MK6+8go9P42sY/fTTT8ybN4+BAweybt06S0/WokWLyMvLY/ny5SxatIinn37a6tzp06czffp0Tpw4wf/93//xww8/8N1330lvGBA+CArSIO0QHPpCW6LIzUurE3ZiCxjcYMh1jXscWZytjf0qqpl8GtxbK7wqvV+O5eXiwtux45n1w1Ze3f8rOuD66B64Gwz8mJ7Bgt0HALhnYD8u7x7m1Lbaq6Cikk1p6WxITeOH1DPklFfU2T8sKIApEd2ZGtmdoUEBlseuzWUOYuaPhRDCXu2iWKvRaKyz9JH5kcGFxoRNnjyZTZs28a9//cuqJ+v48eP0798fPz8/MjIy8PRseKXnnTt3MnbsWN555x3uvvtuu9re0Yq11pZxDNIOao8PjdXg4QOB0VrFfM8u5z/XZNLWe0zYpvV+uXhoSw6FDpDer5aUWFjEvw4fY0taOqklpRiVIsjDneFBgfyhX2+m1FvOqC1SSnEsv4ANKWl8n3qGnZnZGGt9G/N1dWVS9zCmRoZzRUQ4Ief5vy2EEA2RYq01mrL2ZHZ2tuW31MmTJ1vt79evHxEREaSmpvLNN98wY8YMAEpLS/HyqlthdMgQ7dHNgQMH7G5HRxbaX3vZqzhHe5xZWNP7FdQLBkypO/NStIyefr68Mm6Us5tht9Lqan5Oz7TMZqy/EHbfLn5MrentGtMtGNcLjPUUQoi2oF2EsKbYs2cPJpMJV1dXevWyvX5O//79SU1NZffu3ZYQNnDgQHbu3Em3bt0sxyUnJwMQEGBjKmCNiooKKioqrLYXFxfbOLpjUUpRWlp6weNMJsg+7EXidh3KCC7uNb1fA6X3q71LSUkBHPtYriklJIQQoj3psCEsPj4egODg4AZnQIaFhdU51uypp54iLi4ODw8PCgsL+dOf/oS3tzezZ89u8H4vv/wyCxYscFDr25fS0tJGj9X78sViPN28CYqBAVOl96sjMK+tCM0boH6hEhIR3l5MjdR6uyY0UEJCiM7OeOgUFS+sRCVn4rnuZfThQc5ukjiPDvtdrLBQ+wZ+vrFe5seOBQUFlm1xcXG89957jBgxAhcXFyoqKrj44ovZuXMnvXv3bvBa8+fP509/+pPV9gMHDhAbG9vUt9HhuLjBwKu0mZPS+9X+1V7cGmDixIl2BTFzCYkNqWfYnJZuu4RETW9X/y7+jSohIURnpMorqXx7PdWfbgSj6YLHl4xt3Phmw2VD8XhlbnObJxrQYUNYU11zzTVcc801dp/n7u6Ou41K5PbM5uwIPn02E496awqVV5Zw8wLt8e7oWRAY6oyWCUerHcD0wVoV34SEhPMGsdolJH5ITWN/Tt0SEkEe7kyJ6M4VEeFc3r3pJSSE6ExMqVmU/2kpVFbj8fojlD/yj0adp+sWAB4N/B8rr0Rl5qKPbl+zpdubDhvC/Py04pRlZQ1X/zaPY/L392+VNnUGHm7eeJ5nYUcP31ZsjGgx9QNY7eV76gexxpaQmBIZzrCgQIeVkBCiszAlnMEwcgBuD85E59X4Ysvuz9yJYUQ/m/sq3/qcqg+/xWWGPMlpSR02hJkH42dnZ2MymWyOC0tPT69zrOh8kouKGbrmi0Yde+/Afrw8dmQLt6jtsxXA9AHaWqu+f3naEsSGXXIJF7+wkEMmXYMlJCZ3D6ebl5SQEKI5DOMvwuWyoXado+8fBd62A5uqrKLqi58wXDoUfWigA1ooGtJhQ9iIESPQ6/VUVVURHx9Pnz59rI45duwYAKNGNX/KflxcHHFxcVbbz9cTJ9qOaF+fBssaFFZWkllWTr8u0mN6vgAGoA8ItASxs6mpbPnzn/D9y9P0j+kpJSSEaCE6g/3/nzxX/rXBfdXf74K8Ilxvvrw5zRKN0GFDWEhICLGxsWzevJmNGzdahbDjx4+TmpqKr68vV111VbPvN3fuXObOtR68aC72Jtq29VdNpkcDZQ7u3foL36ec4aZePVu5VW3LhQKYWe0gZsrOwj/uDdb8uFWqygvRTlSv2YS+dwSG4bYfVQrH6dC/jj777LMALFu2jOrq6jr7Fi9eDMCf//xnq+KsounKK0soq/cqryy58IlO4mYwMDQwALcGCgJnlpbxRWIyt/WJwdu1w/7O0qJc9DLGS4j2wnjwFKbjybjcJL1graHd/FTJzs7GWKtYo3mbh4f2TDs01HrKXWxsLC+++CJPP/0006dPZ8GCBfj4+PD++++zfPlyrr76aubPn98q7e8szLMg24tQL0823TCtwf0rjp2kWinuHth5fyNUSrE7O4d1aZnw2F/QP/8Mpuwsil550WZvmCn3rKUXLCYmRha3FqIdqVqzCfy8cblyjLOb0im0mxA2atQoTp8+XWfb6NGjLR83tATmU089xbBhw1i8eDGXX345VVVV9O3blyVLljB37twmLYkkOocqk4lVx08yNSK801VkV0pxODeftQlJrEs8fW6ZIC8fIv76HAWLXqTgTJpVEJMAJkT7ZcrOx7h5H67/dwW6hkpXCIdqNyEsKSmpyedOmzaNadMa7u1whM48MN/Ly6vRyzO1p0e/6xNPk1lWzj2dqBcsvqCQtQmnWZuQxMmCcxXrfVxcuDoqgpkx0UzsHkbG9Gst48PMQQyQACbaJKki3zjVazcDCpffTXJ2UzqNdhPC2rrOPDBfp9Ph7d1wbbD26p0jx+nbxY+J3Tt2scLU4hI+TzzNuoTTHDx7rniqu0HPlIjuzIyJZmpkOJ61lgmKjIxky5YtdYIYIAFMtCn2VpE37j1O+dzXznuM+6IHcIkd5qgmthmWshQTLpayFK1IQpgQNuzLPsve7LO8Nq755Uvaopyycr5MSmZtQhLbM7Mt2w06HRPDQ5kRE801URH4uTX8SKJ+EAMkgIk2o6lV5DEY0EUEN7jbnmKo7Un1ht01ZSkmO7spnYqEMCFsePvIMfzcXLmld4yzm+IwhZWV/O90KmsTkth6JqNOAdVLQkOY0TOK66N7EOTZ+B8ytYMYNG8BbyEcqalV5HXBXfD65O8t2LK2qXrNJnS9ujdYQV+0DAlhQtSTVaaVpbhrQN92X5airLqa71LSWJdwmg2paVTUeiQzNDCAGTHRTI+Jort308fqmYOY+WMh2oKmVJHvrIyHTmE6dhq3ebc7uymdTvv+CdOGdOaB+R2NpSzFgL7ObkqTVJlMbE5LZ21CEt+cTqW4Vo28vl38mBkTzfSeUfT293PYPSV8ibamKVXk2zOVV4Qy1R33pvKLMLm7AqAPbHjFj6pPN4GfFy5XSVmK1iYhzEE688D8jqTKZGLVsVNMiQgn2q/9rDZuNJnYlpnFuoTTfJmUTF5FpWVfpI83M3pGMTMmmkEBXdDJAtlCNMxopOo/P1D9w25U+lkAdN2DMVw2FNcZsW12TFjZHS+iMs7W2VZ+50uWj713LLd5nik7H+OWfbjecgU6D/cWbaOwJiFMiFq+SDxNRlkZce2gLIVSir3ZZ1mXeJr1CVq7zUI8PbixZxQzYqIYFRwkwUuIRlLZ+VRv2IXrbVeijw5FFZZS/e0OqpZ9RvX6H/FY+ij68IYH7juL1/qFTTpPH9wF75/fcnBrRGNJCBOilrfNZSnCrVdgaCuO5OWzLl4roppUdK4+m7+bG9dFRzIzJpoJoSEYZJFsIeyiC+mK613X4XrH1ehqlWQxDO0Dri5Ur9lExfy38Fj5V/nFRjiEhDAhapjLUrw6blSb+wabWFjEuoTTrEtM4mhegWW7l4uBaT0imBETzeXdw3CXFSBEIzSneGnVJz9Q+Y9PgIYfcbVX+sgQ3O6+3uY+tznXUL1uC6bjyZh2HcUwZmArt845ioqK2LBhA7m5uQQEBDBlyhR8fdvPUI22TkKYEDWGBweSe+dtzbpGSkoK4JiB6umlpXyeoBVR3ZdzbqyHq17PFRHhzIiJ4qrIiHY/g1O0HnuLl9ZnOpND5VvrHd+wdkAX6IcuuCsq4yzGQ6c6fAgrKSnhqaee4v3336+zIoqPjw933nknL730Uocs0t3a5Lu3EA6SkpLS7HpZueUVfJmUzLqE0/ySkYm5kpdep+PSsG7MjInm2qgIurjLAFphnyYXL62lYuGH6Py9UWUVLdDCtk8X6IfKOIsqLHF2U1pUSUkJV1xxBTt27ACgl7sffT39OV5WQEJxIUuXLmXXrl388MMPEsSaSUKYg0iJis7NHMDMleMnTpzY6CBWVFXFNzVFVDenpVNdq4jq6JAgZsZEc310D7p5ebZY+0XH19TipWZVX/2Cad9x3F++n4o/L2uBFjpf9c8HMQyOQdfF9uM2dVZbT1Xn237WwG2Kp556ih07dhDg4s47MbFc2SUSnU6HUorv8lO4J2ErO3bs4KmnnmLJkiXObm67JiHMQaRERedVO4Dpg0MASEhIOG8QK682siE1jbUJp/k+JY1yo9Gyb0hAV2bEaDMbI318Wu19iI6tOcVL1dlCKpd+iuvtV6Hv1d2xDWtDKp5Yhttf5+B67XirfSqvCJWdB4B+cMdZSaO+oqIi3n//fQDeiYnlqq49LPt0Oh1Xde3B2zGx3HTie1asWMELL7wgY8SaQUKYEM1QP4D5/uVpAIpeedEqiFWZTGw9k8G6hCS+Op1CcdW5Iqq9/HyZERPNjJgo+nVpuKiiEE3VnOKlFa99jK6rH653XIPKKbjwCe1Y9TfbcbnmEqvJOZWrvgajCV10GIYxg5zUupa3YcMGiouL6eXux5VdbPfkX9Ulkhh3PxKKCtmwYQMzZsxo5VZ2HBLChGgiWwFMHxAIgO9fnrYEsbGXXso1//gnm8sqOFt+bixNuLeXpYjqRYFd29yMTCEAqrfsw7hlPx5v/QWdmyvqwqe0GXZXkTfoMe09TsUT/8T11inougejikqp/t82qj/diC6kKx4v399hqvErpVCZuZgS01FJ6ZgS08n45gsA+nr6N/g9SafT0dfTn4SKQnJzc1uzyR2OhDAhmuB8AQxAHxBoCWJnTp/mvXv/iO9fniYkPJwbonswIyaaMd2C0UvwEm2YKiql8rV/4zJzIoaLezu7OXazt4q85+cLqf52B8ZdRyh/ZjkUloK7K/rIEFz/eB2uN01G59/+BqIrowl1JgdT4hlMSebAdQbT6QworTvJokuu1tN5oqwApZTNIKaU4kSZdlxAQEDLv4EOTEKYEHa6UAAzqx3ETNlZeP3zdb77cSs9o6Kc0Goh7Fe59FMwGHC7v30+brK3irw+pCtuf5gGf5jWQi1qWaqqGpWSiSkp41zgSkzHlJwBldW2T3IxoIsMQd8zHH3PMKaF+OHz+x3ElxbyXX5KnTFhZt/mp5BQUYivry9Tpkxp4XfVsUkIE6KVeLoYcJEq9qKdMO4+SvV/f8H99YfRebfN9RI7K1Vegel05rkercR0LXClZjVc/83dFX1UGLroUEvg0keHoYsIrrM6gBtw5x/vYunSpdyTsJW3Y2K5qtbsyG/zU7gnfisAd9xxhwzKbyYJYULYKTIykg2bNnHJZZeRmZxM0Ssv2uwNM+WetfSCxcTENLl2mBCtTZVXULHwQwxTR+NyyRBnN6dNcEbleFVSdi5gJaZjStICl0o/C6qB0XleHlrA6hmOLjrsXNgKDWz0WLaXXnqJXbt2sWPHDm468T0xNXXCTpQVkFChlekYO3YsL7300gWuJC5EQpiDSJ2wziG3vIIPjp/i3WMnKH/ocfQ1Iat+EJMAJtoz05EkVFo2xpx8SiY9WHdnrR/+tfd5rl6APtT6sXx71xqV41V+EaaagfHnQtcZVHZ+wyf5+9SELS1k6aPD0fUMQxfcpdmTfLy9vfnhhx946qmnWLFiBQlFhZbw5evryx133CEV8x1Ep1RDcVo4grlO2N69exk+fLizm9MkJVXVvHPkGF+dTiG+sIgqo4kQT08GBnRhSkQ4c/r3cXYTW9yRvHzePnyMNfFJlppeQR7u3NjFl08fvJ/TiYlWJSokgIm2rGTs3QA2145U5ZUNBgCVnUf5A69p56550bJdFxaIzqVjrV163srxtXqEGlM5XimFyilA1YzVMoctU1I65BU1eJ4uuAu6qLC6gatnOLqurfMYsDOvHdkaP7+lJ0ycV3xBITO+20SQhzt/ungwgwO6UmE0siH1DC/sPcCBnLMdNoQZTSa+Tz3D24eP8WN6pmX7kICu3DuoHzN6RuPhYuChrVstA/WLXtF+KEkAa3+as6h1R6PzcEMXGWJzn6nWIy19A8d0FE2pHK9MJlRGrqU3q3bgorjhJyO6sECrR4j66DCnV+f39fWVOmAtSEKYaFBJVTUzv9tEsIcHX109BY9av+X27eJPhdHIl0nJTmxhyyisrOLjk/EsP3KcpCLt8YNep+PqHhHcN6gf47qF1Onuj4yMZMuWLXWWLZIA1n7Yu6i1yiui+pvtVG/7FdPJVO0Hq7cH+t4RuFw1Bpdrx6OTCRjtnl2V499Zzl89++CTnqeVfSivtH1Rgx5d92CrR4j6qFB0nrIebGckIUw06I1Dv5FcXMLr48fUCWBmf7p4MH+6eLATWtYy4gsKWX70BP8+EU9xtTad29/Njdv79uKPA/rSw7fhJYRqBzFo+gLeonXZu6i1KSWLstsXQEUVLjMn4nbfjei6+mE6nUHV8i+ofOkDqr/bicfih9B5tL0fqnYXL619XEEJqroalX/u0ZnprFYrSufuis6nY62naFfl+PJCNqxbzw0BPbUdri7oenSreXRY6xFiZAg6N9dWfBeirZMQJmwymkx8fCIBd4Oey8K6Obs5LUYpxZYzGbx95BgbUs5YqoH38ffj3oH9uKV3DN6ujftvYg5i5o9F22fvotaqrBzKK3H5vym4P3KzZbu+ezCG4X0pu/UZTHuPU7Xia9zun96STW8Se4uX1jlu3puY9p+oe71rngDA5epxuD9zpwNb2rpUeSUqNQtTciamlExUciYZG74CGl85vnDCINxnz0HfMwxdeHCHGx8nWoaEMGHT0bwCMsrK6OPvR1FVFUsOHeHblFSySsvp4u7GuG4hPDhkAAO6dnF2U5uktLqaT08l8vaR4xzPP7cW3pSIcO4Z2I9J3cOaVM1ewlf70tRFrV2vn2C1TefhjsuVY6la9TXVG/e0yRBmb/HS2jz/9WcHtqT1qepq1JmzlpBlStFCl0rJRGVaL71jb+X4kGtjcYkd1rJvQnQ4EsKETYfz8gAoq65m0hffMLBrFxaPG02AhzvbM7J4fu8B1iUmsWLSpVzVI8LJrW281OIS3j16gg+OnyK/Uhu34e3iwu/7xHD3wH709vdzcgtFa7J3DUB9rwi8NixpcLC0LqQrAKqwpNltE/ZTJhMqO18LWeZerRTtY3XmLNTMbLbJ1wt9j27oIruh79GNaYE+UjletDgJYcKmnJqFplNLSrkosCsfXRFr6Rka0LULkT7e3LJhC/du3ca+m64n0KPtVtRWSrEzM5u3jhznf6dTMNZUZYny8eHugX25rU8v/N3dnNxK0R7oDHo4z2w1VTNGSt+re2s1qdNRSkF+sVXIMiVnolKzoaKBQfEA7m7oI0O08VqR3Wr+DEHfoxv4+9Tp7ZLK8aI1SAhzkI5WrLWs+tw6Y38c0M/q0dyUyO709vPlVGERq08m8uCQAa3dxAuqMBr5POE0bx85zsGz5x43XBrWjXsH9uPKyO4YZBabcCDjtl8BcP3dJCe3pOW0Vt0oVVJuHbJSsjClZEJRacMnGgzougdZhSxdj27ogrrYNXNVKseLliYhzEHmzp3L3Llzrbabi721Nx6Gc/80+nWxPWPq4qAAThUWsS8np7Wa1SiZpWWsOHaSlcdPklVWDoC7Qc9NvXpy78B+DAro6uQWio6oeudhTMdOY7hkCIbL29//+QtpicrxqrIKlZZtFbJUcqalV7EhutAA7dFhzeNDS+9WWECdtRCbQyrHi5YmIUzYFFprpljXBh7V+bhqU63zz9f934oO5Jzl7cPHWZd4mqqaafhhXp7cNaAvs/v1btOPTEX7pvKLqHzpA3SRIbg/c0ezl41pa85bOb64kKVLl7Jr1y6bleOV0YTKOGsZBF/nz4zchtdABOjqaxWy9JEh6CJC0Hm0zhACb29vlixZwgsvvNBpK8eLliMhTNg0JDDA8nF2WbnNAevZNb1MXZw4nqraZOKr0ym8ffg4O7OyLdtHBgdx76B+XB/dA1d55ChakCot12qN6XR4LHscXZeO94O5sZXj5//xfhbf8sdzjxBTslBp2VBV3fDFvTxqhayQWo8Ruzm9WnxtUjletAQJYcKmfl38LWO+fsvNY1yo9fIk5tIOo0OCW7t55FXULKR99ARpJdr4EBedjht7RnHvoH6MCO68S844SlOW8TElnqHi7ysxHUnEI+4JDCP6tUJLnUeVlFP++FJUYSkeb/0ZfbeAC5/UzthTOX7lp//hqVM6fA31fjFzc0EXEVI3ZNXMRNQF+HW4nkMhGktCmGjQny4ezAM/bef9Yye5o38fXGr1KG1ISSO+sIgAd3f+r3dMq7XpaF4+7xw5zqenEimrmW4e6OHOnH59uHNAH8K82s5vzu2Vvcv4gPbIqerj76h690uoPE+vRweiCksof3QJqrwCj7f/ct5q8+2VKSefb996r/GV4ysK2dLNwPTLJ9eErJrQ1S3A7nIgQnQGEsJEg27tE8OOzGw+OHGKP2z8kSeGDiHY051tGVn8ddc+fF1dWXn5pS1e3sGkFBtS0njryHG2nsmwbB8c0JV7B/ZjZky0zWWVhP3sXcYHQBUUU/7YUkxp2bj/dQ6Vb35uVZW9o1G5hZQ//A/Q6/F884k6jyDV2UIq/v4+7n+7E11g+6k7p4pLMR09jfFoEqbDiZiOJqGy8sjKOgY0vnJ88Y2X4P7HW1uz6UK0WxLCxHm9MWEMl4V3Y+WxU8z4biPl1UbCvLy4IboHDw0ZSNR51lNsrsLKKlafjGf50RMkFGrr1ZkX0r53YD8uCQ2RxxgOZu8yPgCmzFx03bri9dqD6AL8qHzz8xZupXOZsvMpf3AxOl8vPP7xiNW4JVVRiXHHYVRFJW31X6eqqMJ0MhnTkSSMR5K0wHU6w/pAnY6A7mGQ2PjK8QEBHe+RrBAtRUKYuKAZMdHMiIm265yUlBSgacv4JBYW8c6R43x8Mp7imgG9fm6u3N63N3dfYCFt0TxNWcZH3ysCj5fvb5kGtQJ7FrU2ZeVRfv+r2mDzqFDKH3rd+nrnG4TuBMpoQiWlYzySiOlIEqYjiZhOpdmsHq8LC0Q/MBrDwJ7oB0Sj7xfFtaYqfMK/Ib5YKscL4WgSwoTDpaSkMHHiRAC2bNnSqCCmlOLH9EzePnyM71LS6iykfc/AftzSu6elJIZoOU0Zt9Pex/rYs6i16WiSFsAAdTqD8xRXcAqlFCo9B9PhJO2x4pFETMeToazC+uCuvhgGRKMfGI1+YE8MA6LRdbWe2emLB3feeadUjheiBUgIEw5lDmAJCQkATJw48bxBrLS6mjXxSbxz5BhH884VZ5zcPYx7B/Xn8iYupC1EY9mzqLVL7DBcaoUyZ1O5hefC1hEteJFfbH2glzv6flFaD9fAaPQDotGFBTb6cb5UjheiZUgIEw5TO4Dpg7WSFgkJCTaDWGpxCe8fO8Gq46fIqzi3kPatvXty98B+9G2gSr8QnZUqKcd07HSd0GVzAoSLAX2fCPQDetY8WoxGFxXWrB5LqRwvRMuQEOYgHW3tSHvVD2C+f3kagKJXXrQEsc2bN5Pu7snbR47x36RzC2n38PHmjwP6cXtfWUhbCNCW8zGdSrWM4TIeTUIlZVhXl9fp0EWFYqh5pKgfEI2+TwQ6N8c/upfK8UI4noQwB+loa0faw1YA0wcEAuD7l6ctQazfmDG4Pz7fsm98aAj3DuzPtB6ykLZofxy1kLUymVCnM7WB8+ZerpOpNqvM60IDtKA1IBrDoJ7o+0eh8/Z0xNtpNKkcL4TjSAgTzXK+AAagDwi0BLHyjAyqXnmR2958mycmXVZnaSQh2ovmLGStlEJl5p7r4TqShOnYaSgttz7Yz/vcGK6B0RgG9GxXdceEEBcmIUw02YUCmFntIGbMzuLnJx/nhS1bQEKYaGfsXchaFRRrQcs8cP5IIuQVWV/Yww19/yith6smeOnCg6QOnhAdnIQwIYRopMYuZP2XSdfzauQYSzmLOgwG9L27W2YpGgb2RBcdhk5WfRCi05EQJposMjKSLVu2WHrDil550WZvmCn3LEWvvIgpO4uYmJhG1w5rK0xZuVR9/L1WBT3jLLi4oI8OxeXa8bjccCk6Gc/WKdizkPWHe3/ibyoCX4Obtlh1TR0u/aBo9L0j0XnIBBQhhIQw0UwXCmLtPYAZD5yk/M/LAHB78HcYRvWH0gqqPt9K5aKPMP7yK+4L70PnIv+VOiJlMqFSszGdSuWbNWvsWsj655tGMPP+P1otaySEEGbyk0M0W0NBDGjXAUyVlFE+/19QVIr7C/fgcsUoyz73P9+GysnHuPUAVR9+h9sd1zixpY5lzzI+lv0FJajqmtl8NeeqwhJMZ7UCvLouvm2+sr4qKsUUn4rpZKpWHuJUKqb4NCjX6thl27mQdX6AlwQwIcR5SQgTDmEriAHtNoABVP+wRxtE3dUXw+XWZUZcb7pcC2H//h7X26a2SG0mZ7BnGR/L/nlvYtp/os62ivn/snzsue5ldOFBDm5p0yijCZWSeS5onUzFFJ+Kysi1fYK7K/qYcIJiPCDxZ1nIWgjhMBLChMPUD2JAuw1gAKaT2iLk+vAgm+O+dJHdtA+KSjHuPY7LuMGt2bwWY88yPmae//pzC7Sk+VRBSU3YSjkXuhLOQEWVzeN1oYHoe0doA+d7R6DvE4kuIgSdQc/VRUX4/HelLGQthHAYCWHCoWoHMWj8At5tkrHmkVwDA+9rD642nUyBDhLC2iNVbUQlZ9QErbSaHq4UVHa+7RM83ND36o6+T+S50NUr4ryPD319fWUhayGEQ0kIEw5nDmLmj9srfUQwgO31+QBT+rntKqfA5jHC8VReUa1HiSla6Eo6A5XWFeYBdN2Dz/Vs9arp3epuu3fzQmQhayGEI0kIEy2iPYcvM8PE4fDmOlR2PsadRzCMGVhnf/X/tp37pKyilVvXdjhq+Z76VFU16nTGuYHyNYPm1dkGAq+XuxayekdoC1j3jkDfq7tDl/WRhayFEI4kIUyIBui7B+N6741UvbmOioUf4P63O9AP6wuFJVT99xeqv/wZuvpqg/c93Z3d3FbXnOV76jOdLcB0KhV1KhXjSe1PU1I6VButD9bptN4tc9CqCV260MBWqdkmC1kLIRxFQpgQ5+H2h2now4OoWvU15Q+8BgYDmEzoh/TCY8mjVL7zBaa84+i6+Di7qa3K3uV7zFRlFaak9LplIE6l2l7KB8DH81zQMr9iwtF5ebTG2zwvWchaCNFcEsJEk5jO5FD16UaMu4+isvKgohJdSFcMowbgevtV6MODnd1Eh3G5YhQuV4xClZShCkvR+XtbQoDK0x5F6XtHOLOJra6xy/fMu+MeFl87yxK21OmMcxMeatPr0EV2swpcutAAWT9RCNFhSQgTdjPuOUr548vAaMT17utxGX8RuBgw7jlG5b8+p/q7nXgsfQzD4F7ObqpD6bw964wvUuWV2tqAbi4YhvZxYstalz3L96xau4anE13wNdRapsfPC33vWrMS+0Si7xmGzqPzPdIVQnRuEsKE3Srf+BQqKnGdczVus6+2bNdHh4GLgcqFH1K58CM8P3rWia10DOOhU+j8vLX3Vn/f9t+gshrDVWPR+XWOgdiqsITv3l5h1/I9W6I9mXHdDZbQpQvuKr1bQgiBhDCHiYuLIy4uzmp7WVmZE1rTskwpWQDoh1j3dBlqtplOpaIKitH5t++xUpXL1oKLAc83n6izXZVVULn8C/D1wu2BjjcuSCmFyszFdCIF04nkmj9TUBlnybRz+Z7iK0fi9odprdl8IYRoFySEOcjcuXOZO3eu1fZ9+/YxYoT1kjftmb5PBKbfEjAlpsP4i+rsMyWe0T7Q6aCDLONj2necikUf4jJjIjpvT0wnU6h677+onAI8/vEw+pCuzm5is6hqI+p0BkZL2ErWis8Wlto8PiA4GBKR5XuEEKKZJIQJu7n95TYqHv8nVSv+hz4sEMP4i8Cgx7TvBJVLPgVAP6wvug5QtsH15supDvTDuOMw1d/s0MojhAXiMuFiPH4/BV2X9lWSQJWWa4Pka3q2TCeTtUWqbRU6NRjQx4RpY7b69dD+7BPJtRjxCd8gy/cIIUQzSQgTdjP07YHnpy9QtXoDFS+uhLJK0AEmBWg9Ze5/ne3UNjqKeWZke2Q6W1D3ceLJFFRKFihlfbCXB/q+kXUDV88wm4uS+4Is3yOEEA4gIUzYTRWWUPH3FRh/OYTr/03FMHkEOldXjAdOoM4W4Pr7qZ1moHpboEwmVGrWud4tc+BqoLK8LrjLucDVtwf6vpHoGlikvCGyfI8QQjSfhDBhF6UU5Y8uwXQkEdfZV+N2/3TLPn2fCKq37KPs1mdwe3q2VrpCOJSqqMKUkFa3h+tUqu1lk3Q6dD26WXq2DH17aJXlA/ya3Q5ZvkcIIZpPQpiwi2nPMUxHEgH4//buPKypa/sb+DeACaAMIqCAFUREhOuIqNUqWgpVap1prdVKna6K+HOWq/VynUdaB6xaxaFvtbVah1rnojgUKjhVcEBF0CqBYmUSkSnr/YMmJSahDEmOxPV5njzGs885WTtRsthnn7XrDQ9QaTfp1RHFG35A0ewvIdo2F8atVOcLGSptr6FIuQXlc7b+Gtkqu/M7KE2qvtippF75uomtKoxwtXDS6bw8Xr6HMcZqh5MwVi1ltx8AAEQ2lhBZqR/lMHJ2QNnvf6D0x/MwnvWxPsMTRG3XUCQiUMZTpblbsjsPQRlP1R9g1QBG7n+NbLmXJ1yiN+whMjHWdteqhJfvYYyxmuEkjNVMZcU2jcrb6I9sPQUjnOquoUilpaC0CuUg7v5eaTmI8oWq3/gr2for4bKz5mKnjDFmADgJY9Vi1KwxAID+zAU9ew5RA3OVfWQPMgAAokZWeo1NCFVdQ3GO/yCscu8J2X0N5SBMjGHk6qg0Wd6oZVO17y9jjDHDwEkYqxbjLp4Q2ViCnuah5PvTEI/up9ReGpdUvkgzAOPeHYUIUW+qs4bi1xdj8FmJQ/kaivXNKtyd+NejuSNE9fi/I2OMvU74pz6rFpGpBJIFY/Fi9gaURP0EADB52xsQm5Qv4L1hf/m2oLdh0sVLyFC1jopLQA8zIUuVQpaWjiPHj1ZrDcXz/f6FIWODIXJoVK1yEIwxxgwTJ2Gs2ox9WsPs//0XJd/9jNLjv6Jk51GgTAZRQwsYt3eDyYCeMOnWRugwa4wKiyB7kAFZajooVQpZmrT8+eMsRUFaAPizmmso5jo1hJGTnV76wBhj7NXHSRirEaOm9pDMHC50GLVC+c8VCZYsLQOUmg5ZqhSU8afmgyzMYeTiACMXB9g9cQDWXOA1FBljjNUIJ2HM4FF2/l+JlrT8UmKqFPRACsrK0XxQQwsYNXcsT7ialz9ELg4QNfp71Ktvfj4abP2C11BkjDFWI5yEMYNARKCsHJA80UpL/+tPKZDzTONxIvuGECkSLUcYuTSBkYtDlRbmtrCw4DUUGWOM1RgnYUzrtF05viKSyUAZfypdPpSPcKGgUP1BIhFEDo3KEy0XR4iaO/x1SbFJrUtA8BqKjDHGaoqTMKY1ta0cXxGVloHSs/66fFhhztaDDOBFsfqDjI0gamr/9yVEFweImjvCyLkxRKa6Wb6H11BkjDFWU5yEMa2obuV4OSouAf3+h/KcrTQp6GEmUKKmqCkA1DMpX5hafvmwuWP5nK2m9hCJ6+mju0p4DUXGGGM1wUnYS2JjY7F+/XpcvXoVJiYmMDIywujRozF58mSYmPDbpUlVK8eHDR+NiD7DFHO26HGW+gWpAcBUXD6apTRnywEiR1vB1kmsDK+hyBhjrDo4q3hJ//79MWzYMCQlJcHExAQXL15Er169kJycjI0bNwod3iupOpXjd/50APPSTcsrx8s1MKswKf7vOVuiJjZc1JQxxpjB4iTsJcbGxli6dKli1KtLly4ICgpCVFQUPv/8c5iZmQkc4avn1KlT1aocf9bDGoPf76+YsyWy1VzslDHGGDNUdW6YITY2Fq1atYJIJEJaWprWz//777/D0tJSaZujoyNKSkpQUFCg9dczBE+fPgVQtcrxAJDv2wb1PvCDcWdPGNlZcwLGGGPstVRnkrDCwkLMmDEDPXv2xJ07d6p17PHjx+Hv7w8bGxvUr18fHTt2RGRkJGQy1blIYrFYZdvdu3fh4eEBW1vbGsdvyOSV4OWV49XhyvGMMcaYsjqRhKWkpKB9+/b44YcfcOzYsWodu2LFCvTt2xempqY4deoUrl69Cn9/f4SGhmLgwIEoLdVwB95f0tPTcezYMSxatKg2XTBo/v7+aNCgAVKKyivHq8OV4xljjDFldSIJu3HjBvz8/JCUlFStL/Dz588jLCwMnp6e2L9/P7y9veHu7o4VK1Zg3LhxOHz4MFasWKHxeJlMhvHjx2PkyJEYOnSoNrpikOSV4wFg/P2zOJb9UDEiRkQ4lv2QK8czxhhjLxGRputHr5CysjIYG/9dkkA+hyg1NRUuLi4aj/Pz88Pp06exceNGTJgwQaktOTkZHh4esLS0REZGhtoJ91OnTkVqaip++OGHGpenuHLlCry9vXH58mV07NixRueoC16uE6apcvzLdcIYY4yxV5E+vr/rxEhYxQSsqrKyshATEwOgPBl7WatWrdC0aVPk5eWpvcQ5f/58JCcnY+/evVwfrArkleOnTJkCCwsL3C/KU7oEOWXKFE7AGGOMsQoMNru4dOkSZDIZ6tWrhxYtWqjdx8PDA48ePUJCQoJSkc3ly5cjNjYWR44cUUzUX7BgAfr16wdvb2+15yoqKkJRUZHK9orL9xg6rhzPGGOMVZ3BJmEpKSkAADs7OxhpKPjp4OCgtC8ArFu3DsuWLcPKlSuxb98+xfbo6Gj4+vpqfL1ly5ZhwYIF2gi9zuPK8Ywxxtg/M9gkLC+vfB5SZcVVzc3NAQC5ubmKbVOnTgURqcwh+yf/+c9/MH36dJXt165dqzR5Y4wxxtjryWCTsJpSVzusKiQSCSQSicr2Bg0a1DYkxhhjjBmgOjExvybkVe8LCws17vP8+XMAgJWVlV5iYowxxhiTM9gkTD4ZPysrS+PollQqVdqXMcYYY0xfDPZypLe3N4yMjFBSUoKUlBS0bNlSZZ/bt28DAHx8fGr9ehs2bMCGDRtUtlc2EscYY4yx15fBjoTZ29srJsRHR0ertCcnJ+PRo0ewsLBAnz59av16ISEhuHnzpsrjhx9+qPW5GWOMMWZ4DDYJA4Dw8HAAQGRkpMoakREREQCAWbNmKe6SZIwxxhjTlzqThGVlZSEjIwMZGRmVbqvI19cXS5YswY0bNzBo0CBcuXIFd+7cQVhYGLZs2YLAwED85z//0VcXGGOMMcYU6sycMB8fHzx48EBpW+fOnRXPNS2BOXfuXHTo0AERERF4++23UVJSAnd3d6xduxYhISE1WhKJMcYYY6y26kwSlpaWVuNj+/bti759+2ovGDV4Yj5jjDHGqqPOJGGvupCQEISEhKhsl6/CzhhjjDFWUZ2ZE8YYY4wxZkg4CWOMMcYYEwAnYYwxxhhjAuA5YTomn5h/69YtgSNhjDHGWFXJv7d1eYMdJ2FaounuyJycHADAiBEj9BwRY4wxxmrr3r176N69u07OLSJNBbaYVty/fx8tWrTAiRMnYGtrK3Q4evPs2TP4+vri7NmzaNCggdDh6A33m/v9OuB+c79fB0+ePMG7776LlJQUuLq66uQ1OAnTsby8PFhZWSE3NxeWlpZCh6M33G/u9+uA+839fh1wv3XXb56YzxhjjDEmAE7CGGOMMcYEwEkYY4wxxpgAOAljjDHGGBMAJ2E6JpFIEB4eDolEInQoesX95n6/Drjf3O/XAfdbd/3muyMZY4wxxgTAI2GMMcYYYwLgJIwxxhhjTACchDHGGGOMCYCTMD2YNm0aRCIRXFxchA6FMcaYBrGxsWjVqhVEIhHS0tKEDkdvatLvmzdvokuXLhCJRIiJidFpfLryKnzenITp2MWLF7Fu3Tqhw9CLHTt2QCQSVfq4du2a0GHqREFBAZYtWwYfHx9YW1vD3Nwcrq6uGDBgADZv3ix0eFqXlpb2j5+1/DF16lShw9WqtLQ0TJs2DW3btkXDhg1hamoKNzc3TJgwAampqUKHpzOPHj3C1KlT4eHhATMzM1hZWaFr167YvHkzZDKZ0OHVSmFhIWbMmIGePXvizp07VT7u4sWLGDhwIOzs7GBmZgYvLy8sXrwYRUVFOoxWe2rS77KyMqxYsQIdO3ZEfHy8jiPUjer2OysrC59//jn8/Pxga2uLevXqoVGjRujduzeioqJq9++fmM4UFRWRl5cXNWvWjACQs7Oz0CHp1Pbt28nMzIxatWql8XHr1i2hw9S6O3fukLOzM3Xq1IkOHDhA9+/fp1u3blFERARJJBJycnISOkStS01NJQDk6uqq8bNu0qQJAaBNmzYJHa7WREdHk5mZGdWrV4+WLl1K169fp1u3btGGDRvI0tKSGjRoQHFxcUKHqXXnz58na2trsra2pi1bttD9+/fp+vXrNGnSJAJA77//PhUXFwsdZo3cu3eP3N3dydnZmU6ePEkACAClpqZWetyuXbvI2NiYunbtSufOnaN79+7R6tWrycTEhHx8fCg/P18/HaihmvT7yZMn1LlzZ2rUqBHt3r2bnJ2dCQCdOXNGb3HXVnX7fffuXTI3NyeRSEQhISEUFxdHKSkpdPToUerUqRMBoN69e1NBQUGN4uEkTIfCw8PJ2tqadu/e/dokYb6+vkKHoVfPnj0jFxcX8vHxocLCQpX2JUuWUIcOHQSITLfkSVhlP7A//vhjsra2pmfPnukvMB1r27YtAaB58+aptH311VcEgNq2bStAZLqTm5tL9vb2BID27Nmj0j5w4EACQIsXLxYguto7dOgQTZw4UZE0VSUZuXfvHkkkErK3t6fs7GyltiVLlhAAGjt2rA6jrr2a9Pvq1as0ZMgQyszMJCKqk0lYdft99epVAkDTp09XaSsoKFAMssydO7dG8XASpiNJSUkkFotp69atdObMGU7CDNS8efMIAJ04cULoUPQqPT2dvL29KT09XW27VColsVis9gdXXWZmZkYA6KefflJpS0xMVPxAf/LkiQDR6caWLVsIANnZ2VFZWZlKe3R0NAEga2trevHihQAR1k5paanS36uSjIwePZoA0Jw5c1TacnJySCKRkJGRET148EDb4WpNTfr98jF1MQmrbr/lSdiNGzfUts+dO5cAkJubW43i4TlhOiCTyTBmzBi89dZbGDNmjNDhMB0pKyvDtm3bIJFI8Pbbbwsdjl45ODjg0qVLcHBwUNu+adMmlJaWYvLkyXqOTLfatWsHoHxS8svk20QiEUxNTfUaly7J53G6urrCyEj1K6Nly5YAgJycHJw5c0afoWmFsbFxtfYvKyvD/v37AQB+fn4q7VZWVvDx8YFMJsO+ffu0EqMuVLffNT3mVVPdPrRp0wbZ2dnw9PRU2960aVMAwNOnT2sUDydhOrB27Vpcv34dX331ldCh6F1+fj4WLlyITp06wd7eHk5OTvDz88OmTZtQXFwsdHhalZSUBKlUChcXF+Tl5WHOnDnw9PSEjY0NWrRogeDgYNy4cUPoMPWupKQEmzdvxnvvvYfmzZsLHY5Wbdy4EU5OTli8eDH27t2LwsJCFBcX49SpU5g+fToAwNfXF/Xr1xc4Uu0pKysDoPnLy9zcXPHcUG+8qejOnTvIyckBAHh4eKjdR749ISFBX2ExHTE2Noa1tbXGdqlUCqA8WasJTsK0LDU1FZ999hkWLlyIFi1aCB2O3l25cgVxcXFYsGABYmJi8PXXX8Pa2hoTJ07EW2+9hezsbKFD1Jrr168DKL/TxtvbG7du3cLGjRtx/vx5zJw5EwcPHoS3tzcOHz4scKT69f333yMjIwNTpkwROhSta9++PZKTkzFr1iyMHj0a9evXh5mZGQICAvD48WO0a9cO27ZtEzpMrZL/HNN0C3/F7fIvJEOWkpKieN6kSRO1+8hHiCvuywzT0aNHAQAhISE1Ot5Em8EwYNy4cWjdujWmTZsmdCh65+npidWrV2PGjBlK2/z8/NC/f38cPnwYo0ePxoEDBwSMUnuysrIAAA8fPkSHDh1w8OBBxeUaLy8vuLi4IDAwECNGjEBKSgpsbW2FDFdv1q9fj9atW+Odd94ROhSty87ORnBwMH766SfMmDEDQUFBkEgkOHfuHDIyMjBjxgw0bNhQ6DC1avDgwQgLC0N6ejpOnToFf39/pfadO3cqnhcUFOg7PL3Ly8sDUD5CUq9ePbX7yEcHc3Nz9RYX07+TJ0/i8uXLCAwMxNChQ2t0Dh4J06KoqCicPXsWUVFRBnHtvLo6d+6slIBVFB4eDgA4ePAg7t69q8+wdOb58+eK55MnT1aZL9O3b1+4u7sjLy9P6YvKkCUkJODixYsIDQ0VOhStIyL06dMHP/74I8LCwrBy5Ur4+Pigbdu2mDx5Mry9vdG6dWscOXJE6FC1ytXVFUuWLAEAjB8/HmfPngUR4c8//8SqVauwdetW2NvbA4BBXYZlrDJPnjzB2LFj0bJlS+zcuRMikahG5+EkTEukUilmzpyJ2bNnKybvsr+1a9dOkZj+8ssvAkejHWZmZornmiZtent7A0CdLWpYXWvXroWVlRU++eQToUPRutOnTys+R3W/bAwaNAiWlpYYOHAgrl69qu/wdGrOnDnYs2cPrKys0KtXL4jFYtjZ2eHQoUM4efKk4t+/nZ2dwJHqnqWlJYDyuXIlJSVq95H/gmZlZaW3uJj+PHv2DIGBgTAyMkJ0dHStrnJwEqYlJ0+eRE5ODr744gs0aNBA6dG3b18A5ZetKm5/nZiYmCj+odb0LpJXTcU7A21sbNTuY2FhAQAGNRdOk8zMTOzdu1cxV8rQXL58GQDQuHFjjZ+3h4cHSktLsXXrVn2GphcffPABrl27htzcXNy7dw95eXm4cOEC3nrrLfzxxx8AgLZt2wocpe5VnOubkZGhdh/53LjXcV6wocvPz0dgYCCys7Nx7tw5vPHGG7U6H88J05LBgweje/fuatsuXryIESNGwNHRsc6usfVPCgsLER0djd69e6v9Ai4tLcWTJ08AoNI7TeqSDh06KJ5nZmbC3d1dZZ/MzEwAMLh5QuoYalmKl1V22UF+SfrRo0f6CkfvLC0tFaNBQPn//ZSUFEgkEvTo0UPAyPTD3d0dVlZWyM3Nxe3bt9V+Cd++fRsA4OPjo+/wmA5lZ2ejT58+KCgowPnz5zXemFEdPBKmJRYWFnBzc1P7cHJyAlA+GlRxuyHJzMzE+++/r/GW7MTERMWt7l27dtVnaDrTunVrReL122+/qd1HXjuqW7dueotLCPKyFIGBgXB1dRU6HJ2Qf9YZGRkaJ1wnJycD0HzXXF0VGxurSCxeduzYMRQVFSEoKOi1+GXD2NgYgwcPBgBER0ertOfm5iIhIQFGRkYYMmSIvsNjOvLHH3+gV69eKCkpQUxMjNL/8czMTPTp00fxS3d1cBLGtErTBPRFixYBAAICAjTOn6qL5s2bB6C8flRpaalS29GjR3H37l00atQIo0aNEiI8vdm7dy+kUqlBlqWQCwgIQOPGjQEA69atU2k/fvy4IlExtC/f2bNnY+LEiSrbCwoK8N///hfW1tZYvny5AJEJY+7cuRCLxdi+fbtKQr5hwwYUFRUhODgYzs7OAkXItCk9PR2+vr4wNzfH6dOnVeaAFRYW4sSJEygsLKz2uflypA5lZWWhrKxMMQeqrKxMMYfA0OaFGRsbQyQSYceOHZDJZBg7diyaNWsGqVSK9evX48CBA/D09DS4uwQ/+eQTXLhwAVu2bMHgwYMxf/582Nvb49y5c5g+fTosLS2xb98+g7kEq8m6desMtiyFnLm5OXbt2oUBAwZg4cKFEIlEGDp0KCQSCU6fPo05c+YAAEJDQxEQECBwtNoXExODCRMmYOLEibCyssK1a9ewYMECSKVSHDt2TDHiXxfJf1a/vE2+8sHLI5tubm7YunUrgoOD0bdvX6xatQoODg44cOAAwsPD4e3tjTVr1ugr/Bqrbr+B8jm98sLb8mOfPn2q+G6zs7N75asDVKffjx8/Rs+ePXH//n14eHio/RlXq0LkNVrsiFWJfF0tdY/w8HChw9O65ORkCg8Pp+7du5ONjQ0ZGxuTtbU1devWjSIiImq8ynxd8N1331GvXr3IysqKxGIxNW/enCZOnEj3798XOjSdi4+PJwC0YcMGoUPRi3v37lFISAi5u7uTqakp1atXjxwdHWngwIF05MgRocPTiT179tCQIUPIxcWFzM3NqX79+uTl5UVhYWGUlZUldHi1VtnP6sq+JuPi4qh///7UqFEjkkgk5OHhQQsWLKDCwkI9Rl9zNem3r69vpcdUtvbkq6I6/T5w4ECl+9a27yIiopqncIwxxhhjrCZ4ThhjjDHGmAA4CWOMMcYYEwAnYYwxxhhjAuAkjDHGGGNMAJyEMcYYY4wJgJMwxhhjjDEBcBLGGGOMMSYATsIYY4wxxgTASRhjjDHGmAA4CWOMMcYYEwAnYYwxxhhjAuAkjDHGGGNMAJyEMcbqFCISOgSmQzKZTOgQGNMbTsIYY3VCYmIiunXrhry8PKFDqbUdO3ZAJBIpHv/73/+EDumVsXv3bowbN84gPmfG/gknYYwZMBcXF4hEIqSlpQkdSq0cO3YMXbt2RY8ePWBlZaV2n0uXLmHSpEnw8vKCtbU1xGIxGjdujJ49e2LWrFk4deoUSktLVY5bsmQJbGxscPr0aV13Q+HDDz+EVCrFjBkz9Paa1SHEeyLXr18/JCYmwsfHB48ePdL76zOmT5yEMcZeaUlJSQgKCkJQUBBWrFih0l5YWIhRo0bBx8cHUqkUK1aswKVLl5CUlIRvvvkG//rXvxAZGYmAgAA4OjoiMTFR6fjdu3cjOzsb+/fv11eXYGZmhiZNmqBBgwZ6e83qEOI9kbO2tsbJkydRWlqKwMBAFBUV6T0GxvSFkzDG2Cvt3//+N0pKSrBo0SKVtpKSEvTp0wdff/01IiMjceDAAfTr1w9ubm5wd3eHv78/vvzyS8THx8PS0hJZWVn4888/lc4xa9YsdOnSBZ9++qm+uvTKE/o9sbS0xPz585GYmIhly5YJEgNj+sBJGGPslXX27FnExsZiyJAheOONN1Ta586di3PnzqF///4ICQnReJ42bdponHcVHByMX3/9Fd7e3toKu857Fd6TkSNHws7ODmvXrkVBQYFgcTCmS5yEMfaaevToEUJDQ9GyZUuYmprCysoK3bt3x+bNm1FWVqb2mKSkJAwZMgS2trYwNzdHmzZtsGbNGshkMp3MP/vmm28AAG+//bZKW0ZGBiIjIwEA//d///eP5xoxYgRcXFxgamoKAIiJiVGaHB8cHKy0/4ULF1TapVIpRo8eDUdHRxgbG6sc9/vvvyMkJASurq6QSCSwtLSEt7c3Zs6ciWvXrlW7/2lpaRg/fjycnZ0hFothZ2eHwMBAnDhxotrnSk5ORnBwMNzc3GBqaopGjRrBz88PkZGRyMjIqNJ7AgC9evVS2kfd44MPPqh1P4yNjdG7d2/k5OTg8OHD1e4vY3UBJ2GMvYYSEhLQrl07REZGori4GAMHDkS3bt1w5coVTJgwAe+99x6Ki4uVjjl79iw6d+6M/fv3w9raGgMGDICDgwPmzJmD4cOH6yTOn3/+GQDg5eWl0nbo0CG8ePECYrEYPXv2/Mdz2dnZITU1FV27dgUAdOvWDVKpFGvWrFG7f5cuXZTanzx5gvfeew++vr6IjY3FqVOnYG9vr9g/Li4O7dq1w/79+7F48WIkJyfjzJkz6NmzJyIiItChQwfk5uZWue8XLlxA+/btcfDgQSxduhQ3btzAt99+i+zsbPTp00ft/DhNrl27ho4dO+LmzZvYtGkTkpOTcfLkSbi5uSE0NBRhYWFVek/k1qxZA6lUqvQ4cuQIjIyMYGxsjKlTp2qlH23atAEAnDp1qsp9ZaxOIcaYwXJ2diYAlJqaqtj24sULxfYJEyZQcXGxoi0lJYVcXFwIAM2dO1ex/fnz5+Tk5EQAaMaMGVRWVqZou3HjBjVu3JgAqLxWbeTn5yvO+fDhQ5X24OBgAkCtW7eu1ets376dANCoUaMqbQdAhw8fVmr77LPPaMqUKZSTk0MODg4kEono4sWLKucYP348AaDs7Gyl7eHh4QSAwsPDlbZnZ2cr3tO4uDiltsLCQnJwcCAjIyOKj4+vUh9HjRpFACghIUGl7Z133lHpe2Xvia+vL23fvl1pW35+PrVs2ZIA0MKFC7XWD3kcnTt3rlI/GatreCSMsdfM3r178eDBAzg6OmLNmjWoV6+eos3V1RWrV68GAKxfvx4vXrwAAOzbtw+PHz+Gs7Mzli1bBiOjv390eHp6Yv78+Rpfb9++fRg0aBCaNWsGc3NzeHl5ISIiAiUlJZXG+eDBA8VzGxsblfbMzEwA5XfT6UPz5s3Rr18/pW2LFi3C2rVrERUVBalUii5duqBz584qx44ZMwZWVlYQiURVeq2oqChkZmbizTffVIzcyZmamiI4OBgymQxffvlllc6XlZUFAHj48KFK24IFCzBy5MgqnQcANm/ejPfff19pW0hICO7evQtfX1/MmzdPa/2wtbUFgDpfYoUxTTgJY+w1ExMTAwAYNmwYJBKJSvvgwYPRsGFD5Ofn4/LlywDKL0UCQFBQkFLSJvfxxx9rfL3Vq1dDIpFg5cqVOHLkCIYPH47PPvsMY8eOrTTO/Px8xXN1cVY1odEWDw8PjW0nT54EAPj4+Kht79y5M3JycjTWONN0vk6dOqltd3V1BQD88ssvVTqfn58fgPLJ7mFhYbh9+7airVu3bor2qmjVqhUaNWqk+PuuXbvw9ddfw8bGBt98841Sgl7bfsg/dy7cygyVidABMMb06/HjxwDKR3bUEYlEaN68ObKzsxX7yotmuri4qD3G2toaVlZWauc8HT58GHZ2doq/9+7dG0SE+fPnY+XKlWjcuLHac1YsrGpsbKzSLj8uJydH7fHaVrEPL5OP2lW2T3XIR6w2b96Mbdu2qbTLb5yQfz7/ZMqUKZBKpVi3bh1WrFiBFStWwN3dHUFBQRg/fjyaNWtWozhTUlIwceJEAMC2bdvQtGlTrfZD/rmrK7LLmCHgJIwxVmWVjT5palOXmMhLH6Snp2tMwszNzRXPi4uLVUbD3nzzTWzfvh0pKSkoLS2FiYluf5zpe+QNKL/MN2nSJI3tVY3JxMQEq1atwuzZs/Htt9/i+++/R2xsLJYsWYLPP/8cUVFR+Oijj6oVW0lJCT766CPk5+dj0qRJGDBggNb7IS/UWr9+/WrFxlhdwZcjGXvNODk5AQDu37+vcZ/U1FSlfeV/apqbk5ubW60RqXPnzkEsFqNFixYa96mYnFW8NCnXv39/mJmZobi4GOfPn//H17x79y527NiBCxcuVDnOqnJ2dgbw99wrbZ2PiODm5qbxUdn7p46dnR2mTJmCCxcuIDU1FSNHjkRhYSHGjRtX7RHFuXPnIiEhAW3atEFERIRO+iH/3CvehcqYIeEkjLHXTK9evQAAe/bsUUy8r+jAgQPIzs6GhYWFYsRKXgJi7969ai8N7d69u8qvf/PmTaxduxbjx4+HpaWlxv0cHR0Vy/rIJ+FX1LhxY0ybNg0AsHbt2n983dDQUHz66adqz1VbAQEBAID4+Hi17QkJCXjnnXdw8eJFrZyPiODv74+ZM2dW6XzLly9XlPuQc3Z2xs6dO+Hm5oaCggLcuXOnSucCyud6RUREwMzMDN99952i9hpQXr9t3759WumHvH5Zq1atqhwbY3UJJ2GMvWaCgoLQrFkzpKenY/r06UpJVWpqqmJR6dDQUMWXa1BQEBwcHJCWloZ58+ZBJpMpjrl9+zYWLlxYpdd+8uQJBg4cCDc3NyxfvrzSfUUiEbp16wagfBRLnQULFsDf3x+HDh3Chg0bNJ5rw4YNOHHiBPr06YMhQ4ZUKdbqGDNmDJo0aYL4+Hi1Ccfq1atx9epVtG/fvlrni4uLQ2xsrEr7rl278PPPPysS6n9y/PhxbN++XW1baWkpRCKR2hUJ1MnMzMQnn3wCIsIXX3wBT09Ppfbbt28rkqra9iM5ORkA0KNHjyrFxlidI2R9DMaYbqmrE0ZEFB8fTzY2NgSAnJ2d6cMPP6TAwEAyNTUlAPTuu+9SUVGR0jHR0dGKdjc3Nxo2bBgFBASQWCymoKAgatasGQGgx48fq40lLy+POnXqRM7Ozhr3eVlkZCQBoLCwMI37PH/+XFEzbNCgQXT48GG6d+8eJScn05EjR2jw4MEkEokoMDCQ8vLyFMcVFRWRVCqlNWvWEAD64IMPSCqVUn5+PhERlZaWqm2XSqVq44iNjSVra2tycHCgb7/9ltLS0ighIYHGjBlDxsbG9NNPPynFLJVKacaMGYraaxVfu+L5bG1taevWrZSSkkKJiYm0ZMkSMjU1pdDQ0Cq9h0Tltb0A0NSpUyk+Pp4ePHhAcXFx9NFHHxEAmjZtWpXeE5lMRu+++y4BoC5dulBiYqLKY9u2beTs7KyVfnTo0IEA0K1bt6rcV8bqEk7CGDNgmpIwIqKHDx9SSEgIubq6klgsJgsLC3rzzTdp48aNVFJSovZ8v/32Gw0aNIhsbGzI1NSUPD09adWqVVRUVERisZiMjIyosLBQ5bgXL15Q7969ydbWlm7fvl3l+PPy8sjKyopatGihMSa5+Ph4GjduHLVs2ZLMzc1JLBZTs2bNaOjQoSpFVomIzpw5oyjCWvEhL5yampqqtr2y310fPnxIEydOJBcXFxKLxeTk5ET9+/dXKUZasQCsuteueL5JkyYpztekSRPq1asX7d27l2QyWdXeRCJ68OABrVq1inr06EE2NjZkYmJCTk5O5O/vTwcPHqzye5KWlqbxPan4qJiE1bQfSUlJJBKJKCAgoMr9ZKyuERER6WKEjTH2+jh37hx8fX3Rpk0bXL9+XamtrKwMQ4cOxc8//4zTp09rrKWlSWRkJEJDQxEVFYXRo0drM2z2Chs6dCh+/PFHXL16Ve2yVYwZAi5RwRirkqysLDx79kylvlhSUhLGjRsHAPj0009VjgsJCcHBgwexaNEilJWV4ddff1W0eXp6Vjo5X358XFwcZs6cifbt26Njx45a6A17la1btw779+/Htm3bOAFjBo1HwhhjVRITE4PevXvD09MTrq6uMDMzQ2pqKq5cuQKZTAZ/f38cPXpUpV6Xi4uL0hJEFZ05c6ZKk8tLS0sxe/Zs7Ny5E48ePYKZmZk2usReQcePH8ewYcOwdetWDB06VOhwGNMpTsIYY1WSnp6OpUuX4uzZs3j8+DHy8/NhYWEBLy8vDB8+HOPGjdN5wdQrV67Ay8tL7TJGzDDcuXMHNjY2inUjGTNknIQxxhhjjAmA64QxxhhjjAmAkzDGGGOMMQFwEsYYY4wxJgBOwhhjjDHGBMBJGGOMMcaYADgJY4wxxhgTACdhjDHGGGMC4CSMMcYYY0wAnIQxxhhjjAmAkzDGGGOMMQH8f8TMqDpyUC+jAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "classiq_color = \"#119DA4\"\n", + "classiq_color_1 = \"#F43764\"\n", + "qiskit_color = \"#bb8bff\"\n", + "plt.rcParams[\"font.family\"] = \"serif\"\n", + "plt.rc(\"savefig\", dpi=300)\n", + "plt.rcParams[\"axes.linewidth\"] = 1\n", + "plt.rcParams[\"xtick.major.size\"] = 5\n", + "plt.rcParams[\"xtick.minor.size\"] = 5\n", + "plt.rcParams[\"ytick.major.size\"] = 5\n", + "plt.rcParams[\"ytick.minor.size\"] = 5\n", + "\n", + "(qiskit1,) = plt.semilogy(\n", + " num_qubits_qiskit,\n", + " qiskit_cx_counts,\n", + " \"-s\",\n", + " label=\"qiskit\",\n", + " markerfacecolor=qiskit_color,\n", + " markeredgecolor=\"k\",\n", + " markersize=6,\n", + " markeredgewidth=1.5,\n", + " color=qiskit_color,\n", + ")\n", + "\n", + "(classiq1,) = plt.semilogy(\n", + " num_qubits_classiq,\n", + " classiq_cx_counts_opt_width,\n", + " \"-D\",\n", + " label=\"classiq width opt.\",\n", + " markerfacecolor=classiq_color,\n", + " markeredgecolor=\"k\",\n", + " markersize=6.5,\n", + " markeredgewidth=1.5,\n", + " color=classiq_color,\n", + ")\n", + "\n", + "(classiq2,) = plt.semilogy(\n", + " num_qubits_classiq,\n", + " classiq_cx_counts_opt_cx,\n", + " \"-o\",\n", + " label=\"classiq cx opt.\",\n", + " markerfacecolor=classiq_color_1,\n", + " markeredgecolor=\"k\",\n", + " markersize=7,\n", + " markeredgewidth=1.5,\n", + " linewidth=1.5,\n", + " color=classiq_color_1,\n", + ")\n", + "\n", + "\n", + "first_legend = plt.legend(\n", + " handles=[qiskit1, classiq1, classiq2], fontsize=16, loc=\"upper left\"\n", + ")\n", + "\n", + "\n", + "plt.ylabel(\"CX-counts\", fontsize=16)\n", + "plt.xlabel(r\"$\\log_2$(Circle size)\", fontsize=16)\n", + "plt.yticks(fontsize=16)\n", + "plt.xticks(fontsize=16)\n", + "plt.axis(ymin=0.7e2, ymax=4e5, xmin=4, xmax=12)\n", + "\n", + "\n", + "for x, y, num_qubits in zip(\n", + " num_qubits_classiq, classiq_cx_counts_opt_width, classiq_widths_opt_width\n", + "):\n", + " plt.text(x * 0.94, y * 1.25, str(num_qubits), fontsize=16, color=classiq_color)\n", + "\n", + "for x, y, num_qubits in zip(\n", + " num_qubits_classiq,\n", + " classiq_cx_counts_opt_cx,\n", + " classiq_widths_opt_cx,\n", + "):\n", + " plt.text(x * 0.96, y * 1.25, str(num_qubits), fontsize=16, color=classiq_color_1)\n", + "for x, y, num_qubits in zip(num_qubits_qiskit, qiskit_cx_counts, qiskit_widths):\n", + " plt.text(x * 0.96, y * 1.2, str(num_qubits), fontsize=16, color=qiskit_color)" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "id": "3cadd644-9c60-4577-b766-21bc4728a8e8", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAHGCAYAAAA8BFyAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAC+I0lEQVR4nOzdd3jUVdbA8e9Mem8kJIGQEHpR6WAjFEGwgKKou6Io6loQ9UVdBV0UFRUUFQXXTnFd1kKzodQgCkgXAelJSEIaCel95r5//JghZUImk0km5XyeZ57M/OqdCSQn9557rk4ppRBCCCGEEI1K7+gGCCGEEEK0RhKECSGEEEI4gARhQgghhBAOIEGYEEIIIYQDSBAmhBBCCOEAEoQJIYQQQjiABGFCCCGEEA7g7OgGtHRnz57l559/JioqCg8PD0c3RwghhBBWKCoqIj4+nmuvvZY2bdo0yD0kCGtgP//8M5MmTXJ0M4QQQghhg//85z/ceeedDXJtCcIaWFRUFKB9E3v06OHYxgghhBDCKn/99ReTJk0y/x5vCBKENTDTEGSPHj3o16+fg1sjhBBCiLpoyFQiScwXQgghhHAACcKEEEIIIRxAgjAhhBBCCAeQIEwIIYQQwgEkMd9OFi1axKJFi6ptLyoqckBrhBBCCNHUSRBmJ1OnTmXq1KnVtu/du5f+/fs7oEVCCCGEaMpkOFIIIYQQwgGkJ6wJKy8vp7y83NHNEEI0Q3q9HhcXF3Q6naObIoSogQRhTVBhYSFnz56loKDA0U0RQjRjLi4u+Pj40KZNG5ycnBzdHCFEFRKENTGlpaUkJibi4uJCWFgYbm5u8pesEKJOlFIYDAby8/PJzs6mqKiIiIgICcSEaGIkCGti0tPTcXJyIjIyUn5gCiHqxdvbGz8/P06fPs3Zs2dp27ato5skhKhAEvObEKUUhYWF+Pn5SQAmhLALDw8PfH19ycvLQynl6OYIISqQIKwJKSsrw2AwNOhioUKI1sfHx4eysjLKysoc3RQhRAUShDUhRqMRQHrBhBB2ZfqZYvoZI4RoGiQIa4IkEV8IYU/yM0WIpkmCMCGEEEIIB5Ag7CLKysro3LkzUVFRjm6KEEIIIVoYCcIu4t///jcnT550dDOEEEII0QJJEFaD3Nxc3njjDYYPH+7opogmYtiwYeh0OvMjPj7e0U0SQgjRjEkQVoO5c+dyxx130KFDB0c3RdjBhg0bCAwM5LXXXrP5GitXriQlJYX27dvX+dylS5fi5+fHf/7zn2r7YmNjefHFF4mNjbW5bUIIIZqfZheEbdu2jW7dujVoT0RycjJLly5l5syZDXJ9R1NKUVBQYNWjpRR3XLVqFefOneOLL76w+RqBgYGEhobaVELkq6++Ijc3l//973/V9sXGxjJ79mwJwoQQopVpNkFYUVERTz75JEOHDuXYsWN1Ovenn35i1KhRBAYG4uXlRb9+/Vi4cGGNNXNmzZrFY489RkBAgD2a3uQUFhbi7e1t1aOwsNDRzbWLKVOmMHjwYJ588kmH3P/RRx9l4MCBTJ061SH3F0II0fQ0iyDs5MmT9OnThxUrVrB27do6nTt37lzGjh2Lu7s769evZ9++fYwaNYpp06Zx0003UV5eXun4Q4cOsWnTJh577DF7vgXhYP3792fHjh3ce++9Drn/2LFj2blzJ2PHjnXI/YUQQjQ9zSIIO3ToECNHjuTgwYOMGjXK6vO2bt3Ks88+S8+ePVm5ciX9+/ena9euzJ07lwceeIDvvvuOuXPnVjrnmWee4YUXXsDd3d3eb6NJ+uqFNL6dk1/p8dULaY5uVq22bNnCyJEj8fHxwcfHh4EDB7J48WJiY2MrJc/fc889lV5bKjeSlZXFv/71L3r37o2Pjw/e3t4MGDCAWbNmcejQIavaU/U+pnvHx8dX2jZs2DDzOaa2zp49G4DZs2dXOlaGJ4UQomVzdnQDrHH99dczbty4Op/34osvAjBt2jRcXFwq7XvyySf5+OOPmTdvHtOnT8fDw4PY2FgSEhK4++677dFsu1MKjHZY+s1QeuG5u6sXHq5eFz3W4FLjbqvpXcBeRbuXL1/OpEmTaNeuHcuWLaNfv34kJSXx/PPPm4+5/PLLWblyJR4eHrz++uskJiYyaNCgatcqKChgyJAhZGdn8+677zJgwABKSkr4+eefee6551i2bJlVuYcLFiwgKiqKN998k6+//pq+ffvi4eGBt7c3KSkpbNu2jVtuuaXSOVdccQUpKSm8+eabzJ8/nyeffJKnnnrKvD8wMND2D0kIIUST1yyCMFsSoTMyMsw9CSNHjqy2v1u3brRv356kpCTWrl3LhAkT2LRpE0VFRfTr18983OnTp8nPz6dPnz4A7Ny5E1dX12rXKykpoaSkpNr2/Pz8Ore9JsYy2Pxu/a9TVFr7MSZb/g0e1d9unQ1/DJzscJ0zZ87wj3/8A6UU3377rfn7EhkZyY8//kh0dDQArq6uhIaGAuDn50dxcbHF63399dccP36cN954gzvuuMO8vVevXhQVFfHxxx9b1a6lS5fy1ltvsXbtWq6++upK+0JDQy0GVKY2ent7A+Dt7W1usxBCiJavWQxH2mL37t0YjUZcXFzo1KmTxWO6d+8OwK5duwB46aWXOHHiBPv37zc/xo0bR3h4uPm1pQAM4LXXXsPPz6/aIyYmpmHeYCv16aefkp+fzxVXXGEOwEw8PDy4//7763S9jIwMQAu2q5o0aRIvvfRSrdd48803+de//sVPP/1ULQATQgghatIsesJsYap0HxwcjF5vOdYMCwurdGx9zJgxg+nTp1fbvn//frsFYnoXrUepvgoKgOesOzbmYfCqebTSano7DGmClgsGWqK9JT169KjT9YYPH45Op2PhwoWcPXuWhx56iKuuugq9Xk9kZGStQ9Nz5szh+eef56OPPuKKK66o072FEEK0bi22Jyw3NxfQekdq4unpCUBOTk61fV988QV9+vTh22+/5cyZM/Tp04f/+7//q/Fabm5u+Pr6VnuYhprsQafThvTs8TApLi2gqMqjuLTAvN9e97NXPlhSUhKgBdeW1HU4b8CAASxbtozAwECWL19OTEwMoaGhPPDAA+zcufOi586ePducd/jGG2+0mHIeQgghGkeL7QmrrzvvvJM777zT6uMXLVrEokWLqm0vKiqyZ7Ps7rbZbR3dBJvYs4jspEmTmDhxIqtWreKrr75i7dq1fPLJJ3zyySc8/vjjvPPOOxbP+/HHH/n99995+OGH2blzJ8888wzvvfee3dolhBCiZWuxPWG+vr7AxYMgU8+Fn59fve83depUDh8+XO2xYsWKel9bXGBaMsiUy1VVamqqTdd1c3PjjjvuYOXKlaSlpfH666/j7OzMggULWL9+vcVzvv32W/r168eSJUtwd3dn0aJFbNy40ab7CyGEaH1abBBmSsbPyMiosTJ+SkpKpWNbC09PT/Lz8616mIZsmwpTft2ePXss7v/rr7/qdL3Vq1ezcOHCStt8fX155plnmDx5MgD79u2zeG7btlovYo8ePXj55ZdRSnHvvfdaHN6+GEs5izk5OZw9e7ZO1xFCCNG8tNggrH///uj1esrKympMvD9y5AgAAwcObMymOZxOp8PLy8uqh85eyVx2ct999+Hl5cX27dvZv39/pX1FRUV88skndbre/v37eeuttygtrV63o6xMK8pmzSLu06dP54orriAxMbHOqy34+/sDWs0yk7vvvpvrrruuTtcRQgjRvLTYICwkJMTca2JpiOjo0aMkJSXh4+PDmDFj6n2/RYsW0bNnz2qPqgU6Rf2Eh4fz8ccfo9PpGD9+PKtWreL06dP89ttvXH/99RaXBUpNTTUPXxoMBlJTU8nKyjLvj4uLY/z48WzatIn4+Hj+/PNPXn75Zf7zn/8wePBgJkyYAGi9U6mpqRgMBkDrZTUNfxYWFjJ37lxcXFxYtmwZy5cvJzU1lZKSkkr3Ky0tJTU1tVJvmenf6U8//cThw4fZsGEDGzduZPjw4Q3wCQohhGgyVDMEKEDFxcVd9LjY2FgFqF69eqmysrJK+x544AEFqJdeeqkBW6rUnj17FKD27NlT67FFRUXq8OHDqqioqEHb1BJs3rxZjRgxQnl7eytvb291xRVXqNWrV6vNmzcrQMXExJiPNf17qfgw7c/OzlZLlixRN954owoPD1fOzs6qTZs2auDAgerdd99VhYWF5utMnjzZ4rWUUuqFF16wuG/x4sUWt0+ePLnS+/n3v/+tOnXqpJydnVVYWJh68MEHVV5eXkN/jKKVkJ8tQtRdXX5/20qnlB2nmTWgjIwMcw+Eqb7Xzp07iYiIAGouTfDqq6/y3HPPccMNNzB79my8vb357LPPmDt3Ltdddx1r1qzB2bnhJonu3buX/v37s2fPnkqV+C0pLi4mLi6Ojh07tpq1K+0tNjaW4cOHExMTI2svCnGe/GwRou7q8vvbVs2mRMXAgQNJSEiotK3iWoA1xZIzZ86kb9++zJ8/nxEjRlBWVkbXrl1ZsGABU6dOtWlJJCGEEEKI+mo2QZg1iyjXZOzYsRZzheypudYJE0IIIYRjNJsgrKmbOnUqU6dOrbbd1J0pGpbBYCAjI6NaAryHh4dd6sAJIYQQ9tZiZ0eK1iUxMZGwsDDzbNTt27cTFhbG448/7uCWCSGEEJZJT5hoEaKiouy6lJEQQgjR0KQnTAghhBDCAaQnzE4kMV8IIYQQdSFBmJ1IYr4QQggh6kKGI4UQQgghHECCMCGEEEIIB5AgTAghhBDCASQIE0IIIYRwAEnMtxOZHSmEEEKIupAgzE5kdqQQQggh6kKGI4UQQgghHECCMAFoay8mJiY6uhl2FxUVhU6nMz9E03LkyJFK359hw4bV+RqdO3eW77EQolmSIEyQmJjIsGHDGDZsWIsLxHbt2kVKSoqjm2G1wsJC+vfvz4ABA5plPuGcOXMIDAxk06ZNVh3fpUsXUlJSWLFiRY3HxMfH8+KLL7JkyRKL+3fs2NGsvsc1yc7O5sUXX+Sdd95xdFOEEI1EgrBWzhSAnTp1ilOnTrW4QCw4OJjQ0FBHN8Nqhw4dYu/evezZs4dDhw45ujl19t///pdz586xcuVKq453cnIiNDSUwMDAGo+Jj49n9uzZNQZhbdq0aVbf45pkZ2cze/ZsCcKEaEUkCGvFKgZg+uAQ9MEhLTIQa0769OnDbbfdxm233UafPn0c3Zw6e/rppxk8eDD33nuvo5sihBBNnsyOtJPmVqKiagDm88/nAMibN8cciMXGxhIREeHglrYuLi4ufPnll45uhs3uuece7rnnHkc3QwghmgXpCbOTqVOncvjw4WqPi+W6OIqlAEwfGIQ+MEh73gx6xBITE5k6dSrR0dG4ubnh6+tL//79eeqpp9i/f7/V18nLy2Pp0qWMGzeOTp064e7uTlBQEKNGjeLbb7+t8bxdu3Zx6623EhUVhZubG23btuWGG25g8eLFZGdnVzo2KyuLf/3rX/Tu3RsfHx+8vb0ZMGAAs2bNqjTkeM8991RKMI+Nja1237KyMubOnUv37t1xc3MjODiYW2+9lUOHDll1fkVVj9fpdNUCqF69elULxJcsWVItmT42Nvai1zHZsmULI0eOxMfHB19fX66++mq+//77Gtuo0+kYPny4+dyK93jxxRctnmM0Gpk3bx5dunTBzc2NiIgInn32WcrKyi76edTk999/Z+LEiYSGhuLq6kp4eDh33HEHe/furXRcfHx8tc/l9OnTTJ48mfDwcNzc3OjYsSMzZsygoKCg0rlRUVF07NgRgISEBKs+SyFEC6BEg9qzZ48C1J49e2o9tqioSB0+fFgVFRVZ3G80GlV+aVm9HkdOnlIdo6MVoPTBIcrvjQUq4NP/VHr4vbFA6YNDFKA6RkerIydP1fu+RqPRbp/ptm3bVEBAgAoNDVVffPGFiouLU7t371ZPPPGEAhSgsrOzK51j2l7V8uXLFaAmTpyotm/fruLj49W2bdvU5MmTFaBef/31auf8+OOPysnJSY0ZM0Zt3bpVxcfHq99++03dfPPNClAvvPCC+dj8/HzVpUsXFRwcrJYvX66OHz+uDh48qObPn6/c3d1VZGSk+djs7GyVkpKiLr/8cgWozZs3V7qvwWBQ119/vQLUhAkT1K5du1RcXJxasmSJ6tChgxowYIAC1DvvvKNSUlJUSUnJRT/H7OxstWHDBgWosLAwlZKSUulzO3r0qPlz27Vrl3l7YWGhSklJUVFRUeqDDz5QmZmZqqSkRKWkpKh33nlHAWry5MnV7vff//5X6fV6FRERoVauXKni4+PVr7/+qoYPH66mTJmiABUTE1PpnJSUFLVixQoFqMsvv1ylpKSYH3l5eZWONbX1oYceUq+88oo6fvy42rlzp7r22msVoB5//PGLfh6WLFq0SOn1ejVw4EC1ceNGlZCQoH7++Wd16aWXKmdnZ7VkyRLzseXl5ZXa261bNxUdHa0WLFigTpw4oQ4cOKAeeughBaiBAweq/Px887np6elq586dClDt27ev9D6r/lu2RW0/W4QQ1dXl97etZDiyGSksNxDxue1DVcasTPLmzcGYkV6pB6wqU49Y3rw5xJ06Rc8hQ2o81lqJd92Ol0v9/7nl5ORwyy23kJ2dzY4dOxg0aBCg9ST079+fwsJCPvroI5RSVl3Py8uLoUOH8uWXX5rLG0RGRnL55ZeTnJzMrFmzuOuuuwgPDzefM3fuXAwGA59//jlt2rQxn/P111/Tu3fvStf/+uuvOX78OG+88QZ33HGHeXuvXr0oKiri448/Nm/z8/PDz88PV1dXi21dtGgRP/zwAwMGDOCrr77CycnJ/N79/Py4+eabzdexJlHdz8+PkSNHEhERQWJiIqmpqZXy0Cr24q5atYoBAwYA4OHhQXx8PElJSdx+++34+/sDEBoaip+fn8V7nTlzhn/84x8opfj222/N94mMjOSHH34gOjra4nkVk/ZdXV2tel8Gg4HnnnvO/Hr58uWEhITw8ccfM3fuXNzc3Gq9BsD27dt57LHHCA4OZv369eb31qFDB/r27UvXrl154IEHuOyyy+jTp0+1SQZHjx7l3XffZdq0aeZr/vvf/yYtLY1Vq1bxwgsv8OabbwLaBBJT75jpOkKIlk+GI0Wz8umnn5KSksLgwYPNAVhF9913H35+flbXi7rxxhvNw1xVDRkyhNLSUtavX19pe0ZGBgCnT5+utN3JyYl33nmH6667rtZjASZNmsRLL71kVTsB86y5Bx980ByAmYwfP54OHTpYfa2KbrrpJkALtCpauXIlf//73y3uW7VqFTExMeYArDaffvop+fn5XHHFFdUmHHh4eHD//ffb1HZLpkyZUul1QEAAXbp0obCwkOPHj1t9nddeew2DwcDkyZOrBZfBwcFMmjSJsrIyXn/9dYvne3h4VGsLwKOPPgrAhx9+2GRzRoUQjUN6wpoRT2cnEu+6vV7XSJpwI2NHXUPcqVPkzZtjsYerYo9Zx+ho1q7fQPt6Juh7OjvVfpAV1q1bB8DAgQMt7h80aFC1nKza7NmzhwULFrB9+3YyMjIoLy8HoLS0FIDk5ORKx48cOZLDhw8zatQonnzySSZNmmQOgK699tpKxw4fPhydTsfChQs5e/YsDz30EFdddRV6vZ7IyEjuvvtuq9qYlJTEqVOnACwug6XT6ejWrZvFYK82N998M++99x6rV69m9uzZgJZzt2/fPlavXs26dev466+/OHr0KN26dQNg9erVVrcdtHyumtoO0KNHjzq3uyadO3euts3UO3Xu3DmrrmEwGNi4cSOAxWC/4nbTv8mqOnTogJeXV7Xtph7F/Px89u7dy5VXXmlVm4QQLY/0hDUjOp0OLxfnej26RXdkS2ws0dHRGDPStWArK9N8j4oBWHR0NFtiY+kW3bHe97VXJfOEhARA64mwhy+//JLBgwfz/fffM23aNDZu3Mj+/fvZv38/Dz30EHAhGDN57bXXmDx5MtnZ2Tz33HNERkbSp08f5s6da+75MhkwYADLli0jMDCQ5cuXExMTQ2hoKA888AA7d+60up1JSUnm5zW9d1uHsIYOHUpgYCAHDhwwB3qrVq1iyJAhtGvXjhtvvNG8zdSW3bt3M378+Dq3395ttyQoqPqwubOz9vemwWCw6hpnz56lsLAQgJCQEIvHtG3bFtACu9zc3Gr7azrP19fXPORc8fsqhGh9JAhrhSIiIoi1EIhVDcBaeomK0tJSHnnkEQwGA++//z6PPfYY/fv3p3PnznTu3LnGAqJeXl4sWbKEuLg4Xn31Vfr06cMff/zBs88+S/fu3dm8eXOl4ydNmkRycjLLly/n5ptvJi8vj08++YTBgwfzxBNP1Lnd1ua7WcvJyckcaK1evRrQhiJNOWZVhyvXrFlD3759bfq3Ye+2W9Icli5qjM9BCNH0SRDWSlkKxJpDABYZGQlQrcfJFn/++SdZWVkAjB49us7nd+jQgRkzZrBv3z4OHjzI2LFjycrK4q677qp2rJubG3fccQcrV64kLS2N119/HWdnZxYsWFAt58yS9u3bm5/X9N5TU1Pr/B5MTAHXqlWryMjI4NdffzUHX6NGjcLT05Ndu3aRnJzMqlWrzPusZWp/Q7S9IbRp0wZPT08A0tLSLB5j2u7v74+vr2+N+6vKyckxl8uo+H0VQrQ+EoTZyaJFi+jZs2e1xy233OLoptWoaiDW1AMwuBAs1TSUt2vXLq655hp+//33Wq9lNBovur9qLpiJpVpkvXr1YuXKlXh5eZGcnEx6ejqg9SwtXLiw0rG+vr4888wzTJ48GYB9+/bV2tb27dubZxDu2bOn2n6lFEePHq31OjUZPXo0np6ebNu2jU8++YSePXvSqVMnQEswHzNmDEopFi9ezJYtW+o0FAkQExNTY9sB/vrrrxrP1eur/5gqKioiNTW11u+hrZycnBg5ciRAjf+WTP8Gq+YBmiQmJlarBwawe/duALy9venXr595u6X3WVpaSmpqqs01zoQQTZsEYXbSnIq1VlQxEGvqARhosx9DQ0PZuXOnxUDszTffZN++fVYt+dOrVy9zb8ePP/5YaV9BQUG1bSbffPMNX3/9dbXtSikMBgM+Pj4EBAQAsH//ft56661qeWWA+RertbMaH3/8cQA++uijarlNa9assSkp38TDw4Nrr70Wo9HIyy+/bO4ZMzH1fL366qtERERw6aWX1un69913H15eXmzfvr1aAFtUVMQnn3xS47mmGZgVA5oPPviAsLAwiouL69SOupgxYwZ6vZ6lS5dWS+jPyMjgP//5Dy4uLjz77LMWzy8qKmLx4sXVtptW1vjHP/6Bh4eHebtpBmbF9/nDDz8QFhZmntWZk5PD8OHDGThwYL2+30KIpkGCMGEOxJp6AAbaL6qVK1fi5+fHTTfdxP/+9z8SEhLYvXs3999/PytWrGDZsmXmWlAZGRmVhrpSU1PNrz09PXnhhRcAeOyxx/j00085ceIEv/zyC2PHjiUzU5uwkJ+fT2pqaqVA6o033uDll19m//79JCQkEBsby0033URxcTGvvPIKLi4u5mPj4uIYP348mzZtIj4+nj///JOXX36Z//znPwwePJgJEyYA2i/YivfJysoiNTXVHHA9+uijXH/99ezevZvbb7+dPXv2kJCQwLJly/jXv/5VY4+MtUyBV1FRUbUg7IYbbsDZ2ZmioiKLvWCmHpucnBzzNVJTU8nPzwcgPDycjz/+GJ1Ox/jx41m1ahWnT5/mt99+4/rrrzfPuqx6HdBmToaEhHDw4EG2bNnCn3/+yeLFixk0aBCenp7mz8kkNTXVPMxc9XtX9diLufzyy3nvvffIzMxk1KhRbNy4kdOnT7N+/XquueYa8vPz+eijj2oM+AcOHMiyZct47733OHXqFIcOHeLhhx8211yrWp7Ez8+PPn36cPbsWVasWMGxY8dYuHAh7du3N8/4XL9+PbGxsezevdviHwJCiGamwcrACqWUfSvmiwtOnz6tHn74YRUVFaVcXV1Vu3bt1Lhx49TOnTsrHRcZGWmupF7xUdHnn3+u+vfvr9zd3ZW7u7u65JJL1Ouvv65mzpxZ6RxTBfu//vpLvfjii2rgwIHK19dXubq6qsjISDVu3LhqVe6zs7PVkiVL1I033qjCw8OVs7OzatOmjRo4cKB69913VWFhoflYU5X+qo+4uDjzMaWlpeq1115TXbt2Va6uriokJETdeeed6vTp0+bzFy9ebNNnmpWVpZydnVVUVJTF/SNHjlSAio2NrbZv8+bNFttecfUA03EjRoxQ3t7eytPTU/Xr10999NFHatOmTZXOu/322yudt2XLFjVw4EDl5uamAgIC1NixY9WxY8eUUkrFxMRUu6+p8v4LL7xQ6/e/Njt27FC33nqrCgkJUS4uLio0NFTddtttNf6fNn0WMTExKjMzUz300EOqXbt2ysXFRUVGRqpnnnmmWrV/kz///FMNGzZMeXp6Kh8fH3X11VdX+jedlpamevbsqTp06KD++usvq9+D/GwRou4ao2K+TimZptOQ9u7dS//+/dmzZ0+l/A9LiouLiYuLo2PHjri7uzdSC0VLcc8997B06VIWL14s6w06UGxsLMOHDycmJqbW9Tsbi/xsEaLu6vL721YyHCmEEEII4QBSMV8IIUSzkZ0Mh3+CwnNw5QPgYXm50kryz2rn5KZCv9sg0LYVvoSwOwnChGjm8vPzyc/PN69DaErwDwwMrHExcGF/BoOBjIwM86QA0yQDV1fXGgv/CusZyuDkr5C4F6xNolFGSNgFp7aB0brFEoRoVDIcKUQz9+abbxIWFsZXX30FwBNPPEFYWBjbtm1zcMtal8TERMLCwsy1Abdv305YWJh59quwXWE2/L4M0o9DHytLL5YWwa7/QsJu6DkG3KvX0xXC4aQnTIhm7sUXX+TFF190dDNavaioKFmOqIEUnNWGEDvHgLOVnbsleeDuA31uBlcvOLG1YdsohC0kCBNCCNGktYmG4M51O8e7DVxat4UdhGh0MhwphBCiSdPZ8JvKlnOEaGzyz1QIIYQQwgFkONJOFi1aZF4TriLTjDUhhBBCiIokCLOTqVOnMnXq1GrbTRV3hRBCCCEqkuFIIYQQQggHkCBMCCGEEMIBJAgTQgghhHAACcKEEEIIIRxAgjAhhBBCCAeQIEy0aFFRUeh0OvNDCCGEaCqkRIVo0Xbt2oXBYCAsLMzRTbFKYWEhV199NTqdjq1bt+Lh4eHoJrU4S5YsIT4+nnvuuYeoqChHN0dYqbQQqi7NWVoI+vO/xdy8qp9TVgRGo/bcdG55MZQUaM9dPaSyvnAsCcIEeXl5rF+/nqysLAIDAxk1ahQ+Pj6ObpZdBAcHO7oJdXLo0CH27t1rfj5gwAAHt6jlWbJkCVu2bGHYsGEShDUjO/8DxbmVt+364sLza56qfs4fayA7qfK2A99eeH7lA+DhZ/l+SikKCwutapunp6f0tAubSBDWihUUFDBz5kw+++wz8vPzzdu9vb2ZMmUKr776Kl5eFv68FA2mT58+3HbbbebnQgjNVf+o+zkD7rD9foWFhXh7e1t1bH5+vvysFDaRIKyKffv28f7777Nz5050Op15eOjVV1+lbdu2jm6e3RQUFHDNNdewY8cOADq5+dLVw4+jRTmcys/l3XffZefOnWzYsEF+uDQiFxcXvvzyS0c3QwghRCOQ0fAqvvjiC/744w82bdrE/v372b59O7t372bixImObppdzZw5kx07dhDo7MY3XUez/7KJfN3tWv64bCLfdB1NoLMbO3bsYObMmY5uqkWJiYlMnTqV6Oho3Nzc8PX1pX///jz11FPs37/f6uvk5eWxdOlSxo0bR6dOnXB3dycoKIhRo0bx7bff1njerl27uPXWW4mKisLNzY22bdtyww03sHjxYrKzsysdm5WVxb/+9S969+6Nj48P3t7eDBgwgFmzZnHo0CHzcffcc0+lSQSxsbHV7ltWVsbcuXPp3r07bm5uBAcHc+utt3Lo0CGrzq+JNZ9nbGxspevrdDrzcJ6lfXW5f1ZWFjNmzKBnz554eHjg5+fHlVdeySeffILBYKh07LBhwyrd58SJE7z55ptccskleHp6EhAQwPjx4zlw4ECl81588UV0Oh1btmwBYPjw4TJpQ1jlqxfS+HZOfqXHVy+kObpZoiVQopL3339f/fjjj5W2vfPOOwpQ586dq/P19uzZowC1Z8+eWo8tKipShw8fVkVFRRb3G41GZSwsrvcjJy1DeXt7K0B903W0yh98f7XH111HK0D5+PionLSM+t/XaKzzZ1eTbdu2qYCAABUaGqq++OILFRcXp3bv3q2eeOIJBShAZWdnVzrHtL2q5cuXK0BNnDhRbd++XcXHx6tt27apyZMnK0C9/vrr1c758ccflZOTkxozZozaunWrio+PV7/99pu6+eabFaBeeOEF87H5+fmqS5cuKjg4WC1fvlwdP35cHTx4UM2fP1+5u7uryMhI87HZ2dkqJSVFXX755QpQmzdvrnRfg8Ggrr/+egWoCRMmqF27dqm4uDi1ZMkS1aFDBzVgwAAFqHfeeUelpKSokpISu36eJSUlKiUlRT399NMKUF26dFFJSUlKKaVKSkrU4cOHVVBQkJo/f36d7n/s2DHVoUMH5e3trRYtWqROnjyp/vjjD/XII48oQF133XWVrpWZmalSUlJU+/btFaBiYmLUbbfdVunzCAgIUB4eHio2NtZ8Xl5eXqXPd8WKFSolJcX8aMlq+9kiqsvPzzf/+/92Tr5a/4aq9Ph2zoX9+fn5jm6uaAB1+f1tq2Y3HLlt2zbuvfdejh07RlxcnN0Tax9++OFq2/Ly8vDw8HD8sFxxKYXDH633Zb7PiiM/P59Obr5c6x9h8Zgx/hFEu/lyKi+X76+6g/GBHet1T8/NC8HDrV7XAMjJyeGWW24hOzubHTt2MGjQIEArRdG/f38KCwv56KOPUFWnUdXAy8uLoUOH8uWXX5p7QyIjI7n88stJTk5m1qxZ3HXXXYSHh5vPmTt3LgaDgc8//5w2bdqYz/n666/p3bt3pet//fXXHD9+nDfeeIM77riQoNKrVy+Kior4+OOPzdv8/Pzw8/PD1dXVYlsXLVrEDz/8wIABA/jqq69wcnIyv3c/Pz9uvvlm83VCQ0Otev91+TxdXV0JDQ3llVdeYe3atRw8eJAFCxYwb948XF1dmTVrFv369eP//u//rO5ZMhgM3HLLLZw+fZrly5dX+owWLVpETk4OX3zxBc8//zzz5s0DIDAwEMD8/gsKCvjf//5nvmdUVJS5N2zSpEkcO3YMDw8PvL298fb2Nn++gYGBVn9OQgjREJrNcGRRURFPPvkkQ4cO5dixY3U696effmLUqFEEBgbi5eVFv379WLhwIUbT3OWL2L59O++//z5vvPEGLi4utja/STlXXgJAVw+/Gn9Z6nQ6up6fNmQ6vin49NNPSUlJYfDgweaAoaL77rsPP7+a31dVN954I1u2bLF4/JAhQygtLWX9+vWVtmdkZABw+vTpStudnJx45513uO6662o9FmDSpEm89NJLVrUT4J133gHgwQcfNAcgJuPHj6dDhw5WX8vEls/T1dWVpUuX4uzszPz589m8eTNLlixh48aNLF68uE5De2vWrOHPP/8kNDSU22+/vdr+//u//wPgvffe49y5cxav8cgjj1S757hx44iIiCApKYkVK1ZY3R4hhGhM9e4J27NnD++//z6//fYbZ86c4Y8//qBjx47885//ZPjw4YwdO7bejTx58iTXXXcdJSUlrF27ltGjR1t97ty5c3n22We54YYbWL9+PT4+Pnz66adMmzaNdevWsXLlSpydq38Mq1at4pFHHuHcuXPMmjWLhx56qN7vo97cXbUepXoKXb0a/v4rx4pyUEpZ/KWplOJYUY52/JxH8bzppvrd1N1y705drVu3DoCBAwda3D9o0KBqOVm12bNnDwsWLGD79u1kZGRQXl4OQGlpKQDJycmVjh85ciSHDx9m1KhRPPnkk0yaNMkcAF177bWVjjXlHS1cuJCzZ8/y0EMPcdVVV6HX64mMjOTuu++2qo1JSUmcOnUKgP79+1fbr9Pp6Natm8Vg72Js/Tz79evHjBkzePnll5k0aRJ5eXl88MEHtGvXzqb7DxgwwOK/wz59+uDq6kpxcTG//PIL48ePr3ZMjx49LF57wIABJCYmsmXLFiZNmlSndgkhRGOoV0/YG2+8wZAhQ1i8eDHHjh2joKDAPAy0b98+brjhBvNfsvVx6NAhRo4cycGDBxk1apTV523dupVnn32Wnj17snLlSvr370/Xrl2ZO3cuDzzwAN999x1z5861eO7NN99MSkoKBw4cYMWKFYwaNYqysrJ6v5f60Ol06Dzc6v0YfcN1eHt7c7Ikl5+zEy3e66fsRE6V5OLj48PoG66r/33tlPickJAA2K/+15dffsngwYP5/vvvmTZtGhs3bmT//v3s37/fHHibgjGT1157jcmTJ5Odnc1zzz1HZGQkffr0Ye7cueaeL5MBAwawbNkyAgMDWb58OTExMYSGhvLAAw+wc+dOq9uZlHSh2FFN792WobX6fJ7/+te/uOyyyzhz5gx9+vTh73//u833DwkJsbjfycmJoKCgSsdWVdO5pvdU8bMTwlqZ8ReeF5cWUFTlUVxa4LC2iZbD5iBs3bp1PPPMM4SEhDBjxgw++ugj3N3dzfvXr1/P0qVL+fDDD1m1alW9Gnn99dfz/vvvW12zxeTFF18EYNq0adWGEp988kkA5s2bR1FRUY3X6Nq1K++//755yKUl8PHxYcqUKQD849QW1p47bQ6elVKsPXeaf5zUZpDde++9LaZwa1WlpaU88sgjGAwG3n//fR577DH69+9P586d6dy5szn3qCovLy+WLFlCXFwcr776Kn369OGPP/7g2WefpXv37mzevLnS8ZMmTSI5OZnly5dz8803k5eXxyeffMLgwYN54okn6txua/PdGpqLi4u5V3rHjh3mIrNNRVP5nETzYjTAsVit0KvJbbPbMu4570qP22a3nJJFwnFsDsIWLFjA5ZdfzqlTp5gzZw73338/en3ly02aNInnn3+ehQvrN4RWNf/FGhkZGeYp8iNHjqy2v1u3brRv357c3FzWrl1r3m6pQvIll1wCUKfSB03dq6++ypAhQ8gqL2HisXVc9sfX3Hr0Zy7742smHlvHOUMJQ4YM4dVXX3V0UyuJjIwEqNbjZIs///yTrKwsgDoNcZt06NCBGTNmsG/fPg4ePMjYsWPJysrirrvuqnasm5sbd9xxBytXriQtLY3XX38dZ2dnFixYUC3nzJL27dubn9f03lNTU+v8Hurzee7bt49FixYxefJkysrKuOuuuyguLrbp/mlplqf7GwwGMjMzKx1bVU3nmt5Txc9OiIspyIJd/4XTux3dEtFa2ByE7dq1i5dffhk3t4vPeBs/fjxHjhyx9TY22717N0ajERcXFzp16mTxmO7duwPaezHp2bNntR/qpjybmnpGAEpKSsjNza32qFiJvinx8vJiw4YNPPbYY/j4+HCqJLfSEORjjz3WJAu1moKlmobydu3axTXXXMPvv/9e67Vqm5hRNRfMxFItsl69erFy5Uq8vLxITk4mPT0dgNWrV1f7I8TX15dnnnmGyZMnA1owU5v27dsTHR0NaDlsVSmlOHr0aK3XqcrWz7O0tJTJkyfzzDPP8OmnnzJo0CAOHz7MjBkzbLr/rl27LH4/9u/fT2lpKe7u7gwdOtTiNf766y+L23fv1n6TxsTEVNpe9Y9F0AK23NzcattF66AUnDkIOz+HvDRwcYdBEz3Jz8+36uHp6enotyCaKZuDsJycnBr/Mq3I09PT3NvQmE6ePAloeSGWfugC5kWdTceazJw50/wXfW5uLtOnT8fLy8v8S9OS1157zVxioOKj6i+ApsTLy4sFCxaQnJzMihUr+Pjjj1mxYgXJycksWLCgyQVgoM3WCw0NZefOnRYDhzfffJN9+/ZZteRPr169zD88f/zxx0r7CgoKqm0z+eabb/j666+rbVdKYTAY8PHxISAgANCCiLfeeqtaXhlgzjG0dlbj448/DsBHH31UrYDpmjVr6pyUD7Z/nrNnz8bFxYWZM2fi5OTE0qVLcXd3Z8GCBdWGYy9m/Pjx9O7dm/T0dJYvX15t/9tvvw3Ao48+av5Mq/r3v/9dbejx22+/JSkpiXbt2nHLLbdU2ufv7w9o32OTLl268Morr5hfz5kzh44dO7Js2TKr34tonspL4OAPcPgnMJRBQAQMngxtu+jw8vKy6iHFfoXNbC0wFhkZqZYvX15pm7e3tzp58mSlbZ9++qmKjo629TYWcb5AXlxcXI3HzJkzRwGqU6dONR7z4IMPKkCNHj3avO37779XN998s+rZs6e69NJLVbdu3dRtt92mDh48eNE2FRcXq5ycnGqPLVu22K1Yq9Bs27ZN+fv7q7CwMLV8+XIVHx+vdu3ape677z7l5OSkvv/+e/Ox6enpKiUlxfxvpmphzrlz5ypABQQEqE8++UQdP35cbdmyRV199dXKzc1NAerJJ5+sVHw0MjJSubi4qJdeeknt27dPxcfHq82bN6vRo7UCtwsWLDBf/4UXXlCAGjNmjNq4caOKi4tTBw4cUC+99JLS6/Vq8ODB5utWLdZqKiZaXl6ulKpcrPWWW25Ru3fvVvHx8Wrp0qWqd+/e6tprr1WAWrx4cYN9nikpKWrTpk3K1dVVrV+/XhUWFprb/uyzzypAdejQQcXFxanMzEyr7n/06FEVERGhvLy81MKFC9XJkyfVgQMHaizWahIZGakAdc8996jbb7/d/HnUVKzVxFR8+c4771QnT55Ub7/9tgIqFWn28vJSgOrdu3edPsumSn62WJadrNSvH2nFVze8qdSp7UoZDY5ulWgqGqNYq81B2AMPPKDatm2rdu7cad5WNQjbvn27CgkJUY8++mj9WllFQwZh9mbPivnigtOnT6uHH35YRUVFKVdXV9WuXTs1bty4Sv8elbrwi7rqo6LPP/9c9e/fX7m7uyt3d3d1ySWXqNdff13NnDmz0jmmCvZ//fWXevHFF9XAgQOVr6+vcnV1VZGRkWrcuHHVqtxnZ2erJUuWqBtvvFGFh4crZ2dn1aZNGzVw4ED17rvvmoMYpZS5Sn/VR8V/56Wlpeq1115TXbt2Va6uriokJETdeeed6vTp0+bz6xqE1eXzrNo2070stT0mJsbq+2dmZqpnn31WdevWTbm5uSkfHx91+eWXq48++sgchFZl+t7GxcWpjz/+WPXp00d5eHgoPz8/deONN6r9+/dbPK+kpEQ9+uijKiQkRLm4uKhOnTqpt956q9Ixjz/+uPL29q62vbmSny2VGQ1awLXhTS0A2/qhUueSHd0q0dQ06SAsPj5e+fn5Kb1er6666ir1+OOPK3d3d/Xkk0+q6dOnq6uuuko5OTmpwMBA89Im9mJNEPbee+8pQIWHh9d4zF133WVesqahSBAmGkt9grDmqGIQJi5OfrZcUJSr1O7/XVh+6MB3SpUVO7pVoilq0ssWRUZG8v3333Prrbfy22+/sW3bNuBCDodSitDQUFauXFnnAo72YErGz8jIwGg0WswLS0lJqXRsfSxatIhFixZV236x8hdCCCEaT8YJOPwzlBWBkwt0GwlhvUBSuoSj1Kti/lVXXcXRo0f55JNPWL9+vTkxODIyktGjR3Pffffh6+trl4bWVf/+/dHr9ZSVlXHy5Em6dOlS7RjTrM2aqoXXxdSpU5k6dWq17Xv37rVY4VwIIUTjMJTB8S2QtF977dMWel8PXjVPeBeiUdR72SI/Pz+efPJJc/HTpiIkJISYmBg2b97Mxo0bqwVhR48eJSkpCR8fH8aMGeOgVgpRf6Zp8qZe15ycHFJTUwkMDKxxMfDmLCsri9LSUvMM0YyMDNzd3QkODrappqBo2fLPwsHvta8AHQZA56tAX+/ffkLUX4Mv4F1cXOywad4vvPACAAsXLjSvB2gyf/58AJ5++mm71HhZtGgRPXv2rPaoOj1eCHt78803CQsL46uvvgLgiSeeICwszJwi0NJMmDCBsLAw83JEgwYNIiwsjMREy0twidZJKa3na+d/tADM1RP63AJdh0kAJpoOnVINu7ZHWloa4eHh1eoa1VVGRob5Gqb6Xjt37iQiIgKoed28V199leeee44bbriB2bNn4+3tzWeffcbcuXO57rrrWLNmjcUFvO3FNBy5Z88e+vXrd9Fji4uLiYuLo2PHjpWWgBJCiPpobT9byorg8DrIOK69DoqCnmPBremVPhRNWF1+f9uqXtFHUVERa9asYe/evZw7d85ioGWvxPSBAwdWW8B30KBB5uc1xZIzZ86kb9++zJ8/nxEjRlBWVkbXrl1ZsGABU6dOleELIYRoQc4lwsEfoSQPdHroPBQ69Jfke9E02RyEHTt2jFGjRpGUlFTrQrn2qCYcHx9v87ljx45l7Nix9W6DEEKIpslohLhtEPc7oMAzQEu+97U8SCJEk2BzEPb444+TkpLCHXfcwaBBg/Dz87MYbGVnZzN9+vR6NVIIIYSoSVGOtvRQzhntdVhv6DYCnFvevBTRwtgchP3666+89dZbPProoxc9Li0tjf/7v/+z9TbNhj3rhDVwmp4QopVpyT9T0o7CX+u0NSCdXKHHKAjt4ehWCWEdm4Mwd3d3rr/++lqPCw4OJi4uztbbNBv2qBNmyk8rKyvDw8PDru0TQrReJSUlAA06CamxGUrh6GY486f22i9MG3708Hdos4SoE5tLVFx33XVWBVelpaVs2bLF1tu0Ki4uLri5uZGTk9Oi/3IVQjQeg8FAVlYWXl5eLSYIy0uH3/9zIQCLGgL975AATDQ/Nv+PfPPNN3nooYcICAigb9++NR6Xk5PDvffey913323rrVqVNm3akJycTFJSEn5+fri4uNhlYoMQovVQSmEwGCgqKiInJwej0Wgu7dOcKQWJe+H4L6AM4OYNva6DwA6ObpkQtrE5CAsODubDDz/kmmuuoby8nE6dOhEYGFgtYGgtayfaKyfMtMzT2bNnSU5OtkvbhBCtk5OTE56enoSEhDT71RNKC+DQT5B5fgCmTSfoea1WhFWI5srmICw+Pp4RI0aYS0ccPny4xmNbQ0+OPdeO9PX1xdfXl7KysnoXuRVCtA65aXByKxTlQr+J4OmnbzE96ZnxcGitFojpnaDLMGjfR2p/iebP5iDsqaeeIikpiTvvvJOBAwfi6+srJSrszMXFBRcXF0c3QwjRhBnK4OSv2jCdKZXUzRVq6/jKSYH43yE7WbuGhx+07Q5RA5vOsj5Gg/beEnZpr72C4JIbwDvYse0Swl5s/q8WGxvLO++8wyOPPHLR41pLiQohhGhshdmwf4UWrPS5BfZ9Y915qX/BoR+1QqaXjtdyqzKOw4mtcPYk9LvN8TW2Cs9pC2/npmmv212mrfvoJH+XihbE5iDMaDRaVYW+tZSoEEKIxlZwVktK7xxjfdBUmA2HfwIXDy1wczm/lGTkwAs9T8c2a/lWjpJyCI5s0HronN21toR0cVx7hGgoNpeoGDVqlJSoEEIIB2oTDd1H1a3XKn6HFmyF9b4QgJlE9NVyrs4chOJc+7bVGuUlWuX7Q2u1AMy/PQy5WwIw0XLZ3BM2f/587rnnHgIDA+nTp0+Nx7WWEhX2rJgvhBDW0NXxz2hlhPTj2nNLZR2c3bQhyuxkSDsGkQPq30Zr5aRow49FOVrCfccroOPgur9HIZoTm4OwWbNm4eHhQf/+/enRo0erL1Fhz9mRQgjREArPab1NAF6Blo/xDNSCsNzUxmmTUpCwE07+pgWJ7j7Q+wbwb9c49xfCkWwOwpYsWYJOp0MpxeHDh1t9iQohhGjqCrMvPHf1snyM2/ntRdmW99tTSb42QSDrtPa6bTdteLXqMKkQLVW9JiK//fbb+Pn5XfQYKVEhhBBNg6FU+6rTablflphmH5p6zBpKxkltgkBZkVYSo9tICO8ttb9E61KvIOyOO+4gJCTkosdIiQohhBAmhnI48YtW1wzAOwQuuV6rASZEa2NzELZ161aCgmr/XyMlKoQQomlwOj+LUilthqSl3jBDmfbV2c3+9y/IhD+/h/wM7XVEf+hyddMpDitEY7N53smVV16Jk1MN/dkVFBUVsXTpUltvI4QQwk48/S88Ly2wfEzJ+e0e/pb320IpSD4Av3+uBWAuHtBnAnQbLgGYaN0a/J9/fn4+s2fPZtasWQ19K4eSEhVCiKbOM0Dr4SovgYIscPetfkxhlvbVN9Q+9ywrhr/WQfox7XVgJPQaq1XpF6K1szoIi42NZeXKlUyZMoU+ffowZcoUq85rLUGIlKgQQjR1Oj0Ed4GUg9qMxKCoyvvLS86XptDZp0BqdpJWfLU4T7t3p6u0yvySfC+Exuog7JZbbiE7O5vdu3ezbds2lixZYvVNpESFEEI0DR0Ha2tHphzUnlfM/Urcp+WKhffWFvS2ldGoVeY/tR1Q2tBm7+vBL6y+rReiZbE6CJs+fTrLly/noYceMm975513pESFEEI4UGmhlnNVdZsp18qtSj0wzwDoORoO/QT7VkCXGK1mWMZxOLUNfNpC1xG2t6c4Fw7+qPWCAYT1hG7XOH5BcCGaIp1SVf/7Wkev15OamlpriYrU1FTCw8MxGo02NbC5Mw1H7tmzh379+jm6OUKIFubXjy6+zuM1T1nennMG4n7XvhpKwd0PQrtD5CBwqvDnuVKKwsJCq9qSl+TJkXU6yku0mZjdr9GCMCGao8b4/W1zYv7mzZsJDKxh3YsKgoKC2Lx5s623EUIIcRFX/cO28/zCoc/NtR9XWFiIt7d1WfTfzsnHw9UL31Bt6aGKszGFENXZXKKiY8eOFy1RkZ2dzR133MHixYsZOnSorbcRQgjRjEQNggF/kwBMCGvY3BPWsWNHUlJSahyOVErx119/8c0333D69GleeeUVmxsphBDC8b56IQ33KotOFpcWcNvstoDWsxbRwxEtE6J5srknrLZUsoCAAP744w+++OILvvjiC1tvI4QQoolwd/XCo8qjYlAW2MGBjROiGWrwYq0DBgwgJSWloW/jcFKsVQghhBB1YXUQduDAAfbv319p21dffYWvr4WSy+cVFBSwcuVK2rZta3MDmwsp1iqEEEKIurA6CFu1ahWzZ8+uVHj18ccfr/U8pRSzZ8+2rXVCCCGEEC2U1UFYnz59mDx5MqAFVp9//jkTJ07Ew8PD4vF6vR5/f39iYmIYN26cfVorhBCi0SgFp/deeF1sYdVvS9uEENaxOggbP34848ePN79etmwZ7777bq3FWoUQQjQ/JflwaC0kH7+wzTQLUghhHzYn5i9evLjWJYuEEEI0P2nH4Mg6KCsGfc3lIIUQ9WRzEGYamhRCCNEylJfC0U3a4t6grSM5ZKwn+Y/mW3W+p6dnA7ZOiJanwUtUCCGEaPqyz8ChH6AoR3sdNRiirwC9kw7wuui5QgjbSBAmhBCtmNEIcdshfoeWiO/uA72ug4AIR7dMiJZPgjAhhGilCrO13q+c8/W0Q3tAt5Hg4u7QZgnRakgQJoQQrYxSWt7X0U1gKANnN+h+jRaECSEajwRhQgjRipQWwV/rION86Qn/9tBrLHjIZHchGp0EYUII0UpkxsPhn7QaYDo9dLoSIgdqz4UQja/Bg7CysjK2b9/O0KFDG/pWDiULeAshmipDOZzYCol7tNeegdD7evCV2qtCOFSDB2FZWVkMHz4cg8HQ0LdyKFnAWwjRFOVnwMEfIP+s9rr9ZdBlGDi5OLRZQgjsEIRt27aN/fv3c+7cOYuBVn6+dUX+hBBC2I9SkLgXTvwCRgO4eEDPMRDcydEtE0KY2ByEpaamcsMNN7Bv3z7zNqVUpWN0Oh1KKXQ6ne0tFEIIUSemdR+zErTXbaKhx7XgJjVXRQ1+T8tg2tbtnMjNY//E8XTw8XZ0k1oFm4Ow6dOns3fvXvr27cvgwYMJDAzExaV6/3ZeXh5vv/12vRophBDCOunHtNmPZcWgd4auw6DdZSB/CwtLisrLmbPnDz48fBRDlY4US7JLStiYlMJPiUnszcjkTGEhAG09PBjcNpiHenWnb5ughm52i2FzEPbzzz/z1FNPMW/evIsel5qayltvvWXrbYQQQlihvBSObYIzFdZ97H0deMnvQ1GDuNw8bl+3mRKjka9GD+eWnzfVes7jv/3Od/GJjI4I5+0rBxPl401OaSk/Jybzxv6DrDyVwMfDruSmjpGN8A6aP5uDsOLiYqZMmVLrcUFBQWzevNnW2wghhKhFzhk4+CMUZWuvowZB9JWgd3Jos0QTdyQ7h6Hhobw4sC/eFkayatI7MIAvRsbgpL9Q2+SSoEDKjYp5+//k5d37JQizks1B2CWXXEJZWVmtx7m4uBATE2PrbYQQQtTAaNTWfIzbLus+irob3T6csR3a1+mch3t1x93JqVIAZtKnTSAAGcXFdmlfa2Bzib6ZM2fy+uuv13pcWloaTk7y55gQQthTYTbsWQ6ntmkBWGgPGDxZAjBhPUuBVG2GtA2hTw05X7vTtToow8LD6tWu1sTmnjB/f3+8vb3p1asXkydPpnPnzgQFBVWbCZmZmVnvRgohhNBUXffRyRV6jJJ1H4VjGIxGzhQW8uWJOBb8eZgrQ0OYf8UgRzer2bA5CBs2bJi5BMWMGTPs2SYhhBAWlBbBkXWQLus+iibgxV37WHjwL4xK0dbDnbeuHMSkLp2kLFUd1KtY65AhQ3B1db3oMaWlpezYsaM+txFCiDorzoOEXdp6icW52vqIXkEQ3hvaXdr8SjZkJsDhtbLuo2g6pl3Sg0ldO5FaWMT3CYlM/20nX5+I54OYKwj38nR085qFegVhq1atIiQk5KLHpKamEh4eXp/bNKpt27bx3nvvsW/fPpydndHr9UyZMoVHH30UZ2dZ71yI5iA7Cfav0p53iYHADtrQXdIfcGQ9nD0Fl45rHrMHDeVwciucrrju43XgG+rYdgkR5O5OkLs7nf18uSqsLdG+Pjy7Yzdjf1jH1puux9dV1saqjc1/Q9133314etYe6fr4+PDCCy/YeptGN27cOIKCgjh48CAHDx7k448/ZsaMGUybNs3RTRNCWKG8BA58q33tMUrr9fLwB+9g6H4NBHeGsye1XrKmLj8Ddv3nQgDW7jIYfJcEYKJpuq97F8K9PEnML+CL4ycd3ZxmweYg7OOPP8bbu/ZlDby8vJpVEObk5MSrr75q7vUaPHgwEydO5NNPP6WoqMjBrRNC1CbtKJQWamslhnSrvj+in/Y1YRcYyxu3bdZSSgu8dv5HW3jbxQMuu1kLKmXhbdFUOen1dPPXEhR3pWc4uDXNg13G13Jycvjll19ISNAWKouMjGTo0KH4+dk/W3Tbtm3ce++9HDt2jLi4OKKioux6/cTExGp5buHh4ZSVlVFQUICHh4dd7yeEsK+8dO2rh7/lvC9Pf+1reQlkJUKbjo3VMutUXfcxqKO28Las+ygcLa+sjG9OxjGhYxR+bpbzwb3Od2CUGYyN2bRmq15BWHl5Oc8//zzvvfcexVWKs7m7uzNt2jReeeUVu+RSFRUV8fzzz7NgwQIMBkOdzv3pp5+YP38+e/bsoaSkhG7dujFlyhQeeeQR9FXqpFiaaHD8+HG6d+9OmzZt6vUehBANz7T8XU2J9/oKPUn56U0rCEs/fn7dxyJt3ccuMdC+T/ObRCBapnPFJTy5bReRPj6MaGe5FtiRc9kAdPT1acSWNV82D0cajUZuvvlm5s2bR1FRES4uLoSGhhIaGoqLiwtFRUW88cYbTJgwAWXFoqAXc/LkSfr06cOKFStYu3Ztnc6dO3cuY8eOxd3dnfXr17Nv3z5GjRrFtGnTuOmmmygvv/h4xJkzZ1i7di0vv/xyfd6CEKKRmHq6inMt7y/OufC8pKDBm2OV8lI4/BMcWKMFYD4hWu5XRF8JwETTs+TIcYvbV5yM50RuHnqdjts6NaG/bpowm4OwxYsX88MPP3DnnXeye/duCgsLSU5OJjk5mcLCQnbv3s3f/vY3fvjhBxYvXlyvRh46dIiRI0dy8OBBRo0aZfV5W7du5dlnn6Vnz56sXLmS/v3707VrV+bOncsDDzzAd999x9y5c2s832g08o9//IO77rqLW2+9tV7vQQjROIK7aIFLSb5WnqKqlEMXnhtqX3mtweWkwO/LLiy8HTkIBt4pC2+LxnG2qJi0wiLSCi/kPJ8tLqm2DUB//i+C7xMS+fv6WDYlpxCXm8fu9LPM2bOfR7ZuR6/T8cqgfvQOCmjU99Fc6ZSN3VRXXXUVffv25b333rvocVOnTuWPP/7g119/tamBAAaDodLSR6ZCcLXlhI0cOZJNmzbx73//m4ceeqjSvqNHj9K9e3d8fX1JTU21mOv1xBNPEBcXx4oVK2weUt27dy/9+/dnz5499OvXz6ZrCCHqJv53OLEV3H21Yqb+7aGsGM78qS3z4+yqJe9H9INuIxzTxqrrPrr5aG0N7OCY9ojW6bKvVpOYX3OXcNaUOyu9PpGTy9cn49maksrxnFxySkpx0esJ9/JkSNsQ7uvRpcZljZqbxvj9bXOy1sGDB/nggw9qPe6hhx7i6quvtvU2ADatPZmRkUFsbCygBWNVdevWjfbt25OUlMTatWuZMGFCpf3/+te/OHr0KGvWrJH6YEI0M1GDtSrycb/Dni+1gqbKCH7toN+tcPK3CzMoHaEwGw79CDlntNdtu2vlM1zcHdMe0Xr9cdtNdTq+s58vM/pdygwubZgGtTI2RxelpaVWlajw9vamtLTU1tvYbPfu3RiNRlxcXOjUqZPFY7p3705SUhK7du2qFIS9/vrrbNu2jR9++MGcqD979mxuuOEG+vfvb/FaJSUllJSUVNuen59vh3cjhKirtt21R3mJ1gvm4qH1gIEWgAH4BDdum5TShkOPbryw7mP3ayCsZ+O2Q1zc72kZTNu6nRO5eeyfOJ4OPrX/rjtyLodHt25n79lMvh17DVeFtW2ElormzuYgrGPHjvz88888+OCDFz1u7dq1di8jYY2TJ7VCccHBwdVmQJqEhYVVOhbg3Xff5bXXXmPevHl888035u0bN24kJiamxvu99tprzJ492x5NF0LYkbOb9jAxlEFRtlYt379947WjrAj+Wg/px7TXsu5j01NUXs6cPX/w4eGjGKzM1DEYjSw8+Bev7ztASQsty5CYmAhARESEg1vS8tgchI0bN45//vOfBAYGMnHiRIvH/Pe//+XZZ591SLX53FxtatTF6nqZKv7n5FyYLvXEE0+glKqWQ1abGTNmMH369Grb9+/ff9HgTQhhf9nJ2tCepeT2zDgwGiC0Z+MN/1Vd9zH6SoiSdR+blLjcPG5ft5kSo5GvRg/nlp831XpOVnEJt63bTHxePguvupyX9uy/aH5Vc5SYmMiwYcMAiI2NlUDMzmwOwv75z3/y3//+lzvuuIMnnniCAQMGmNeRTEtLY9euXaSnpxMREcHTTz9ttwY3NKPRtr9k3NzccHNzq7bdmiFbIYR9Hf8F9Hrof3vl7YZSLR/M2Q061y9V1SrGcm2CgHndxwDofb0sO9QUHcnOYWh4KC8O7Iu3i3XLEiQXFNDO25Plo4YR7OHOS3v2N2wjG5kpADt16hQAw4YNk0DMzmwOwgICAtiwYQO33HILBw8e5LvvvjPPWjRNuOzduzcrVqzA39/fLo2tC19fX4CLLjVUWKglhtijsv+iRYtYtGhRte2y1JEQjnEuURv+a3+ZFnTlpcOp7VBaAH1vAfcGriWZnwEHf9S+grbuY9cYLQ9MND2j24cztkPdxqd7BvizdMTQBmqRY1UMwPTBWgfLqVOnJBCzs3pN++vSpQv79+9nzZo1rFu3rtKyRaNHj2b8+PE15mM1NFMyfkZGBkaj0WI7UlJSKh1bH1OnTmXq1KnVtpumuAohGk+HvpDmqQ09phzS6oa5+0JwJ+gwAFw9635NpZT5D7eLHweZRzw5uVWH0aBNCOg5Rru3aLqcbPhdZcs5zUHVAMznn88BkDdvjgRidlbv2gt6vZ6bb76Zm2++2R7tsZv+/fuj1+spKyvj5MmTdOnSpdoxR44cAWDgwIGN3TwhRAMyzYy0p8LCQqvTC76dk4+Hq5es+yiaHUsBmD5QS670+edzEojZWYOH8bm5uUyZMqWhb1NNSEiIOSF+48aN1fYfPXqUpKQkfHx8GDNmTGM3TwjRgumdoNtI6DNBAjDRfFwsAAPQBwZp24JDzIGYaeaksE2DVyEtKipi6dKlfPbZZw19q2peeOEFNm/ezMKFC7n//vsrFV2dP38+AE8//bR5lmR9SE6YEK3HVy+k4e5aOboqLi3gttlabaiBf4MQqXwvmpHaAjATUyAmPWL2YXUQ9t///pf//e9/PProo4wePZoRI6xb68NehVozMjIwGAzVtrm7a3PMQ0OrTzeKiYlhzpw5PPfcc9x8883Mnj0bb29vPvvsMz7++GOuu+46ZsyYYZf2SU6YEK2Hu6sXHq41d3HJuo+iuSkxGCiu8jtWNDyrg7BHHnmEvLw80tPTGT16tHlJIGuYZk3Wx8CBA82J/yaDBg0yP69pCcyZM2fSt29f5s+fz4gRIygrK6Nr164sWLCAqVOn2rQkkhBCCNHcJeTlszHpDBuSzrA1JY2CR6ejnzcHY0Y6efPmWOwNM2Zlknf+mOjoaOkFqyerg7AFCxbw9ddfVyq8unLlSgICLr5SemZmZo3FXOsiPj7e5nPHjh3L2LFj690GIYQQorkqKi9nW2o6G5LOsCk5heM5uZX2h7Zrx7j3P2Tdk4+Tdvp0tUBMAjD7szoImzx5MpMnT6607YorrjAXaK1JWlpajb1ULYnkhAkhhGhKlFKczM0z93b9lppeacjRSadjcNtgRrYLY2T7cHoHBqDX6Ugc3N+cH2YKxAAJwBqAzYn5cXFxBAfXvvptSEgIcXFxtt6m2ZCcMCFarvJSOLz+wuvi0upL01jaJkRjKygrZ2tKKhuTzrAxOYX4vPxK+8O9PBnZLoxr2ocTEx6Kr2v16sERERHExsZWCsQACcAagM1BWEJCAu3atas047CizMxMrr/+ekaMGMHzzz9vcwOFEMKRclLg4A+QlX5hm2kWpBCOppTiSHYOG5NS2Jh0hu1p6ZRWWH7PRa/nirYhjGiv9Xb18PezKk+7aiAGSADWAGwOwoYPH05KSkqNw5EuLi60bduW9957j5ycHItDdUII0VQpIyTs0taaVEZwk2VgW7yzRcUYqqTPnC0uwe38BK62nh7VzjlXUkKpQQt6TOeeKykhrVBLRWnj7mb3yvq5pWVsOZOiBV7JZ0guqLySQwdvL65pH8417cO5Kqyt1WthVlUxEANZwLsh2ByE1Zbn5evry5o1a9iwYQP33HOPBGFCiGajOA8O/aitPwkQ0hW6j/Ik/778i594nj1qD4rGN/K7n0jMrzysfM13P5mfZ025s9o5d2/8hd9S0yttm7xpq/n5/onj6eBTvwheKcXBrHNsTEphQ/IZdqZlUF7hd7C7kxNXhoYw8nzg1cnXxy5VCeBCIGZ6LuyrwYu1tmvXjoyMjIa+jcNJYr4QLUPaMfhrHZQXg5MLdBsBYb21UjuuSPn7luyP226q8znfXTfK/g1B603bnJzCxuQUNiWdIa2ouNL+zr4+jDgfdF0ZGoJHDalB9iDBV8Ox+rv2yy+/VKsN9uabb150LbWCggJ++uknIiMjbW5gcyGJ+UI0b4ZSOLoZzvypvfZtC71vAM+LV+ERwi6MSrH/bBYbk7WZjHsyMjFW6O3ydHZiaFgoI9uHM7JdGFG+Pg5srbAXq4OwzZs3M3v2bHQ6nXko8s0336zx+IrHffDBB/VsphBCNJzcVC35vvCc9jpqEERfqa0BKYSJaZ1Ee/UMnS0qZlOylte1KTmFzOKSSvu7+/uZhxiHtA0256aJlsPqIMyUmAfa+PTLL7/M9OnTa+wJ0+v1+Pv7ExMTw6WXXlrvhgohhL0pdT75/tcLyfe9roNAWfdRVGFaWxFsT1AvNxrZk5F5vljqGfafzaJidrW3izPDwsPMvV3tvWX4u6WzOgiLiYkhJibG/Pqll17i6aefrrVYqxBCNEXFeXB4LWSd1l4Hd4Eeo8G1+gQ40cpVXNwaqNOi1amFRedrdp0hNjmV7CrrKV8SGMDI9lrdroEhwbjYeSalaNpszuTbvHkzgYGB9myLEEI0ivTj8NfPUFYMemct+T78ErDThDLRglQMwPTBWqfDqVOnagzEyoxGdqZlsOF8sdSDWecq7fd3dWV4uzBGtg9jRLtwQi2UvRCth81BWMVesYspKChg/vz5zJo1y9ZbNQsyO1KIps9QCsdiIfmA9tqnLfS+Hrzk70lhQdUArOLyPRUDMV1AoHk9xtgzKeSXlZuvoQP6tglixPnern5tgnCW3i5xnk418MKOaWlphIeHY6iwXlVrYpoduWfPHvr16+fo5gjRauWmnU++z9JeRw6ETldJ8r2wzFIAZmkha7e2obg/NcO8D7QCrSPOr8c4PDyMNh7ujnoboh4a4/d3vQuLrFy5kh9++IHk5GRKq4x1Axa3CSFEY1EKTu+GE1srJN+PhcCWXznHLn5Py2Da1u2cyM2zS+HR5uBiARiAPjAIn38+R968OZSkpVI2bw5XzZ3PjX0vY2T7cC4LCkQvY9vCCjYHYQaDgZtvvpkffvgBpVSlkhRV2atyrxBC1EVJPhxaC1kJ2uvgztDjWkm+t0ZReTlz9vzBh4ePVlvK52J2p5/lnQOH+D09g4KyciJ9vLklOpJpl/RsFiUWagvATCoGYsaMdJJeeYHbY2OJaFP9WCFqYnMQ9t5777Fu3TpefvllBg8ezI033sgnn3xCu3btAEhOTuarr75i3bp1LFu2zG4NFkIIa2SchMM/QVmRlnzfdTi0u1SS760Rl5vH7es2U2I08tXo4dzy8yarzvvmZBwP/7Kdvm2CWDZiKKGeHvyQkMRLu/fx0+lkVo8dafM6ho3J2LBZOkKY2RyEffHFF7z44os8++yzADg5OTFkyBCio6PNx/z973/nkUceYcuWLdx66631b60QQtTCUAbHYyHpD+21dwhccj14SQeF1Y5k5zA0PJQXB/a1OmiKy81j2q87CHRz4+vRw/FzcwXg0Ut6UGo08MqeP3ju9z0suGpIQzbdZkopdqRlsOxUIoWPPon+9ZcwZqSTN2+Oxd6winlh0dHRsri1sInNUzSOHDnC9ddfX+txDz74ID/++KOttxFCCKvlZcDO/1wIwDr0h0F/lwCsrka3D+fNKwbVqdfqrT8OUWIw8vcu0eYAzOT+Hl1xc9LzxfFTJFVZINvRsopLeP/gXwxZ+T3X/7ieL0/GUebvT785c2kTEWEOxIxZmeZzJAAT9lKvxHw/Pz/zc3d3d1JSUir1hAE4OzuTnJxcn9s0C1KiQgjHUQoS98LxX0AZwNVLS74PinJ0y5onpzqWUDAYjXyfoC3pMzQ8tNp+X1dX+rYJYkdaBmviTzO1dw+7tNNWSil+TU1j2dETfBefSKnRCGjrM06IjuLurp3pHxxE0piR5vwwU48YIAGYsBubg7DIyEj++usvOnTQ1vdo164da9as4corr6x03PLly/HwaPlZsLKAtxCOUVKgVb7PjNdet+kEPa8FV0+HNqtVOZGbR875mfBd/HwtHtPFz5cdaRnsy8i0uL8xZBQVs/z4ST4/dpKTuXnm7ZcFBTK5W2cmREfh63qh9y8iIoLY2NhKgRggAZiwG5uDsEGDBjFz5kwuu+wyQkNDueaaa3j77bcpKChg1KhRAPz4448sXryY0aNH263BQghhcvYkHKqQfN8lBtr3keT7xhZfIaBpW0MFeNP2+Lz8RmmTiVEptpxJZenRE6w9nUTZ+V4vb2dnbu0Uxd3dOtPnIjMaqwZigARgwm5sDsImTpzIkiVLuOqqqzhx4gRPPfUUS5cu5YMPPuCDDz4AtC5fFxcXXnjhBbs1WAghDGXa0GPSPu21d7BW+d67jWPb1VrllZUB4KTT1bj2oaeT9usmt5FqR6YWFvHf4yf5/OhJEvIvBH792gQxuXtnbu4YaXXOW8VADGxfwFuIqmwOwsaMGUNKSgpO5+u+hIaG8uuvv/Lkk0/yyy+/YDQaGTRoEC+//DKDBg2yW4OFELYryoHTe+FcgraAtbEc3Hy0wqVRA8HD39EtrF1+Bvz5AxSc1V5H9IPOQ8Gp3qWnRXNnMBrZlJzCsqMn+Ckx2VzfzNfVhds6deTurp3pHRRg07VNgZjpuRD2YPOPLZ1OR9u2bStt69atG99//329GyWEsL+s07B/pVY1PvpKCI4GnV7bfmIrpB6GfhPBL9zRLbVMKUjcBye2gNGg5Xz1HAttOjq6ZcLnfI+SQSnKjEaLvWGFBm09RV9X12r76ispv4Avjp/kP8dOklxQaN4+OCSYu7t1ZnzHDng61z9Kl+BL2JvN/ypNsyCDg4P5/fff7dYgIUTDOLZZ6/mKGgIdB1/Y7hWkrZ/41zr4az0Mmey4NtaktEDL/cqM014HdYReY7RZkMLxonx9zM/TCoto7139G5NWqM0Uj7LTskflRiPrk86w7OgJ1iedMRdY9Xd15Y4u0dzVtRM9Avztci8hGorNQVh8fDxXXnklzz33nD3bI4RoIIXntK/+YdX3+Z3flp8BpUVNa1mfs3Ha7MfSQi1Y7BwDEX0l+b4p6ezrg6+rC7mlZRzPybUYhB3PyQWgb3D9iradzsvn82Mn+e/xk6QUXigBdGVoCHd368yNkR1wd276yyMJAfUIwlxdXfnggw/o1auXPdsjhGggPsGQkwL5mVoZh4oKKlQNaCrL+xnK4cQvWv0vAK82WuV772DHtktU56TXc0NkBP89fopfzqQyvF3lSD+3tJR9ZzPR63SMi6r7kF6Z0chPp5NYevQEm5NTMC0qFOTuxt86R3NXt841lsYQoimrV50wFytmlpSVlbF9+3aGDh1q662aBSnWKpq67qO0nLC4HeDhB23O54SdS4RjsdoxARHgZP+UnTrLPwsHf9B65gDa94UuQ8Gp6S872GpNv6w335yM57/HT/F/l/WqlPv1yV/HKDEYubNLJyK8rR+OjMvN4/NjJ/jv8VOkFxWbt8eEhXJ3t85cF9m+WSwKLkRNbA7C/v73v/O///2PWbNmXfS4rKwshg8fjsFgsPVWzYIUaxVNnU8IXDEFEvZoC1sbygAdmLoVvIO1IqeOpBQk7YfjW7T8NRcPLferas+daHhni4rNswvN24pLzEFP1Xpg0b4+LLhqMFO37mDius3MHtiXUA8Pvk9I4vW9B+gTFMirQ2r/WVhiMPBjQhLLjp5gS0qqeXuIhzt/7xLNXV0707FCDpoQzZnNQdjMmTO59dZbeeaZZ3j00UcvOmtEyYr0QjhcWTEcWgtnT0HkAAjpqhU4zU6EkkJtm4u749pXWgiHf9YKsIK25FDPseAmyfcOMfK7n0isss7jNd/9ZH6eNeXOaufc3jmaaF9f3jlwiEkbfqGgvIwO3t481ecSHruk50VztY7n5PL50RMsP3GKzOISQPsbYUS7MO7u1pkxHdrXWINMiObK5iCsW7duKKX4/vvvefPNN/Hw8CA4OBhdlWxZg8FQbZsQonEpBfu+gdxUiBoMna++sM8nGNKPw/bPtJ4wR/Q6ZcZrAWJpAeictKHHiH6SfO9If9x2k03nDQxpwxfXxFh1bHG5ge8STrPs6Al+S003bw/z9ODOrp2Y1KUTHew0m1KIpqhesyMrKiwsJCEhweKxEoQJ4VjnTmsBGGg9XlWFdNGS4P9YAwPvBN+21Y9pCMZyrUbZ6T3aa68grfK9T0jj3F/YJjFRW6zb1rpZf53LZtnRE3x1Mo5zJVoFfb1Ox6j24Uzu1plr2ofjLL1eohWoV7HWnTt30qbNxdcJSU9PZ8iQIbbeRghhB7lp2ldXTy3PyhLPQK2MxZk/GycIK8jUKt/nn+8Aad9HW/tRku+btsTERJuW7yksL2dN3GmWHj3OzvSz5u3tvDy5q2tn7uzaiXZesuq6aF1sDsL0ej0dOnQgOPji88W9vLzo0KGDrbcRQtjTRTqlTR3WxXk1H2MPSkHygQvFY108tGHQ4M4Ne19Rf6YAzLSQ9bBhw2oNxA5mnmPZMa3XK7f0whqTYyLacXe3zoxoF4aT9HqJVsrmIKzs/IKttWnTpg1xcXG23kYIYQee55fLKy2A8hJwdqt+TEGW9rUhE+FLC7XK/BkntNeBkdBrLLhJ2k+TVzEA0wdr48WnTp2yGIjll5Wx8lQCy46eYO/ZC0XoIr29uatbJ/7epROhnk2oIrAQDmK3JW+VUmRlZREQEIBe/qoRokkJitKGIksLtQW8oy+vvP9sHBSeD8JCujZMG7IStOT7knytPlnnodChf/NIvk8uKGThn4fZlJxCYn4BLno9Xf19ubNLJ+7u1hl9c3gT9VA1APP5p7ZSSt68OZUCsUwPT5YePcGKk/Hkl2trRbro9VzXoT13d+tMTHhoi/+shKiLegdhq1atYuHChezYsYOSkhKOHTtGdHQ0kyZN4sorr+Shhx6SxHwhHMzJRUt4/2M1xG3XtrXtqi0DlJWoJeWDthxQUJR97200wMlfIWGX9tozUGtLYyX/19eO1HT+tmELALMH9iUmPJSCsjIWHznO9G07WZeYzNKRQ1ts+QRLAZg+UFt6yOefz5kDsa4DB+H21AzzvmhfH+7u1pm/dY4m2MOBtU+EaMLqFYRNnTqVDz74wFwHrGKwpdPpmDp1Khs3buTLL7/ESaoaC+FQgZEweDKc3g2phyH+d1BGrYfMvx20u1Srol8bpRSFhYVW3VMVe3LoRx155ycGtLsMug5rPsn3uaVlTN60lZzSUj4ddhU3R0ea971xxSBSC4v44XQS7x44zJN9ejuwpQ3jYgEYgD4wyByIFaelUjZvDhMXvs/Uq6/iytAQ+QNciFrY/Kfb//73P/7973/Tt29fPvzwQ9atW4eHx4Ux/s8//5wtW7YQGxvL559/bpfGCiHqx9Mful8DV9wHI56AkdPh6ofgspusC8BAK0fj7e1t1WPLJ4XkpWlFYC8dDz1GNZ8ADGB1XAIZxcW0cXdjfMfqE4we6NkNgIUH/6Kkha0KUlsAZmIKxPTBIRgy0tk5459ElpdKACaEFWzuCfvoo48YN24cq1evNm+r+p/u6quv5qWXXuKTTz7hnnvusfVWQohmymiAgI5a8r17M1xp5mDWOQAifbwt5jJFn18+J6e0lK0paVzTPrxR2yeEaN5sDsL279/Pd999V+txI0eOZPbs2bbeptmQBbxFa/TVC2m4u1aeTllcWsBts7WEr05XQo+hzSP53hLT2olONbwBT+cLP0IPZp5rMUFYdkkJmwtL6PzCy8Q/9X8YM9LJmzfHYm+YMSuTvHlzMGakEx0dXafaYUK0djYHYYWFhYSE1F7WWq/Xk5fXwIWHmgBZwFu0Ru6uXni41lzTInJA8w3AAKLOL5lTdQ1Fk9P5+ebnqc38D678sjJ+Op3EilMJbEpOocxoBLTk+9L5r1OUmlItEJMATIj6sTknrEOHDmzatKnW477//nuioqJsvY0QQjjMjZEROOl0pBQWsTk5pdr+/524UAOx8HxJhuakxGDgx4RE7tv8K92Xr+AfW7bxc2IyZUYjvQL8mdW/DwcenMLRnb8THR1t7hEzZmVKACaEHdjcE3bjjTfy9NNPExQUxK233mrxmC+//JJZs2Yxbdo0mxsohBCOEuXrw/P9L2P27v3832+/s+jqy7kiNIRzJaX85/hJPj96gmB3dzKKiysNTTZlBqORrSlprDiVwPcJieSUlpr3dfTxZkJ0FLdER9E9wO/CST7exMbGmhP18+bNAZAATIh6svmnxowZM/jyyy+5/fbbadeuHf369aO0tJSZM2dSVlbGrl27SE5OJiIigqefftqebRZCiEbz+KW96ODtzdsHDnHj2g0463QYlGJQSDArrh3Bq3sPkJGqzaBsqpRS7Ew/y8pT8ayJP016UbF5X5inBzd1jOSW6Cj6tgmscVZjREREpUAMkABMiHqyOQhr06YNGzZs4NZbb+Xw4cMkJSUB8PXXX5vrhvXu3ZsVK1YQEBBgn9YKIRzOcKHjhOLS6rlSlrY1dzdHR3JzdCS5pWXklJYQ4OaGt4tWayOjWAtoegU2rZ9zSikOZWWz4lQ8K+MSKuW1Bbq5MS4qgluioxjSNtjqtRsrBmJQtwW8hRDV1av/vHv37hw4cIDVq1ezbt06Tp8+DUBkZCSjR49m/PjxsoSREC1IYTbs+Qr0QW1wu+Za7tN9it4nCJ2rC8asc5T/dZDitd87upkNxtfVBV/XC4XOisrLic/Lw81Jz+Vtgx3YsgtO5eax4lQ8K07Fcyw717zd29mZ6yLbc0t0FMPahdlc4d8UiJmeCyFsV+8kBr1ez4QJE5gwYYI92iOEaKLOxsHB72FnSQa+L88FJyeK16yg9I99YDDg0qMXHhNuw3XIFeTNfx3DqZOObrJd/J6WQYCbK139/art25B0hhKDkds6ReHv5rjhyOSCQladSmBVXDz7zmaZt7s56RnVvh0ToiMZHdHObnlrEnwJYR8NnklaUFDA/PnzmTVrVkPfSgjRAJTSljg6+av2+qugQ+iUG9N6duWfd1aelPPfk/E8s3s/g+e9zboxI/D09HRAi+3rxV37cNHr+fa6ayptLygr57W9B/BzdWXWgL6N3q7M4mK+jT/NilMJbE9NR53f7qTTERMeyi3RUVwf2R5fV9dGb5sQwjoNHoTl5+cze/ZsCcKEaIbKS+DQT5BxXHvd7jJIPZMHBriyXTheXpVrhF0Z0Q527+evnFxKnJzxas5Fwir4NTWN6b/9zpTuXfF1deHPrHPM2/cnaUVFfDV6OOFejRNs5pWV8WNCIitOJRCbnEK5UuZ9Q9oGc0t0FOOiOsiC2UI0E/UKws6cOcOSJUvYv38/586dw2Bh7bTSCtOfhRDNR0Em/LEGCrNA5wTdR2qLfPf6LoDdGWc5kp3D6Ih2lc45ei4HAB3g5uTkgFbb3z96diPE051NySl8dTIOHToivL0Y06EdU3v3IMi9YQOe4nID65KSWXEqnvWJZyiu8HP20qAAJkRHMaFjJO29ay6aK4RommwOwnbu3MmoUaPIz883z4asSXNdyHX37t3cdtttDB06lCVLlji6OUI0mvQTcOhHbSakm7e2+LZfmLZv/hUDuWN9LPP3H6SDtxfXRrTDSafjt9R0nt+5B4ArQ9vi5dI86mbVxjQzsjGVGY1sOZPKylPxfJ+QSH7ZhUKwXfx8mRAdyYToKLr4+TZqu4QQ9mXzT8lnnnmG8vJynnjiCQYPHkxgYCAuLi7VjsvMzGTixIn1aqQjLFiwgEWLFpGZmenopgjRaJQRTm2DuB3aa//2cMmN4Fahk+WSoEB23jKOfx/6i8e27qCgvBydTofRVJomMID3rh7igNY3b0al+D0tgxXna3llFpeY97Xz8mRCtFbL65LAgGb7h60QorJ69YS99957TJky5aLHpaWl1dpT1tQkJCSwefNmfv/9d/r2bfyEWyEcoawYDv4AmedX4onoB11iQF9lVDG7pISpW3fwc2IyU3t3Z3xUJG5OeralppNeVMTU3j0cOlOwMSUmJgK2zxZUSvFHZhYrTiWwKi6BMwWF5n1t3N0YH9WBW6KjGNQ2GL0EXkK0ODYHYa6urgwfPrzW49q2bYvx/EKwzUX79u1ZvXq1o5shRKPJz9Dyv4qyQe8MPUZDWM/qxymluPXnzew9m8n0S3vx/IA+5n29AgP4Pj6RISu/592rhlTLF2tpEhMTbS5aeiw7Rwu8TsVzIjfPvN3HxYUbzhdRHRrWFmepsyhEi2bz//Crr77a/FfgxZSVlfHLL7/YehuLtm3bRrdu3dDpdMTHx9v12gBOLSShWAhrpB2BnV9oAZi7Lwz4m+UADOCXlDT2ntWG6Kde0qPa/huiIvBxcWHShi0cyMyqtr+lMAVgp06d4tSpUwwbNqzWn4dJ+QW8e+AQMat/ZMjK73lj/5+cyM3D3cmJ8VEdWDZiKEf/dguLrr6cEe3CJAATohWw+X/566+/zqxZs0hOTr7ocVlZWVb1mFmjqKiIJ598kqFDh3Ls2LE6nfvTTz8xatQoAgMD8fLyol+/fixcuLDZ9dIJYS9GIxyPhT+/B2M5BEbCoLvAt23N5/xxPgAL8XAnoIYhxy5+vpQrxedHTzRAqx2vYgCmDw5BHxxSYyCWXlTEx4ePMub7n7n0q9W8uHs/f2adw1mnY1T7cD4YegVH/34Li0dczQ1REbg7yx+AQrQmNg9HfvPNN7Rr147o6GhGjhxJ586dCQoKqpYwmp+fX+9GApw8eZLrrruOkpIS1q5dy+jRo60+d+7cuTz77LPccMMNrF+/Hh8fHz799FOmTZvGunXrWLlyJc52qiQtRHNQWqhVv8/SVhojchB0vgp0Vv5ZdrHsJFPu0pnCovo1sgmqGoD5/PM5APLmzTEHYt/+vI79RlhxKp5fUtLMExZ0aLNGJ0RHMi6qA4FNeMFvIUTjsDnyePHFF9HpdCil+OmnnyweY9pvj5k8hw4dYuTIkcybNw9vb2+rz9u6dSvPPvssPXv2ZOXKleYZnHPnzuXcuXN8/PHHzJ07l+eee67ebRSiOchNgwNroDgXnFyg5xho2826czudL4mQVlRMbmmpxWrsx3O09QpDWljBUEsBmD4wCACffz5nDsQuu+IKvCvs69cmiAnRkdzUMbLRiroKYS95eXmsX7+erKwsAgMDGTVqFD4+Po5uVotRr+6f6dOn1xoQ5eXl8fbbb9fnNgBcf/31jBs3rs7nvfjiiwBMmzatWgmNJ598ko8//ph58+Yxffp0PDw86t1OIZqyM4fgyHpt+NHDHy4bD951WHd6eLswQjzcSS8q5sPDR3m6zyWV9m9IOmMOwm6M6mDHljvWxQIwAH1gkDkQM2SkU/zmazy1ZBlTrhhCtK/8whLNT0FBATNnzuSzzz6rNKLl7e3NlClTePXVV6utmCHqrl5B2NNPP01ISMhFj0lNTeWtt96qz20A25LlMzIyiI2NBWDkyJHV9nfr1o327duTlJTE2rVr67UIeUlJCSUlJdW222s4Voj6MBrgWCwk7dNet4mGXteBSx07qzydnfkw5kombdjCG/v+RAeMi+qAm5MTv6SkMnvXfkCrMj+iXZg934LD/HniBGOuuYYzCQkWAzCTioFYSVoqy6c+xIOxsSBBmGhmCgoKuOaaa9ixQysY2MnNl64efhwtyuFUfi7vvvsuO3fuZMOGDRKI1ZPNQdjnn3+Ov79/rccFBQWxefNmW29TL7t378ZoNOLi4kKnTp0sHtO9e3eSkpLYtWtXvYKw1157jdmzZ9t8vhANpaQA/vwWss/Poel4OURfAbZmCcSEh/LLTdfx70NH+OpEHG/9cQiDUrRxd+PytsHc3a0zo5pheYpSg4ETObkcOpfNoaxsDp/L5lDWOZKTkshrgfltQtRk5syZ7Nixg0BnNz6KjuFa/whzetHP2Yn849QWduzYwcyZM1mwYIGjm9us2RyE3XnnnVYd5+LiQkxMjK23qZeTJ08CEBwcjL6G6d5hYWGVjrXVjBkzmD59erXt+/fvd9j7FyLnDBz4FkrywckVel8HwZ3rf92Ovj7Mu3xg/S/kAEopUgqLOJR1jr/OZZuDruM5uZRZmC2tDwyi+4tzOP3KC+SnnCFv3hyLvWHGrEzy5s3BmJFOdHR0nWuHCdEU5OXl8dlnnwHwUXQMYwIupBXodDrGBHTgw+gYJh5bx+LFi3nllVckR6we6j0lsLi4mK+//prffvuN5ORkPv74Y0JDQ/nqq68YOXIkQUHVu+0bS26ulptysVwvT08tUTYnJ6fS9ttvv52jR49y5swZvv32W/r06cPEiRNrTOB3c3PDzcKU/bpMIhDNy+m8fPp8vcaqYx/s2Y3Xhgxo4BZVlvQHHN2oLUXkFQiX3qR9bU0Kyso5kn2hZ+twVjaHzp3jXEmpxeN9XFzoFehPrwB/egUG0CPAnx4B/vi6upB447XmvLCqgZgEYKIlUOUGfv5qJfn5+XRy8+Vaf8v/hsf4RxDt5supvFzWr19fr1Gk1q5eQVhsbCx///vfzUsT6XQ6Cgu1ZTdee+017r33Xj7//PNm+Q368ssvHd0E0UxE+XjjUkNPa25pKWlFxXTz92u09hjL4chGOPOn9jq4C/QaC87VJzLaTX2X76kvo1LE5+VzKOvc+WFELeiKy83D0qJpTjodnf186RngXynoauflWeNs7oiICGJjY6sFYoAEYKJZUAYj6mw2KuUsxpRM1JmzqJRMjClntefp50hLOQxAVw+/Gv8v6HQ6unr4caokl6yslluUuTHYHIQdO3aMG264gaKiIoYMGUJ0dDRff/21ef+qVat45ZVXuP3229m5c6dD1mD09dWm0xcV1ZzPYQoa/fzq90ty0aJFLFq0qNr2i91btAyrx4ykg4/lHs8Ht/zGusQzTOzUsVHaUpynlZ/ITdVed75aqwHWkMsO1mf5HlucKyk536Ol5WwdysrmSHY2heUGi8eHeLifD7YC6BXgT89Af7r6+dlUGNVSIAZIACaaBGU0ojJzUeeDKmNKphZknTmLSj2LSs2CGv6fmAS4aaNDx4pyaiwxpZTiWJE2ehQY2Mq61+3M5iDstddew8/Pj23btnHppZcCVFpvMSoqik8++QSDwcDcuXP53//+V+/G1pUpGT8jIwOj0WgxLywlJaXSsbaaOnUqU6dOrbZ979699O/fv17XFk2Tq5MTfYICca1h5m5aYRFr4k5zf4+ueLk0fDHgc4nw53daIVZnd7jkeghq4NivYukGgGHDhtktEKmYKF8x6EqpIUne3cmJ7v5+9KjQs9UzwJ9gO9crqxqIARKAtQJNoV6WUgqy8jCmZJzvwTL1Zp0PuFIzobT84hdxckIXGogurA36sCB0YUHow9ugC2uDLiyIG9z0eLdvz8n8XH7OTqyUE2byU3Yip0py8fHxYdSoUQ30blsHm38zbNq0ibffftscgNXk4Ycf5m9/+5utt6mX/v37o9frKSsr4+TJk3Tp0qXaMUeOHAFg4MDmmWQsHCfU04NN48fWuH/xkeOUK8UDPa2shGojpSBxn7YEkTJqdb8uHQ+e/g1622q1swBz1fi6BCSmRHktZ+tcrYnyAB28vcxBVq9Af3oG+BPt69No6y1WDMSgcXoAhWM0Zr0spRRk52vDg6YerJRMLcg6c74nq4Z8RjMnPbqQgAtBVrgWXOnD2mjP2/ijc6r5/4kvMGXKFN59913+cWoLH0bHMKbC7MifshP5x8ktANx7772SlF9PNgdhqampVvXwhIaGcubMGVtvUy8hISHExMSwefNmNm7cWC0IO3r0KElJSfj4+DBmzJh63UuGIy8oKCvno8NH+D4hkZO5eZQZjIR4eNAz0J9R7cO5p3v1YLilKTMaWXr0OKPbhxNZw1ClPRjK4K/1kKqlcRDaA3qM1irhNyRrlu+xFJjYmih/IdgKMCfKO5opEDM9Fy2PvetlKaUgt/BCDpYpHyvlwtAhRdXrTVai050PsoIqBFlttCArLAhdiD+6ei7D9+qrr7Jz50527NjBxGPriD7/vo8V5XCqRJvwNmTIEF599dV63UfUIwjz8/MjISGh1mG8Q4cOWVVPrKG88MILbN68mYULF3L//fdXWiNy/vz5gFZ01jRL0lYyHKk5mZPLhJ830cbdjemX9aZ3YAAlBgPrk87wyp797D+b2SqCsNVxCaQVFfOPBuwFK8qBP9ZAfrqW89VlGET0a9j8L7B++Z6rhg7lhS+Wk+HhaVWifCc/H3oFBJgT5XsG+tPey8suy541FAm+WjZb6mWp/MIKPVim3qyz5uFDCmr/w1wX7I8uVAuwtCHDNueHDIPQtQ1E18DpDV5eXmzYsIGZM2eyePFiTuXlmoMvHx8f7r33XqmYbyc6pZSln4m1uummmzhz5gxbtmwxl4Dw8fHhjz/+IDo6GtBKRAwfPrxa0r6tMjIyMBi0pEJTfa+dO3eafxCGhoZaPO/VV1/lueee44YbbmD27Nl4e3vz2WefMXfuXK677jrWrFnTYAt4m4KwPXv20K9fvwa5R1NRUFbOlau+p427O99fN6pa4vNbfxzk2/jTxI6/zkEtbDyjvvuJvLIydky4sUGunxmvLcBdVgwuHnDJjRDYCKsE1bZ8D1Qu12DpGFOivDlZvh6J8kI0lLy8PMLDw8nPz+ebrqMt5katPXeaicfW4ePqzokJ0/E6mw95hbVeWxfoW32Y0NSz1TYInZvtPb2GAycoeWUJ6nQaHitfQx/exuZrQdPIhXOUxvj9bXPk8dRTTxETE0N0dDT3338//fv3x2g0snfvXg4dOsTOnTv57LPPSE9P59///rddGjtw4EASEhIqbRs0aJD5eU3x5MyZM+nbty/z589nxIgRlJWV0bVrVxYsWMDUqVNtWhJJVPfOgYOczi/grSsHW/yFOv2y3ky/rLcDWta49mZksicjkzcboJipUpCwC05sBRT4ttXyv9x97X6raqwJwKDy8j3GjHTU23N5cunnXNmjBz0D/QmRNVpFE6eU4udvVltfL6sklw17fmd84PmZMAE+F5Lewy4kvevD22hJ8e7Va0rWu83FpZR+uJryrzaCwXIuZUUFQx6w6rouQ/swYV71UR5hHzYHYVdddRVvv/0206dPrzQufPvtt5uf63Q63nvvvUqBUn3Ex8fbfO7YsWMZO7bmJGpRPwajkS+OncLNSc/QsLaObo7VinLgt4+tOzaiH3QbUftxHx4+gq+rC7d3jq5f46ooL4XDP0H6Me11eG/odg04NfzES/LLytiSnEJWcS35Kha0cXfn7m5diGgha0mKlkMZjajUTIxxKaj4FIxxKRjPf02L0xZatbZeVt6Eq/D4xwPaMKKnfWfk1saYlE7x9HehtBz3tx6n+PG3rTpP1zYQ3GsoIFhcikrLQh8l/28bUr1+fD/22GP079+f119/nc2bN5trbnl6ejJy5EhmzJjBkCFD7NLQpq61J+b/dS6H1KIiuvj5kldWxoIDh/kpMYn0wmL83Vy5vG0Ij17Sgx4B/o5uqkUefqCroUO0vARKC8DLisUf0ou0shT32bksReE5+GM1FGSCTq8Fg+0ua7j8L6NS/Jl5jk3JZ9icnMrv6RmUGY2o//sn+vM9XLJ8j2guVHk5KinDHGAZ41NQcSkYE1JrnG0YcH51e2vrZQUPuhR9tGPWTDWeOoPTgB64PnpLnQJAt1lTcOpvOW+19INVlH3+E84TZNm9hlTv3xJXXnkl3333HUajkbNnzwLQpk2bGtdqbKlae2L+oXPnACgqL2f4mrX0DPBn/uWDCHR3Y3tqOi/t2c/KuHgWD7+aMR3aO7i11fW7TQvELDn4A5w9BWE9ar+OuSxFj652a1vGSTj0oxYMunrBpePAvwF+1qcWFhGbnMKm5BRiz6RwtkqvV6S3NyO6d+GSNd8y+86/ER8XJ8v3iCZFlZRhPJ1apVfrDCoxveYipS7O6Dq0RR8Vhr5j2Pmv4dzg74F3VGSzqJfldOWlOA/tU6dz9N0jwctywKZKyyhbsxWnq/ugD3Xc0oOtgd3+VNfr9YSEhNjrcqKZMf3CTioo5NKgAP5zTQz683859gjwJ8Lbi9vXx/Lglm3snTiOIPfG7a6vid4JfNpqXy0pKYC0YxDRR1sA+2LKjEaWHjnBqPbhRPnWP3FVKYjbDqe2aa/9wrUAzM1OFS+Kyw3sSEtn85kUNiWlcOhcdqX93s7OXB0eyoh2YQxvF0Z0hfc0cssWWb5HOIwqKNYCrPgUVNwZjPGpGOPPoM6cBWMNc8083NBHhaKPCkPXMVwLtqLCtKR4Czmszale1sXqftXEY8nzNe4rX7cTzuXhcpsV+ReiXhohm0S0BkXlF6o039+jmzkAMxkV0Y7Ovj6cyM1j+fE4Hr3Eim6lRuDmDYPvqnl/0n6tAGqEFaturYlLILWoiEV2KEtRXgIHf4SzJ7XX7ftA1+E1B4vWUEpxNDv3fNB1hm2p6RQZLvQO6IA+bQIZHh7GiPZhDAhuU+NqALJ8T+vVmLPlVE4+RlOQFXfG3MOl0s/VfJKvJ/qocHPPls70NSQAXR1HaFprvazyrzeh79wep34NW2ha1DEI++KLL8jJ0ca/+/TpwxVXXGHe5+vrS0FBQbVzHnzwQd5///16NlM0de4VssNrWqz6sjaBnMjNY+/5YeumzmiA5APQJho8/Gs//sPDR+nq78uwcMulUqyVf1Zb/7HwnBZ0dR+lJeHb4lxJCbHJqVrglZzCmYLK0+fDPD0Y1i6MEeFhxISH0qYOS/zI8j2tS0NVjldKoc7mnO/RqjCMGJ8C5/JqPE8X5IfONHxoHkoMh0Afu9WWa431sgx/nMB49DSuM+52dFNaBauDsJSUFO6++8I35bnnnqsUhCmlLJaIWLJkCS+//DJBQS17XLm1J+aHVkgGDXCzPG7n7aLVvsmubdmNJiLtqJaQH2FFeRhTWYo3Lh9Yr18Aacfg8FqtEr6bD1w2HnzrENOVG43szjjLpmRtiHHf2cxKxVHdnPRcEdrW3NvVw7/mmV/WkOV7Wgd7VI43z0SMT60WcJFf889JXWhQpR4t8zCir/WBT31qZ3l5ebFgwQJeeeWVVlEvq+zrTeDrhfO1gx3dlFbB6iDshx9+QClFnz59+PDDDy2utfjFF18QHh5ufn3y5Enuv/9+Vq9ezX333WefFjdRrT0x/5KgQPPzjKJiOvtVL1yVUVQMgH8NQVpTk7gPvAIhKLL2Y/sFB5E15U6b76WMcPJXiN+pvQ6I0AqwulqxkENCXr55FuOWM6nklZVV2t/d38+c13VFaAgedi5MLMv3tHx1qRz/zvz5dZ6JiF6Hrn1IlSHEcPQd2tar3ENda2cZ9hyleOqblpsIXAu4zX0E5xgr8hOaIWNGNobNe3H52zXoaipdIezK6p/GW7ZsITIyki1btliM/nU6HYMHDzZXyweIiYlh+fLlbNiwocUHYa1dN38/c87XwaxzXB5afZLG0WxtKHtQSHBjN6/OclIgNwW6X9Pw9yorgj9/gKx47XWH/tA5BmpKX8krK+O3lDQ2JaewOTmFk7mVh2wC3FwZFh5mDrzCveq3JJc1JPhqufLy8vjss88A+Cg6ptIsQZ1Ox5iADnwYHcPEY+tY/P4HzPg9Dx9qSF6sYSaiLiIEnZ3XA7W1dhZOTuja1/wzqrFrgDWm8hWbAYXzrcMd3ZRWw+og7M8//2TatGk1dr/WVK3+b3/7G2+99ZZtrRPNyvTLevPI1u18duQ493bvgnOFKGJ9YjInc/MIdHPjb3YuYtoQEveCsxuE9azjeYmJgPVBSV66lv9VlAN6Z+h5rbYId0VGpTiQmWUOunamn6XMeOGvemedjoEhbRjRLpzh7cK4LCgAp1ZWIkbYnyoqQaVm8dOXX9apcvymrNOMb9e9TjMRG4KttbN0wf54fvlyA7asaTKXpbjqMilL0YisDsISEhK4/PLLa9y/evXqSkORJv379+fMmTO2tU40K3d0iWZHWgbLjp3g7o2/8FSfSwj2cGNbajrP79yLj4sLS0ZcjV8TH46sS1mKikzL+oB1uVGpf8Hhn8FYrtUou3Q8+JzvQEwpLCQ2OZVNyWeIPZNKZpWaXR19vBneTuvtuiosFF879yKIlk0ZjahzeajULFRqJio1C2Na5efkaMn36elHAOsrx+c/eAOe//dYnWci2psttbNas/L1u86XpRjp6Ka0KlYHYQUFBbRrV3OFyJEjLX/j2rRpY3HWZEvT2hPzTd65ajBDw9uy5MgJJvy8keJyA2GenoyP6sC0S3oS6WOnIlcNKPkPLUerfR3SPiquqwgwbNiwGgMxowGO/wKJe7TXQVHQeYyB3TnpbNqp9XYdrlqzy8WZoWEXanZ1tEMdMlE/TXlhY1VShkqzHFyp1CxUWhaUldd+IW8PAl3DIc76yvFtOnZweAAGttXOas3Kv96ErlO7Givoi4ZhdRDm6+trU0CRn5/foqbv1qS1J+ZXNCE6ignRUY5uhk2MBkj6A9p0BE9/686purA1wKlTpywGYqUFcOA7OJekSHLKIbFTCgdcU9i2Ip3iKjW7+rYJYni7UEa0C2dASBtcmsAvNtFwpRqspZSC7HwtoErJRKVlYTwfZKm0TIypWRct7WCm16Fr46+tdRgaiL5tILq2gdpC020DtYWmvT25IS8P7/Afm0XleLswGCj73wbKN+xCpWQCoGsXjNPQPrhMiGmROWGGAycwHknA9dmLFE0UDcLqICwiIoI///yTbt3qFiXv3buX9u2b3jI1QliSfsz6shRQPQCrWDm+aiAWn1DCf39OYbchhQP+KWTpi6BCybQwTw+Gn+/pGhYe2mRWFRAX2KNUQ21UWTkqLet8cGVhuDAtC0rKar+Qh9v54EoLsio/D0IX7IfOipmyPj4+zaZyvD2ojGzK1+/E5c5r0UeFonILKf9pB2ULv6F89S+4v/sE+vCmN7lInctDGSvPAFXZeRjdtFQFfVAN67IBZV9tAl9PnMdIWYrGZnUQNnToUBYvXsytt95apxt8+OGH5jwZ0XrUNUG9qTi9VytLEWhFWYrTp08zbNgw4uLizAGYaQ1Fn38+Zw7ELrv8crrMeJUT7k4oZ8z/69ydnLgiNMSc29W9njW7RMOrS6mGBQsWVDtfKQW5hRjPDxWagqoLPVlZqMxcbc2qWuja+Gk9V6FB6EMDzc9NwRa+nnb799RaKsfrQgJwue9GXO69rlKA6tSnC7g4U/71JkpmfID7kueb3P/VonvnoFIzK20rnnLh++G142OL5xkzsjHE7sXl9mvQubs1aBtFdTpV07TGKvbv30+/fv1YsGAB06ZNs+riL774Ii+//DK7d++mb9+WWVelNqbhyD179tCvn5XdK81cXRPUm4qcFNj1BXQbWfsyRYmJicTExFgMwEwqLmZtOqZTm2jGdAtnZIcwLm8bbPeaXaLh5OXlER4eTn5+Pt90HW1xWG7tudNMPLYOHy8vEpauwSu3WAusUrPMgRdFJRauXoWbixZQtT0/TBh2/rm5F8vf7iUdamMahl28eDF5eReGO5tL5fiCIQ8A1LlYq4nKzKVw3NNgMOK+4P9wGlzHqdOi2WmM399W/wbo06cPkyZN4oknniA2NpbHHnuMq6++Gn2VPJXy8nI2bdrEm2++ycaNG7nzzjtbbQDWGtUlQb2p8QuDkU8qCsrLScwvIau4lMySEs4Vl5BVUkJmcQnnSkpIOH2a75+YRkFqSo0BGIA+MMjcI2bMSMf77XdYtX0LHTo0/c9CVLd+/XrrSzUU5LJ2xmuMD+xo+WIBPhcCqraB6M9/NeVj4e/doD0ttlSQN1eO7zca/b9XA/DzP8c2qQkJDUkX5IsuOACVmonhwAkJwoRd1OnP8A8//JDjx4+zatUqVq9ejZubG506dcLPTxtrzs7O5sSJE5SVlaGUYsiQIXz44YcN0nDR9NQlQb0xKKXILS0jq0QLorLOB1NZJaVkFReTVVJqDqwu7CuhpJbK2saszEoLX1vLzV1HExvBEBYopVCZOaikdIyJ6eavqZt+BKwv1ZDdPhDn4VeYc7DMye4hgQ6rRl7XCvJVGc+cRb9krfn1hAkT7Nm8Jk8X5KsNIee2/Bn/onHUKQjz8PBgy5YtPP3003z44YcUFxdz6NChase5urry8MMPM3fuXFxdm3ZNKHtp7SUq6pKgbguD0Uh2aen5AKpKUFX16/ljzpWUUG7daHs1rno9Qe5uBLi5EejmRqC7G4FuruZtalA/Xpn0d1ITE8mbN6fW4ciOHTs2mx7B1qCmQEslpWNMSofC6kOG/lna4ufWlmoIffQO3JpQkGJzBfkKSl7/HJ2fF8qaIdVmqPzXP3DqHY3Ov4ai5Jla/pvOp+FXoRCtQ50TUlxdXVmwYAHPPPMM3377Lb///jvp6ekAhISEMHjwYMaNG2excGtL1ppLVFgKwCwlqJsCsdB27cwB07nzw3xZJaWcKy4hs0qvlWlbdkkptoVT4OnsZA6kAtzcCDIHVReCq0B390pBlpezc63DQdesX0/37t0xZqRXC8QqBmAAa9eulQCskSmlUFm5qMQ0qwMtM71OGypsH4I+IgR9RFvGBnriPWEHJwuaZ6kGWyvIm5R9/xvGvUdxe+1hSp5e2AAtdLySpxbi+vw9uNxwZbV96lweKuMcAPreTX/VD9E82JwVHB4ezkMPPcRDDz1kz/aIZuZiARhUzos6deoU0QMG4vX0TIs5VNbwcXEh6HwAFVAhaLqw7cJzU6Dl3kDLpFQsvVIxEAMqBWBVj21pHFm01K6BVvsQdOcDLl1YULXE9wBgyn33NdtSDfWpIK8ycyl99ytc7hqDvlPNRbtbgvK123G+/opqf4SVLv0RDEZ0UWE4De7loNaJlkamZgmb1RaAmVQMxMrT08zBSlBYGEFubgRUCZoubHOtNCQY4OaKq1PjrDtXV6GBHUnNiCNv3hxAC8pCAzuSmhXn4JY1nMYqWlop0ErKqBxw2TnQqk1zLtVQnwryJW9+gS7AF5d7r0edzbFjqxpWnWtnOekx7jlKyVPv4XLHKHTtglF5hZT/sI3yrzaiCwnA/bWHpRq/sBsJwkSj6+DtxeaJ44mKtKIYVzMx6+4VvLTsFlIztKArNLAjs+5ewSPvtMyyJPYuWmox0EpKRyXWI9BqH6ItGG3HUg5eXl5s2LDBXKrhVF6uOfhqLqUa6qo8di+G2H24f/BPdK4uNqcFOEJda2d5rHqd8p92YNh5mOJZH0NuIbi5oI8IweX+G3GZOBKdX8v53grHs7pOmLBNS68TZk1vWMX8qOjo6BaToF5QUIC3t3VrYba05bsef/xx3n333YsWLc0qL+Gxxx4zFy2td6DVNhBdRNsGC7TqWrahKa8daQ1r6mapvEKK/jYLp2H9cHvq74A2Q7Jowgyg5gKgQrQETapOmBCWREREEBsbaw7ELpag3pICMICzpxzdAsfIy8vjs88+A+Cj6JhKCeo6nY4xAR34MDqGicfWsfijj3nepSPe6bl1C7TO92o1VI9WRXUt26DO5Wl5Q9v+5NrjSZBfBF7u6DecomzMYJxvuLJJLGBtD6XvfgVOTrg+3HRmeQrRkkgQJuqtpkAMaLEBWHYynNjgybdz8mnbHXqO5qI1wDw9W86U9joVLS3OZf23318oWmop0DJ9bcBAqyZ1LdtgTEyn6K7ZUFKG8y3DcH3oJnQBvhgTUin7eA2lry6j/OffcZ8/rdkvAWPY9Rfl3/2G21uPofOSdUyFaAgShAm7sBSIAS0yAMvPgP0rQRl0RHT34tLxoG+a8wXsRuUUYDyagOHoadL+twqwvmhp3rBLcbtrssMCrYupa9kGVVQMxaU4/20Ubo/fZt6ubxeMU7+uFN0xC+Oeo5Qt/hHXh29uyKY3KFVcQsnrn+M0ehDOV1zi6OYI0WJJEGYnrb1YK1QPxIAWF4AVZcPeb6C8BPzbwSU3trwATOXkYziSgPFIAsajpzEeSUCdOWve75eVAlhftDR4zFU4X31Z4zS+jmwt2+Ay7qpq23TubjhfO4SypT9SvnF3sw7CjIfjUckZGM5mUzD80co7K6QRV9znsXw2+lDbSs8I0VpJEGYnrblYa0UVAzFoXgt416akQAvASgvAuw1cdjM4NZ1OHZuoc3kXAq7zQVfV2WQmunbB6Lt34NoOY/Cevp2Thc2zaGlFdS01oO/UHs/1C2qsmK4LCQBo9sva6Ht2xOPrORb3qYxzFD/yJgAey2aZt+va+DdG04RoUSQIE3ZnCsRMz1uC8hLYt0LrCfPwg763gkszS5NRmbkYjlYIuI4koNLPWTxW1z4EffdI9N0jcerWAX23Duh8tdmd7sCUw78026Kl9aFz0sNFlqxRmVrvX3MvaKpzd0UXEWJxn7FC4Kqv4RghhHUkCBMNoqUEXwCGcti/CvLTwdVTC8DcrKtM4TDGjOzzPVsJGI+cxng0AZWRbfFYXYe254MtLejSd42odW285ly0tCEZtv0JgMutwx3cEiFEcyBBmBAXYTTCwe8hOwmcXKHPLeAZ4OhWXaCUQmWc0wKtCkGXqUemEp3uQsDVvULA5eVR5/u2xqKltSn//RDGIwk4XXEJTiOaZgpCnSvIVzwupwBVXo7KzjNvM57/d6Zzc0Hn3XJmAAvRWCQIE6IGSsGR9ZBxQku+73Mz+LZ1ZHsUKi2rwnDiaQxHE+BcXvWD9TptjbtuHbRgq9v5gKsOCzfXVrzUy8uLBQsW8Morr5iLlkYYXbhy22l0v5/G/UgS9O9W37fdLKjsPEpfXYYuIgS3WffWuvi7o9S1gnyl4559H+O+Y5Wvd/1TADhfdzlus6bYsaVCtA4ShAm7a+6VxE1ObIUzfwI66H0DBNQywmrP962UQqVkVujd0spDkJ1f/WAnfeWAq3sk+i4R6Dxsq1NV1+KlPj4+3Dz+Jsq++JmyT76F0nKb7ttcqcJirdaYTof7wifR+Tfdf+ueq1+3+VyPfz9tx5YIIUCCMGFHjbWgc2NI2AUJO7XnPUZDSJeaj63v+1b/396dx0VZ7X8A/8wMDItsIqiICSKiQm4halrihimVudFemttNSX+aa1jXq2Vm6k0NS8ulumW3NJdMTc3d656a4IKKoKkjgbLvzJzfH+OM4Aw0AzPzsHzer9e8HJ7zLN8zKHw9z3m+RwiIW6n6chDq+08pwtgTdgoF5AE+D0a3WjeDPLCpxQqDmlu8FNCWtCiYvAyaW6lweHcEij7bVO4TlrWNyC1AwZRlEFl5cFwxDfJGnlKHREQ1CJMwsghLL+gspdvxwBXtw30I7AH4VlCr0tx+C40G4maqfu6WOuF+wpWdZ3hyOwXkAb73R7eaaZOuwKaQOVivLoa5xUsBQJNyD7JG9eG86C3IPN1Q9Nkmq8VXnYisXBRMWgpRUAjHldMrnE9FRGQMkzCyiJiYGBw7dqzCBZ2PHTuGmJgY/YLO1VFqInBxp/a9XyfAv3PF+5va7xmRUVgY0lubcOUaKeBrbwd5C98HtxNb+0Ee0MTm1eUrU7xU3qIpHOePs05A1ZS4l4WCiZ8AcjmcPpta5hakuJuFwvfXwOG9kZA1cJMwSiKq7piEUZWZtaDz6tWY8/wIuNZzASAAAe0MeIH7X+veP9guSm8vVa1bu+2h7bpt909nsF13nVLn1/2Ze1dAdVLASw24+wK+OQLFv5RzHQDZeblY88WXJvX7m8O/4d08b7gqlIDSDvLApvdvJ5ZKuOyl/+dobvHSyh5Tk2lSM1Dw1mLIXJ3h+Mn/GZTzEIVFUB87D1FYhOo5PZ+Iqgvpf+pTjWfWgs65Wdj+xrQHCzpXI3YAWui+OAUUbal4/1/vJSGnIN+0fhdm4WDfIAwd+TrkzX0gs+M/verCnLINmr/SUTBuIcStVMCvMQom/NvwfMV168EEIqo8/iagKrt37x4A0xd0znBz0Fbjlsm0L+0OgAxlv75/3IPturaH95fpm0w558PHakqArBRAo5bBzhFwayyDTP7wOe9fuNSxmefygCum9zurRSMoWtaeIra1hTllGzQXtWsqAoC4fgcCRESVxyTMQuryAt6entonwkxd0LlxzCg4Dxli0xjLU5gLnF4H5GcCLt5A6AumL0fUaKMPsHOdyf3WfU5UvZhTtsEuvCPsKqilRURkDiZhFlKXF/COiIiAi4sLEnNq1oLOxQXAmQ3aBKwy60HW1H4TEVH1ULdm1JJVuLq6YuRIbbXssdcOYEf6DYj7E9iFENiRfqPaLeisLgb+2AzkpN5fDzIKcDCzckZN7DcREVUfHAkji6hJCzprNEDc/fUg7Ry0I2DOHpU7V03qNxERVS8cCSOL0C3oPHHiRLi6uuJaYVaZW3ETJ06sFoVahdDWAUtLBOR2QPvBgGvDyp+vpvSbiIiqH46EkcUYW9C5uq0defUAoDqvfcix7bNA/aZ/f4zmr3so/m6XtvbTnbuAnR3k/o1h90x32D33ZI3oNxERVT9MwqhSNLfTUPzjHqhPXoT4Kx0oLIKsYX0owtqg3mv9MaSaPP1YWvIJ4Pop7fs2TwHeLSreHwDUZ6+gYFosAED51jAowloDeYUo3nQARQu+hfp/cXD46E3I7Ozg6upaLftNRETVE5MwMpv61EUUTIkF1GrYjxkIu+7tADsF1KcuoejzTSjZeRyOyyZD8agJWY6N3IoDrh7Uvm8ZDjR59O+PEbn5KHjncyA7Dw4fjIVd3zB9m8O0VyDSMqA+cBbF/9kJ5RtPWyly2zOneKm+PTMXouR+kdL7x4qsXGjuastzyDxc61xlfSKiv8MkjMxWtORHoLAI9iMioRweqd8u9/cB7BQo+ug/KProWzh9O1vCKB/46wpwcZf2vV+Y9mWKkt9OAenZQH1XKHoblhmxj+qtTcLW7YL9K/1svs6jtZhTvFTfPvMzaM5cLrOt8J3P9e+dNs6HrImXhSMlIqrZmISR2TR//gUAkLc1HOlS3N+muXoTIjMHMncXm8b2sPQ/gfhfAAjt6FdgD9OP1Vz5EwAgb+IFmdxwFEf2SCPtm+w8qH9PgN3jJgyv1QDmFC/Vcfp8mhUiISKq3Xh/gMwmb6mdza5JUhm0aZJua9/IZIDEI0NZKcDZTYBGDXgHAq37PVi5yCTq+7fkjCRgACBzVOrf6xI2IiIiUzEJI7Mpp78CmbcHitduQ8meUxAFRRDFJVAfv4CipT8CAOQdgyBzcpAsxrx04OxPgLoI8GgKPPpMublUueRNvQHA4Nacjkb1YLtIy6x0rEREVDfxdqQRt2/fxsSJExEfHw+NRoPw8HAsXrwYbm5uUodWLSiCmsHpxw9Q/P1uFM77Csgv0i5qrdFWi5e3bAqHd4dLFl9hjnY5oqI8wKUh0GEwoKjE33RFz8eAzzZCpGZAffwCFF2Cy7SXbDvy4Iv8wipGTUREdQ1Hwh5SUFCAPn36wMPDAxcuXEB8fDxu3LiBoUOHSh1atSGyclH4zy9RvOpn2A/uCcfV78Dp639COeUl2I+IhOPyqZA38ZYktjLrQXoAHYdqq+JXhtzXG/b/GAQAKPzoG6hPJ0AIAZGZg6Jvd6Lk58NA/ft1wCQc9SMiopqJI2EPWb16Na5cuYKDBw9CLpdDqVRi/vz5CA0Nxc6dO/HUU09JHaKkhBAomLQUmgtJsB8eCeW4wfo2ecumKNl/Gvkv/hPKWcO1pStsSF2snQOWkwYo62mXIzJ3PciHKV8fAHkTLxR/vR0F4xcBCgWg0UDetgUcl05C0RdboElPgMxD2gcQiIio5qlxI2FHjhxBq1atIJPJkJycbPHzb968GSEhIfD2fjCS07FjR7i5uWHjxo0Wv15Nozl1CZoLSQAA+5f7GbTb9XwMqOeIwumfQZ1ww3ZxqYG4rUDmraqvB/kwu75hcPrPbDjvWQanDfO0f34xA4oOLSHStetDygNNKL1PRERUSo1JwvLz8zFlyhT06NEDly9f/vsDSvn1118REREBT09P1KtXD4899hhiY2OheaggJQDEx8ejefPmZbbJZDL4+fkhLi6uSn2oDdSXrgMAZJ5ukLkbH2aS+/kAajVKfj5kk5iEAC7sBNKuadeD7DAYcLXC3VBZPSfIfRpA5uyovW5BEcStVEBpB0WHlpa/IBER1Wo1IglLTExEhw4d8NNPP2HHjh1mHbtgwQIMGDAAjo6O2L17N86cOYOIiAhMmDABgwYNQomuyvd9d+/eNbren5ubG+7eNf6UXJ1UUa0HubZN/JVu9TCEAK7sB+5c0IbU7lnt05CWoj53FZpkw1IcAKA+Gg8UlUDRuxNkblygm4iIzFMjkrDz58+jT58+iI+PR0REhMnHHTp0CDNnzkRwcDA2btyI0NBQBAUFYcGCBRgzZgy2bt2KBQsWWDHy2kfeTFugVNzNhMjJM7qP5vodAIDMyPI2lnb9BHDjd+374P6Al4VXSiqK/QmFH39nsF3kF6Loyy2AqzOU47leJBERma9GJGFPP/00PvvsM7i4mDf5+V//+hcAYMKECbC3L1s4dMqUKQCAjz/+GPn5+frtnp6eyM7ONjhXdnY2GjRoYGbktY+iSzBkntpSHcU/7jVoLzkaD3E/CVP0esyqsdw6B1y9f8ezZU/AJ8Q619GcTkDhgv9AfeVPaG6noeTAGRT8YwFEWiYcP5kIecP61rkwERHVajXi6UiFQmH2Mampqdi/fz8AoE+fPgbtrVq1QtOmTXHz5k3s2LEDQ4ZoRzPatm1rMOFfCIHr16/jhRdeMDuO2kbm6ACHOaNRMH05ilf/AgCw6x0KKO20C3gv1z68YBfVG3ZdrJQVAfjrMnBxt/a9fxfAr5N1rmP/fG+UNHCD+th5lOw4BshkkPk0gN0T7eH4cgRkHoa3romIiExRI5Kwyjh16hQ0Gg3s7e3RooXxe1StW7fGzZs3cfLkSX0SNmjQIEyaNAlpaWnw8tIuOHz27FlkZmbq9zGmsLAQhYWGBTtzcnIs0JvqRRHWBk7/+SeK//sbSn49huKvtwNqDWT1XaHoEAi753rArltbq13/3g0gbhu060G2BVo8YbVLwa5vGOz6mrjiNxERkRlqbRKWmJgIAPD29oa8nPVqfHx8yuwLAKNGjUJsbCxiYmKwYsUKlJSUICYmBn379q2wRtj8+fMxZ84cC/agepM3bQiHqS/b/LpZKcAfmwGhBrxbAq0jzFwPkoiIqJqoEXPCKiMrS1u/ycnJqdx9nJ2dAQCZmQ/W/XN0dMRvv/2Gu3fvIjg4GI8++ih8fX2xYcOGCq/3zjvvIDMz0+B14MABC/SGACD3nrYavroIqP8I8OjT5q8HSUREVF3U2pGwqvD19cVPP/1k1jEODg5wcDBcusbchwnIuIJsbQJWnA+4NgLaD6rcepBERETVRa39NaZbbLv0k48Py8vTllhwd696KYXly5dj+fLlBtsruj6Zpjhfm4AVZAHO9YGOQyq/HiQREVF1UWuTMN1k/NTUVGg0GqPzwlQqVZl9qyI6OhrR0dEG20+fPo3Q0NAqn7+u0q0HmXsXcHDRLkekZF1UIiKqBWptEhYaGgq5XI7i4mIkJiaiZUvDZWUuXboEAAgL49NvFVEXATfOAKmXgbwM7TqNDvWAel6AVwDQtL11rqtRA+d+BjJvA3aOQMehgJP1678SERHZRK2d1tywYUOEh4cDAPbs2WPQnpCQgJs3b8LV1RX9+/e3dXg1Rl46cPQrbQLm3xXo8pr21bQjcC8ZSDpqnesKAVz4Fbib9GA9SBcrrAdJREQklVo7EgYAs2fPxr59+xAbG4vRo0fDzu5BdxcvXgwAmDZtmv4pyaqojXPC1EXA6fWA0hkIfbHsRPh6DQBNibZoqqUJAVzeB9y5CMjkQLuBgIev5a9DREQkpRqThKWmpkKtVhtsc3R0BAA0btzY4Jjw8HDMmzcPs2bNwuDBgzFnzhy4uLhgzZo1+PLLLxEZGYl33nnHIvHVxjlhSSe0k+Hb9DP+JGLzrtqXpSUfB/48rX0f3F97y5OIiKi2qTFJWFhYGK5fv15mW+fOnfXvhRBGj4uJiUHHjh2xePFi9O7dG8XFxQgKCsLSpUsRHR1dqSWR6gKhAW7HAXIFUL+Z7a578w8g8bD2fVAvwCfYdtcmIiKypRqThD28nqM5BgwYgAEDBlgumDogJw0oygWcPQF1IZB4AkhLBArzAHsHwKMp4BcGuHhZ7popCcAl3XqQXYFmNXMAkYiIyCQ1Jgmr7mrbnLCcVO2fmmLg+H+0k+JbRwD2TkDGTeDqISDlEtB2IOBd9QofuHcdiN+ufe/bHmjRvernJCIiqs6YhFlIbZsTVnQ/dyzIBlwbaivU69ZodPECHN2AsxuB+G1A99HayfuVlXXnwXqQDYOA1n24HiQREdV+tbZEBVWNuvjB+6YdDZMirwBt9Xp1EaA6X/nr5N4DzvykvV79ZsCjkdonIomIiGo7/rojo0o/DenSwPg+ro20f2bdqdw1CrKBM+vLrgcp59gsERHVEUzCyCiHUuuO2zka38dOqf2zuMD88xfp1oPMvr8e5NAH5yMiIqoLOO5gIbVtYr5rwwfvi/KAep6G+xRp1z+HfTlJWnnURcAfGx9aD7Lq9XKJiIhqFCZhFlLbJubXa6AdocpLB3L+Auo3Ndwn9672T/cmpp9Xvx6k6v56kMO4HiQREdVNvB1J5fK/Xw3/5h+ARlO2Le2aNkGzdwJ8Qkw7nxDA+R3A3WTt3K+OQyxbZ4yIiKgmYRJG5WoSAvi20454nduiHb3Kz9Q+DXl+B6BQAm2fNe12pBBAwl5tbTGZHGj3nHkjaERERLUNb0dShdr005aOuPWHdiK9ugRwdAEaBWkr5jt5aJeMysvLq/A8SceApOOAo70zHh0gg1dz28RPRERUXTEJo7/VuLX2VZ68vDy4uLiUv0MpFw/noHGbehaKjIiIqOZiEmYhte3pSGt5pIPUERAREVUPTMIspLY9HVlZP85OgaOy7EhXQVEunp/TSKKIiIiIqicmYWRRjsp6cFLydiMREdHf4dORRERERBJgEkZEREQkASZhRERERBLgnDCyqIKiXJO2ERER1XVMwiyEJSq0+BQkERGRaZiEWQhLVBAREZE5mIRRlTk7OyMnJ8fkfYmIiIhJGFmATCZDvXqsDUZERGQOPh1JREREJAEmYUREREQSYBJGREREJAEmYUREREQSYBJGREREJAE+HWkhLNZKRERE5mASZiEs1kpERETm4O1IIiIiIgkwCSMiIiKSAJMwIiIiIgkwCSMiIiKSAJMwIiIiIgkwCSMiIiKSAJMwIiIiIgkwCSMiIiKSAJMwIiIiIgkwCSMiIiKSAJctsjLd2pEXL16UOBIiIiIyle73tjXXgGYSZiHlLeCdkZEBAHj11VdtHBERERFV1dWrV9G9e3ernFsmhBBWOTMBAK5du4YWLVpg586d8PLykjocm8nJyUF4eDgOHDgAFxcXqcOxGfab/a4L2G/2uy5IS0vDU089hcTERAQEBFjlGkzCrCwrKwvu7u7IzMyEm5ub1OHYDPvNftcF7Df7XRew39brNyfmExEREUmASRgRERGRBJiEEREREUmASRgRERGRBJiEWZmDgwNmz54NBwcHqUOxKfab/a4L2G/2uy5gv63Xbz4dSURERCQBjoQRERERSYBJGBEREZEEmIQRERERSYBJmA1MnjwZMpkM/v7+UodCRETlOHLkCFq1agWZTIbk5GSpw7GZyvT7woUL6NKlC2QyGfbv32/V+KylOny/mYRZ2fHjx7Fs2TKpw7CJr776CjKZrMLX2bNnpQ7TKnJzczF//nyEhYXBw8MDzs7OCAgIwHPPPYeVK1dKHZ7FJScn/+33WveaNGmS1OFaVHJyMiZPnox27dqhfv36cHR0RGBgIN58800kJSVJHZ7V3Lx5E5MmTULr1q3h5OQEd3d3dO3aFStXroRGo5E6vCrJz8/HlClT0KNHD1y+fNnk444fP45BgwbB29sbTk5OCAkJwQcffIDCwkIrRms5lem3Wq3GggUL8Nhjj+HEiRNWjtA6zO13amoq/v3vf6NPnz7w8vKCvb09GjRogF69emH16tVV+/svyGoKCwtFSEiIaNasmQAg/Pz8pA7JqtauXSucnJxEq1atyn1dvHhR6jAt7vLly8LPz0906tRJbNq0SVy7dk1cvHhRLF68WDg4OAhfX1+pQ7S4pKQkAUAEBASU+71u3LixACBWrFghdbgWs2fPHuHk5CTs7e3Fhx9+KM6dOycuXrwoli9fLtzc3ISLi4s4evSo1GFa3KFDh4SHh4fw8PAQX375pbh27Zo4d+6cGD9+vAAgnn32WVFUVCR1mJVy9epVERQUJPz8/MSuXbsEAAFAJCUlVXjcd999JxQKhejatas4ePCguHr1qli0aJGws7MTYWFhIjs72zYdqKTK9DstLU107txZNGjQQKxbt074+fkJAGLfvn02i7uqzO33lStXhLOzs5DJZCI6OlocPXpUJCYmiu3bt4tOnToJAKJXr14iNze3UvEwCbOi2bNnCw8PD7Fu3bo6k4SFh4dLHYZN5eTkCH9/fxEWFiby8/MN2ufNmyc6duwoQWTWpUvCKvqB/corrwgPDw+Rk5Nju8CsrF27dgKAmDVrlkHbF198IQCIdu3aSRCZ9WRmZoqGDRsKAOKHH34waB80aJAAID744AMJoqu6LVu2iHHjxumTJlOSkatXrwoHBwfRsGFDkZ6eXqZt3rx5AoAYPXq0FaOuusr0+8yZM2Lo0KEiJSVFCCFqZBJmbr/PnDkjAIi3337boC03N1c/yBITE1OpeJiEWUl8fLxQKpVi1apVYt++fUzCaqlZs2YJAGLnzp1Sh2JTt2/fFqGhoeL27dtG21UqlVAqlUZ/cNVkTk5OAoD45ZdfDNri4uL0P9DT0tIkiM46vvzySwFAeHt7C7VabdC+Z88eAUB4eHiIgoICCSKsmpKSkjJfm5KMjBw5UgAQM2bMMGjLyMgQDg4OQi6Xi+vXr1s6XIupTL8fPqYmJmHm9luXhJ0/f95oe0xMjAAgAgMDKxUP54RZgUajwahRo/DEE09g1KhRUodDVqJWq7FmzRo4ODigd+/eUodjUz4+Pjh16hR8fHyMtq9YsQIlJSV46623bByZdbVv3x6AdlLyw3TbZDIZHB0dbRqXNenmcQYEBEAuN/yV0bJlSwBARkYG9u3bZ8vQLEKhUJi1v1qtxsaNGwEAffr0MWh3d3dHWFgYNBoNNmzYYJEYrcHcflf2mOrG3D60bdsW6enpCA4ONtretGlTAMC9e/cqFQ+TMCtYunQpzp07hy+++ELqUGwuOzsbc+fORadOndCwYUP4+vqiT58+WLFiBYqKiqQOz6Li4+OhUqng7++PrKwszJgxA8HBwfD09ESLFi0wYsQInD9/Xuowba64uBgrV67E008/jebNm0sdjkV9/vnn8PX1xQcffID169cjPz8fRUVF2L17N95++20AQHh4OOrVqydxpJajVqsBlP/Ly9nZWf++tj54U9rly5eRkZEBAGjdurXRfXTbT548aauwyEoUCgU8PDzKbVepVAC0yVplMAmzsKSkJLz77ruYO3cuWrRoIXU4Nnf69GkcPXoUc+bMwf79+/HNN9/Aw8MD48aNwxNPPIH09HSpQ7SYc+fOAdA+aRMaGoqLFy/i888/x6FDhzB16lRs3rwZoaGh2Lp1q8SR2taPP/6IO3fuYOLEiVKHYnEdOnRAQkICpk2bhpEjR6JevXpwcnJCv379cOvWLbRv3x5r1qyROkyL0v0cK+8R/tLbdb+QarPExET9+8aNGxvdRzdCXHpfqp22b98OAIiOjq7U8XaWDIaAMWPGoE2bNpg8ebLUodhccHAwFi1ahClTppTZ1qdPHwwcOBBbt27FyJEjsWnTJgmjtJzU1FQAwI0bN9CxY0ds3rxZf7smJCQE/v7+iIyMxKuvvorExER4eXlJGa7NfPrpp2jTpg369u0rdSgWl56ejhEjRuCXX37BlClTEBUVBQcHBxw8eBB37tzBlClTUL9+fanDtKghQ4Zg5syZuH37Nnbv3o2IiIgy7V9//bX+fW5urq3Ds7msrCwA2hESe3t7o/voRgczMzNtFhfZ3q5du/D7778jMjISw4YNq9Q5OBJmQatXr8aBAwewevXqWnHv3FydO3cuk4CVNnv2bADA5s2bceXKFVuGZTV5eXn692+99ZbBfJkBAwYgKCgIWVlZZX5R1WYnT57E8ePHMWHCBKlDsTghBPr374+ff/4ZM2fOxMcff4ywsDC0a9cOb731FkJDQ9GmTRts27ZN6lAtKiAgAPPmzQMAjB07FgcOHIAQAnfv3sXChQuxatUqNGzYEABq1W1YooqkpaVh9OjRaNmyJb7++mvIZLJKnYdJmIWoVCpMnToV06dP10/epQfat2+vT0z/97//SRyNZTg5OenflzdpMzQ0FABqbFFDcy1duhTu7u54/fXXpQ7F4vbu3av/Phr7z8bgwYPh5uaGQYMG4cyZM7YOz6pmzJiBH374Ae7u7ujZsyeUSiW8vb2xZcsW7Nq1S//339vbW+JIrc/NzQ2Adq5ccXGx0X10/0Fzd3e3WVxkOzk5OYiMjIRcLseePXuqdJeDSZiF7Nq1CxkZGfjkk0/g4uJS5jVgwAAA2ttWpbfXJXZ2dvq/qJV9iqS6Kf1koKenp9F9XF1dAaBWzYUrT0pKCtavX6+fK1Xb/P777wCARo0alfv9bt26NUpKSrBq1SpbhmYTzz//PM6ePYvMzExcvXoVWVlZOHz4MJ544gn89ddfAIB27dpJHKX1lZ7re+fOHaP76ObG1cV5wbVddnY2IiMjkZ6ejoMHD+KRRx6p0vk4J8xChgwZgu7duxttO378OF599VU0adKkxq6x9Xfy8/OxZ88e9OrVy+gv4JKSEqSlpQFAhU+a1CQdO3bUv09JSUFQUJDBPikpKQBQ6+YJGVNby1I8rKLbDrpb0jdv3rRVODbn5uamHw0CtP/2ExMT4eDggCeffFLCyGwjKCgI7u7uyMzMxKVLl4z+Er506RIAICwszNbhkRWlp6ejf//+yM3NxaFDh8p9MMMcHAmzEFdXVwQGBhp9+fr6AtCOBpXeXpukpKTg2WefLfeR7Li4OP2j7l27drVlaFbTpk0bfeL1xx9/GN1HVzuqW7duNotLCrqyFJGRkQgICJA6HKvQfa/v3LlT7oTrhIQEAOU/NVdTHTlyRJ9YPGzHjh0oLCxEVFRUnfjPhkKhwJAhQwAAe/bsMWjPzMzEyZMnIZfLMXToUFuHR1by119/oWfPniguLsb+/fvL/BtPSUlB//799f/pNgeTMLKo8iagv//++wCAfv36lTt/qiaaNWsWAG39qJKSkjJt27dvx5UrV9CgQQMMHz5civBsZv369VCpVLWyLIVOv3790KhRIwDAsmXLDNp//fVXfaJS2375Tp8+HePGjTPYnpubi3/+85/w8PDARx99JEFk0oiJiYFSqcTatWsNEvLly5ejsLAQI0aMgJ+fn0QRkiXdvn0b4eHhcHZ2xt69ew3mgOXn52Pnzp3Iz883+9y8HWlFqampUKvV+jlQarVaP4egts0LUygUkMlk+Oqrr6DRaDB69Gg0a9YMKpUKn376KTZt2oTg4OBa95Tg66+/jsOHD+PLL7/EkCFD8N5776Fhw4Y4ePAg3n77bbi5uWHDhg215hZseZYtW1Zry1LoODs747vvvsNzzz2HuXPnQiaTYdiwYXBwcMDevXsxY8YMAMCECRPQr18/iaO1vP379+PNN9/EuHHj4O7ujrNnz2LOnDlQqVTYsWOHfsS/JtL9rH54m27lg4dHNgMDA7Fq1SqMGDECAwYMwMKFC+Hj44NNmzZh9uzZCA0NxZIlS2wVfqWZ229AO6dXV3hbd+y9e/f0v9u8vb2rfXUAc/p969Yt9OjRA9euXUPr1q2N/oyrUiHySi12RCbRratl7DV79mypw7O4hIQEMXv2bNG9e3fh6ekpFAqF8PDwEN26dROLFy+u9CrzNcF///tf0bNnT+Hu7i6USqVo3ry5GDdunLh27ZrUoVndiRMnBACxfPlyqUOxiatXr4ro6GgRFBQkHB0dhb29vWjSpIkYNGiQ2LZtm9ThWcUPP/wghg4dKvz9/YWzs7OoV6+eCAkJETNnzhSpqalSh1dlFf2srujX5NGjR8XAgQNFgwYNhIODg2jdurWYM2eOyM/Pt2H0lVeZfoeHh1d4TEVrT1YX5vR706ZNFe5b1b7LhBCi8ikcEREREVUG54QRERERSYBJGBEREZEEmIQRERERSYBJGBEREZEEmIQRERERSYBJGBEREZEEmIQRERERSYBJGBEREZEEmIQRERERSYBJGBEREZEEmIQRERERSYBJGBEREZEEmIQRUY0ihJA6BLIijUYjdQhENsMkjIhqhLi4OHTr1g1ZWVlSh1JlX331FWQymf71r3/9S+qQqo1169ZhzJgxteL7TPR3mIQR1WL+/v6QyWRITk6WOpQq2bFjB7p27Yonn3wS7u7uRvc5deoUxo8fj5CQEHh4eECpVKJRo0bo0aMHpk2bht27d6OkpMTguHnz5sHT0xN79+61djf0XnjhBahUKkyZMsVm1zSHFJ+JzjPPPIO4uDiEhYXh5s2bNr8+kS0xCSOiai0+Ph5RUVGIiorCggULDNrz8/MxfPhwhIWFQaVSYcGCBTh16hTi4+Px7bff4tFHH0VsbCz69euHJk2aIC4urszx69atQ3p6OjZu3GirLsHJyQmNGzeGi4uLza5pDik+Ex0PDw/s2rULJSUliIyMRGFhoc1jILIVJmFEVK394x//QHFxMd5//32DtuLiYvTv3x/ffPMNYmNjsWnTJjzzzDMIDAxEUFAQIiIi8Nlnn+HEiRNwc3NDamoq7t69W+Yc06ZNQ5cuXfDGG2/YqkvVntSfiZubG9577z3ExcVh/vz5ksRAZAtMwoio2jpw4ACOHDmCoUOH4pFHHjFoj4mJwcGDBzFw4EBER0eXe562bduWO+9qxIgROHbsGEJDQy0Vdo1XHT6T1157Dd7e3li6dClyc3Mli4PImpiEEdVRN2/exIQJE9CyZUs4OjrC3d0d3bt3x8qVK6FWq40eEx8fj6FDh8LLywvOzs5o27YtlixZAo1GY5X5Z99++y0AoHfv3gZtd+7cQWxsLADg//7v//72XK+++ir8/f3h6OgIANi/f3+ZyfEjRowos//hw4cN2lUqFUaOHIkmTZpAoVAYHPfnn38iOjoaAQEBcHBwgJubG0JDQzF16lScPXvW7P4nJydj7Nix8PPzg1KphLe3NyIjI7Fz506zz5WQkIARI0YgMDAQjo6OaNCgAfr06YPY2FjcuXPHpM8EAHr27FlmH2Ov559/vsr9UCgU6NWrFzIyMrB161az+0tUEzAJI6qDTp48ifbt2yM2NhZFRUUYNGgQunXrhtOnT+PNN9/E008/jaKiojLHHDhwAJ07d8bGjRvh4eGB5557Dj4+PpgxYwZefvllq8T522+/AQBCQkIM2rZs2YKCggIolUr06NHjb8/l7e2NpKQkdO3aFQDQrVs3qFQqLFmyxOj+Xbp0KdOelpaGp59+GuHh4Thy5Ah2796Nhg0b6vc/evQo2rdvj40bN+KDDz5AQkIC9u3bhx49emDx4sXo2LEjMjMzTe774cOH0aFDB2zevBkffvghzp8/j++//x7p6eno37+/0flx5Tl79iwee+wxXLhwAStWrEBCQgJ27dqFwMBATJgwATNnzjTpM9FZsmQJVCpVmde2bdsgl8uhUCgwadIki/Sjbdu2AIDdu3eb3FeiGkUQUa3l5+cnAIikpCT9toKCAv32N998UxQVFenbEhMThb+/vwAgYmJi9Nvz8vKEr6+vACCmTJki1Gq1vu38+fOiUaNGAoDBtaoiOztbf84bN24YtI8YMUIAEG3atKnSddauXSsAiOHDh1fYDkBs3bq1TNu7774rJk6cKDIyMoSPj4+QyWTi+PHjBucYO3asACDS09PLbJ89e7YAIGbPnl1me3p6uv4zPXr0aJm2/Px84ePjI+RyuThx4oRJfRw+fLgAIE6ePGnQ1rdvX4O+V/SZhIeHi7Vr15bZlp2dLVq2bCkAiLlz51qsH7o4OnfubFI/iWoajoQR1THr16/H9evX0aRJEyxZsgT29vb6toCAACxatAgA8Omnn6KgoAAAsGHDBty6dQt+fn6YP38+5PIHPzqCg4Px3nvvlXu9DRs2YPDgwWjWrBmcnZ0REhKCxYsXo7i4uMI4r1+/rn/v6elp0J6SkgJA+zSdLTRv3hzPPPNMmW3vv/8+li5ditWrV0OlUqFLly7o3LmzwbGjRo2Cu7s7ZDKZSddavXo1UlJS8Pjjj+tH7nQcHR0xYsQIaDQafPbZZyadLzU1FQBw48YNg7Y5c+bgtddeM+k8ALBy5Uo8++yzZbZFR0fjypUrCA8Px6xZsyzWDy8vLwCo8SVWiMrDJIyojtm/fz8A4MUXX4SDg4NB+5AhQ1C/fn1kZ2fj999/B6C9FQkAUVFRZZI2nVdeeaXc6y1atAgODg74+OOPsW3bNrz88st49913MXr06ArjzM7O1r83FqepCY2ltG7duty2Xbt2AQDCwsKMtnfu3BkZGRnl1jgr73ydOnUy2h4QEAAA+N///mfS+fr06QNAO9l95syZuHTpkr6tW7du+nZTtGrVCg0aNNB//d133+Gbb76Bp6cnvv322zIJelX7ofu+s3Ar1VZ2UgdARLZ169YtANqRHWNkMhmaN2+O9PR0/b66opn+/v5Gj/Hw8IC7u7vROU9bt26Ft7e3/utevXpBCIH33nsPH3/8MRo1amT0nKULqyoUCoN23XEZGRlGj7e00n14mG7UrqJ9zKEbsVq5ciXWrFlj0K57cEL3/fk7EydOhEqlwrJly7BgwQIsWLAAQUFBiIqKwtixY9GsWbNKxZmYmIhx48YBANasWYOmTZtatB+677uxIrtEtQGTMCIyWUWjT+W1GUtMdKUPbt++XW4S5uzsrH9fVFRkMBr2+OOPY+3atUhMTERJSQns7Kz748zWI2+A9jbf+PHjy203NSY7OzssXLgQ06dPx/fff48ff/wRR44cwbx58/Dvf/8bq1evxksvvWRWbMXFxXjppZeQnZ2N8ePH47nnnrN4P3SFWuvVq2dWbEQ1BW9HEtUxvr6+AIBr166Vu09SUlKZfXV/ljc3JzMz06wRqYMHD0KpVKJFixbl7lM6OSt9a1Jn4MCBcHJyQlFREQ4dOvS317xy5Qq++uorHD582OQ4TeXn5wfgwdwrS51PCIHAwMByXxV9fsZ4e3tj4sSJOHz4MJKSkvDaa68hPz8fY8aMMXtEMSYmBidPnkTbtm2xePFiq/RD930v/RQqUW3CJIyojunZsycA4IcfftBPvC9t06ZNSE9Ph6urq37ESlcCYv369UZvDa1bt87k61+4cAFLly7F2LFj4ebmVu5+TZo00S/ro5uEX1qjRo0wefJkAMDSpUv/9roTJkzAG2+8YfRcVdWvXz8AwIkTJ4y2nzx5En379sXx48ctcj4hBCIiIjB16lSTzvfRRx/py33o+Pn54euvv0ZgYCByc3Nx+fJlk84FaOd6LV68GE5OTvjvf/+rr70GaOu3bdiwwSL90NUva9WqlcmxEdUkTMKI6pioqCg0a9YMt2/fxttvv10mqUpKStIvKj1hwgT9L9eoqCj4+PggOTkZs2bNgkaj0R9z6dIlzJ0716Rrp6WlYdCgQQgMDMRHH31U4b4ymQzdunUDoB3FMmbOnDmIiIjAli1bsHz58nLPtXz5cuzcuRP9+/fH0KFDTYrVHKNGjULjxo1x4sQJownHokWLcObMGXTo0MGs8x09ehRHjhwxaP/uu+/w22+/6RPqv/Prr79i7dq1RttKSkogk8mMrkhgTEpKCl5//XUIIfDJJ58gODi4TPulS5f0SVVV+5GQkAAAePLJJ02KjajGkbI+BhFZl7E6YUIIceLECeHp6SkACD8/P/HCCy+IyMhI4ejoKACIp556ShQWFpY5Zs+ePfr2wMBA8eKLL4p+/foJpVIpoqKiRLNmzQQAcevWLaOxZGVliU6dOgk/P79y93lYbGysACBmzpxZ7j55eXn6mmGDBw8WW7duFVevXhUJCQli27ZtYsiQIUImk4nIyEiRlZWlP66wsFCoVCqxZMkSAUA8//zzQqVSiezsbCGEECUlJUbbVSqV0TiOHDkiPDw8hI+Pj/j+++9FcnKyOHnypBg1apRQKBTil19+KROzSqUSU6ZM0ddeK33t0ufz8vISq1atEomJiSIuLk7MmzdPODo6igkTJpj0GQqhre0FQEyaNEmcOHFCXL9+XRw9elS89NJLAoCYPHmySZ+JRqMRTz31lAAgunTpIuLi4gxea9asEX5+fhbpR8eOHQUAcfHiRZP7SlSTMAkjqsXKS8KEEOLGjRsiOjpaBAQECKVSKVxdXcXjjz8uPv/8c1FcXGz0fH/88YcYPHiw8PT0FI6OjiI4OFgsXLhQFBYWCqVSKeRyucjPzzc4rqCgQPTq1Ut4eXmJS5cumRx/VlaWcHd3Fy1atCg3Jp0TJ06IMWPGiJYtWwpnZ2ehVCpFs2bNxLBhwwyKrAohxL59+/RFWEu/dIVTk5KSjLZX9H/XGzduiHHjxgl/f3+hVCqFr6+vGDhwoEEx0tIFYI1du/T5xo8frz9f48aNRc+ePcX69euFRqMx7UMUQly/fl0sXLhQPPnkk8LT01PY2dkJX19fERERITZv3mzyZ5KcnFzuZ1L6VToJq2w/4uPjhUwmE/369TO5n0Q1jUwIIawxwkZEdcfBgwcRHh6Otm3b4ty5c2Xa1Go1hg0bht9++w179+4tt5ZWeWJjYzFhwgSsXr0aI0eOtGTYVI0NGzYMP//8M86cOWN02Sqi2oAlKojIJKmpqcjJyTGoLxYfH48xY8YAAN544w2D46Kjo7F582a8//77UKvVOHbsmL4tODi4wsn5uuOPHj2KqVOnokOHDnjssccs0BuqzpYtW4aNGzdizZo1TMCoVuNIGBGZZP/+/ejVqxeCg4MREBAAJycnJCUl4fTp09BoNIiIiMD27dsN6nX5+/uXWYKotH379pk0ubykpATTp0/H119/jZs3b8LJyckSXaJq6Ndff8WLL76IVatWYdiwYVKHQ2RVTMKIyCS3b9/Ghx9+iAMHDuDWrVvIzs6Gq6srQkJC8PLLL2PMmDFWL5h6+vRphISEGF3GiGqHy5cvw9PTU79uJFFtxiSMiIiISAKsE0ZEREQkASZhRERERBJgEkZEREQkASZhRERERBJgEkZEREQkASZhRERERBJgEkZEREQkASZhRERERBJgEkZEREQkASZhRERERBL4f017j0ATQFoyAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "classiq_color = \"#119DA4\"\n", + "classiq_color_1 = \"#F43764\"\n", + "qiskit_color = \"#bb8bff\"\n", + "plt.rcParams[\"font.family\"] = \"serif\"\n", + "plt.rc(\"savefig\", dpi=300)\n", + "plt.rcParams[\"axes.linewidth\"] = 1\n", + "plt.rcParams[\"xtick.major.size\"] = 5\n", + "plt.rcParams[\"xtick.minor.size\"] = 5\n", + "plt.rcParams[\"ytick.major.size\"] = 5\n", + "plt.rcParams[\"ytick.minor.size\"] = 5\n", + "\n", + "(qiskit1,) = plt.semilogy(\n", + " num_qubits_qiskit,\n", + " qiskit_times,\n", + " \"-s\",\n", + " label=\"qiskit\",\n", + " markerfacecolor=qiskit_color,\n", + " markeredgecolor=\"k\",\n", + " markersize=6,\n", + " markeredgewidth=1.5,\n", + " color=qiskit_color,\n", + ")\n", + "\n", + "(classiq1,) = plt.semilogy(\n", + " num_qubits_classiq,\n", + " classiq_times_opt_width,\n", + " \"-D\",\n", + " label=\"classiq width opt.\",\n", + " markerfacecolor=classiq_color,\n", + " markeredgecolor=\"k\",\n", + " markersize=6.5,\n", + " markeredgewidth=1.5,\n", + " color=classiq_color,\n", + ")\n", + "\n", + "(classiq2,) = plt.semilogy(\n", + " num_qubits_classiq,\n", + " classiq_times_opt_cx,\n", + " \"-o\",\n", + " label=\"classiq cx opt.\",\n", + " markerfacecolor=classiq_color_1,\n", + " markeredgecolor=\"k\",\n", + " markersize=7,\n", + " markeredgewidth=1.5,\n", + " linewidth=1.5,\n", + " color=classiq_color_1,\n", + ")\n", + "\n", + "first_legend = plt.legend(\n", + " handles=[qiskit1, classiq1, classiq2], fontsize=16, loc=\"upper left\"\n", + ")\n", + "\n", + "\n", + "plt.ylabel(\"Generation time\", fontsize=16)\n", + "plt.xlabel(r\"$\\log_2$(Circle size)\", fontsize=16)\n", + "plt.yticks(fontsize=16)\n", + "plt.xticks(fontsize=16)\n", + "plt.axis(ymin=2e-1, ymax=2.5e4, xmin=4, xmax=12)\n", + "\n", + "\n", + "for x, y, num_qubits in zip(\n", + " num_qubits_classiq, classiq_times_opt_width, classiq_widths_opt_width\n", + "):\n", + " plt.text(x * 0.98, y * 1.4, str(num_qubits), fontsize=16, color=classiq_color)\n", + "\n", + "for x, y, num_qubits in zip(\n", + " num_qubits_classiq,\n", + " classiq_times_opt_cx,\n", + " classiq_widths_opt_cx,\n", + "):\n", + " plt.text(x * 0.96, y * 0.5, str(num_qubits), fontsize=16, color=classiq_color_1)\n", + "for x, y, num_qubits in zip(num_qubits_qiskit, qiskit_times, qiskit_widths):\n", + " plt.text(x * 0.94, y * 1.2, str(num_qubits), fontsize=16, color=qiskit_color)" + ] + }, + { + "cell_type": "markdown", + "id": "dbd2a879-61e3-48cb-8f42-4122bac5002e", + "metadata": {}, + "source": [ + "## Synthesizing large-scale examples\n", + "\n", + "We have extended the above model to larger and larger circle sizes. The results are saved in a `csv` file." + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "id": "87c9a685-fa6c-47bf-8b96-6e2491a27c9b", + "metadata": {}, + "outputs": [], + "source": [ + "ind_for_plot = [0, 5, 10, 12, 14] + [k for k in range(15, 23)]" + ] + }, + { + "cell_type": "code", + "execution_count": 90, + "id": "159ba8f0-eff7-4881-9624-28ef0b09262a", + "metadata": {}, + "outputs": [], + "source": [ + "import pathlib\n", + "\n", + "from pandas import *\n", + "\n", + "path = (\n", + " pathlib.Path(__file__).parent.resolve()\n", + " if \"__file__\" in locals()\n", + " else pathlib.Path(\".\")\n", + ")\n", + "input_file = path / \"results.csv\"\n", + "\n", + "# reading CSV file\n", + "data = read_csv(input_file) # this data is with cx optimization and max_width=100\n", + "\n", + "# converting column data to list\n", + "num_qubits_cx_opt = [data[\"log2_circle_size_cx_opt\"].tolist()[k] for k in ind_for_plot]\n", + "cx_cx_opt = [data[\"cx_cx_opt\"].tolist()[k] for k in ind_for_plot]\n", + "time_cx_opt = [data[\"time_cx_opt\"].tolist()[k] for k in ind_for_plot]\n", + "width_cx_opt = [data[\"width_cx_opt\"].tolist()[k] for k in ind_for_plot]\n", + "\n", + "# converting column data to list\n", + "num_qubits_width_opt = [\n", + " data[\"log2_circle_size_width_opt\"].tolist()[k] for k in ind_for_plot\n", + "]\n", + "cx_width_opt = [data[\"cx_width_opt\"].tolist()[k] for k in ind_for_plot]\n", + "time_width_opt = [data[\"time_width_opt\"].tolist()[k] for k in ind_for_plot]\n", + "width_width_opt = [data[\"width_width_opt\"].tolist()[k] for k in ind_for_plot]" + ] + }, + { + "cell_type": "code", + "execution_count": 96, + "id": "5148b583-03bc-4be4-b112-e37097befbee", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtAAAAHgCAYAAACMxVqsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hUZdrH8e+ZmfTeeyGU0KVIV0CKAoIruPbdVdhdXxVd1y6wFlyxoLii4q66YtlV196V3pFIR3ogIZBAeq+TKef9Y5Ihw0zKpCfcn+viSnLOmTPPCCa/PPM8962oqqoihBBCCCGEaBJNRw9ACCGEEEKIrkQCtBBCCCGEEE6QAC2EEEIIIYQTJEALIYQQQgjhBAnQQgghhBBCOEECtBBCCCGEEE6QAC2EEEIIIYQTJEALIYQQQgjhBAnQDphMJl555RVGjBjBkCFDiIuLY8aMGSQnJ3f00IQQQgghRAfTdfQAOqO77rqL7OxsNmzYgI+PD9nZ2YwYMYLU1FT69OnT0cMTQgghhBAdSJFW3ra2bNnClClTOHv2LCEhIdbju3btIjY2lrCwsA4cnRBCCCGE6GhdbgnHzz//TGJiIoqikJaW1ur3X7lyJcOHD7cJzwAjRoyQ8CyEEEIIIbpOgK6srOTBBx9k/PjxTq9FXrVqFVOnTiUwMBAvLy+GDRvG66+/jtlstrs2KSmJ2NhYXn/9dUaOHEmfPn2YNWsWe/bsaa2XIoQQQgghurAuEaBTUlIYMmQIX3zxBT/99JNTj33hhReYPn067u7urF27ln379jF16lTuvfderr32WoxGo8316enp/PDDD2zcuJGNGzdy8OBBoqOjGT9+fJvMeAshhBBCiK6lS6yB/vbbb1m1ahVLly7F29sbRVEAOHXqFPHx8fU+buvWrYwfP57+/fuzf/9+XFxcrOfuuOMO3n77bZ555hkWLVpkPa7VajGbzWRkZBAVFQVAWVkZERER3HTTTbz99ttt8yKFEEIIIUSX0CUCtMlkQqvVWr9uaoCePHkyGzZs4J///Cd33nmnzbnjx4/Tt29ffH19ycrKwsPDAwB/f390Oh15eXk21w8dOhQXFxd27tzZSq9KCCGEEEJ0RV1iCUfd8NxUubm5bNq0CbAE6QslJiYSHR1NSUmJzbKQxMREh2ujtVotZWVlTo9DCCGEEEJ0L10iQDfH7t27MZvNuLi40LNnT4fX9O3bF7CUqKt19dVXU1hYyLlz56zH9Ho9J0+eZPjw4W07aCGEEEII0el120YqKSkpAISEhKDROP49ISIiwuZagHvvvZe33nqLBQsW8O6776LRaHjmmWcwGAw89thj9T6fXq9Hr9fbHc/Ly2Pr1q306tXLukxECCGEEEJ0HpWVlaSlpXHVVVcRHBzc6PXdNkCXlJQANBhaPT09ASguLrYeCwgIYNOmTdx///306NEDnU5Hz5492bJlCwMGDKj3Xs899xyLFy9updELIYQQQoj29t///pdbb7210eu6bYBuiV69evHdd9859ZgFCxbwwAMP2B1PSkriqquu4r///S/9+vVrrSEKIYQQQohWcvToUX73u981WJyirm4boH19fQHLlHx9KioqAPDz82vx87m5ueHm5mZ3vPZtgH79+jFs2LAWP48QQgghhGgbTV1u2203EdZuHMzNzXVYVQMgMzPT5lohhBBCCCEa021noIcPH45Go8FgMJCSkkLv3r3trjl27BgAI0aMaPHzrVixghUrVtgdb2gGXAghhBBCdD3ddgY6NDSUCRMmALB+/Xq788ePHycjIwMfHx+mTZvW4uebP38+R44csfvzxRdftPjeQgghhBCi8+i2ARrgySefBOD111/HaDTanFu2bBkADz/8sLUahxBCCCGEEI3pMgE6NzeXrKwssrKyGjxW14QJE1iyZAmHDx9m9uzZ7N27l+TkZB577DHefvttZsyYwYIFC9rrJQghhBBCiG6gy6yBHjFiBKdPn7Y5NnLkSOvnqqo6fNzChQsZOnQoy5YtY9KkSRgMBvr06cPy5cuZP39+s9qEOyJroIUQQgghLg6KWl/yFK1i7969DB8+nD179kgZOyGEEEKITsjZvNZllnAIIYQQQgjRGUiAFkIIIYQQwgkSoIUQQgghhHCCBGghhBBCCCGc0GWqcHR2UoVDCCGEEOLiIAG6lcyfP5/58+fbHa/d1SmEEEIIIeqXnp4OQExMTAePpHGyhEMIIYQQQnSo9PR0Jk6cyMSJE61BujOTAC2EEEIIITpMbXhOTU0lNTW1S4RoCdBCCCGEEKJD1A3PmpBQNCGhXSJEyxroViKbCIUQQgghmu7C8OzzyCIASpcusYboTZs2dco10TID3Urmz5/PkSNH7P588cUXHT00IYQQQohOxVF41gQGoQkMsnzeyWeiJUALIYQQQoh2U194rtUVQrQEaCGEEEII0S4aC8+1OnuIlgAthBBCCCHanKqqZJZXUGE0dvRQWkw2EQohhBBCiFalqiqZFZXsz8tnX14B+/PyOZBfQF6VHvO9D6JZugRzbg6lS5c4nIU2F+RTWnNNQkJCp9tMKAFaCCGEEEK0SE5lJfvzCtiXl8/+msCcXVlld51OUejfuxc9//k2391/D7np6XYhurOHZ5AALYQQQgghnJBfVcW+vAIO1ATlffkFnCuvsLtOoyj09fdjSHAgQ4ODGBIcyICAANx1WgDSRw61roeuDdFApw/PIAG61UgdaCGEEEJ0N0V6fc2McgH78i2zy+ll5XbXKUAffz+GBgcyJDiIS4ICGRQUgKeu/qgZExPDpk2bbEI00OnDM0iAbjXz589n/vz5dsf37t3L8OHDO2BEQgghhBBNV1Jt4Nd822UYp0rLHF7by9eHITWzykODgxgYFICPi4vTz3lhiAY6fXgGCdBCCCGEEBedMoOBg/mF7KvZ3Lc/r4ATxSUOr4338WZIzczy0OBALgkKxNfVtdXGUjdEA00Kz7/mF/DGoaNsz8oht7IKH1cX4ry9GRMeyiNDB1nDfHJRMR+dSGXzuSxSikuoNpsJ9XBnXHgY8wf2Y2BQQLPGLAFaCCGEEKIbqzAaOVRQaJ1V3pdXQHJRMaqDa2O8vSyzykGW2eVLggMJcHNr8zHWhujazxuy8mgyi3bu4cFLBvK34UMI8XAnuaiYh3bsYsWho/y5Xx98XFw4UlDI5V//iL+bK8+OGs6kqEhcNRo2Z2bx6I5dfJGaxjtXXMas+FinxysBWgghhBCim9CbTBwuKLIpH3esqBiTah+XIzw9rJv7hgQHMSQokGAP9w4YtUVTlmxsy8zm4R27eHrkMOYP7Gc9PigokBWXj+HWdZvRaSxtTvRmMyrw4pgRzEmIt157TXwsnjodN6zZyH3bfmFKdKTTY5UALYQQQgjRBVWbTBwtLLZZhnGksAiD2Wx3baiHO0NrNvcNDQ7kkuAgwj09OmDULfPEzr34uLrw53597M718vPll+tmWb/21OkYFhzE9Nhou2snRUXgrtVSVF3Nvrx8nP21QQK0EEIIIUQnZzSbOV5UbJ1V3p9XwKGCQqodhOUgdzeGBJ1fszwkOIgITw8URemAkbeeY4XF7M8vYEp0JK5abaPXJ/r7se6aaQ7PaRQFLxcdVSZTs8YiAVoIIYQQohMxmc2cKC61BOWaqhiH8gupdBD2/FxdayphnA/M0V5eXT4sO/JLTi5gWae94Wwmrxw4zP78fExmlZ5+vtzQswd3Dki0LuFoSH5VFflVenxcXBgcFEjyubNOjUUCdCuROtBCCCGEcJZZVUkpKbWuWT6Ql8+v+YWUG4121/q4uNSsVw5kSJAlLMf5eHfLsOxIaomlSsiGjEy+SE3jpTEj+CD6cipNJl7af4gndu1la2YWH02ZgLaREP3JyVMA3D2wL97NKL8nAbqVSB1oIYQQovNLT08HmrZhrbWpqkpaaVmdOssF7M/Pp8xgH5a9dDoGBwXYLMNI8PVBc5GEZUdKqg0AnC4r4x/jRvHbnj0A8AeWjR3Jntw81mac4z/JKdzet3e998mqqOSl/YcYHhLEg5cMbNZYJEALIYQQ4qKQnp7uVK3hllBVlYzycuua5X01gbm4utruWg+tloFBAZaKGDVrl3v7+TQ6i3oxu75nvN2xm3ol8Gv+Hr5ITas3QFcYjdy+YQvB7m58NGVik5Z7OCIBWgghhBDdXm14ru12N3HixFYL0aqqcq6ismZzX81SjPwC8qv0dte6ajQMDAywWbPcx9+v2UHuYhLgZmneEuTu5rBFeJyPNwApxaUOH19lNHHb+i0U6qv5avoUQlpQsk8CtBBCCCG6tbrhWRMSCkBqamqzQ3R2TVjeV7MEY39eATmVVXbXuWg09A/wt+ni19ffr0kVJIS9RH8/AKpN9pVH6nK0yqXCaOTWtZvJq6rihxlTW1zvWgK0EEIIIbqtC8OzzyOLAChduqRJITqvsor9+edLx+3Lyyezwr5AgFZR6FcTlmtnl/sH+OMmYbnVTIiMQKMolBoMFOr1dh0Sz5SWAdCnJmjXKjUYuGnNRqpMJr6dMcXmcV+mphHl5YWz2wglQAshhBCiW3IUnjWBQQD4PLLILkR7h4batLs+kF9Aelm53X01ikIfP1+bLn4DA/3xcLCsQLSecE8P5vSI4/PUND46kWrTiRDOV9b4fZ+e1mNFej2/Xb0RnUbhq2lT8HW1jcrvHjvBuPAwrnRyLPI3LYQQQohup6HwDKAJDLIJ0b1GjMDjoYU219Tq7ed7fhlGUCADgwKaVfpMtNyzo4ZzIL+AF/b9SoSnB9NjoymuNvDygUPszy/gD316Wdt2F1Tpmb1qPQcLCrkqJor7t/9id7/jRcWMCw9zehwSoIUQQgjRrTQWnmvVDdHV2dkYly5hwNPPMjIx0bpmeVBQoN2speg4wR7urJ11FS8fOMyze3/l7i07cNdpGRwYyNsTx3FdTXgG2JGdw8GCQgBWpzvXKKUxEqCFEEII0a2oqorBQYvrxsR6e/HD1Vd2SI1o0XS+rq48NWIoT40Y2uB1V8fFUDDv1ibdc+/evU6NQWqmCCGEEKJLM6sqhwsKeevIcf6wfguTt+2kZP79aEJCMefmULp0CeaCfPvHFeRbzuXmkJCQwJbNmyU8iyaRGehWIq28hRBCiPZhMps5XFjE9qwcfs7M5ufsHAr1tg1KvENDGbXsFXYvfISCjAxKly6xWcpxYXhu68YqontRVFVVO3oQ3VltK+89e/YwbNiwjh6OEEII0eUYzWYOFhSyPTOHn7Oy2ZGda9fRz0unY1RYCOPCQxkXEcaQoEBctdoGy9hJeBa1nM1rMgMthBBCiE7FaDZzIL+A7ZnZbM/KISk7l1KDweYabxcdY8JCGRceytjwMC4JDsTFQTe/mJgYNm3aZA3RpUuXAEh4Fi0iAVoIIYQQ9UpPTwdo05BpMJvZl5fPz5k5bMvKZmd2LmVGo801vq4uNYE5jHERoQwKDGhy++sLQzQg4Vm0iARoIYQQQjhUu/wBaNWwqTeZ2Jebz/asHLZnZbMzJ5cKo8nmGn9XV8aGhzI2PJTLIsIYEOCPtomB2ZG6IRrqfz3zt+zg45Op9d7nkSGDeGzYYOvXyUXFfHQilc3nskgpLqHabCbUw51x4WHMH9iPgUEBzR6z6LwkQAshhBDCTt21w0CjLa8bUmU0sTcvj201a5h35eRRabINzIFubowNtyzJGBceRv9AfzSK0iqvpVZtiK79vD6Bbm4Eubs5PFf3+JGCQi7/+kf83Vx5dtRwJkVF4qrRsDkzi0d37OKL1DTeueIyZsXHturrEB1PArQQQgghbFy48Q6waXndWIiuNBrZnZvH9kzLDPPu3Dz0Jtu6zMHubowND+Oy8FDGRoTR19+v1QOzI035BeBP/frYzDLXR282owIvjhlh7X4HcE18LJ46HTes2ch9235hSnSktPnuZuRvUwghhBBWDVWtqC9ElxuM7MrJtS7J2JubT/UFjUzCPNwtgTnCsumvj58vSjsE5rbkqdMxLDiI6bHRducmRUXgrtVSVF3Nvrx8xjajXbTovCRACyGEEAJouAV2bcvr1NRUJkycyJKP/8dJjYs1MBsvqIob4enBuPAw6xrmnr4+XT4wXyjR349110xzeE6jKHi56Ki6YKmK6B4kQAshhBCiwfAMoAkMsoboU6mp/G7mTJtrorw8uSw8jLERljXMPXy8u2xgPlRQyC1rN7E/r4ACvZ4gdzdGh4Vyz6B+DA0OavwGQH5VFflVenxcXBgcFNjGIxbtTQK0EEIIcZFrLDzXqhuizbk5qP94gcUf/49rhg4l1turywbmC+3IzuGpEUN5/fIxeOp07MrN5dEdu7nqu9Usv2w0N/dOaPQen5w8BcDdA/vi7eLS1kMW7az59WCEEEII0W2YmtGYONjdnWt7xBPXhWebL3TXgL6smzWN3/fpRaC7G+46LZdHhPPhlAkA3L/9F06XljV4j6yKSl7af4jhIUE8eMnA9hi2aGcSoIUQQoiLULXJxLbMbBbv2setew5SdPdf0YSEYs7NscwwF+TbPcZckN/tW2APDAqgh6+P3fEevj5Mjo6k2mzms5RT9T6+wmjk9g1bCHZ346MpE5vc7EV0LbKEQwghhLhInCktY/3Zc6zPyGTLuSybbn/awCDGPPcSR59cSMHZDEqXLrFZynExhOfG1Abr5KISh+erjCZuW7+FQn01X02fQoiHe3sOT7QjCdBCCCFEN1VpNLI9K4f1GefYcDaTE8W2wS/E3Z3J0RFMjopkYlQ4Qe7upF850boeujZEAxd9eAYw1yxzcbRapcJo5Na1m8mrquKHGVMJlvDcrUmAFkIIIboJVVU5UVzC+rOZrM84x89ZOTZl1LSKwqiwECZHRTA5OpKBgQF2zUvqtryuDdHARRGef8nO5bYNW0iaMxN/N/tOhKklpQD09vO1OV5qMHDTmo1UmUx8O2MKAXUe+2VqGlFeXowKC2nbwYt2JQG6laxYsYIVK1bYHa+srOyA0QghhLhYlBoMbD2XxbqMc6w/m0l6WbnN+SgvTyZHRTI5OoIJkeH4uro2es8LQzTQ7cMzgMFsJqeyivVnM7muTmdBgJPFJWw8m4mLRsP1PXtYjxfp9fx29UZ0GoWvpk3B19W24sa7x04wLjxMAnQ3IwG6lcyfP5/58+fbHd+7dy/Dhw/vgBEJIYTojlRV5XBBkXUtc1J2jk0TE1eNhrHhoUyOjmRyVCSJ/s3r+Fc3RANNDs8ZZeWM/ep7ygxGvp0+hcsibDvwBa78sEnPXzDvVqfH3FK1/5Ue2bELvcnElOhIfF1c2ZWby8M7dgHw0tgRxPl4W8ZYpWf2qvUcLCjkqpgo7t/+i909jxcVM066EHY7EqCFEEKIVpSeng7QqjO1hXo9G89msv5sJhszMsm64N3NnjUVIiZHRTA2PAwvl9b58V4boms/b4q/bEuizGBs8JooL088dY7HeKasjFhvb6fG2VrGhofyw4ypfHXqNK8dPMrDP+/CqKqEergzJiyUf44fa9NIZUd2DgcLCgFYnX62Q8YsOoYEaCGEEKKV1DYkgabP2DpiMpvZl1dgnWXem5dv3cAG4FlTm7h2LbOjsmutxZnX8N6xE+zPK6C3n6/dhsW6/jl+rN3MNEBOZSWDP/maP/fr06yxtpSiKIwJD2VMeGiTrr86LqZDZspFx5MALYQQQrSCut38ACZOnOhUiM6uqKyZZT7HxrNZFOj1Nuf7BfjVrGWOZHRYCG5abau/hpbIKCvnyV37eH70pXx0IqXeAD27RxzB7o4rVLx37CRuWi03NaHTnxAdSQK0EEII0UIXtsIGSE1NbTBEG8xmduXksj7DEpp/zS+0Oe/r6sLEyAgmR0cwKSqSKC/PdnktzfWXbUmMCgvh5t4JfHQipd7r3rniMofHDWYz7x07wc29E6T1tej0JEALIYQQLXBheK5bN/nCEJ1RVs66mprMm85l2q0VHhocyKSaihmXhgR3mS527x8/yZ7cfLbPvrrZ9/g27QzZlZUdtnxDCGdIgBZCCCGayVF4ru3c5/PIImuIHjxmDPFPPM1pnW1t4SB3NyZFWRqZXBEV0SU712WUlfPEzr08PXIY0d5ezb7PW0eOMzk6kp4X1FgWojOSAC2EEEI0Q0PhGUATGGQN0UVnz/Lr3xbg++jfGJ2YaOn+Fx3JJUGBdo1Mupq/bv+FYcFB3JbYq9n32J+Xz66cPD6ZOrH1BiZEG+oa7w0JIYQQnUhj4blWbYjWhIRizs3Bf8U/eOuSfjw0ZBBDg4O6fHj+4PhJfsnOZfllo1p0n7eOHKenrw9ToiNbaWRCtC0J0EIIIYSTzKqKvk6L7Kbq6oG5rrPlFTy+cy9PXDqEWJ/m123Oq6ziq1On+WO/Ps1q+CJER5AlHEIIIUQTGMxmtmVm8/3pdH46nUHZPQ+gWboEc24OpUuXOJyFNhfkU1pzTXdrhb35XCalBgOPJu3m0aTdDq+55qd11s8ddSUEeO/4CVwUDbf07tlmYxWitUmAFkIIIepRYTSyISOT70+fYXX6OYqrq63n/MLCmf76G2x8+AGyz5yxC9HdOTwD3NK7Z72hd9aPa9melVNvaK5lNJt599gJbuzVA19XKV0nug4J0EIIIUQdRXo9q9PP8sPpDNZnnKOyzlKNEHd3psdGMzM+hssjwnDTakkfM9K6Hro2RAPdOjy3lm/TzpBZUcmf+id29FCEcIoEaCGEEBe9rIpKfjydzven09mWmY2xTtvsWG8vro6LYWZcDCNDg9FeUJs5JiaGTZs22YRoQMJzE7x9JJkJkeEk+vt19FCEcIoEaCGEEBel1JJSvj+dzg+n09mVk2dzrl+AH1fHxTArLoaBgQGNbm67MEQDTQ7PGWXljP3qe8oMRodLHpKLivnoRCqbz2WRUlxCtdlMqIc748LDmD+wHwODAprx6lvfmdIyhnz2jc2x2jXQ48JD+W7GVJtzv+YX8EtOLh9OmdBuYxSitUiAFkIIcVFQVZVDBYV8fzqDH06nc6SwyOb8pSHBzIyL5uq4mGY186gbooEmzzz/ZVuSXUfCWkcKCrn86x/xd3Pl2VHDmRQViatGw+bMLB7dsYsvUtN454rLmBUf6/R4W1usjzcF825t8vWDgwKdul6IzkQC9AXS0tIYNmwYsbG234xiY2P59ttvO2hUQgghmsOsquzMyeX7tHR+OJ3B6bIy6zmtonBZRBgz42KYHhtNpJdni5+vNkTXft6Y946dYH9eAb39fDlRXGJ3Xm82owIvjhnBnIR46/Fr4mPx1Om4Yc1G7tv2C1OiI/HQyY90IdqL/N/mwDXXXMN7773X0cMQQgjRDNUmE1try82dySCnssp6zl2rZXJUBFfHxXBVbBQBbm4N3Kl5mrreOaOsnCd37eP50Zfy0YkUhwHaU6djWHAQ02Oj7c5NiorAXaulqLqafXn5jA2vv9qFEKJ1SYAWQgjR5ZUbjKw/e47v09JZk3GWkmqD9ZyvqwtXxUQxMy6GSVGReLl0jh99f9mWxKiwEG7uncBHJ1IcXpPo78e6a6Y5PKdRFLxcdFQ1o6GLEKJlOsd3ESf8/PPPzJ07l+TkZE6dOkV8fHxHD0kIIUQHKNTrWXXmLD+cTmfD2UybIBnmUVtuLpbLwkNx1Wo7cKT23j9+kj25+WyffXWz75FfVUV+lR4fFxcGBwW24uiEEI3pMgG6srKSv/3tbyxfvhyTk79tr1q1imXLlrFnzx70ej2JiYnMmzePu+++G43Gvpt5cnIys2fP5vTp0+j1eiZNmsTjjz9OaGhoa70cIYQQzXCuvIIfT1vWM2/LysZUp9xcvI+3tdzciNDgTts2O6OsnCd27uXpkcOI9vZq9n0+OXkKgLsH9sXbRZqQCNGeukSATklJYcaMGej1en766SeuvPLKJj/2hRde4LHHHmPmzJmsXbsWHx8f3nnnHe69917WrFnDl19+ia7OxgutVovJZOL5558nMTGRc+fOceONNzJmzBh2795NQEDnKBckhBAXi5PFJfxQU6N5T26+zbkBAf7W0Dwg0L/RcnOdwV+3/8Kw4CBuS+zV7HtkVVTy0v5DDA8J4sFLBrbi6IQQTdElAvThw4eZPHkyS5cuxdvbu8mP27p1K4899hj9+/fnyy+/xKXmN/QXXniBwsJC3n77bV544QUWLVpkfUxMTAy//PKL9evIyEjefvtt+vXrxxtvvGFzrRBCiNanqiq/5hdaazQfKyq2OT8yNNgamnv4+nTQKJvng+Mn+SU7t0VLNyqMRm7fsIVgdzc+mjIRnYN3UoUQbatLBOirr76aa665xunHPfXUUwDce++91vBc68EHH+Ttt99m6dKlPPDAA3h4eNR7n759++Lr60tSUpLTYxBCCNE4k9nMLzm51hrN6WXl1nM6ReHyyHBmxkUzPTaGcM/6v193ZmfLK3h8516euHQIsT5Nnwyqq8po4rb1WyjUV/PV9CmEeLi38iiFEE3RJQK0thmbP3Jzc621OCdPnmx3PjExkejoaDIyMvjpp5+YM2cOAMXFxXh4eODq6mo3BmfXXgshRHeUnp4ONL1cW330JhNbzmVZy83lVemt5zy0WiZHRzIzLoYrYyLxb4Nyc+1t87lMSg0GHk3azaNJux1eU9u5D7DrSlhhNHLr2s3kVVXxw4ypBEt4FqLDdIkA3Ry7d+/GbDbj4uJCz549HV7Tt29fMjIy2LVrlzVA33fffUybNo2bbrrJet3p06cpLCxkyJAh9T6fXq9Hr9fbHS+rU7RfCCG6uvT0dKc77dVVZjCwLuN8ubm6Hfj8XF2ZFhPFzPgYroiKwLObNQa5pXdPbunt+OfRrB/Xsj0rx2Erb4BSg4Gb1mykymTi2xlTbOpXf5maRpSXF6PCQtps7EIIW93ru1MdKSmWmpohISEOK20ARERE2Fxb66WXXmLSpEmEhoZSXl7O/PnzCQoKYv78+fU+33PPPcfixYtbafRCCNH51Ibn1NRUACZOnNikEJ1fVcWqM2f5/nQ6m85lojeZrefCPTyYERfNzLgYxkWE4SLree0U6fX8dvVGdBqFr6ZNwdfVdkniu8dOMC48TAK0EO2o2wbokhJLR6eG1jZ7elrathYXn9+g8sADD/DGG28wefJkFEWhoKCA0aNH8/PPPxMVFVXvvRYsWMADDzxgd3z//v1MmDChuS9DCCE6hbrhWRNiKemZmppab4jOKCvnxzMZfJ+Wzs/ZOZjrlJtL8PXh6rhoZsbFMjwkqNOWm+sMCqr0zF61noMFhVwVE8X923+xu+Z4UTHjpAuhEO2q2wbo5ho8eDD/+te/nH6cm5sbbg7W6DlTNUQIITqjC8OzzyOWakSlS5fYhOhKH19rubl9eQU29xgUGGCpnBEfQz9/vy5Rbq6tnSktY8hn39gcq10DPS48lO9mTGVHdg4HCwoBWJ1+tt3HKIRwrNsGaF9fX8DSgKU+FRUVAPj5+bXLmIQQoqtxFJ41gUEA+DyyyBqie48YiftDC6znFGBUWIi13FxcM6tOdGexPt4UzLu1wWuujotp9BohRPvrtgG6duNgbm4uZrPZ4TrozMxMm2tbYsWKFaxYscLueEMBXgghOrOGwjOAJjDIGqL12VkYli5h2svLuf7S4cyIiya0gSV0QgjRlXXb3RrDhw9Ho9FgMBjsNgnWOnbsGAAjRoxo8fPNnz+fI0eO2P354osvWnxvIYRob42F51q1IVoTEoo5N4djTy5ispe7hGchRLfWbQN0aGiodfPe+vXr7c4fP36cjIwMfHx8mDZtWnsPTwghOjVVVW2qZQghhDiv2wZogCeffBKA119/HaPRaHNu2bJlADz88MPWahyi6UxGOLkV1r8Mh39q2mPyUmHbW7DupbYdmxCieVRV5UBeAYt37eM3Sfsou+d+68xy6dIlmAvy7R5jLsi3nMvNISEhoVm1oYUQoqvpMmugc3Nz7ToB5ubm4u5u6cQUHh5u95gJEyawZMkSFi1axOzZs1m8eDHe3t6sXLmSt99+mxkzZrBgwYJ2GX93UnAGjq2F6kpQmzBBVV0OxzdCQRoYqtp8eEJcFFqrG6CqqhwtLOKrU6f5+tQZUkpKred8QsOY9tobbH7kAbLOnKF06RKbpRwSnoUQF6suE6BHjBjB6dOnbY6NHDnS+rlap8ZoXQsXLmTo0KEsW7aMSZMmYTAY6NOnD8uXL2f+/PnNahPuyMWyiTDrKBxbBz0vA60Ojqxu+HqTAXa8C4HxMGYubPlnuwxTiG6tpd0AAZKLivnq1Gm+OnWa5KIS63F3rZapMZHM7hHHlTFReOp0pI8daV0PXRuiAQnPQoiLlqLWlzxFq9i7dy/Dhw9nz549DBs2rKOH02LF58DdF9y84dwhOLIKIgbAgOmOrzcZoDAdghMsX9cu35jyUPuMV4ju5sJugM6E19SSUr5KPc3Xp05zuLDIetxVo2FKdE1ojo3Cx8XF7rGOGqlIeBZCdBfO5rUuMwMtOge/SOeu17qcD89CiJZxthsgWJp1fH3qNF+dOsOB/PPNTXSKwhVREczuEceMuGh8XV0bfO6YmBg2bdrUaHjfl5fPT2cy2HoumzNlZRTo9YS4u9MvwJ95fXtzVWy0zX23ZWZbm4c4fF5vLw7ccG2j/22EEKI9SYAWQoguoKndAGNiYjhbXsE3Ncsz9uSe3/inVRTGR4ZzbY9YZsbFEOCge2pD6oZocLx85Oa1myiurua5UZdydVwMnjodv+YX8PCOXdy8bjMPDRnIwmGX2DxGpyj08PVx+JwRnlIOTwjR+UiAFkKITq6p3QCHjRvHgMXP8qt6vk22RlEYFx7K7B5xzIyLIdjDvUVjqQ3RtZ87cv/ggdzet7f16zHhobx++WgmfbuK1w4e4f7BA/DQnf/xE+HlyS/XzWrRuIQQoj1JgG4lF8smQiFE+3KmG2BeejpbH30Qn0cWMbZfX2b3iOOa+FjCWnkWt6H1zu9ecTmJ/n52x3v5+QKgN5nRm0w2AVoIIboa+Q7WSubPn8/8+fPtjtcuShdCCGc52w2wtiqG/xuv8ObmzR2ysW9MeKjD4ztz8gAYGhyIv5NLR4QQorORAC2EEG2stWo2N5VWURq/qB2YzGZyqqrYci6Lxbv2MyQokH9PvMzuuiqjiSd37eXH0xmcLa/AVauhn78/N/bqwR8Se6HpJK9HCCFqdetOhEII0dFqZ5EnTpxoDdJN5R4cwtw338YtLLxLdgMMf/9/DPjfV9yzNYkZcdF8cuUVDjcL5lZVUVJt4KOpE0n73fVs/s0M+gb48cDPO7l57SYMZmkpLoToXCRACyFEG6m7BKO2UkZjIdpgNvPTmQx+t24zA/73JS+fycT9oQVo62mp3VnDM0Du3Fs4cct1fHrlFezJzWf459/wyclUm2v6B/jz3fQp/GPcKHr7+eKq1RLn480/xo3i8ogw1mac47WDRzroFQghhGMSoIUQog1cuH5ZExLaYIg+WljE4zv3MvB/X3Hrus38eCYDo6oyLDiIf8ycxoGffyYhIcEmRHfm8FwryN2dK6Ii+Gb6FLx1Lty9ZQdbM7Os5wPd3RgXEebwsX/s1weAD5NT2mWsQgjRVLIGupVIFQ4hRK2m1mz2DQ3jy1NpfJicyt6887PKIe7u3NirBzf3TqBfgL/1eN1GJqVLlwBdpxugr6sLv+0Zz+uHjrLy6Akujwhv9DEJPpblHqdKy6g2mXDVatt6mEII0SQSoFvJxVSFo7Ydd63Mw5Y/AP2nQeRA2/OHfzp//sJ7+EfDpTe1zTiF6AhNrdk8YPRoPB5ciMHfH7A0E7kqJopb+vRkSnQkLhr7Nwib2g2ws4rz8QYgvay8SdebUa2fK7KRUAjRiUiAFk6b8pBz1w+YbvkjRHfnTM3m0nPnKH/+aYYueZ65Y0ZzQ88ehDShyUlTugE62047o6ycj06ksi7jHMnFxVQaTQS5uXFpaDB3DkhkbLjjJRYX+uRkKot+2cuJW65zGHizKioACHA73zZ88rc/8bs+PZnbt4/d9SnFpQD08PF2+AuFEEJ0FAnQot2oqkpFzQ/Qxnh6esqMk+hSmluzufD5Z7hm06YmhedajXUDdKaddrG+muGff4tWUXhqxFBmxcfg7eLC7pw8Htmxi5k/ruPZUcO5c0DfRsdlUlUK9Hq2ZWXbLdGoNBr5MvU0ANPrBPi8Kj0/nM5wGKD/ffS45fX0TmjafxghhGgn8iu9aDcVFRV4e3s36U9Tg7YQF6uYmJgGl23UttMO8XDHy0VnbacN8NrBI1QajQAYVTMGs5lHhw7ijv6JRHh64uPiwhVREXwweTxaReHJXfvIaMKyCwXLL713bNrO/06kklVRSZnBwM6cXG5Ys5FTpWVMiY7kD4m96jwGNpzN5P7tv3CiuAS9yURaSSn3bUtiR3Yuk6Ii+Mug/i34LyWEEK1PZqCFEKIVxMTE8MWqVUy+YhIFZzMoXbrE4Sx0e1TOcKadtotGw5CgQK7tEWd3fb8Af+J9vEkpKWVbZjY3NTITfH3PeEI83Pn61GmWHTjEgz/vxGA24+/mysDAAFZcPoYbe/WwaYzy/YypfH3qDKvSM5j+/RqKq6vxdnFhQKA//xg3it/36SmNVIQQnY4EaNEhPn0yG3dXL5tjVdXl3LC4aWsthehMjhYW8c/Dx/gs5RSmvz6MpiYgXxii26vsnDPttH1dXdnwm/o3Kfi6ujT5eXUaDVOiI5kSHdnkx0R7e3HPoH7cM6hfkx8jhBAdTQJ0K5Eyds5xd/XC44IALURXoqoqG85m8sbhY2w8m2k9PiKxDzd8+TXP3/Y7a7m5umXs2rvsXFPbaTtiNJtJLSlDqyj1hnIhhLgYSYBuJRdTGTshLmZVRhOfpZ7in4eOcayoGACNojAzLoa7B/ZlZGgIANM6Sc3m8Pf/h0lV0SoKtyX24tGhg5u8YXHVmbMUV1dzc+8Eawk6IYQQEqCFEKJJciurWHksmXeOJpNXpQfAW6fjd4m9+L/+iXYBs6k1m50tOVdrbfpZXj90lP15BaioDAgI4M4BfflNj1jbcc+9hfyqKn7NL+Tp3fsZ/vk3vDhmBDf2ang9c7nByBO79hLn7c1zoy51+r+XEEJ0ZxKghRCiAXXXN+tNZgCivTy5o39f/pDYE19X13of25Sazc6UnKv1z8PHWPTLHm5L7MXbE8ehUzQsO3CIuRu38kjhIB4bNtjm+tp22sNDghn9xXfcvWUHkV6e9XYDNJnN3L31Z8oNRn64eqpT66CFEOJiIAFadIiqavuSWI6OCdERVFVl47ks3jh0lA111jcPCw5i/sB+zIqPQdfExh6N1WyG8yXnatWWnJv07SpeO3iE+wcPwENn+XZ9pLCIJ3buZVhwEC+PHWmtl75k1HAO5heydP9BJkdHMiI02O55mtJO26yq/HX7TnZl5/HVtEnWyh1CCCHOkwAtOoRU2xCdUX3rm6+Oi+buAf0YGRrcrAY/Da13dqbkHMAbh45iUlV+n9jLbiy39e3FtqxsXjt4hA8mj3f4fA210zaZzczfuoPtWTl8f/VUEnx9mvYChRDiIiMBWghx0atvffOtfXryf/0TiW/DIOlMyTmA1elnARhVs1mxrtFhlnt9fzodg8mEi1Zrd42jdtoABrOZP2/azq/5Bfx49VRivM+v6V6XcQ7AqfJ0QgjRnUmAFg6ZjHBqB5zeBeH9YED9ZWIByEu1XFuSbfnaOwRih0FY4vlrPD09KSsro7IYdrxnOTbmdvCwn3zD09OzNV6GuAikp6cDDc/y1sfR+uYoL0/+rwnrm9tCYyXnzpVXkF8T8ON87MtARnp6oFUUTKrKpylp3Nqnp835+tpp600mbt+wldSSUr6fMZVIL9v//76qeYwEaCGEsJAALewUnIFja6G6ElRz49ef2QPJGyFqMAycCYoG0pLg4HdQlgc9x1muUxQFLy8vsn8FD1cIiIFg+XksWiA9Pb3BDXqONLS++e6BfbkmPrbJ65tbW2Ml53Jq6sq7a7XWJR11KYqCp05HqcHAE7v2olUUJkZF4O2i40hhEX/fvd+unXaV0cQt6zax6VwWl0eE8fjOvXb33ZObx7hwWXYlhBC1JEC3ku7SSCXrKBxbBz0vA60Ojqxu+PqyXDixCXzDoe9UqF2S2ecKKM2xzGIH9wC/mqCsqpB52PJ5xIA2exniIlAbnmtLxE2cOLHBEF1lNPF5ahpvHDraquubW1NjJecqjSYAXBoI+D4ulgA9ODCwSe20TxQXs+lcFgBbM7Prve+41nqRQgjRDUiAbiXdpZGKhx+MmQtu3nDuUOPXn95jCcVRg8+H51pRl0BhOqTtgkt+YzlWfA4qi0DrAqF9Wn344iJRNzxrQizrflNTUx2G6Nr1zSuPniC3qgpov/XNzdFQyTkPnWVNs8Fc/1tDBrMKwP2XDGB8pOMydXUNCgqkYN6trTN4IYS4SEiAFjb8nFxSkZdS/+P8oywf80+B2QwazflQHtoHdO27vFR0ExeG57ptsuuG6DJvH/51+BifXrC++Y7+ifyhTy/83Dr3P0BHJedCPTwAqDKZqDQa7ZZxqKpKcXU1AGGeHu0+ZiGEuFhIgBbNVlUKhpoVKo42Arp5g6IFsxEqCizXZB+3nIsc2H7jFN2Ho/CsCQwCwOeRRdYQ3W/UKHQPPGY9V7u+eVZ8bIPLHzqbC0vORXp5EuTuRn6VntOl5fQNsP0f71xFJdVmMx5aLT072cy6EEJ0J13nJ4nodGr7nmh0liUZF1IUcKmpvlVdATknwFRtCdL+jrsTC1GvhsIzgCYwyHIsJJTyzExKly7hCg83frx6KmtnXcWchPhOF54/OZlKrw8/R1VVh+cdlZy7Ksby1s7OnFy763/JzgFgcnRkh22EFEKIi4F8hxXNZjJaPioN/CtSasrQmgznNw+G97dfLy1EQxoLz7Xqhmhzbg77//YoUdX6Dt8cWB+TqlKg17Mty37zXn0l5+YP7IdWUfhP8km74P3B8ZMA3DuofxuOWgghhARo0WzamgVADZW6Uy1FAzBVQ4ElC0j1DSFqKFiC/R2btvO/E6lkVVRSZjCwMyeXG9ZstCs5B9AvwJ+nRw5jT24+D+3YRW5lFYV6PY/v3MuWzGweGTLIYRtvIYQQrUfWQItmc63p42A2WmaYL1zGoapgsPR8oLim3K5/NHj6t9sQRTcRExPDpk2brLPQpUuXOJyFNhfkU7p0CebcHBISEppcG7qjXN8znhAPd74+dbpJJedq3TWgL718fXjt4FGGf/4NqNA/0J93r7ic3/SI7aBXI4QQFw8J0KLZ3H3AxcOykbCyGLwvmPTSl1lmoDU6S6dCkM2DovnyPDzp8cTTpD38AObcHLsQ3dXCM4BOo2FKdGSzOvxNjYlias16aCGEEO1LlnCIFgmu6RRcfM7+XNFZy0ffcKn9LJrvdGkZf960jcnfrmKvCYIee5yAqGhriDYX5HfJ8CyEEKLrkhlo0SJxl0LWYTh7ECIH2W4OPPur5WNtJQ6p/SycUajXs2z/If59NJlqsxkFuKFnDxYNvxb1+t/YLOcAJDwLIYRoNxKgW0l3aeXtLO9g6D0RkjfWtAAfa6nKceoXKDwD8aMgfZ/lWtk8KJpCbzLx9pFkXj5wiKKapiATIsJZPHIog4MCLRd5e9msiQYkPAshhGg3ilpfAVLRKmpbee/Zs4dhw4Z19HCaZN1L9Z/rP83xOua8VDi9C0qyARW8QyB2uKVCx6EfwN0Xxv1ZyteJ+plVla9ST/P3Pfs5U9M4pF+AH4tHDGNyVITDUnS15e0Au/C85VwWn6WkkZSdQ0Z5ORoUYny8uDI6ir8M6k+wh7vDceRUVvLqr0dYm3GOjLJydBoNkV6ejAgN5u4B/eyalwghhOj6nM1rMgMt7Ex5yPnHBCdY/lxo7+eWjxEDJDyL+m3LzObJXXvZl1cAQISnBwuGXcLNvXqgbaAhSG11jtrPa/37yHEeSdrNgAB/lo0dydCQIEqrDXyecoole3/l05RTfD9jKr38fG3utzsnjxvWbGRKdCTvTrqcnr4+5FRW8uL+Q/w3OYXRYSESoIUQQrRNgFZVlZUrV7Jv3z7i4uK444478POTHzrdlaqqVNR0TKurqhTOJls+942H8nLw9PTstE0tRPs7VljM4t37WJ1u2XHqrdNx3+AB3DmgL14uTfv25GjJRqXJhKtGw8dTJxLtbam36OPiwl8GD6BQX83yg0dYkLSbz66aZH1MQZWem9dtYkx4KG9NHHf+/t7eLB83imOFxfi6yCJ+IYQQLQzQu3btYvTo0QC89tpr3H333QDcdNNNfP75+fa0//73v9m1axe+vr713kt0XRUVFXh7ezd80SLLh7KyMry8vNp+UKJTy66o5Pl9v/Kf5BTMqopWUbg9sRePDB1MSD1LK5wR5uHBdQnx1vBc17TYaJYfPMLmc1mYzGbrDPc/fj1MfpWe+wfbL9ZXFIU1s65q8biEEEJ0Dy0K0J9++imBgYEsX76cGTNmALBhwwY+++wzvL29efTRR6murmbZsmWsWLGCBQsWtMqghRBdU5nBwIpDR3n94FHKjZZe8FfHRvPEiKH09mu9X7Bv6NWDG3r1cHjO19XS8UdRFGo3gKiqyqcnT+Gp0zI8xL5FuBBCCFFXiwL06tWreeGFF7jlllusx/7973+jKAr/+Mc/+OMf/whASEgIK1eulAB9Efj0yWzcXW1n/aqqy7lhcVgHjUh0Bkazmf8mp/DCvl/JrqwCYHhIEE+PGMaY8NB2HcuJ4hIARoeFoKuZfU4tKSW3qorefr6klJTy/N5f2ZKZRUm1gQhPT6bFRvHQkIEEubd8dlwIIUTX16IAffLkScaPH2/92mg08tNPP+Hj48Pvf/976/EpU6bw5JNPtuSpRBfh7uqFh6ss0RAWqqqyJv0sT+3ez/GiYgDifbx54tIh/CY+tkPWw39y8hQK8PCQQdZjqSWlABTo9Uz9bjV39E/kqRFD8XNz5bOTp3gsaTc/nclg9cyrCPP0aPcxCyGE6FxaFKDd3NyoWwVv7dq1FBcX87vf/Q5XV1eb6xxtMhNCdF/78vJ5cuc+tmVlAxDg5srDQwYxr29vXLXaDhnTuoxz/HQmg/kD+3FZxPl3RUqqDQDkV+n5bUI8C4YNtp6b168PJ0tK+dfhY/xt5x7ennhZu49bCCFE59KiAN2jRw+2bNlC7969ActGQkVRuOmmm2yuO3r0KOHh4S15KiFEF3GmtIy/79nPF6mnAXDTavi//n25f/AA/Nw6ropFSnEJ87fsYFZ8DE9dOqTe667vGW937JZeCfzr8DG+P51OldGEu65jfgEQQgjRObQoQN96663cd999HDhwgDNnzrBq1SpiY2OZPn269ZqioiKeeeYZa7UOIUTXkZ6eDjguFXehIr2eZQcO8/aR41SbzQDc2LMHC4cPJqaxKi1tLL2sjDmrNzAqLIS3J4yzqy3tXyfYO6rcEetjGb/eZCajvNyufrQQQoiLS4sC9N13383XX3/N66+/DoCHh4d1EyHA4sWLWbZsGeXl5Tz0UDO6c4gup6q6vEnHROfXUJe/uvQmE/8+msyy/Q203u5AqSWlXPvTOsaGh7Li8jEOG7Mk+p+vU2+oCf/1kSrmQgghWhSgPTw82LJlC1u2bCE3N5cxY8YQFRVlPT9lyhTi4+MBuPrqq1s0UNE1SLWN7qE2PKempgIwceJEuxBtVlW+OnWaZ3Yf4HRZGWBpvf3UpUOZEh3ZKRrmHCssZs6q9UyNieQf40ahqTOm1w4eYXaPOKK9vYj29qKPvy/JRSWcLi2zC/7pNa/PS6cjxsEMtRBCiItLizsRKorChAkTHJ4bO3Ysw4cPx11KPwnRZdQNz5oQS4m51NRUmxC9PTObJ3ftY29ePgDhHh4sGD6YW3olNNh6uz0dyi9kzur1zO4Rx/OjL7UL9E/u2sfQ4CDrko27BvTj/u2/8PGJVGbFx9pc+/EJyy8SN/Tq0WEbIIUQQnQeLQrQTz/9NA899BCenp4Oz+fk5BAREcHo0aP5z3/+Q8+ePVvydKKT8vT0pKysjLJc2PkRKAqM+xO4OvhnUd+/FdE5XBiefR6xtJAsXbqE1NRUxo0fz9BnXmCr3lK1wlun4y+D+3PXgH5Nbr3dHvbl5XPdqg1Um03kVen506btjT7m9316svFsJt+mneH5vb/yfwMScdFo+DwljbePJjMkKJCnRgxth9ELIYTo7Fr0E2/x4sXceeed9YYiPz8/li1bxnvvvcdf//pXvvvuu5Y8neikFEXBy8uLc7vBwxVCekFASEePSjjLUXjWBFq68vk8sojSpUtIT0vj7P334vfo35g3ZhSPDB1EqEfnq4v86clT1vXYX5063aTHaBSFlVdcxnvHTvDf5BRWHDqKWVXp6efLgqGDuXNAX6m+IYQQAgBFrVvI2UkajYasrCxCQxvuJHbw4EGuuOIK8vLymvtUnd6KFStYsWKF3fHKykrS0tLYs2cPw4YN64CR2SvMgDN7oPgcGCrBxR0CYqDHGPAObt49VTNsewv0ZTD4Ggjt07pjFm2rofBcy1yQT+nSJZhzc4iJj2f7li1Nqs4hhBBCNKa0tJS1a9dSUFBAYGAgU6dOxcfHp92ef+/evQwfPrzJea1V1kA3prCwsNs3Upk/fz7z58+3O177F9JZnN4NJzaBfzQMmQOeAVBRAMfXw87/Wo4FxjZ6GzsF6ZbwrHOH4IRWH7ZoQ00JzwCawCCbmWhHGwuFEEIIZ5SXl7Nw4UJWrlxJWc2GbQBvb2/mzZvHs88+i5dX59u87VSAfv/993n//fdtjs2ePdum6+CFysvLOXToEIMHD673GtE+ynLhxGbQucEl11pmngF8w+GSObD9LTj8I4yZBzon+11kHrZ8DE8ETedZCiuEEEKITqq8vJwpU6aQlJQEQE83X/p4+HG8spjUshJeffVVdu7cybp16zpdiHYq6qSlpbFp0yabYz///HOjjwsNDeWll15yamCi9WUnA6pluYbLBYVRXD0gMA5yT0L2MYhy4vcdYzXkJFs+jxjQasMV7SQmJoZNmzZZZ6FLly5pdAlHQkKCzD4LIYRokYULF5KUlESgzo23EiZwlX8MiqKgqiqri9K5I3UzSUlJLFy4kOXLl3f0cG04FaBvv/12a2MFVVWZPHkyn3/+OYGBjpslaDQa/P396devHzqdTEt2tNp+Jq71/BLnVtMsLv+UcwE65wSYjZblIL4RLRuj6Bil3j5ELnqKtMcewpybYxeiJTwLIYRoTaWlpaxcuRKAtxImMC3g/PpRRVGYFhDLmwkTuD55De+++y7PPPNMu66JboxTqTYuLo64uDjr16qqMm7cuEY3EYrOwaWmWEJ9jQGra5apl+c7d9+sI5aP4f0tJexE11FlNLHswCGW/3oYIxrCFj6B8eUXyE1Pt4ZoQMKzEEKIZlNNZtTcQtRzeZjP5aGezeWH9WsoKyujp5svV/k7/pkyzT+GBDdfUktLWLt2LXPmzGnnkdevRdPC5kZa3orOJaQXpP0ChelgqLJdxmHUW46D5VxTVZVCQU2VsIh+rTdW0fZ+zsrm/u07OVFcAsCM2GiWjpmN6bprbJZzABKehRBCNEgtKbeE43N5mM/mop7LQz2XazmWmQ9Gk831+TnHAOjj4VdvQQpFUejj4UeqvoSCgoI2fw3OaJd1FYWFhVx33XVs2LChPZ5O1MMvAmKGQvo+OPA19LkCvAKgogiSN4GmGSVua2ef/aPBw7/1xiraTrG+mqd27+P94ycBCPNw54UxI5gVZ1l7hpenzZpoQMKzEEJc5FSDETUzH/O5mnB8Ns/6uflcHpQ2Um1Nq0WJCEITFYwSGUzI2XB4bRvJlcWoquowRKuqSnJlMUC9y4U7SrsE6OrqajZv3tweTyUakTjZsk757AHY8z8wm8HTHyL6W8L1r99YqnQ0hapCZk2AjujfZkMWrei7tDM8umM3WZWVAPyhTy8WjxiKn5tt2ZW6GwsBm/C85VwWn6WkkZSdQ0Z5ORoUYny8uDI6ir8M6k+wh+0O1eSiYj46kcrmc1mkFJdQbTYT6uHOuPAw5g/sx8CggLZ/4UIIIRqkqipqQUlNOM61n03OKbT84G+AEuiLEmkJyJqoEMvHyBCUqGCUkAAUrcZ67fTSUrzffYWUshJWF6XbrIGutaoonVR9CT4+PkydOrXVX3NLtDhAf/vtt7z++uvs37+fwsJCWdbRBUT0dxx4a0vReTYxz5TmWNZLa7QQlth64xOtL7Oigkd37Ob705Z1Oj19fXhl3CjGRYTV+5jaEF37OcC/jxznkaTdDAjwZ9nYkQwNCaK02sDnKadYsvdXPk05xfczptLLzxeAIwWFXP71j/i7ufLsqOFMiorEVaNhc2YWj+7YxRepabxzxWXMim9G8XEhhBBOUSv1NqHYbA3Luajn8kFf3fAN3F1tQrEmMhglMsQyqxwRjOLRxBk4wMfHh3nz5vHqq69yR+pm3kyYwLQ6VThWFaVzR4pl8nXu3LmdagMhtDBAf/DBB8ydO5emNDNsSsMV0bHKa5YX+UU27frawB3Sq+mz1qJ9mVWV94+f4Kld+yk1GNApCn8Z1J+HhgxqUlvqC5dsVJpMuGo0fDx1ItHelnIuPi4u/GXwAAr11Sw/eIQFSbv57KpJAOjNZlTgxTEjmJMQb73PNfGxeOp03LBmI/dt+4Up0ZF4SKUeIYRoEdVkRs0pPL/2+IKZZApLG76BRkEJDbCEYgczyQT6tGqee/bZZ9m5cydJSUlcn7yGhJo60MmVxaTqLftzRo8ezbPPPttqz9laWvQTa+nSpcTFxbF8+XJGjRpFYGCgw3J1WVlZREVFteSpRCvJP21ZsuHh5+BcmqWKRngTNgOaTZB11PK51H7unJKLivnr9l9Iys4FYFhwEMsvG8WAwOYvmQjz8OC6hHhreK5rWmw0yw8eYfO5LExmM1qNBk+djmHBQUyPjba7flJUBO5aLUXV1ezLy2dseP2z4UIIISzLLCipOL/2uO5M8rlc1MwCMJkavomvp2UGObJmBrnuUovwQBSX9pvM8PLyYt26dSxcuJB3332X1NISa3D28fFh7ty53aMT4YVOnjzJd9991+i6FDc3N8aPH9+SpxKt5MQm8I+Evhf8leWlQGk2xA53HK4vlJ8Ghkpw9YTA+DYYqGi2apOJ5QePsGz/IarNZrx0OhYNv4Q/9+uDVqNp/AYNuKFXD27o1cPhOV9XF8DyblPte1KJ/n6su2aaw+s1ioKXi46qxr7ZCyHERUStNqBm5WM+a5lBVjPzLJ/XzCpTVtnwDVx0ls16Ncsr6gZlTWQwio9n+7yQJvLy8mL58uU888wzrF27loKCAgIDA5k6dWqnW7ZRV4sCdEBAAImJjS9+DQgIYOPGjS15KtGKzh4En3AI62PZD5BzwhKsQ3pBryb+nlO7fCOsH7Qwk4lWtCsnj/u2JXGsyLJreUp0JMvGjiDG27vNn7u2HN7osBB0TfhHkV9VRX6VHh8XFwYHda7d1UKI7qm0tLTDQ5qqqqj5xTZVLNSzuZgz8y2BObeo8c16QX6WzXpR9kstlGB/m816XYWPj0+nqvPcmBYF6GuvvZYdO3YQG9vwBqDy8nKWLVvGE0880ZKnE60gegjknoDU7XBsHehcwDvUUp0jvF/TGqEYqiwz1iDVN9pDerpl419DJeRKDQaW7DnA20eOowJB7m48N2o41yXEt9v+g09OnkIBHh4yqMnXA9w9sC/eLi5tODIhxMWuvLychQsXsnLlSsrKyqzHvb29mTdvXqsvE1DLqyxLKzJrwnHdmeTMPNAbGr6Bh9sF64/rhOSIIBR32XjU0VoUoJ9//nmuu+46AH7729+i1TrelFRWVsbixYslQHcC0ZdY/jSFqqpUVNjXdTx3EMorwSsINF5QXg6enp6yUbQNpKenOywlV9fqMxk8tGMXZ8stf1c39erB30cOI8jd3e7atrIu4xw/nclg/sB+XNZAZY9aWRWVvLT/EMNDgnjwkoHtMEIhxMWqvLycKVOmkJSUBEDPmo1qxyuLSS0r4dVXX2Xnzp2sW7euySFaNZrOb9Y7W7NJ71yuZVY5M69pm/XCAuupaBEC/t7yM7WTa1GAnj17NlVVVdxyyy383//9H7GxsQQFBdn9pVdXN1IWpZMyGAz069cPo9FIWlpaRw+n3VVUVODd2Fv/d1o+lJWVdcpF/l1ZbXiubWYyceJEmxCdU1nJgqQ9fHXK0goyztubl8eN5IqoiHYdZ0pxCfO37GBWfAxPXTqk0esrjEZu37CFYHc3PpoysUnLPYQQorkWLlxIUlISgTo33kqYwFV1SqWtLkrnjtTNJCUlsXDhQpYvXw7UbtYrt8wcn607k2yZQVaz8sHUSNleP280kUHWUFx3JlkJD0SRykNdWov+9mprxAKUlJRw6NCheq/tir9J/fOf/yQlJYW4uLiOHoq4yNQNz5qQUABSU1OZOHEiGzduZGuVgcd37qWouhqNonD3gL48OnQwXu24exogvayMOas3MCoshLcnjGt0k2KV0cRt67dQqK/mq+lTCPFov1lyIcTFp7S0lJUrVwLwVsIEm2YdiqIwLSCWNxMmcH3yGt59823+psThnV+K+WweVFQ1fHMXne3yitqGIbXHvDvXZj3Rulr80/aLL75otL1ifn4+119/fUufql2VlJTw4osvcsUVV1hnAC9mnz6Zjbur7QxzVXU5NyyW0mOt7cLw7PPIIgBKly4hNTWVfqNG4/LgY2gCgxgUGMDyy0YxJDio3ceZWlLKtT+tY2x4KCsuH9NoeK4wGrl17Wbyqqr4YcZUu46FQgjR2tZ8/wNlZWX0dPPlKn/H+0im+ceQ4OZLqr6EtT/+yG8Cz1caUkL864Rk26UWSrAfiryDdtFqcYAeN24coaGhDV6TnZ3dpGYrnckLL7zATTfdRG5urgRowN3VCw9XWaLR1hyFZ02gJRz7PLKI0qVLqMjKRLt0CY//90MWTpmESwd8Az9WWMycVeuZGhPJP8aNQlPnHabXDh5hdo84m1rRpQYDN63ZSJXJxLczphDgdn4DzJepaUR5eTEqLKRdX4MQontQq/SoGbmY03Mwp2ejpudgzshBTc8m68gvAPTx8Kv3nXBFUejj4UeqvoTSSZfg9ofbLSE5PAjF3bU9X4roQloUoNPT0xsNzwBhYWGt1uL7559/Zu7cuSQnJ3Pq1Cni4+Nb5b51nT17lvfff5+DBw9y//33t/r9hXCkofAMoAkMsoZoU24OH9z1f8yrZ2NhWzqUX8ic1euZ3SOO50dfavdD6cld+xgaHGQN0EV6Pb9dvRGdRuGraVOs9aJrvXvsBOPCwyRACyHqpeoNqGdzakKyJRzXflRzi+p9XEBNm9zkymJUVXUYolVVJbnSUvoz5Mpx6MY2rZKQuLi1KEA3tbugwWBg69atTJo0qdnPVVlZyd/+9jeWL1+OycnGC6tWrWLZsmXs2bMHvV5PYmIi8+bN4+6770bjYPbuiSee4C9/+QsBAc3v2CaEMxoLz7XqhujaNdH1VedoC/vy8rlu1QaqzSbyqvT8adP2Bq8vqNIze9V6DhYUclVMFPdv/8XumuNFxYyTLoRCdErtWTdZrTZYNuxZZ5FrQ3IOak5hw7WRfT3RRIehxISiiQlFE2P5fKafB959e5NSVsLqonSbNdC1VhWlk6ovwcfHp9HGcELUapcdRwUFBUydOtXp4FsrJSWFGTNmoNfr+emnn7jyyiub/NgXXniBxx57jJkzZ7J27Vp8fHx45513uPfee1mzZg1ffvmlTfvxw4cPs2HDBlasWNGssQrRnX168hRFNVV1aqt/NGRHdg4HCwoBWJ1+tk3HJoRoPW1VN1k1GC0l32pDcp3lFmp2AZgbCMneHmhiQlFiwtBEh9qGZT/HFaN8gXnz5vHqq69yR+pm3kyYwLQ6VThWFaVzR8pmAObOndupO991Z6b9yRj+tx7zwRTU4jIUXy80wxJxnXc1mgTHk7XGnw9i+HA15mNnQFXR9IrG5aYp6CYNb5cxtyhAf/DBB026rri4uCVPw+HDh5k8eTJLly5tvKxaHVu3buWxxx6jf//+fPnll7jUNGt44YUXKCws5O233+aFF15g0aJF1sc8+uijPPnkk7i3Yw3drqCqurxJx0TzxMTEsGnTJussdOnSJQ5noc0F+ZQuXYI5N4eEhIR2nX0GeG70pTw3+tImX391XAwF825twxEJIVpbS+smq0Yj6rn8mmBcsy45o2bpRWPl3zzdbGaSlZgwa0hubm3kZ599lp07d5KUlMT1yWtIqHk9yZXFpOprOqiOHs2zzz7r9L1Fyxk+Xkv1q5+huaQXbsvuRRMbhvlMNtUvfUTl3CW4v/wXtMP72j7mf+uofuUTdNeOx/3pO0CnofrdH9Av/BfmP87C9c/XtPm4FbUFu/s0Gk2T/jHXrjtq7gy0yWSyadJS+5yNrYGePHkyGzZs4J///Cd33nmnzbnjx4/Tt29ffH19ycrKwsPDg02bNnHvvfdy4MAB69KO22+/nU2bNjW7DvTevXsZPnw4e/bsYdiwYc26R0cpLy9v8i8sUge65ZKLipn3xbfsWPAQ5twcu6UcHR2ehRAXh/vuu49XX321wbrJBUY99877My//+S/WmWTruuTMfGjo572HG5roEGs4rp1R1sSEQaBPm5S9rZ1Rf/fddyktPd/kxMfHh7lz57Z6J0LRNOaUs1T+fjF4uuP55XMovuf/DtTiMipmP4bi5YHHJ39H8XQ//5g/PI0mMRb3dxba/HupvPslzHuP4/7vx9AO7OnUWJzNay1ewnH99dfj4eFhc0xVVXJzc0lJSSE5OZmrr76a4ODgZj9HfR0OG5Kbm2utUz158mS784mJiURHR5ORkcFPP/3EnDlz2LBhA5WVlTb/4c6cOUNZWRlDhgwBYOfOnbi6yq5c0XrMqsqbR47z9937qVI0RCx6EsOyF8hJP2OdiQYkPAsh2pwzdZPfe+89Fv6qx0fr4GeimytKdAgaa0gOrVl2EWYp/9bOvSG8vLxYvnw5zzzzTLut6RaNM27YDWYV7bBEm/AMoPh5ox3RD9Pm/RjX7sLlN5cDlhlrTGZ011xu9+/IZfZ49HuPY/jvGrTP39WmY29xgH711VcbrMSxfft2FixYwJtvvtnSp3LK7t27MZvNuLi40LOn499C+vbtS0ZGBrt27WLOnDk8/fTTPP300zbX1M5A79+/v8Hn0+v16PV6u+N11451NZ6enpSVlZF9HA6vAg9fGH07OPq+5+kpBeOb43RpGfds3cH2rBwAroiK4NXLZmOeM8tmOQcg4VkI0abUghJWvbnSqbrJG90rmT1mpM1yCyUmFCXYv1PWSPbx8WHOnDkdPQxRQ82zLPFVgnwdnldCLMUcTEmHrAHauO0AANpLetldr6k5ZtpxENVoQtE5PwHbVC0K0O+++y5+fn4NXjNu3Dgee+wxHnroIT766KOWPJ1TUlJSAAgJCXFYaQMgIiLC5tqWeO6551i8eHGL79OZKIqCl5cXJafBwxV6DAEnlqCLBqiqygfJKTz+yx7KjEa8dDqeHjmU2xN7W36j9vK0WRMNOAzPVUYTL+0/yGuHjvLbhHhWjB9T73PmVVbx6sEjrE4/S3pZOTqNQr8Af25P7M3NvRPa/DULIToHVVVRcwsxHzuD+Xjtn9OouUXk5BwDml43ufy2K3H/05/ac/iiG1H8LbP/an6Jw/NqgeW4+VSm5WNOIRRZJiaVCPuVDUpIALjoQG9ATc9G6RHZFsMGWhigb7vttiZdN2DAANauXduSp3JaSYnlP/qFy0vqqp01dbTJ8cMPP+TFF1+0WcJxxRVX8I9//MPhvRYsWMADDzxgd3z//v1MmDChOS+hU6iuhPxTls/D+3XsWLqC9PR0gAZniM+VV3DftiTWn7V8QxgdFsKKy8fQw9f2bcS6GwsBu/C8NTOLB7bvJL9Kj6GROuvJRcX85qd16E1mlo65lMnRkZQbjLx//AT3bN3Bzpxc/jFuVHNeshCiE1NV1VL1oiYkm4+fwXT8DBSW2l+sKARGhMOpptdNbqwTsRAN0V5+CYb3f8S09zhqSbntGujySkx7j1u+KLEULagN1Li5OGxyoygKeHtAYSlqfjF01gDdVPv27aO8vGtVbLj11lu59damVw9wc3PDrU53tVrOVA1pLYUZcGYPlOWAvhxcPMArEGKGQYhza+rJSQbVDN6h4NX+3aK7lNpazmAfdsHyQ+fz1DQe2bGb4upq3LQaFg0bwl0DEuttg10boms/r/VFShoP7tjJ48OH4K7Vcu+2pAbHdveWHWRXVvHqZaP5bU9Lm9oANzcWDR/CqZIy3j9+kslRkcyMl6UhQnRVqsmMeiYb8/HTmGpnlpPPQFml/cVaDZoekWj6xKBJjEOTGIumdwwzzQa8I1dJ3WTRLrQDE9BdPwnjZxuoemQFrn+9EU1cOOaMHKqXf4riosOm0kVVzVJZXf3xVXF1QQXUquq2HHrLAvSZM2fqPWcymSgsLGT37t08+eSTDBw4sCVP5TRfX8t6mspKB984alRUVAA0ugylK0nfC8c3gFcwDJgBPqGgL4OTW+DAVxAzFBLt91TWK+uo5WN434avu9jVbYQC2DU4yaus4sEdO/kuzTJDPSQokDfGj6VvQOP/9hzNZsf6eLNjzkwiPD356ETDS5BOl5axNy8fgFlx9veakxDHl6dOs+LQUQnQQnQRqtGI+VSmJSQfs8wsm0+kg6PQ4KJD0yvqfFBOjEWTEOVwBs8Hd6mbLNqV24M3ox3QA8NXm6m6+0UwmFCiQ9BNH4Pm+knoH33DMqsM4F4zUWk01ns/tdoA0OZt2FsUoOPj45u0k1ZRFN55552WPJXTajcO5ubmYjabHa6DzszMtLm2JVasWOGw+UpDAb61mU1wcpvl8/5XgZ9liTeeAZYwXfgmpO+D6KGWGenGVJVAUYblcwnQ9buwiyBg0yXwVzPcv/0X8qr06BSFh4YM4v5LBuDSgg02I0KbXtUmq8Lyb9BNq8HPzf4bSoSXZSnTzpxcSg0GfFxc7K4RQjRNW3TuU/UGzCkZNuuVzSfPgsFBiHB3RdM7xhKS+9YE5h4RKA3M2F1I6iaL9qabNhrdtNF2xw0/7QCwlDgElMCazYZ6A2pVtV1IVlXV+o6LEuTfdgOmFZZwREVFOSwzp9Vq8fPzY8iQIdx5552MGDGipU/llOHDh6PRaDAYDKSkpNC7d2+7a44ds2yWaI2xzZ8/n/nz59sdr60r2B6MVWCqmXzwviBfaV3Awx8MWVCa07QAnV2z9Mg/Gtwdb5C96DlqwQ1YW20PHD0a5f5H0QQG0dffj3+OH8slwe27ZjC45jd2vclMsb7aLkTnVlYBoGJZKz08pPklJ4W4WLVW5z61vArziXRrUDYdP4Oalum4+Yi3B5o+lhllbWIsmsQ4lNgwFG3Lql94eXmxbt06a93k1NISa3CWusmiPalplolOzSDLRndNaAD4e0NRGWpmnt0mQTW30PKLpZsrSkz9FeJaQ4sD9O7duxssY9dRQkNDmTBhAhs3bmT9+vV2Afr48eNkZGTg4+PDtGnTOmiUrcvVC9x8QF8KZXnnZ6ABTEaoLLJ87tbE73nW5RuyedAhR+G5tumJzyOLKF26hJJz59AsXcJfVr7H89OvxK0ZNc1bqqefL338fUkuKuG70+n8ro/tOy4/ns6wfl6ob9s1Y0J0R83t3KeWlGNOPmPd2Gc+fgb1TDY46m/m7422dka5ZimGEhncZvWUpW6yaC+mnUdQokPRRNpP3piSDoNWg+6q87PTussuwfj9dky/pqC5IECbD1iWNGrHDGzTEnbQwgB93XXXdeqW108++SQbN27k9ddf509/+hO6Om9hLVu2DICHH364W9UwHjgDDn4HR1ZDvyvBJ+T8GmhDFfiGg7/jtvI2yvMtM9WKBkL7tP24u5qGwjOAJjDIGqLNuTl8e989PHBJx9VvfmXsKK5bvYEndu7FXathcnQkVSYTH59I5fvT6XjpdJQ3sKZMCFG/hQsXkpSU1GDnvqSkJB6b+38sm3GzdSmGei7P4f2UEH/b9cp9Y1FCAtq9+QhI3WTR9qpf+wzNoF64PWJbuMG4/VfMx8+gu2kKmojzP19dbpmK8acdGL/diu6ay2z+vzB8s8Vyze+ubPNxtyhAf/bZZ601jkbl5ubatQLPzc21Bvjw8HC7x0yYMIElS5awaNEiZs+ezeLFi/H29mblypW8/fbbzJgxgwULFrTK+DrDGmiAgBgY+TtI3gS765TddvGA6CHQ63JLKG5M7exzUDy41l8J8KLUWHiuVTdE110T3REhenR4KOuvmc4/fj3EEzv3cfeWHQS6u3FFZARrZ13FVd+vptxoxNdV1j8L4QxnOve9/8WnLDqltencp0QGnw/KiXFo+8TW21RCiO7K+M1WNP3i0E0aDiYzxk17qX71M7Tjh+A6/zqbazUJUbjeez3Vr3xC9dIPcf3zNaDVUv3+j5h3H8Plj7OcbuPdHK1Wxu748eOsWbOG06dPAxAXF8eVV15JYmJiq9x/xIgR1nvXGjlypPVz1dFbXlhmBoYOHcqyZcuYNGkSBoOBPn36sHz5cubPn9+sNuGOdIY10AC5KXDkJ3D3g0tvBu8Qy5KOs7+CsRpMBtDZV9uzoaqQZVkeLss3upG+AX68OWGc3XGT2Uxxza7lXr7yg1uIplJLK1j91vtOde7bFO/JdddeawnMfWLt2heLtmHac5yq+S81ep1maB88/vkwAIbvt1P9zHtNulY0n+66KzBt2ovhrW+oXvoheLih6ROD20O3oL1qlMN3XlxumoISG4bhv6up+O0iQEXTMxq3Z++0hPD2GHdLb1BSUsIdd9xR72z09ddfz5tvvtniUnFpaWnNfuz06dOZPn16i56/K6gstizfUBQYMuf8WmddEPSeCDv/C0nvw6jfN7wpsCTLsl5ao3O+bvTFoG6Dk9pW245moc0F+dYlHJ25Bfep0jIMZjM9fX0IdG/ktyshLkKqwYh6OgtzylnLn5MZmFPOomYXkO1k576yq4bjcutV7Tl8UYcSZ/9uNQBmM2p6Dpr4CNvjbq4o4Y43fmvqOS6c43LteFyuHe/043RjB6EbO6gNRtTE52/Jg/V6PVdeeSU7d+5Eo9EQHx9PWJil1Eh2djZpaWl8+umnpKWlsWXLFlxd27Ym38Uu+xiYjRDc036joKJYStGd2AwpP8OABvZN1i7fCO0NWvkrcygmJoY169czbNxllJw7axeiO1t4Ti0pJbO8gnERYXbnNtR0RLyxV4/2HpYQnYq1xfXJmpBcG5RPZ4HR5PAxgUHB0rmvC/H85O8Ojxs370P/6Bu4/PYKm+Oa/vEyyywcalGAfv3119m9ezeLFi3ivvvuIzjYdgdlXl4er7zyCs8//zwrVqzg/vvvb9FgRcMqaztc1tP8sPZ4aXb99zCbLUEcpPZzQ/KrqvjrkRMo9z+CpiYo14ZooFOFZ4DV6Wd5af9BDt84B/c6O5PLDAb+eegYUV6e3DlA/sLFxUMtrzw/o1xnVpnSCscP8HRH0zMKTa/omo9RaHpGMxMT3pGR0rmvk1MCfdBOqb9kreHT9WiGJ6Lp2YRd9kLQwgD98ccf8/jjj/Pkk086PB8cHMwzzzyDVqvlww8/lADdxlxqNvvpyxyfrz3e0CbCwjNQXWG5V2B8qw6v2zhWWMwt6zaRVlqGb1gYK777niduucm6nAPoVOG5VqG+mru2/MxTI4YS5uHBwYJC/rZzD5UmI19eNQlvaaAiOkhbNB+ppRpNqOnZllnllAzrRzUz3/EDtBqU2LDzQblnNJpe0SjhgQ5nl31AOvd1AZoekbg/c4fDc+aUs5j3HMft+bvaeVSiK2tRgD5+/DgfffRRo9fdeuutvPzyyy15qk6vM1ThCOkJaUk1IbjcUhe6lqqen1kOiqv/HtblG31A0/4lizu9teln+dOm7ZQaDMR5e/PR1An0C/BnfJ010YDD8FxlNPHS/oO8dugov02IZ8X4MQ6f45JPvya9rNzpsX18MpWPT1qe//XLR3NL7/ML2MeFh3JzrwR25+Zx+Vc/YEYlxtubaTFR/G/qRALcZO2zaH+t1XwEapZf5BdjPpmBWmdG2ZyWCdWOSzQqIf6WgNwzCqVXzexyXDiKk9VopHNf12b4fANKeBDay4fYnVOLy9C/8B9MSYdR84otG9wSY3G5djy6yZe2/2BFp9GiAK2qqsMW2RfqiNqV7a0zVOHwi4DY4XBmD+z/EvpMBp9gqCqDUzugJBu8giFupOPHmwyQc8LyuVTfsKWqKv88fIwndu3DrKqMDQ/l/UmXE1RTRrHuxkLALjxvzczige07ya/SYzA76Ch2gTAPd3zr2TOQWV6BTqPh8E2z8Whie97BQYH1BnYhOkJzm48AqJV6x8sviut5+83DrWY2OarOMoxoFL/WqYAhnfu6LrW0AuOqX3CZN9NhB0c1LRNl/BDc33gYJdgPNSOH6n99hX7Rm5h2HsFtwR86YNSiM2hRgO7Tpw9ffPEFjz76aIPXffrppw5baYvW1+cKS+vtswfgwFeW9t4aHXgGQs/LIHZY/RsD805ZWoG7+zSt2crFotpk4uEdu/hPsqXD0e/69OSlMSNwvaAEYm2Irv281hcpaTy4YyePDx+Cu1bLvduSGn3Oxy8dYjODXHcsgz75mht79WhyeBaiM2pq85EF997Hy7+7y3b5xdk8x936NApKTJh1fXLtMgwlIgilCZM9LdHdO/eZjp/B8PFazPuSUQtKwMsdTWQImiG9cf3jLBSv803VzGdzMXy0BtOe46g5BeDqgiYyGN200eh+Mx7FrfMsFzN+uw3MKi7XXG53TjuyH+5vL0A74PwGa6VHJG5L7qTy5icwfrMV7bBEdFeNas8hi06iRT+Br7/+ep544gk0Gg133XUX3t62u9dKS0t5/fXXefrpp3n66adbNFDRdKG9LX+cVbt8I6yfpWqHsGwWvG3DVn7OykGjKDw9Yih3Dehb77sqjtY7x/p4s2POTCI8PfnoREqjzzktJoo4b8c7Qb9MPU2+Xs8f+0l7SNF1OdN85L33P2DhQYNN8xEAJcgPxWZGOQpNfASKe8eWDuqOnfsMX2yievknuNx+Na53zUYJ8MGclkn1ix9h/GgNLr+9whqgTYdSqbpnGei0uD32e7SjB4DeiOGbLVS//D+MP+3A/c1HnV4m0xZUsxnDFxvRXTnS4bsRmtBACLWvmqLotLhcO4Hq1z7D8N12CdAXqRYF6L/+9a/873//47HHHuPxxx8nMTGR0NBQwFLG7vjx4xiNRgYNGsR9993XKgMWLaOqKhUV9rvMDVWQcdRShcMnFsrLwdPT86JYflOfupsFvV10vDPxMqbGOD81PyI0uPGL6nhhTP07xd8+epyrYqKI86mn1IoQXcDatWudaj6y0cfAnMlX2GzsUwK6/qxuV2Dac5zqlz7C9d7f4nLL+fbI2j6xuD1+O1UPr4A6lX0M//4Oqqpxuee36GqrXniD67yZmA+mYNpxCOOPO5pV97e1mbb9inouD90Lk5x+rBJjyTrq6czWHpboIloUoD08PFi3bh233XYbq1at4uDBg3bXTJ8+nffee8/aclt0rIqKCrt3CuxYKrFRVlZ20a7Zq2+zYEfalZPHvrwCvpo2tEPHIURzqOWVmPYlY9p9jKxPLJvPm9p8pPyWSbj96fZ2HK2oVf3aZ+Dlju56+5CpiQ23q6tszrJUN9EkRNpfnxCFacchzMfPtM1gnWT4dAOaIb3R9m5GpaQm7GUR3VuLF1GGhITw448/sm/fPoetvIcOvTh+2HeGKhyi5RrbLNiR3jpyjER/PyZE1tNJS4hORK3SY/41BdOeY5h2H8N87DSYLKHDv8BSZUaaj3Ru5lPnMB87jXbMQBSXpsUFTd84TGmZmFPPwQVd4sypZwFQglvWmbg1mE+dw7z7KG5L/q/eaypmPIjrotvQjRts//j0HACUuAi7c+Li0Gq7kIYOHXrRhGVHOkMVDmd9+mQ27q62M8xV1eXcsNi+W93FoKmbBTtCVkUl36al89yozvlvSQjVYMR8OBXTnuOWwHwoFQy25eOU6FC0l/Zler9b8b71F1LKpflIZ2Y6cBIAJTwI4y+HMbz/k/UXIU1sKLppY9DdOBmlzhIO13uuQ596DsN7P6CJCLKsga4yYPhmC6Ydh8DLA92scR31kqwMn25ACfFHO6H+3KIWlGDadsAuQKtGI8avtwDgcvXYNh2n6LzadBt/ZWUlHh4ebfkUogXcXb3wcL04l2hcyNnNgu3t3WMn8NBpubFXQkcPRQgAVJMZ8/HTlrC855glbFVV21yjhAagvbQvmuF90Q5PRBNuaXXvBsz7ozQf6ezUmllW0y+HMa7didvDt6J9/i5UvQHDyu+pfu0zTHuO4fbiPdYScJpgf9zfehTDyu/RP70S9AbLzdxc0Y4fguv86yyb8zqQWlaBcVUSLn+YbhP+HTF+vRXF3wfdrMtQQvwtZeze+BL1bC66mePQTpMNhBerFgXozMxMZs6ciaqq+Pj4sHnzZpvzc+bMwcXFhTfeeIPo6OgWDVSIttJamwXbSrXJxPvHT3BL7554NfFtVCFam2o2o6aesy7JMO1LhrILlqgF+KAd3hftpX3RDu+LEh1S7y+h0nyk81PLLX+/6rk8XB/7vbXahAK4Pfo7zIdPYfr5IMbvtlk3BZpPZ1G18F+oBSW4PTEP7Yh+qJV6TJv2YdqXjFrqfJOo1mb8bjuYTI1uZPT45O8Y1+3CtP0ghs82QKUefDzRJsbituT/pJHKRa5FP40/+OAD9u3bx8CBA7n22mvtzl933XU8//zzjBw5kt27dxMZab+pQIiO1Bk3C17o61NnyK2s4k9Suk60I1VVUdOzLWF5z3FMe49DYantRT6eaIf2sYZmJSGyye/aSPORrkXnYKZVd/UYqpPPYFz9Cy7Xjkc1mdEvehM15Sxuy+61Ln1QfL3Q3DgZc2YeVf+3FLfn7kI3fkg7v4LzXG6eisvNjS8L0sSF4/rHWfDHWe0wKtHVtChAr169mmnTpvHNN9/g4mJf0/FPf/oTN998M9OnT+fZZ5/l9ddfb8nTCdFqOvNmwQu9deQ4U6IjSfCVt7FF2zJn5Z9fkrH7GGpuke0F7q5oh/RBc6klMGt6xzjs3tZU3b35SFen+Nb88uLvjeLuZn8+wlKiU03PBsB8NA3zyQzLOmcHG+9000Zj/N86ql/5pEMDtBCtoUUB+uDBg3zxxRcOw3MtLy8vnnzySe6+++6WPJVoA1XV9m+lOTrW3VSbTDy0Yxf/7YSbBS+0OyePvXn5fHrlFR09FNGJlJaWtkrgVPNLMO2tWZKx5xhqRq7tBS46NIN6WpdkaPrHN7kagzO6Y/MRZzr3ARh/SsLw+QZL9QqdFk2/eFxvm452eN8OegWg9KipMGEwNXKh5V0HNTPP8mU9VTZqj6vn8lBLys8HdCG6oBZ9JywuLiY+Pr7R63r37k16enpLnqrT64pl7C7GahsXbhb8+8hh3Nk/sdNsFrzQ20eP09PXh8lRUipJQHl5OQsXLmTlypWUlZVZj3t7ezNv3rxGlzyoxeWY9h0/H5hPXdAEQqtB078H2mGJlhnmQT07vLNfV+RM5z4A/SufYPzfOlz+OAv3V/6KWqmn+vXPqbrnZVwX3YbLzI6pWqEd0Q80CpRXohaX23XrUzMtNZ+VeMv3J8XP0mPA7p2L2uvziuvcvPNNWAjhjBYF6KCgIE6dOkVsrH0JorpSU1Px9fVtyVN1el2xjN3FpiM3Cwau/NDm649PpvLxyVQAXr98NLf07mn3mJzKSr45dYbFI4Z22oAv2k95eTlTpkwhKSkJgJ41m+6OVxaTWlbCq6++ys6dO1m3bp01RKvlVZgOnLAuyTAnp4Oqnr+poqDpHWNdkqG9pLfdzKhwjrOd+4w/H8T4v3VoJw3H9c/XAKD4eOL2xFwqj6ZR/eKHltn/iKB2fy2aYH+0U0ZgWrMT4w/bbV4PgPGnHQC4XHO55frBvcDPG4rLMP58EN0FdaCNq3+xXDcwQf6diS6vRQH6sssu47HHHrP5hn2hsrIyFi1axOWXX96SpxKtxNPT0zpztf9LKEiHnuMgzsFmYk9Pz3YeXdtZm36WP27aRpnB2CGbBQvm3er0Y0I9PMi6/eY2GI3oihYuXEhSUhKBOjfeSpjAVXXKvq0uSueO1M0kJSWx4I938tLEOZj2HMd8JA1Mtm+/K/ER1iUZ2mF9rLOGonU427nP8OFqAFx+Y1sRQtHp0M26DMMbX2L4dD1u993QdoNugNv9N1F5/AzV//4OJSQA7eWXoJZVYHjvR8zHTqP7zeXoplpadivurrg99nv0f3uL6mfeg4duQXtpX9SqaoyrkjB+tgG8PHB96JYOeS1CtKYWBegHH3yQyy67jMTERG677TZGjBhBSEgIALm5uezcuZP333+fnJwctm3b1ioDFi2jKApeXl5UV0JVDni4Qvwl4NlNl6J1pc2CQtSntLSUlStXAvBWwgSbxiOKojAtIJY3EyZwffIa3vvsExamaPDRWpZeKFEhlrA8PBHN8EQ0wf4d8RIuCs527lPLKzHvS7a8EzDIvsa7dnAvDIBp6wHooACtBPjg8c4CDO/9SPWbX6M+vRLcXND0icXt739GN3WkzfW6K4ahvLsQw0drqV7+KWp+MWg1KGGB6K4dj8utV3XIbLoQra1FAXr06NG8+uqr3HfffTz//PMOr1EUhddee41Ro6TYeGeSd9LyTq53CHj6d/Ro2saFmwV/36cnL3bSzYJCNGTt2rWUlZXR082Xq/xjHF4zzT+GBDdfUvUlbErw4rrf34p2WCKayOB2Hu3Fy9nOfeaTZ8GsQoAPiqf9L/VKlGVCSj2bi1qpR/Gwr4TRHhRvT1zv+S2u9/y2Sddr+8SifeqPbTwqITpW8+sP1bj77rvZsmULV199NR4eHpbaoaqKh4cHM2fOZNu2bdx1112tMVbRirKTLR9Du2lp4fyqKuas3sB/k1PQKApLRg3nlXGjJDyLLkdVVfKSLevl+3j41bseXlEU+nhYqhyUTR2Gy8xxEp7bWd3OffpFb+Lym8vx/Pp5PD5fgmZgT6pf+wz9IytQTWbL9fmWTXX1VaNQfGqW0amqpZKHEKLTaJV6RGPGjOHbb7/FbDaTl2cpYxMcHIxG0+J8LtqAUQ8Fpy2fh/bu2LG0haOFRdy6bnOn7SwoLi7NKTmnmsyYD6Vi2rIf45Z9eB+wbL5KrixGVVWHIVpVVZIrLYEsMLBjWyVfrJzt3KfqLa3P613u4Vrn+AVt0oUQHatVC3pqNBpCQ0Nb85aijoIzsPfTxq/zj4ZLb6r/fG4KqGbwDATvbjZBVXezYLyPNx9NmUjfAMc1SYVoS86WnFOrqjHtOoppyz6M23616fo3KSgO7zQ3UvQlrC5Kt1kDXWtVUTqp+hJ8fHyYOrXxLmuibTWlc5/iZlmnrhqMjm9SXee4lBMUolNp9Yr4t912GxkZGaxfv761b92ptWcdaM/6JpdUqCgEr0b2Z+ScsHzsTss3LtwsOC48lPdks6DoIE0tObf2869w25eCaet+TL8csZ1l9PZAO3YQuvFD8BwzkHkLvXn11Ve5I3UzbyZMYFqdKhyritK5I2UzAHPnzu2SXfz0T6/E+OOOes+7/HGWtcwbgDkzH9OWfZh2HMacno2aV4Ti5YESFYJu+mh0V49Dcau/yVdbcLZznxJU01ikxHEDK7W0ouaBCkpg9y4FK0RX0+oBeufOnSQnJ7f2bTu99qwDPXae4+M5J+DXbyBmSP2PNVVD/inL591l+YZsFhSdTVNLzj1y6RRejBtjfZwSFoj28kvQTRiKZmhvFN35b9HPPvssO3fuJCkpieuT15BQE8qTK4tJ1VvWx44ePZpnn3223V9vq/HzRvF3XFbvwuPVK77AtG4Xuhsm4/7ILShB/qjn8qh+82uql36Icd1u3F9/AKUdlxI627lP0yvK0qikqMzhJkH1rKUzpBIV0mEbCIUQjrV+T1bRZlw9ISyx/vPpeyEgxlJZoz55p8BsBA8/8OkGq226WmdB0f05U3LuvznJPDXhGvwnj0Y7fgiaPjH1/tv18vJi3bp1LFy4kHfffZfU0hJrcPbx8WHu3LmNdiLs7Fx+e4XNLHNjNMMTcXvg/Ho1pUcEbk//iYprHsG89zjmfcnt2grb6c59Xh5ohvbBvOc45oMpaEf2t7ne9Kulqof28kvaYfRCCGdIgO5CvINh0CzH58pyoTAdBv+m4XvUXb7R1TPm0cIiblm7mdNlZfi4uPDvieNks6DocM6WnNt2w6XMmdO00Ojl5cXy5ct55plnnN6Y2N24zr0aXO2XaCiuLmjCgzAXlZ1fAtFOnO3cB+Dyu2no9xzH8M0WmwCtGo0Yf/gZ3FxwuWFy+7wAIUSTSYDuJtL3g7svhNh3hLYyGSHPssqhy69/ls2CorNRVRU15Sw5X1n2fzSl5FyqvoSCggKnn8vHx4c5c+a0aLxdnaan41+W1eJyzKezwNMdzaAGviG2EWc69wHoxgzEdONkjJ+spzrhO1xunIxaWU3165+jnsnGdeEfpPGIEJ1QqwfoyMhIqqqqWvu2ogGGKsg6Aj3GgNLAcr+C02AygJsP+Ia33/hak2wWFJ2N+dQ5jOt2Y1y/GzUtE98CyyYDKTnnPPOJdKoeeh3zsTTLEgh/bzSX9Mbl1ivR9otv8LFqcRnm42eofvNrFA83XB+fiyao/X+pdrZzH1hCt6ZvHMbPNmL4zyrQatH0j8f9tfvRXtqv3V+DEKJxrR6gHVXfKCws5LrrrmPDhg2t/XQCOHfQ0lUwalDD1+XUNk/p3TWXb8hmQdFZmE9nYVy3yxKaU8+dP+GiY+qM6Xi/tYOUSik55yzT/hO43nMdbo/fDu5umA+loF/2MVV/eh7XhX/A5eqxDh9Xec/LmHcfBUAzsj/uy+9H0zu6HUduy9nOfQAu08fgMn1M4xcKIToFpwK0VqslMzPT6VrP1dXVbN682anHiKZRVcjYD+H9wMWj/uvMJsi17EfpktU3ZLOg6GjmM9kY1+/GtH435pMZ50/otGhHDUA75VJ0l1+Cl7cn89Qz3brkXFvQ3TwVl3kz0USf//miHd4X96XzqbzxCaqf/w/aob3RRNrvkvZ4/QHUSj3m01kY/ruayj88je6mKbjOv87aNlsIIVqTUwFaVVVMpkbK81zg3Llz/PnPf3bqMaLp8lKgshgGD234usIzlg6Erp7g38X22clmQdFRzBk5GDfswbRuN+bkM+dPaLVoR/ZDO/lSdBOGnm+5XOOiKDnXyrS9HW+41ESHoh09ANP2XzGu+gXXeTMdXqd4uKHtG4f2mTuoqqzC+PFaFE93p6p6CCFEUzm9hGPy5Mn85z//aVJt43fffZcHH3yQ4uLiZg1ONC59r6XzYGMl6Wqrb4T0bniddHtLT08HICbG8Q9P2Swo2pv5XF5NaN6F+djp8ye0GrQjakLz+KF2JcrquhhKzrUnJcbyDc6cltmk63VzJmLafhDDl5skQAsh2oTTAXrcuHGMGzeORx55hCeeeAKdzv4WZ8+e5c9//jOrV69GVVXc3Nyorq52cDfREmV5lvbe9ZW2q6Wa65Sv60TLN9LT05k4cSIAmzZtsgnRqqryxuFjPCmbBUU7MGflY1q/B+P63ZiPnDp/QqOgGd4X3eRL0U0ciuLf9OUWUnKuFZlVy8cmLtnSRFo6/lFYilqld9gVUAghWsLpAL1kyRLmzp3L3Llz+f777/nPf/7DgAEDrOffeecdHnroIUpKSlBVlWnTprF48WJGjRrVqgPvbNqzlXet9H3g5m2ZVW5IYQYYKkHnbmm00hnUhufU1FQAJk6caA3R1SYTD/68iw9PyGZB0XbMOQWYNuy1hOaDKedPaBQ0Q/ugmzLCsjyjhS2UpeRc40y/nkT/2D/x+N/T59th11Hb+loTZykfZM7Mp/LGv+H+1mNo+8bZX59bZPnEzdXyRwghWplTAfrdd9/Fz8+PsWPHcuDAAR577DFGjhzJE088wY033sidd97J2rVrUVUVf39/Xn75ZW6//XZKSkq47bbb2uo1dArt2cobLOuZs45A/ChorFOtdflGT9B0ggxaNzxrQixvzaampjJx4kS+WrWKhSfSZLOgaJLS0lKnZnfNuUWYNu7BuG435poubwAoCpohvdFNvhTtFcM6pPzZRc1gQi0owfTLYbsyb+YzWZh2HgGdFt20mokYVYVqI6at+x0GaMP32wHQXjZYvncIIdqEUwG6bgh2d3fnlVdeYc6cOcyaNYtFixZZGgmoKrNmzeJf//oXERGWdqW+vr68++67rTvyi9zZg5alGVGDG75OVSG3JkCHdYLmKReGZ59HFgFQunQJqampjLj8cjweWohfWLhsFhT1Ki8vZ+HChaxcuZKysjLrcW9vb+bNm2ezvticX4xpY81M8/4Tlv8pamgu6VUTmoejCfFv75chatVkXP2LH6HqDejGDAJvD0sZuxc/AsD1kVvPV+CoCcWG934CjQbdtNEowf6omXkYPlmHac1OlMhgXO+7viNejRDiIqCoap2fJk7Kycnhz3/+M999953lZorCc889xyOPPNJqA+zqameg9+zZw7Bhw9r9+YvOwe6PQOsKE+4GTQf2nnQUnjWBlg5b5oJ8SpcuwZybg2tYGKvWrueKQQMauaO4GJWXlzNlyhSSkpIA6FlT4eJ43QoXl47gp/sX47b9MOZ9yefX0AKaQT3RTamZaQ7tPk1MzFn5VN7yFFRU4b7iIbTDE23OG77fTvUz79X7eM3QPnj88+G2HWQ9VFXFfOAExnW7Me05hnouH0wmlCA/NJf0wuXmqXaNVEzHTmNatwvTzqOYz+ZClR483NDEhqO9/BJcbpiE4tVAbU8hhKjD2bzmVJyaN28ey5cvx8fHh08++YR77rnH2oZ2woQJ9O/fn+eff57Q0FBuv/32Zr0A0TyqqlJRUWF3PO0AVFZDWA+o1AN68PT0bPe3NRsKzwCawCB8HllE6dIlVGdn86drr7HbWCgEwMKFC0lKSiJQ58ZbCRO4qk6N5dVF6dyRupmk3btY+MDDvBhvaUyhGdDDMtM8aTia8O7ZFln/7AdQ0UgXWDdXlHDHvzRo6jneHhRFQTukD9ohTX+bTNs3zuHyDSGEaA9OBej333+fhx56iMWLF/P555+jqipeXl48//zz1vW/s2fPZt68eXzxxRe8/fbbhIeHU15ezrJly3jiiSfa5EUIqKiowNvbu0nXlpWVtWv5rMbCc626Ibp2TbSEaFFXaWkpK1euBOCthAk2Xf4URWFaQCxvJkzg+uQ1/LfgJH//+98JuPry81UZuinD11swH0tDiQtHPZ1V73Wa/vEdNssshBDdiVMVgVVV5bLLLrOG5wkTJvDrr7/abJ6bMmUKhw4dIiAggAEDBvDhhx9SVlbG4sWLW33wQoiLy9q1aykrK6Onmy9X+Tv+xWqafwwJbr6UGvRsDlK7fXg2Z+VT/drnuN53Y4srhgghhGgap1fEFhUV4enpyfPPP88999zj8BpfX18++OADvvzyS+666y6bMnei7X36ZDburrYzzFXV5dywOKxDxhMTE8OmTZuss9ClS5c4nIWuuw46ISFBZp+FnbyTaQD08fCrdxmSoij08fAjVV9iXWLWnemf/QDt4J64XD0WY031CSGEEG3L6Z50tbPO9YXnuubMmcPBgwfx9ZVZkfbk7uqFxwV/LgzU7a02RCckJGDOzbEE5YJ863kJz6I+qqpiOnCSqkffwPudnwBIriymvv3PqqqSXGnpfhoY2H02CTpi+HoL5sOncH3s9026Xi0uQ//Cf6iY/Rjll99F+ZV/pfLelzGu393GIxVCiO7F6RnoTz75hNDQRvpG1xEaGsq//vUva6UOcfGqDdHjJ0wg7dQp60w0IOFZ2FFNZkyb92H4cDXmw5bugJN8I/F2cSNFX8LqonSbNdC1VhWlk6ovwcfHh6lTp7b3sJussaoZ5rRMjN9vx7TrKOb0bDCYUIJ80Q7tg+6WK1F8vSxLN+79LZqwpv2ioKZloowfgvsbD6ME+6Fm5FD9r6/QL3oT084juC34Qxu8UiGE6H6cCtATJkzA1dX5rk46nY7YWPsfdOLiExMTw6xXXmPFn+ZZZ6IBCc/CSq2owvj9dgz/W4d6Ls9y0EWHbtpoQm+ZyrxX/Hn11Ve5I3UzbyZMYFqdKhyritK5I2UzAHPnzu3ULbMbqpphPplB5e+fBh9PXO+/Ed2oAeCiw7TrKNXLPsa4ZhdKQiSafvG4XDu+Sc+nHdkP97cXoB3Qw3pM6RGJ25I7qbz5CYzfbEU7LBHdVd27a6wQQrQGpwL0xo0bOXz4ML/++itgaaYycuRIh9f+/PPPZGdnM3v2bIKDgzl16lTLRyu6vGOFxfwvvxifRxbh+drLZJ45DeAwPFcZTby0/yCvHTrKbxPiWTF+TKP3X5t+lod27CK9rJyCebe22esQrc+cW4Txsw0YvtoMpTUlGf28cbluIi7XXYESZFkK9uyzz7Jz506SkpK4PnkNCTV1oJPr1oEePZpnn322o15KoxqrmqEajKCquD18K7qpI6zHdZOGg4cb+vuXo55Ix+3jp5v8nJrQQHBQ91rRaXG5dgLVr32G4bvtEqCFEKIJnArQJpOJSZMmkZdnmRWKj48nJSXF4bUnTpxg3rx5TJ8+nU8++aRdy6Zd7Kqqy5t0rL2pqsqCpN0YVZWZQy7huW1bmThxIoBdeN6amcUD23eSX6XHYDY3eu/cyioW/rKbDWczKdRXt9VLEG3AfDIDw0drMK7ZCUYTAEpMKC43TUV39RgUdzeb6728vFi3bh0LFy7k3XffJbW0xBqcfXx8mDt3rk0nws7GWjXjgZswfr/dYYBW3N3Q9I9He/kl9ud6RJz/oqgUiLC7xllKjGVZnno6s8X3EkKIi4HTM9C5ubn4+vry1FNP8bvf/a7ea8eNG8fUqVP58ccfufnmm/n2229bPFjRNB1VbaMx351OZ3NmFm5aDc+MHEaMrw+bNm0CsAnPX6Sk8eCOnTw+fAjuWi33bktq8L4VRiOjv/yOKyIjSJozi8SPv2jLlyFagaqqmHYewfjRGky/HLEe11zSC5dbrkR72SUo2vr3OHt5ebF8+XKeeeYZ1q5dS0FBAYGBgUydOrVTL9uAplXN0PSIwGPlIofnzLuPWT+vuutFh9dUzX/J+rmj9dX2N238l1QhhBDnORWg16xZg4eHB9u3b2+0NF2vXr1YtWoVK1as4L777uOnn35i+vTpLRqs6LoqjEb+9sseAO4d1J94X0vIcbTeOdbHmx1zZhLh6clHJxy/w1GXAvxr/FimxkS16phF61MNRoxrdmL4aA1qylnLQY2C9ophuNx8JdqBCU7dz8fHhzlz5rTBSNtGbdUMj4+eavY9dJcNphrAywPP75aieLpbz1Xe9SLmfckOQ3PFjAdxXXQbunGD7e5pTs8BQIlr+Wy2EEJcDJwK0L/88gtz5851qq7z/Pnz2bhxI++9954E6Dbk6elJWVkZALs+htIc6D8Vwvs7vra9vfLrYTLKK4j28uSvgxv+9zMi1LnGFx46nYTnTk4tKcfw9RaMn65HzbOUmMPDDd01l+Fy42Q0kSEdO8B2YM4ucLpqhiPGnyzvyLjcPMUmPDdGLSjBtO2AXYBWjUaMX2+x3PPqsc0elxBCXEycCtDHjx9vVjvuP/7xj9x9991OP64rWbFiBStWrLA7XllZ2S7PrygKXl5eVFeAsQg8XCG6P7h1gmWgaSWlvHbQ8jb9M6OG46lzunqi6KLM53Ix/G89xu+2QaUeACXEH931k3C5djyKbyf4B9pOqp/7wKmqGY6Y84qofvd7NAN64HL71U4/3vj1VhR/H3SzLkMJ8beUsXvjS9SzuehmjkM7TTYQCiFEUziVZAoLC4mLi3P6SXr16kVWlv1Gme5k/vz5Ni3Na+3du5fhw4e32zgKLEUt8A7pHOEZYNHOvehNZiZEhDMrTkrUXQxMh1IwfLQW06a9YLY0PNH0ikZ3y1R0U0eiuFxcv0QZvtmK6cBJPD58qtn3UKv06Bf8C8XfB/cX70HRaQEwn8ujcs4Cm2tr10BrhvbB458PA+Dxyd8xrtuFaftBDJ9tsPxC4+OJNjEWtyX/h27ypc0emxBCXGyc+inm6emJRuN080K0Wi06mXVsF/lplo9B8R05ivPWpp/lpzMZ6BSF50ZfWm/7ZdH1qSYzpq37MXy0FvOvJ63HtaMH4nLLVDQj+l2Uf//mnAKqX/0M17vnoIl0bnlSLVVvQP/Yv1BLynF//QGUwPPdXTWRwXglvd3oPTRx4bj+cRb8cVazxiCEEOI8p1JtVFQUx44dIyHBuY0+R48eJSpK1qi2NVU9PwMdGN+hQwFAbzKxsGbj4B39E+kb4NfBIxLOKC0tbVKFC7VKj/H7ny2NTzIsm9Fw0aG7ahQuN09F0/Pi/n/ftPMolFdSvexjqpd97PCahqpmqFV6qh5aAUWlePzrEZSAzl1lRAghLgZOdyJ85513mDFjhlNPsnLlSmu9X9F2yvNBXwYaHfh3gszyr8PHSCkpJdTDnUeG2u/8F51TeXk5CxcuZOXKldaNqQDe3t7MmzfPWmPZnF9saXzy5WYoqakz7uuJy+yJ6K6/Ak2wf4eMv7NxmTkOl5njHJ5rqGoGgFpeRdWDr4K+GvcVD6H4nV+XZVy7CyUsAO3gXm02diGEEI45FaDnzp3LyJEj+de//sWdd97ZpMe88cYbfP311+zcubNZAxRNV7t8IyAatB28YuZceQUv7T8EwFOXDsXX1aVjBySapLy8nClTppCUZKn00LOmy9/xymJSy0p49dVX2bl1Gz/MugO3DfvBYARAiQrB5aYp6GaOQ/Fwa+AZRFOpJeVU/XU5aDW4v/4gipeHzXnDl5vQDkuUAC2EEB3AqZh16aWX8vvf/5758+ezZs0a/vKXvzB+/Hi7ddFms5mtW7eyfPlyvvnmG26//fZ23Uh3sSpIs3zsDMs3nty1l3KjkRGhwdzQq0dHD0c00cKFC0lKSiJQ58ZbCRO4yj8GRVFQVZXVRenckbqZpH17+du513gxfgyaQT0tjU/GD2mw8YlwjlpcRtW9L2NOTkc7bjD65/5jd405LRPtsEYapAghhGgTTs9Tvvnmm6SlpfH111/zzTff4OrqSs+ePfH39wegqKiIlJQUqqurUVWVqVOn8sYbb7T2uMUFTEYozLB8HuR8oZRW9XNWNl+knkYBlo4egeYi3DjWFZWWlrJy5UoA3kqYwLSAWOs5RVGYFhDLmwkTuD55Df8tTOHZrz/Ef7R9q+mOYDqahmnrAUy7j6Fm5qEWl6EE+qJJiEI3ZwK6yxyPUy2vtFQL2bIP89lcUEEJ9kPTvwcu101sk9ndplTNMO0/gTk53fLatv/a6mMQQgjRMk4HaHd3d9avX8+CBQtYsWIFVVVVHDlyxO46Dw8P7r//fhYvXoxWq22VwYr6FZ0FsxFcvcCreRv9W4XRbObRHbsBuC2xF5cEN79hhGhfa9eupaysjJ5uvlzl77jc4DT/GBLcfEnVl7DhXApz6BwBWv/ga6hlFbjefxO6CUPBww3z8dPoX/wI/UOvY543E9c7fmPzGHN6DlX3LkOJDcd1wR/Q9IxGLauwrOt+70c00aFtEqCbUjVDN2EouiZU1hBCCNExmrVSVqfT8eKLL/LQQw/xzTffkJSURHZ2NoqiEBYWxpgxY7jmmmsIDQ1t7fGKetQu3wiKh46c8H332AkOFxbh7+rK34YPafZ9Ald+aPP1xydT+fhkKgCvXz6aW3r3tDk/f8sO6/kL7zEuPJTvZkxt9lguBubcInLXW9Y99/Hwq7fcnKIo9PHwI1VfQkFBQXsOsVEut83AZfYE69faIX1we3wuVbc/g+G/q3D5w3QUd1cA1GoDVQ+9Zqmp/PK9KDVlNhU3P1zvnI05LQvF37tDXocQQojOr0VbzcLCwrjjjju44447Wms8okZJNpzZA4XpUF0BOlfw8AP/aEgYa/m6rs5Q/zmvsopn91rebv7b8EsIdG/+ZrKCebc6df2K8WNYMX5Ms5/vYqOazJiPnsK0/SCm7QcxJ5/Bp+AUAMmVxaiq6jBEq6pKcqWlFXdgYOd5d8Ht2f9D0yPS7rgmNszySbURqg1QE6CN32xFPZ2F69/vsIbnutyfv6tNxyuEEKJrk+4mnVDGfkjeCPGjoddl4OoJ5QVwbB2c2Q0xQ20DtL4cynItnwd24PrnZ/YcoLi6mkGBAdyWKJUBOhu1rAJT0mFMPx/EuOMQFJaeP6koTBl9Gd5nfiZFX8LqonSbNdC1VhWlk6ovwcfHh6lTO8+svnZIH4fHTQdTAND0i7NpG278aYflcQ5KxwkhhBCNkQDdyRScsQTl3hMhrk5nXZ9Q6D8NDnwNygXFDmqbp/iEWcJ2R9iXl89/ki3d514YfSnaZnSsFPaa2szEEVVVUU9nYdr+K8btBzEfOAkm0/kLvDzQjh6AdtwgdGMG4RXgw7yAQl599VXuSN3MmwkTmFanCseqonTuSNkMWEpaNnUc7U01mVELSjDtPophxRdo+sbh9vfz75KpegPm4+ng5oJqMlP93AeYfj6IWliKEuCDdvQAXObObHbXQCGEEN2fBOhO5sRm0LlZZpkv5BUIY+fZH7cu3+ig2WezqvLIjl2owA094xkdLmvfW6qpzUwupOoNmPYdtyzN+Pkg6tlcm/NKfAS6cYPQjh2M5pKedssXnn32WXbu3ElSUhLXJ68hoaYOdHJlMan6EgBGjx79/+3deXhM1xsH8O+dPfsiiYSQiAS1lIpYfxpK7HtR1K7UXlpqL2rfam+1dkWqliht7cQaEkGJNWSzTAjZt1nP74/pTDNmEplsk8T7eZ55yD3n3HvuvbO8c+fc82Lx4sXFsNdFI/PjMYBKDfB5EHT/GKIvuuqlvmYvEjRfJAQ8ZA9fBP7/PoTkp6ngnOygunQbssW7oDx/CxY/f2t0WAghhBBCAXQpkv4aSHsJVKgG8PI5cQlj5p//OTAyCuEJb2AtEGCeX0PzdKIcyVcyk9BQnD59WpMRMCEZqsu3obpyB6qw+0CW7L+VCQXg+9YEv3k98Ft8CF5l5zy3bWVlhdOnT2PmzJnYvn07otJSdYGzjY0Nhg0blmvwXlpYXf4ZLDkN6odPIf/xIDJ7z4Jo6gAIO2rGyLP0LE1FmQKcawWIpw3StRW09QN7kwL56n2QLd4Fi83TzbELhBBCSjkKoEuRlBeafyW2mqvKMdc0NxMyNWDpALjVBqr4AjlHR6S/1txkyBMA9ma4WJYql+P767cAAFM/qgdXS4u8G5B3ylcyk6tXMa3rZ1jh3gTqR3F67Tlne13AzG9UC5ylxKTtW1lZYe3atVi4cGGBh4+YG2dvA36T2pDUrYasz+ZA/v128FwcwPetpVdP0KGpQVtB5+aQr94H9Z0nUL94TUM5CCGEGKAAuhTJTNL8mxgDvHwA1GoLfFhNM79zVIhmeEdiHNCg53/joN9oJk6AQxVNEF3Slt68g4TsbPjY2eLL2nRDVmGZksxk1/mTmN2wAmwEYvDqVPvvKnONKrlOQ2cKGxsb9OrVq9DrMSfOygKC9k2g2HNSk/rat5bezYScq+FMIpy1JWBrCaRmQv30JQXQhBBCDFAA/ZabN2/ixx9/RGhoKDiOQ2ZmJlq2bInFixejYsWKxbpt5b+/vGelAB+0A1w/+K/sgwAgVaoJmJ/fAdz/zV+hvYHQHNPX3UtKxuZ7DwEAS5o2gogS5hSaqclMLrSriT5TJoBzKBtXhs2Bc9MEwEz6RvN3ZWdAJNBMbadQ5t0WlEWTEEKIIZoq4S179uzBP//8g7Nnz+LWrVsICQnB9evX0adPnxLtR87gWcutjubf+Puaf1UKIFmbvtuzRLqlwxjDjKvXoWIMXTyq4JPKbiXbgXJKm5wkP8lMACC1mst7HzwrjoUgo/1kMMaMlrPXyQAAzlaTGIUT8HVDOdiL14b1M7KA1ExN3Wr0vCaEEGKIAui3VK9eHfPnz0eFChUAABUqVMDw4cNx8eJFJCcnF+u2hf8OVRVaAHyhYfm/MZNuqEfyM0CtAsQ2gGUJ57T4IyYOF6UvIeHzsbAx3ThYWIwxqMIfwPqvUAD/JTPJrW5pTGZiNio1kJIO9Y2HBkUsWw7l6TAAAL/lf2nHBf3aAgCUf4cYtFH+dUVTv2ld8FwciqPHhBBCyrgyF0BfuXIFNWvWBMdxiImJKfL1jxkzBh07dtRblpaWBgsLi2KfecBKE7NDrcq7nvbCZM7p60oyfXeGQonZoTcAABPr1UZVG0p5XFAsMxuKg8HIGjAX2eNWodUzGax5Ql0yE2NKazITs/n3yS/7bgsUf1+B+nUyWGY2VHeeIHvyWrBnCeA3qwtB95a6JoImdSDoHwD142eQLftV0yZbDuXZcMh//gNcJSeIZg421x4RQggp5crMGOisrCzMnj0ba9euhUr1jgjzLcePH8eqVasQHh4OmUyGmjVrYvjw4Rg7dix470j4ERISgh9//BErVqyAUGjksnARcvQAwAEqOaDI0lyJzilLM5uYLtB+Y6bxz2tuR+BFRiaqWlvhqw9rl+zGSzFTkp6oY+OhOBisudqZ8e+0ahZiOHRshWF1BFi/c1uZTmZSkgTtm4BztIXqzHUotv8F+bI9gFIF2FqC51MFojnDIOjYFNxbr3XxV33Br+0JxYFzyOo7B1Aqwbk5QfhpKwgHtte72ZAQQgjJqUwE0E+ePEGnTp0gk8lw7NgxtGvXLt9tly1bhunTp6NLly44deoUbGxssHXrVkyYMAEnT57EoUOHIBAYHoagoCCMHTsWSUlJ+O677zB69Oii3CWjxNaAay3NGOcXd/UzEQKA9K7m30r1AFk6kPHv8E2HEkygEpWahvV3NIOwFzb2hYWRY/e+yW/SE6ZSQ3X5NhQHzkEdek9Xj6taEcJPW0PQuRk4a0ssyeiBsIf3ynQyk5LECfgQNKsLQbO6JrcVBDSGIKBxMfSKEEJIeVYmop+7d++iTZs2WL58Oayt8z9c4OLFi5g+fTpq166NQ4cO6a4gL1u2DElJSdi8eTOWLVuGWbNmGbTt2bMnevbsiUePHqF///44ffo0Tpw4UexXoWu01sz9HHVFE1A7V9fMzhF9VZNkpfKHmiD7RYSmvq0rICrBqZdnXQuHXK1G68pu6OzhXnIbLqXylfQkJAR/j5oJ8Z9XweI1M0GA48D/34cQ9G4Nvt8HeldHy0MyE0IIIaQ841hudyqVIiqVCvwcU6RpZyeIjo6Gp6dnru3atGmDs2fP4qeffjK4gvzw4UPUqlULtra2iI+Ph4VF7lHotWvX0LRpU/zyyy8YOXKkSX2/ceMGfH19ER4ejoYN83eznTZgfhUJZKcBfAFg4wJUrq8JngEg4i/NlWrPpoD3/0zqUoGdevocn50KhoDjcKlnZ9SwtyuZDZdiX331FdatW5dn0pNEpQxjKtbBCs9mgK0VhN3+B0Evf/Aq5Z0VEDBtWAghhBBCCsbUeK1MXIHmF2B+4YSEBAQHBwPQBNJvq1mzJtzd3fHs2TMcO3ZMlzAiMzMTlpaWenXr1asHALh165bJ/SgIgRjw8dc8GGPIzMzUlWVkaNJ3P3sIKOSAxFmzDAAsLS2LJIGGMTKVCjOuhQMARtepRcEzTEt6sjvxMRauWw2Hbv7gJKJ8b6M8JDMhhBBCypsyEUAXxPXr16FWqyEUClG9enWjdWrVqoVnz54hLCxMF6TUrl0b165d00uaEhenSZWc15RhMpkMMpnMYHnOMbEFkZmZmfewlRyjT9LT04vtZ/0fI+4jKjUNrhYWmNKgXrFso6wxNelJsCANvUwInksL1f0YqC7+A9X1B2DS12Ap6eAcbcHzqgxBL38I/lffaDvllTtQ7DkB9YM4gDHwvN0h7NcWgk98S3gPTKdQKEy+WZkQQoj58Xg8CIXCYrugqFVuA+gnT54AAJydnXOdacPNzU2vrtbMmTOxceNGSCQSpKam4uuvv4aVlRWGDBmS6/aWLFmC+fPnF1HvS5fnGZlY9Y9m0PU8v49gKyreceBlhSlJT6Jkqbr6ZY3sm/Vg6ZkQTe4Hgf9HgIUY6oexkK3YC9mUDVAP7wLRqO56bRS/nYZ8zT4IenwMyfejAAEP8u1/QTZzE9QjukI0spuZ9iZvqampeP36tdEvw4QQQsoGPp8PS0tLuLi4QCQqngtX5TaATk3V3HSV19hm7VCNlJQU3bKNGzdi69at8PX1hUAggEwmQ/369XHt2jV4e3vnuq4ZM2bg66+/Nlh+69Yt+Pv7F3Q39Pw+9yUkIv0rzNnyDPSdX7wpxr8LvYFMpQpNXJzRp7pnsW6rLHGwswfwX9ITY0F0eUl6IhzSCcKe/z2P+Q1qQDxnGLKHLoRi93EIB3fUDU1RP3kO+fr94NX2hGjaQN1xEU/6DOpHT6HYehT8ZnXAr2v8lyFzSU1NxfPnz2FtbQ0nJ6cSuYJBCCGk6DDGoFKpkJWVhZSUFMTExMDd3d1gaG5RKLcBdEF17twZnTt3NrmdWCyGWCw2WG7KrCHvIhFZwUJUsjMvXJK+RFB0LHgch+XNGlFA8S/Vg1i0DLqll/Qk5xhorfKQ9ES8+EvwqlUyWM6r+u8XN7kSkCuAfwNoReApQKWGoFtLg+eLsOfHkN14CMXuk+AvHVPsfTfF69evYW1tDXd3d3qeE0JIGWZtbQ1HR0fExsbi9evXqFrV8PO5sMpcJsL8srW1BaBJwJIb7c15dnZ0Q5wxSrUa065q0iAPremNehXK7hXUosIysiFbsw/ZwxfBKuolBlXSJJIZFXUex5LidOm3GWM4lhRXLpKe8BvUAGdn+EVQdUcz9In3gYde0hHlpX807eob/mLD+3eZKuQOmLL0jDFWKBSQyWSws8t9OA4hhJCyg8/nw9HRERkZGVAqlUW+/nJ7BVp742BCQgLUarXRcdBSqVSvbmFs3LgRGzduNFieVwBf2m29/wj3k1LgIBZhZkPjN4q9T5QXbkG+KhDspWYsMz/AD8tGzsfNzz59b5KeMJUaLDEVquv3odh4ELxaHhAvGKUrV79KApI1N85ybk4G7TlnB0AoAGQKsKcvwRm5sm0O2hsGi3ued0IIISVHOzJAqVQaTZpXGOU2gPb19QWPx4NCocCTJ0/g4+NjUOfBgwcAAD8/v0Jvb9y4cRg3bpzBcu28gmVNQlY2lty8DQCY49sAjhLD4SnvC/WrJMh/+A2q4BsAAM6tAkRTP4egeT1IgPcq6Unmx2MAlRrg8yDo/jFEX3QF52irK2eJ/+abFwuNTtfHcRxgbQEkpYG9SQFKSQCtRVefCSGk/CjO9/RyG0C7uLjA398f586dw5kzZwwC6IcPH+LZs2ewsbFBhw4dzNRL02TLM/K1rCgsCL+FVLkC9Ss4YlCN0nWzV0lhKjWUQech//EQkJkN8HkQ9g+AcERXcBb/faGwsrLC2rVrsXDhwnKf9MTq8s9gyWlQP3wK+Y8Hkdl7FkRTB0DYsZmmQva/s1fk8U2fEwnBALBsefF3mBBCCCkG5TaABoC5c+fi3Llz2LBhA7744gu9y/erVq0CAEydOrVY7s4sDsU924ZWeMJr7H6kGd+6tGkj8HOZBrA8U0U+hXzpr1DfjQYA8GpXg2jGIPB9jM/3DLw/SU84exvwm9SGpG41ZH02B/Lvt4Pn4gC+by1A+0tFHuPNmFyhWU8ZnBObEEIIAcpQAJ2QkGCQ2CAhIQESiQQA4OrqatDG398fixYtwqxZs9CzZ0/Mnz8f1tbW2LZtGzZv3oxOnTphxowZJdL/skLNGKaFXAcA9POuhiYV351uujxhWTIothyF4jfNTBKwlEA0thcEPf3B8c33RUJ1/T6UJ65BdStSMwab44FzqwBBi3oQDuwAzsH4lW72JhXy3cehunIHLD4REPDBudiDX7c6hAMCjM6ukV+clQUE7ZtAseckFIeCwfet9d9wDpkCLFtuECQzxoB0zX0BXAX7Am+bEEIIMacyE0D7+fkhNjZWb1njxo11/9fOfvC2mTNn4qOPPsKqVavwySefQKFQoEaNGli7di3GjRtXoDThxhTXTYSWlpb5zmZYFFfS90ZG4cbrN7AWCjC30UeFXl9ZogyJgHz5bjDpGwAAv3VDiCb3A8/Fwaz9Uhw4B/nKveB5u0M8bSB4H1QDy8iC8sQ1KH4+DOWxq5BsmgpeVf0vkaqIKGR/vRb8pnUhWTwaXBUXsDepUGz7E8qjl8Cr712oABr470ZB7THjuTgA9tZAcjqY9LXBTYIsIQlQKAGxCFwVl0Jtm7w/WrVqhfPnz+v+jo6Ohqenp/k6RAh575WZ3+ZjYmLAGMv1kZeOHTvi9OnTSE5ORkZGBm7evImJEycWWfAMaG4ivHfvnsHj4MGDhVovx3GwsrLK16Owg+VTZHJ8f/0mAGDaRx+iomXuSWjKE/WbFGTP/gWyyWvBpG/AVXSEeMV4SJaMMXvwDACQyQGhAOJVE8Bv9AE4Kwl4Lg4QDeoAYf8AsMRUyH/Yp9eEpaQje8p68Ov7QPL9SPCqVwYnEoLnVgGimYPBq+sFzvrd51dxLAQZ7Sfn+hpjr5MBAJztf9PcaVN7q24/Maiv/kezjN+sLjhB0b3+SOl1+vRpODo6YsmSJQVex6FDhyCVSuHu7m5y2507d8LOzg67d+82KAsODsa8efMQHBxc4L4RQt5PZSaAJsVvyc3beJ0tQw17W4yqXdPc3Sl2TK2G4vAFZPX7DqrTYQCPg6BfW1gEzoegZemZto9ztIMgwA+8iobzcPP/7acq7D6YSq1bLt95DEhOh3BIJ8P1cRwstsyAoFXDd29cpQZS0qG+8dCgiGXLoTwdptcPABAOCAD4PCiPXDQIvBV/XNDUGdju3dsm5UJQUBCSkpKwZ8+eAq/D0dERrq6uBbro8fvvvyM1NRW//fabQVlwcDDmz59PATQhxGRlZggHKV73EpOw9f4jAMDSJo0gLOc3DqqjnkO2dDfUtx8DAHg1q0I0YzD4tTzM3DNDgo5NIejY1GiZ7ioyByBHEhflsRBAIgKvTrXCbfzfXzVk322BcFwv8BvXBmcp0aTr/vEQ2LME8JvVhaB7S10TnldliCb0gXzNPsiX74FoZDeAz4d8599QX38A4YiupS6Nd0lhjOkSOL2LpaVluZhWb/jw4QgPD8eXX35plu2PHz8eCQkJRqcZJYSQgqIAmoAxhmlXr0PFGLp6VkGrym7m7lKxYdlyKHb8BcXuE4BSBViIIfqyBwS9W5fJIQXqmHgAmgx/2v6zp6+ApDRwHq5gT19CtvkIVNcfAOlZ4JztwW9ZH6JhncHZv3uKPUH7JuAcbaE6cx2K7X9BvmyP5rjZWoLnUwWiOcMg6NgU3FtfuIT92oKrWhGK3SeQ2XsWAAZedXeIF4+G4JOyNy96UcnMzIS1tWFWR2PS09PLxfzhvr6+uHr1qtm237FjR3Ts2NFs2yeElE8UQBeRspyJMCg6FpfjX8GCz8fCxvn4Wb+MUoXdh2zZbrBnrwAA/P/Vh2hKf/BcK5i5ZwWnPBYCcBxEw7vqlqn/3T+Wko6sEUsg7PsJRON7g7O2hPL4VU1SmAu3INkyA7wKeaex5wR8CJrVhaBZXZP7JmheD4Lm9UxuR0q38+fP4/vvv0doaCgAoFatWhg7diyqVauG1q1b6+oNGTIEO3fu1P3t4eGBmJgYvXUlJiZi9erVCAoKQmxsLBhjqFWrFjp16oTPPvsMderUeWd/hg4dqrcd7bbnzZuHatX++wXG399fN1QjODhYr6/z58/H/PnzdX+fO3cOrVq1eue2CSHvLwqgi0hZzUSYrlBgTqgmw95XH9ZBlXxeHStLWFIa5Ot+h/KY5ioY52wP0df9wW/1UZn+iVwZEgHVxX8gGNAOfN8cY9bT/x0ikJwOfrvGEI3srisSftoK6qcvofztNORrf4fk+5El3Gui9fvcl5CI9K8wZ8szSmy+94IIDAzEwIEDUblyZezatQsNGzbEs2fPMHv2bF2dZs2a4dChQ7CwsMDSpUvx9OlTvRmTtDIyMtC0aVMkJydj3bp1aNSoEWQyGU6cOIFZs2Zh165dBgG3MWvXroWnpydWrlyJ/fv346OPPoKFhQWsra0hlUpx5coVfPrpp3ptmjdvDqlUipUrV2LVqlX45ptvMGXKFF25o6Ph/QaEEJITBdDvudX/3IU0Mwse1taYUO8Dc3enSDHGoPzrCuTr9gOpGQDHQfBpK4hG9wBnXTaS5+RGHfcSsu+3aabaG/dprvUEHQzHTgs6N4fyt9NQBd8AkynAiYXF2dUyjzFArSiadalyJF+UiKxgIcp9iIZKDqiK4NTwhLqh7IXy4sULjBo1CowxHDlyBA0aNACgubL8999/w8vLCwAgEol08/Lb2dkhOzvb6Pr279+PyMhIrFixAv369dMtr1OnDrKysrB58+Z89Wvnzp344YcfcOzYMbRs2VKvzNXV1WgwrO2jdjiNtbW10VwChBCSGwqg32NPUlKxMeI+AGBRk4awyCP9clmjjo2HbOmvUN/U3BjJ83aHaPog8Ot6lcj2TU18opa+gerCTahC7kL99CXY62RwVhbgKjtrbiLs3EIX6Kqlb5A9cTX49X0g/n6kYYIX2/+CMp6rYfDAq6SZuxlyJdjLN+CqUuCQF7UCOLeuaNaVZUL28vM/ARZFkKyx9USAXwTr2bp1K9LT09GiRQtd8KxlYWGBL774AgsXLsz3+hISEgAAcXFxBmUDBw5ElSq5Z/3UWrlyJRYsWIDjx4+jefPm+d42IYQUVvmJmIjJZl4Lh1ytRpvKbuhY1fT5VUsjJldAsesYFDuP6RJ2CEd2g7BfG3Al9AWhIIlP5BsPQnU6DIK+bSD5dgC4CvZgL15D/vNhyJfvgfL0dUg2fA32/DWyJ6wCr0ENiOcMM5odMWdyFKZQGZTrK7tDWEjJ0iYyyW1I2gcfmPYLVuvWrcFxHDZs2IDXr19j9OjR+N///gcejwcPDw8MHjw4z/aLFi3C7Nmz8csvv1DwTAgpcRRAv6dOxD3DqWcvIOTxsKRpozI9FlhLdeOh5ibBWM3MFPymdSH6dgB4lUo4HXmOxCfauZs5KwlEgzoAqRlQ/Hoc8h/2QbLmK71mPN+aEH/930/ZXDU3iL//ApndvoX6xkMo/w6BYlMQ+M0/hGj6QL2ZLxR7ToDfVjNXNK+iIzhPN7AYKdiL10DNqnrbYS80WQNhIQbnVnZvoCwpPKHmKm5RyMgAMCt/df3HAEUxCQeviEboPHv2DADg7Gz89WTqEIhGjRph165dmDRpEgIDAxEYGAhnZ2d0794dI0eONDpuWmv+/Pm6xCgrVqzA559/XiSZWAkhJL/K92S/JWjjxo2oXbu2wePtm1dKg2ylCjOvhQMAxtSpBW87WzP3qHBYSgZki3Yge+xKsNh4cI62EC8YBfHqiSUfPKNgiU9EwzpDPN3wihsnEupmCZGv/g38Vg0hmjHIYNo4+foDYM8SdH8L+7UFACj/umKwTsXfmmWCDk3BCek79LtwnGYIRFE9tLLlGch665Etz9CVF9X2ivq78bsyv5pi4MCBeP78OQIDA9GzZ0+kpaVhy5YtaNKkCSZNmpRru7///hvXrl1D48aNERkZiWnTphVZnwghJD/o07OIlKVZODZG3Ed0WjrcLC3wTQPTpycrLRhjUB2/Btm634GkNACAoOfHEI3pBc7WfPPnmpr4BAB41Ssbrc9SMqCOfqH5Q6kCS06HbM67b64SdPsfVKH3oDobDvnmIxD2bQMI+VCeuAbl/rPg1fKAaHxvk/aLFK3SPNuGMe7u7nj48KFu7PLb4uPjC7ResViMfv36oV+/fkhNTcVPP/2E2bNnY+3atejcuTMCAgIM2hw5cgQNGzbEjh070LBhQ2zcuBE9evRAmzZtCtQHQggxFQXQ75ln6RlYfTsCADDf7yPYCMvmDAzqZ68gW74H6tB7AP4d7jB9MPj1vc3cs7wZS3xiDEtJh/phHOQ/H4ZunLJMoUk5ng8cjwfxwlFQBl2A8uglKPaeBNQMvKouEI7qDuFnbWn2DWISf39/nDlzBuHh4UbL79+/b9L6Dh8+jGfPnmH8+PG6Zba2tpg2bRoiIyOxdetW3Lx502gAXbGi5svHBx98gAULFmDq1KkYNmwY7ty5Azu7vOc2z4lnJONqSkoKFAoFnJycTNofQsj7hQLo98x3YTeQqVShWUVnfOrlae7umIwplFDsPQnFtj8BmQIQCSAc1gXCge3LxHAEY4lP3pY1/geor2uCEV7j2rDYMgM8H9Nv8uR4PAg/bQXhp60K2l1SxCwtLZGenp7vuqXJiBEjsGzZMoSEhODWrVt6M3FkZWVhy5YtJq3v1q1b2LVrF0aNGgWRSH+aEIVCM29g1apVjTXV8/XXXyMoKAhXrlzBxIkTDZKq5MXe3h6AZk5qrcGDB0MqleoSxRBCiDE0Bvo9cuFFPA5Hx4HHcVjW1K/M3Tiouv0YWUMXQvFTECBTgNfoA1jsma9JS10Wgmdt4pP+AfqJT95iseFrWJ7bAMmO2eBsrZA1+HvI1v4OpnzXjBqktOM4DlZWVvl6lLbXZ6VKlbB582ZwHIfu3bsjKCgIcXFxuHz5Mjp37mw0XXZ8fLxuyIdKpUJ8fDwSExN15dHR0ejevTvOnj2LmJgY3LlzBwsWLMDu3bvRpEkT9OrVC4DmqnB8fDxUKs1rICEhQTdkJDMzE8uWLYNQKMSuXbsQGBiI+Ph4yGQyve3J5XLEx8cjJSVFt31/f38AwPHjx3Hv3j2cPn0aZ86c0ctSSAghRjFSrMLDwxkAFh4ebtZ+yFUq1uzgUeawdTebeiXUrH0xlTo1g2Uv/ZWlN/lC82g/icn/vsLUarW5u5Zvqth4lt5hMsua/iNTK1Umtc36ei1Lb/IFk/3yRzH1jmRlZbF79+6xrKwsc3el1Dt37hz75JNPmLW1NbO2tmbNmzdnhw8fZufOnWMAmL+/v64uAIOHtjw5OZnt2LGDde3alVWqVIkJBALm5OTE/Pz82Lp161hmZqZuPUOGDDG6LsYYmzt3rtGy7du3G10+ZMgQvf356aefWPXq1ZlAIGBubm7syy+/ZGlpacV9GAkhJcCU93ZT4zWOsSK8pZoY0N5EGB4ejoYNG5qtH5vuPsDMa+FwFIsR1rsrHMRis/VFKy0tDadOnUJiYiIcHR0REBAAG5v/EowwxqA6cx3y1fvA3miuGgm6tIBoQm9wdmUn5bha+gbZY1aAV8sD4gUjTb5arrx8G7Jv1gMONrA69kMx9fL9lp2djejoaFSrVg0SicTc3SmTgoOD0bp1a/j7+yM4ONjc3SGEEJPe202N10r/795lxMaNG7Fx40aD5VlZWWbojb5XWVlYcuM2AGBOowZmD54zMjIwc+ZMbNu2TW88qLW1NYYPH47FixfDIiUL8pV7obpyBwDAVa0I8bRBeQ59KI3UT1+9M/HJu+gyByalgWXLwEnM/+WHEEIIeZ9RAF1ESvM0dt9fv4U0hQINKjhioE/JpLLOTUZGBtq2bYurV68CAKqLbVHDwg4Ps1IQlZ6KdevW4drfJ3HEtSWsFAwQCiAc3BHCIR3BicrWrBHq6BfInvDDOxOfqKVvkPXZbEh+mQ5+LQ+D9bCEZM1/xCLNgxBCCCFmRQF0ORf26jX2RkYBAJY18wPfyLRNJWnmzJm4evUqHAVi/OLlj/b2VcBxHBhjOJH8FKOizuPa4weYl8bHqp5DNKmwPd3M2ueCUEU+RfbE1RC0aQTRN/0NbgiTrz8ASS1PoKKjZj5ouRKqi7eMBtCKPy8DAPj/+7DU3VhGiEqlQkJCgsHNehYWFiZNKUcIIWUJBdDlmJoxTL+qmTe4v48X/FzMO69pWloatm3bBgD4xcsfHRz+m6KK4zh0cKiKn7380efRSexOjcbSZV/CwrbsZUlU3Y9B9lerAbkyf4lP/g2KFTuOATyeJkOgkz2Y9DUU+05DdTIUXCUniL7qUwK9J8Q0T58+RbVq1XR/h4SEwM3NDUOGDMGOHTvM1zFCCClGFECXY7sfPcHN14mwEQoxt1EDc3cHp06dQnp6OqqLbdHevorROh3sq8BLbIuorFScPn1aN41VWaI8fhVIzQSAfCU+4blVgGTHbKhOh0F1/hYUe08B2TLAQgxeVVcIv+wBYd9PwFlZFHfXCTGZp6dnkab3JoSQsoAC6HIqWSbDgvBbAIDpDT+Ei4X5gy/tT7w1LOxyHYrAcRxqWNghSpaqN19sWSKe3A/iyf1MasOv5WF0+AYhhBBCSh9KpFJOLblxG2+yZahpb4cvPqhh7u4AABwdHQEAj7JScr1ixRjDo6wUvfqEEEIIIaUJBdDl0N3EJGx9EAkAWNa0EYRmvnFQKyAgANbW1ngiS8WJ5KdG6xxPfoooWSpsbGwQEBBQwj0khBBCCHm30hFZkSLDGMO3IWFQM4bunlXxcSVXc3dJx8bGBkP92wMARkWdx7GkON2VaMYYjiXFYdST8wCAYcOG6SVVIYQQQggpLWgMdBEpLYlUDkXFIuRlAiz4fCxobL7Mh8Yofj+DOS+tEWrtgtD0V+jz6CS8/p0H+lFWCqJkqQCApk2bYvHixWbuLSGEEEKIcRRAF5HSkEglXaHAd2E3AACT69eBu7VViWw3PxR7TkC+/gCs+EIcn7sKc+NCsWPHDkSlpeoCZxsbGwwbNgyLFy+GlVXp6TshhBBCSE4UQJcjq25FQJqZBU8ba4yvW9vc3dGRb/sTil/+AAAIh3eB5chuWMcNxKJFi3Dq1CkkJibC0dERAQEBNGyDEEIIIaUeBdDlxOOUVPx49wEAYHETX0gEfDP3SDOuWfHzYSh2/A0AEH7ZA6JhnXXlNjY2ZXKeZ0IIIYS83yiALgcYY5hx9ToUajUC3CuhfZXK5u6SJnjecACKPScBAKIJvSH8vL2Ze0UIIYQQUngUQJcDx58+x5nnUoh4PCxu4ptrkpKSwhiD/IffoNx/FgAg+qY/hH0+MWufCCGEEEKKCk1jV8ZlK1WYeTUcADC2bi1Ut7M1a3+YWg35st2a4JnjIJo+iIJnQt5Dnp6e4DhO9yCly4MHD/TOT6tWrUxeh7e3N51j8t6iALoMevr0KZ4+1SQiWR9xD7Hp6XCztMDX9euatV9MpYZ84Q4oD18AeBxEs4dC2ONjs/aJkNIu5+u5PAkLC4NUKjV3N/ItMzMTvr6+aNSoUYlPP1oUFi1aBEdHR5w9ezZf9X18fCCVSnHw4MFc68TExGDevHnYsWOH0fKrV6+WqXOcm+TkZMybNw9r1qzJtY5UKkX16tXRpUuXXDPpFqWS3t7bSuMxKW0ogC5jnj59ilatWqFVq1a49uAB1vxzFwDwfeOGsBYKzdYvplRBNn8rlH+HAHwexPNGQNi5udn6Q0hZkPP1XN6CaGdnZ7i6lp5ETu9y9+5d3LhxA+Hh4bh79665u2OyvXv3IikpCYcOHcpXfT6fD1dXVzg6OuZaJyYmBvPnz881gHZycipT5zg3ycnJmD9/fp7B4qVLlxAVFYW//voLb968KfY+lfT23lYaj0lpQ2OgyxDth21UVBQAoO0nbcD/ehpa1v4Avap5mK1fTKGE7LvNUJ27AQj4EC8YBUHr0pXEhZDS5u3Xc6tWrRAcHIwqVaqYuWfvpwYNGqBv3766/5c1U6dOxaZNmzBs2DBzd6VcCggIQPv27eHj4wMnJ6dyt72CKAt9LE4UQJcROT9sec4uAIB06Qvwli/CV2dOm238GZMpIJu5CarLtwGhAOIloyH4X32z9IWQssLY6zkqKoqCaDMSCoXYt2+fubtRYEOHDsXQoUPN3Y1yy97eHsePHy+32yuIstDH4kRDOIrIxo0bUbt2bYPHp59+Wuh1v/1ha/PtLNh8Ows8ZxeoE17hyx49zPLzL8uWQ/btBk3wLBZCvGIcBc+EvENer2dtEF2ah3M8ffoU48aNg5eXF8RiMWxtbeHr64spU6bg1q1b+V5PWloadu7ciW7duqF69eqQSCSoUKECAgICcOTIkVzbhYWFoXfv3vD09IRYLEbFihXRpUsXbN++HcnJyXp1ExMTMWfOHNStWxc2NjawtrZGo0aN8N133+kN0xg6dKjezXDBwcEG21UoFFi2bBlq1aoFsVgMZ2dn9O7dG3fv3s1X+5zers9xnEHwW6dOHYMvUjt27DC48S84ODjP9WidP38ebdq0gY2NDWxtbdGyZUv8+eefufaR4zi0bt1a1zbnNubNm2e0jVqtxvLly+Hj4wOxWIwqVapg+vTpUCgUeR6P3Fy7dg19+vSBq6srRCIRKlWqhH79+uHGjRt69WJiYgyOS1xcHIYMGYJKlSpBLBajWrVqmDFjBjIyMvTaenp6olq1agCA2NhYo8eyVatWestjYmJ07du2bWtQtmXLFtSuXRuWlpaoVasWfvrpJ139ffv24cMPP4REIkG1atWwbNkyg/3Oa3tvn+/cHvfu3dO1efjwIebPn49mzZqhYsWKEIvF8PT0xMiRI/XWXVTHRIsxhsDAQLRu3RoODg6QSCTw8fHBpEmTEB8fr1f30qVLBtt59uwZBgwYACcnJ1hYWKBRo0b4+++/DbZjNowUq/DwcAaAhYeHF6h9XFwc8/LyYgAYz9mF2a1Yyxy27mYOW3czuxVrGc/ZhQFgXl5eLC4uroh7nzt1ZjbLHLuCpTf5gqX7j2XK6/dLbNuEFLWsrCx27949lpWVVazbKa2v5/y6cuUKc3BwYK6urmzPnj0sOjqaXb9+nU2aNIkBYABYcnKyXhvt8rcFBgYyAKxPnz4sJCSExcTEsCtXrrAhQ4YwAGzp0qUGbf7++2/G5/NZhw4d2MWLF1lMTAy7fPky69mzJwPA5s6dq6ubnp7OfHx8mLOzMwsMDGSRkZEsIiKCrVq1ikkkEubh4aGrm5yczKRSKWvWrBkDwM6dO6e3XZVKxTp37swAsF69erGwsDAWHR3NduzYwapWrcoaNWrEALA1a9YwqVTKZDJZnscxOTmZnT59mgFgbm5uTCqV6h23hw8f6o5bWFiYbnlmZiaTSqXM09OTbdq0ib1584bJZDImlUrZmjVrGAA2ZMgQg+3t3buX8Xg8VqVKFXbo0CEWExPDLl26xFq3bs2GDx/OADB/f3+9NlKplB08eJABYM2aNWNSqVT3SEtL06ur7evo0aPZwoULWWRkJAsNDWXt27dnANhXX32V5/EwZuPGjYzH4zE/Pz925swZFhsby06cOME+/PBDJhAI2I4dO3R1lUqlXn9r1qzJvLy82Nq1a9njx4/Z7du32ejRoxkA5ufnx9LT03VtX716xUJDQxkA5u7urref2nPy5s0bJpVKmbu7OwPAoqOjde0TExP1yr788ks2ffp09ujRI3b16lXWvHlzBoCtW7eO7dq1i82YMYM9evSIhYSEsKZNmzIAbO3atXr7ntf2zp07Z9BP7aNt27YMAOvYsSNTq9W6Nu3bt2cSiYStWbOG3b9/n0VGRrIDBw6w2rVrMwcHB3b/vv7nd2GPCWOa18yAAQMYADZw4EAWHh7OoqOj2fbt21mFChWYi4sLu3Hjhq6+XC7Xex537tyZtWjRgv35558sKiqK7d+/nzk6OjI+n6/3mngXU97bTY3XKIAuZoUJoPP6sDXnh646PZNljlqqCZ5bj2fKm4+Kdv3Zcib78RBLb/Ely56/Ndd6yusPNH3I5ZHRfVqR9ouUX3m9yarVapYuVxT68eBJFKtmwuu5mpcXe/AkqtDbzflBWhjJycnMzc2NcRzHrl27ZlA+atQoBoAlJSXpLc8tgD5y5Aj7+OOPjfavbdu2TCQSsefPn+st9/f3ZwBYQkKC3nKlUslq1aqlF0Bv376dAWArVqwwWP/ChQv1Aui31/92AL1u3ToGgDVq1IgplUq9sqCgIN0+bt++3WCdealSpQoDwG7evKm3fPHixbp1zpw5U6/s3r17TCAQGBxn7f6+HUA/f/6cWVtbM47jDLaTmZnJXF1djQbQjGmCtdzKctL2deTIkXrLExMTmUAgYJaWliw7OzvPdeR05coVxufzWcWKFQ2+kL169YrZ29szoVBosD/a/moD1rdpv2h98803esujo6MZAKPPiZw8PDyMBos5y7p06aK3PDIyUvdF6e1zo/2i5OPjk+/tnTt3zmg/f/75ZwaAubq6slevXumVDR482CBIZ4yxp0+fMo7jWOfOnQ3KCntMli1bxgCwDh06GLQ5deqUbt0ZGRl6ZdrnMQB2+fJlvbK1a9cyAGzEiBF59imn4gygaQx0KWXsZ16eYwWDejzHCrD5dhbSli8qkTGULDUD2ZPWQn0vGrC2gGTNJPDrehXZ+lXhDyBb+itYSjqgVL27AZ8Pzt3ZaBHnbF9k/SLvr0ylClV+LdzYWHXiG6QtXwR1wqt8v56jo6JQu2nTXOvm19NBn8FKWPi3+q1bt0IqlaJp06Zo3LixQfmIESOwb9++fN+P0bVrV3Tt2tVoWdOmTXH69GmcOnUKQ4YM0S1PSEgAAMTFxendtMTn87FmzRo4ODgYrfu2gQMHmvQeqZ2J4MsvvwSfz9cr6969O6pWrWp0O+/So0cPrF+/HkFBQXo3Lh46dAgDBgzA3r17ERQUhEWLFunKgoKC4O/vD3t7+3xtY+vWrUhPT0eLFi0Mbo60sLDAF198gYULF5rcd2OGDx+u97eDgwN8fHxw//59REZGom7d/E21umTJEqhUKgwZMgR2dnZ6Zc7Ozhg4cCA2bNiApUuX4rfffjNob2FhYdAXABg/fjyCgoLw888/Y8GCBbCwsDBh7/Jn0KBBen97e3vD3t4eUqkUnTp10iurUaMG7OzsEBkZifT0dFhbW79z/b6+vjh69Kjesnv37mHSpEngOA67du2Cs7P+Z+LOnTuNrsvd3R2VK1fGqVOnIJfLIRKJ8rOL76RQKLB8+XIAwMSJEw3K27Zti7p16yIiIgK7du3C6NGjDerUrFkTzZvrz+TVpEkTADBpqFhxojHQJN9YSjqyx/+gCZ5trSDZ8E2RBs/Kk9eQPe1HCD9rC9HEvvlqwznbw3LfAqMPiw3fFFnfCHnfnTx5EgDg5+dntLxx48ZITk42CHjyEh4ejsGDB8PHxwf29vawtraGtbW1blzo8+fP9eq3adMGgObu/8WLF+sFre3bt9cL7Fu3bg2O47BhwwYMGDAAFy5cgFqtBgB4eHhg8ODB+erjs2fPdDOl+Pr6GpRzHIeaNWvme59z6tmzJwDg8OHDumVPnz7FzZs3sXz5cjg5OeH+/ft4+PChrvzw4cPo0aNHvrdx/vz5XPsOAB988IHpHc+Ft7e3wTLtNHlJSUn5WodKpcKZM2cAwOgXtZzLtc/Jt1WtWhVWVlYGyxs1agQASE9PNxhHXVSqV69usMzW1jbXMu3rJb/Hx8bGBvXq1dP9nZ2djX79+iErKwtTp05FQECAQRu1Wo2tW7eiTZs2qFSpku5+AGtrazx//hxyuRyvX7/O1/bzIzw8XDet3bvO4YkTJ4yWF8VzqbjRFehSqkqVKggODtZdhU5bvsjolaicV7a8vLyK7eozS0xF1oQfwJ48BxxsYLH+a/C83Yt0G1wlJ1gEfg+esz0Uf14u0nUTUlCWAj6eDvqs0Ot51qsrOga0RXQ+X8/VvLxw7NRpuBfy9Wwp4L+7Uj7ExsYCgMHVrYLat28fPv/8c9ja2mLevHlo0aKFLphYt24d1q9fD7lcrtdmyZIlSE1Nxa+//opZs2Zh1qxZqF+/Pvr374/hw4fr9a1Ro0bYtWsXJk2ahMDAQAQGBsLZ2Rndu3fHyJEjc/1gf9uzZ890/89t3ws6F/LHH38MR0dH3L59G1FRUfDy8kJQUBCaNm2KypUro2vXrti+fTuCgoIwffp0PHv2DNevX88z+Ulu/S/qvhtToYLhLyUCgSbMUKny8YsigNevXyMzMxMA4OLiYrROxYoVAWgCqdTUVF2AqpVbO1tbW4hEIsjlcr3zWpSMzaut/VUmr7L8Hp+3ff3117hz5w4aN25s9JcExhh69OiBo0ePolmzZvj555/h7e0N4b95I1q1aqULoouK9r2Cx+MZfU4A/51Dbd23GWun7XNBj1VRoyvQpZg2iPby8oI64ZXmgzXxv8nKSyp4VickI2vMCrAnz8E52cHix6lFHjwDAL9udfBo2AUpZTiOg5VQUOhHTa9qOG/C6/l8cDBqelUr9HZLY4pluVyOsWPHQqVS4ccff8TEiRPh6+sLb29veHt755rcw8rKCjt27EB0dDQWL16MBg0a4J9//sH06dNRq1YtnDt3Tq/+wIED8fz5cwQGBqJnz55IS0vDli1b0KRJE0yaNMnkfrMizrbG5/N1w1i0V6EPHTqkuzKtvdIcFBQEAPjjjz/w0UcfFeh9vqj7bkxpfK69rbiPQ17HoKiPz+HDh/HTTz/BxsYGgYGBugAzp4MHD+Lo0aNwdnbG8ePH0bVrV3zwwQe615r2C05pUxaeSxRAl3K5BdElFjy/TET2mBVgsfHgXBwg+XEqeNXcinw7BcVkcsjXH0Bmn1nI8B+LjLYTkTVqGRSHL4D9+3MtIaWFuV/PheHhoUnWpB1bXBh37txBYmIiAKBdu3Ymt69atSpmzJiBmzdvIiIiAh07dkRiYqLB+FMAEIvF6NevHw4dOoSXL19i6dKlEAgEWLt2LU6dOvXObbm7/3exILd9f3tKLlNog+WgoCAkJCTg0qVLusA5ICAAlpaWCAsLw/PnzxEUFGTS8A3gv/4XR9+Lg5OTEywtLQEAL1++NFpHu9ze3t7g6nNe7VJSUnRT6uU8r2XR06dPMWLECADATz/9BC8v48MptUN4mjZtavRYFQfte4Varc51aIj2HGnrlkUUQJcBxj50SyR4fpGA7NHLwZ69AudWAZJNU8GrWrHIt1MoSWlgGVmQrJwAy9PrYLFrDnhelSBf+itkUzaAKZXm7iEhesz1ei4sbaAbGhpqtDwsLAxt27bFtWvX3rku9Tu+3L499lnL2FzTderUwaFDh2BlZYXnz5/j1atXADRX5zZs2KBX19bWFtOmTdPdmHjz5s139tXd3V0XnISHhxuUM8b0xiibql27drC0tMSVK1d08wdrx8paWFigQ4cOYIxh+/btOH/+PLp3727S+v39/XPtOwDcv38/17Y8nmGIkJWVhfj4+Heew4Li8/m6se65PZe0z8H27dsbLX/69KnBfM8AcP36dQCAtbU1Gjb8L1uusf2Uy+WIj48v8BzWxUmlUmHgwIFITEzE4MGD8fnnn+uVHz9+HI8fPwaQ92tNrVbn+gWqMMfE19dXNwSjoOewLKAAuox4+0P37Q/b228SMfr8ZdTbFwTXHYHw2XsAbY8cx5zQG0grwBuAOu4lssesBJO+AefuAsmmb8GrVDRjH4sKz7syJD9OgXj6IPA8XMEJBeBVctb87VsTqit3oNht/AYFQszpXa/n0mjEiBFwdXVFaGio0SB65cqVuHnzZr7SYNepU0d3lfHtxAgZGRm5Jks4cOAA9u/fb7CcMQaVSgUbGxvdTBy3bt3CDz/8YHRspzYAqFq16jv7CgBfffUVAOCXX34xGH/5xx9/FGgGDi0LCwu0b98earUaCxYs0F2R1tJecV68eDGqVKmCDz/80KT1jxgxAlZWVggJCTH48pGVlYUtW7bk2lY700fOYHTTpk1wc3NDdna2Sf0wxYwZM8Dj8bBz506DG8YSEhKwe/duCIVCTJ8+3Wj7rKwsbN++3WD5xo0bAQCjRo3Sm4FDO/Y+537+9ddfcHNzQ2RkZKH3p6gtWLAAFy5cgI+Pj26fclq6dCkuXboE4L+b9a5cuYKUlBS9ekeOHIFMJjO6jcIcE6FQiG+//RYAsHbtWoNhM6dPn0ZERIRJN/OWRhRAlyE5P3Rzfthuu/8I7f88AW87Wxzr3A6xg/riUPtPwOdx2BhxH0nZxl8guVFHS5E9dgXYy0RwHq6aK88VjY9JNCfOzhr8hsbvfhd+qsmgpaSbEUkpldvrubSys7PDoUOHYGdnhx49euC3335DbGwsrl+/ji+++AIHDx7Erl27IBaLAWgCnZxXt+Lj43V/W1paYu7cuQA001xt3boVjx8/xoULF9CxY0fdHfzp6emIj4/XC4JXrFiBBQsW4NatW4iNjUVwcDB69OiB7OxsLFy4UG8caHR0NLp3746zZ88iJiYGd+7cwYIFC7B79240adIEvXr1AqD5aT/ndhITExEfH68LlsePH4/OnTvj+vXr+OyzzxAeHo7Y2Fjs2rULc+bMKfRVNG3QnJWVZRBAd+nSBQKBAFlZWUavPmuvCmqDI+0V4vT0dABApUqVsHnzZnAch+7duyMoKAhxcXG4fPkyOnfurJtB5O31AJoZOlxcXBAREYHz58/jzp072L59Oxo3bgxLS0vdcdKKj4/XDc15+9y9XTcvzZo1w/r16/HmzRsEBATgzJkziIuLw6lTp9C2bVukp6fjl19+yfXLmp+fH3bt2oX169cjKioKd+/exZgxYxAUFIRGjRrh+++/16tvZ2eHBg0a4PXr1zh48CAePXqEDRs2wN3dHd7e3gbPh5zPbe1zJ2eZdrhMQcvy2t7Fixd1NwvOmjULMTExiIiI0HvkDHr79euHBg0a4M2bN+jcuTOCg4Px+PFjbN++HV988YVuDHTO7Rf2mACaX4sGDBiAU6dOYeDAgbhx4wZiYmKwc+dO9OvXD87OzggKCtJ9kVapVEafx1lZWQb9e7uu2eR7NmpSIIXNRGhMXFycLmHKxRfxzHHrbrbhzj2DepHJKazxgSPseXqGQVluVJFPWXqHyZpEJAPmMvWblCLrtynkRy+x9CZf5JlIJS/KR3G6hCpquaKIe0fKm5LKRGhMztdzWRAXF8fGjBnDPD09mUgkYpUrV2bdunVjoaGhevW0CRbefuT066+/Ml9fXyaRSJhEImH16tVjS5cuZTNnztRro01scv/+fTZv3jzm5+fHbG1tmUgkYh4eHqxbt24GyU+Sk5PZjh07WNeuXVmlSpWYQCBgTk5OzM/Pj61bt45lZmbq6mqzH779yJkcQi6XsyVLlrAaNWowkUjEXFxc2Oeff87i4uJ07U1NpKKlTTji6elptLxNmzYMAAsODjYoy5k8JOcjZ1IZbb1PPvmEWVtbM0tLS9awYUP2yy+/sLNnz+q1++yzz/TanT9/nvn5+TGxWMwcHBxYx44d2aNHmuRZ2sQzOR/apCtz58595/l/l6tXr7LevXszFxcXJhQKmaurK+vbt2+un6c5E7+8efOGjR49mlWuXJkJhULm4eHBpk2bZpBFUevOnTusVatWzNLSktnY2LCWLVvqntPG9lO7L8aeO9rkIwUty2t7Q4cONVr29iPnczE5OZlNnDiRValShQkEAubg4MDat2/Pzp49q/c6fTtpSkGPiZZarWZ79+5lrVq1YnZ2dkwkErHq1auzr776ir148UKvrjZxS277Yez9xFjWzbcVZyIVjrESuDX3PXbjxg34+voiPDxcb8xVUfnkj2OISkvDo/6fQsQv3HRVqgexyJ64GkjNAK9mVUjWTQZn9+6J3YuD4s/LkC/cAUGnZhB/Zzgh/ruoHsYhe8gCAIDlpZ/AldI7jUnpkJ2djejoaFSrVg0SicTc3SFlzNChQ7Fz505s374dQ4cONXd33lvBwcFo3bo1/P39ERwcbO7ukFLAlPd2U+M1GsJRhj1ISsGtN4lo7OJc+OA5IgrZE37QBM+1q0Gy4RuzBc/5lTVsIRSHgo2WsaeaO3w5d2cKngkhhBBSpCiyKMOuvdKMB6pibYWzz6VY889d3HrzBio1Q3U7W/StXg2j69SEwMjdtDmpbkUi++t1QGY2eB96Q7J6Ijirok9xWtRYUjpUF25B2KuVQZnigGY+WEGn5gZlhBBCCCGFQVegy7Co1FQAwNlnUgw/dxGDa1bH7b49cL1PN/i5OOG7sBv4/PR5qPKYxkYV/gDZk9ZogmffmpCs+apMBM8AAA5QXb0L2dJfoY6NB5MroH6eANniXVDfigS/aR0IB3Uwdy8JIeWU9kY57Y1Ob9+MSEqG9qYy7Q2M2hsitX8TUhzoCnQR2bhxo9HpZLRvrMUhVa6Ziik2PR2rWzRB7+rVAAD2AFY1b4zwhNc49ewFfn30BENr+Ri0V16NgGzaj4BMAX7TOhAvHQtOIiq2/uZHRtORen8r/w6B8u8QAIBo9lAIu7TQlUk2fQvV6etQXvoHWaOWAemZgKUEPG93iKYPgqDb/8C94+o7IYQU1MqVKzF//nzd35MmTcKkSZNw7tw5tGrVynwde888ffoU1apV0/0dEhICNzc3GgtNihXdRFjMivMmwsmXr2HnQ81k6c8GfwbLt8b6brr7ADOvhaOFqwuOdgrQK1Ne+geyGZsAhRL8Fh9CvHg0OLFhGlBC3gd0EyEhhJQ/xXkTIV2BLsMcxJqrxRUkYoPgGQA8bDQ3AT5JSdNbrjx3A7LZvwAqFfitGkK8YCQ4IT0VCCGEEELyg6KmMqymvSZTkFyVd0pVjvvv/8pToZDN2wqo1OC3awzxd8PBCQo3gwchhBBCyPuEBoiWYf6V3MDjOKQpFEgyko4zLk2TiarGv4G24q8rkM3dAqjUmvmV546g4JkQQgghxEQUQJdhrpYW6FXNAwCwNzLKoHzf42gAwKAa1aE4fAHyhTsANYOge0uIZg8Fx6fTTwghhBBiKhrCUcYtbuKLf94kYtnN23CztEDHqu5IkSvwwz8RuPUmEYNreKNreBTkqwIBAII+n0D0dT9wOcd1EEIIIYSQfKMAuoxzspDgVNf2+OGfu1h84zbGXgiBRMDHh46O2NyqBbqFPIJ8/X4AgPDzdhCO703BMyGEEEJIIVAAXQ7YikSY5/cR5vl9pLdcvv0vyH8+DAAQDusM4ajuFDwTQgghhBQSBdDlEGMMis1HoNj2JwBAOKo7RMO7mLlXhBBCCCHlAwXQ5QxjDIqNB6HYfQIAIBzfG6KB7c3cK0IIIYSQ8oMC6HKEMQb56n1Q/n4GACCa3A/Cz9qYuVeEEEIIIeULzWNWTjC1GvLlu/8LnqcNpOCZEGI2np6e4DhO9yCEkPKEAuhygKnUkC/aCWXQBYDjIJo9FMKe/ubuFiHkPRYWFgapVGrubuRbZmYmfH190ahRI2RlZZm7O+XSjh07MG/ePMTExORa58svv4Sbmxvu3r1bIn0q6e29rTQeE5I/NISjjElLS8OpU6eQmJgIR0dHtG39CUSr90N1MhTg8yD+bjgE7ZuYu5uEkPecs7Ozubtgkrt37+LGjRu6/zdq1MjMPSp/duzYgfPnz6NVq1bw9PQ0Wmf37t3IzMzEsWPHUKdOnWLvU0lv722l8ZiQ/KEAuozIyMjAzJkzsW3bNqSnp+uWW4vEGOTgjXmeTeC4YDQEn/iasZeEEFO8/YU4ICAANjY25u7We6lBgwbo27ev7v/EPGbPno1jx46hd+/e5XJ7BVEW+vg+ogD6LVeuXMH69etx8+ZNCAQC8Hg8DB8+HOPHj4dAYJ7DlZGRgbZt2+Lq1asAgOpiW9SwsMPDrBREyVLx08u7uOHEx5kmteiEElIG5PqF2Noaw4cPx+LFi2FlZWXGHr5/hEIh9u3bZ+5uvPdmzJiBGTNmlNvtFURZ6OP7iMZAv6Vbt26oUKECIiIiEBERgc2bN2PGjBmYMGGC2fo0c+ZMXL16FY4CMQ7UaIdb9ftgf832+Kd+Hxyo0Q6OAjGu3b2NmTNnmq2PhJD80X4hXrduHdLT01FdbIuO9lXgJbZFeno61q1bh7Zt2yIjI8PcXTXq6dOnGDduHLy8vCAWi2FrawtfX19MmTIFt27dyvd60tLSsHPnTnTr1g3Vq1eHRCJBhQoVEBAQgCNHjuTaLiwsDL1794anpyfEYjEqVqyILl26YPv27UhOTtarm5iYiDlz5qBu3bqwsbGBtbU1GjVqhO+++05vPOnQoUP1bngMDg422K5CocCyZctQq1YtiMViODs7o3fv3rh7926+2ucmP8czODhYb/0cx+l+7jdWZsr2ExMTMWPGDNSuXRsWFhaws7NDixYtsGXLFqhUKr26rVq10tvO48ePsXLlStSrVw+WlpZwcHBA9+7dcfv2bb128+bNA8dxOH/+PACgdevWBjeY7tixQ2/ZvHnzdO13795tUBYREYGOHTvCxsYGFStWxLBhw5CQkAAAePLkCXr06AF7e3vY29ujb9++BuPx89oeYHgTrLHHt99+q6tv6vO5sMckp/v372Po0KGoUqWK7rnZrVs3nDt3zqCut7e33jrVajWWL18OHx8fiMViVKlSBdOnT4dCoTC6LZIDI3pcXFxYSkqK3rJBgwYxoVDIMjMzTV5feHg4A8DCw8ML1J/U1FRmbW3NALADNdqx9CZfGDz212jHADAbGxuWmppaoO0Q8j7Lyspi9+7dY1lZWcW+rYkTJzIAzFEgZgdqtGNpjUew9CZfsLTGI9iBGu2Yo0DMALCJEycWe19MdeXKFebg4MBcXV3Znj17WHR0NLt+/TqbNGkSA8AAsOTkZL022uVvCwwMZABYnz59WEhICIuJiWFXrlxhQ4YMYQDY0qVLDdr8/fffjM/nsw4dOrCLFy+ymJgYdvnyZdazZ08GgM2dO1dXNz09nfn4+DBnZ2cWGBjIIiMjWUREBFu1ahWTSCTMw8NDVzc5OZlJpVLWrFkzBoCdO3dOb7sqlYp17tyZAWC9evViYWFhLDo6mu3YsYNVrVqVNWrUiAFga9asYVKplMlksiI9njKZjEmlUjZ16lQGgPn4+LBnz54xxhiTyWTs3r17rEKFCmzVqlUmbf/Ro0esatWqzNramm3cuJE9efKE/fPPP2zs2LEMAOvUqZPeut68ecOkUilzd3dnAJi/vz/r27ev3vFwcHBgFhYWLDg4WNcuLS1N7/gePHiQSaVS3YMxxjIzM5lUKmXffPONwbnMysrSK+vfvz8LCAhgV65cYQ8fPmRz585lAFijRo3YixcvWM+ePdmVK1fYgwcP2Jw5cxgA5uvry9RqtW6deW2PMcY8PDwM+imVStnmzZt1n7eRkZG6+qY+nwt7TLSCgoKYRCJhPj4+7MiRIywmJoZdvHiRtW7dmgFgCxcu1KufkJDApFKp7vk1evRotnDhQhYZGcmuXbvGAgICGAD21Vdf5es5VNqZ8t5uarxW5gLoy5cvsxo1ajAALDo6usjXb+yNZ9q0aQwAS0hIMHl9hQ2gDx48yACw6mJb3Qft24+0xiOYl9hW9yIkhJgmrzdZtVrN1JnZRfJIeZlg0hfilJcJhd9ujqChMJKTk5mbmxvjOI5du3bNoHzUqFEMAEtKStJbnlsAfeTIEfbxxx8b7V/btm2ZSCRiz58/11vu7+9v9L1YqVSyWrVq6QUY27dvZwDYihUrDNa/cOFCvQD67fW/HUCvW7dOF6AplUq9sqCgIN0+bt++3WCduSnI8ZTJZKxu3boMAJs6dapuee/evVlAQIBJ51qpVLJ69eoxACwwMNCg/PPPPzfYjpaHh4fueLy9zT/++IMBYO7u7gYXnXI7vjlpg2FjwaK2TCgUshcvXuiVtWjRggFgDRs2NCjTBqmXL1/O9/Y8PDwM+vn8+XPm5OTEALBdu3bplRXk+cxY4Y5JVFQUs7KyYhKJxCAeyszMZN7e3gwA+/PPPw3WqX3Ojhw5Um/5mzdvGJ/PZ5aWliw7OzvXPpUVxRlAl5khs1lZWZg9ezbWrl1r8LPSuxw/fhyrVq1CeHg4ZDIZatasieHDh2Ps2LHg8fRHsYhEIoP2kZGRqFWrFpycnAq1DwWRmJgIAKhhYZfrXKocx6GGhR2iZKm6+oSQIpItR2br8UWyqj8To3XDNtrbVzFap8O/wzmi0lLx5//6obtjtUJt0/LcBsBCXKh1AMDWrVshlUrRtGlTNG7c2KB8xIgR2LdvX77nfO7atSu6du1qtKxp06Y4ffo0Tp06hSFDhuiWa3+ij4uL03s/5vP5WLNmDRwcHIzWfdvAgQNRpYrx42/MmjVrAGimE+Pz+Xpl3bt3R9WqVY1uJy8FOZ4ikQg7d+5EkyZNsGrVKnTs2BGxsbE4c+YM7ty5Y9J823/88Qfu3LkDV1dXfPbZZwblkydPxp49e7B+/XrMmDFD79hqjR071mCb3bp1Q5UqVfD06VMcPHgQAwcOzHef8qtt27Zwc3PTW+bn54fLly+jYsWKBmWNGzdGSEgIbty4gebNm+drG0ePHtWbFUOtVmPgwIF4/fo1Bg4ciEGDBunVL8jzubBWr16NjIwM9O3b12AGDwsLC4wePRpTpkzBggUL0LlzZ6PrGD58uN7fjo6O8PHxwYMHDxAZGYm6desWWX/LmzIxBvrJkydo0KABDh48iGPHjpnUdtmyZejYsSMkEglOnTqFmzdvIiAgABMmTECPHj2gVCrzbP/ixQscO3YMCxYsKMwuFJijoyMA4FFWChhjRuswxvAoK0WvPiGk9ElSygDk7wtxzvqlwcmTJwFoAhVjGjdujOTkZNjZ2eV7neHh4Rg8eDB8fHxgb28Pa2trWFtbY9myZQCA58+f69Vv00aTHCogIACLFy/WC1rbt2+vF4hqx5Ru2LABAwYMwIULF6BWqwEAHh4eGDx4cL76+OzZM0RFRQEAfH0NZzniOA41a9bM9z5rFfR4NmzYEDNmzNAFdBMnTsSGDRtQuXLlAm2/UaNGRp+LDRo0gEgkQnZ2Ni5cuGB0HR988IHR5dopALXje4ta9erVDZbZ2trmWqY9hklJSfneRr169fRmxFmyZAnOnTsHb29v/Pjjj0bbmPp8LiztOTT2BSzn8tDQ0Fz33dvb22CZNo4w5Xi9j8rEFei7d++iTZs2WL58OaytrfPd7uLFi5g+fTpq166NQ4cOQSgUAtAE1UlJSdi8eTOWLVuGWbNmGW2vVqsxatQoDBo0yGzTxwQEBMDa2hpP0lNxIvkpOjhUNahzPPkpomSpsLGxQUBAgBl6SUg5JhFpruIWAdfDh4EBl3RfiI0FLjm/ELsuGg/LHj0Kt1GJ4a9qBREbGwug6OZ33rdvHz7//HPY2tpi3rx5aNGihS7QWbduHdavXw+5XK7XZsmSJUhNTcWvv/6KWbNmYdasWahfvz769++P4cOH6/WtUaNG2LVrFyZNmoTAwEAEBgbC2dkZ3bt3x8iRI3MNOt727Nkz3f9z23dXV1dTd79Qx3POnDk4cuQI/vnnH7Rs2RIDBgwo8PZdXFyMlvP5fFSoUAFSqVRX9225tdXuU85jV5SMXSjSvpbyKjP112utkJAQzJs3D0KhEIGBgUanmizI87mw3nUOK1asCEDznvL06VOjvyJUqFDBYJk2Viro8XpflIkr0J07d8aPP/5oUvAMQHfH6oQJE3RPCK1vvvkGALB8+fJcs059/fXX4PP52Lhxo+mdLiI2Nja6n1hGRZ3HsaQ43ZVoxhiOJcVh1BPNt/xhw4bRHLKEFDGO48BZiIvk0a5LJ80XYpnmC7ExOb8Qt+vSqfDbLYVptOVyOcaOHQuVSoUff/wREydOhK+vL7y9veHt7Z3rL2lWVlbYsWMHoqOjsXjxYjRo0AD//PMPpk+fjlq1ahnMOjBw4EA8f/4cgYGB6NmzJ9LS0rBlyxY0adIEkyZNMrnfuf0KWNKEQiHatWsHALh69aouAUxpUdzHKa/ndFE/35OTk9G/f38olUosWrTIaIKdgj6fS4PS+P5QVpSJAPrtMWf5kZCQoJvKR/uzX041a9aEu7s7UlNTjQ4LmTNnDh4+fIj9+/ebbf5nrcWLF6Np06ZIVMrQ59FJ1P9nP3o/PIH6/+xHn0cnkaSSoWnTpli8eLFZ+0kIyVtZ/kLs4eEB4L+xxYVx584d3f0a2kDQFFWrVsWMGTNw8+ZN3XRmiYmJBuNSAUAsFqNfv344dOgQXr58iaVLl0IgEGDt2rU4derUO7fl7u6u+39u+x4fH2/yPhTmeN68eRMbN27EkCFDoFAoMGjQIGRnZxdo+y9fvjRarlKp8ObNG726b8utrXafch67smrUqFGIjY1Fu3btMGXKFKN1Cvt8Lqh3nUPtco7jTBrzT/KnTATQBXH9+nWo1WoIhUKjY6IAoFatWgA084rmtHTpUly5cgVBQUG6mwrnz5+P8PDw4u10LqysrHD69GlMnDgRNjY2iJKl6l2lmjhxIk6fPk2JFwgpA8rqF2JtYBAaGmq0PCwsDG3btsW1a9feuS7tWOTc5DZW1Nhc03Xq1MGhQ4dgZWWF58+f49WrVwCAw4cPY8MG/aE3tra2mDZtmu5Grps3b76zr+7u7vDy8gIAo58BjDE8fPjwnet5W0GPp1wux5AhQzBt2jRs3boVjRs3xr1790xOtKHdflhYmNHzcevWLcjlckgkEnz88cdG13H//n2jy69fvw4A8Pf311v+9k37gCbYTk1NNanvJWXz5s3Yv38/XFxcsGvXLr2rtY8fP8bx48cBFPz5DBTumGjPYW6vOe1zq3HjxkaHb5DCKbcB9JMnTwBoxmIZe4IC0N2pq60LaMYqLVmyBH379sWBAwewe/du7N69G2fOnEFaWlqu25PJZEhNTTV45MwyVhhWVlZYu3Ytnj9/joMHD2Lz5s04ePAgnj9/jrVr11LwTEgZUVa/EI8YMQKurq4IDQ01GvStXLkSN2/ezFca7Dp16sDS0hIA8Pfff+uVZWRkGCzTOnDgAPbv32+wnDEGlUoFGxsbXaBw69Yt/PDDD0bHnWqTRFStanhPiTFfffUVAOCXX34xGBf6xx9/mDwDB1Dw4zl//nwIhULMnDkTfD4fO3fuhEQiwdq1a40mzshN9+7dUbduXbx69QqBgYEG5atXrwYAjB8/Ptfg66effjIYrnHkyBE8e/YMlStXxqeffqpXZm9vDwB6SYJ8fHywcOHCfPe7pNy/fx+TJk0Cx3HYuXOnbjyx1qVLl7B06VIABX8+A4U7JpMnT4aVlRWOHj2qF8cAQHZ2NjZt2gRA84s6KXpl4ibCgtB+e7OwsMi1jvYJn5KSols2adIkMMYwevRok7a3ZMkSzJ8/vwA9NY2NjQ169epV7NshhBQf7RfihQsX4tSpU0hMTISjoyMCAgJK1bCNnOzs7HDo0CF06tQJPXr0wA8//IBmzZohISEBmzZtwsGDB/HHH39ALNZMmZeQkKAXbGqHObi6usLS0hJz587FtGnTMHHiRMhkMvj7++PFixeYPXu2buhAeno64uPj4ejoqPs1cMWKFZBIJOjatSscHBwQHR2NJUuWIDs7G8uWLdO73yU6Ohrdu3fH1KlT4eXlhbS0NBw+fBi7d+9GkyZNdO+lKSkpyMrK0gXbiYmJiI+Ph7OzM/h8PsaPH4+TJ0/ir7/+wmeffYYZM2bAyckJ58+fx4oVK9C+fXucOHGiWI9nfHw87t+/j5UrV+Kvv/6CQqGAQCCAm5sbJk2ahKVLl2Lo0KE4f/48bG1t3znuls/n4+DBg2jbti2+/PJLJCcno2PHjsjIyMCmTZuwZ88edOrUCYsWLcp1HXXr1kX//v0xdepUODk5ITg4GJMnT4aFhQX27Nlj8Pnr7++PoKAgBAYG4oMPPsCRI0eQkpKC1q1bIysrCykpKbqLTtpzb2dnBz6fj8TERIMy7T4WpEylUuW6PY7j0K9fP2RmZqJnz55wd3dHRESE3r7kvKpcmOdzQY+JhYUFqlWrht27d6Nfv35o3749fvjhBzRo0ABxcXH47rvv8PjxY4Mp7BITE/W+VMbHx0MkEsHR0RHp6elIT083eB0U5CbZ94LJs1KXAvh3AvC8EqksWrRIk4CkevVc63z55ZcMAGvXrl2h+5Sdnc1SUlIMHufPny9UIhVCSPEryUyEZV1cXBwbM2YM8/T0ZCKRiFWuXJl169aNhYaG6tXTJtt4+5HTr7/+ynx9fZlEImESiYTVq1ePLV26lM2cOVOvjTbJxP3799m8efOYn58fs7W1ZSKRiHl4eLBu3boZJKJITk5mO3bsYF27dmWVKlViAoGAOTk5MT8/P7Zu3Tq9JB/abHFvP3J+xsjlcrZkyRJWo0YNJhKJmIuLC/v8889ZXFycrr0piVRMPZ5v9027LWN99/f3z/f237x5w6ZPn85q1qzJxGIxs7GxYc2aNWO//PKLQdIYLe25jY6OZps3b2YNGjRgFhYWzM7OjnXt2pXdunXLaDuZTMbGjx/PXFxcmFAoZNWrV2c//PADY+y/xDfG9vPcuXNGy86dO1fgsry2FxwcbLTsXcfZ1OdzYY5JTvfu3WNDhgxhlStXZkKhkFWoUIF16dKFnTlzxuAcaBO3GNsPbcKWvF6zZU1xJlLhGCsltxWbQDsOKTo62mDycK0NGzZgwoQJqFSpUq7jjwYPHoxff/0Vffr0we+//14sfb1x4wZ8fX0RHh6Ohg0bFss2CCGFk52djejoaFSrVg0SicTc3SFlzNChQ7Fz505s374dQ4cONXd3ip2npydiY2Pz/AwmpDQw5b3d1Hit3I6B1t44mJCQkOsAf6lUqleXEEIIIYSQdym3Y6B9fX3B4/GgUCjw5MkT+Pj4GNR58OABgNwzQZli48aNRueLzm2OaUIIIYQQUjaV2yvQLi4uuil0zpw5Y1D+8OFDPHv2DDY2NujQoUOhtzdu3Djcu3fP4HHw4MFCr5sQQkjpo72pS3uhJCUlBfHx8UWeca600N5Upr05NCEhQe9vQt4n5TaABoC5c+cC0IyHViqVemWrVq0CAEydOlU3GwchhBCSXytXroSbm5vuHppJkybBzc0NV65cMXPPikevXr3g5uamS9HduHFjuLm54elT41k1CSnPykwArf2mmzPjk7FlOfn7+2PRokW4e/cuevbsiRs3buDRo0eYPn06Nm/ejE6dOpk8+TwhhBACAPPmzQNjzODRqlUrc3etWAQHBxvdX7qRkLyPyswYaD8/P8TGxuota9y4se7/uU0mMnPmTHz00UdYtWoVPvnkEygUCtSoUQNr167FuHHjCpQm3BgaA00IIYQQ8n4oMwF0TExMgdt27NgRHTt2LLrOGDFu3DiMGzfOYLl2WpTiorr1CIrA01BHPgV7kwLOzhqchyuEfdtA0LJ+sW2XEEIIIeR9VWaGcBBDiv1nkT16BdTPXkE8bwQsT6yGZMM34KwtIJu6AbJVhulZCSGEEEJI4VAAXUYxpRLyTYcBAOJZQ8D/0BucRAxe1YoQzx0B2FpBuf8s1LHGx4cTQgyVwbxShBBCclGc7+kUQJdVqZlAhmZ8Nc+rkl4RJxGB5+4MAFA/orujCXkXHk/zVkjTcRFCSPmhfU/XvscXJQqgyyjO0RZcRUcAgDrqhV4ZkymgfpagqedkV+J9I6SsEQqF4PP5dNMvIYSUI2lpaRAKhRAKhUW+7jJzE2FpZ45ZOMTzRkA262fIFu2EePog8HyqgL1KgvynQ0BqBni1PcH70LvYtk9IecFxHCwtLZGSkgJHR8cim52HEEKIeWRlZSE1NRX29vbgOK7I188xGvRXrLSzcISHh6Nhw4ZFvn51/BvI1+2H6mz4fwsdbCD4xBeiMT3BWVOSGELyQy6XIyYmBgKBAI6OjhCLxcXypksIIaR4MMagUqmQlpaG1NRUiMViVKlSJV8XRUyN1+gKdBmmvPgPZAu2g+dWAZKfp4Hn4w72KgmKPy4C6VlgWXIKoAnJJ5FIBHd3d7x+/RpSqdTc3SGEEFJAQqEQ9vb2cHJyKrZfFCmALqPU0jeQzfkF4HGQ/PAVuAq2AADO0w2iiX2QPWwRsgbOh8XO2eC5VjBzbwkpGywtLVG1alUolUoolUpzd4cQQoiJeDwehEJhsf+CSAF0GaU8FQpky8FvWV8XPGtxHAdBQGPI1++HYstRiGcPNU8nCSmjBAIBBAJ6eySEEGIczcJRRjHpawC5z7LBOWuWqx/EGi0nhBBCCCEFQ5dYikhJz8LB2VkDAFhCitFy3XIBzSZACCGEEFKUKIAuIuPGjcO4ceMMlmvv6ixq/JYNoNjxN1Q3HoAlpoJz/G8YB2MMytOhmnqNaxf5tgkhhBBC3mc0hKOM4tepBkH/ACBThuxv1kF15wlYlgzq2HjI5m2F+n4suOqVIRzUwdxdJYQQQggpV+gKdBkm/qov+A18oAy6gOypG4C0TEAsBK+qK4Sje0D4WVtwFmJzd5MQQgghpFyhALqME/h/BIH/R+buBiGEEELIe4OGcBBCCCGEEGICugJdzLSzcNy/f9/MPSGEEEIIIcZo47T8zp5GAXQRyW0au+TkZADAwIEDS7hHhBBCCCHEFDExMWjRosU763GMMVYC/XlvvX79GidOnICnpycsLCzM3Z1SJz09Hf7+/jh//jysra3N3R3yFjo/pRedm9KLzk3pRuen9DLnucnKykJMTAzat28PJyend9anAJqYVWpqKuzs7JCSkgJbW9t3NyAlis5P6UXnpvSic1O60fkpvcrSuaGbCAkhhBBCCDEBBdCEEEIIIYSYgAJoQgghhBBCTEABNCGEEEIIISagAJqYlVgsxty5cyEWU8rx0ojOT+lF56b0onNTutH5Kb3K0rmhWTgIIYQQQggxAV2BJoQQQgghxAQUQBNCCCGEEGICCqAJIYQQQggxAQXQpNhduXIFNWvWBMdxiImJMXd3CCGkyEyePBkcx8HT09PcXSGElCAKoEmxycrKwjfffIOPP/4Yjx49yne7a9euoUePHnB2doaFhQXq1KmDhQsXQiaTFWNv3x9xcXFYsGABWrRoAQcHBwiFQlSsWBGdOnXCgQMH8mxL56Z4xcfHY+vWrejVqxc8PDwgFothYWGBGjVq4Msvv8zzdfTw4UMMHDgQbm5ukEgkqF69OqZOnYqUlJQS3IP3y7Vr17Bu3bp816XXTvHZsWMHOI7L83Hr1i2jbenclIyMjAwsWbIEfn5+sLe3h6WlJby8vNC9e3f8/PPPRtuU6nPDCCkGjx8/ZjVq1GAeHh7s5MmTDAADwKKjo/Nst2fPHsbn81nTpk3ZhQsX2OPHj9nKlSuZQCBgfn5+LC0trWR2oJwKDg5mAoGAicViNnv2bBYWFsYiIyPZ/v37mY+PDwPA+vfvz1QqlUFbOjfFz9fXlwFgQ4YMYZcuXWIxMTEsLCyMTZ48mQFglpaW7OLFiwbtzp07xywsLFjNmjXZ8ePHWVRUFNu2bRuztrZmXl5e7MWLF2bYm/JNJpOxOnXqsKpVqzIAzMPDI9e69Nopftu3b9e9BnJ73L9/36AdnZuS8ejRI+bh4cEaNWrEgoKCWFRUFLt//z5btWoVE4vFrHLlygZtSvu5oQCaFIs//viDjRkzRvcEz08A/fjxYyYWi5mLiwtLSkrSK1u0aBEDwL744oti7HX5FxQUxACwdevWGZQ9f/6c2djYMADsl19+0Sujc1MyfH19WefOnY2WDRkyhAFgbdq00VuelJTEnJycmEQiYU+ePNEr27NnDwPA2rZtW2x9fl/NnTuX2dvbs7179+YZQNNrp2Rs376d+fv7m9SGzk3JSE9PZ56enszPz49lZWUZlC9atIh99NFHesvKwrmhAJoUC6VSqfd3fgLo4cOHMwBs2rRpBmXJyclMLBYzHo/HYmNji7q7742goCDG5/NZSkqK0fIBAwYYDbjo3JSMEydOGL1Kxhhj69atYwBYvXr19JZ///33DAD77LPPDNqoVCpWqVIlBoBdunSpWPr8PoqIiGAikYht2bKFnTt3Ls8Aml47JaMgATSdm5Ixa9YsBoCdOHEi323KwrmhMdCkWPD5fJPqq1QqHDp0CADQpk0bg3I7Ozv4+flBrVa/c5wuyV3nzp2RmJgIW1tbo+Xu7u4AgMTERN0yOjclp127dqhVq5bRsqtXrwIAAgIC9Jbv378fgPFzw+Px8MknnwAA9u3bV5RdfW+p1WqMGDEC//vf/zBixIg869Jrp/Sic1MyVCoVtm3bBrFYrHsvyk+bsnBuKIAmpcKjR4+QnJwMALkGENrlYWFhJdWtckcoFOYaPAOAVCoFANSrV0+3jM6N+SgUCjx69AiTJ0/G3r170atXLyxcuFBXnpGRgbt37wKgc1NS1q5di9u3b+OXX355Z1167ZSstLQ0fP/992jUqBFcXFxQuXJltGnTBps2bYJcLterS+emZEREREAqlcLT0xOpqamYNm0aateuDUdHR1SvXh1Dhw7VvYdplZVzQwE0KRWePHmi+7+rq6vROm5ubgZ1SdFRKpU4deoUAGDcuHG65XRuzKN///4Qi8WoWbMmjh49isOHD+PgwYOwsLDQ1YmOjoZarQZA56YkREdHY/bs2fj+++9RvXr1d9an107JunHjBkJCQjB//nwEBwdj165dsLe3x5gxY/C///0PSUlJurp0bkrG7du3AWhm5fL19cX9+/fx008/4eLFi5gyZQoOHz4MX19fHD16VNemrJwbCqBJqZCamgpAM/RDKBQarWNpaQkANC1XMdm2bRvi4+MxZswY+Pn56ZbTuTGP1atX4969ezhx4gSaN2+OHj16oG/fvrorM8B/5waAXmCdE52bojNy5Eh88MEHmDx5cr7q02un5NSuXRsrV67EsWPH0LlzZ9SuXRtt2rTBwYMH0bVrV4SFhWH48OG6+nRuSkZCQgIAzfSpDg4OOHz4MPz9/VGnTh2MGTMGgYGBkMlkGDhwIF6/fg2g7JwbCqAJIXj8+DGmTJmCZs2a4YcffjB3dwg0V15q1aqFdu3aYdeuXfj666+xf/9+BAQEQKVSmbt7752tW7fi/Pnz2Lp1q8n3eJDi17hxY3zzzTdGy+bOnQsAOHz4MCIjI0uyW++9zMxM3f/Hjx8PHk8/7OzYsSNq1KiB1NRU7Ny5s6S7VygUQJNSQTsuV6VSQaFQGK2jfSHa2dmVWL/eB1KpFO3atYO3tzeOHTsGiUSiV07npnSYN28eRCIRrl+/rvu5M+d49qysLKPt6NwUnlQqxZQpU/Dtt9+ifv36+W5Hr53SoX79+rovPZcvXwZA56ak5PxlrHbt2kbr+Pr6AgBCQ0MBlJ1zQwE0KRVyjieMj483Wkd7g1t+xh6S/Hnx4gXatGkDFxcXnDlzxuibEZ2b0sHGxkaXLjokJAQAUK1aNXAcB4DOTXE6efIkkpOTsXr1alhbW+s9OnbsCEDzE3XO5QC9dkoLgUAAJycnAP/NMETnpmRoxyoDgKOjo9E6NjY2AKAbo15Wzg0F0KRUqFGjhi54e/DggdE62uU5x+eSgouNjcXHH38MFxcXnD59Gg4ODkbr0bkpGS9evMCmTZvyHJ5hZWUFALoZBaysrFCnTh0AdG6KU69evRAZGYnbt2/j1q1beo8tW7YAACpVqqS3HKDXTknJysrCn3/+iYyMDKPlSqVSN77W3t4eAJ2bkvLRRx/p/v/y5UujdbTLtZ9BZeXcUABNSgU+n49evXoBAM6cOWNQnpKSgrCwMPB4PHz66acl3b1yJzIyEi1btkT16tVx7Ngx3RUzQHPXdIcOHXR/07kpGY8ePcKYMWNyvatcO6UdAHh7e+uW9+nTB4Dxc6NWq3H27Fm9esR0NjY28Pb2NvqoXLkyAM1VzpzLAXrtlJSXL1/qbhQ05s6dO7ovpk2bNgVA56akfPDBB6hRowYA4J9//jFa5969ewCA5s2bAyhD58ZsKVzIewX5yEQYGRnJRCIRc3FxYcnJyXpl2tSdw4cPL+aeln8RERHM1dWVde/enWVnZxuUazOr5UTnpvhpj/vkyZONli9evJgBYFZWVkwqleqWJyYmsgoVKjCJRMKioqL02mhTeX/yySfF2vf32bsyEdJrp/hFR0czAGzo0KFGy3v27MkAsHbt2uktp3NTMnbu3MkAsNq1azOFQqFX9tdffzEArEKFCnopu8vCuaEAmhSbV69eMalUyqRSqS6ADg0N1S0zZteuXYzH47FmzZqxS5cusSdPnrCVK1cygUDAfH19WWpqagnvRfly584d5uTkxACw+vXrM19fX4NHjRo1DAJoxujcFLeLFy8yAIzjODZkyBAWHBzMoqKi2MWLF9mYMWMYx3FMLBaz/fv3G7Q9c+YMk0gkrGbNmuzEiRMsKiqKbdu2jVlbWzNPT0/2/PlzM+xR+aZ9fzt48CADwNzd3XXvbWlpaXp16bVTvOLi4hjHcQwAGzx4MLtw4QKLiYlhISEhbMCAAbrgzdjnDp2bkjFy5EgGgHXt2pWFhoaymJgYtmvXLubk5MRsbW3ZuXPnDNqU9nNDATQpNh4eHrrA2dgjNyEhIaxbt26sQoUKTCwWs1q1arH58+ezrKysEux9+bR69eo8z8m7zg+dm+IVHh7OpkyZwho3bswcHBwYn89nlpaWrE6dOmzChAns0aNHuba9f/8+69+/P6tYsSITiUSsWrVq7Ouvv9a7qkOKTl7vb3PnzjWoT6+d4vXw4UM2d+5c1qJFC+bo6Mj4fD6zt7dnzZs3Z6tWrWIZGRm5tqVzUzJ+++031qpVK2ZnZ6d7jxozZozBL2c5leZzwzHGWNEPDCGEEEIIIaR8opsICSGEEEIIMQEF0IQQQgghhJiAAmhCCCGEEEJMQAE0IYQQQgghJqAAmhBCCCGEEBNQAE0IIYQQQogJKIAmhBBCCCHEBBRAE0IIIYQQYgIKoAkhhBBCCDEBBdCEEEIIIYSYgAJoQgghhBBCTEABNCGElAGMMXN3gRQjtVpt7i4QQkxAATQhhJRid+7cQfPmzZGammrurhTajh07wHGc7jFv3jxzd6nU2Lt3L0aOHFkuzjMh7wMKoAkh5Y6npyc4jkNMTIy5u1Iox44dQ9OmTdGyZUvY2dkZrXP9+nWMHTsWderUgb29PUQiESpWrIiPP/4YU6dOxalTp6BUKg3aLVq0CI6Ojjh79mxx74bOZ599BqlUim+++abEtmkKcxwTrS5duuDOnTvw8/PDs2fPSnz7hBDTUABNCCGlUEREBPr06YM+ffpg2bJlBuVZWVkYMmQI/Pz8IJVKsWzZMly/fh0RERHYvXs36tatiw0bNqBdu3aoVKkS7ty5o9d+7969SEpKwqFDh0pql2BhYQFXV1dYW1uX2DZNYY5jomVvb4+TJ09CqVSiU6dOkMlkJd4HQkj+UQBNCCGl0JdffgmFQoEFCxYYlCkUCnTo0AG7du3Chg0bEBQUhC5dusDb2xs1atRAQEAAfvzxR4SGhsLW1hYJCQl48+aN3jqmTp2KJk2aYNiwYSW1S6WeuY+Jra0t5syZgzt37mDJkiVm6QMhJH8ogCaEkFLm/PnzuHLlCj799FNUqVLFoHzmzJm4cOECunXrhnHjxuW6nnr16uU6znjo0KG4evUqfH19i6rbZV5pOCaDBg2Cs7Mz1q5di4yMDLP1gxCSNwqgCSHvlWfPnmHChAnw8fGBRCKBnZ0dWrRogZ9//hkqlcpom4iICHz66adwcnKCpaUl6tWrhzVr1kCtVhfLeOvdu3cDAD755BODsvj4eGzYsAEA8NVXX71zXQMHDoSnpyckEgkAIDg4WO9GvqFDh+rVv3TpkkG5VCrF8OHDUalSJfD5fIN2T58+xbhx4+Dl5QWxWAxbW1v4+vpiypQpuHXrlsn7HxMTg1GjRsHDwwMikQjOzs7o1KkTTpw4YfK6Hj58iKFDh8Lb2xsSiQQVKlRAmzZtsGHDBsTHx+frmABAq1at9OoYe/Tt27fQ+8Hn89G6dWskJyfj6NGjJu8vIaRkUABNCHlvhIWFoX79+tiwYQPkcjl69OiB5s2b48aNGxg9ejQ6d+4MuVyu1+b8+fNo3LgxDh06BHt7e3Tv3h1ubm6YNm0aBgwYUCz9PH36NACgTp06BmV//PEHsrOzIRKJ8PHHH79zXc7OzoiOjkbTpk0BAM2bN4dUKsWaNWuM1m/SpIle+evXr9G5c2f4+/vjypUrOHXqFFxcXHT1Q0JCUL9+fRw6dAgLFy7Ew4cPce7cOXz88cdYtWoVPvroI6SkpOR73y9duoQGDRrg8OHDWLx4Me7evYvAwEAkJSWhQ4cORseD5+bWrVto2LAh7t27h02bNuHhw4c4efIkvL29MWHCBEyfPj1fx0RrzZo1kEqleo+//voLPB4PfD4fkyZNKpL9qFevHgDg1KlT+d5XQkgJY4QQUs54eHgwACw6Olq3LDs7W7d89OjRTC6X68qePHnCPD09GQA2c+ZM3fLMzExWuXJlBoB98803TKVS6cru3r3LKlasyAAYbKsw0tLSdOuMi4szKB86dCgDwD744INCbWf79u0MABsyZEie5QDY0aNH9cpmz57NJk6cyJKTk5mbmxvjOI5du3bNYB2jRo1iAFhSUpLe8rlz5zIAbO7cuXrLk5KSdMc0JCRErywrK4u5ubkxHo/HQkND87WPQ4YMYQBYWFiYQVnbtm0N9j2vY+Lv78+2b9+utywtLY35+PgwAOz7778vsv3Q9qNx48b52k9CSMmjK9CEkPfC/v37ERsbi0qVKmHNmjUQCoW6Mi8vL6xcuRIAsH79emRnZwMADhw4gOfPn8PDwwNLliwBj/ffW2bt2rUxZ86cXLd34MAB9OzZE1WrVoWlpSXq1KmDVatWQaFQ5NnP2NhY3f8dHR0Nyl++fAlAM2tDSahWrRq6dOmit2zBggVYu3Yttm7dCqlUiiZNmqBx48YGbUeMGAE7OztwHJevbW3duhUvX75Es2bNdFfMtSQSCYYOHQq1Wo0ff/wxX+tLSEgAAMTFxRmUzZ8/H4MGDcrXegDg559/RteuXfWWjRs3DpGRkfD398esWbOKbD+cnJwAoMxPw0hIeUYBNCHkvRAcHAwA6NevH8RisUF5r1694ODggLS0NISHhwPQDN8AgD59+ugF3Fqff/55rttbuXIlxGIxli9fjr/++gsDBgzA7Nmz8cUXX+TZz7S0NN3/jfUzv8FoUalVq1auZSdPngQA+Pn5GS1v3LgxkpOTc53DOrf1NWrUyGi5l5cXAODy5cv5Wl+bNm0AaG7Mmz59Oh48eKAra968ua48P2rWrIkKFSro/t6zZw927doFR0dH7N69W+/LVWH3Q3veKakKIaWXwNwdIISQkvD8+XMAmiuqxnAch2rVqiEpKUlXV5vQwtPT02gbe3t72NnZGR3je/ToUTg7O+v+bt26NRhjmDNnDpYvX46KFSsaXWfOpCd8Pt+gXNsuOTnZaPuilnMf3qa9Wp5XHVNorxT//PPP2LZtm0G59iZP7fl5l4kTJ0IqlWLdunVYtmwZli1bhho1aqBPnz4YNWoUqlatWqB+PnnyBGPGjAEAbNu2De7u7kW6H9rzbiwBDiGkdKAAmhBC3iGvq765lRkLKrXTo7148SLXANrS0lL3f7lcbnAVulmzZti+fTuePHkCpVIJgaB438ZL+oo3oBkaMXbs2FzL89sngUCAFStW4Ntvv0VgYCB+//13XLlyBYsWLcIPP/yArVu3on///ib1TaFQoH///khLS8PYsWPRvXv3It8PbRIVKysrk/pGCCk5NISDEPJeqFy5MgAgKioq1zrR0dF6dbX/5jYWNSUlxaQrwRcuXIBIJEL16tVzrZMzsM45nEOrW7dusLCwgFwux8WLF9+5zcjISOzYsQOXLl3Kdz/zy8PDA8B/Y42Lan2MMXh7e+f6yOv4GePs7IyJEyfi0qVLiI6OxqBBg5CVlYWRI0eafCV/5syZCAsLQ7169bBq1api2Q/tec852wkhpHShAJoQ8l5o1aoVAGDfvn26mwRzCgoKQlJSEmxsbHRXirXTxO3fv9/oz+l79+7N9/bv3buHtWvXYtSoUbC1tc21XqVKlXSprrU3DOZUsWJFTJ48GQCwdu3ad253woQJGDZsmNF1FVa7du0AAKGhoUbLw8LC0LZtW1y7dq1I1scYQ0BAAKZMmZKv9S1dulQ3JaCWh4cHdu7cCW9vb2RkZODRo0f5WhegGdu8atUqWFhY4LffftPNrQ1o5uc+cOBAkeyHdn7qmjVr5rtvhJCSRQE0IeS90KdPH1StWhUvXrzA119/rRcQR0dH45tvvgGgCTi1gVGfPn3g5uaGmJgYzJo1C2q1WtfmwYMH+P777/O17devX6NHjx7w9vbG0qVL86zLcRyaN28OQHP12Jj58+cjICAAf/zxBzZu3JjrujZu3IgTJ06gQ4cO+PTTT/PVV1OMGDECrq6uCA0NNRosrly5Ejdv3kSDBg1MWl9ISAiuXLliUL5nzx6cPn1a92XoXY4fP47t27cbLVMqleA4zmimR2NevnyJwYMHgzGG1atXo3bt2nrlDx480AXEhd2Phw8fAgBatmyZr74RQkoeBdCEkPeCWCzGgQMH4OjoiJ9++gne3t7o168fOnfujNq1ayM6Ohrt27fH3LlzdW0sLS2xe/duSCQSLF++HDVr1kT//v3Rvn171K9fHy1bttTdiCYSiYxuNy0tDR07doRcLsfx48fzNa61W7duAJDrlVuBQIA//vgDQ4cOxfjx49GrVy/8+eefePLkCR49eoS///4bn376KSZMmIBOnTrh999/17WVy+WIj4/X3fiYlZWF+Ph4pKenA9Dc4GasXHtVNCc7OzscOnQIdnZ26NGjB3777TfExsbi+vXr+OKLL3Dw4EHs2rVLN4777W2lp6fr/Z1zfd27d8fWrVsRFRWFiIgILF68GCNHjsSECRMMptXLy969ezF58mSEhYUhLi4OV69exeeff46YmBhMmjQJbm5u7zwmjDEMGTIEL1++RJMmTdCiRQtEREToPbTDf4piP0JCQgD89zwghJRCZpyDmhBCioWxRCpacXFxbNy4cczLy4uJRCJmY2PDmjVrxn766SemUCiMru+ff/5hPXv2ZI6OjkwikbDatWuzFStWMJlMxkQiEePxeCwrK8ugXXZ2NmvdujVzcnJiDx48yHf/U1NTmZ2dHatevXqufdIKDQ1lI0eOZD4+PszS0pKJRCJWtWpV1rt3b4MEKIwxdu7cOV2ClJwPbVKT6Ohoo+V5fVzExcWxMWPGME9PTyYSiVjlypVZt27dDBKF5EzOYmzbOdc3duxY3fpcXV1Zq1at2P79+5larc7fQWSMxcbGshUrVrCWLVsyR0dHJhAIWOXKlVlAQAA7fPhwvo9JTExMrsck58PDw6PQ+xEREcE4jmPt2rXL934SQkoexxhjJRCnE0JIuXPhwgX4+/ujXr16uH37tl6ZSqVC7969cfr0aZw9ezbXuZJzs2HDBkyYMAFbt27F8OHDi7LbpBTr3bs3jhw5gps3bxpN5U4IKR1oGjtCCMlDQkIC0tPTDeaPjoiIwMiRIwEAw4YNM2g3btw4HD58GAsWLIBKpcLVq1d1ZbVr187zRkJt+5CQEEyZMgUNGjRAw4YNi2BvSGm2bt06HDp0CNu2baPgmZBSjq5AE0JIHoKDg9G6dWvUrl0bXl5esLCwQHR0NG7cuAG1Wo2AgAD8/fffBvMxe3p66qXlfpNwYwAAAPlJREFUzuncuXP5uhFOqVTi22+/xc6dO/Hs2TNYWFgUxS6RUuj48ePo168ftmzZgt69e5u7O4SQd6AAmhBC8vDixQssXrwY58+fx/Pnz5GWlgYbGxvUqVMHAwYMwMiRI4s9mcmNGzdQp04do6m9Sfnw6NEjODo6wsnJydxdIYTkAwXQhBBCCCGEmICmsSOEEEIIIcQEFEATQgghhBBiAgqgCSGEEEIIMQEF0IQQQgghhJiAAmhCCCGEEEJMQAE0IYQQQgghJqAAmhBCCCGEEBNQAE0IIYQQQogJKIAmhBBCCCHEBBRAE0IIIYQQYgIKoAkhhBBCCDHB/wEepUYknf7FJgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "classiq_color = \"#119DA4\"\n", + "classiq_color_1 = \"#F43764\"\n", + "qiskit_color = \"#bb8bff\"\n", + "plt.rcParams[\"font.family\"] = \"serif\"\n", + "plt.rc(\"savefig\", dpi=300)\n", + "plt.rcParams[\"axes.linewidth\"] = 1\n", + "plt.rcParams[\"xtick.major.size\"] = 5\n", + "plt.rcParams[\"xtick.minor.size\"] = 5\n", + "plt.rcParams[\"ytick.major.size\"] = 5\n", + "plt.rcParams[\"ytick.minor.size\"] = 5\n", + "plt.figure(figsize=(8, 5))\n", + "\n", + "(qiskit1,) = plt.semilogy(\n", + " num_qubits_qiskit,\n", + " qiskit_cx_counts,\n", + " \"-s\",\n", + " label=\"qiskit\",\n", + " markerfacecolor=qiskit_color,\n", + " markeredgecolor=\"k\",\n", + " markersize=6,\n", + " markeredgewidth=1.5,\n", + " color=qiskit_color,\n", + ")\n", + "\n", + "(classiq1,) = plt.semilogy(\n", + " num_qubits_width_opt,\n", + " cx_width_opt,\n", + " \"-D\",\n", + " label=\"classiq width optimization\",\n", + " markerfacecolor=classiq_color,\n", + " markeredgecolor=\"k\",\n", + " markersize=6.5,\n", + " markeredgewidth=1.5,\n", + " color=classiq_color,\n", + ")\n", + "\n", + "(classiq2,) = plt.semilogy(\n", + " num_qubits_cx_opt,\n", + " cx_cx_opt,\n", + " \"-o\",\n", + " label=\"classiq cx optimization\",\n", + " markerfacecolor=classiq_color_1,\n", + " markeredgecolor=\"k\",\n", + " markersize=7,\n", + " markeredgewidth=1.5,\n", + " linewidth=1.5,\n", + " color=classiq_color_1,\n", + ")\n", + "\n", + "\n", + "first_legend = plt.legend(\n", + " handles=[qiskit1, classiq1, classiq2], fontsize=16, loc=\"lower right\"\n", + ")\n", + "\n", + "\n", + "plt.ylabel(\"CX-counts\", fontsize=16)\n", + "plt.xlabel(r\"$\\log_2$(Circle size)\", fontsize=16)\n", + "plt.yticks(fontsize=16)\n", + "plt.xticks(fontsize=16)\n", + "plt.axis(ymin=0.5e2, ymax=1e6, xmin=3, xmax=63)\n", + "# plt.xticks(num_qubits_opt_cx_max_width)\n", + "\n", + "\n", + "for x, y, num_qubits in zip(num_qubits_width_opt, cx_width_opt, width_width_opt):\n", + " plt.text(x * 1.01, y * 0.6, str(num_qubits), fontsize=15, color=classiq_color)\n", + "\n", + "for x, y, num_qubits in zip(\n", + " num_qubits_cx_opt,\n", + " cx_cx_opt,\n", + " width_cx_opt,\n", + "):\n", + " plt.text(x * 0.99, y * 0.45, str(num_qubits), fontsize=15, color=classiq_color_1)\n", + "for x, y, num_qubits in zip(num_qubits_qiskit, qiskit_cx_counts, qiskit_widths):\n", + " plt.text(x * 0.77, y * 1.2, str(num_qubits), fontsize=15, color=qiskit_color)" + ] + }, + { + "cell_type": "code", + "execution_count": 95, + "id": "4a8e71ba-b16f-4cf8-8f86-66841c9212fe", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAs4AAAHWCAYAAABngQ9HAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hUVfrA8e+dkkmbVBKSkARIIPQOEmooiWBBBbuuq6DLumJZsUfX8lNxxbKCoqvugrtrb9gpQapA6EgnkBBIQgLpPdPu/f0xyZBhJn1SOZ/n4SHce+6dMyHlnTPveV9JURQFQRAEQRAEQRDqpWrvCQiCIAiCIAhCZyACZ0EQBEEQBEFoBBE4C4IgCIIgCEIjiMBZEARBEARBEBpBBM6CIAiCIAiC0AgicBYEQRAEQRCERhCBsyAIgiAIgiA0ggicBUEQBEEQBKERNO09ga4uLy+PNWvW0KtXLzw8PNp7OoIgCIIgCMJFKisrSU9PZ8aMGXTr1q3OcSJwdpFly5axbNkyh+NFRUVkZ2e3w4wEQRAEQRCEpvj444+5/fbb6zwviZbbrWvr1q1MnDiRjz/+mAEDBrT3dARBEARBEISLHD16lD/84Q/89ttvTJgwoc5xYsW5ldWkZwwYMICRI0e282wEQRAEQRCEujSUVis2BwqCIAiCIAhCI4gVZxepK8e5srKyHWYjCIIgCIIguJoInF1kwYIFLFiwwOH43r17GTVqVDvMSBAEQRAEQXAlkaohCIIgCIIgCI0gAmdBEARBEARBaAQROAuCIAiCIAhCI4jAWRAEQRAEQRAaQWwOdBFRVUMQBEEQhK7oQH4B7x46ytac8+RWVqF309LT25txIcE8PmIIeq0WgJSiYj49kcamszmkFpdglGWCPdyZENKdBYMHMDjQv52fScuJwNlFRFUNQRAEQRC6muVHU3h65x4eGTaYZ0YNJ8jDnZSiYh7dvotlh47ypwEx6LVajhQUMum7X/DTubFo7Cim9QjDTaViU3YOT2zfxTdp6fx76kRm9Yps76fUIiJVQxAEQRAEQXDwW/Y5Htu+i2dGDefR4UMI9/ZCp1YzJDCAZZPG0dfXB43KGkoaZBkFeG3cGG7uE0WQhzu+Ojeu6RXJ25PGYVYUHvptB5Vmc/s+qRYSgbMgCIIgCILg4Nmde9G7afnTgBiHc318fdhx/SzCvDwB8NRoGNktkCsiwx3GTusRirtaTZHRyL68/Fafd2sSgbMgCIIgCIJg51hhMfvzC7gsOAg3tbrB8f38fFl3zUw8NI5ZwCpJwkvbNbKDu8azEARBEARBEFxmx/lcACK8vViflc1bvx9mf34+Flkh2teHm6J7c++gfrZUjfrkV1WRX2VAr9UyNDCgtafeqkTgLAiCIAiCINhJKykBYH1mNt+kpfP6uDH8N3wSlRYLr+8/xLO79rIlO4dP4+NQNxA8f3HyFAD3De6Pd3UFjs5KBM4uIsrRCYIgCILQVZQYTQCcLivjHxPGckN0bwD8gDfGX8ae3DySMs/yv5RU7urft8775FRU8vr+Q4wKCuSRYYPbYOatS+Q4u8iCBQs4cuSIw59vvvmmvacmCIIgCILQbDdG93I4dkufKAC+SUuv87oKs5m71m+mm7uOT+OnNCqto6Pr/M9AEARBEARBcCl/nRsAge46PJ1s+Oup9wYgtbjU6fVVZgt3/rqZQoORlVfEE+Th3nqTbUMiVUMQBEEQBEGw08/PFwCjRa53nCQ5Hqswm7k9aRN5VVX8fGUC3bpI0AxixVkQBEEQBEG4SFxYKCpJotRkotBgcDh/prQMgJjqALtGqcnEjWvWU2Iy8sOV8XZB87dp6ew4l9u6E29lInAWBEEQBEEQ7IR4ejCnd08APj2R5nC+plLGHTHRtmNFBgOzV/2KRVFYOTMef53O7poVx06wISu7FWfd+kSqhiAIgiAIguBg0dhR/J5fwKv7DhDq6cEVkeEUG028+fsh9ucX8MeYPsyJ6gVAQZWB2at/5WBBITMievDw1h0O9zteVMyEkO5t/CxcSwTOgiAIgiAIgoNuHu4kzZrBm78fZtHeA9y3eTvuGjVDAwL4cMoErq8OmgG2nzvPwYJCANZkZLXTjFufCJxdRNRxFgRBEAShq/Fxc+P5MSN4fsyIesdd1TOCgnm3t9Gs2o8InF1kwYIFLFiwwOH43r17GTVqVDvMSBAEQRAEofPIyMgAICIiop1nUjexOVAQBEEQBEFoVxkZGUyZMoUpU6bYAuiOSATOgiAIgiAIQrupCZrT0tJIS0vr0MGzCJwFQRAEQRCEdlE7aFYFBaMKCu7QwbPIcRYEQRAEoUNZsHk7n510rB1c4/HhQ3hy5FDbv1OKivn0RBqbzuaQWlyCUZYJ9nBnQkh3FgwewOBA/7aYttBEFwfN+sefBqB08cu24Hnjxo0dKudZBM6CIAiCIHQ4ATodge46p+dqHz9SUMik737BT+fGorGjmNYjDDeVik3ZOTyxfRffpKXz76kTmdUrsq2mLjSCs6BZFRAIgP7xpzts8CwCZ0EQBEEQOpx7BsTYrSrXxSDLKMBr48bYmnEAXNMrEk+NhpvWbuCh33YQHx6Gh0aEPR1BfUEzgCogsMMGzyLHWRAEQRCETstTo2Fkt0CuiAx3ODetRyjuajVFRiP78vLbYXbCxRoKmmvUBM8dLedZvPQSBEEQBKHT6ufny7prZjo9p5IkvLQaqiyWNp6VUENRFHIqKzmYX8iB/AK2Hz1OZnl5e0+r2UTg7CKic6AgCIIguM6hgkJuS9rI/rwCCgwGAt11xHYP5v4hAxjRzXGF0pn8qiryqwzotVqGBga08owFWVFIKynlQH6BNVAuKORQfiG5VVV24zweTcS8+GXk3POULn7Z6aqzXJBPafWYqKioDpOqIQJnFxGdAwVBEATBdbafO8/zY0bwzqRxeGo07MrN5Yntu5nx4xqWTIzl1r5RDd7ji5OnALhvcH+8tdrWnvIlxWixcKyomAP5hRzML+BAfiGHCwopM5sdxqokib6+PgwN9GdIQABDA/3xv+5Krpsxg7S0NIfguaMGzSACZ0EQBEEQOpi/DOrPo8MH09tHbzs2KTSET+LjGPvNjzy8dQfjQ4Lpqfeu8x45FZW8vv8Qo4ICeWTY4LaYdpdVajJxuHoFuWY1+VhRMSZZdhjrrlYz0N+PIYH+tkB5YIAfnk42Zm7cuNGW71wTPAMdNmgGETgLgiAIgtDB1FV3ubePnunhYazJyOKr1FM8OnyI03EVZjN3rd9MN3cdn8ZPQaMStRAaK7eyqlaqhfXvtJJSFCdjfd3cqoNjf4YGBjAk0J++vj6N/nxHREQ4BM9Ahw2aQQTOgiAIgiB0IjWr0ClFJU7PV5kt3PnrZgoNRlZeEU+Qh3tbTq/TUBSF06VlHCiwplocLCjkYH4h2RXO92aFenrYguOh1ekWEd5eSJLUonlcHDwDHTZoBhE4C4IgCILQiciKde3TWbxWYTZze9Im8qqq+PnKBLqJoBkAsyyTUp2PXDtQLjGaHMZKQLSPniGB1uB4SGAAQwP8W/VzWTt4Bjps0AwicBYEQRAEoQPZcS6XO9dvJnnO1fjpHDsHppWUAtDX18fueKnJxC1rN1BlsfDDlfH417r227R0enh5MbZ7UOtOvgOoMJs5XFBk27B3sKCAI4VFGCyO+chalYoB/r62DXtDAv0ZHODfLhspa4Lnmo87KhE4C4IgCILQYZhkmfOVVfyalc31tToBApwsLmFDVjZalYobo3vbjhcZDNywZgMalcTKmfH4uNkHfiuOnWBCSPcuFzgXVBms+cjVaRYHCgo4WVxqW5WvzVurYUiAdQXZmpPsTz8/X9zU6naYuXMdOWCuIQJnQRAEQejCMsvKGb/yJ8pMZn64Ip6Jod3tzgcs/6RR9ymYd3trTM9BTQbG49t3YbBYiA8Pw0frxq7cXB7bvguA18ePsVXUKKgyMHv1rxwsKGRGRA8e3rrD4Z7Hi4qZENLd4XhnoSgKWeUVHLCtIlurW2SVVzgdH+zhbrdhb2hgAL303qhamI8siMBZEARBELq0B39LpszkWFu3th5enk7LhQGcKSsj0rvusm+uNj4kmJ+vTGDlqdO8ffAoj23bhVlRCPZwZ1z3YN6bPN6uAcr2c+c5WFAIwJqMrDabZ2uxyDInS0ovpFpUB8oFBoPT8b303nYb9oYEBhDi6dHGs750iMBZEARBELqoj46dYH9eAX19fThR7LwKBcB7k8c7rEQDnK+sZOgX3/GnATGtOU07kiQxLiSYcSHBjRp/Vc+INlsNd7Uqs4WjRUV2TUSOFBZSYXZsEa6WJPr5+dpt2BsS6I+Pm1s7zNz1SktLSUpKoqCggICAABISEtDr9Q1f2MZE4CwIgiAIXVBmWTnP7drH32NH8+mJ1DoD59m9e9LN3XnFhI+OnUSnVnNLI7r0dQYZGRlA++TSFhuMHCq4UNXiQH4hx4uKsTjJR/bUqBkU4M/QAH8GV1e3GODnh7um4+Qju0p5eTmJiYksX76csrIy23Fvb2/mzZvHokWL8PLyascZ2hOBs9AgixlObYfTuyBkAAy6ouFr8tLg2DqoKoH4R1t/joIgCIK9B39LZmz3IG7tG8WnJ1LrHPfvqROdHjfJMh8dO8GtfaO6RLvqjIyMNil3pigKOZWV1s16tdItTtcKCmsL0OlsXfaGBlhzkqN99KgvgaYt5eXlxMfHk5ycDEC0zocYD1+OVxaTVlbC0qVL2blzJ+vWreswwbMInIV6FZyBY0lgrATFsZKNA2M5HN8ABelgqmr16QmCIAhO/Of4Sfbk5rN19lXNvscP6Wc4V1nZpmkaraUmaK5psDFlyhSXBM+yonCqpNRW9q0mSM6tcv4LMNzL027D3pAAf3p4eba4iUhnlZiYSHJyMgEaHR9ExTHDLwJJklAUhTVFGcxP20RycjKJiYksWbKkvacLiMBZqEfOUeuqcfREUGvgyJr6x1tMsH0FBPSCcXNh83ttMk1BEAShlsyycp7duZf/u2wk4d7NX6X74MhxpoeHEX1RveTOpnbQrAqy5k2npaU1OXg2Wiwcr24iUlPV4lBBodONlypJoo+v3raCXBMkB7g71qW+VJWWlrJ8+XIAPoiKY6Z/pO2cJEnM9I/k/ag4bkxZy4oVK3jppZc6RM6zCJxdZNmyZSxbtszheGWl89aVnYGHrzUA1nnD2UONu2bQldCta6TCCYIgdEp/3bqDkd0CubNfn2bfY39ePrvO5/FFwhTXTawdXBw06x9/GoDSxS/XGzyXmkwcrqmNXL2afLSwGJPs+NarTq1ikL91o15NneRBAX51VikRrJKSkigrKyNa58MMP+cvXmb6RRCl8yGttISkpCTmzJnTxrN0JP5XXWTBggUsWLDA4fjevXsZNWpUO8yo5XzDmjZerRVBsyAIQnv67/GT7DiX26IUDbCuNkf76IkPb+Ivgg7EWdCsCrCWsdM//rQteJ4UF8crn3/BOZ0nBwoKOJhfSFpJKY5b9sDHTVtrFdkaJMf4+qC5BPKRW0qpMiKnZiEfP418/Aw5P34LQIyHb52pKpIkEePhS5qhhIKCgracbp1E4CwIgiAIXUBWeQV/27mXZ0cPJ1Lf/LrLeZVVrDx1mudGj+i0ubf1Bc0AqoBAW/B8+tQp/nD11Q5jQj09qleRrVUthgYGEOnt1Wk/J21JKa9CPnEG+bj1j+X4GZT0bKjV9tuvwLpZMqWyGEVRnH5eFUUhpbIYgICAgLaZfANE4CwIgiAIXcCms9mUmkw8kbybJ5J3Ox1zzap1to+ddREE+Oj4CbSSitv6RrfaXFtTQ0FzjdrBs5x7HvnNV3loxX+YPGggQwMDCPJwXqJPsKcUl9mCY2ugfBol47zzwf561P0iUfWL5IqIbnjfkkxqeQlrijLscpxrrC7KIM1Qgl6vJyEhoZWfSeOIwFkQBEEQuoDb+kbXGezO+iWJrTnn6wyWa5hlmRXHTnBzn974uHW+EnQmWWZvbh5FRmOTrw3ycOeegf2I6MTpKa1NziuyrSLXpFwoOc5TKKRgf1TVQbKqX09U/SKRgvxsK8tuwLy772bp0qXMT9vE+1FxzKxVVWN1UQbzUzcBMHfu3A6xMRBE4CwIgiAIQrUf0s+QXVHJPQP7tfdUGkVRFI4WFrEp+xybzmazLfs8ZWYz8kOPoapeSS5d/LLTVWe5IN+22hwVFdWqtZ07G0VRULLz7QJk+fgZlALnTXSk8CC7AFkdE4nk33Cgu2jRInbu3ElycjI3pqwlqrqOc0plMWkG62PFxsayaNEilz6/lhCBsyAIgiAIAHx4JIW4sBD6+fm291TqlFFWxqaz1kB5S/Y5zlfa10wO0OmYNHIEg7/4iqXz7uRMerpD8CyC5gsUWUbJOG8LkC3HzyCnnIGSCsfBKgmpZwiqfj1tKReqmAgkb89mPbaXlxfr1q0jMTGRFStWkFZaYguY9Xo9c+fOFZ0DBUEQBEFofWdKyxj+1fd2x2pynCeEBPPjlfY5owfyC9hxPpdP4uPabI6NUVBlYEv2OTZn57DpbA5pJaV25z3UasaFBDM5LIQpYSEMDvBHVZ0OcNPmzbZ855rgGbhkg2bFbEY5lYOl1iqyfDIDKgyOgzVqVFE9LqRb9I9E1SccycW1qL28vFiyZAkvvfQSSUlJFBQUEBAQQEJCQodJz6hNBM6CIAiCUIfMsnLGr/yJMpPZaX5wSlExn55IY9PZHFKLSzDKMsEe7kwI6c6CwQMYHOjfTjOHSL03BfNub/T4oYEBTRrfWirMZpLP5bL5rDVQPpBfYFcaTi1JjAwKZHKoNVAeHdwNnVrt9F4RERFs3LjRLngGLomgWTGYkFMz7XOSU7PA6NiwBZ0bqr7h9jnJUWFI2rYLE/V6fYeo09wQETgLgiAIQh0e/C3ZaWc4gCMFhUz67hf8dG4sGjuKaT3CcFOp2JSdwxPbd/FNWjr/njqRWb0cqwV0JhkZGQCtFmCaZZn9eQVsOpvD5uwcdpzLxXhRo5F+fr7EhYUQFxbChJBgfNzcGn3/i4NnoMsFzdbybxm2ANlZ+TcbLw9UMRHWXOR+PVH1i0CKDEHSOH/xIdgTgbMgCIIgOPHRsRPszyugr68PJ4odN0UZZBkFeG3cGOZE9bIdv6ZXJJ4aDTet3cBDv+0gPjwMj07aRa6mtBvgskBTURRSikusgfLZHLZkn6PUZLIbE+blaQ2UQ0OYFNadUM/m5dDWqB08g+ueS3tQisuRU2rKv51GTslAOXMOFCctW/y8q3ORe1bnI0ci9eiGJBq2NFvn/E4W2sy61+3/nX3Y+gdg4EwIG2x//vCqC+cvvodfOIy+pXXmKQiC4EqZZeU8t2sff48dzacnUp0Gzp4aDSO7BXJFZLjDuWk9QnFXqykyGtmXl8/4kLpLwHVUteshA3W2p26Ms+UVttSLzdk5ZFdU2p33dXNjUmh326pytI/e5Y1GaoLnmo87Azm/2LqKfKw6JznlDEp2vtOxUpDfhQC5+o8U7C8atriYCJyFesU/2rTxg66w/nFGURTKy53s0nXC09NTfLMLgtBuHvwtmbHdg7i1bxSfnkh1Oqafny/rrpnp9JxKkvDSaqiyWFpzmq3m4iYiAGlpaY0OnosNRn7LOcem6mD54hceOrWK2OBg4sJCmBwWwrBAf9RtsAraUQNmRVFQcgrsSr/JKWdQ8oqdjpd6BNkFyOqYSKQAnzae9aVJBM5Cm6moqMDbu3FtYMvKyjpU+RlBEC4d/zl+kj25+WydfVWz75FfVUV+lQG9VsvQwI7RKrixnHXeA2slirqC5yqzhZ3nrRv6Np7NYX9+AXKt1AGVJDE8MMAWKF8W3K3Tpq+0lCLLKJnnq1eSa5d/K3ccLNWUf4u8kHIRE4Gkb1nqitB8l+ZXbT327dvHu+++y86dO5EkiYqKCiZNmsSiRYvo3r3zvdUmCIIgNF5mWTnP7tzL/102knDv5r94/+LkKQDuG9wfb23n6cBXX7vqmvbUNcHzO9+uJEVSs/GsdUPfxavrfX19mBzanbiwUCaGBuOnc20Zs85AMVtQ0rMvtKNOqQ6SnZV/U6tRRYddqGoRE4GqbwSSx6X3eevIROB8kU8++YTff/+d9evXExgYSH5+PtOmTePGG29k8+bN7T29LuPL587h7mb/S6nKWM5NL4gXJ4IgtJ+/bt3ByG6B3NmvT7PvkVNRyev7DzEqKJBHhg1u+IIOor6gGUAVEGgXPF+dkGA3JsTDg8lh1kB5clgIPbw61qpoaWlpq9YJVgwm5LSsWt32MpBTM8Fgchys06LqE26fkxwVhtQJ25xfakTgfJHo6GimT59OYKD1B0FgYCDz5s3jr3/9K0VFRfj5+bXvBLsIdzcvPNxEKoYgCB3Hf4+fZMe53BalaFSYzdy1fjPd3HV8Gj8FTSepXtBQ0FyjdvAs557H8uarPPm/T7hu5Aj6+fl0yL0p5eXlJCYmsnz5csrKymzHvb29mTdvXrM60ykVVcgnMi/kJKecQU7LBmc57Z7ujvnIPUX5t8aw7E/B9PmvyAdTUYrLkHy8UI3sh9u8q1BF9XB6jXnbQUyfrEE+dgYUBVWfcLS3xKOZNsolc+p0gfO2bduYO3cuKSkpnDp1il69ern0/n/5y18cjpWWluLh4SFybgVBELqorPIK/rZzL8+OHk6kvnF7MS5WZbZw56+bKTQYWXlFPEEe7i6eZccT7OHO7THRRPh3zBbd5eXlxMfHk5ycDEC0zocYD1+OVxaTVlbC0qVL2blzJ+vWravzd7xSYi3/ZmtHffxM3eXffL1r5SNXl38LDxLl35rB9FkSxqVfoRrWB90bD6CK7I585hzG1z+lcu7LuL/5IOpR/e2v+Xwdxre+QHPdZNz/bz5oVBhX/Iwh8Z/Id8/C7U/XtHhenSZwrqys5JlnnmHJkiVYmrhLefXq1bzxxhvs2bMHg8FAv379mDdvHvfddx+qBr6Yt2/fzrvvvstrr72GthPlqQmCIAiNt+lsNqUmE08k7+aJ5N1Ox9S0qwYcughWmM3cnrSJvKoqfr4ygW6dJGiuNJv5LfscazOy0T3yFKrnn0bOPW9rT33xqrNckN+p2lUnJiaSnJxMgEbHB1FxzPCLQJIkFEVhTVEG89M2kZycTGJiIkuWLEHJL7nQjro6WFbO5jm9txTkhyqmuhV1THX5t+4BHXLVvbORU7Mwvv0VeLnjvngBko/1RY26f0/c33iAitlPYnj+33h88SKSp7vdNaqBvXB74g+2/wfdX29GTsnA9O8fUY8bhHpwdIvm1ikC59TUVK688koMBgOrVq3i8ssvb/S1r776Kk8++SRXX301SUlJ6PV6/v3vf/PAAw+wdu1avv32WzROdvauXLmS++67j8LCQp599lnuvfdeVz4lQRAEoQO5rW80t/V1/gt11i9JbM0577TlNkCpycQtazdQZbHww5Xx+NfaBPdtWjo9vLwY2z2o1ebeVGdKy0jKPMvajCy2ZJ+7sKnP3YPAJ/9GxeuLKM/OdgieO1vQXFpayvLlywH4ICqOmf4XOjhKksRM/0jej4rjxpS1rPjn+ySmgHeh85KpUli3C+kW1UGyKrBjrrJ3Beb1u0FWUI/sZwuaa0i+3qjHDMCyaT/mpF1or50EWFeoschorpnk8OJFO3syhr3HMX28FvXfHTMLmqJTBM6HDx9m+vTpLF68uNHlzAC2bNnCk08+ycCBA/n2229tK8avvvoqhYWFfPjhh7z66qs8/fTTDtfOnj2b2bNnk5KSwq233sq6detYs2aNWHV2kSqjY9kdZ8cEQRA6siKDgRvWbECjklg5Mx6fizZ3rTh2ggkh3ds1cDbJMjvO5bI2I4ukzLMcL7KvDdzDy5PLI3qQEB7GpNAQCm681pbvXBM8A50qaAZISkqirKyMaJ0PM/ycz3WmXwRROh/SDCX8mnqYawOjkCK727WjVsVEOgRvQuuqqV8tBTqvTS0F+QNgST5kC5zNv/0OgHqY48ZeVfUxy/aDKGZLi/LLO0XgfNVVV3HNNU3PS3n++ecBeOCBBxwC3kceeYQPP/yQxYsXs3DhQjw8PJzeIyYmhnfffZfY2Fg++ugj/vSnPzV5HoIjUT1DEITOrqDKwOzVv3KwoJAZET14eOsOhzHHi4qZ0A5dA89VVLIu8yxJmWfZkJVt19JaLUmM7R5EQngYCRE9GODna7dC51WrPXVN8Ax0qqAZID/PmmIR4+FbZ/qEJEnEePiSZiih7NZpeD6x0PbWv9B+JD9rtRMl37FjJ4BSYD0un8q2/n2+EIqsGz+l0G6O9wvyB60GDCaUjHNIvcOaPbdOETir1U1/ZZCbm2trrTl9+nSH8/369SM8PJzMzExWrVrFnDlzAGuTDk9P+xI6Q4YMAWD//v1NnocgCILQ+ZwpLWP4V9/bHavJcZ4QEsyPVyaw/dx5DhYUArAmI6vN51ibrCjsy8tnbcZZ1mVmsS+vwO58N3cd8eFhxIeHMa1HaIM1lSMuCp6BThE0KwYTlj3HsGzej/dXPwOQUlmMoihOg2dFUUiptK5udhvWXwTNHYR60jBM//kFy97jKCXldiv+Snkllr3Hrf+obhpTE0ij0yK5uzncT5Ik8PaAwlKU/GJo7cA5Kiqq2Q9wMUmS2uQbb/fu3ciyjFarJTraed5a//79yczMZNeuXbbAeeDAgezYscOu2cmZM2cACAjoXN2fOhpPT09bKSBDOWz9l/X45L+Axs1xrCAIQnuJ1HtTMO/2esdc1TOiwTGtqdhg5Ness6zLtP7Jq7JvqjGiWwDx4T24PCKMEd0CUTVx01rt4BnosEGzUlKOZetBzFv2Y0k+ZGsuMlXlh7daS6qhhDVFGXY5zjVWF2WQZihBr9eTkJDQ1lMX6qAeHIXmxmmYv1pP1ePLcPvrzah6hiBnnse45EskrQa7miY1X/v1dKOU3LQogFJlbNHcGhU4p6ent+hBapMkCZPJSTFwF0tNTQUgKCiozsoZoaGhdmNrJCYmsmzZMtzd3SkpKWHhwoV4eXlx55131vl4BoMBg8GxE1DtmpGXOkmSbOV+Ks+Bhxt4BoCvfztPTBAEwYUyMjIAXB5kKorC0aJikjKyWJuRxc7zeVhqlUTTa7VM7RHK5RFhTO8RRndP5ymITVETPNd83FHIOflYNu/HvHk/8r4UsMi2c1KQH+pJw+k2eRhzP/bh7WXvMD9tE+9HxTGzVlWN1UUZzE/dBMDcuXNd2gxFaDndI7eiHtQb08pNVN33GpgsSOFBaK4Yh+rGaRieeNe6igzgXv0Oitlc5/0UozX2dLYi3RSNTtX49ttv8fdvWYSjKApXXdX8wvJNUVJiXbavK3cZLqxqFhdf2CixbNky/v3vfzNq1Cg0Gg0Gg4Fhw4axY8cO+vSpu5PUK6+8wgsvvOCi2Xd9Jeesf/uIVGdBELqQmkYi4JoV2nKTmS3ZOSRlniUpI4vMcvuqD/38fEkID+PyiB6M7R6EthXqBXeEgFlRFOQTGVg278eyeT9ySobdeSkqDM3k4agnD0fVv6etbvIrQ/7Orj27SU5O5saUtURV13FOqSwmzWCNE2JjY1m0aFGbPyehYZqZsWhmxjocN63aDoAqwhpESAHVmwgNJpQqo0NwrCgKlFVaxwb6tWxOjRkkSRLjx48nODi4RQ8GzctXbktXXXVVs4L7p556ioULFzoc379/P3Fxca6YWpdSWh0460XgLAjtZl9ePqvOZLLl7DnOlJVRYDAQ5O7OAH8/5vXvy4zIcLvxv2Wfs6tlfLEIby9+v+m6Vp51x1W7+x7AlClTmhU8nyoptZWL25pzDkOt1VR3tZpJod25PKIH8eFh9Gxms5bOQDGbkfefwLz5dyyb96Pk5F84qZJQDe2DZlJ1sBzhPD7x8vJi3bp1JCYmsmLFCtJKS2wBs16vZ+7cuc3qHCi0LyXduilQNcSaSqwK9gc/bygqQ8nOc9j8p+QWgskMOjekOr5WGqtRgbPirDtOM7nyXvXx8bG++qisrKxzTEWF9ZW7r2/LazHqdDp0TjZbNKV83qVErDgLQvu7NWkjxUYjr4wdzVU9I/DUaDiQX8Bj23dx67pNPDp8MIkjh9ldo5Ekevs4f0s71AWpAZ3VxS2rAdLS0hoVPBstFrZXl4tbl3mWE8X2lQQivL24vHpVeWJodzzqyePs7JTyKiw7DmPevB/LtgNQUmuFXeeGeuxA1JOHo5kwFMm/cakVXl5eLFmyhJdeeomkpCQKCgoICAggISFBpGd0YJadR5DCg1GFOVbJsCQfBrUKzYwLq9GaicMw/7QVy4FUVBcFzvLv1pRc9bjBLW513qjvvu3btxMY6Nizvjk2bNjQJm/71GwIzM3NRZZlp3nO2dnZdmOFtmEsB0Op9WOx4iwI7evhoYO5q39f27/HhQTzzqRYpv2wmrcPHuHhoYPsArVQL092XD+rPabaYV0cNNeue1xX8JxdUUFShnVT38asbMpq5WZqJInY7sEkRISREN6Dfn4+XbobnZxfjGWLdVXZsuuodWWwhp83monDUE8ejvqyAUju9VcDqY9er7cVAhA6PuPbX6Ea0gfd4/YbcM1bDyAfP4PmlnhUoRdiU+1tCZhXbcf8wxY010y0+54xfb/ZOuYPjW+gV5dGBc5jx45t8QPVGD16tMvuVZ9Ro0ahUqkwmUykpqbSt29fhzHHjh0DYMyYMS1+vGXLlrFs2TKH4/WteF+qalabPQMcq2kIgtB2VkydRD8/x3fc+vha37EzWGQMFkuXXuFsKWdBc02nPf3jT9sFz299/Q0HZEjKPMuB/EK7+wR7uBMfbg2Up/YIwceta/9wlNOzravKm/cjH0qzOyeFB6GePALN5GGohvRBUrs+b1voHMzfb0E1oCeaaaPAImPeuBfj0q9QTx6O24Lr7caqonrg9sCNGN/6AuPiT3D70zWgVmP8zy/Iu4+hvXtWi9ttQyep49wcwcHBxMXFsWHDBn799VeHwPn48eNkZmai1+uZOXNmix9vwYIFLFiwwOH43r17GTVqVIvv35WINA1B6BjGhTjP9dt53to4YkS3gAbr/V7K6guaAVQBgXbB83UzZtjGSMDIoEASqsvFDQ0MaHK5uM5EscjIh9OsbZK37Ec5c87uvGpgb9STh6GZPBypd1iXXmEXGkdz/VQsG/di+uB7jIs/AQ8dqpgIdI/ehnrGWKdfI9pb4pEiu2P6eA0VNzwNKKiiw9EtutcafLtiXs29sLKykmeeeQZFUfDw8ODll1+2O//AAw/Qu3dvHnzwQTTttFrx3HPPsWHDBt555x3uueceu3m88cYbADz22GOiZnAbExsDBaHjscgy56uq2Hw2hxd27Wd4YAD/mjLRYVyV2cJzu/byy+lMssorcFOrGODnx819evPHfn26dPBXW0NBc43awbOcex75zVd5+fMvuGnMaII8On6zjdLS0mbnBStVRiy7j1qD5d9+h8LSCyc1atSjB6CePAz1pOGogvxa5wkInZb2uslor5vc5Os044egGT+kFWZUff/mXvj555/zj3/8A51OV2cViscff5yffvqJX375BXf3lv2AyM3NxWKxOByruW9ISIjDNXFxcbz88ss8/fTTzJ49mxdeeAFvb2+WL1/Ohx9+yJVXXslTTz3VonkJTSdWnAXBUVMrXGSWlfPpiTTWZZ4lpbiYSrOFQJ2O0cHduHdQP8Y3sc1zyH8+x6IoqCWJO/v14YkRQ50GdrlVVZQYTXyaMIWe3l5kV1Ty1oHDLNy2k1VnMvk4Pq5VSqJ1RM3Z6h7k4c41vXt2+KC5vLycxMREli9fbtePwNvbm3nz5tVZiUIpLsO89QCWTfux7DgMtZtNeHugHj/EWjZu3GAkr0t3M6nQeUlKM8tczJ49m6NHj7J69Wp69erldMyhQ4e46qqruP/++3nsscdaMk969erF6dOn6zxf39NYtWoVb7zxBrt378ZkMhETE8PcuXNZsGCBy8rj1ZfjnJ6ezp49exg5cqRLHqszM5bD5vesH095UOQ4C0KN/p99U2eFiyOFRXYVLooNRmI++wa1JPH8mBHM6hWBt1bL7vN5PL59F6klpSwaO4p7B/Vv0hzyq6o4kF/I/+3eT2pJCa+NG8PNfS50ji2oMnC0sIgJoY5B+bWr1rEl+xzPjBrGwmGDW/bJ6KAMFgt7cvP4Lfs8W3POkXz0OHl//z/k3PN1rjrLBfm21ebO0LIarEFzfHw8ycnJAERX1z4+flHt43Xr1uHl5YV8NhfL5t8xb9qHfOCkfTOSYH9rFYzJw1GNiEHSdtkMUaGTq0mtbShea3bgHBkZyZIlS5g9e3a94z777DNeffVV9u/f35yH6fQa+x9xqchLg/3fWjcGjp/X3rMRhI6j/2ffMK9/DI+PsH+LcX9ePtN+WI1OrSLt9hvx0GjIr6qi76ff8Nzo4Tw0dJDd+KOFRUz+7hdUksSeG64h3Lvp9WlLjCZiv/mRc5WVfHfFdCaFOr6jd7Ef0s9w1/ot9NZ7s+fGa5v8mB3RxYHyrvN5VF30zqd/RRm5i/6P0uyzDsFzZwyaAR566CGWLl1KgEbHB1FxzKjVbW9NUQbz0zZRYDawYNrVvBY6Gvlkpt31qj7hqOOGW1Mw+kWKfGWhU2hsvNbsl37nzp1j+PDhDY6LjY21FYMXBJGmIXQVTU2tqJGUkcU7h46yP68ABYVB/v7cO6h/kypcaFUqhgcGcF3vng7jB/j70UvvTWpJKb9ln+OWvlEOYxri46blhuhevHPoKMuPnmhU4BxVnfd6qrQMo8WCWwdvduVMlbk6UM45x7ac804D5WAPdyaEdGdiaDATQrrT19eHzGuvtOU7ly5+2a4cXWcLmktLS1m+fDkAH0TFMdM/0nZOkiRm+kfyflQcN6as5b8b1/DMyAD0bu6ohvVFEzcc9aRhqMKC2mv6gtDqmh04e3l52bWqrktxcXG7bQ4UOh6xMVDoKprTPOS9w8d4esce7uzXhw+nTEAjqXjj90PM3bCFx4cPcVrlwlmFCx83N9Zfe0Wdc/Nx07b4+dV0pMsoK2/UeLlWxm9nWWGsHShvzT7Prtxcuy594DxQvvj5RUREsHHjRrvgGeh0QTNAUlISZWVlROt8mOHnfM4z/SKI0vmQZihh84z+3PjYA0i+na/Zl2XPcaoWvN7gONWIGDzes6abmn7aivGljxo1Vuiamh3RDh8+nKVLl9pemdZlyZIlDBs2rN4xwqVDrDgLXUlTmoccKSzi2Z17GdktkDfHX2YLvl4eO4qD+YUs3n+Q6eFhjAnu1ugKF86YZZm0kjLUklRnuTmAL06m8fSOvZy47XqngW5OdWdVf92FjQjTf1jFH2Kimds/xmF8arG1YkJvvXeH3RzYmEC5uy1Q7s6E0O708dE36oXAxcEz0OmCZkWWyTuYAkCMh2+dz1uSJGI8fEkzlFDSK6hTBs21ST3reEdFllEyzqPqFWp/XOeGFBLg9BJVHceFrqPZgfM999zDH/7wB/Ly8njggQcYM2YMfn5+ABQVFbFz507efvttfvnlFz7++GNXzbfDEg1QGmasqNUxsGWt4gWh3TW1eci7h45iURTu6NfHISC5s38ffss5x9sHj/Df6ZMbXeHCmdVnsig2Grm1b5Rt1dgZi6JQYDDwW845h1SMSrOZb9Osm7GvqJVykldl4OfTmU4D538dPQ7Arc1IDWktVWYLu3Pz+C27OvXChYGyM7WDZ6BTBM1KcRmWHYexbD+EOfkw3qkHAEipLEZRFKefC0VRSKm0vuMcEND5A0XPL150ety8aR+GJ95Fe8NUu+Oqgb3EqvIlrNmB82233cbPP//MZ599xs8//wxga2sty9YfTIqicOutt3Lrrbe6YKodm2iA0jBbx0B/0IieCkIn19TmIWsysgAYG+yY/xnb3XqvdZlnMcsyuXNvs6twMerr7x0qXDhTbjLz7K699PT25pWx9XdplbAGRPM3buW50SOY0iMUb62GI4VFvLh7P6dKy4gPD+OP/frUugbWZ2Xz8NYd3Dd4AJHeXmSXV/CPA4fZfi6XaT1CeXDIwHoftzXVDpS35pxjd25eqwbKztQEzzUfdzSKLCOnZGDZdhDL9kPIh9NAvpBmMy0kGu/Tv5FqKGFNUYZdjnON1UUZpBlK0Ov1JCQktOX0XUoK0KOOr7tzsOnLX1GN6ocqukcbzkro6FqUfPzxxx8zbNgwXnvtNfLz8+3qLAcGBvL444/z6KOPtniSQtcg8puFrqqh1Iqz5RXkVxkA6Kl3rHIR5umBm0pFlcXCyeJS+vv7EujuztQeoYwK6kbsNz9y3+bthHl51rlRzyLL3LdlG+UmMz9fldBgnvON0b0I8nDnu1OneeP3QzyybScmWcZP58bgAH+WTRrHzX162zU0+enKBL47dYbVGZlc8dNaio1GvLVaBgX48Y8JY7kjJrpNG6A0NlCeGNrdFixHuzhQdqajBcxKaQWWnUdswbJSUGJ3XorugWbcYNTjh+A5NJp5j7izdOlS5qdt4v2oOGbWqqqxuiiD+ambAJg7d26jm6F0RKreYbi/NN/pOTk1C3nPcXR//0sbz0ro6FoUOEuSxOOPP87ChQvZs2ePrc5yz549GTVqlNgUKNgR+c1CV9VQasX56pQtd7XalrpRmyRJ+Lq5kVtVxfnKSvr7X0gBaUyFC1lR+OvWnew6l8fKmdNs6SL10ahUxIeHER8e1ujnGe7txf1DBnD/kAGNvsaVKs3m6kD5PNvqCJRDPDyYUL2Rr60C5Y5GURTkk5lYth/Csu0g8sFUu9rKeOhQXzYA9bghqMcNRtXdPt1i0aJF7Ny5k+TkZG5MWUtUdR3nlIvqOC9atKgtn1abMn29HikkEPWk4Q7nlOIyDK/+D0vyYZS8Ymsr6H6RaK+bjGZ6/e/0CJ2fSyJbjUbD2LFjGTt2rCtuJ3RRpTnWv8WKs9DVNJRaUWm2vhtX36Y5N7WqeqzZ4Vx9FS4sssyCLdvZmnOen65KIMqn864AXqx2oLw15xy7z+dhlEWg7IxSXoll51FrsLz9IEpukd15qVeotWvfuMGohvVBqucdCS8vL9atW0diYiIrVqwgrbTEFjDr9Xrmzp1bZ+fArkAprcC8egfaeVcjqR2/Z5X0bKTJw3F/9zGkbr4omecx/nMlhqffx7LzCLqn/tgOsxbaiksCZ4PBwL59+8jKymLmzJl4eXlRVlaGt3fn3mkruI6xAqqqNwaKFWehK6ovtcJDY61pbLoo6Kvxxck0zpZbq1g4W5F2VuGi5n5/2riVA/kF/HJVAhG1fuauyzwL0KQV5cbKyMgAXJ+S0NhAuSY/eWJIMFGXaqCsKCinzmLeVr2q/PtJqF1zWueGenR/1OOrV5XDujXp/l5eXixZsoSXXnqJpKQkCgoKCAgIICEhoVOnZzSG+YffQFbQXjPJ4Zz6sgG4f/gU6kG9bcek3mHoXr6Xylufxfz9FtQj+6GZIRYSu6oWBc4VFRU89dRTLF++nIrqH+wnTpwgKiqKadOm0bt3b5YtW0a3bk37hu2MRFWN+pWKjYHCJcJZakWwhwcAVRYLlWazQ3BslhVbFeTunh525+qqcGGwWLhr/RbSSkr56coEwrw87a5bWX2NqwPnjIwMl1WNqDSb2XX+QsMRESjXT6mowrL7GJbtB7FsO4RyrsDuvBTZHXV1rrJ6eAySruX1vPV6PXPmzGnxfToLRZYxfbMBzeWXIfk6rqirggMg2LGSiKRRo70uDuPbX2H6casInLuwZgfOVVVVTJs2jZ07dwKOBe9vv/12Fi9ezMSJE0lOTraVquuqRFWN+pWIjYHCJeTi1IowL08C3XXkVxk4XVpul8MMUGw02j7efT4PXze3eitcVJkt3LZuIxvP5jAptDt/27nXYQ57cvOYEOLab7iaoLmmTvGUKVOaFDzXDpS3Zp9jT26+Q6Ac6unBhBARKEP1qvLpHGupuG0HkfefAFOtVB6dFvXIftZgedwQVBGizmdLWX47gHI2D82r05p8rVT9+VdOZ7t6WkIH0uzAecmSJezatYuHH36Ye++9l549exIYGGg7/9BDD3HbbbcxdepUlixZwnPPPeeSCQudk9gYKHQlzWkeMiOiB5+eSGPn+VyHwDnI3bqRMMLLi7cOHObx7bvqrXBxoriYjWetmwa2ZJ+rc54TWvY07dQOmlVB1gAhLS2t3uC5sYHyxNDujA/pGoFyaWlpi1IblCoDlj3HL1TAOJtnd17qEXRhVXlkDJK7eAvPlUxfrkc1vC/qvs14J6WOVCyha2l24PzFF1/wxBNP1LurNigoiBdffJEXXnhBBM6XOFGKTuhKmtM8ZMHgAXxx8hT/SznJHTHRdsHhJydSAfjX1ImMCW44tW1IYAAF8253xVNplIuDZv3jTwNQuvhlu+A5MDTUGihnn2NbTv2Bcs1mvt56704dKNcoLy8nMTGR5cuXU1ZWZjvu7e3NvHnz6t1MJ2ecrw6UD2LZexyMtVaVtRpUI2LQVOcqS5Hdu8TnqyOST51F3n0U3ct/rnNMxZWP4Pb0nWgmDHW8PuM8AFLPUIdzQtfR7MD5xIkTrFixosFxI0aMID09vbkPI7QBixlObYfTuyBkAAy6ov7xeWnWsTWryN5BEDkSuvdzPt5YCVXVZUPFirPQFJvP5vBVajrJ586TWV6OCokIvReXh/fgwSED6VZHN73zlZUsPXCEpMyzZJaVo1GpCPPyZExwN+4bNMBhxbepmtM8ZIC/H/932Uie3rGHR7fv4skRQ9GoJN78/TCbs8/x+PAhjQqaa7TWBj1nj3Nx0KwKsL67qH/8aVvw3O+ysXg+mojs7293fVcNlGsrLy8nPj6e5ORkAKKry7cdrywmrayEpUuXsnPnTtatW4eXlxeKwYRl33Es1Rv7lMzzdveTQgKspeLGD0E9qh+SZ+O6RgotY/pyPVKQH+q4EXWOUQpKsPz2u0PgrJjNmL/bDID2qvGtOk+hfbV6oeXiYmvbTqFjKjgDx5Kswa3SiHeZzuyBlA3QYygMvhokFaQnw8EfoSwPop28N1yz2uzhJzYGCo33ryPHeTx5N4P8/Xhj/GWMCAqk1Gji69RTvLz3AF+mnuKnKxMcahbvPp/HTWs3EB8exoppk4j20XO+spLX9h/i45RUYrsHtThwbk7zEIC/DOpPHx89bx88yqivvwcFBgb4sWLqJK7t7dihrS6u3KDXmMdxFjQDqAICbcFzZU42hldfJPq5F5k2eJA19aKLBsoXS0xMJDk5mQCNjg+i4phRq2HImqIM5qdtIjk5mSdv/COvDYjDsvs4GC7ktaNRoxre19aEROoV2uU/Zx2NUlaBeXUy2j9egVRdBacu5u+2IPnp0cyaiBTkZy1H9+63KFm5aK6egHqm2BjYlTU7cO7fv7+tc2B9PvzwQwYObL8WrG2lM1bVyDkKx9ZB9ERQa+DImvrHl+XCiY3gEwL9E6Dm53rMVCg9b1217tYbfC/axC/ym4XmqLRYcFOp+CxhCuHe1re49VotDw4dRKHByJKDR3gqeTdfzbiwiaegysCt6zYyLiSYD6ZceBUX4e3NkgljOVZYjI/WzeGxmqo5zUNqJET0ICGi+S18W7pBrzGKDAbWHzzMn2dfR15mhtOguUbt4FnOPY/lzVd5uhWD+Y6mtLSU5cuXA/BBVJxdi2pJkpjpH8n7UXHcmLKW/6z5kadzvdGr3awrm9XpF+oxA5C8POp6CKENmH/cChYL2usm1zvO44sXMa/bhWXrQUxfrYdKA+g9UfeLRPfyn0UDlEtAswPn22+/nUceeYTKykoefvhhoqOjgQvVNVJTU3njjTd4//33eeedd1wz2w6sM1bV8PCFcXNB5w1nDzU8/vQeUBTravPFiyE9hkFhBqTvgmHX2p8TjU+E5uju4cH1Ub1sQXNtMyPDWXLwCJvO5mCRZdTVjUX+ceAw+VUGHh46yOEaSZJYO2tGq8/bGVelVTRng159zLJMakkphwsKOVxQxOFC699Z5RXIBfmUGgwtmu+lICkpibKyMqJ1Pszwc/75n+kXQZTOhzRDCZvHRXDDA/ci9ekhVpU7EO2tCWhvTWhwnKpnCG53z4K7Z7XBrISOqNmB84IFC1i5ciXvvvsu7733Hj4+PlRWVjJt2jRKSkooKioCrKsh8+c77wUvtK+LV4Ybkpda93V+1Qto+aesG4trN0izrTg7dgoWhDrd1Kc3N/Xp7fScT3XXM0mSbPWPFUXhy5On8NSoGRXkuDLaXlyVVtHYDXp13b+gymALjA8VFHKkoIhjRcVU1W6aUUuvyEh6vfUOmx9fSGFWJqWLX3a66iwX5NtWm6Oiolo1daQjys+ylh6L8fCtMxCWJIkYD1/SDCWUDO2Fqm+403GdieX4GUyfJSHvS0EpKAEvd1RhQaiG98Xt7llIXhfysuWsXEyfrsWy5zjK+QJw06IK64ZmZiyaaye7pN60ILSVZgfOWq2WVatWsXDhQpYvX05xcTEAp0+ftp2/5557eOONN1Cr688XEjq+qlIwVWedeDhJD9V5g6QG2QwVBeBdvcep9sZAvSgxKrjIiWLrF1Vs9yA01a/S0kpKya2qoq+vD6klpfx97wE2Z+dQYjQR6unJzMgePDp8MIHubbfRylVpFY3doDdlyhTWrV9PlY8vR6pXkA8VFHG4oJDsCudpY14aDQP8/RgU4Mcgfz8GB/gzMMAPHzdrSkvGpFjbY18cPF+qQbNSVIp5834s6/fitfpnAFIqrft5nAXPiqKQUmn9HRkQ4Ng8o7MxfbMR45Iv0N51FW5/mY3kr0dOz8b42qeYP12L9oaptsDZciiNqvvfAI0a3ZN3oI4dBAYzpu83Y3zzc8yrtuP+/hP1tgAXhI6kRZsDPT09+ec//8kLL7zAhg0bOHPmDAA9e/Zk6tSpBAeLSKmrMFr7OKDSgNrJzzdJAq3O2lrbWHHheO2NgVqxMVxwkS9OnkICHhs+xHYsrcTa073AYCDhxzXMH9iP58eMwFfnxlcnT/Fk8m5WnclkzdUzHLrztQZXpVU0ZYNeWloafcdchncd+cg9vb0ZHODHwAB/Bgf4MSjAn156b4dNjLVFRESwceNGh+AZuKSCZiW/BPOmvZjX70Xedxws1t3U0/SheGvcSDWUsKYowy7HucbqogzSDCXo9XoSEhpOB+jILHuOY3z9U9weuAHtbZfbjqtjItH97S6qHlsGtTbXmf71I1QZ0d5/A5r4MdaD3uA272rkg6nW5i6/bG8wt1gQOgqXVNXo3r07t9xyiytuJXRQluqyopKq7jFS9c9Ki+nCsVKxMVBwsXWZZ1l1JpMFgwcwMfTCF1aJ0fqFl19l4IaoXjw18kK5qHkDYjhZUso/Dx/jmZ17+HDKxFadY0vTKuq7T0Mb9Cy55ylb/DITXn2D0f1iGORvDZAH+PvZUlyaylnwDHT5oFk+X4hl417MG/Zau/bVqhCliolEPW0kwVNHMe9NP5YuXcr8tE28HxXHzFpVNVYXZTA/dRMAc+fObVIzlI7I+PZX4OWO5kbHznqqyBA8v3jR7pick289F+WY46eK6oFl+yHk42daZ7KC0ApapRxdSUkJKSkpRERE0L27iJi6AnX1V0p9JeuU6lTJ2ivSotW24EqpxSUs2LydWb0ieH708DrH3Rjdy+HYbX2i+OfhY/x0OoMqswX3BkpONVdT0ipqB5wmWSatpJQTRSWkFBdzoqiEAydPcrq0rL6Hc6qn3puP4+NcGsxeHDwDXTJolnPysWzYi3n9HuSDqXbnVAN7oZ46Cs3UkajCL7yjumjRInbu3ElycjI3pqwlqrqOc0plMWmG6rSi2Nh6G4Z1BvKps8jHTlsbsWgbFz6o+vfEkp6NnHYWxg+xOyenZQEgdWtZeUhBaEvNDpzPnTvHU089BcAdd9zB1KlTAfj888+ZP38+5eXlSJLEww8/zGuvveaa2Qrtxq26sIFstq4oX5yuoShgqt6Ar6tVBEGsOAuuklFWxpw16xnbPYgP4ybYKmnU8KvV3tpZJY5IvTcABotMZnm5Q/1nl8yxiWkVw8aNZ8riN8nSuXOqpBTzxTXvJTXetUq9tfcGvdrBM7RuDem2JGeex7xhL5YNe5CPpNudUw2JRjNtFOopI1GFOt906uXlxbp160hMTGTFihWklZbYAma9Xs/cuXPr7RzYWVh+PwmAFBKIecdhTP9ZhXzsNFhkVJHBaGaOQ3PzdLs6yG73X48h7Symj35GFRpozXGuMmH6fjOW7YfAywPNLFc2hxeE1tXswPnrr7/mo48+IiEhAQ8Pa75gRkYGd999N5WVlfTp0wez2cybb75JXFwcV199tcsm3RF1xjrOTeGuB62HdYNgZfGFzX81DGXWFWeVBjyqG4cZq8eCWHEWWiatpJTrVq1jfEgwyyaNcwiaAfr5XVi1Msn1d/NpjSJgzUmrKMzK5Pu/3m8b663R0NfPh76+PsT4+dr+1txwDZdPn94hNujVBM81H3dW8ukczBv2YFm/FzmlVqqAJFmbkUwdaQ2Wg/3rvkktXl5eLFmyhJdeeomkpCQKCgoICAggISGh06dn1FCqW0pbdhzGnLQT3WO3o/77X1AMJkzLf8L49ldY9hxD99r9SGrr96iqmx/uHzyBaflPGP5vORiqc/l0bqgnD8dtwfWogjv/hknh0tHswHnlypX8+c9/5r333rMd++CDD6isrOSPf/wjH330EQC33XYb77zzTpcPnDtjHeem6hYN2Yeg+Kxj4FxkfceNwN4XStGJjYGCKxwrLGbO6l9JiAjjHxPG2m1ke/vgEWb37km4txfh3l7E+PmQUlTC6dIyhgba/zLOKLOmPHhpNEQ4WZFuLwHuOt6JG8/EgQMJ8/RwXtLMz7dDbdDrjAGzoigop85iXr8H84a9KKlZF06qVahG9EMzbSTquBGoApufOqDX65kzZ44LZtzxKOXWhSDlbB5uT96BZoa1Q54E6J74A/LhU1i2HcT842+2zX7y6RyqEv+JUlCC7tl5qMcMQKk0YNm4D8u+FJTS8vZ6OoLQLPVs9arf/v37Heozf/XVV6hUKl588cLmgIceeogjR440f4ZCh9FztLV6RtZBuz0yAGQdsP7da8yFYyJNQ2ipQ/mFXLMqiVm9InjroqAZ4Lld+0ivlQP8l0EDAPjsRJrDvWqO3dSnN24uLpF5prSMVaUVxLzwMuqgYFtahVyQ7zD24hXivVu3cvOY0fTw8qy3IUbNSm9UVJTt/pdSVYvmUBQFS8oZjP9cSeUtz1J52/OY/vWjNWhWq1HHDsYt8Y94/vw6Hu8sRDtnSouC5kuJxklbac1V4wAwr9kBgGKRMTz9PkpqFrpn7kIzfTSSjxeq7gFob56OFBJA1Z8XY968vy2nLggt0uwV5/Lycrp1u7DsePz4cVJSUpg4caLdD++wsDDOnTvXslkKHYJ3N+g7BVI2VLfqHm+tsnFqBxSegd7j7JujiI2BncPmszl8lZpO8rnzZJaXo0IiQu/F5eE9eHDIQLp52L9dkFJUzKcn0th0NofU4hKMskywhzsTQrqzYPAABgc27q3thuzLy+f61esxyhbyqgzcs3Frg9fcERPNhqxsfkg/w9/3HuDPg/qhVan4OjWdD4+mMDwwgOfHjGjx3CyyzJ68fNacyWJ1RiZHC4tt57wff5rK11/BeC7H5WkVl8oGvZZQFAX52Gks6/dg3rAHJTP3wkmtBvXYQainjkQzaRiST8d556EzsH2+/LyR3HWO50OtMYGSYf3hLx9NRz6Zac1jnjDUYbxmZizmz9dhfOsLNJOHt9q8BcGVmh04h4eHc/LkSdsP648++ghJkrjpppvsxp07dw4fH9dvwhFcY93r9v/OPmz9AzBwJoQNtj8fOQo8/eH0Ltj6b0AB7yAYMgu697MfK1acO75/HTnO48m7GeTvxxvjL2NEUCClRhNfp57i5b0H+DL1FD9dmWDbSHekoJBJ3/2Cn86NRWNHMa1HGG4qFZuyc3hi+y6+SUvn31MnMquXYy3bpvry5CmKjEYAVp463ahrVJLE8qkT+ejYCT5OSWXZoaPIikK0rw9PjRjKvYP6N7uaRqnJxIasbNacySIpM4u8qgvtqFWSRGz3IGZE9GBGRA/cb7qOqVOntkpaRVfdoNcSiiwjHz6Fef0eLBv2ouTUWunXaVHHDrZu8Js4FMmr9Wt4d1VS71DrBybn3SYvDLS+c6Jk51n/WUfVjJrjytk8lJJy8UJG6BSaHThPnDiRp556ivfee4/Tp0/z9ttv4+bmxq233mo37tNPP2XQoEEtnqjQOuIfbfo13aKsf+pjEhsDO4VKiwU3lYrPEqbYKlHotVoeHDqIQoORJQeP8FTybr6aYa3ZapBlFOC1cWOYE9XLdp9rekXiqdFw09oNPPTbDuLDw/DQtKza5Suxo3kldnSTr1NJEvMGxDBvQEyLHh+sedGrz2SxOiOLrdnnMNbadOjjpmV6jzBmRvYgPjwMf12tFTgnOcngurrHXWWDHkBpaWmzNtMpFhn54EnM663VMJTcogsn3d1QTxhqDZbHDUbyFJssXEE9ZgCoJCivRCkuR/K1D3SVbOsLFqmXNcCWfK2VbOz+b2qPz7vwTg2iw7DQSTT7N9tTTz3FyJEjGT3a+otNURQee+wxAgOtb0muX7+eFStW8Omnn4pydF2coihUVFTYHcs/A5VG8PABo+VC50FPz/rzOIW21d3Dg+ujejkt3zYzMpwlB4+w6WwOFllGrVLhqdEwslsgV0SGO4yf1iMUd7WaIqORfXn5jA9pm1dMGRkZgGsCyNopGGsysjhSWGR3PspHz4yIHsyM7EFs92C0Tqp71GjttIrOHjCXl5eTmJjI8uXLKSu7kKfu7e3NvHnznJZvU8wW5P0p1mB5416UgpILJz3dUU+sDpZjBzlNJRBaRtXND3X8GCxrd2L+eatd50AA86rtAGivmWQdP7QP+HpDcRnmbQfRXFTHuSYXWjU4ytaiWxA6umYHzjExMWzdupV//OMf5OXlMX36dB588EHb+V27dpGZmcnkyZMd0jeErqWiogJvb++6Bzxw4cOysrJOX8u0K7mpT29u6tPb6bmaLnOSJFGzF7Sfny/rrpnpdLxKkvDSaqiyNPA2rgvVlICD5qcslJpMbMzKZnVGFkkZjikYY4O7MSMynJkRPejr69OkF34ircK58vJy4uPjSU5OBiC6umHI8cpi0spKWLp0KTt37mTdunV46nRYdh+zNiXZtA+KajWE0XuimTQM9bRRqMcMRNI1rzOi0Hi6h2+h8vgZjP/6ESnIH/WkYShlFZg++gX52Gk0105Ck2DdJS65u6F78g4Mz3yA8aWP4NHbUI/uj1JlxLw6GfNX68HLA7dHb2vfJyUITSApysX1EQRXqilHt2fPHkaOHNne02kV5eXl9QfOtYjAufP4If0Md63fwqTQ7nx/RXyD4/Orquj76TfotVoO3zIbb23rBjG16yZD01Zz60vB0Gu1TA8PZWZEOPHhYQS4YOXSlaviXcFDDz3E0qVLCdDo+CAqjhm1WlSvKcpgftomCswGFsTG86p+IJTUekfL1xtN3AjUU0eiHt2/0R3sBNepCZTNG/ehnCsAnRZVTCTa2ZPRJFzmMN6ScgbTp0nI+1JQ8otBrULqHoD6soFob59RZ2MZQWhLjY3XxE8cwaW+fO4c7m72gXGVsZybXhCJzp3NFydPIQGPDR/S4Nia8QD3De7fpkGzKsja+thZG+saFllmb14Ba85kstpJCkZvvbdtVXlcSP0pGM0hAuYLSktLWb58OQAfRMUx0//CRlJJkpjpH8n7UXHcmLKW/+7cxDMjw/AJ6oY6bgSaaaNQjYix60zXWViOn8H0WXXwWFACXu6owoJQDe+L292zHFIVzKuSMX293tqqWqNGNaAXbndegXpU/3Z6BhdI3p643X8Dbvff0Kjx6phI1M/f3cqzEoS20ajAedu2bYwdOxa1C5L3d+zYwYgRI3Bzc2t4sNDpuLt54eEmVpRbosps4fX9B3n70FFuiOrFssnj6hybV1nF0oNHWJORRUZZORqVxAB/P+7q15db+zawg7Me6zLPsupMJgsGD2BiaMMvenIqKnl9/yFGBQXyyLDBDY5vCWcd+gBbG+ua4Nk/JIQNDaVgRPRgRmQ4MU1MwRCaLykpibKyMqJ1Pszwc/6CYqZfBFE6H9IMJfx28xiuf/g+Wye6zsj0zUaMS75Ae9dVuP1lNpK/Hjk9G+Nrn2L+dC3aG6baBc6Gt77A/Pk6tHfPwv2tv6JUGjC+8zVV97+J29N3or1atKgWhPbSqMB50qRJZGdnExwc3OIHTEhIYP/+/URFNf+XekfU1VtuC21jS3YOC7fuJL/K0GDb6JSiYq5dtQ6DRWbxuNFMDw+j3GTmP8dPcP+W7ew8n8s/Jjg2KWhIanEJCzZvZ1avCJ4fPbzB8RVmM3et30w3dx2fxk9B4+LV2trqa2td08Y6LS2NAWPH4vFIIhb/CzWlWyMFQ2i6goICAGI8fOt8sSJJEjEevqQZSijyc+/UQbNlz3GMr3+K2wM32G2mU8dEovvbXVQ9tgxqraCbtx3E/Pk61NNG4fanawCQ9J7onp1L5dF0jK99gnpUf5HeIAjtpFGBsyvToLtqSvWl0HJbaF3fpKbzyPad/G3UcNzVah74Lbne8fdt3s65yiqWTozlhmjrBj9/nY6nRw3nVEkZ/zl+kuk9wri6V+PTBDLKypizZj1juwfxYdwE1A0EwVVmC3f+uplCg5GVV8QT5NF6O+PrC5oBVAGBtuC5PDubyldfZMALLzNrxHBmRoYzrnuQyzsGCk1jOZGBfvMhAFIqi1EUxWnwrCgKKdX1LAMCAhzOdybGt78CL3c0N05zOKeKDMHzixftjpk+WQOA9trJdscljQbNrImY3v0W05e/ontIbLoXhPbQ6Bzn7du3419r9aa55AZW0QShNTQ2/WHYl9+RUVbe4P3233gtkfrGbYhsrEi9N9vnXE2opyefnkitd+zp0jL25llrps7q6RgYz4nqybenTrPs0NFGB85pJaVct2od40OCWTZpXINBc4XZzO1Jm8irquLnKxMcOgy6UkNBc43awbOce57K11/hvo0biQgLabW5CfVTqoyYf92NeeUm5ENpxFmMeKu0pBpKWFOUYZfjXGN1UQZphhL0ej0JCQntMGvXkE+dRT522lpLuhGbGJXySuR9KSBJqIY4viurHtoHE2DZ8juIwFkQ2kWjA+c5c+a05jyELqLK6Bh0OjvWlpqS/gDQ3cMdnzpy8LPLK9CoVK2ysjomuFvDg6rlVFhTgHRqFb46x7mGenkCsPN8LqUmE/oGNusdKyxmzupfSYgI4x8TxqKqtQr49sEjzO7d067Wc6nJxC1rN1BlsfDDlfF2zT++TUunh5cXY7sHNfr5NMQky1Sa267MndBycno2pu82Y/5l24WqGGo1ftPHMzda5u0vPmZ+2ibej4pjZq2qGquLMpifugmAuXPnNqoZSkdl+f0kAFJIIOYdhzH9ZxXysdNgkVFFBqOZOQ7NzdNtmx3lk1kgK+Cvd9q0Reph/Z5SsnJRKg1IHiLdSBDaWqMC58jISJdunNG28o57of10tOoZTU1/APjb6OHc1jfa4bjRYmHIF99xc5/eLe6K11LdqvNzDRaZYoPRIXjOrawCQMGaCz0qqO6g/FB+IXPW/Mrs3j35e+xoh+/153btY0S3QFvgXGQwcMOaDWhUEitnxtvqPddYcewEE0K6tzhwrjJb2HA2mx/Tz7DqTBYVDyxEVb2SXNPG+uJVZ7kg3yVtrYXmUYwmLJv2YVq5GXnvcdtxKTQQzXWT0Vw9AVWgL6+U/4Fdp0+SnJzMjSlriaqu45xSWUyawdrUJDY2lkWLFrXXU3EJJeM8AJYdhzEn7UT32O2o//4XFIMJ0/KfML79FZY9x9C9dj+SWmUt1QZ1tp6W9J7VN1ZQCkpsgbQgCG2nUb/909PTW3kagtA6mpL+ADAzogc966hJ/W3aafINBu52QSvnlor29SHGz4eUohJ+PJ3BH2LsA/1fTmfaPi40GOu8z768fK5fvR6jbCGvysA9G7fW+7gFVQZmr/6VgwWFzIjowcNbdziMOV5UzIRmdg0sN5lJyszix/QMkjKyKDObbee6h/Xghn9+yC8LHyT79GmH4FkEze1HzsrF/N1mTD9thcJS60GVhHriMDTXTUY9dpDdBj8vLy/WrVtHYmIiK1asIK20xBYw6/V65s6d67RzYGejlFvfGVLO5uH25B1oZlg360qA7ok/IB8+hWXbQcw//ob2usko1d+rdaZ1uNU6XlX397UgCK1H1HEWWszT09PWMvfUDjiVDN37wSAnDeY8PT3bdG5NSX8AeHXcmDrPfXj0ODMietDTxbnNzfXW+LFcv2Y9z+7ci7taxfTwMKosFj47kcZPpzPw0mgorxV4OvPlyVMUGa2/gFeeOt3gY24/d56DBYUArMnIavmTAEqMRlafyeLH9DP8mpVt13kw1NODWb0imdUzgtjuQahVKjLGjLDlO9cEz4AImtuYYrZg+e13zCs3YdlxxHZcCvJDc80kNNdORBVc98Y+Ly8vlixZwksvvURSUhIFBQUEBASQkJDQqdMz6qKZ6VjhRnPVOIwpZzCv2YH2uslI1e8cKaY6vm+NtY67i5KugtAeROAstJgkSbaVIXMxeLhBSC/o5ItFdnadz2NfXgErZ45o76nYxIYE8+s1V/CPA4d4duc+7tu8nQB3HVPDQkmaNYMZP62h3Gx2SKWo7ZXY0bwSO7rRj3lVzwgK5t3e4rnnV1Xxy5lMfkzPYNPZHLvc857e3szqFcGsXpGMCgq0y7cG+zbWNcEzIILmNiKfK8D8wxbMP/yGkltkPShJqMcOQjMnDvX4IU1qUKLX67vsHhpbyoWfN5KT8odSqPWFvZJxzvrvQF/rv0uc7wtRSqtzxSUJKcDHxbMVBKExROAsuFRJjvVvny5WxOCDI8fo5+dLXAerztDf35f34xybIVhkmWKjCYA+Ps37BevqNtE5FZX8fDqDH9PPsDXnPJZapSlj/HyY1TOSa3pFMDjAv8E9FRcHz9C0lttC0ygW2Zqnu3ITlq0HrBvYAPz1aGdNRHPtJFQi39aB1DvU+oGpgY2t1V/vqj49QCVBUZnTzX9KVq51eI8gsTFQENqJCJwFlzGUgbEckEDfhX6H5lRU8kN6Bq+M7Tz1uE+VlmGSZaJ99M1q9FFT/g1oUTCaUVbGj+kZ/Jiewc7zudSu4j4kwN+2stzPz7fJ964dPLd0noJzcn4x5h9/w/zdFpScfNtx1ah+aGfHoY4b0agya5cq9ZgB1kC4vBKluBzJ1/5tOCXb+jmVelkDbMnLA9WIGOQ9x5EPpqK+bKDdeMsBa5UO9aRhbTB7QRCcET/xBJcprl5t9g4EdRdKv1tx7AQeGjU39+lY3S7TSkrJLq9ggpOW2OuzsgG4uU/vJt+3ds1kwNbCurFBaWpxiTVYPn2GfXkFdudGBQXacpZ7+7Q8j7UmeK75WGg5RZaR9xzHtHITlk37oSbn3McTzZXj0V43GVV1oCfUT9XND3X8GCxrd2L+eatd50AA86rtAGivmWQ7pv3DTAx7jmP6frNd4KyYzZh/3gY6LdqbprfNExAEwYEInAWXKa0OnPUdK5uhRYwWC/85foLb+kbj1cFW1tZkZPH6/oMcvnkO7rVySstMJt47dIweXp7cO6h/k+55caMRgLS0tHqDZ0VROFpUzI/pZ/gxPYMjhUW2cxIwLiSYWT0juKpnhF0taFcRAbNrKEWlmH/ejum7TbYyagCqIdFo5sShmToKSWxIazLdw7dQefwMxn/9iBTkj3rSMJSyCkwf/YJ87DSaayehSbiwKVkzbjCWm6dj/uJXjFE/or15OkqlEeM7X6OcOYdb4h9Fu21BaEcdKxIQOjVbfnPHKuXcIt+dOkNuZRX3dIASdM4UGoz8ZfM2nh8zgu4eHhwsKOSZnXuotJj5dsY0vJtQM91Zdz6wVqu4OHhWFIX9+QX8lG7NWT5ZUmq7j0aSmBjanWt6RXJlz3CCPTxc/rwF11AUBfn3k9bV5fV7oKaag6c7miti0V4Xh6pvePtOspOT/PV4/PspTB/9gvH971D+bznotKhiItG9+Cc0CZc5XKN7+BZU/Xti/moDpv+tBrUa1cBeuL/9MOrRA9rhWQiCUEMEzoJLKAqUWDeGd6mNgR8cOU58eBhRLkgraIyA5Z/Y/fuzk2l8dtKaMvHOpFi7xiwTQoK5tU8Uu3PzmLTyZ2QUIry9mRnRg88Tpth182tIfS2ta1pYp6WlMW7SJGYvXcbmKpNda3I3lYqpPUKZ1SuCKyLDm/TYQttTSiswr07GtHITStpZ23FVv0g0c6agSRjjtHOd0DyStydu99+A2/03NPoa7RXj0F4xrhVnJQhCc4jAWXCJqhIwVYKk6jobA3efz2NvXj5fXj61zR6zKaXehgYGsGxyy3+x1hc0A6gCAm3Bc9bp07x7zzz0jz+Nd3Aw8eE9mNUrgoTwHvWWvRPan6IoyEfTMa/chHntLqhpjOPuhibhMmspuQG92nWOgiAIHV2LA+c9e/bw7rvvsnXrVs6ePcvvv/9O7969efzxx5k6dSpXXHGFK+bZ4S1btoxly5Y5HK+srGyH2bS9mjQN7yBQdZGXYx8ePU60j57pPdpvI5SrS8I5u399QXON2sGznHsej7ffYP3GjcT0bvrmQ6HlSktLG900RKmowrx2J+aVm5CPn7Edl6J7oJ0dh2bmWCTvtm1M1BDD/y3H/Mv2Os9r756F25+usf1bzs7Hsnkflu2HkTPOoeQVIXl5IPUIQnNFLJqrJiDpxAs7QRBarkUhzmuvvUZiYiKW6l3XkiShVNdm3bdvH2+88QYPPvgg//jHP1o+0w5uwYIFLFiwwOH43r17GTWq85Qxa66OXL+5KekPNc5XVvL9qTO8MGZEgzWFW4urSsLVp9JstuvU11ieGg0emi7yCqkTKS8vJzExkeXLl9u6dQJ4e3szb948uzbV8olMTCs3YV6dDBVV1oFuGtTTRqOdHYdqaHS7fW03iq83kp/zLp0XHzcu+wbLul1obpqO++O3IQX6oZzNw/j+dxgXf4J53W7c31mIpFI5vZ8gCEJjNfs339q1a3niiScIDQ3lrrvuonfv3jz00EO280lJSXz88cfMnz+fyZMnM3v2bJdMWOiYbPnNHXBjYHM63QV7eJBz162tMJvGaWlJuLrkV1Wx41wuydV/fs8vwHD/QlTVK8k1LawvXnWWC/JFS+t2Vl5eTnx8PMnJyQBE63yI8fDleGUxaWUlLF26lJ3JO1j1xMvoVu1CPphqu1aKCLauLl81Hsm3Y7SMb4j2hql2q8oNUY3qh27hLbZ/S71D0f3fPVRc8zjy3uPI+1JQj2palRlBEISLNTtwXrJkCePGjWP9+vXoqjcCPfzww3Zj/vCHP3DmzBneeecdETh3YYrSsVec25IrUiuaUxLOGUVROFNWTvK582zPySX5/HlSikocxvUID2fw2++y/rGHycvIcAieRdDcMSQmJpKcnEyARscHUXHM8Iuwvcu3piiD+WmbSN65g8T7HuK1XuNArUY9Zbh1dXlU/469utxCbnOvAic59pKbFlVIIHJR2YV21YIgCC3Q7MB5165dfP7557aguS7XXnut09xfoeuoKASL0Zrb7HUJlxd1RWpFU0rCXcwiyxwpLLKtJiefO092hWOOfT8/X2K7B1X/CSbS2wtJksgYf5ntsWuC55rHFkFz+yotLWX58uUAfBAVx0z/SNs5SZKY6R/J+1Fx3Jiylo/zT/Di88/jf2MCqsCmd2TsjFTRPZweV4rLkU/ngKc7qiGOKVmCIAhN1ezAubi4mJ49ezY4ztPTk4KCggbHCZ1XzWqzPghU6vrHdlWuSK1obEm4mnt3Cw1lX16+dTX53Hl2ns+j1GSyu6dGkhjeLZDY7kGMCwnmsuBuBLo7LzNWu4V1TfAMiKC5A0hKSqKsrIxonQ8z/Jz/H8z0iyBK50OaoYRNwSrmdPKgWT6RQdWj7yAfS7e2q/bzRjWsL9rbL2+w+odSXIZ8/AzG979D8tDh9re5l8yLCEEQWlezA+fQ0FB27dpFdHT9r+I3bNhAWFhYcx9G6AS6Yv3mpnBFakVTSsKlpaXR77KxeD6aiOzvb3cfb62Gy4Ktq8njugczIigQzyZs4rs4eAZE0NwB5KWmAxDj4VtnyoUkScR4+JJmKOkSixWW/Sdwu/96dH+7C9x1yIdSMbzxGVX3/B23xD+ivWq80+sq738TefdRAFSXDcR9ycOiiYsgCC7T7MD58ssv569//SvR0dGMGTPG6Zjk5GSeeuopbrrppmZPUOj4umKr7cZqSWpFffdoqCRcZU42hldfJOrZF5k0aACx3YOJ7R7EIH8/1C2sHFA7eIbWq+gh1E8pLsO8bjfm1cl4b1oHQEplMYqiOA2eFUUhpbIYgICAgDadq6tpbk1AO+9qVOHBtmPqUf1xX7yAypufxfj3/6Ee0RdVmGPReI93FqJUGpBP52D6eA2Vf/w/NLfE47bgeiTNJfqWmCAILtPswPnpp5/myy+/JDY2lvHjxzNq1CjMZjPvvvsuiqKwc+dOtm/fjq+vL08++aQr5yx0ILJ8YcXZ9xILnJuaWlE7+JQVhazyclKLS9l9Io0Cg6HJjx/u5cmv18wkMjKy4cFNVBM813wsNF+Tai5XGbFsPYB5dTKWbYegulTgNP9wvLU6Ug0lrCnKsMtxrrG6KIM0Qwl6vZ6EhIRWfU6tTd3X+decKjwYdeyg6s/RDtzmXe10nOShQ92/J+qX5lNVWYX5syQkT/cmVekQBEFwptmBc8+ePfnpp5+44YYb2Lp1K9u2bQOw1WxWFIWQkBC+/fZbevRwvnFD6Pwq8kE2g1oLnv4Nj+8qmppaMWrCBG5d9k/yPbxILSklvbQUg0W2jVf++niHKwknAuaWaWzNZUWWkfelYF6djHn9Xii/sKFTFROJ5opYghPGMO9FX5YuXcr8tE28HxXHzFpVNVYXZTA/dRMAc+fOrTMw7wqkCOsqtJye3ajxmjlTsGw9iOnbjSJwFgShxVrUwWDixIkcP36cf/3rXyQlJXHmjLUrVc+ePbn88su5++678fHxcclEhY6pZrVZ393abvtS0JzUityMDN65e67dWK1KRS+9N9E+eqIG9cd/1Je8OfdOzp4+LUrCdXKNqrm8+Td+uWMhuo2/o5wvtF0rhQSgmTEWzYyxqKIuLDosWrSInTt3kpyczI0pa4mqvmdKZTFpBmuZwdjYWBYtWtS2T7atydYmWzSyvJ4qrJv1g8JSlCoDknv9laAEQRDq0+LWX76+vjzyyCM88sgjrpiP0MmI+s2N5+Om5ckRQxndL4ZoHz3h3l5oLspHvmnLFlESrgtoVM3l/Xt5OvsVa81lbw8000ejmRmLalgfpx3uvLy8WLduHYmJiaxYsYK00hJbwKzX65k7d65d58DOynLgJIYn38Pj8/9D8nF8LkqG9dW6qqf1h46cnU/lzc/g/sGTqPs7VnpScousH+jcrH8EQRBaoNV75lZVVfHll1/yxz/+sbUfSmgHl2Lg7Kxsm6tSK0RJuM6vSTWXC1N5+V/v4pcwDknn2MDjYl5eXixZsoSXXnqp0XnTnY7JglJQgmXHYTQJl9mdks/kYNl5BDRqNDPHWg8qChjNWLbsdxo4m37aCoB64tAu3QRGEIS20epvrhcXFzN37tzWfhihHcgWKM21fnwpBc5wIcCNioqy5SXLBfm28y1Jrbj43iJo7lyaUnO51FjFBmNeo4Lm2vR6PXPmzOGee+5hzpw5XSdoBqiObQ2vfYrpp60o+SUoBhOWPceoevxdANwev/1CRY3qYNj00SqM//4ROSsXxWBCTs/G8Or/sKzdiRTWDbeHbmyPZyMIQhfTohXnyspKvv/+e/bu3UthYSGW6h3gF4/pTLZt28bbb7/Nvn370Gg0qFQq5s2bx/3334+mCfVwLwVleaBYQKMDj0uwt0BERATzP/g3ibfebLepD1qeWiFKwnVeeenWtuuXUs1lV1KNiMH9n49hXrcb0ydrML72KVgsSIG+qIb1QfvcPLsGKKrQQNw/egbLul1YNu3H9GkSVBnAQ4cqMgTtn69De9M0JC+P9ntSgiB0Gc2OBFNSUkhISCAzMxNFUeod25neHrvmmmu45ZZbOHToEBqNhh07djBlyhSOHz/Oe++9197Ta5bCTDizB4rPgqkStO7gHwG9x4F3t+bft3aaRif6L3aZb9LSWXw6C/3jT6N+6zUKsjJdmlohSsJ1LpYTGZg/XYv3Zz8Dl07NZVeTJAn18BjUw2MafY26f0+naRqCIAiu1uzA+aGHHiI7O5tbbrmFyy67DF9f56srRUVFLFy4sEWTbEtqtZpFixbZVpfHjh3LjTfeyL///W/efPNNPDw616rF6d1wYiP4hcPwOdaScRUFcPxX2Pmx9VhAM8sAX4r5zTXWZ2Vz3+btKMCfxsfywE1bmTp1qsu77YmAuWNTFAXLziOYPlmLvPMIANP0oXhr3S6ZmsuCIAiXkmYHzr/99htvvvkm999/f73jzp07x8MPP9zch3Gwbds25s6dS0pKCqdOnaJXr14uuzdYS425udnvvA4LC8NkMlFeXt6pAueyXDixyZpKMew660ozWAPdYXNg6wdw+BcYNw80zdhsbmu13d1lU+4Udp/P485fN2OSZWb37snfY0ejVqlEasUlRDGZMSftxPTJWpTULOtBlYR62miCbktg3vt+ouayIAhCF9TswNnd3Z2rrrqqwXFBQUGcOnWquQ9jU1lZyTPPPMOSJUuc5lLXZ/Xq1bzxxhvs2bMHg8FAv379mDdvHvfddx+qi8o+XRw0A5w4cYL+/fvTrVsL8hrawbkUQLGmZdQEzTXcPCCgJ+SehHPHoMfQpt3bYoLyS3Bj4PGiYm5O2kC52cyUsBDemzzO1uJapFZ0fUppBabvNmP+8tcLZc48dGiumYj25nhbzWBRc1kQBKFranZVjSuvvLJRAbHRaGTTpk3NfRgAUlNTGT58ON988w2rVq1q0rWvvvoqV1xxBe7u7iQlJbFv3z4SEhJ44IEHuO666zCbzfVef/bsWVatWsWLL77YkqfQLozl1r/d6ijrqvO2/p3fjNc1ZbnWKlBunqC7RBbMMsvKuX7NegoNRkZ2C+S/0yfjplbbjYmIiBBBcxckZ+djeOsLKq59HNOyb1Byi5C6+aK9bw6e37+K7uFbLjTa4ELN5QcffBC9Xk+aocQuPePBBx9k3bp1nb7msiAIwqWm2SvOr7/+Ovfeey/+/v6MGDGiznE15ehaUsf58OHDTJ8+ncWLF+Pt7d3o67Zs2cKTTz7JwIED+fbbb9FqrSWfXn31VQoLC/nwww959dVXefrpp51eL8sy8+fP54477uCGG25o9vzbi7Y6q6QmgL6YscL6d3m+8/P1qclv1ne/NDYGFlQZuH7Nes6WV9DX14cvLp+Ct7ZpJcSEzsdy7DSmT9di+XU3VLdIl6LC0N52OZrLL0Nyq/troD1rLss5+VTe9jxUVOG+7FHUo/rZnTf9tBXjSx/Veb1qRAwe7z3WqnMUBEHojJodOAcFBfH+++8THx+P2WwmOjqagIAAhw2CrihHd9VVV3HNNdc0+brnn38egAceeMAWNNd45JFH+PDDD1m8eDELFy50mru8cOFC1Go1y5Yta9a821tQH0jfAYUZYKqyT9cwG6zHwXquqS6ljYFlJhM3rd3AieISwrw8+WbGNALd3Ru+UOiUFEXBsv0Qpk/XIu8+ZjuuGj0A7e2Xo44d1KRKQTU1l9uSYdF/oaKBb2ydG1KI84oeqjqOC4IgXOqaHTinp6czbdo00tPTAThy5EidY1tajk590dvhjZGbm2vLN50+fbrD+X79+hEeHk5mZiarVq1y+MX2t7/9jePHj/P999932vrNvqEQMQIy9sHv30HMVPDyh4oiSNkIqqZ/Wm1sGwO7eOBstFi4c/0W9ubl469z4+vLpxHuLd5e74oUownz2p2YPlmDcirbelCtQh0/Bu1tl6Pu18zyM23M9N1m5GPpSD1DUE7n1DlONbCXWFUWBEFoomZHhI8++iiZmZncfvvtjBkzBh8fnw5Vjm737t3IsoxWqyU6OtrpmP79+5OZmcmuXbvsAue///3vbNu2jZ9//tm2WfCFF17g6quvZtSoUW0yf1fpNx18QiHrd9jzOcgyePpB6EBrUH3ge2vVjaYwGy+kd3TlwFlWFO7bvJ0NWdl4atR8njCV/v6XYKeXLk4pKce0chPmL9ej5FtrK+Ppjua6yWhvmoYqJLD+G3Qgck4+xre/xm3hLZh/2lpv4CwIgiA0XbMD540bN/LWW29x33331TvO1eXoGis1NRWwppRcXDmjRmhoqN1YgKVLl/LKK6+wePFivv76a9vxX3/9lbi4uDofz2AwYDAYHI6XlZU1a/6uFDrQ+udi2Yetf3v6N+1+pdWrzTo96Lro4quiKDyVvJtvT51GI0n8Z9pkxgR3rqoqQv3ks7mYPv8V84+/QaX1e1cK8kN7SzyaaycheXu28wybzrDov6iHRqO9ajzmn7a293QEQRC6nGYHzrIsc8UVVzQ4zlXl6JqqpMRa8qm+usuentZfjMXFxbZjf/3rX1EUhXvvvbdJj/fKK6/wwgsvNGOm7ae8utOvb1jTrrsU6je/tv8QHx5NQQLemzye6eFN/CQJHZblyClMn6zFsmEPyNaup6q+4Whvm4E6fjSStnOmZpm+24x8+BQenz7fqPFKcRmGV/+HJfkwSl6xtUV1v0i0101GM310605WEAShk2r2b4iEhAROnTpF79696x1XU46uJVU12pIsy8267qmnnnKakrJ///56V6pbW/5pa2qGh5MMg/x0a0WMkAFNu2dX3xi4/GgKf993AIBXYkdzfXSv9p2QUKfS0tJGVaxQZBnL1oPWDX/7UmzH1WMHor1tBqrLBrR4L0Z7ks8VWFM0HrgBVffGbexT0rORJg/H/d3HkLr5omSex/jPlRiefh/LziPonuocP7MFQRDaUrMD5zfeeIO77rqLgIAAhg8fXuc4V5Sjaw4fHx+g/qoeFRXWemy+vi3PW9XpdOh0jsnCTSmf1xpObAS/MOh/UVffvFRrykXkKOdBdX26cuC8Mu00j23fBcCjwwczf2C/Bq4Q2kN5eTmJiYksX77cLh3K29ubefPmsWjRIry8vFAMJsyrkzF9uvZCvq9ajWbGZWhvvRxV3/B2egauZXzlv6gG9EJ73eRGjVdfNgD3D59CPejCwofUOwzdy/dSeeuzmL/fgnpkPzQzxrbWlAVBEDqlZgfOzz77LB4eHowaNYoBAwa0ajm65qjZEJibm4ssy07znLOzs+3GdlVZB0EfAt1jrE1Lzp+wBtRBfaBP437P2piqoLLI+rG+i6VqbMzK5t7N21CAuf378tSIJrZTFNpEeXk58fHxJCcnAxBd3ZXveGUxaWUlLF26lJ3bt/PL3Mdx+2EbFJZaL/TyQDt7MpqbpqEK7ljl1hqquyynZ2P+aSuWXUeRM86ByYIU6IN6RAyEdcPy+0k8Pnm+0Y+nCg4AJ58DSaNGe10cxre/wvTjVhE4C4IgXKTZgfNHH32EJEkoisKRI0datRxdc4waNQqVSoXJZCI1NZW+ffs6jDl2zFqjdcyYMS1+vGXLljmt99xeLxxqhA+H3BOQthWOrQONFryDrdU2QgY0vXlJTX6zh6+1bXdXsTc3nzt+3YxJlrmmVySLY0d36rfuu7LExESSk5MJ0Oj4ICqOGX4Rtp9Fa4oymJ+2ieRdu3j6zPO81mscUkgA2pvj0VwzEcmrY37R1ld3WT6ZSeUd/wd6T9wevhnN2EGg1WDZdRTD4k+gqBTNrIl2nQtbQooIBkA5ne2S+wmCIHQlLdoF849//KPBNIf2KkcXHBxMXFwcGzZs4Ndff3UInI8fP05mZiZ6vZ6ZM2e2+PEWLFjAggULHI7v3bu3XUvYhQ+z/mkqRVFsqSy1nTsFlUbQ+0F5dUdCT0/PTh1kphQVc9PaDZSbzcSFhvB+3HjUdVRiEdpXaWkpy5cvB+CDqDhm+l+orSxJEjP9I3k/Ko4bU9byccFJXv7nUvyunozUgWuxN1R3WTGZQVHQPXY7moQLL/I100ZhOZiK+bMkzD/+Zq0O4kTVgtdtHztbzXbQzH0egiAIl4IW/Ta55ZZbCA4OrndMe5WjA3juuefYsGED77zzDvfcc49dI5M33ngDgMcee8xWXUO4oKKiotH52WVlZXh5dc66dFnlFVy/Zj0FBgMjugXw3/jJ6JrRcEdoG0lJSZSVlRGt82GGX4TTMTP9IojS+ZBmKGGDXMScDhw0N6busuSuQzWwF+pJjq+A3R64AfO3G8Fgwv29x6ypG9Uq//Ia8r4Up8FyxZWP4Pb0nWgmOKYjyRnnrY/bM7SFz04QBKHrafay2pYtWwgMbLgxgKvK0eXm5pKTk0NOTk69x2qLi4vj5Zdf5vDhw8yePZu9e/eSkpLCk08+yYcffsiVV17JU0891eK5CZ1TQZWB69f8SlZ5BX189HyRMBX9Ra3ZhY6loMBaQzHGw7fOdzkkSSKmesdrzfiOqnbd5bqoeofisfxpJHc3h3OSSgUeTexgBCgFJVh++93xuNmM+bvNAPXOSRAE4VLV7KWYCRMmNGpcZWUl//nPf3j22Web+1CANQ/59OnTdscuu+wy28eKoji9LjExkREjRvDGG28wbdo0TCYTMTExLFmyhAULFjSrnbczHTXH2RW+fO4c7m72K8pVxnJueqHz7g4sN5m5JWkjKUUlhHp68M3MaXTzcG/vaQkN8Cu0fj+lVBajKIrT4FlRFFIqrbXZAwI61ibA2ppad9kZpagUisrAywNVE1uCm7/bguSnRzNrIlKQn7Uc3bvfomTlorl6AuqZYmOgIAjCxVr9PcyysjJeeOGFFgfO6enpzb72iiuuaFSzlpboqDnOruDu5oWHW+dMxXDGaLFw1/rN7M7Nw8/Nja9nTCOincsGCvWz7EvB+OEPTNx1EG+VllRDCWuKMuxynGusLsogzVCCXq8nISHByd3aX3PqLjtjXmWtLKK9NR7J0x35bB6Vc+zfRavJcVaNiMHjvccA8PjiRczrdllrW3+13to5Ue+Jul8kupf/LBqgCIIg1KHRgfPGjRv59ttvmTdvHsOHD2fevHmNuq4rrLgKXYesKNy/JZlfs7Lx1Kj5/PIpDPD3a+9pCXWw7D+B8V8/IO+2VsDRu3ty5/hpLPttDfPTNvF+VBwza1XVWF2UwfzUTQDMnTvXaTOUjqCpdZedkfOKMK74CdWg3mjvugoAVVg3vJI/bPBaVc8Q3O6eBXfPavbjC4IgXIoaHThff/31FBUVsXv3brZt28ZHH33U6AfpzBUXhK5DURQSd+zh67R0NJLEiqmTuCw4qL2nJThhOZiK8cMfkHdWl7nUqNFcMwntnVfwqreOPdV1nG9MWUtUdR3nlMpi0gwlAMTGxrJo0aJ2fAZ1M32/pcl1ly+mVBkwPPVPJD897q/dj6QRG1oFQRDaQqMD54ULF/LZZ59x77332o699dZbHbYcnSBc7M3fD/PBkeMALJs8joSIHu08I+FilkNpmP71A5bkw9YDajWaWRPQ3nklqlDrZmQvYN26dSQmJrJixQrSSktsAbNer2fu3Lm2zoEdjXy+AOPSr3C7b06z6y4rBhOGJ/+JUlKO+zsLkQJ8XDxLQRAEoS6SUteuugaoVCpycnIaLEeXk5NDWFgYchevDVrf5sD09HT27NnDyJEj22FmzVNeXm4rR9fQ5sDOUI7uo2MnWLhtJwCvjB3Fnwf1b+cZCbVZjpzC9OEPWLYfsh5Qq9BcNQHtXVfWG2CWlpaSlJREQUEBAQEBJCQkdNj0DADTT1sxvvRRo8dfXEpOqTJQ9egyKCrF/e2FSP4d97kKgiB0JjV70hqK15odOG/atIkJEybY1UZ2xmQysW3bNuLi4przMJ1eY/8jOpragXNDOnrg/P2pM8zbsAUFeGTYIJ4eNby9pyRUsxw7bQ2Ytx6wHlCr0FwxDu3cq1D1uLTSaOqruwyglFdR9chSMBhxf+thJN8L33PmpF1I3f1RD+3TllMWBEHoMhobrzW7qkbv3r3rLeVWVFTEvffey7Rp0/jTn/7U3IcRhBbZfDaHP2/aigLc2a8PiSOb0UZRcDnL8TPWlIwt1bWEVRKambFo516NKqL+d7EuRUpJOVV/XQJqFe7vPOLQOtz07UbUI/uJwFkQBKGVtShwzs7OrjNVQ1EUjh49ytdff82ZM2d46aWXmj1Joe15enpSVlZm+/eB7yEvHWLiIHy449iOaH9ePn9YtwmjLDOrVwSvjxsjNqq2M/lEJsZ//YBl0z7rAZWE+vKxuM27ClVkSPtOroNSisuoeuBN5JQM1BOGYnjlfw5j5PRs1CMbaKUtCIIgtFizA+eGMjz8/f35/fff+eKLL3jyySdF4NzJSJJkS79QFDAVgYcbhPSGDpyVYXOyuISb1m6gzGxmcmh3PoibgFrV7EaZQgvJqVnWgHnDXusBSUKdMAa3eVej6nXptnZuTN1ly/4TyCkZABdSWgRBEIR20eoNUEaPHk12dnZrP0y768qdAw1lYKwASQLvTpB2era8guvXrCevysCwwAD+Oz0OnYs6RApNI586i/FfP2JZv8f6CkySUE8fjdvdV6PqHdbe02t3jam7rIkbgaYRtZkFQRCE1tfowPnAgQPs37/f7tiXX36Jj0/dpZDKy8v59ttv6d6987Zmbqyu3Dmw5Jz1b69uoNY6nq8yW3h9/0HePnSUG6J6sWzyuAbvmZSRxaPbd5FRVk7BvNtdNtdCg4Eb1qwno6ycaB89X14+FR83J5MWWpWcno1x+U9YknZZA2ZAPW0UbnfPQhUtygAKgiAInVOjA+eVK1fywgsv2OWIPvTQQw1epygKL7zwQvNmJ3QIpTnWv32cvP7Zkp3Dwq07ya8yYGpEycHcyioSd+xmfVY2hQajS+dZYTZzS9JGjhUVE+rpwTczphHk4e7SxxDqJ5/Jwfjvn7Ak7QS5OmCeMtIaMPcNb+fZCYIgCELLNDpwHj58OHfeeSdgDYb/97//ceONN+Lh4eF0vEqlws/Pj7i4OK655hrXzFZoFyXVgbP+osD5m9R0Htm+k7+NGo67Ws0DvyXXe58Ks5nYb39kalgoyXNm0e+zb1w2R5MsM3f9Fnadz8PXzY2vZkwjUt+4cnpCy8kZ5zGt+Anz6uQLAfPk4WjvmYU6JrKdZycIgiAIrtHowPnaa6/l2muvtf37v//9L0uXLm2wAYrQuSnKhVQNn4uKHkTqvdk+52pCPT359ERqg/eSgH9OHu/yjn2yovDAlu0kZZ7FQ63m84QpDPT3c+ljXGoa21hEzsrFtLw6YLZY33FQTxxmDZj792zraWM5mo5ly+9Ydh9Dyc5DKS5DCvBBFdUDzZw4NBOdlyNUyisxfZqEZfM+5KxcUEDq5otqYG+0108RZd4EQRAEoAWbA1esWNFgu22h8zOUgqkSJJXjxsAxwU1rGeyh0bg8aFYUhWd27uXL1HTUksRH0yYxtnsn2MHYQZWXl5OYmMjy5cvtyhF6e3szb948Wytr+WwephU/Y/5l24WAefwQa8A8sHd7TR/DI2+jlFXg9vAtaOJGgIcO+fhpDK99iuHRd5DnXY3b/GvtrpEzzlP1wBtIkSG4PfVHVNHhKGUVmL9aj+mjX1CFB4vAWRAEQQBaEDjXpG0IXVtNmoZXN1C3eg2WpnvrwGH+efgYAMsmjXN5YH4pKS8vJz4+nuRka8pNtM6HGA9fjlcWk1ZWwtKlS9m5dRs/z5qPbu0esFgAUMcOtgbMg6Pac/o22juvRDv7QqdS9fAYdH+bS9VdL2H6eDXaP16B5O4GgGI0UfXo20h+etzffACpuhOqpPPF7d7ZyOk5SH4i5UcQBEGw6oChUOfUVcvR2dI0OmBhlP8eP8mLe6yd514eO4qb+rTfSmdXkJiYSHJyMgEaHR9ExTHDLwJJklAUhTVFGcxP20Tynt08k1nJa73GobpsIG5/ugb1kOj2nrqNbtGfnZa5U0VWfwEbzWA0QXXgbP5+C8rpHNxenG8Lmmtz//tfWnW+giAIQuciAmcX6arl6OrKb25vP6afYeG2nQA8PHQQfxnUv51n1LmVlpayfPlyAD6IimOm/4UNfZIkMdM/kvej4rgxZS0fF5xk0bcf4zd+eDvNtm7q4TFOj1sOWnPwVQN6Ivlc6OBjXrXdet0o0XVPEARBaJgInIU6KUr9pejay5bsHP60cSuyonBHTDTPjHK+4UtovKSkJMrKyojW+TDDL8LpmJl+EUTpfEgzlLA+J405DG/bSTaRYpFRCkqw7D6Kadk3qPr3RPfi/AvnDSbk4xmg06JYZIyv/BfLtoMohaVI/nrUsYPQzr0aVVjTcvkFQRCErksEzkKdqkrAVFW9MbCDxA6/5xVw+7pNGGWZq3tG8Mb4y+xqiwvNU1BQAECMh2+dn09Jkojx8CXNUGIb35FVTP6LdeOiWoXm2sm43TMLKeBCwyblbK41T1ujomrey6gnDsX9vceQuvli+e0AhkX/xbxpPx7vPy66HAqCIAgAqNp7AkLHVbMx0DsIVB3gJVZqcQk3rl1PmcnMxJDufBA3AY1KfAm7gr+fHwAplcUo1Z3+LqYoCimVxQAEBAS01dSazWvr+3iufhP3Nx9CPpxGxQ1PY6pOzQBQyqr3HxhMSCGB6J64A1V4MJK7Dk38GNz+fC2UlGNY9N92egaCIAhCRyOiDqFOpR1oY2B2RQXXr1lPXpWBoYH+fBwfh7tG3d7T6hIse44xaeXveKu0pBpKWFOU4XTc6qIM0gwl6PV6EhIS2niWzSP56VGPHYj7u48ieeow/t8KLHuOOYzTzIx1PHbVeADkg6nIZ/Nafa6CIAhCx9fqgbPJZGLz5s2t/TBCK+goGwOLDAZuWLOeM2XlRPno+fLyqfi4adt3Ul2AnJZF1SNLqVrwBl6pOdwRNgCA+WmbWFV4xrbyrCgKqwrPMD91EwBz58512gylI5O8PNDMGAuKgunbjdZjtTYJSiGOK+iStyf4eAIgZ5xrk3kKgiAIHVurvwFfUFDA1KlTsVTXfBU6h9odAy9utd2WKsxmbk3axNHCYkI8PPhmxjSC62jzLjSOnFeE6YMfMP/0m7U9tlqNZvZkFt/8f+y7aQ7JycncmLKWqOo6zimVxaQZSgCIjY1l0aJF7fwMmkcKtSbqK9n51n/3CAI3jbVEnclc/7WIPHpBEATBBYHztm3b2L9/P4WFhU6D49rdx7qyrlbHubIYzFUgqevfGBiw/BO7f392Mo3PTqYB8M6kWG7ra1/jd8Hm7bbzF99jQkgwP155IQXAJMvM27CFHedz8XVz4+sZU+mpF80omkupqML0yRpMn6yFKiMA6ikjcbtvNqrIEHTAunXrSExMZMWKFaSVltgCZr1ez9y5c22dAzsi06rtGN/6Es/Vbzrd4KjkFQEg+Vi/hiSNGvWo/li2H0JxkoqhlFdCSYV1bO/Q1pu4IAiC0Gk0O3DOycnh6quvZt++fbZjF28qqmmecClUPehqdZxrytDpg0BVTypxwbzbm3TfZZPHsWzyuAbHyYrCQ78lszbjLO5qNZ/FxzEwwL9JjyVYKWYL5h+2YPrXjygF1kBYNSQat/tvQD3MvpW0l5cXS5Ys4aWXXiIpKYmCggICAgJISEjo+OkZFhmKy5D3Hkc9yr6ut1JlxLxuFwDqSRfKF2puicey/RDmX7ajve1yu2vMP2+zjo8djCpYfO0JgiAILQicFy5cyN69exkxYgRjx44lICAArdYx77S0tJR//OMfLZqk0PbaqmNgRoZ1I1pExIXawYqi8NyufXx+8hRqSWLF1InEhgS37kS6IEVRsGz5HeOyb1BOW18JSeHBuN03B/XUkfW+oNXr9cyZM6etpuoa1c/H8Oy/0C6Yg/qygUie7sipWRjf/RYlMxf1uMForp1ku0QzdhCWWxMwf5aE4dX/ob17FpK3J5ZtBzG+/z1SWDfcEv/YXs9IEARB6GCaHTivWbOGRx99lMWLF9c7LicnhzfffLO5DyO0E1t+cytuDMzIyGDKlCkAbNy40RY8v33wCMsOHbV+PDGWGZHhrTeJLspy5BTGt79G3pdiPeDnjdu8q9HMjkPSdoDagq1AM2MsUoAPll93Y1rxM8ZXPwGzBXw8UfWNwO1vc9FcEYt0UQlD3UM3oR7YC9PXG6i86W9gNiOFdkN7/RS0f5hht4lQEARBuLQ1+zdoVVUV8+bNa3BcYGAgGzZsaO7DCO1AUVq/FF1N0JyWZs13njJlChs3bmRTpZHnd+8H4MXLRnJL36jWmUAXJWflYnxvJZbqtAR0WrS3xKO9Y6a1SkQXJmnUaMYNRjNucJOv1SRchibhslaYlSAIgtCVNDtwHjJkCCaTqcFxWq2WuLi45j6M0A4qi8BssDY98Qp0/f1rB82qIGsKRlpaGpdNnEjVg48i+Qfw0JCBLBg8wPUP3kUpxeUYV/yE+esN1lVWSUJzRSzaP1+HqnvHb1YiCIIgCJ1BswPnxMRE/v73v/PJJ5/UO+7cuXOEhYWJcnSdSE2ahncDGwOb4+KgWf/40wCULn6ZnDNnUL36Ene8+wHPjh7u2gfuhEpLSxvcoKcYTJi+Wo/pP79AqbUChHrsQLT334C6b4Sz2wqCIAiC0EzNDpz9/Pzw9vZm0KBB3HnnnfTp04fAwECHDUf5+fktnqTQtmpabbs6TcNZ0KwKsC5p6x9/mtLFLyPnnmfLEwvJHDvSbsPgpaS8vJzExESWL19uV87R29ubefPmsWjRIjw9PLCs3Ynxn9+h5Fi/x1R9wtE+cAOasYPaa+qCIAiC0KU1O3CeMmWKrdzcU0895co5CU1UmAln9kDZeTCUg9YDvAIgYiQERTd8/cVsgbMLNwbWFzQDqAICbcFzWlqaLef5Uguey8vLiY+PJzk5GYDo6iYkxyuLSSsrYenSpezYsImfBs/CI626UkawP9o/X4dmZiySutWbgQqCIAjCJatF2+tjY2Nxc3Ord4zRaLQFAYLrZeyF4+vBqxsMuhL0wWAog5Ob4feVEDEC+k1v/P0UBUrPWz921YpzQ0FzDRE8W1OgkpOTCdDo+CAqjhl+EbYXqGuKMpiftokdB3/n2fNmXhs4Fe2dV6C9OR7Jvf7vQ0EQBEEQWq5FgfPKlSsJDq6/vm5OTg5hYWEteRihDrIFTv5m/XjgDPCtbm7m6W8Nogvfh4x9ED7CugLdGBWFYDFaNwZ6tsLGQKFupaWlLF++HIAPouKY6R9pOydJEjP9I3k/Ko4bU9bycVEqf/9oLV6Rbfe9ZTmajmXL71h2H0PJzkMpLkMK8EEV1QPNnDg0E4c5vc687SCmT9YgHzsDimJNKbklHs20ztcYSBAEQbi0Nft93bvvvhtPz4bLW+n1ep577rnmPkynsWzZMgYOHOjw5/rrr2+1xzRXWYNccGyLrdaCh5/145oV5MaoKUOnDwaVi971j4iIYOPGjURFRSHnnrfmMhc45r7LBfm2POeoqKhLbrU5KSmJsrIyonU+zPBz/rxn+kUQpfOh1FDFut1t+06O4ZG3MX28Gs0VsXj85294rnkL3fN3I58rwPDoOxg/+N7hGtPn6zAsXIoqojueX76E58pXUA3shSHxnxg//KFN5y8IgiAILdXs0OjDDz/E29u7wXFeXl6XROC8YMECjhw54vDnm2++abXHdPMCXXWRhbI8+3MWs7WsHICuCf0bWmtjYEPB86UeNAMUFBQAEOPhW2dXP0mSiPHwtRvflrR3Xol2dhxSgA+Shw718Bh0f5sLgOnj1ShVRttYOTUL49tfoRrYC7cn/oAU6IPk643urzejGtkP079/xHIotc2fgyAIgiA0l0vWFIuLi/nxxx955513eOedd/jxxx8pLi52xa2FBgy+Etw84cgaKDoLFpM13eLwz2Cqsm7w8+vR+Pu1ZsfAuoJnETRbBQRY82lSKotRFMXpGEVRSKksthvfVnSL/oz2hqkOx1WR1a+yjGYwXqjtbvosCSwymmsmObwQ0M6ebB3z8drWm7AgCIIguFiLcpzNZjPPPPMMb7/9NlVVVXbn3N3deeCBB3jppZfQaLpmi9+OwD8CLvsDpGyE3Z9eOK71gPDh0GcSSI18eaTIrd8xMCIiglXr1jEodhzm8+coXfwywCUfNANM9e2Bt1pLqqGENUUZdjnONVYXZZBmKEGv15OQkNCm81MPj3F63HLQumqsGtDTrj21+bffrdcN6+Nwjar6mGX7QRSzBUnj4oLhgiAIgtAKmr3iLMsys2fPZvHixVRWVqLVagkJCSEkJAStVktlZSWvvfYac+bMqXP1TGi53FTY8V+oLIbRt8KUB2HcXAgdaN08aGm4uaNNRaF1vErT+M2EzZFstOD1WCJu3bsj556/5INmpbCUquf+hdvT/+KObtbgdH7aJlYVnrF97yiKwqrCM8xP3QTA3LlzHZqhtOmcLTJybhGmVdsxvrgCVf+e6F6cbzsvny+EImsNaim0m8P1UpA/aDVgMKFknGuzeQuCIAhCSzQ7cF6xYgU///wzt99+O7t376aiooKsrCyysrKoqKhg9+7d3Hrrrfz888+sWLHClXMWqlUWw8EfrQHy8DnWlAyNm7VNdt8p1k2Byf+BqpLG3a92fnNjV6mbSlEU/n00BVVAIM/871OioqIu2aBZURRMq7ZTccuzWNbsAJXESw8/Ruxll1FgNnBjylqG/f4VNxxfw7Dfv+LGlLUUWgzExsayaNGidp17xeS/UDnrMYwvfYR68gjc33wQVfiFCjtKQfUXnU7rtFSeJEng7WEdmy/SugRBEITOoUWB84IFC/jf//7HyJEjUdUqwaBSqRg5ciQff/wx9957r63EluBa546BbAb/SMcNgJIEIf3BVAmp2xp3P1t+cyulaQDsOJ/LwYLC/2/vvsOaut44gH+TkMEeAoKCIMv904riqqJVnHVrnXVrVepoq3W1dc9q3VXrQK2j1oGjrVtArQtX6wZliqDIDgQSkvP7IyYlJGAIYajv53nyiPece++5uSG8OTnnPTDl8fBlm1YIDQ39IINmxYtk5E1dA+n8HUCGGFwvF4i2zYLdjOE4d+ECJk+eDEtLS0TlZWoMz5g8eTLOnTsHc/MSzPgsA+Z/b4HZqZ8g+mkKFA+ikNNvDmQnr/5XITdP+W8xw7Q4Aj4AaEwoJIQQQiozgwcf379/H5s3b35rvfHjx6N169aGnoYUQ6Lq1CsiuYlqe5ae34SrAmdjrhhY2PZHEQCAvp7usBUKYfuBBcwsX478388rU7flSgGBCfiju4M/pCM4b4JMc3NzrF27FosWLcLZs2eRmpoKOzs7BAQEVOjwjMI4NpbgNasLUf2akAz4HtIFQeA62oLnWxsQCZWV8vOL3J+9mUhIi7cQQgh5VxgcOEulUr3S0VlYWEAqpR6lssBXftONPLHuctV2fYZdlMfEwJc5EhyPiQcAjKmje6LZuywrK6vYQFceGQ/pkl1QPIoFAHAb14Jw5lBwa+j+pGJpaYk+ffqUS9tLg2NuCpNOzSDbewayI6Hg+dYGx85KWZgnA8uVagXHjDFALFHuX8WmnFtMCCGEGMbgwLlmzZo4ffo0vvjii2LrnTx5Eu7u7oaehhTDwROIuQakxQHSbGVeZxXGlEM5AKCK29uPlZ2qHPbB4wNmZTQxcHfEU8gUCvg52uN/Vco3lVpZys7OxuzZs7Fjxw6Ixf99irGwsMCoUaOw+Id5EBwIgWzvaUCuACzNIJjUDybdPy4yX/O7RjUBkCUqc3NzHW0BGwsgXQyW+BqcmporHLLkNECWDwgF4LgWv/ooIYQQUlkYPMa5R48e+Pbbb3Hw4MEi6+zbtw8zZ85E7969DT0NKYa1M1DDV5kJ4+6RN3mcpcog+MFfyqEX5vaAm9/bj6WaGGhZVTk+2thkCgV2Po4EAIytU8v4J6gg2dnZ6NChA9atW6de9a/Lm9X9xGIx1q1bh/Y+DZAedByQK8Br7wvT3xaAryO3cWUmO3kV2Z2+Kjq/9Ot0AADH6r9voVRLcMv/1V7kRPGPchuvRX1KRUcIIeSdYXCP87fffot9+/Zh4MCBmDp1Kpo0aQJHR2XP0cuXLxEeHo5Xr17B1dUV06dPN1qDiSafdoCNC5DwD/BPsHIZbq6JstfY82OgRmOAp8cQ0swyHqbxV+xzJOZI4GgqQnf392dc8+zZs3Ht2jXYmQjxi4c/Otm4gsPhgDGG0+nxGBcVhhupCZhndQ/rdm2HSZtGFd1kw8gVQIYYittPlGOYC2C5UuSfCwcA8Fo3VG/nDw5A/smryD9+CSY9NHvXZccuKusM7VgOjSeEEEKMw+DA2dbWFufOnUPfvn1x//59nDhxQv2HUdUrVb9+fRw+fBg2NjZGaSzRzdFb+dAHYww5OTla21/FAhIpYGIFZGcrt5mZmRmtV3TboycAgGG1vCDgvR89jFlZWeqMMb94+GssWMLhcNDZtga2ePijf8QZ7EmJxPKPPFF5pvaV0JvXQd4P28AP7AOeX11wzETKZbV/PgL2PBm8FvVh0vO/icBcj+oQTOoP6ZoDkK7YC8HYHgCPB+muv6C4+Rj80d3Bq+9ZUVdECCGElFiplvTz9vbG3bt3cezYMZw5cwaxscpJT25ubujYsSN69uypkaaOVLycnJziJ3XO+e9HsVhslLRnD9PS8XfSK/A4HIyopWeE/w44e/asenhGJxvdveid3wzbiMrKxNmzZ9+JyX66mHRqBo6dFeTnb0IW9Ceky/cC+XLAygxcb1cIvh8Jky7NwSn0+84f2AGcGlUh23MaOf3mAGDgerpAuGQ8TD7xrZiLIYQQQgxU6rWwuVwuevfu/cGPY964cSM2btyotV0ikVRAayoXVQq6bm6uqGZuVsGtMZ7U1FQAgI+pdZE98xwOBz6m1ojKy1TXfxdxTHgwaVEfJi3ql3hfk5YNYNKyQRm0ihBCCClfpQ6c3yYzMxNTp0597xdBCQwMRGBgoNb227dvw9e3cvas/T73JUQCzR7lXGk2PptvvIHOmVIpfn8aDeD9S0FnZ6fMDBIhyQBjTGfwzBhDhCRDoz4hhBBC3k1lHjhLJBLs2rXrvQ+c30UigTlMBWW7At3+yChk5+ejto01Wjm9X2nHOnToAAuhKZ7lZeJ0erzGGGeVgqv+BQQElPqc8puPkH/6OuR3I8FepgIcLjjOVWDSqgH4QzuDY6t7FDVLyYR0zynIr9wDS0oFTHjgONqAV98T/MEB4BZKF0cIIYQQbXoHzvv27cNvv/2GL7/8Eh07dsQnn3yi1360+MmHizGGHW9S0I2p4/NOpV97GybJg2DZPnxu44FNLx9gXFQYtnj4o3OBrBqn0uMx7lkYAGDkyJGlXvVPdigE0pX7wPVygXDGUHDr1ATLliD/9HXIthxF/slrEG2errWgivx+FHK/Xgte8/oQLRkPjqsjWEomZDv+QP6Jy+A29KLAmRBCCNGD3oHzxIkTkZWVhVevXqFjx44IDQ3V+yTvU8BE9Bf2IgmRGZmw4Jugv1fNim6O0SgSU5D37QYoIp9jXs1muG0DXH/yAP0jzsBDaAUfU2tESDIQladcE7158+ZYsmRJ6U+cJwX4JhCumgRuVeWwD465CILPOwOZ2ZD9egrSnw5AtGaKeheWIUbutPXgNfSGaMFY9XaOcxUIZg+DIvoFOBampW8bIYQQ8gHQO3Beu3YtDh48iEmTJqm3HTlyBLa2tsXul5KSgv79+xveQvLO2vZmUuBgb09Y8vkV3BrjkN+NQO6szUBaFmBriSpLJ+C8dzXMnj0bQUFBiMrKVAfMlpaWGDlyJJYsWWKU7CQcO2uYBDRVB80F8Vo3hOzXU5CHPwKTK8DhKbNbSHedBNLF4A/vqn08Dgem22aVul2EEELIh0LvwHn48OEYPny4xraWLVuqFz0pysuXL4tcbYxUrFxptl7bDBEvFuNUfAIAYFTt9yMFnezoRUh/3AfI5eD61IBwxURwnarAHMoPlosWLcLZs2eRmpoKOzs7BAQElHp4RkEmXZrDpEtznWXqXmMOlOutQzlUJv/kVUAkALfe+9PjTwghhFQUgycHRkdHw8HB4a31HB0dER0dbehpSBkyZvaMwoIeR0LBGPyrOcHHxrrMzlMeWH4+pGt+R/6hEAAAr30TCL8fAY5IqFHP0tKywvI0K2KUa6ZzG3qpl7Bm8a+AtCxw3JzA4l8ib+txyG8+BsQScBxswGvdEIKR3cCxeWeXZSGEEELKlcGrk8TGxkIulxdZnpKSgubNm2POnDl6Bdjk/ZGbL8evEc8AvPsp6Fh6FnKnrFEHzfwvekG4aJxW0FzR8k9eBTgcCEZ1V29TPH8FQDnOWTJ6Kbg1qsJ053cwO7Ua/CGdkH8oFJKRi6FIyaioZhNCCCHvFIN7nNu1a4fExMQih2rw+XxUrVoV69evR0ZGhs7FQUj5MzMzg1gsVv//721AXjbQuD9gU027riGORsciJTcPLuZm6ORavTTNrVCKp8+R++1GsBevATMhhPPGwKRNo4pulpb8q/chv/QPTAZ3BM+31n8F4jdLq6eLwevoB8HYnuoift+2UMS/RP5v5yBd+7vGxEFCCCGE6GZwj/Pbxi1bWVnh2LFjCA4OxrFjxww9DTEyDocDc3NzmJubg881B1emzOVc1c1cvV31MDQbimpS4Mja3jB5R5dczw+7A8nYZWAvXoNT3QGmW2dVyqBZEfcSeQt2gNeuMQSBfYusZ9JZe2y0SbeWAAB56G2wPFmZtZEQQgh5X5T5AijVq1dHcnJyWZ+GGED85raYWgMmAuMc83ZyCm6/ToGAy8XnPl7GOWg5YoxBFvQnZL8oP+xxm9SGaPEX4FhbVHDLtCkSU5A7eTV4Db0hXDBWnUlDzeq/TB5cJ+1MHNxq9sofpPlgL1PAKZT/mRBCCCGa9A6cL168qJW7eeXKlbCwKDqgyM7OxqlTp+Dm5mZwA0nZUQXOFkZc0G/7m97m3jXdYG8qMt6BywGT5CFvURDk528BAEz6fwLBlP7gmJT558sSU8S/Qu6kVeA28oHw+5HaQTOgsagJkxU9H0GJcq0TQgghb6N3RBASEoL58+erV0UDlIFzUQrW27x5cymbScpClipwtjfO8VJyc3EkOgYAMKbuuzUpUJGYgrwZG6GIiAdMeBBMGwx+rzYV3SydFNEvkDvpJ/Ba/g+CmUPBKTAcRrb3NHgdlLmeuVXtwHF3BotJVI7TrqW5JDh7kaL8wVQIjnOV8rwEQggh5J2kd+Dctm1b9c+MMSxcuBBff/11kT3OXC4XNjY28Pf3x//+979SN5QYn6rH2dJIPc57Ip4hT67AR/Z28HUwUjReDgovaiJaOgG8RpUz97Q8Mh65k1fDpH0TCL4ZpDUOXbr+EES13YE3i6TwB3aAdNmvyP/zCkzaNdaoK/vrCgDl+GcOv/L1qhNCCCGVjd5/Lf39/eHv76/+/4IFCzB9+vS3LoDyLrt58yY+++wztGnTBjt37qzo5hiVQgFkv1b+bGGEbIFyhQI7HkcCAEa/QynoZEcvQrpyH5AvB9fHFcIVgeA6Gaf3VX7zEfJPX4f8biTYy1SAwwXHuQpMWjUAf2hncGw18ycrElMgv3gH8qsPoIh/CfY6HRxzU3CqO8CkS3NwPF2QN329ckxyuhh53299axtMenwM+Y2HkF+4BenW4+B/1h7g85B/+jryD14At7YbBF/2M8r1EkIIIe87g7uZQkJCYGenPeHofbF27Vps3LgRKSkpFd2UMpGTCijkAI+vnBxYWmeev0C8OBt2QiF616z8Y9q1FzXxhfC7keCYGic/s+xQCKQr94Hr5QLhjKHg1qkJli1B/unrkG05ivyT1yDaPB3cAhPypBsPQ34uHCaftYfo28HgVLEBe/Ea0i1HIV2xF3CwBTKVKebk58L1ageHy4Vw0TjkB19E/onLkO07AygYuDUcwR/XE/wBHcARvh/LoRNCCCFlzeDAuWDvc3Gys7OxatUq/PDDD4aeqtzFxsYiJCQE169fx0cffVTRzSkT6omBDoCBWec0qFLQDfXxhGklnExXEMsQI3f2ZihuPQGgXNSEP6Krwen3dMqTAnwTCFdNAvfNsAmOuQiCzzsDmdmQ/XoK0p8OQLRmisZuXN9aEH49UP1/Tk1nCBeMQU6Pb4HkNIg2fgOeb+0SNYXD5YLfty34fduW+rIIIYSQD1mZJ9kVi8WYP39+WZ/GqFxcXHD06FHY2tpWdFPKTMHAubSeZmQiJCERHACjalfOscEqimcJytXybj1RLmqyIlC57LQxg2YAHDtrmAQ0VQfNBfFaNwQAyMMfgckV6u2Ckd0gnDlM+1gCvnr4CMvKMWo7CSGEEKK/UncNHjlyBH/++ScSEhIglUq1ynVtK60rV65g5MiRiIiIQHR0NNzd3Y16fB6PZ9TjVUaqjBqWRgicVSnoOrlWRw3LypfvWCX/4l3kzdsG5OSBU80eoh+/BNezbFY2NOnSHCZdtBcdAQCOhembHwAUWEioqLawjGwoYpMAMxG4DTyN3VRCCCGE6MngwFkul6N37974888/wRjTSD9XmLF68yQSCb777jusXbsWcvnb8tJqOnXqFFatWoVbt24hLy8PtWrVwqhRozBx4kRw39HV7UrDWD3OYpkM+yKjAABj6tZ6S+2KobWoiW8tiJaMr7BFTRQxScp2NPQCx6ToD2ksQwzFkzhItxwFx1QIwfcjwa1ihAHphBBCCDGIwRHj+vXrcebMGSxcuBBnz56FUCjEnj17EBISgpCQEOzZswc9evSASCTCgQMHSt3QZ8+eoVGjRjh8+DBOnjxZon2XL1+OLl26QCQS4ezZs7hz5w4CAgIwadIk9OrVC/n5+aVu37tEKgHyxMqfSxs4H3oWgyyZDJ5WlmhbrfKtPMckecj7bos6aDbp1w6itVMrdCXA/JNXAQ4HglHdi6wj+fIn5HT6CrmTVwPmphCt/QomLeqXYysJIYQQUpjBPc579+7FvHnzMHPmTADK4Q3NmzeHh4eHus7gwYMxceJEhIWFoV+/0qW8evDgAdq3b48VK1YUu1phYZcuXcLMmTNRt25dHDlyBHy+MoPA8uXLkZaWhq1bt2L58uWYM2dOqdr3LlEvtW1TuqW2GWPY+kg5wW50HR9wjTxOuLQq46Im+VfvQ37pH5gM7gieb9E99KYbvgaT5EERmwTZntOQDFsAk4EdIAjsW2wvNSGEEELKjsE9zo8fP0a3bt3eWu+LL77AX3/9Zehp1Lp164aff/65REEzAMybNw8AMGnSJHXQrPLNN98AAFasWAGJRFLqNr4rjDVM4+rLV3iUlgEzEx4GeXm8fYdyJL8bCcmoxcqg2dYSog3fVHjQrIh7ibwFO8Br1xiCwL5vrc8xFYJX2w2iRePAa1kf+fvPQhb0Zzm0lBBCCCG6lGpwr7X1f+MtRSIREhMTteqYmJggISGhNKcBYNiEveTkZISGhgIA2rdvr1Veq1YtuLi4IDMzs8TDP95lWa+U/5Z2YuDWh8pJgZ951oS1sBRd10YmO3oRuV+uAtKywPVxhWnQnApfCVCRmILcyavBa+gN4YKx4PBK9qtn0qctAEB2JNT4jSOEEEKIXgwOnN3c3PDo0SP1/6tXr45jx45p1du/fz9MTU0NPU2p3Lx5EwqFAnw+H56eurMR1K6tzIkbHq7fghJFycvLQ2ZmptZDLBaX6rhlQWyEFQNfZOfgz9h4AMCYSrJSIMvPR97KfZAu+xXIl4PX3heiLTOMthKgoRTxr5A7YQW4jbwhXPyFQctbc6u9WcI8LQssN8/ILSSEEEKIPgwe4+zn54fZs2ejYcOGcHJyQocOHbB69WpkZ2cjICAAAPDXX38hKCgIHTt2NFqDS+LZs2cAAAcHhyIzZzg7O2vUNdTSpUvfiXzVxlpqe9eTp8hnDC2dHFHXruLzXWstajKuJ/hlkJ+5pBTRL5A76SfwWv4PgplDwSnwOpTtPQ1eB2WuZ0ViCiQDvoPol5ng1dZeeZElpyt/EAqUD0IIIYSUO4N7nPv37487d+7g448/BgBMmzYNNjY22Lx5M/r27Yu+ffti27Zt4HK5mDt3rtEaXBKZmZkAUGyPt5mZGQAgIyNDY/uAAQPQqFEjvHjxAsePH0ejRo2wePHiIo8za9YsZGRkaD3CwsKMcCXGY4yltqVyOXY/iQQAjK5d8b3NWouaLJ8IwahPKzxolkfGQzJxJXhtG0Mw63ONoBkApOsPgT1/M+CcMUCaD/mluzqPJfvjbwAA7+P/Vfh1EUIIIR8qg3ucO3fujMTERPXYYycnJ1y+fBnffPMNLl68CIVCAT8/PyxcuBB+fn5Ga3B5KWkKPaFQCKFQqLW9pJMZy5oxlto+ERuPl5JcOJma4lN3V+M1zgDluahJScgfxSB3ympAmg+WLkbe91uL3+HNzZDtPAlwuTDp3BwcexuwxNeQHTgH+Zkb4FSzh2BK/3JoPSGEEEJ0MThw5nA4qFq1qsa2WrVq4Y8//ih1o4zFysoKAIrNmJGTo1zCuOBER0Ns3LgRGzdu1Npe2bJ1GGPFQNVKgcNre4FfQYvHMMYg2/kXZFuOAqj4RU0Kyz91DchUvrbk594+fp7rXAWind9Bfi4c8rC7kO07C+TmAaZCcGs4gf9FL/A/+wQc84qZL0AIIYSQUgTOqnzNDg4OuH79utEaZEyqCYHJyclQKBQ6xzmrMoEUNXlQX4GBgQgMDNTafvv2bfj6+pbq2MZU2lR091PScO1lMkw4HAyvVTGZKpgkD3mLdkJ+/iYA5aImgqmfgWNS6hXkjUb41UAIvxpYon14td10jm8mhBBCSOVgcHdhTEwMqlevXqknxPn6+oLL5UImkxU5+e/x48cAgKZNm5Zn0yqMOnB2NGz/bW96m7u714CTWfn3fiqSUpD7xXJl0MzjQTDzcwinDa5UQTMhhBBC3k8GB84CgQCbN29G586djdkeo3J0dIS/vz8A4Pz581rlT548wfPnz2FpaVmpr8NYpDkFltq2L/n+6Xl5OBQVDaBiUtDJ70YqJwGqFjXZ+HWFL2pCCCGEkA9HqfI4F16JTxeZTIaLFy8aeppSU2X02LBhA/Lz8zXKVq1aBQCYPn26OrvG+0yVv9nQpbb3RUYhJ1+OerY2aF61lKunlJDs2CXNRU12zAGvUcVn9CCEEELIh8Pg77cHDx6M3377DT/88EOx9VJTU9GuXTvI5XJDT6WWnJysdZzk5GSIRCIAyswehfn7+2Px4sWYM2cOevfujfnz58PCwgI7duzA1q1b0bVrV8yaNavUbXsXJgeqVgw0ZHyzgjHsePwmBV0dn3JLicby8yFdexD5By8AAHjtfSH8biQ4ptoZTAghhBBCyhKHMcYM2VEmk6Ffv36oXbs2vvzyS7i66k5L9vLlSzg7O0OhUJSqoQDg7u6O2NjYIsuLu5STJ09i1apVuHnzJmQyGXx8fDBy5EgEBgYatJy3vlSTA2/duoXGjRuX2Xn08eAkkPgA8GipfJTEuecv8NmZEFgJ+HgwoA/MDVj9rqRYhhi5c7ZAcVM5Dr2yLGpCCCGEkPeLvvGawdFPrVq1wBjDH3/8gZUrV8LU1BQODg5aQY1cLjdaoBMTE2Pwvl26dEGXLl2M0o53VWkyaqhS0A329iyXoFnxLAG5324ES0gGTIUQzh0Fk7YV+8GDEEIIIR82gyOgwkFsTk5Okb3B1ENY8RRyQJyi/LmkgXNslhhn4hMAAKNrGy8FXVZWFs6ePYvU1FTY2dkhICAAlpaW2ouarAgE18vFaOclhBBCCDFEqRZAuXHjBuzti0/P8OrVKzRv3tzQ07wzKvsY55w0gMkBnqDkS23veBwBBuCT6s7wtLYqdVuys7Mxe/Zs7NixA2KxWL3dwsICw5u3ww/pdjDn8ZWLmiz+Ahwby1KfkxBCCCGktAwOnLlcLmrUqAEHh+K7L83NzVGjRg1DT/POqOwLoKiHadiXbKltSX4+9kQoc2CPNUIKuuzsbHTo0AHXrl0DAHgKreBjao0nkgxEiTOx8dwJhFs44uSspbD9dhjlZyaEEEJIpWFwVCKTyfSqZ29vj+joaENP88FLjQNu//72ejYuQJNiFqozdKntI1GxSMuTooaFOTq4VCvZzjrMnj0b165dg52JEL94+KOTjSs4HA4YYzidHo9xUWG4IX6F+S//wVoKmgkhhBBSiRicx7kwxhhSUlKMkj2DaDOzK+Jhqyw3r1L8/mJVKroSrBjIGFOvFDiqjg94OpYsL4msrCzs2LEDAPCLhz8629ZQj3/ncDjobFsDWzyUC9YEBQUhKyurVOcjhBBCCDGmUgfOwcHBaN++PSwsLFC1alX1pMGhQ4di06ZNxaaII/prOUr3w+vNwnmujYrfP8uAjBo3k1PwT0oqRDwehnp7GtTugs6ePQuxWAxPoRU62ehOX9jZxhUeQiv1xEFCCCGEkMqiVIFzYGAg+vXrh5CQEEgkEo0gmcPhIDAwEP379zfK4icfKoEZULVW0eXxtwFb1+IDYmkOIM1W/lySpba3P3oCAOjt4QY7UekXHElNTQUA+JhaF5lphcPhwOfN7EVVfUIIIYSQysDgwPm3337Dpk2b8NFHH2HLli04c+YMTE1N1eW//vorwsLCEBoail9//dUoja3MNm7ciLp162o9+vbtW6rjWtgDDbrrLhMnA2nxgOtb0hurJgaWZKntZEkujkbHATDOpEAAsLOzAwBESDKK/CaCMYYISYZGfUIIIYSQysDg2Ve//PILevTogaNHj6q3Fe5FbN26NRYsWIBt27ZhxIgRhp7qnVARWTXi7wIiK8DhLaMoDBmm8WvEU0gVCvg6VEEj+7cMoNZTQEAALCws8EycidPp8ehsq51t5VR6PKLyMmFpaYmAgACjnJcQQgghxBgM7nG+e/cupk+f/tZ67du3R2RkpKGnIUWQ5QJJDwGXRgDnLXdRXMKMGvkKBXY8Vt6zsXWKGSdSQpaWlhjRpQcAYFxUGE6mxal7nhljOJkWh3HPwgAAI0eOhKUl5W8mhBBCSOVhcI9zTk4OHB3fnqKBy+VSdoQy8OIewBhQvcHb65a0x/lUXAJeZOfAXiREz5rGy8GteP4K37+2xg0LR9wQv0L/iDPweJPHOUKSgai8TABA8+bNsWTJEqOdlxBCCCHEGAzuca5RowYuXLjw1np//PEH3N3dDT0N0YEx4PldwKkOwDctvq5CDmS/WWpb3x7nbW8mBQ7z8YKQxzO8oQWw3DzkzdwE8xwZ/uw9AZMCv4SlpSWi8jI1hmdMnjwZ586dg7m5uVHOSwghhBBiLAb3OHfv3h3Tp09HlSpV0K9fP511Dhw4gB9++AGTJk0yuIFE2+tngCQD+N9Hb6+bk/rfUtsiPZbafpKegYuJL8HlcDCitnfpGwvlMIy8JbuhePocsLWE3crJWOdoh8VLl+Ds2bNITU2FnZ0dAgICaHgGIYQQQiotgwPnWbNm4cCBAxgwYACqV6+Oxo0bQyqVYvbs2ZDJZAgPD0dCQgJcXV31GgtN9Bd/W7lSoKUei5mIXyv/tXDQb6nt7W8WPOlawwUuFsbp9c3//QLkZ24APC5Ei78A11GZLcPS0hJ9+vQxyjkIMRbGGGQyGS3mRAgh7yAulws+n19k2tvSMjhwtre3x7lz59CvXz88fPgQz58/BwAcPHhQPeGrfv36OHz4MGxtbY3T2kps48aN2Lhxo9Z2iURi1POIXyuX4S4qRV1hWW9WDLTUI39zplSG3yKjAACjjZSCTn4nAtJ1yjXDBZP6g9fYeJMNCTEmqVSKV69eIScnh3LPE0LIO4zH48HMzAyOjo4QCPTMw6sngwNnAKhduzb+/fdfHD16FGfOnEFcnDLvr5ubGzp27IiePXuCW8plmt8V5ZWOLv4OILQAHPQcRaHKqKHPUtu/P42COD8f3tZWaONc1fBGvqF4lYbc2ZsBuQK8jn4wGdC+1MckpCzk5OQgPj4ePB4Ptra2MDU1BY/HK7MeC0IIIcbHGINcLodEIkFGRgZiYmLg4uICMzMzo52jVIEzoOwS79OnD33lXg7y85Qp6NybAfp+HsnSMxUdYwzbHiuHaYyp41PqgIFJZcibvRlIywLHszqEs4ZREEIqrdevX4PP58PNzQ08I02IJYQQUjEsLCxgZ2eH2NhYvH79GjVqGC9DWJl3B2dnZ2PBggVlfZoPQsI9gCmA6v/Tr37BpbbN3zJU41LiS0SkZ8LCxAQDvDxK11AA0tUHoLgfBViaQbR8IjimpV+ym5CykJ+fj+zsbNjZ2VHQTAgh7wkejwc7OztkZ2cjPz/faMct88BZLBZj/vz5ZX2aD4JbE+CTrwCBjm8cGGPIzs7WeLyMzYZEmg2YZiNP9t92Xctdb3szKXCAV01YCfilaqfsxGXkB4cBHA6E88eA66LHOBFCKojqDVUopA93hBDyPlG9rxszcC7VUI0XL15g586duHv3LtLS0nROqJFKpaU5BdFTTk4OLCwsiq7w5X8/isVijTzJz8XZ+CtOOblzVCknBcofxUD6414AAH9sD5i01GOFFkIqARpKRAgh75eyeF83OHC+ceMGAgICIBaLdfZgFkR/kCq3XU8ioWAMrZ2roo6tjcHHYWlZyJu5CZDmg/dxQ/BHdDX8WHkyyHb8Adne0zDp6AfhD6N01pPfeoLcwJVFHofjVAVmR5cZ3A5CCCGEEBWDA+cZM2YgPz8fU6dORbNmzWBnZwc+X/sr/pSUFPTv379UjSQl8/vclxAJNHMw50qz8dl87UwZeXI5dj95BqB0KehYvhy53/8C9jIVHFdHCOeNAsfAjCryW4+Rt+xXsAwxkK9HWjAeDxwX3bMfOQ42BrWBEEIIIaSwUvU4r1+/HqNG6e4JVHn58uVbe6TfB+WVx1kfIoE5TAX6LV5yPCYOybm5qGZuhq41XAw+p2xTMBQ3HwOmQoiWTQTHwrDUL/lnriNvxV4IxvcGRAJIF+186z4cBxuYHVho0PkIIYQQQvRl8ORAgUCAdu3avbVe1apVP4gVuAIDA/Hw4UOtx+HDhyu6acVSTQocUcsLJgb2EOefvwnZ3tMAAOGc4eB6Vje4PZxq9jDdvwD8fm9/bRFCPgxt27YFh8NRP2JiYiq6SYSQD5TBgXPr1q0RHx//1noymQwXL1409DSkDP3zOhXhr16Dz+ViWC0vg46hiEpA3pteYf6QTjDp0LRUbeLV9wSXhlcQ8t44d+4c7OzssHTpUoOPceTIESQmJsLFpeTfiu3atQvW1tbYs2ePVlloaCjmzZuH0NBQg9tGCPmwGBw4L1u2DD/88AMSEhKKrZeamqpXzzQpf6re5p7uNeBoalri/Zk4B7kzfgYkeeA2qQ3+hN7GbqJ+7ciTQrr+EHL6z0G2/0Rkd5gMybjlkB29CPYBfNtBSGUWHByMtLQ07N271+Bj2NnZwcnJyaA827///jsyMzPx22+/aZWFhoZi/vz5FDgTQvRm8BjnQ4cOoXr16vDw8ED79u3h5eWFKlWqaGXQEIvFpW4kKZlc1aonxWxLzc3D4agYAMCYuiWfFMgUCuTN3wEW/wqcqnYQLRwHjkkFLR6RlgWWLYFo5SRwqtmDJadBtvsUpMt+hfziXQhXTATHpNSLZBJSaowx5OTk6FXXzMzsvchINGrUKNy6dQtffPFFhZz/yy+/RHJyMgIDAyvk/ISQ94vB0cS8efPA4XDAGMOpU6d01lGVvw9v/u8SXdkzCtsb+Qy5cjn+V8UWTR3esqygDrKdf0F+6R9AYALhsgng2Foa0tRS43pVh+jnaeA1rqXexqnmAOHMz6GIfwn5lXuQ7TkNwYhuFdI+Qgp6a771AgrnW39X+fr64tq1axV2/i5duqBLly4Vdn5CyPulVN1wX3/99Vv/CGRlZWH16tWlOQ0xMrmCYcejSADAmDq1SvzBJv/KPci2HgcACKYPAa+Ou7GbqDeOtYVG0FwQv2875N16gvw//qbAmRAjCQsLw4IFC3Djxg0AQO3atTFx4kTUrFlTY1je8OHDsWvXLvX/3dzctCb1paamYvXq1QgODkZsbCwYY6hduza6du2KAQMGoF69em9tz4gRIzTOozr3vHnzULNmTfU2f39/9ZCM0NBQjbbOnz9fY4XbkJAQtG3b9q3nJoR8eEoVOE+fPh2OjsUvp5yUlISffvqpNKchejAzM1MPi1EogLD1AAPQchQgKtQZfDklDbFiMWwEAvTxcCvReRTPXyFv7jaAMZj0bgN+94+NdAXGx3FVvjbZ82QwWT44fBquQSqPkuRbryz279+PoUOHonr16ti9ezcaN26M58+f47vvvlPXadGiBY4cOQJTU1MsW7YM8fHx8PPz0zpWdnY2mjdvjvT0dKxbtw5NmjRBXl4eTp8+jTlz5mD37t16Zc9Yu3Yt3N3dsXLlShw8eBAfffQRTE1NYWFhgcTERFy5cgV9+/bV2Kdly5ZITEzEypUrsWrVKnzzzTeYNm2autzOzs7wJ4kQ8l4zOJL49ddfYWNj89Z6VapUQUhIiKGnIXricDjqr3Ul6YBIAHB5gF1VoHCH8rbL1wEAQ308YVaCsb9MkqecDJiVA259Dwi+Gmis5pcNRYH84TRaiBiIMUAhM86x5NL/fn5bvnW5FJBrrylVYly+9nuAIV68eIFx48aBMYbjx4+jUaNGAJQ9yX/99Rc8PDwAKFOVOjk5AQCsra2Rm5ur83gHDx5EZGQkfvzxRwwc+N97Sb169SCRSLB161a92rVr1y789NNPOHnyJFq3bq1R5uTkpDMIVrVR9Y2phYWFus2EEFIcgwPnIUOG6FWPz+fD39/f0NMQA0gylf+KrLX/YEZlZuF8QiI4AEbV9tb7mIwx5C3dDfYsAbC1hHDJeHAERvirXkqSkYtg0v1j8Pu01Spj8S8BABwXB5ocSAymkAEh64xzLIn07XVUwjYBpoLSn7PdZIBnhONs374dYrEYrVq1UgfNKqamphgzZgwWLVqk9/GSk5MBAHFxcVplQ4cOhaur61uPsXLlSixcuBCnTp1Cy5Yt9T43IYQYqtTRRG5uLg4ePIi///4bCQkJ2Lp1K5ycnPD777+jffv2qFKlijHaWelVppUDJenKf02ttcu2v0lB18GlGtyt9J/Ql//7ecjP3AB4XIiWjAfX0dYILS09liaG/OJdnYGz7JDymw6TrvQHlZDSCgsLA6Cc7KdLnTp1SnS8du3agcPhYMOGDXj9+jXGjx+Pjz/+GFwuF25ubhg2bFix+y9evBjfffcdfvnlFwqaCSHlplSBc2hoKAYPHqxeVpvD4ahTLS1duhQjR47Er7/+ij59+hilsZVZYGCgznRHt2/fLvIPTVmRZCj/LRw45+TnY19kFABgTB39U9DJbz+BdN1BAIBgcn/wPip5+roywwHk1x4gb9mv4A8KAMe5ClhyOmS7TkJxNxK85vXA/7xzRbeSvMO4fGWvrTFkZwOYo19d/wmAMZJqcI30xdDz588BAA4ODjrLSzrUoUmTJti9ezemTp2K/fv3Y//+/XBwcEDPnj0xduxYneOiVebPn69e0OTHH3/EkCFDYGZmVqLzE0KIIQxeACUiIgKffvopXr58iebNm2PIkCHg8/97hw4ODsagQYMwYMAA3LlzxyiNJfpR9zjbaG4/9CwGGVIpalpaoL1LNb2OpXiVhtw5WwC5AryOfjD5rL1R26pLdvOxyG4+FtI3KxLm/3VVvU32x98adUWbv4VgUn8oYpMgGbccOe2+hGTEIijiX0Iw83MIf5pMkwJJqXA4yqEOxnqo5EqzISn0KJhv3VjnM3Y2UMbY2yvpaejQoUhISMD+/fvRu3dvZGVlYdu2bWjWrBmmTp1a5H5//fUXrl+/Dj8/P0RGRmLGjBlGaxMhhBTH4Ihi6dKlsLa2xpUrV/C///0PAHD06FF1ubu7O7Zt2wa5XI7ly5frXLWJlA1dPc6MMfVKgaPq+ICrx19TJpUhb9YmIC0LXC8XCGcNK5ec3ObX9JsUBADcqnbgDukI/pCOZdgiQoyvMmfP0MXFxQVPnjxRj00uLCkpyaDjCoVCDBw4EAMHDkRmZiY2bdqE7777DmvXrkW3bt0QEBCgtc/x48fRuHFj7Ny5E40bN8bGjRvRq1cvtG9f9h/sCSEfNoN7nC9cuIDVq1erg+aiTJgwAeHh4YaehhhAHTjb/Lft+qtk3E9NgymPhyHeHnodR7r6NygeRAOWZspFTkyFxm8sIeSdoJrkfevWLZ3ljx49KtHxjh49ig0bNmhss7KywowZMzB8+HAAKPLbyqpVlR866tSpg4ULF4IxhpEjRyIjI6NEbeBytf8EZmRk4PXr1yU6DiHkw2Fw4JyUlKTX2F0nJye8ePHC0NOQEsrPA2Rv5iMW7HHe9lDZ29zP0x02wrcHwLLjl5AffBHgcCCcPwZcl+LzdRNC3k6Vb12fR2Ubszt69GiYm5vj6tWruHv3rkaZRCLBtm3bSnS8u3fv4qeffoJUqp1qRCZT5v+rUaPGW4/z9ddfo2XLloiPj8fkySUbjK5KqZqd/d8QmWHDhqFr164lOg4h5MNhcOBsbW2N2NjYt9Z78OCBXvmeiXGoepv5poDJm/GUSTkSHI9RpnzSZ1Kg/GE0pCv3KY8ztgdMWjYok7YS8qFR5VvX51Eew6JKolq1ati6dSs4HA569uyJ4OBgxMXF4e+//0a3bt10LmudlJSkHtohl8uRlJSE1NRUdXl0dDR69uyJCxcuICYmBvfu3cPChQuxZ88eNGvWTD2xPCMjA0lJSZDL5QCUqexUQ0NycnKwfPly8Pl87N69G/v370dSUhLy8vI0zieVSpGUlKTRK63qRT916hQePnyIc+fO4fz58xqrChJCSEEGB84tW7bEzJkzi023lpmZie+++w4ff1x5V5d73+iaGLj7yVPkM4Zmjg5oUKX4FbFYWhbyZm0GpPngtW4I/gjqeSGEKA0aNAjnz5+Hl5cXhg0bhnr16uHbb7/FlClTdKaPc3Z2VmfHeP78OZydndXB8FdffYWdO3eCz+fj888/h7e3Nz755BOcOHECa9asQUhICAQC5af/KVOmwNnZWZ3Zw8/PD87OzgCUuZxbt26t7qUePHgwnJ2dsX//fjg7O6tXDbx69SqcnZ0xZcoUdfsaNmyITZs2QSKRoGHDhhg2bBiGDh2K77//voyeQULIu47DDJwiffnyZfj7+8PR0RFjxoyBr68vhgwZgl27dkEoFOLGjRvYsWMHXr16hb///rvY1ELvM1U6ulu3bqFx48Zlfr7YcCAyDKhaG2jwKSBTKNDo96NIzJFgq38r9PV0L3Jfli9H7tQ1UNx8DI6rI0yD5oBjUbm+LibE2HJzcxEdHY2aNWtCJBJVdHPeWaGhoWjXrh38/f0RGhpa0c0hhJASvb/rG68ZnFXj448/xurVq/H1119jyZIl6u0DBgxQ/8zhcLB+/foPNmiuCIV7nP+MjUdijgSOpiJ0dy9+JS7ZpmAobj4GTIUQLZ9IQTMhhBBCSAEGD9UAgMmTJyMsLAxdu3aFqakpGGNgjMHU1BSffvopLl++jAkTJhirrUQPhVPRqVYKHFbLCwIer8j98s+FQ7b3NABA+N0IcD2ql2k7CSGEEELeNaVeGaJVq1Y4ceIEFAqFOoWPvb29zjQ/pOwVDJwfpqbh76RX4HE4GFHLu8h9FM8SkLd4FwCAP7QTTNo3KY+mEkLeA3K5HMnJyVqT8ExNTWFtbf2WvQkh5N1itCXVuFwuHB0pZVlFYor/AmczG2D7/UgAQDc3V1Qz1z3sgmXlIHfmz4AkD9wmdcAf37ucWksIeR/Ex8ejZs2a6v+rJuENHz4cO3furLiGEUJIGaC1iN8jeWJl8MzhAnkCKX5/Gg0AGFtECjqmUCBv/g6w+FfgONlBtHAsOCZFD+cghJDC3N3djboMNyGEVGYlCpz37t2rzoHZqFEjtGzZUl1mZWWlkURe5YsvvsDPP/9cymYSfeSkK/8VWQG/PYtCdn4+attYo6WT7m8CZDv/gvzyP4DABMKlE8CxtSy/xhJCCCGEvGP0DpwTExM18nTOmTNHI3BWTQwsbOfOnVi4cCGqVKlSyqZWbhs3bsTGjRu1theX5/pt/k1Jxc/3H+HvpFdIluTCUsCHm4UFWjg54tuPGsCSz9c815thGkJrpp4UOKaOj86FFPKv3INs63EAgODboeDVcTe4nYQQQgghHwK9A+c///wTjDE0atQIW7ZsQdOmTbXq7N27F9WqVVP//9mzZxgzZgyOHj2K0aNHG6fFlVRgYCACAwO1tqvyApbUjkcRmHPjFr5pWB/f+TaCg6kIEekZmHY1HBvvP8LYOj5agXPum8D5gSgJT5OzYMnn4zOvmlrHVjx/hby52wDGYNLbH/xPW5W4fYQQQgghHxq9A+ewsDC4ubkhLCwMlpbaX+lzOBw0a9YMHh4e6m3+/v7Yv38/zp07994HzsZ0OfElpl8NxwK/xgisX0e9vUEVO2xs3QJDzoXBREfWElWP87FcZW/zIG8PWBQKrpkkD7kzfgaycsCt7wHB1wPL7kIIIYQQQt4jeueMu3fvHiZNmqQzaAZQ5OSQQYMG4d69e4a17gP1w43bsBTwdU7q87K2wvW+3XVmyZCkA8lcMS5mJQAARtXWTEHHGEPe0t1gzxLAsbOCcMl4cPg0P5QQQgghRB96B86xsbFo0aJFkeVHjx7VGKah4uvrixcvXhjWug/Q47QM3E1JhZ+jQ7ELlugiyQDOCiOhAIN/NSf42GjmUM0/cB7yMzcAHg/CJV+A62hrzKYTQgghhLzX9O5uzM7ORvXqRa8m1759e53b7e3tdWbbILpdf5UMAHC1MMeFhESs+ecB7qakQK5g8LS2wmeeNTG+Xi2toRr5UkCcI8d5m2cAtFPQyW8/gXT9QQCAYHJ/8BrpTlFHCCGEEEJ00ztwtrKyMihDhFgshrm5eYn3+1BFZWYCAC48T8ThqBisbNEUu11aQyKXY+Xd+/gh/DYuJSZhXwd/8AoEz7kZwFVBLLK4eXAxN0Mn1/8+5ChepSJ3zhZArgCvUzOYfPZJuV8XIYQQQsi7Tu+hGq6urgaNVb59+zZcXFxKvN+HKlMqAwDEisWY37Qx+nnWhI1QCGczM6xq6Yf/VbHF2ecv8GvEM439cjKAUyLlpMBRtX3UQTWTypA3azOQlgWutwuEsz7XmZ6OEEIIIYQUT+/AuU2bNggKCirxCbZs2YK2bduWeD8C9Pd019o20EuZteRwVIzG9vAXr/HMJAV8cDHUx1O9Xbr6NygeRANWZhAumwiOSFiWTSaEEEIIeW/pHTiPHDkSJ0+exPr16/U++Lx583Dp0iWMHDnSoMZ9iGyFAgBAFZEQZibaI2ncLC0AAM8ysjS270tU9jYHWLrB3lQEAJAdv4T84IsAhwPh/LHgVncoy6YTQoiau7s7OByO+kEql8ePH2vcH0M6uLy8vOgekw+O3oFzo0aNMHToUEydOhV9+/ZFWFgYFAqFVr38/HycOXMGHTt2xMKFCzFkyBB89NFHRm30+6zWm0wYUrn2c1tQwfeo15JcnMuOBQAMra6c9Cd/EA3pj/sAAPxxPWHSon4ZtJYQUlrx8fGIj4+v6GYYXXh4OBITEyu6GXrLycmBr68vmjRpUqoVXyvK4sWLYWdnhwsXLuhV39vbG4mJiTh8+HCRdWJiYjBv3jzs3LlTZ/m1a9feqXtclPT0dMybNw9r1qwpsk5iYiI8PT3x6aefFpl+15jK+3yFVcbnpLIoURLfLVu2IDIyEsHBwTh69CiEQiE8PT1hba0M9tLT0/H06VPIZDIwxtC8eXNs2bKlTBr+vvKv5gwuh4MsmQxpeXmwFWoOrYjLEgOARqq5PRHPIIMCnvlV4FfdHiw1E3mzNgGyfPDaNAJ/eJdyvQZCiH7i4+PVPX2hoaFwdXWt2AYZkYPDu/UN14MHD3D79m31z02aNKngFpXMvn37kJaWhiNHjuCTT94+AZzH48HJyQl2dnZF1omJicH8+fPh7++PESNGaJXb29uXpsmVRnp6OubPnw83NzdMnTpVZ53Lly8jKioKUVFRSElJKfNrL+/zFVYZn5PKokSBs6mpKcLCwjB9+nRs2bIFubm5ePDggVY9gUCACRMmYPny5RAIBEZr7IfAycwUfWq64VBUDPZFRmmsHAgAB55GAwA+fzOOWa5QIOhJJACgU64PRBZy5H7/C9irNHBqVIXwh5Hg6FhlkBBSsVRBc1RUFACgbdu2713w/C5p1KgRPvvsM/XP75rp06dj8+bNNDSyjAQEBKBTp07w9vYulwCxvM9niHehjWWhxMvGCQQCrF27FjNmzMDx48dx/fp1vHr1CgDg6OiIZs2aoUePHjoXQyH6WdLMF/+kpGL5nX/hbGaKLjVckCGV4ad/7uNuSiqG+Xihj4c7AODM8xeIF2fDUiFEK5kbeHuPIP/WE8BUCNHyieBYaK8wSAipWAWDZq6DIwAgKiqKgucKxOfzceDAgYpuhsFGjBihs1eYGIeNjQ1OnTr13p7PEO9CG8uCwV2R1apVw/jx4xEUFIQ///wTf/75J4KCgjB+/Ph3Pmh+8eIF+vXrh9q1a8PHxwdjx45F5pv8yuXB3lSEs907YVRtHyy5/S9q7jmI5kdO4HFaBra2bYU1HzdT19368AkA4JM8T9R4fRv5+84AAITfjwS35rt9Hwh5HxUOmi2/nQPLb+eA6+CoDp4r85jn+Ph4BAYGwsPDA0KhEFZWVvD19cW0adNw9+5dvY+TlZWFXbt2oUePHvD09IRIJEKVKlUQEBCA48ePF7lfeHg4+vXrB3d3dwiFQlStWhWffvopgoKCkJ6erlE3NTUV33//PerXrw9LS0tYWFigSZMm+OGHHzS+LR0xYoTGJLfQ0FCt88pkMixfvhy1a9eGUCiEg4MD+vXrhwcPHui1f0GF63M4HK2gt169elofoHbu3Kk1oS80NLTY46iEhYWhffv2sLS0hJWVFVq3bo0//vijyDZyOBy0a9dOvW/Bc8ybN0/nPgqFAitWrIC3tzeEQiFcXV0xc+ZMyGSyYp+Poly/fh39+/eHk5MTBAIBqlWrhoEDB6qH1KjExMRoPS9xcXEYPnw4qlWrBqFQiJo1a2LWrFlaC7K5u7ujZs2aAJQrJOt6Ltu2bauxPSYmRr1/hw4dtMq2bduGunXrwszMDLVr18amTZvU9Q8cOID//e9/EIlEqFmzJpYvX6513cWdr/D9Lurx8OFD9T5PnjzB/Pnz0aJFC1StWhVCoRDu7u4YO3asxrGN9ZyoMMawf/9+tGvXDra2thCJRPD29sbUqVORlJSkUffy5cta53n+/DkGDx4Me3t7mJqaokmTJvjrr7+0zlPuGNEgkUhY7dq12ejRo5lcLmd5eXmsY8eOrEOHDgYd79atWwwAu3XrlpFbylhEegaz3b6H2W3fw47/EMEyPw5k4mZjWN6GQ0Y/FyHvK4lEwh4+fMgkEkmZnysuLo55eHgwAIzr4Misf1zLbLfvYbbb9zDrH9cyroMjA8A8PDxYXFxcmbenpK5cucJsbW2Zk5MT27t3L4uOjmY3b95kU6dOZQAYAJaenq6xj2p7Yfv372cAWP/+/dnVq1dZTEwMu3LlChs+fDgDwJYtW6a1z19//cV4PB7r3Lkzu3TpEouJiWF///036927NwPA5s6dq64rFouZt7c3c3BwYPv372eRkZHs/v37bNWqVUwkEjE3Nzd13fT0dJaYmMhatGjBALCQkBCN88rlctatWzcGgPXp04eFh4ez6OhotnPnTlajRg3WpEkTBoCtWbOGJSYmsry8vGKfx/T0dHbu3DkGgDk7O7PExESN5+3Jkyfq5y08PFy9PScnhyUmJjJ3d3e2efNmlpKSwvLy8lhiYiJbs2YNA8CGDx+udb59+/YxLpfLXF1d2ZEjR1hMTAy7fPkya9euHRs1ahQDwPz9/TX2SUxMZIcPH2YAWIsWLVhiYqL6kZWVpVFX1dbx48ezRYsWscjISHbjxg3WqVMnBoBNmTKl2OdDl40bNzIul8uaNm3Kzp8/z2JjY9np06fZ//73P2ZiYsJ27typrpufn6/R3lq1ajEPDw+2du1a9vTpU/bvv/+y8ePHMwCsadOmTCwWq/d99eoVu3HjBgPAXFxcNK5TdU9SUlJYYmIic3FxYQBYdHS0ev/U1FSNsi+++ILNnDmTRUREsGvXrrGWLVsyAGzdunVs9+7dbNasWSwiIoJdvXqVNW/enAFga9eu1bj24s4XEhKi1U7Vo0OHDgwA69KlC1MoFOp9OnXqxEQiEVuzZg179OgRi4yMZIcOHWJ169Zltra27NGjRxrnL+1zwpjyd2bw4MEMABs6dCi7desWi46OZkFBQaxKlSrM0dGR3b59W11fKpVqvI67devGWrVqxf744w8WFRXFDh48yOzs7BiPx9P4nXibkry/6xuvUeBcyIYNGxiPx2OvXr1Sb1M9madOnSrx8YwdOMfFxan/oM64Gs5st+9hg3adYcntZzNxszEs58tVTCHLN8q5CPkQvO2NVaFQMLFUVurH42dRrGYRQbOu4Lmmhwd7/Cyq1Oct+Ae0NNLT05mzszPjcDjs+vXrWuXjxo1jAFhaWprG9qIC5+PHj7M2bdrobF+HDh2YQCBgCQkJGtv9/f0ZAJacnKyxPT8/n9WuXVsjcA4KCmIA2I8//qh1/EWLFmkEzoWPXzhwXrduHQPAmjRpwvLzNd9fg4OD1dcYFBSkdcziuLq6MgDszp07GtuXLFmiPubs2bM1yh4+fMhMTEy0nmfV9RYOnBMSEpiFhQXjcDha58nJyWFOTk46A2fGlEFaUWUFqdo6duxYje2pqanMxMSEmZmZsdzc3GKPUdCVK1cYj8djVatW1fog9urVK2ZjY8P4fL7W9ajaqwpUC1N9wPrmm280tkdHRzMAOl8TBbm5uekMEguWffrppxrbIyMj1R+QCt8b1Qckb29vvc8XEhKis51btmxhAJiTk5NG/MIYY8OGDdMKzhljLD4+nnE4HNatWzetstI+J8uXL2cAWOfOnbX2OXv2rPrY2dnZGmWq1zEA9vfff2uUrV27lgFgo0ePLrZNBZVF4FziMc4V7cqVKxg5ciQiIiIQHR0Nd3d3ox7/6NGjqFevnsaM8I8++ghWVlY4cuQIOnXqZNTzlUTBGfh/nj2L/ZFR4DCGeafvwlT8CnJbO5gtHAuOCa/C2kjI+yYnXw7XX0s39lWRmoKsFYuhSH6lHp7BtauiVY9rVwWW385B1orFiI6KQt3mzYusq6/4zwfAnF/6t/rt27cjMTERzZs3h5+fn1b56NGjceDAAb3z+Xbv3h3du3fXWda8eXOcO3cOZ8+exfDhw9Xbk5OTAQBxcXEak5F4PB7WrFkDW1tbnXULGzp0aInGkatScn3xxRfg8TTfX3v27IkaNWroPM/b9OrVC+vXr0dwcLDGhMQjR45g8ODB2LdvH4KDg7F48WJ1WXBwMPz9/WFjY6PXObZv3w6xWIxWrVppTXo0NTXFmDFjsGjRohK3XZdRo0Zp/N/W1hbe3t549OgRIiMjUb++fmlRly5dCrlcjuHDh6uzdqk4ODhg6NCh2LBhA5YtW4bffvtNa39TU1OttgDAl19+ieDgYGzZsgULFy6EqalpCa5OP59//rnG/728vGBjY4PExER07dpVo8zHxwfW1taIjIyEWCyGhYXFW4/v6+uLEydOaGx7+PAhpk6dCg6Hg927d2tltNm1a5fOY7m4uKB69eo4e/YspFKp0ZI5yGQyrFixAgAwefJkrfIOHTqgfv36uH//Pnbv3o3x48dr1alVqxZatmypsa1ZM+Uw1ZIMCSsL70y6BYlEgm+++QZt2rRBREREifY9deoUAgICYGdnB3NzczRu3BgbNmzQmYf6/v376rE9KhwOB25ubgYtOW4s8fHxaNOmjTr1SzM/P6THxmD+gyRUfxYBBdcEeVMmgmNjWWFtJIS8v86cUc6faNq0qc5yPz8/pKenawU6xbl16xaGDRsGb29v2NjYwMLCAhYWFupxnwkJCRr127dvD0A5m3/JkiUawWqnTp00Avp27dqBw+Fgw4YNGDx4MC5evKh+z3dzc8OwYcP0auPz58/VmU98fX21yjkcDmrVqqX3NRfUu3dvAMoOG5X4+HjcuXMHK1asgL29PR49eoQnT56oy48ePYpevXrpfY6wsLAi2w4AderU0bndEF5eXlrbVOnu0tLS9DqGXC7H+fPnAUDnB7SC21WvycJq1KgBc3Nzre2qFINisVhrnLSxeHp6am2zsrIqskz1+6Lv82NpaYkGDRqo/5+bm4uBAwdCIpFg+vTpCAgI0NpHoVBg+/btaN++PapVq6Ye729hYYGEhARIpVK8fv1ar/Pr49atW0hJSQHw9nt4+vRpneXGeC2VlXeix/nZs2fo2rUr8vLycPLkSXTs2FHvfZcvX46ZM2fi008/xdmzZ2FpaYnt27dj0qRJOHPmDI4cOQKTAiv0paSkwNJSO/i0srJS92CUtydPnsDPz09jgmJmSgp4P8zCw6p1kO3SBIlNRqBmI7cKaR8h7zMzEx7iPx9Q6uM879MdXQI6IDoqClkrFuvsSS7YM13TwwMnz56DSykzbJgZ6Ruo2FjlIkvGys984MABDBkyBFZWVpg3bx5atWqlDiLWrVuH9evXQyqVauyzdOlSZGZm4tdff8WcOXMwZ84cNGzYEIMGDcKoUaM02takSRPs3r0bU6dOxf79+7F//344ODigZ8+eGDt2bJF/0At7/vy5+ueirt3Jyamklw8AaNOmDezs7PDvv/8iKioKHh4eCA4ORvPmzVG9enV0794dQUFBCA4OxsyZM/H8+XPcvHmz2EVLimq/sduuS5Uq2t+MqP6+yuVyvY7x+vVr5OTkAFBm6tKlatWqAJQBVGZmpjowVSlqPysrKwgEAkilUo37aky68mKrvoUprkzf56ewr7/+Gvfu3YOfn5/Obw4YY+jVqxdOnDiBFi1aYMuWLfDy8gKfzwegnOSnCp6NRfVeweVydb4mgP/uoapuYbr2U7XZ0OfKWN6JHucHDx6gffv2uH//vs5PU0W5dOkSZs6cibp16+LIkSPw9fWFj48Pli9fjrFjx+LEiRM6Z7RWJk+ePEHDhg3VQbOn0ApdbFzhIbSCnCmwKekBAqIuIq5aI5jq39FDCNETh8OBOd+k1I9aHjURFhoKDw8PKJJfKQPk1BT1eQoGzR4eHggLDUUtj5qlPm9lXApZKpVi4sSJkMvl+PnnnzF58mT4+vrCy8sLXl5eRS7KYW5ujp07dyI6OhpLlixBo0aN8M8//2DmzJmoXbs2QkJCNOoPHToUCQkJ2L9/P3r37o2srCxs27YNzZo1K3JRh+IwI6+OxuPx1MNVVL3OR44cUfdEq3qWg4ODAQDHjh3DRx99ZFC6QmO3XZfK+ForrKyfh+KeA2M/P0ePHsWmTZtgaWmJ/fv3qwPLgg4fPowTJ07AwcEBp06dQvfu3VGnTh3171rBjsPKpDK/lt6JwLlbt274+eef9Rr/U5AqZc6kSZO0XlDffPMNAGDFihUay6va2dkhKytL61hZWVlFfnIqK/Hx8fDz80NeXh5seUIc8umIuw3742CtTvinYX8c8ukIW54Q/6ZGY9PxSTARlWvzCCEl5OrqilAdwXPhoLky5nJ2c1N+o2WMb97u3buH1NRUACjRN4gqNWrUwKxZs3Dnzh3cv38fXbp0QWpqqtb4UgAQCoUYOHAgjhw5gpcvX2LZsmUwMTHB2rVrcfbs2beey8XFRf1zUddeOLVWSaiC5ODgYCQnJ+Py5cvqgDkgIABmZmYIDw9HQkICgoODSzRMA/iv/WXR9rJgb28PMzPl+gMvX77UWUe13cbGRqu3ubj9MjIy1KnxCt7Xd1F8fDxGjx4NANi0aRM8PDx01lMN1WnevLnO56osqN4rFApFkUNAVPdIVfdd8k4EzoUnY+gjOTlZnUtTNS6uoFq1asHFxQWZmZk4efKkenuDBg208hEyxhAbG6sxrqisqcY0q3qat3r6o7NtDfWnMA6Hg862NfCLpz8A4NSNnXj8+FG5tY8QYhhdwXNlD5qB/wLcGzdu6CwPDw9Hhw4dcP369bceS9f8koIKj21W0ZUrul69ejhy5AjMzc2RkJCgXpDr6NGj2LBhg0ZdKysrzJgxQz3h8M6dO29tq4uLizoouXXrllY5Y0xjDHJJdezYEWZmZrhy5Yo6/69qLKypqSk6d+4MxhiCgoIQFhaGnj17luj4/v7+RbYdAB49KvrvBlfHqrMSiQRJSUlvvYeG4vF46r/ZRb2WVK/Boibrx8fHa+VrBoCbN28CACwsLNC4cWP1dl3XKZVKkZSUZHAO6rIkl8sxdOhQpKamYtiwYRgyZIhG+alTp/D06VMAxf+uKRSKIj84leY58fX1VXc0GnoPK7N3InA2xM2bN6FQKMDn83UOyAeA2rVrA1C+4av06tULDx480PiUdPfuXWRkZKBPnz5l2+g3VNkzVAG8p9AKnWx0/yHt/GbYBmMM7dq1q9QLJxBClAoHz5U9aAaUWTOcnJxw48YNncHzypUrcefOHb2Wq65Xr566V7HwggbZ2dlFLnJw6NAhHDx4UGs7YwxyuRyWlpbqzBp3797FTz/9pHPspuoPf40aNd7aVgCYMmUKAOCXX37RGl957NgxgzJqqJiamqJTp05QKBRYuHChugdaRdXDvGTJEri6uuJ///tfiY4/evRomJub4+rVq1ofOiQSCbZt21bkvqrMHQWD0M2bN8PZ2Rm5ubklakdJzJo1C1wuF7t27dKaCJacnIw9e/aAz+dj5syZOveXSCQICgrS2r5x40YAwLhx4zQyaqjG1he8zj///BPOzs6IjIws9fUY28KFC3Hx4kV4e3urr6mgZcuW4fLlywD+m4R35coVZGRkaNQ7fvw48vLydJ6jNM8Jn8/Ht99+CwBYu3at1vCYc+fO4f79+yWapFuZvLeB87NnzwAoJ0To+uQEAM7Ozhp1AeWbjJeXF2bPng2FQgGpVIrZs2ejQ4cOxX4yysvLQ2ZmptZDLBaX+lp8TK2LHO/D4XDg82Zwc0UPmCeE6K9g8FzZg2ZA+Yf0yJEjsLa2Rq9evfDbb78hNjYWN2/exJgxY3D48GHs3r0bQqEQgDLAKdiblZSUpP6/mZkZ5s6dC0CZrmr79u14+vQpLl68iC5duqhn5IvFYiQlJWkEvz/++CMWLlyIu3fvIjY2FqGhoejVqxdyc3OxaNEijWF50dHR6NmzJy5cuICYmBjcu3cPCxcuxJ49e9CsWTN1Z0hGRobGeVJTU5GUlKR+T/3yyy/RrVs33Lx5EwMGDMCtW7cQGxuL3bt34/vvvy91r5kqWJZIJFqB86effgoTExNIJBKdvc2qXkBVUKTqEVb97alWrRq2bt0KDoeDnj17Ijg4GHFxcfj777/RrVs3dUaQwscBlBk3HB0dcf/+fYSFheHevXsICgqCn58fzMzM1M+TSlJSknoITuF7V7hucVq0aIH169cjJSUFAQEBOH/+POLi4nD27Fl06NABYrEYv/zyS5Ef0po2bYrdu3dj/fr1iIqKwoMHDzBhwgQEBwejSZMmWLBggUZ9a2trNGrUCK9fv8bhw4cRERGBDRs2wMXFBV5eXlqvh4KvbdVrp2CZaliMoWXFne/SpUvqSYBz5sxBTEwM7t+/r/EoGOwOHDgQjRo1QkpKCrp164bQ0FA8ffoUQUFBGDNmjHqMc8Hzl/Y5AZTfDg0ePBhnz57F0KFDcfv2bcTExGDXrl0YOHAgHBwcEBwcrP4ALZfLdb6OVUNpC7avcN1yp3cW6UoEb5Jj60pCrrJ48WIGgHl6ehZZ54svvmAAWMeOHTW2P3/+nPXp04fVqlWLeXt7s9GjR2slYS9s7ty56nbpepR0AZS4uDhWtWpV5TUIrViW32gmbjZG65HlN5p5CK0YALZly5YSnYMQUr4rB+pScFGjd0FcXBybMGECc3d3ZwKBgFWvXp316NGD3bhxQ6OeamGEwo+Cfv31V+br68tEIhETiUSsQYMGbNmyZWz27Nka+6gWJHn06BGbN28ea9q0KbOysmICgYC5ubmxHj16aC1akp6eznbu3Mm6d+/OqlWrxkxMTJi9vT1r2rQpW7duHcvJyVHXVa1WWPhR8G+MVCplS5cuZT4+PkwgEDBHR0c2ZMgQFhcXp96/pAugqKgWCnF3d9dZ3r59ewaAhYaGapUVXPSj4KPgYjCqep988gmzsLBgZmZmrHHjxuyXX35hFy5c0NhvwIABGvuFhYWxpk2bMqFQyGxtbVmXLl1YREQEY+y/BWMKPlSLpRT1N7Ekrl27xvr168ccHR0Zn89nTk5O7LPPPivy72nBBVtSUlLY+PHjWfXq1Rmfz2dubm5sxowZWqseqty7d4+1bduWmZmZMUtLS9a6dWv1a1rXdaquRddrR7VoiKFlxZ1vxIgRxcYaqkfB12J6ejqbPHkyc3V1ZSYmJszW1pZ16tSJXbhwQeP3tPBiJ4Y+JyoKhYLt27ePtW3blllbWzOBQMA8PT3ZlClT2IsXLzTqqhZcKeo6dL2f6Fols7CyWACFw1g5TLU1MlXva3ELoCxZsgRz5syBp6eneqxPYePHj8eWLVvQsWPHInMJ6isvL0/nVx53796Fv78/bt26pTGmSh+PHj1CvXr1wBjDIZ+O6Gyr/bXiybQ49I84A3MzCyQmvdCZSo8QUrTc3FxER0ejZs2aEIlohi0puREjRmDXrl0ICgrCiBEjKro5H6zQ0FC0a9cO/v7+6jlO5MNWkvf327dvw9fX963x2ns7VEM1e7RgxozCVLkiS5KwvyhCoRBWVlZaj5JmAimoTp066jfhsc/CcDItTj1WiDGGk2lxGPssFAAwbOgoCpoJIYQQQspQ5UzgZwSqCYHJyclQKBQ6xzknJiZq1K2M1q9fj3/++Qe3b99G/4gz8BBawcfUGhGSDETlKTNu1HFrjuU/LqnglhJCCCGEvN/e28DZ19cXXC4XMpkMz549g7e3t1adx48fAyh6CdmS2Lhxo87ZrcX1eOvD3NwcFy9exKRJk7Bz505E5WWqA2ZzMwsENB6FiZ8tgaWV9vKihBBCyo5YLIZYLFa/z6smfNnZ2UEgEFRw6z4ccrkcycnJ6omJqomOAoGgyMV0CDHUeztUw9HRUZ2/UrXufUFPnjzB8+fPYWlpic6dO5f6fIGBgXj48KHWoyRLoxbF3NwcO3bswIMHD1C1alXY29tjy5YtuBP6AoE918LOkYJmQggpbytXroSzszN+//13AMDUqVPh7OyMK1euVHDLPizx8fFwdnZG3759AQBXr16Fs7NzuaWQJR+W9zZwBqBOd7Rhwwbk5+drlK1atQoAMH36dHU6lMquTp06CA8Px+3btzFu3DjwZMoxzbTUNiGElL958+aBMab1aNu2bUU37YPi7u6u8z7QBEFSFt6ZwFmVI7BgnkBd2wry9/fH4sWL8eDBA/Tu3Ru3b99GREQEZs6cia1bt6Jr166YNWtWeV2CUbi6uqpzvUrepDA0tam49hBCCCGEfCjemTHOTZs2RWxsrMY21Yo4ALRWplGZPXs2PvroI6xatQqffPIJZDIZfHx8sHbtWgQGBhq0nLcuZTXGuTjqwJl6nAkhhBBCytw7Ezirlp82RJcuXdClSxfjNUaHwMBABAYGam1X5QXUR+ZLIO4WkBYPSHMAE4EyKLZxATxaKv9fkCRd+S/1OBNCCCGElL13JnB+3z2/C0SEAO7NAa+PAYEZkJ0KPD4HxN0EXD/SDJzl+UDem9W8qceZEEIIIaTsvTNjnN9nqXHKANmzNeDRAhBZAVwTwNIRqNsZMLMDOIXuVK4yIx14fIBvWv5tJoQQQgj50FCPcyUQGQaYCJW9yoWZ2wEtR2lvLzhM480K5IQQQgghpAxR4Gwkhk4OFL8Gsl4CVWoC3BLMUyw4MVB+NwKy/eegiIwHS8kAx9oCHDcn8D9rD5PWDUtyGYQQQgghpAgUOBuJoZMDM14o/xVZASkxQMx15SRBpgDMbAHnuoCrL1B4xXBVj7P9gwvIXbYfHM/qEM4bDa6PK9irdEg3HUHe9A2Q9/8Ewm8GGeciCSGEEEI+YDTGuYLlpCn/TY0B7p0Aqv8P+Hgc0GoMYF1NOYzjn2BlIF2QJAPgKPJhdfYoAEA4Zzh4//MCRyQEt0ZVCOeOBqzMkX/wAhSxuvNcE0IIIYQQ/VHgXMHy85T/SjIAb3/AqQ7AFwFCC6BOgHKCYEo0kHBPcz9JBsCT5oCbqxwKwvWoplHOEQnAdXEAACgi4sv8OgghhBBC3ncUOFciTnW0tznXU/6b9Oi/bYwph2rki6wABzsAgCLqhcZ+LE8GxfNkAADHnvLVEULKl7u7OzgcjvpBCCHvAwqcKxhf9OZfU2VqucJUOZpVQzoAQCYB5DLlz4K5o8Gxs0Le4l2Q33sGliuFIu4l8uZtAzKzwa3rDu7/vMr2IgghpJDw8HAkJiZWdDP0lpOTA19fXzRp0qRMV3z9kO3cuRPz5s0rdkGzL774As7Oznjw4EG5tKm8z1dYZXxOSPFocqCRGJpVw7yK8l+FvPjjF+ywUWXUEFoC/CY+4O2YDem6g8gdu+y/SraWMOnbFoIJvcHh0ecjQkj5cnBwqOgmlMiDBw9w+/Zt9c9NmjSp4Ba9f3bu3ImwsDC0bdsW7u7uOuvs2bMHOTk5OHnyJOrVq1fmbSrv8xVWGZ8TUjwKnI3E0Kwadm4AOIBcquxJLryYieTNQieqABsokMPZGsi/9A/yFgaB61wFoi0zwPV2AXuVBtmxS4BYAiaRgmNhVrqLI4SUiaysLJw9exapqamws7NDQEAALC0tK7pZH6RGjRrhs88+U/9MKsZ3332HkydPol+/fu/l+QzxLrTxQ0JdkRVMaAE41Vb+/ELHtzCJb7ZVa/DfNlWPswVLQd73vwD5+RD9NAW8hl7gmInAdXeGYHJ/KCLjIRk6H4qklLK9CEJIiWRnZ2PKlCmoVq0a+vbti7Fjx6Jv376oVq0apkyZguzs7Ipu4geHz+fjwIEDOHDgAExMqE+posyaNQsXL14ssvf1XT+fId6FNn5IKHCuBHzaKZfVjroCJD1Wjl/OEyuX4c56qUxRpwqugf96nG2e3gBypeD51ganipXGMTkcDkwC/IAMMWTbTpTfxRBCipWdnY0OHTpg3bp1EIvF8BRaoYuNKzyEVhCLxVi3bh06dOhQaYPn+Ph4BAYGwsPDA0KhEFZWVvD19cW0adNw9+5dvY+TlZWFXbt2oUePHvD09IRIJEKVKlUQEBCA48ePF7lfeHg4+vXrB3d3dwiFQlStWhWffvopgoKCkJ6erlE3NTUV33//PerXrw9LS0tYWFigSZMm+OGHHzTGi44YMUJjImNoaKjWeWUyGZYvX47atWtDKBTCwcEB/fr1w4MHD/Tavyj6PJ+hoaEax+dwOOogSldZSc6fmpqKWbNmoW7dujA1NYW1tTVatWqFbdu2QS7XHEPYtm1bjfM8ffoUK1euRIMGDWBmZgZbW1v07NkT//77r8Z+8+bNA4fDQVhYGACgXbt2WhNHd+7cqbFt3rx56v337NmjVXb//n106dIFlpaWqFq1KkaOHInkZOWE+GfPnqFXr16wsbGBjY0NPvvsM63x9sWdD9Ce3Krr8e2336rrl/T1XNrnpKBHjx5hxIgRcHV1Vb82e/TogZCQEK26Xl5eGsdUKBRYsWIFvL29IRQK4erqipkzZ0Imk+k8FwHASJm6desWA8Bu3bpVbD1ZLmMRoYxd3srYuZ8YC1nH2M3fGEt8pF335m+Mnf2RsdQZu5m42RiWu2y37mOevsbEzcawnCHzjHEphLyXJBIJe/jwIZNIJOVyvsmTJzMAzM5EyA75dGRZfqOZuNkYluU3mh3y6cjsTIQMAJs8eXK5tKckrly5wmxtbZmTkxPbu3cvi46OZjdv3mRTp05lABgAlp6errGPanth+/fvZwBY//792dWrV1lMTAy7cuUKGz58OAPAli1bprXPX3/9xXg8HuvcuTO7dOkSi4mJYX///Tfr3bs3A8Dmzp2rrisWi5m3tzdzcHBg+/fvZ5GRkez+/fts1apVTCQSMTc3N3Xd9PR0lpiYyFq0aMEAsJCQEI3zyuVy1q1bNwaA9enTh4WHh7Po6Gi2c+dOVqNGDdakSRMGgK1Zs4YlJiayvLw8oz6feXl5LDExkU2fPp0BYN7e3uz58+eMMcby8vLYw4cPWZUqVdiqVatKdP6IiAhWo0YNZmFhwTZu3MiePXvG/vnnHzZx4kQGgHXt2lXjWCkpKSwxMZG5uLgwAMzf35999tlnGs+Hra0tMzU1ZaGhoer9srKyNJ7fw4cPs8TERPWDMcZycnJYYmIi++abb7TupUQi0SgbNGgQCwgIYFeuXGFPnjxhc+fOZQBYkyZN2IsXL1jv3r3ZlStX2OPHj9n333/PADBfX1+mUCjUxyzufIwx5ubmptXOxMREtnXrVgaAWVpassjISHX9kr6eS/ucqAQHBzORSMS8vb3Z8ePHWUxMDLt06RJr164dA8AWLVqkUT85OZklJiaqX1/jx49nixYtYpGRkez69essICCAAWBTpkzR6zVU2ZXk/V3feI0C5zKm743QRaFQMLFYrPU4s1bMji8Ws9eLDzBxszFMPHW1xhuCinTPaWXgPHyhMS6FkPfS295YFQoFU+TkGuWR8TKZWVhYMADskE9H5e9vocdBn47qP8wZL5NLf14d7w2GSE9PZ87OzozD4bDr169rlY8bN44BYGlpaRrbiwqcjx8/ztq0aaOzfR06dGACgYAlJCRobPf392cAWHJyssb2/Px8Vrt2bY3AIigoiAFgP/74o9bxFy1apBE4Fz5+4cB53bp16sAsPz9foyw4OFh9jUFBQVrHLIohz2deXh6rX78+A8CmT5+u3t6vXz8WEBBQonudn5/PGjRowACw/fv3a5UPGTJE6zwqbm5u6uej8DmPHTvGADAXFxeWk5OjUVbU81uQKgjWFSSqyvh8Pnvx4oVGWatWrRgA1rhxY60yVXD6999/630+Nzc3rXYmJCQwe3t7BoDt3q3ZYWXI65mx0j0nUVFRzNzcnIlEIhYdHa1RlpOTw7y8vBgA9scff2gdU/WaHTt2rMb2lJQUxuPxmJmZGcvNzS2yTe+KsgicaSCXkRiaVaM4OTk5sLCwKLLc19wBYfV7IuvyHSDhJcxdnNRljDHkn7sBAOD51TW4DYR88HKlyGn3pVEO9UdqtHp4RicbV511Or8ZthGVlYk/Ph6InnY1S3VOs5ANgKmwVMcAgO3btyMxMRHNmzeHn5+fVvno0aNx4MABvXM2d+/eHd27d9dZ1rx5c5w7dw5nz57F8OHD1dtVX8XHxcXB3t5evZ3H42HNmjWwtbXVWbewoUOHwtVV9/Ovy5o1awAo04LxeDyNsp49e6JGjRo6z1McQ55PgUCAXbt2oVmzZli1ahW6dOmC2NhYnD9/Hvfu3StRvuxjx47h3r17cHJywoABA7TKv/rqK+zduxfr16/HrFmzNJ5blYkTJ2qds0ePHnB1dUV8fDwOHz6MoUOH6t0mfXXo0AHOzs4a25o2bYq///4bVatW1Srz8/PD1atXcfv2bbRs2VKvc5w4cUJjTLFCocDQoUPx+vVrDB06FJ9//rlGfUNez6W1evVqZGdn47PPPtMa/2xqaorx48dj2rRpWLhwIbp166bzGKNGjdL4v52dHby9vfH48WNERkaifv36Rmvv+4LGOBtJYGAgHj58qPU4fPhwmZ3zVnYy1iXegyVPAMz5RZnHWZIHRWwS8uZth+JRLDie1cH/vHOZtYEQor+0N0uF+phaFxnkcDgc+LxJ4K6qXxmcOXMGgDJA0cXPzw/p6emwttZ/waVbt25h2LBh8Pb2ho2NDSwsLGBhYYHly5cDABISEjTqt2/fHgAQEBCAJUuWaASrnTp10ghAVWNGN2zYgMGDB+PixYtQKBQAADc3NwwbNkyvNj5//hxRUVEAoDNDEofDQa1atfS+ZhVDn8/GjRtj1qxZ6kBu8uTJ2LBhA6pXr27Q+Zs0aaLztdioUSMIBALk5ubi4sWLOo9Rp46OVbveHBOAevyusXl6empts7KyKrJM9RympaVplRWlQYMGGhluli5dipCQEHh5eeHnn3/WuU9JX8+lpbqHuj54Fdx+48aNIq/dy0t7nQc7O+XCaiV5vj4k1OP8jvh97kuIBOYa23Kl2fhsflVcyUrCb00nIXf6BiArBxDywa3hBP74XuAP6ACOEXqbCPlgiQTKXlsjcDp6FBh8GRGSDDDGdAYsjDFEvEmd47T4S5j16lW6k4oEpdv/jdjYWADGy8984MABDBkyBFZWVpg3bx5atWqlDnDWrVuH9evXQyqVauyzdOlSZGZm4tdff8WcOXMwZ84cNGzYEIMGDcKoUaM02takSRPs3r0bU6dOxf79+7F//344ODigZ8+eGDt2bJHBRmHPnz9X/1zUtTs5OencXpzSPJ/ff/89jh8/jn/++QetW7fG4MGDDT6/o6OjznIej4cqVaogMTFRXbewovZVXVPB586YVIFdQarfpeLKCk921NfVq1cxb9488Pl87N+/X2fKSENez6X1tntYtWpVAMr3lPj4eJ3fGlSpUkVrG5+vXI3N0OfrfUeB8ztCJDCHaaHAWeWPtFhg2XiYm+suJ4QYjsPhGGWoAwB0/LQrLCws8EycidPp8ehsW0Orzqn0eETlZcLS0hIdP+36Xn7wlUqlmDhxIuRyOX7++WcMHDhQo1xX8AMA5ubm2LlzJxYsWIC9e/fi999/x927d/HPP/9gxYoVOHToENq1a6euP3ToUPTv3x/BwcH4/fffcfLkSWzbtg3btm3DlClT1EMw9MUYK/G1lgU+n4+OHTvin3/+wbVr13D79m00bty4opulVtbPU3FDUoy9vHt6ejoGDRqE/Px8rFixQufCOIa+nisDYz9fHwIaqkEIIeXE0tJSPaZwXFQYTqbFqYMMxhhOpsVh3DPl19sjR46sVIuhuLm5Afhv7HBp3Lt3D6mpqQCAjh07lnj/GjVqYNasWbhz5446LVlqaqrWuFMAEAqFGDhwII4cOYKXL19i2bJlMDExwdq1a3H27Nm3nsvFxUX9c1HXnpSUVOJrKM3zeefOHWzcuBHDhw+HTCbD559/jtzcXIPO//LlS53lcrkcKSkpGnULK2pf1TUVfO7eVePGjUNsbCw6duyIadOm6axT2tezod52D1XbORxOicb0k+JR4EwIIeVoyZIlaN68OVLz89A/4gwa/nMQ/Z6cRsN/DqJ/xBmkyfPQvHlzLFmypKKbqkEVENy4cUNneXh4ODp06IDr16+/9ViqscZFKWosqK5c0fXq1cORI0dgbm6OhIQEvHr1CgBw9OhRbNigOcTGysoKM2bMUE/QunPnzlvb6uLiAg8PDwDKMayFMcbw5MmTtx6nMEOfT6lUiuHDh2PGjBnYvn07/Pz88PDhQ8yaNcug84eHh+u8H3fv3oVUKoVIJEKbNm10HuPRo0c6t9+8eRMA4O/vr7Gdy9UOOZKTk5GZmVmitpeXrVu34uDBg3B0dMTu3bs1emefPn2KU6dOATD89QyU7jlR3cOifudUry0/Pz+dwzSIYShwJoSQcmRubo5z585h8uTJsLS0RFRepsbwjMmTJ+PcuXOVbujV6NGj4eTkhBs3bugM9lauXIk7d+7otVx1vXr1YGZmBgD466+/NMqys7O1tqkcOnQIBw8e1NrOGINcLoelpaU6QLh79y5++uknneNKVYs71KihPVRGlylTpgAAfvnlF61xn8eOHStxRg3A8Odz/vz54PP5mD17Nng8Hnbt2gWRSIS1a9fqXPCiKD179kT9+vXx6tUr7N+/X6t89erVAIAvv/yyyKBr06ZNWsMyjh8/jufPn6N69ero27evRpmNjQ0AaCzu4+3tjUWLFund7vLy6NEjTJ06FRwOB7t27VKPF1a5fPkyli1bBsDw1zNQuufkq6++grm5OU6cOIFnz55plOXm5mLz5s0AlGPiifFQ4PyOyJVmQ1LokSutnCuLEUKKZ25ujrVr1yIhIQGHDx/G1q1bcfjwYSQkJGDt2rWVLmgGlJkJjhw5Amtra/Tq1Qu//fYbYmNjcfPmTYwZMwaHDx/G7t27IRQqx2QnJydrDGFISkpS/9/MzAxz584FAEyePBnbt2/H06dPcfHiRXTp0kU9REAsFiMpKUkj+P3xxx+xcOFC3L17F7GxsQgNDUWvXr2Qm5uLRYsWqSc2AUB0dDR69uyJCxcuICYmBvfu3cPChQuxZ88eNGvWDH369AEAZGRkaJwnNTUVSUlJ6iD5yy+/RLdu3XDz5k0MGDAAt27dQmxsLHbv3o3vv/8enTp1KvPnMykpCSEhIVi5ciWWL1+uDv6dnZ0xdepUMMYwYsQIxMTEqIcNFIfH4+Hw4cNwdXXFF198gY0bNyIqKgr37t1DYGAg9u7di65du2Lx4sVFHqN+/foYNGiQ+vnYtWsXRowYAVNTU+zduxempqYa9VU90Pv370dUVBTWrFmDjIwMtGvXDhKJBElJSRCLxQD+u/cSiQRSqVRnmVQqNbisuPPl5uZi4MCByMnJQa9eveDi4oL79+9rPAr2Ipfm9WzocwIANWvWxJ49ewAos8ocP34ccXFxuHz5Mrp27YqnT59qpaJTvbZVkpKS1K+Xwu0rXJe8UZrE0uQ/GzZsYHXq1NF6uLu7G7wAilgsVicpf9tDLBaXwVUR8v4r75UD33VxcXFswoQJzN3dnQkEAla9enXWo0cPduPGDY16qkUyCj8K+vXXX5mvry8TiURMJBKxBg0asGXLlrHZs2dr7KNaHOLRo0ds3rx5rGnTpszKyooJBALm5ubGevToobWARHp6Otu5cyfr3r07q1atGjMxMWH29vasadOmbN26dRqLc6hWdyv8KLiohFQqZUuXLmU+Pj5MIBAwR0dHNmTIEBYXF6fevyQLoJT0+SzcNtW5dLXd399f7/OnpKSwmTNnslq1ajGhUMgsLS1ZixYt2C+//KK12IuK6t5GR0ezrVu3skaNGjFTU1NmbW3Nunfvzu7evatzv7y8PPbll18yR0dHxufzmaenJ/vpp58YY/8tWKPrOkNCQnSWhYSEGFxW3PlCQ0P1+rtb+Hku6eu5NM9JQQ8fPmTDhw9n1atXZ3w+n1WpUoV9+umn7Pz581r3QLXgiq7rUC20Utzv7LumLBZA4TBWSaYJv6du374NX19f3Lp1q8SznrOzs4tdAKUgsVhcKXupCKnscnNzER0djZo1a0IkElV0c8g7aMSIEdi1axeCgoIwYsSIim5OmXN3d0dsbCyio6O1Ft4gpDIpyfu7vvEapaOrxMzMzNRf0ehTlxBCCCGElB0KnCsxDodDvciEEEIIIZUEBc6EEEKIAcRiMcRisXqylmqSoZ2dHQQC46zYWJmkpqZCKpWqJ00mJydDJBLBwcEBPB6vgltHSPmgrBqEEEKIAVauXAlnZ2f8/vvvAICpU6fC2dkZV65cqeCWlY0+ffrA2dlZvZS2n58fnJ2dER8fX8EtI6T8UOBMCCGEGGDevHlgjGk92rZtW9FNKxOhoaE6r5cmCJIPCQXOhBBCCCGE6IECZ0IIIYQQQvRAgTMhhBBCCCF6oMCZEEIA0FpQhBDyfimL93VKR2ckGzduxMaNG7W2q9IUEUIqJy5X2X+gSrFFCCHk/aB6X1e9zxsDBc5GEhgYiMDAQK3tqiUcCSGVE5/PB5/Ph1gs1nuJe0IIIZVfVlaW+j3eWGioBiHkg8bhcGBpaYmMjAz6hogQQt4TEokEmZmZsLS0BIfDMdpxqceZEPLBs7e3h0QiQVxcHKysrGBpaQkej2fUN1tCCCFlizEGuVyOrKwsZGZmQigUwt7e3qjnoMCZEPLB4/F4cHV1xevXr5GVlYX09PSKbhIhhBAD8fl82NjYwN7e3ujLwVPgTAghUAbPVatWhaOjI2QyGRQKRUU3iRBCSAlxuVzw+fwy+8aQAmdCCCmAw+FAIBBUdDMIIYRUQjQ5kBBCCCGEED1Q4EwIIYQQQogeKHAmhBBCCCFEDxQ4E0IIIYQQogcKnAkhhBBCCNEDBc6EEEIIIYTogQJnQgghhBBC9EB5nMuYRCIBADx69KiCW0IIIYQQQnRRxWmquK0oFDgbycaNG7Fx40at7aqle4cOHVrOLSKEEEIIISURExODVq1aFVnOYYyxcmzPB+f169c4ffo03N3dYWpqWtHNqXTEYjH8/f0RFhYGCwuLim4OKYDuTeVG96fyontTedG9qdwq8v5IJBLExMSgU6dOsLe3L7IeBc6kQmVmZsLa2hoZGRmwsrKq6OaQAujeVG50fyovujeVF92byu1duD80OZAQQgghhBA9UOBMCCGEEEKIHihwJoQQQgghRA8UOBNCCCGEEKIHCpxJhRIKhZg7dy6EQmFFN4UUQvemcqP7U3nRvam86N5Ubu/C/aGsGoQQQgghhOiBepwJIYQQQgjRAwXOhBBCCCGE6IECZ0IIIYQQQvRAgTMpc1euXEGtWrXA4XAQExNT0c0hhBCj+eqrr8DhcODu7l7RTSGElAMKnEmZkUgk+Oabb9CmTRtERETovd/169fRq1cvODg4wNTUFPXq1cOiRYuQl5dXhq39cMTFxWHhwoVo1aoVbG1twefzUbVqVXTt2hWHDh0qdl+6N2UrKSkJ27dvR58+feDm5gahUAhTU1P4+Pjgiy++KPb36MmTJxg6dCicnZ0hEong6emJ6dOnIyMjoxyv4MNy/fp1rFu3Tu+69LtTdnbu3AkOh1Ps4+7duzr3pXtTPrKzs7F06VI0bdoUNjY2MDMzg4eHB3r27IktW7bo3KdS3htGSBl4+vQp8/HxYW5ubuzMmTMMAAPAoqOji91v7969jMfjsebNm7OLFy+yp0+fspUrVzITExPWtGlTlpWVVT4X8J4KDQ1lJiYmTCgUsu+++46Fh4ezyMhIdvDgQebt7c0AsEGDBjG5XK61L92bsufr68sAsOHDh7PLly+zmJgYFh4ezr766isGgJmZmbFLly5p7RcSEsJMTU1ZrVq12KlTp1hUVBTbsWMHs7CwYB4eHuzFixcVcDXvt7y8PFavXj1Wo0YNBoC5ubkVWZd+d8peUFCQ+negqMejR4+09qN7Uz4iIiKYm5sba9KkCQsODmZRUVHs0aNHbNWqVUwoFLLq1atr7VNZ7w0FzqRMHDt2jE2YMEH9wtYncH769CkTCoXM0dGRpaWlaZQtXryYAWBjxowpw1a//4KDgxkAtm7dOq2yhIQEZmlpyQCwX375RaOM7k358PX1Zd26ddNZNnz4cAaAtW/fXmN7Wloas7e3ZyKRiD179kyjbO/evQwA69ChQ5m1+UM1d+5cZmNjw/bt21ds4Ey/O+UjKCiI+fv7l2gfujflQywWM3d3d9a0aVMmkUi0yhcvXsw++ugjjW2V+d5Q4EzKRH5+vsb/9QmcR40axQCwGTNmaJWlp6czoVDIuFwui42NNXZzPxjBwcGMx+OxjIwMneWDBw/WGWjRvSkfp0+f1tkrxhhj69atYwBYgwYNNLYvWLCAAWADBgzQ2kcul7Nq1aoxAOzy5ctl0uYP0f3795lAIGDbtm1jISEhxQbO9LtTPgwJnOnelI85c+YwAOz06dN671OZ7w2NcSZlgsfjlai+XC7HkSNHAADt27fXKre2tkbTpk2hUCjeOg6XFK1bt25ITU2FlZWVznIXFxcAQGpqqnob3Zvy07FjR9SuXVtn2bVr1wAAAQEBGtsPHjwIQPe94XK5+OSTTwAABw4cMGZTP1gKhQKjR4/Gxx9/jNGjRxdbl353Ki+6N+VDLpdjx44dEAqF6vciffapzPeGAmdSKURERCA9PR0AigwcVNvDw8PLq1nvHT6fX2TQDACJiYkAgAYNGqi30b2pODKZDBEREfjqq6+wb98+9OnTB4sWLVKXZ2dn48GDBwDo3pSXtWvX4t9//8Uvv/zy1rr0u1O+srKysGDBAjRp0gSOjo6oXr062rdvj82bN0MqlWrUpXtTPu7fv4/ExES4u7sjMzMTM2bMQN26dWFnZwdPT0+MGDFC/R6mUtnvDQXOpFJ49uyZ+mcnJyeddZydnbXqEuPJz8/H2bNnAQCBgYHq7XRvKsagQYMgFApRq1YtnDhxAkePHsXhw4dhamqqrhMdHQ2FQgGA7k15iI6OxnfffYcFCxbA09PzrfXpd6d83b59G1evXsX8+fMRGhqK3bt3w8bGBhMmTMDHH3+MtLQ0dV26N+Xj33//BaDMsuXr64tHjx5h06ZNuHTpEqZNm4ajR4/C19cXJ06cUO9T2e8NBc6kUsjMzASgHOLB5/N11jEzMwMASq9VRnbs2IGkpCRMmDABTZs2VW+ne1MxVq9ejYcPH+L06dNo2bIlevXqhc8++0zdEwP8d28AaATUBdG9MZ6xY8eiTp06+Oqrr/SqT7875adu3bpYuXIlTp48iW7duqFu3bpo3749Dh8+jO7duyM8PByjRo1S16d7Uz6Sk5MBKNOg2tra4ujRo/D390e9evUwYcIE7N+/H3l5eRg6dChev34NoPLfGwqcCSF4+vQppk2bhhYtWuCnn36q6OYQKHtaateujY4dO2L37t34+uuvcfDgQQQEBEAul1d08z4427dvR1hYGLZv317iORyk7Pn5+eGbb77RWTZ37lwAwNGjRxEZGVmezfrg5eTkqH/+8ssvweVqhp1dunSBj48PMjMzsWvXrvJunkEocCaVgmrcrVwuh0wm01lH9QtobW1dbu36ECQmJqJjx47w8vLCyZMnIRKJNMrp3lQO8+bNg0AgwM2bN9VfaxYcry6RSHTuR/em9BITEzFt2jR8++23aNiwod770e9O5dCwYUP1h52///4bAN2b8lLwm7C6devqrOPr6wsAuHHjBoDKf28ocCaVQsHxgklJSTrrqCau6TO2kOjnxYsXaN++PRwdHXH+/Hmdb0J0byoHS0tL9bLOV69eBQDUrFkTHA4HAN2bsnTmzBmkp6dj9erVsLCw0Hh06dIFgPKr6ILbAfrdqSxMTExgb28P4L+MQXRvyodqLDIA2NnZ6axjaWkJAOox6JX93lDgTCoFHx8fddD2+PFjnXVU2wuOvyWGi42NRZs2beDo6Ihz587B1tZWZz26N+XjxYsX2Lx5c7HDMMzNzQFAnSHA3Nwc9erVA0D3piz16dMHkZGR+Pfff3H37l2Nx7Zt2wAA1apV09gO0O9OeZFIJPjjjz+QnZ2tszw/P189ftbGxgYA3Zvy8tFHBwef+AAAErNJREFUH6l/fvnypc46qu2qv0GV/d5Q4EwqBR6Phz59+gAAzp8/r1WekZGB8PBwcLlc9O3bt7yb996JjIxE69at4enpiZMnT6p7yADlLOjOnTur/0/3pnxERERgwoQJRc4SV6WmAwAvLy/19v79+wPQfW8UCgUuXLigUY+UnKWlJby8vHQ+qlevDkDZq1lwO0C/O+Xl5cuX6gmAuty7d0/9gbR58+YA6N6Ulzp16sDHxwcA8M8//+is8/DhQwBAy5YtAbwD96bcl1whHyTosXJgZGQkEwgEzNHRkaWnp2uUqZbYHDVqVBm39P13//595uTkxHr27Mlyc3O1ylUroRVE96bsqZ73r776Smf5kiVLGABmbm7OEhMT1dtTU1NZlSpVmEgkYlFRURr7qJbc/uSTT8q07R+yt60cSL87ZS86OpoBYCNGjNBZ3rt3bwaAdezYUWM73ZvysWvXLgaA1a1bl8lkMo2yP//8kwFgVapU0VhauzLfGwqcSZl59eoVS0xMZImJierA+caNG+ptuuzevZtxuVzWokULdvnyZfbs2TO2cuVKZmJiwnx9fVlmZmY5X8X75d69e8ze3p4BYA0bNmS+vr5aDx8fH63AmTG6N2Xt0qVLDADjcDhs+PDhLDQ0lEVFRbFLly6xCRMmMA6Hw4RCITt48KDWvufPn2cikYjVqlWLnT59mkVFRbEdO3YwCwsL5u7uzhISEirgit5vqve3w4cPMwDMxcVF/d6WlZWlUZd+d8pWXFwc43A4DAAbNmwYu3jxIouJiWFXr15lgwcPVgdtuv7u0L0pH2PHjmUAWPfu3dmNGzdYTEwM2717N7O3t2dWVlYsJCREa5/Kem8ocCZlxs3NTR0w63oU5erVq6xHjx6sSpUqTCgUstq1a7P58+cziURSjq1/P61evbrYe/K2+0P3pmzdunWLTZs2jfn5+TFbW1vG4/GYmZkZq1evHps0aRKLiIgoct9Hjx6xQYMGsapVqzKBQMBq1qzJvv76a41eHGI8xb2/zZ07V6s+/e6UrSdPnrC5c+eyVq1aMTs7O8bj8ZiNjQ1r2bIlW7VqFcvOzi5yX7o35eO3335jbdu2ZdbW1ur3qAkTJmh9U1ZQZbw3HMYYM/4AEEIIIYQQQt4vNDmQEEIIIYQQPVDgTAghhBBCiB4ocCaEEEIIIUQPFDgTQgghhBCiBwqcCSGEEEII0QMFzoQQQgghhOiBAmdCCCGEEEL0QIEzIYQQQggheqDAmRBCCCGEED1Q4EwIIYQQQogeKHAmhBBCCCFEDxQ4E0LIO4AxVtFNIGVIoVBUdBMIIXqgwJkQQiqxe/fuoWXLlsjMzKzoppTazp07weFw1I958+ZVdJMqjX379mHs2LHvxX0m5H1GgTMh5L3j7u4ODoeDmJiYim5KqZw8eRLNmzdH69atYW1trbPOzZs3MXHiRNSrVw82NjYQCASoWrUq2rRpg+nTp+Ps2bPIz8/X2m/x4sWws7PDhQsXyvoy1AYMGIDExER888035XbOkqiI50Tl008/xb1799C0aVM8f/683M9PCNEPBc6EEFIJ3b9/H/3790f//v2xfPlyrXKJRILhw4ejadOmSExMxPLly3Hz5k3cv38fe/bsQf369bFhwwZ07NgR1apVw7179zT237dvH9LS0nDkyJHyuiSYmprCyckJFhYW5XbOkqiI50TFxsYGZ86cQX5+Prp27Yq8vLxybwMh5O0ocCaEkEroiy++gEwmw8KFC7XKZDIZOnfujN27d2PDhg0IDg7Gp59+Ci8vL/j4+CAgIAA///wzbty4ASsrKyQnJyMlJUXjGNOnT0ezZs0wcuTI8rqkSq+inxMrKyt8//33uHfvHpYuXVohbSCEFI8CZ0IIqWTCwsJw5coV9O3bF66urlrls2fPxsWLF9GjRw8EBgYWeZwGDRoUOY54xIgRuHbtGnx9fY3V7HdeZXhOPv/8czg4OGDt2rXIzs6usHYQQnSjwJkQ8kF5/vw5Jk2aBG9vb4hEIlhbW6NVq1bYsmUL5HK5zn3u37+Pvn37wt7eHmZmZmjQoAHWrFkDhUJRJuOp9+zZAwD45JNPtMqSkpKwYcMGAMCUKVPeeqyhQ4fC3d0dIpEIABAaGqoxQW/EiBEa9S9fvqxVnpiYiFGjRqFatWrg8Xha+8XHxyMwMBAeHh4QCoWwsrKCr68vpk2bhrt375b4+mNiYjBu3Di4ublBIBDAwcEBXbt2xenTp0t8rCdPnmDEiBHw8vKCSCRClSpV0L59e2zYsAFJSUl6PScA0LZtW406uh6fffZZqa+Dx+OhXbt2SE9Px4kTJ0p8vYSQskWBMyHkgxEeHo6GDRtiw4YNkEql6NWrF1q2bInbt29j/Pjx6NatG6RSqcY+YWFh8PPzw5EjR2BjY4OePXvC2dkZM2bMwODBg8uknefOnQMA1KtXT6vs2LFjyM3NhUAgQJs2bd56LAcHB0RHR6N58+YAgJYtWyIxMRFr1qzRWb9Zs2Ya5a9fv0a3bt3g7++PK1eu4OzZs3B0dFTXv3r1Kho2bIgjR45g0aJFePLkCUJCQtCmTRusWrUKH330ETIyMvS+9suXL6NRo0Y4evQolixZggcPHmD//v1IS0tD586ddY73Lsrdu3fRuHFjPHz4EJs3b8aTJ09w5swZeHl5YdKkSZg5c6Zez4nKmjVrkJiYqPH4888/weVywePxMHXqVKNcR4MGDQAAZ8+e1ftaCSHlhBFCyHvGzc2NAWDR0dHqbbm5uert48ePZ1KpVF327Nkz5u7uzgCw2bNnq7fn5OSw6tWrMwDsm2++YXK5XF324MEDVrVqVQZA61ylkZWVpT5mXFycVvmIESMYAFanTp1SnScoKIgBYMOHDy+2HAA7ceKERtl3333HJk+ezNLT05mzszPjcDjs+vXrWscYN24cA8DS0tI0ts+dO5cBYHPnztXYnpaWpn5Or169qlEmkUiYs7Mz43K57MaNG3pd4/DhwxkAFh4erlXWoUMHrWsv7jnx9/dnQUFBGtuysrKYt7c3A8AWLFhgtOtQtcPPz0+v6ySElB/qcSaEfBAOHjyI2NhYVKtWDWvWrAGfz1eXeXh4YOXKlQCA9evXIzc3FwBw6NAhJCQkwM3NDUuXLgWX+99bZt26dfH9998Xeb5Dhw6hd+/eqFGjBszMzFCvXj2sWrUKMpms2HbGxsaqf7azs9Mqf/nyJQBlFobyULNmTXz66aca2xYuXIi1a9di+/btSExMRLNmzeDn56e17+jRo2FtbQ0Oh6PXubZv346XL1+iRYsW6h5yFZFIhBEjRkChUODnn3/W63jJyckAgLi4OK2y+fPn4/PPP9frOACwZcsWdO/eXWNbYGAgIiMj4e/vjzlz5hjtOuzt7QHgnU+nSMj7iAJnQsgHITQ0FAAwcOBACIVCrfI+ffrA1tYWWVlZuHXrFgDlMA0A6N+/v0agrTJkyJAiz7dy5UoIhUKsWLECf/75JwYPHozvvvsOY8aMKbadWVlZ6p91tVPfINRYateuXWTZmTNnAABNmzbVWe7n54f09PQic1AXdbwmTZroLPfw8AAA/P3333odr3379gCUE+5mzpyJx48fq8tatmypLtdHrVq1UKVKFfX/9+7di927d8POzg579uzR+FBV2utQ3XdaDIWQysekohtACCHlISEhAYCyB1UXDoeDmjVrIi0tTV1XtRCFu7u7zn1sbGxgbW2tcwzviRMn4ODgoP5/u3btwBjD999/jxUrVqBq1ao6j1lwsRIej6dVrtovPT1d5/7GVvAaClP1jhdXpyRUPcNbtmzBjh07tMpVkzdV9+dtJk+ejMTERKxbtw7Lly/H8uXL4ePjg/79+2PcuHGoUaOGQe189uwZJkyYAADYsWMHXFxcjHodqvuua+EaQkjFosCZEELeorhe3qLKdAWTqjRnL168KDJwNjMzU/8slUq1ep1btGiBoKAgPHv2DPn5+TAxKdu38fLu4QaUQyAmTpxYZLm+bTIxMcGPP/6Ib7/9Fvv378fvv/+OK1euYPHixfjpp5+wfft2DBo0qERtk8lkGDRoELKysjBx4kT07NnT6NehWvzE3Ny8RG0jhJQ9GqpBCPkgVK9eHQAQFRVVZJ3o6GiNuqp/ixprmpGRUaKe34sXL0IgEMDT07PIOgUD6oLDNlR69OgBU1NTSKVSXLp06a3njIyMxM6dO3H58mW926kvNzc3AP+NJTbW8Rhj8PLyKvJR3POni4ODAyZPnozLly8jOjoan3/+OSQSCcaOHVvinvvZs2cjPDwcDRo0wKpVq8rkOlT3vWD2EkJI5UCBMyHkg9C2bVsAwIEDB9ST/woKDg5GWloaLC0t1T3DqnRvBw8e1Pm1+b59+/Q+/8OHD7F27VqMGzcOVlZWRdarVq2aeklq1UTAgqpWrYqvvvoKALB27dq3nnfSpEkYOXKkzmOVVseOHQEAN27c0FkeHh6ODh064Pr160Y5HmMMAQEBmDZtml7HW7ZsmTq1n4qbmxt27doFLy8vZGdnIyIiQq9jAcqxy6tWrYKpqSl+++03dW5sQJlf+9ChQ0a5DlV+6Vq1aundNkJI+aDAmRDyQejfvz9q1KiBFy9e4Ouvv9YIhKOjo/HNN98AUAaaqoCof//+cHZ2RkxMDObMmQOFQqHe5/Hjx1iwYIFe5379+jV69eoFLy8vLFu2rNi6HA4HLVu2BKDsLdZl/vz5CAgIwLFjx7Bx48Yij7Vx40acPn0anTt3Rt++ffVqa0mMHj0aTk5OuHHjhs4gceXKlbhz5w4aNWpUouNdvXoVV65c0Srfu3cvzp07p/4Q9DanTp1CUFCQzrL8/HxwOBydKzPq8vLlSwwbNgyMMaxevRp169bVKH/8+LE6EC7tdTx58gQA0Lp1a73aRggpPxQ4E0I+CEKhEIcOHYKdnR02bdoELy8vDBw4EN26dUPdunURHR2NTp06Ye7cuep9zMzMsGfPHohEIqxYsQK1atXCoEGD0KlTJzRs2BCtW7dWTzATCAQ6z5uVlYUuXbpAKpXi1KlTeo1b7dGjBwAU2VNrYmKCY8eOYcSIEfjyyy/Rp08f/PHHH3j27BkiIiLw119/oW/fvpg0aRK6du2K33//Xb2vVCpFUlKSekKjRCJBUlISxGIxAOXENV3lql7QgqytrXHkyBFYW1ujV69e+O233xAbG4ubN29izJgxOHz4MHbv3q0ep134XGKxWOP/BY/Xs2dPbN++HVFRUbh//z6WLFmCsWPHYtKkSVrp8Yqzb98+fPXVVwgPD0dcXByuXbuGIUOGICYmBlOnToWzs/NbnxPGGIYPH46XL1+iWbNmaNWqFe7fv6/xUA3zMcZ1XL16FcB/rwNCSCVSgTmkCSGkTOhaAEUlLi6OBQYGMg8PDyYQCJilpSVr0aIF27RpE5PJZDqP988//7DevXszOzs7JhKJWN26ddmPP/7I8vLymEAgYFwul0kkEq39cnNzWbt27Zi9vT17/Pix3u3PzMxk1tbWzNPTs8g2qdy4cYONHTuWeXt7MzMzMyYQCFiNGjVYv379tBYuYYyxkJAQ9cImBR+qxUiio6N1lhf35yIuLo5NmDCBubu7M4FAwKpXr8569OihtcBHwUVVdJ274PEmTpyoPp6TkxNr27YtO3jwIFMoFPo9iYyx2NhY9uOPP7LWrVszOzs7ZmJiwqpXr84CAgLY0aNH9X5OYmJiinxOCj7c3NxKfR33799nHA6HdezYUe/rJISUHw5jjJVDfE4IIe+dixcvwt/fHw0aNMC///6rUSaXy9GvXz+cO3cOFy5cKDLXcVE2bNiASZMmYfv27Rg1apQxm00qsX79+uH48eO4c+eOziXXCSEVi9LREUJIMZKTkyEWi7XyP9+/fx9jx44FAIwcOVJrv8DAQBw9ehQLFy6EXC7HtWvX1GV169YtdoKgav+rV69i2rRpaNSoERo3bmyEqyGV2bp163DkyBHs2LGDgmZCKinqcSaEkGKEhoaiXbt2qFu3Ljw8PGBqaoro6Gjcvn0bCoUCAQEB+Ouvv7TyKbu7u2ssn11QSEiIXhPc8vPz8e2332LXrl14/vw5TE1NjXFJpBI6deoUBg4ciG3btqFfv34V3RxCSBEocCaEkGK8ePECS5YsQVhYGBISEpCVlQVLS0vUq1cPgwcPxtixY8t8EZLbt2+jXr16OpfgJu+HiIgI2NnZwd7evqKbQggpBgXOhBBCCCGE6IHS0RFCCCGEEKIHCpwJIYQQQgjRAwXOhBBCCCGE6IECZ0IIIYQQQvRAgTMhhBBCCCF6oMCZEEIIIYQQPVDgTAghhBBCiB4ocCaEEEIIIUQPFDgTQgghhBCiBwqcCSGEEEII0QMFzoQQQgghhOjh/0Fwl4L44PNKAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "classiq_color = \"#119DA4\"\n", + "classiq_color_1 = \"#F43764\"\n", + "qiskit_color = \"#bb8bff\"\n", + "plt.rcParams[\"font.family\"] = \"serif\"\n", + "plt.rc(\"savefig\", dpi=300)\n", + "plt.rcParams[\"axes.linewidth\"] = 1\n", + "plt.rcParams[\"xtick.major.size\"] = 5\n", + "plt.rcParams[\"xtick.minor.size\"] = 5\n", + "plt.rcParams[\"ytick.major.size\"] = 5\n", + "plt.rcParams[\"ytick.minor.size\"] = 5\n", + "plt.figure(figsize=(8, 5))\n", + "\n", + "\n", + "(qiskit1,) = plt.semilogy(\n", + " num_qubits_qiskit,\n", + " qiskit_times,\n", + " \"-s\",\n", + " label=\"qiskit\",\n", + " markerfacecolor=qiskit_color,\n", + " markeredgecolor=\"k\",\n", + " markersize=6,\n", + " markeredgewidth=1.5,\n", + " color=qiskit_color,\n", + ")\n", + "\n", + "(classiq1,) = plt.semilogy(\n", + " num_qubits_width_opt,\n", + " time_width_opt,\n", + " \"-D\",\n", + " label=\"classiq width optimization\",\n", + " markerfacecolor=classiq_color,\n", + " markeredgecolor=\"k\",\n", + " markersize=6.5,\n", + " markeredgewidth=1.5,\n", + " color=classiq_color,\n", + ")\n", + "\n", + "(classiq2,) = plt.semilogy(\n", + " num_qubits_cx_opt,\n", + " time_cx_opt,\n", + " \"-o\",\n", + " label=\"classiq cx optimization\",\n", + " markerfacecolor=classiq_color_1,\n", + " markeredgecolor=\"k\",\n", + " markersize=7,\n", + " markeredgewidth=1.5,\n", + " linewidth=1.5,\n", + " color=classiq_color_1,\n", + ")\n", + "\n", + "\n", + "first_legend = plt.legend(\n", + " handles=[qiskit1, classiq1, classiq2], fontsize=16, loc=\"lower right\"\n", + ")\n", + "\n", + "\n", + "plt.ylabel(\"Generation time [sec]\", fontsize=16)\n", + "plt.xlabel(r\"$\\log_2$(Circle size)\", fontsize=16)\n", + "plt.yticks(fontsize=16)\n", + "plt.xticks(fontsize=16)\n", + "plt.axis(ymin=0.2, ymax=8e3, xmin=3, xmax=63)\n", + "\n", + "\n", + "for x, y, num_qubits in zip(num_qubits_width_opt, time_width_opt, width_width_opt):\n", + " if num_qubits < 19:\n", + " plt.text(x * 0.8, y * 1.3, str(num_qubits), fontsize=15, color=classiq_color)\n", + " else:\n", + " plt.text(x * 0.95, y * 1.3, str(num_qubits), fontsize=15, color=classiq_color)\n", + "\n", + "for x, y, num_qubits in zip(\n", + " num_qubits_cx_opt,\n", + " time_cx_opt,\n", + " width_cx_opt,\n", + "):\n", + " plt.text(x * 1.0, y * 0.45, str(num_qubits), fontsize=15, color=classiq_color_1)\n", + "for x, y, num_qubits in zip(num_qubits_qiskit, qiskit_times, qiskit_widths):\n", + " plt.text(x * 0.72, y * 1.2, str(num_qubits), fontsize=15, color=qiskit_color)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "88a73b4a-8782-4fc3-bf17-3d370279493f", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.7" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/tutorials/technology_demonstrations/discrete_quantum_walk_circle/results.csv b/tutorials/technology_demonstrations/discrete_quantum_walk_circle/results.csv new file mode 100644 index 00000000..7ba8252a --- /dev/null +++ b/tutorials/technology_demonstrations/discrete_quantum_walk_circle/results.csv @@ -0,0 +1,24 @@ +log2_circle_size_cx_opt,width_cx_opt,cx_cx_opt,time_cx_opt,,,,log2_circle_size_width_opt,width_width_opt,cx_width_opt,time_width_opt +5,8,120,1.030050755,,,,5,6,274,1.033107281 +6,9,152,1.549682856,,,,6,7,514,1.756486177 +7,11,200,2.408565044,,,,7,8,850,3.424333096 +8,12,260,3.318053246,,,,8,9,1298,7.059669018 +9,14,352,4.49042511,,,,9,10,1874,14.62335777 +10,15,436,6.236928225,,,,10,11,2594,30.57669568 +11,17,552,8.21525979,,,,11,13,3194,38.52312279 +12,18,632,10.4258492,,,,12,14,3914,121.3552897 +13,20,776,12.93056488,,,,13,15,5066,132.0802917 +14,21,836,16.34218383,,,,14,16,6378,138.0895779 +15,23,1004,19.96978807,,,,15,17,7850,144.433075 +16,24,1064,24.08605409,,,,16,18,9482,152.0853841 +17,26,1256,28.71955085,,,,17,19,11274,156.839324 +18,27,1312,33.7100358,,,,18,20,13418,167.8838196 +20,30,1588,45.90775609,,,,20,22,18762,191.7707002 +24,36,2564,81.53534484,,,,24,26,33674,277.2610381 +28,42,3668,136.5639482,,,,28,30,54026,390.1246259 +30,45,4324,167.5976551,,,,30,32,66122,426.9000242 +35,53,6088,298.3051138,,,,33,35,86666,498.2558219 +40,60,7704,475.1393759,,,,40,42,156554,819.1415811 +45,68,9984,715.2307372,,,,45,47,227594,1239.267411 +50,75,12092,1111.412863,,,,50,52,316170,1803.668634 +60,90,17148,1932.942601,,,,60,62,542090,3107.010131 diff --git a/tutorials/whats_classiq/whats_classiq.ipynb b/tutorials/whats_classiq/whats_classiq.ipynb new file mode 100644 index 00000000..ebb54993 --- /dev/null +++ b/tutorials/whats_classiq/whats_classiq.ipynb @@ -0,0 +1,276 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# What's Classiq?" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Your entry-point for creating & running quantum programs.\n", + "\n", + "Classiq allows you to [design](#design), [optimize](#optimization), [analyze](#analysis), and [execute](#execution) any quantum program. The platform is suited for quantum experts allowing flexible design and deep optimization of quantum programs. It is also a great way to learn quantum computing, with a [Library](https://github.com/Classiq/classiq-library) of algorithms and applications, and intuitive visualization.\n", + "\n", + "Classiq has two interfaces:" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "1.Web-based IDE at [platform.classiq.io](https://platform.classiq.io)\n", + "\n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "2.Python SDK\n", + "\n", + "Quick installation via the command line:\n", + "\n", + "```bash\n", + "pip install classiq\n", + "```\n", + "\n", + "And authentication within Python:\n", + "\n", + "```Python\n", + "import classiq\n", + "classiq.authenticate()\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can transition directly between the two interfaces at any stage of the development. This allows you to do (almost) everything in the IDE or (almost) everything in the SDK, and combine and interchange between the two.\n", + "\n", + "Here is a high-level breakdown of the steps:\n", + "\n", + "1. [**Design**](#design) - write your quantum algorithm using Classiq's QMOD language. Qmod is built for describing quantum programs without pre determining the implementation details. It is intuitive and powerful.\n", + "2. [**Optimize**](#optimization) - Send your algorithm to Classiq's synthesis engine (compiler) that comes up with the optimal quantum program for your algorithm, according to the constraints and preferences you apply.\n", + "3. [**Analyze**](#analysis) the quantum program with the Classiq's visualizer tool in order to view the circuit level implementation of your algorithm.\n", + "4. [**Execute**](#execution) it on Classiq's simulators or on any quantum computer and simulators available via the cloud.\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Design\n", + "\n", + "As developers, we are interested in the functionality of the quantum program. Classiq's Qmod language is designed to allow a full description of the program functionality, without determinting the implemtation details. This allows for a more flexible and powerful description of the quantum program, and later enables optimizing the program implementaion (see [optimization](#optimization))\n", + "\n", + "Classiq introduces a native quantum programming language, `Qmod`, that naturally captures the core concepts of quantum algorithms. There are two ways to design in `Qmod`:\n", + "\n", + "- Directly, via the Classiq IDE using the Qmod native syntax\n", + "\n", + "\n", + "\n", + "- With the Classiq Python SDK package that gives access to the Qmod language via Python" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "# Deutsch-Jozsa Algorithm\n", + "from classiq import *\n", + "\n", + "\n", + "@qfunc\n", + "def constant_function(x: QNum, res: QBit):\n", + " res ^= x < (2**x.size)\n", + "\n", + "\n", + "@qfunc\n", + "def prepare_minus(out: Output[QBit]):\n", + " allocate(1, out)\n", + " X(out)\n", + " H(out)\n", + "\n", + "\n", + "@qfunc\n", + "def apply_oracle(x: QNum):\n", + " aux = QBit(\"aux\")\n", + " within_apply(\n", + " compute=lambda: prepare_minus(aux), action=lambda: constant_function(x, aux)\n", + " )\n", + "\n", + "\n", + "@qfunc\n", + "def main(x: Output[QNum]):\n", + " allocate(4, x)\n", + " hadamard_transform(x)\n", + " apply_oracle(x)\n", + " hadamard_transform(x)\n", + "\n", + "\n", + "quantum_model = create_model(main)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Optimization\n", + "\n", + "Describing the program functionality without specifing the implementation is the only way forward. Most quantum algorithms and functional building blocks can be implemented in many ways, and a full program can be implemeted in countless possibilities. Some circuits have more auxiliary qubits that result in shorter circuit depth, others have a minimal number of qubits but longer circuits, some have all the qubits connected to each other, and others have limited connectivity. Implementation decisions are interconnected and must be managed globally.\n", + "\n", + "As developers, you want optimal implementation for your algorithms according to your definitions. The Classiq synthesis engine enables exactly this. You design your algorithm in Qmod and then you synthesize (compile) it with your constraints and preferences. Classiq's technology will output the best solution available." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "quantum_program = synthesize(quantum_model)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Analysis\n", + "\n", + "Once a quantum program is created, no doubt you would like to analyze the result. Your questions could take different forms and levels of hierarchies.\n", + "\n", + "- Are the blocks connected in the right way?\n", + "- Are the auxiliary qubits reused as desired?\n", + "- What is the gate level implementation?\n", + "\n", + " The Classiq visualization tool allows explore these questions and is enabled by the high-level functional design of the quantum algorithm. You can access the tool directly in the IDE using the Quantum Program tab, or in the Python SDK using the `show(quantum_program)` command:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Opening: https://platform.classiq.io/circuit/d8b09e26-17eb-4a4f-9bba-1390df4a8026?version=0.42.1\n" + ] + } + ], + "source": [ + "show(quantum_program)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Execution\n", + "\n", + "The final step of the quantum algorithm flow is running it to receive the results and then post-process them. There are two possibilities for quantum computing execution nowadays: on real quantum computers (QPU's) and on simulators (classical computers that simulate small quantum computers). With Classiq you can access both!\n", + "Several simulators are available for free with Classiq, and there is straightforward access to the majority of quantum processors and simulators available via the cloud through all major cloud providers such as IBM Quantum, Amazon Braket, and Azure Quantum.\n", + "You can send for execution directly in the IDE or via the SDK. In both cases, you can access all your jobs in the IDE Jobs tab." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "ExecutionJob(id='ac0c5cd7-e0a2-4a36-891f-7121ad3b5a44')" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "execute(quantum_program)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Getting Started\n", + "\n", + "- Continue on to [Classiq 101](./classiq_101/index.md)!\n", + "- A comprehensive [Library](https://github.com/Classiq/classiq-library) of examples, built with Classiq.\n", + "- Become part of the vibrant Classiq community by joining the [Classiq Community Slack](https://short.classiq.io/join-slack)." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "write_qmod(quantum_model, \"whats_classiq\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3.11.7 ('classiq_devolpment')", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.7" + }, + "orig_nbformat": 4, + "vscode": { + "interpreter": { + "hash": "e992e515f6583afc67b46eeabcda0f30363069fab8b382c7517b274ba7a59477" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/tutorials/whats_classiq/whats_classiq.metadata.json b/tutorials/whats_classiq/whats_classiq.metadata.json new file mode 100644 index 00000000..e0233900 --- /dev/null +++ b/tutorials/whats_classiq/whats_classiq.metadata.json @@ -0,0 +1,7 @@ +{ + "friendly_name": "What's Classiq", + "description": "An Example of What is Classiq", + "problem_domain_tags": [], + "qmod_type": ["function"], + "level": ["basic", "demos"] +} diff --git a/tutorials/whats_classiq/whats_classiq.qmod b/tutorials/whats_classiq/whats_classiq.qmod new file mode 100644 index 00000000..1837939a --- /dev/null +++ b/tutorials/whats_classiq/whats_classiq.qmod @@ -0,0 +1,25 @@ +qfunc prepare_minus(output out: qbit) { + allocate<1>(out); + X(out); + H(out); +} + +qfunc constant_function(x: qnum, res: qbit) { + res ^= x < (2 ** x.size); +} + +qfunc apply_oracle(x: qnum) { + aux: qbit; + within { + prepare_minus(aux); + } apply { + constant_function(x, aux); + } +} + +qfunc main(output x: qnum) { + allocate<4>(x); + hadamard_transform(x); + apply_oracle(x); + hadamard_transform(x); +} diff --git a/tutorials/whats_classiq/whats_classiq.synthesis_options.json b/tutorials/whats_classiq/whats_classiq.synthesis_options.json new file mode 100644 index 00000000..0967ef42 --- /dev/null +++ b/tutorials/whats_classiq/whats_classiq.synthesis_options.json @@ -0,0 +1 @@ +{} diff --git a/tutorials/workshops/QMOD_workshop/QMOD_Workshop_Part_1.ipynb b/tutorials/workshops/QMOD_workshop/QMOD_Workshop_Part_1.ipynb index ac0da829..a3e1d1c1 100644 --- a/tutorials/workshops/QMOD_workshop/QMOD_Workshop_Part_1.ipynb +++ b/tutorials/workshops/QMOD_workshop/QMOD_Workshop_Part_1.ipynb @@ -4,7 +4,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# The Qmod Workshop - Introduction\n", + "# The Qmod Workshop - Part 1: Introduction\n", "\n", "The Classiq platform features a high-level quantum modeling language called Qmod. Qmod is compiled into concrete gate-level implementation using a powerful synthesis engine that optimizes and adapts the implementation to different target hardware/simulation environments.\n", "\n", @@ -24,7 +24,7 @@ "\n", "Make sure you have a Python version of 3.8 through 3.11 installed. Unfortunately, Classiq is not yet supported with Python 3.12.\n", "\n", - "Install Classiq\u2019s Python SDK by following the instructions on this page: [Getting Started - Classiq](https://docs.classiq.io/latest/reference-manual/platform/synthesis/getting-started/).\n", + "Install Classiq’s Python SDK by following the instructions on this page: [Getting Started - Classiq](https://docs.classiq.io/latest/reference-manual/platform/synthesis/getting-started/).\n", "\n", "### Python Qmod Exercises - General Instructions\n", "\n", @@ -305,7 +305,7 @@ "\n", "1. Create a model that applies `unitary_matrix` on a 2 qubit variable.\n", "2. Create another model that applies `unitary_matrix` raised to power 3 on a 2 qubit variable.\n", - "3. Compare the gate count via the Classiq\u2019s IDE in both cases.\n", + "3. Compare the gate count via the Classiq’s IDE in both cases.\n", "\n", "Note - the signature of function `unitary` is:" ] @@ -799,7 +799,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3.11.7 ('classiq')", "language": "python", "name": "python3" }, @@ -813,7 +813,12 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.9" + "version": "3.11.7" + }, + "vscode": { + "interpreter": { + "hash": "529b62266d4f537a408698cf820854c65fe877011c7661f0f70aa11c4383fddc" + } } }, "nbformat": 4, diff --git a/community/QClass_2024/Submissions/HW2/Jose_Alejandro_Garcia_Gonzalez_HW2_QClass2024.ipynb b/tutorials/workshops/QMOD_workshop/QMOD_Workshop_Part_2.ipynb similarity index 68% rename from community/QClass_2024/Submissions/HW2/Jose_Alejandro_Garcia_Gonzalez_HW2_QClass2024.ipynb rename to tutorials/workshops/QMOD_workshop/QMOD_Workshop_Part_2.ipynb index d033044c..ff714511 100644 --- a/community/QClass_2024/Submissions/HW2/Jose_Alejandro_Garcia_Gonzalez_HW2_QClass2024.ipynb +++ b/tutorials/workshops/QMOD_workshop/QMOD_Workshop_Part_2.ipynb @@ -9,15 +9,6 @@ "This is the second part of the Qmod workshop, covering exercises 6 through 10. Make sure to go through Part 1 before continuing with this notebook." ] }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "from classiq import *" - ] - }, { "cell_type": "markdown", "metadata": {}, @@ -26,18 +17,23 @@ "\n", "The Qmod language supports different classical types: scalars, arrays, and structs. Structs are objects with member variables, or fields.\n", "\n", - "See also [Classical Types](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/classical-types/#structs).\n", + "See also [Classical Types](https://docs.classiq.io/latest/reference-manual/platform/qmod/language-reference/classical-types/#structs).\n", "\n", "The builtin struct type `PauliTerm` is defined as follows:" ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ - "@struct\n", + "from dataclasses import dataclass\n", + "\n", + "from classiq import *\n", + "\n", + "\n", + "@dataclass\n", "class PauliTerm:\n", " pauli: CArray[Pauli]\n", " coefficient: CReal" @@ -58,7 +54,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -77,19 +73,30 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Fill in the missing parts of the following code in order to complete this exercise:" + "Allocate q and invoke the suzuki_trotter quantum function to complete this exercise:\n", + "\n", + "
\n", + " HINT\n", + " suzuki_trotter(
\n", + "  ...,
\n", + "  evolution_coefficient=3,
\n", + "  repetitions=4,
\n", + "  order=2,
\n", + "  qbv=q,
\n", + " )\n", + "
" ] }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Opening: https://platform.classiq.io/circuit/55b5f10c-e720-4fe1-a8e4-7b6a578daacb?version=0.41.0\n" + "Opening: https://platform.classiq.io/circuit/1bb9845d-ce2f-40ff-b47b-b0e1dcc53137?version=0.42.1\n" ] } ], @@ -100,17 +107,6 @@ "@qfunc\n", "def main(q: Output[QArray[QBit]]) -> None:\n", " allocate(4, q)\n", - " suzuki_trotter(\n", - " [\n", - " PauliTerm(pauli=[Pauli.X, Pauli.Z, Pauli.X, Pauli.X], coefficient=0.5),\n", - " PauliTerm(pauli=[Pauli.Y, Pauli.I, Pauli.Z, Pauli.I], coefficient=0.25),\n", - " PauliTerm(pauli=[Pauli.X, Pauli.I, Pauli.Z, Pauli.Y], coefficient=0.3)\n", - " ],\n", - " evolution_coefficient=3,\n", - " repetitions=4,\n", - " order=2,\n", - " qbv=q,\n", - " )\n", "\n", "\n", "qmod = create_model(main)\n", @@ -127,8 +123,8 @@ "#### Exercise 7a\n", "In this exercise we will use quantum numeric variables and calculate expressions over them.\n", "\n", - "See details on the syntax of numeric types under [Quantum types](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/quantum-types/#syntax).\n", - "See more on quantum expressions under [Numeric assignment](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/numeric-assignment/)\n", + "See details on the syntax of numeric types under [Quantum types](https://docs.classiq.io/latest/reference-manual/platform/qmod/language-reference/quantum-types/#syntax).\n", + "See more on quantum expressions under [Numeric assignment](https://docs.classiq.io/latest/reference-manual/platform/qmod/language-reference/statements/numeric-assignment/).\n", "\n", "Create the following quantum programs:\n", "1. Initialize variables `x=2`, `y=7` and computes `res = x + y`.\n", @@ -142,146 +138,68 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/cb946f5f-e9ee-4438-becb-16e975c37705?version=0.41.0\n" - ] - } - ], + "outputs": [], "source": [ "from classiq import *\n", "\n", "# Your code here:\n", "\n", - "@qfunc\n", - "def main(res: Output[QNum]):\n", - " x = QNum(\"x\")\n", - " y = QNum(\"y\")\n", - " prepare_int(2,x)\n", - " prepare_int(7,y)\n", - "\n", - " res |= x + y\n", - "\n", "qmod = create_model(main)\n", "qprog = synthesize(qmod)\n", "show(qprog)" ] }, { - "cell_type": "code", - "execution_count": 4, + "cell_type": "markdown", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/c46f34d4-8a17-4a44-be45-4e0029b58287?version=0.41.0\n" - ] - } - ], "source": [ - "@qfunc\n", - "def main(res: Output[QNum]):\n", - " x = QNum(\"x\")\n", - " y = QNum(\"y\")\n", - " prepare_int(2,x)\n", - " prepare_int(7,y)\n", + "#### Exercise 7b\n", + "Declare `x` to be a 2-qubit variable and `y` to be 3-qubit variable.\n", "\n", - " res |= x * y\n", + "We will perform an addition of two superposition states: `x` is an equal superposition of `0` and `2`, and `y` is an equal superposition of `1`, `2`, `3`, and `6`.\n", "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" + "1. Use `prepare_state` to initialize `x` and `y`. Note that `prepare_state` works with probabilities, not amplitudes.\n", + " The declaration of the `prepare_state` function is:\n", + " " ] }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 4, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/9d3d77fd-6cbc-4f82-a7aa-d0388fc46765?version=0.41.0\n" - ] - } - ], + "outputs": [], "source": [ - "@qfunc\n", - "def main(res: Output[QNum]):\n", - " x = QNum(\"x\")\n", - " y = QNum(\"y\")\n", - " z = QNum(\"z\")\n", - " prepare_int(2,x)\n", - " prepare_int(7,y)\n", - " prepare_int(1,z)\n", - "\n", - " res |= x * y -z\n", - "\n", - "qmod = create_model(main)\n", - "qprog = synthesize(qmod)\n", - "show(qprog)" + "@qfunc(external=True)\n", + "def prepare_state(\n", + " probabilities: CArray[CReal],\n", + " bound: CReal,\n", + " out: Output[QArray[QBit]],\n", + ") -> None:\n", + " pass" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "#### Exercise 7b\n", - "Declare `x` to be a 2-qubit variable and `y` to be 3-qubit variable.\n", - "\n", - "We will perform an addition of two superposition states: `x` is an equal superposition of `0` and `2`, and `y` is an equal superposition of `1`, `2`, `3`, and `6`.\n", + "
HintSet the bound to 0 in your code
\n", "\n", - "1. Use `prepare_state` to initialize `x` and `y`. Note that `prepare_state` works with probabilities, not amplitudes.\n", - " The declaration of the `prepare_state` function is:\n", - " ```\n", - " @qfunc(external=True)\n", - " def prepare_state(\n", - " probabilities: CArray[CReal],\n", - " bound: CReal,\n", - " out: Output[QArray[QBit]],\n", - " ) -> None:\n", - " pass\n", - " ```\n", - " (Set the bound to 0 in your code)\n", + " \n", "2. Compute `res = x + y`. Execute the resulting circuit. What did you get?" ] }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/56dc413c-5d6d-4c88-bc43-3264f5586a9b?version=0.41.0\n" - ] - } - ], + "outputs": [], "source": [ "from classiq import *\n", "\n", "# Your code here:\n", "\n", - "@qfunc\n", - "def main(res: Output[QNum]):\n", - " x = QNum('x')\n", - " y = QNum('y')\n", - " \n", - " prepare_state(probabilities=[0.5,0,0.5,0], bound=0, out=x)\n", - " prepare_state(probabilities=[0,0.25,0.25,0.25,0,0,0.25,0], bound=0, out=y)\n", - " \n", - " res|=x+y\n", - "\n", "qmod = create_model(main)\n", "qprog = synthesize(qmod)\n", "show(qprog)" @@ -296,7 +214,7 @@ "The within-apply statement applies the pattern `U_dagger V U` that appears frequently in quantum computing.\n", "It allows you to compute some function `V` within the context of another function `U`, and afterward uncompute `U` in order to release auxiliary qubits storing intermediate results.\n", "\n", - "See also [Within Apply](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/within-apply/).\n", + "See also [Within Apply](https://docs.classiq.io/latest/reference-manual/platform/qmod/language-reference/statements/within-apply/).\n", "\n", "#### Exercise 8a\n", "\n", @@ -319,46 +237,14 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "metadata": {}, "outputs": [], - "source": [ - "@qfunc\n", - "def two_sum(x: QNum, y:QNum, res: Output[QNum]):\n", - " res |= x + y" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/4eaeaa8c-b09c-42be-b22f-bae19c70a79c?version=0.41.0\n" - ] - } - ], "source": [ "from classiq import *\n", "\n", "# Your code here:\n", "\n", - "@qfunc\n", - "def main(res: Output[QNum]):\n", - " x = QNum(\"x\")\n", - " y = QNum(\"y\")\n", - " z = QNum(\"z\")\n", - " tmp = QNum(\"tmp\")\n", - " prepare_int(3,x)\n", - " prepare_int(5,y)\n", - " prepare_int(2,z)\n", - "\n", - " within_apply(compute= lambda: two_sum(x,y,tmp),\n", - " action= lambda: two_sum(tmp,z,res))\n", - "\n", "qmod = create_model(main)\n", "qprog = synthesize(qmod)\n", "show(qprog)" @@ -374,7 +260,7 @@ "To understand the motivation, we will create another arithmetic circuit.\n", "This time, however, we will also set Classiq’s synthesis engine to optimize on the circuit’s number of qubits, i.e., its width.\n", "\n", - "Setting constraints can be done via the `set_constraints` operation - see [here](https://docs.classiq.io/latest/user-guide/platform/synthesis/constraints/).\n", + "Setting constraints can be done via the `set_constraints` operation - see [here](https://docs.classiq.io/latest/reference-manual/platform/synthesis/constraints/).\n", "\n", "Perform the operation `res = w + x + y + z`, where w is initialized to 4 and the rest as before:\n", "\n", @@ -388,14 +274,14 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Opening: https://platform.classiq.io/circuit/38f6ea92-94c2-472b-a201-f212b27fc174?version=0.41.0\n" + "Opening: https://platform.classiq.io/circuit/c2147d5f-03da-46f9-abb9-9f224cf494b5?version=0.42.1\n" ] } ], @@ -404,50 +290,11 @@ "\n", "# Your code here:\n", "\n", - "@qfunc\n", - "def main(res: Output[QNum]):\n", - " x = QNum(\"x\")\n", - " y = QNum(\"y\")\n", - " z = QNum(\"z\")\n", - " w = QNum(\"w\")\n", - " tmp = QNum(\"tmp\")\n", - " aux = QNum(\"aux\")\n", - " prepare_int(3,x)\n", - " prepare_int(5,y)\n", - " prepare_int(2,z)\n", - " prepare_int(4,w)\n", - "\n", - " within_apply(compute= lambda: two_sum(x,y,tmp),\n", - " action= lambda: two_sum(tmp,z,aux))\n", - "\n", - " two_sum(aux,w,res)\n", - "\n", "qmod = create_model(main)\n", - "qmod = set_constraints(qmod,Constraints(optimization_parameter='width'))\n", "qprog = synthesize(qmod)\n", "show(qprog)" ] }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'res': 14.0}\n" - ] - } - ], - "source": [ - "job = execute(qprog)\n", - "results = job.result()\n", - "parsed_counts = results[0].value.parsed_counts\n", - "for sampled_state in parsed_counts: print(sampled_state.state)" - ] - }, { "cell_type": "markdown", "metadata": {}, @@ -462,37 +309,15 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/03a039ad-4fd8-4e63-b6a1-176853a3c1e2?version=0.41.0\n" - ] - } - ], + "outputs": [], "source": [ "from classiq import *\n", "\n", "# Your code here:\n", "\n", - "@qfunc\n", - "def main(res: Output[QNum]):\n", - " x = QNum(\"x\")\n", - " y = QNum(\"y\")\n", - " z = QNum(\"z\")\n", - " w = QNum(\"w\")\n", - " prepare_int(3,x)\n", - " prepare_int(5,y)\n", - " prepare_int(2,z)\n", - " prepare_int(4,w)\n", - "\n", - " res |= x + y + z + w\n", - "\n", "qmod = create_model(main)\n", - "qmod = set_constraints(qmod,Constraints(optimization_parameter='width'))\n", "qprog = synthesize(qmod)\n", "show(qprog)" ] @@ -507,7 +332,7 @@ "\n", "Arithmetic expressions can be calculated in-place into a target variable, without allocating new qubits to store the result. This is done using the in-place-xor operator.\n", "\n", - "See also [Numeric assignment](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/statements/numeric-assignment/#semantics).\n", + "See also [Numeric assignment](https://docs.classiq.io/latest/reference-manual/platform/qmod/language-reference/statements/numeric-assignment/#semantics).\n", "\n", "In-place assignment is often used to nest arithmetic expressions under quantum operators. Note that out-of-place assignment requires its left-value variable to be un-initialized, and therefore cannot be used under an operator if the variable is declared outside its scope. Applying operators to arithmetic expressions is required in many algorithms. One example is the piecewise evaluation of mathematical functions - calculating different expressions over `x` depending on the subdomain where `x` falls.\n", "\n", @@ -522,31 +347,28 @@ "\n", "Notes:\n", "- We cannot use `x` directly as the control variable in a `constrol` operator, because it also occurs in the nested scope. to determine if `x` is in the lower or higher half of the domain we duplicate the most significant bit onto a separate variable called `label`.\n", - "- In Python assignment operators cannot be used in lambda expressions, so the computation of the function needs to be factored out to a named Python function (but not necessarily a Qmod function).\n" + "- In Python assignment operators cannot be used in lambda expressions, so the computation of the function needs to be factored out to a named Python function (but not necessarily a Qmod function).\n", + "\n", + "\n", + "
\n", + " Hint\n", + " dup_msb(x, label)
\n", + " control(label, ...) # 0.5 <= x < 1.0
\n", + " X(label)
\n", + " control(label, ...) # 0.0 <= x < 0.5
\n", + "
\n", + "\n" ] }, { "cell_type": "code", - "execution_count": 14, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/48c90466-85ee-43e2-a3d0-af881d387b26?version=0.41.0\n" - ] - } - ], + "outputs": [], "source": [ - "\n", "from classiq import *\n", "\n", "\n", - "def linear_func(a: float, b: float, x: QNum, res: QNum) -> None:\n", - " res ^= a * x + b\n", - "\n", - "\n", "@qfunc\n", "def dup_msb(qba: QArray[QBit], msb: QBit) -> None:\n", " CX(qba[qba.len - 1], msb)\n", @@ -560,11 +382,7 @@ "\n", " label = QArray(\"label\")\n", " allocate(1, label)\n", - "\n", - " dup_msb(x, label)\n", - " control(label, lambda: linear_func(1.0, 0.5, x, res)) # 0.5 <= x < 1.0\n", - " X(label)\n", - " control(label, lambda: linear_func(2.0, 1.0, x, res)) # 0.0 <= x < 0.5\n", + " # Your code here:\n", "\n", "\n", "qmod = create_model(main)\n", @@ -572,33 +390,6 @@ "show(qprog)" ] }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'x': 0.375, 'res': 1.75}\n", - "{'x': 0.875, 'res': 1.375}\n", - "{'x': 0.0, 'res': 1.0}\n", - "{'x': 0.25, 'res': 1.5}\n", - "{'x': 0.75, 'res': 1.25}\n", - "{'x': 0.125, 'res': 1.25}\n", - "{'x': 0.625, 'res': 1.125}\n", - "{'x': 0.5, 'res': 1.0}\n" - ] - } - ], - "source": [ - "job = execute(qprog)\n", - "results = job.result()\n", - "parsed_counts = results[0].value.parsed_counts\n", - "for sampled_state in parsed_counts: print(sampled_state.state)" - ] - }, { "cell_type": "markdown", "metadata": {}, @@ -611,14 +402,14 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Opening: https://platform.classiq.io/circuit/5da59760-3885-464e-9a92-758afc1042e8?version=0.41.0\n" + "Opening: https://platform.classiq.io/circuit/ac3ae5f1-7af8-46d6-ac00-aead9e95ecbd?version=0.42.1\n" ] } ], @@ -626,25 +417,18 @@ "from classiq import *\n", "\n", "\n", - "\n", - "from classiq import *\n", - "from math import pi\n", - "\n", - "\n", "@qfunc\n", "def main(res: Output[QArray[QBit]]) -> None:\n", " x: QArray[QBit] = QArray(\"x\")\n", " allocate(3, x)\n", - " hadamard_transform(x)\n", - "\n", + " ...\n", " lsb = QBit(\"lsb\")\n", " msb = QNum(\"msb\", 2, False, 0)\n", " bind(x, [lsb, msb])\n", - "\n", - " control(msb == 1, lambda: RY(pi / 3, lsb)) # msb==1 <==> bit1 bit2 == 01 (binary of decimal 1)\n", - "\n", + " ...\n", " bind([lsb, msb], res)\n", "\n", + "\n", "model = create_model(main)\n", "qprog = synthesize(model)\n", "show(qprog)" @@ -679,57 +463,14 @@ }, { "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Opening: https://platform.classiq.io/circuit/049103a2-7920-4a88-8ac7-3d4199be67e9?version=0.41.0\n" - ] - } - ], - "source": [ - "@qfunc\n", - "def main(res: Output[QArray[QBit]]) -> None:\n", - " x: QArray[QBit] = QArray(\"x\")\n", - " allocate(3, x)\n", - " hadamard_transform(x)\n", - "\n", - " lsb = QBit(\"lsb\")\n", - " msb = QNum(\"msb\", 2, False, 0)\n", - " bind(x, [lsb, msb])\n", - "\n", - " control(msb == 2, lambda: RY(pi / 3, lsb)) # msb==2 <==> bit1 bit2 == 10 (binary of decimal 2)\n", - "\n", - " bind([lsb, msb], res)\n", - "\n", - "model = create_model(main)\n", - "qprog = synthesize(model)\n", - "show(qprog)" - ] - }, - { - "cell_type": "code", - "execution_count": 28, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from classiq import *\n", "from classiq.qmod.symbolic import sqrt\n", "\n", - "prob_list= [\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " -sqrt(3) / 16,\n", - " 1 / 8 + sqrt(3) / 16,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " 1 / 8,\n", - " ]\n", + "\n", "@qfunc\n", "def pre_prepared_state(q: QArray[QBit]) -> None:\n", " prepare_state(\n", @@ -751,11 +492,282 @@ "\n", "# Your code here:" ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Solutions" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Exercise 6" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Solution to exercise 6:\n", + "\n", + "\n", + "from classiq import *\n", + "\n", + "\n", + "@qfunc\n", + "def main(q: Output[QArray[QBit]]) -> None:\n", + " allocate(4, q)\n", + " suzuki_trotter(\n", + " [\n", + " PauliTerm([Pauli.X, Pauli.Z, Pauli.X, Pauli.X], 0.5),\n", + " PauliTerm([Pauli.Y, Pauli.I, Pauli.Z, Pauli.I], 0.25),\n", + " PauliTerm([Pauli.X, Pauli.I, Pauli.Z, Pauli.Y], 0.3),\n", + " ],\n", + " evolution_coefficient=3,\n", + " repetitions=4,\n", + " order=2,\n", + " qbv=q,\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Exercise 7" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Solution to exercise 7a:\n", + "\n", + "\n", + "from classiq import *\n", + "\n", + "\n", + "@qfunc\n", + "def main(res: Output[QNum]) -> None:\n", + " x = QNum(\"x\")\n", + " y = QNum(\"y\")\n", + " z = QNum(\"z\")\n", + " prepare_int(2, x)\n", + " prepare_int(7, y)\n", + " prepare_int(1, z)\n", + " res |= x + y\n", + " # res |= x * y\n", + " # res |= x * y - z" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Solution to exercise 7b:\n", + "\n", + "\n", + "from classiq import *\n", + "\n", + "\n", + "@qfunc\n", + "def main(res: Output[QNum]) -> None:\n", + " x = QNum(\"x\")\n", + " y = QNum(\"y\")\n", + " prepare_state([0.5, 0, 0.5, 0.0], 0.0, x)\n", + " prepare_state([0, 0.25, 0.25, 0.25, 0.0, 0.0, 0.25, 0.0], 0.0, y)\n", + " res |= x + y\n", + "\n", + "\n", + "model = create_model(main)\n", + "qprog = synthesize(model)\n", + "show(qprog)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Exercise 8" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Solution to exercise 8:\n", + "\n", + "\n", + "from classiq import *\n", + "\n", + "\n", + "@qfunc\n", + "def my_add(x: QNum, y: QNum, res: Output[QNum]) -> None:\n", + " res |= x + y\n", + "\n", + "\n", + "@qfunc\n", + "def main(res: Output[QNum]) -> None:\n", + " x = QNum(\"x\")\n", + " y = QNum(\"y\")\n", + " z = QNum(\"z\")\n", + " prepare_int(3, x)\n", + " prepare_int(5, y)\n", + " prepare_int(2, z)\n", + "\n", + " temp = QNum(\"temp\")\n", + " within_apply(\n", + " compute=lambda: my_add(x, y, temp), action=lambda: my_add(temp, z, res)\n", + " )\n", + "\n", + "\n", + "model = create_model(main)\n", + "qprog = synthesize(model)\n", + "show(qprog)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Solution to the advanced part of exercise 8:\n", + "\n", + "\n", + "from classiq import *\n", + "\n", + "\n", + "@qfunc\n", + "def my_add(x: QNum, y: QNum, res: Output[QNum]) -> None:\n", + " res |= x + y\n", + "\n", + "\n", + "@qfunc\n", + "def main(res: Output[QNum]) -> None:\n", + " x = QNum(\"x\")\n", + " y = QNum(\"y\")\n", + " z = QNum(\"z\")\n", + " w = QNum(\"w\")\n", + " prepare_int(3, x)\n", + " prepare_int(5, y)\n", + " prepare_int(2, z)\n", + " prepare_int(4, w)\n", + "\n", + " temp_xy = QNum(\"temp_xy\")\n", + " xyz = QNum(\"xyz\")\n", + " within_apply(\n", + " compute=lambda: my_add(x, y, temp_xy), action=lambda: my_add(temp_xy, z, xyz)\n", + " )\n", + " res |= xyz + w\n", + "\n", + "\n", + "model = create_model(main)\n", + "model = set_constraints(\n", + " model, Constraints(optimization_parameter=OptimizationParameter.WIDTH)\n", + ")\n", + "qprog = synthesize(model)\n", + "show(qprog)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Exercise 9" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Solution to exercise 9:\n", + "\n", + "\n", + "from classiq import *\n", + "\n", + "\n", + "def linear_func(a: float, b: float, x: QNum, res: QNum) -> None:\n", + " res ^= a * x + b\n", + "\n", + "\n", + "@qfunc\n", + "def dup_msb(qba: QArray[QBit], msb: QBit) -> None:\n", + " CX(qba[qba.len - 1], msb)\n", + "\n", + "\n", + "@qfunc\n", + "def main(x: Output[QNum[3, False, 3]], res: Output[QNum[5, False, 3]]) -> None:\n", + " allocate(5, res)\n", + " allocate(3, x)\n", + " hadamard_transform(x)\n", + "\n", + " label = QArray(\"label\")\n", + " allocate(1, label)\n", + "\n", + " dup_msb(x, label)\n", + " control(label, lambda: linear_func(1.0, 0.5, x, res)) # 0.5 <= x < 1.0\n", + " X(label)\n", + " control(label, lambda: linear_func(2.0, 1.0, x, res)) # 0.0 <= x < 0.5" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Exercise 10" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Solution to exercise 10:\n", + "\n", + "\n", + "from classiq import *\n", + "from classiq.qmod.symbolic import pi\n", + "\n", + "\n", + "@qfunc\n", + "def main(res: Output[QArray[QBit]]) -> None:\n", + " x: QArray[QBit] = QArray(\"x\")\n", + " allocate(3, x)\n", + " hadamard_transform(x)\n", + "\n", + " lsb = QBit(\"lsb\")\n", + " msb = QNum(\"msb\", 2, False, 0)\n", + " bind(x, [lsb, msb])\n", + "\n", + " control(msb == 1, lambda: RY(pi / 3, lsb))\n", + "\n", + " bind([lsb, msb], res)\n", + "\n", + "\n", + "model = create_model(main)\n", + "qprog = synthesize(model)\n", + "show(qprog)" + ] } ], "metadata": { "kernelspec": { - "display_name": "Python 3 (ipykernel)", + "display_name": "Python 3.11.7 ('classiq_devolpment')", "language": "python", "name": "python3" }, @@ -769,9 +781,14 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.9" + "version": "3.11.7" + }, + "vscode": { + "interpreter": { + "hash": "e992e515f6583afc67b46eeabcda0f30363069fab8b382c7517b274ba7a59477" + } } }, "nbformat": 4, - "nbformat_minor": 4 + "nbformat_minor": 0 } diff --git a/tutorials/workshops/QMOD_workshop/QMOD_Workshop_Part_3.ipynb b/tutorials/workshops/QMOD_workshop/QMOD_Workshop_Part_3.ipynb new file mode 100644 index 00000000..273b6d1f --- /dev/null +++ b/tutorials/workshops/QMOD_workshop/QMOD_Workshop_Part_3.ipynb @@ -0,0 +1,634 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# The Qmod Workshop - Part 3: Execution Flows\n", + "\n", + "This is the third part of the Qmod workshop, covering exercises 11 and 12. Make sure to go through Part 1 and 2 before continuing with this notebook." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Exercise 11 - Execution with Parameters\n", + "\n", + "In this exercise, we will modify the manually created state preparation function from the previous exercise to accept a rotation angle as a parameter.\n", + "\n", + "1. Start by modifying the signature of the main function to be as follows:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from classiq import *\n", + "from classiq.qmod.symbolic import pi\n", + "\n", + "\n", + "@qfunc\n", + "def main(rotation_angle: CReal, res: Output[QArray[QBit]]) -> None:\n", + " allocate(1, res)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "2. Pass the rotation angle as a parameter to the controlled RY instead of using `pi/3` directly.\n", + "3. Define the following quantum constant, which will serve as the list of execution parameters:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from typing import List\n", + "\n", + "angle_vals = QConstant(\"angle_vals\", List[float], [pi / 3, pi / 2])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "4. Create a cmain function that for each rotation angle, it calls the sample function and saves the result.\n", + "5. Execute the circuit and make sure the results are as expected (statistics from two runs should appear. What happens for `pi/2`?).\n", + "6. **Bonus**: try to add other values to the list and observe the results." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from classiq import *\n", + "\n", + "\n", + "@cfunc\n", + "def cmain() -> None:\n", + " # Your code here:\n", + " pass\n", + "\n", + "\n", + "qmod = create_model(main, classical_execution_function=cmain)\n", + "qprog = synthesize(qmod)\n", + "show(qprog)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Exercise 12 - VQE\n", + "\n", + "The Variational Quantum Eigensolver is an algorithm that finds the minimal eigenvalue of a matrix by executing a parametric circuit (also referred to as an ansatz), estimating the expected value of the matrix for the state the circuit creates (from the distribution received by the execution), and using a classical optimizer to select the next set of parameters for the circuit, until reaching convergence (or exceeding a set amount of maximum iterations).\n", + "\n", + "The estimation of the expectation value is done on Pauli based matrices, so any matrix we want to perform this operation on, need to be decomposed into a sum of Pauli terms.\n", + "\n", + "In this exercise, we will create a simple VQE algorithm that estimates the minimal eigenvalue of a 2x2 matrix.\n", + "Fill in the gaps in the following snippet to find the minimal eigenvalue and it corresponding eigenstate for\n", + "\n", + "`[[1, -1], [-1, 0]] = 1/2*I + 1/2*Z - X`\n", + "\n", + "
Hint for HamiltonianHAMILTONIAN = QConstant(...)
\n", + "
Hint for cmain\n", + "res = vqe(
\n", + "  hamiltonian=...,
\n", + "  maximize=...,
\n", + "  initial_point=[],
\n", + "  optimizer=Optimizer.COBYLA,
\n", + "  max_iteration=1000,
\n", + "  tolerance=0.001,
\n", + "  step_size=0,
\n", + "  skip_compute_variance=False,
\n", + "  alpha_cvar=1.0,
\n", + " )
\n", + " save({\"result\": res})
\n", + "\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from typing import List\n", + "\n", + "from classiq import *\n", + "\n", + "# Your code here:\n", + "\n", + "\n", + "@qfunc\n", + "def main(q: Output[QBit], angles: CArray[CReal, 3]) -> None:\n", + " allocate(1, q)\n", + " U(angles[0], angles[1], angles[2], 0, q)\n", + "\n", + "\n", + "@cfunc\n", + "def cmain() -> None:\n", + " # Your code here\n", + " pass\n", + "\n", + "\n", + "qmod = create_model(main, classical_execution_function=cmain)\n", + "qprog = synthesize(qmod)\n", + "show(qprog)\n", + "res = execute(qprog)\n", + "\n", + "# TODO: Upon completion uncomment the code below\n", + "# vqe_result = res.result()[0].value\n", + "# print(vqe_result.energy, vqe_result.optimal_parameters, vqe_result.eigenstate)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note:\n", + "The U gate is a general rotation matrix on a single qubit, so the given model creates an ansatz that spans all of the space for a single qubit, and thus gives us a full search space for this specific problem." + ] + }, + { + "cell_type": "markdown", + "source": [ + "### Bonus: Exercise 13 - Quantum Counting with Iterative Quantum Amplitude Estimation\n", + "\n", + "Quantum Counting algorithm is an algorithm for efficiently estimating the number of valid solutions to a search problem, based on the amplitude estimation algorithm. It demonstrates a quadratic improvement in regard to a classical algorithm with black-box oracle access to the function $f$.\n", + "\n", + "More precisely, the counting problem is, given a boolean function $f :\\{0, 1\\}^n\\rightarrow\\{0,1\\}$, estimate the number of inputs $x$ to $f$ such that $f(x)=1$.\n", + "\n", + "Let's demonstrate how to estimate the Counting problem using a specific variant of the Amplitude Estimation algorithm - the Iterative Quantum Amplitude Estimation (IQAE).\n", + "\n", + "The IQAE does not rely on the [Quantum Phase Estimation](https://github.com/Classiq/classiq-library/blob/main/functions/qmod_library_reference/classiq_open_library/qpe/qpe.ipynb) algorithm, but purely on applications of the [grover operator](https://github.com/Classiq/classiq-library/blob/main/functions/qmod_library_reference/classiq_open_library/grover_operator/grover_operator.ipynb):\n", + "$$\n", + "Q\\equiv - A S_0 A^{\\dagger} S_{\\psi_1},\n", + "$$\n", + "Hence reducing the required amount of qubits and gates of the circuit, at the expense of additional multiplicative factor poly-logarithmic in the error $\\epsilon$.\n", + "\n", + "For that we need a state preparation with an indicator qubit point the valid solution among the states:" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "execution_count": null, + "outputs": [], + "source": [ + "from classiq import QArray, QBit, QNum, bind, hadamard_transform, qfunc\n", + "\n", + "A_SIZE = 2\n", + "B_SIZE = 2\n", + "DOMAIN_SIZE = A_SIZE + B_SIZE\n", + "\n", + "\n", + "@qfunc\n", + "def arith_equation(a: QNum, b: QNum, res: QBit):\n", + " res ^= a + b <= 2\n", + "\n", + "\n", + "@qfunc\n", + "def iqae_state_preparation(a: QNum, b: QNum, res: QBit):\n", + " reg = QArray(\"reg\")\n", + " bind([a, b, res], reg)\n", + " hadamard_transform(reg[0:DOMAIN_SIZE])\n", + " bind(reg, [a, b, res])\n", + " arith_equation(a, b, res)" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "markdown", + "source": [ + "Then, the quantum circuit that is needed to the iterative QAE scheme, which needs to apply powers of the grover operator:" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "execution_count": null, + "outputs": [], + "source": [ + "from classiq import CInt, QCallable, grover_operator, power\n", + "\n", + "\n", + "@qfunc\n", + "def my_iqae_algorithm(\n", + " k: CInt,\n", + " oracle_operand: QCallable[QArray[QBit]],\n", + " sp_operand: QCallable[QArray[QBit]],\n", + " x: QArray[QBit],\n", + "):\n", + " sp_operand(x)\n", + " power(k, lambda: grover_operator(oracle_operand, sp_operand, x))" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "markdown", + "source": [ + "Now, after we already know how to attach execution parameters, let's build a parametric main, and a cmain assigning values to the parameters, in order to actually run hybrid execution algorithm.\n", + "So the parametric main should get as an input a parameter named `k`:" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "execution_count": null, + "outputs": [], + "source": [ + "from classiq import Output, Z, allocate\n", + "\n", + "\n", + "@qfunc\n", + "def main(\n", + " k: CInt,\n", + " ind_reg: Output[QBit],\n", + ") -> None:\n", + " full_reg = QArray(\"full_reg\")\n", + " allocate(DOMAIN_SIZE + 1, full_reg)\n", + " my_iqae_algorithm(\n", + " k=k,\n", + " oracle_operand=lambda x: Z(x[x.len - 1]),\n", + " sp_operand=lambda x: iqae_state_preparation(\n", + " x[0:A_SIZE], x[A_SIZE : x.len - 1], x[x.len - 1]\n", + " ),\n", + " x=full_reg,\n", + " )\n", + " state_reg = QArray(\"state_reg\", length=DOMAIN_SIZE)\n", + " bind(full_reg, [state_reg, ind_reg])" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "markdown", + "source": [ + "And the `cmain` will attach the relevant `k`, behind the scenes, all you need is:\n", + "* Call `iqae` in `cmain`, with the required `epsilon=1 / ((2**DOMAIN_SIZE_QCONST) * 2)` and `alpha=0.01`.\n", + "* Save its result into a variable named `iqae_res` using `save`.\n", + "\n", + "Fill in the `cmain`:" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "execution_count": null, + "outputs": [], + "source": [ + "from classiq import QConstant, bind, cfunc, iqae, save\n", + "\n", + "DOMAIN_SIZE_QCONST = QConstant(\"DOMAIN_SIZE_QCONST\", int, DOMAIN_SIZE)\n", + "\n", + "\n", + "@cfunc\n", + "def cmain():\n", + " # your code\n", + " pass" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "markdown", + "source": [ + "Now let's run it and examine how many results apply the condition `a+b<=2` (there should be 6 of them: (a,b)=(0,0),(0,1),(1,0),(1,1),(2,0),(0,2))." + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "execution_count": null, + "outputs": [], + "source": [ + "from classiq import Constraints, create_model, show, synthesize\n", + "\n", + "constraints = Constraints(optimization_parameter=\"width\")\n", + "qmod_iqae = create_model(\n", + " entry_point=main,\n", + " constraints=constraints,\n", + " classical_execution_function=cmain,\n", + ")\n", + "\n", + "qprog_iqae = synthesize(qmod_iqae)\n", + "show(qprog_iqae)" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "markdown", + "source": [ + "**Uncomment this cell and run it after completing the `cmain` function**." + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "execution_count": null, + "outputs": [], + "source": [ + "# from classiq import execute\n", + "\n", + "# res = execute(qprog_iqae).result()\n", + "\n", + "# iqae_res = res[0].value\n", + "# print(\n", + "# f\"IQAE result: {iqae_res.estimation}, confidence interval: {iqae_res.confidence_interval}\"\n", + "# )\n", + "\n", + "# print(\n", + "# f\"Number of solutions: {(2**DOMAIN_SIZE) * iqae_res.estimation}, accuracy: \"\n", + "# f\"{(2**DOMAIN_SIZE)*(iqae_res.confidence_interval[1]-iqae_res.confidence_interval[0])}\"\n", + "# )" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Solutions" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Exercise 11" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Solution to exercise 11:\n", + "\n", + "\n", + "from typing import List\n", + "\n", + "from classiq import *\n", + "from classiq.qmod.symbolic import pi\n", + "\n", + "\n", + "@qfunc\n", + "def main(rotation_angle: CReal, res: Output[QArray[QBit]]) -> None:\n", + " x: QArray[QBit] = QArray(\"x\")\n", + " allocate(3, x)\n", + " hadamard_transform(x)\n", + "\n", + " ls_bit = QBit(\"ls_bit\")\n", + " ms_bits = QNum(\"ms_bits\", 2, False, 0)\n", + " bind(x, [ls_bit, ms_bits])\n", + "\n", + " control(ms_bits == 1, lambda: RY(rotation_angle, ls_bit))\n", + "\n", + " bind([ls_bit, ms_bits], res)\n", + "\n", + "\n", + "angle_vals = QConstant(\"angle_vals\", List[float], [pi / 3, pi / 2])\n", + "\n", + "\n", + "@cfunc\n", + "def cmain() -> None:\n", + "\n", + " result = sample({\"rotation_angle\": pi / 3})\n", + " save({\"result\": result})\n", + " result = sample({\"rotation_angle\": pi / 2})\n", + " save({\"result\": result})\n", + "\n", + "\n", + "model = create_model(main, classical_execution_function=cmain)\n", + "qprog = synthesize(model)\n", + "show(qprog)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Exercise 12" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Solution to exercise 12:\n", + "\n", + "\n", + "from typing import List\n", + "\n", + "from classiq import *\n", + "\n", + "HAMILTONIAN = QConstant(\n", + " \"HAMILTONIAN\",\n", + " List[PauliTerm],\n", + " [PauliTerm([Pauli.I], 0.5), PauliTerm([Pauli.Z], 0.5), PauliTerm([Pauli.X], -1.0)],\n", + ")\n", + "\n", + "\n", + "@qfunc\n", + "def main(q: Output[QBit], angles: CArray[CReal, 3]) -> None:\n", + " allocate(1, q)\n", + " U(angles[0], angles[1], angles[2], 0, q)\n", + "\n", + "\n", + "@cfunc\n", + "def cmain() -> None:\n", + " res = vqe(\n", + " HAMILTONIAN,\n", + " False,\n", + " [],\n", + " optimizer=Optimizer.COBYLA,\n", + " max_iteration=1000,\n", + " tolerance=0.001,\n", + " step_size=0,\n", + " skip_compute_variance=False,\n", + " alpha_cvar=1.0,\n", + " )\n", + " save({\"result\": res})\n", + "\n", + "\n", + "qmod = create_model(main, classical_execution_function=cmain)\n", + "qprog = synthesize(qmod)\n", + "show(qprog)\n", + "res = execute(qprog)\n", + "vqe_result = res.result()[0].value\n", + "print(vqe_result.energy, vqe_result.optimal_parameters, vqe_result.eigenstate)" + ] + }, + { + "cell_type": "markdown", + "source": [ + "### Exercise 13\n" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "execution_count": null, + "outputs": [], + "source": [ + "from classiq import QArray, QBit, QCallable, QNum, bind, hadamard_transform, qfunc\n", + "\n", + "A_SIZE = 2\n", + "B_SIZE = 2\n", + "DOMAIN_SIZE = A_SIZE + B_SIZE\n", + "\n", + "\n", + "@qfunc\n", + "def arith_equation(a: QNum, b: QNum, res: QBit):\n", + " res ^= a + b <= 2\n", + "\n", + "\n", + "@qfunc\n", + "def iqae_state_preparation(a: QNum, b: QNum, res: QBit):\n", + " reg = QArray(\"reg\")\n", + " bind([a, b, res], reg)\n", + " hadamard_transform(reg[0:DOMAIN_SIZE])\n", + " bind(reg, [a, b, res])\n", + " arith_equation(a, b, res)\n", + "\n", + "\n", + "from classiq import CInt, grover_operator, power\n", + "\n", + "\n", + "@qfunc\n", + "def my_iqae_algorithm(\n", + " k: CInt,\n", + " oracle_operand: QCallable[QArray[QBit]],\n", + " sp_operand: QCallable[QArray[QBit]],\n", + " x: QArray[QBit],\n", + "):\n", + " sp_operand(x)\n", + " power(k, lambda: grover_operator(oracle_operand, sp_operand, x))\n", + "\n", + "\n", + "from classiq import Output, Z, allocate\n", + "\n", + "\n", + "@qfunc\n", + "def main(\n", + " k: CInt,\n", + " ind_reg: Output[QBit],\n", + ") -> None:\n", + " full_reg = QArray(\"full_reg\")\n", + " allocate(DOMAIN_SIZE + 1, full_reg)\n", + " my_iqae_algorithm(\n", + " k=k,\n", + " oracle_operand=lambda x: Z(x[x.len - 1]),\n", + " sp_operand=lambda x: iqae_state_preparation(\n", + " x[0:A_SIZE], x[A_SIZE : x.len - 1], x[x.len - 1]\n", + " ),\n", + " x=full_reg,\n", + " )\n", + " state_reg = QArray(\"state_reg\", length=DOMAIN_SIZE)\n", + " bind(full_reg, [state_reg, ind_reg])\n", + "\n", + "\n", + "from classiq import QConstant, bind, cfunc, iqae, save\n", + "\n", + "DOMAIN_SIZE_QCONST = QConstant(\"DOMAIN_SIZE_QCONST\", int, DOMAIN_SIZE)\n", + "\n", + "\n", + "@cfunc\n", + "def cmain():\n", + " iqae_res = iqae(epsilon=1 / ((2**DOMAIN_SIZE_QCONST) * 2), alpha=0.01)\n", + " save({\"iqae_res\": iqae_res})\n", + "\n", + "\n", + "from classiq import Constraints, create_model, show, synthesize\n", + "\n", + "constraints = Constraints(optimization_parameter=\"width\")\n", + "qmod_iqae = create_model(\n", + " main,\n", + " constraints=constraints,\n", + " classical_execution_function=cmain,\n", + ")\n", + "\n", + "qprog_iqae = synthesize(qmod_iqae)\n", + "show(qprog_iqae)\n", + "\n", + "from classiq import execute\n", + "\n", + "res = execute(qprog_iqae).result()\n", + "\n", + "iqae_res = res[0].value\n", + "print(\n", + " f\"IQAE result: {iqae_res.estimation}, confidence interval: {iqae_res.confidence_interval}\"\n", + ")\n", + "print(\n", + " f\"Number of solutions: {(2**DOMAIN_SIZE) * iqae_res.estimation}, accuracy: \"\n", + " f\"{(2**DOMAIN_SIZE)*(iqae_res.confidence_interval[1]-iqae_res.confidence_interval[0])}\"\n", + ")\n", + "for i, iteration in enumerate(iqae_res.iterations_data):\n", + " print(\n", + " f\"iteration_id: {i}, num grover iterations: {iteration.grover_iterations}, counts: {iteration.sample_results.counts}\"\n", + " )" + ], + "metadata": { + "collapsed": false + } + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.8" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/tutorials/workshops/grover_workshop/grover_workshop.json b/tutorials/workshops/grover_workshop/grover_workshop.metadata.json similarity index 100% rename from tutorials/workshops/grover_workshop/grover_workshop.json rename to tutorials/workshops/grover_workshop/grover_workshop.metadata.json diff --git a/tutorials/workshops/grover_workshop/grover_workshop.qmod b/tutorials/workshops/grover_workshop/grover_workshop.qmod index c52eff85..33ea3364 100644 --- a/tutorials/workshops/grover_workshop/grover_workshop.qmod +++ b/tutorials/workshops/grover_workshop/grover_workshop.qmod @@ -1,6 +1,6 @@ qfunc create_initial_state(reg: qbit[]) { - apply_to_all(reg); } diff --git a/tutorials/workshops/hhl_workshop/hhl_workshop.ipynb b/tutorials/workshops/hhl_workshop/hhl_workshop.ipynb index 80fc6f22..e0faea39 100644 --- a/tutorials/workshops/hhl_workshop/hhl_workshop.ipynb +++ b/tutorials/workshops/hhl_workshop/hhl_workshop.ipynb @@ -199,9 +199,7 @@ "# TODO update the qmod to have aer_simulator_statevector as backend, with one shot\n", "\n", "# Solution start\n", - "backend_preferences = ClassiqBackendPreferences(\n", - " backend_name=\"aer_simulator_statevector\"\n", - ")\n", + "backend_preferences = ClassiqBackendPreferences(backend_name=\"simulator_statevector\")\n", "qmod_b_load = set_execution_preferences(\n", " qmod_b_load,\n", " execution_preferences=ExecutionPreferences(\n", @@ -501,9 +499,7 @@ "from classiq.execution import ClassiqBackendPreferences, ExecutionPreferences\n", "from classiq.synthesis import set_execution_preferences\n", "\n", - "backend_preferences = ClassiqBackendPreferences(\n", - " backend_name=\"aer_simulator_statevector\"\n", - ")\n", + "backend_preferences = ClassiqBackendPreferences(backend_name=\"simulator_statevector\")\n", "\n", "qmod_hhl = create_model(\n", " entry_point=main,\n",