Skip to content

Commit d366017

Browse files
Merge branch 'Classiq:main' into trial_1
2 parents 9d32b8b + 86aadd9 commit d366017

File tree

127 files changed

+13245
-6938
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

127 files changed

+13245
-6938
lines changed

README.md

+12-12
Original file line numberDiff line numberDiff line change
@@ -19,9 +19,9 @@ This repository holds a wide collection of quantum functions, algorithms, applic
1919
 | 
2020
<a href="https://short.classiq.io/join-slack">👋 Join Slack</a>
2121
&emsp;|&emsp;
22-
<a href="https://docs.classiq.io/latest/user-guide/">📖 Documentation</a>
22+
<a href="https://docs.classiq.io/latest/">📖 Documentation</a>
2323
&emsp; | &emsp;
24-
<a href="https://docs.classiq.io/latest/getting-started/">Getting Started</a>
24+
<a href="https://docs.classiq.io/latest/">Getting Started</a>
2525
&emsp;
2626
</p>
2727

@@ -95,13 +95,13 @@ def main(res: Output[QBit]):
9595
X(res)
9696
```
9797

98-
The 1st line states that the function will be a quantum one. [Further documentation](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/functions/).
98+
The 1st line states that the function will be a quantum one. [Further documentation](https://docs.classiq.io/latest/reference-manual/platform/qmod/language-reference/functions/).
9999

100-
The 2nd line defines the type of the output. [Further examples on types](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/quantum-types/)
100+
The 2nd line defines the type of the output. [Further examples on types](https://docs.classiq.io/latest/reference-manual/platform/qmod/language-reference/classical-types/)
101101

102-
The 3rd line allocates several qubits (in this example, only 1) in this quantum variable. [Further details on allocate](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/quantum-variables/)
102+
The 3rd line allocates several qubits (in this example, only 1) in this quantum variable. [Further details on allocate](https://docs.classiq.io/latest/reference-manual/platform/qmod/language-reference/quantum-variables/)
103103

104-
The 4th line applies an `X` operator on the quantum variable. [Further details on quantum operators](https://docs.classiq.io/latest/user-guide/platform/qmod/language-reference/operators/)
104+
The 4th line applies an `X` operator on the quantum variable. [Further details on quantum operators](https://docs.classiq.io/latest/reference-manual/platform/qmod/language-reference/operators/)
105105

106106
### More Examples
107107

@@ -168,17 +168,17 @@ Classiq provides an easy-to-use way to execute quantum programs, and provides va
168168
flowchart
169169
IDEInput[<a href='https://platform.classiq.io/'>Classiq IDE</a>]
170170
171-
SDKInput[<a href='https://docs.classiq.io/latest/getting-started/python-sdk/'>Classiq python SDK</a>]
171+
SDKInput[<a href='https://docs.classiq.io/latest/reference-manual/python-sdk/'>Classiq python SDK</a>]
172172
173-
Model[<a href='https://docs.classiq.io/latest/user-guide/platform/qmod/'>Quantum Model</a>]
173+
Model[<a href='https://docs.classiq.io/latest/reference-manual/platform/qmod/'>Quantum Model</a>]
174174
175-
Synthesis[<a href='https://docs.classiq.io/latest/user-guide/platform/synthesis/'>Synthesis Engine</a>]
175+
Synthesis[<a href='https://docs.classiq.io/latest/classiq_101/classiq_concepts/optimize/'>Synthesis Engine</a>]
176176
177177
QuantumProgram[Quantum Program]
178178
179-
Execution[<a href='https://docs.classiq.io/latest/user-guide/platform/executor/'>Execution</a>]
179+
Execution[<a href='https://docs.classiq.io/latest/classiq_101/classiq_concepts/execute/'>Execution</a>]
180180
181-
Analyze[<a href='https://docs.classiq.io/latest/user-guide/platform/analyzer/'>Analyze & Debug</a>]
181+
Analyze[<a href='https://docs.classiq.io/latest/classiq_101/classiq_concepts/analyze/'>Analyze & Debug</a>]
182182
183183
IBM[IBM]
184184
Amazon[Amazon Braket]
@@ -201,7 +201,7 @@ flowchart
201201

202202
# Build Your Own
203203

204-
With Classiq, you can build anything. Classiq provides a powerful modeling language to describe any quantum program, which can then be synthesized and executed on any hardware or simulator. Explore our [Documentation](https://docs.classiq.io/latest/user-guide/) to learn everything.
204+
With Classiq, you can build anything. Classiq provides a powerful modeling language to describe any quantum program, which can then be synthesized and executed on any hardware or simulator. Explore our [Documentation](https://docs.classiq.io/latest/) to learn everything.
205205

206206
## SDK : Classiq's Python Interface
207207

algorithms/algebraic/shor/doubly_controlled_modular_adder.qmod

+1-1
Original file line numberDiff line numberDiff line change
@@ -7,7 +7,7 @@ qfunc phase_lad<value: int>(phi_b: qbit[]) {
77
qfunc my_qft_step(qbv: qbit[]) {
88
H(qbv[0]);
99
repeat (index: qbv.len - 1) {
10-
CPHASE<pi / (2 ** (index + 1))>(qbv[0], qbv[(index) + 1]);
10+
CPHASE<pi / (2 ** (index + 1))>(qbv[0], qbv[index + 1]);
1111
}
1212
}
1313

algorithms/algebraic/shor/shor_modular_exponentiation.qmod

+1-1
Original file line numberDiff line numberDiff line change
@@ -7,7 +7,7 @@ qfunc phase_lad<value: int>(phi_b: qbit[]) {
77
qfunc my_qft_step(qbv: qbit[]) {
88
H(qbv[0]);
99
repeat (index: qbv.len - 1) {
10-
CPHASE<pi / (2 ** (index + 1))>(qbv[0], qbv[(index) + 1]);
10+
CPHASE<pi / (2 ** (index + 1))>(qbv[0], qbv[index + 1]);
1111
}
1212
}
1313

algorithms/amplitude_estimation/quantum_counting/quantum_counting_iqae.qmod

+2-2
Original file line numberDiff line numberDiff line change
@@ -51,9 +51,9 @@ qfunc main<k: int>(output ind_reg: qbit) {
5151
full_reg: qbit[];
5252
allocate<5>(full_reg);
5353
my_iqae_algorithm<k, lambda(arg0) {
54-
Z(arg0[(arg0.len) - 1]);
54+
Z(arg0[arg0.len - 1]);
5555
}, lambda(arg0) {
56-
iqae_state_preparation(arg0[0:2], arg0[2:(arg0.len) - 1], arg0[(arg0.len) - 1]);
56+
iqae_state_preparation(arg0[0:2], arg0[2:arg0.len - 1], arg0[arg0.len - 1]);
5757
}>(full_reg);
5858
state_reg: qbit[4];
5959
full_reg -> {state_reg, ind_reg};

algorithms/bernstein_vazirani/bernstein_vazirani.ipynb

+3-3
Original file line numberDiff line numberDiff line change
@@ -58,7 +58,7 @@
5858
"metadata": {},
5959
"source": [
6060
"<center>\n",
61-
"<img src=\"https://classiq-docs-images.s3.amazonaws.com/bernstein_vazirani_algorithm.png\" style=\"width:100%\">\n",
61+
"<img src=\"https://docs.classiq.io/resources/bernstein_vazirani_algorithm.png\" style=\"width:100%\">\n",
6262
"<figcaption align = \"middle\"> Figure 1. The Bernstein-Vazirani algorithm comprises three quantum blocks. The main part of the algorithm\n",
6363
"is the implementation of the Bernstein-Vazirani predicate $f(x)\\equiv (x\\cdot a) \\mod 2$. </figcaption>\n",
6464
"</center>"
@@ -130,7 +130,7 @@
130130
"metadata": {},
131131
"source": [
132132
"<center>\n",
133-
"<img src=\"https://classiq-docs-images.s3.amazonaws.com/bernstein-vazirani_predicate.png\" style=\"width:80%\">\n",
133+
"<img src=\"https://docs.classiq.io/resources/bernstein-vazirani_predicate.png\" style=\"width:80%\">\n",
134134
"<figcaption align = \"middle\"> Figure 1. The Bernstein Vazirani Predicate $f(x)$ for a secret string $a=01101$, on $n$ qubits.\n",
135135
"The quantum variable $x$ is stored on the 5 upper qubits and the resulting value of $f$ is on the lower-most qubit.</figcaption>\n",
136136
"</center>"
@@ -384,7 +384,7 @@
384384
"source": [
385385
"## References\n",
386386
"\n",
387-
"<a id='BVWiki'>[1]</a>: [Bernstein\u2013Vazirani (Wikipedia)](https://en.wikipedia.org/wiki/Bernstein%E2%80%93Vazirani_algorithm)\n",
387+
"<a id='BVWiki'>[1]</a>: [Bernstein–Vazirani (Wikipedia)](https://en.wikipedia.org/wiki/Bernstein%E2%80%93Vazirani_algorithm)\n",
388388
"\n",
389389
"<a id='ssBV'>[2]</a>: [Pokharel B., and Daniel A. L. \"Demonstration of algorithmic quantum speedup.\" Physical Review Letters 130, 210602 (2023)](https://arxiv.org/abs/2207.07647)"
390390
]

algorithms/deutsch_jozsa/deutsch_jozsa.ipynb

+2-2
Original file line numberDiff line numberDiff line change
@@ -60,7 +60,7 @@
6060
"metadata": {},
6161
"source": [
6262
"<center>\n",
63-
"<img src=\"https://classiq-docs-images.s3.amazonaws.com/deutsch_josza_closed.png\" style=\"width:100%\">\n",
63+
"<img src=\"https://docs.classiq.io/resources/deutsch_josza_closed.png\" style=\"width:100%\">\n",
6464
"<figcaption align = \"middle\"> Figure 1. The Deutsch-Jozsa algorithm </figcaption>\n",
6565
"</center>"
6666
]
@@ -407,7 +407,7 @@
407407
"metadata": {},
408408
"source": [
409409
"<center>\n",
410-
"<img src=\"https://classiq-docs-images.s3.amazonaws.com/deutsch_jozsa_opened.png\" style=\"width:100%\">\n",
410+
"<img src=\"https://docs.classiq.io/resources/deutsch_jozsa_opened.png\" style=\"width:100%\">\n",
411411
"<figcaption align = \"middle\"> Figure 2. The Deutsch-Jozsa algorithm for the complex example, focusing on oracle implementation </figcaption>\n",
412412
"</center>"
413413
]

algorithms/grover/3_sat_grover/3_sat_grover.qmod

+1-1
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
qfunc expr_predicate(x1: qnum<1, False, 0>, x2: qnum<1, False, 0>, x3: qnum<1, False, 0>, res: qbit) {
1+
qfunc expr_predicate(x1: qnum<1, False, 0>, x2: qnum<1, False, 0>, x3: qnum<1, False, 0>, res: qbit[1]) {
22
res ^= (x1 or x2 or x3) and ((not x1) or x2 or x3) and ((not x1) or (not x2) or (not x3)) and ((not x1) or (not x2) or x3) and (x1 or x2 or (not x3)) and ((not x1) or x2 or (not x3));
33
}
44

algorithms/grover/3_sat_grover_large/3_sat_grover_large.qmod

+1-1
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
qfunc expr_predicate(x1: qnum<1, False, 0>, x2: qnum<1, False, 0>, x3: qnum<1, False, 0>, x4: qnum<1, False, 0>, res: qbit) {
1+
qfunc expr_predicate(x1: qnum<1, False, 0>, x2: qnum<1, False, 0>, x3: qnum<1, False, 0>, x4: qnum<1, False, 0>, res: qbit[1]) {
22
res ^= (x2 or x3 or x4) and ((not x1) or x2 or x3) and ((not x1) or x2 or (not x3)) and ((not x1) or (not x2) or x3) and (x1 or (not x2) or (not x3)) and (x1 or (not x2) or x3) and ((not x1) or (not x2) or (not x4)) and ((not x1) or (not x2) or x4) and ((not x2) or (not x3) or (not x4)) and (x2 or (not x3) or x4) and (x1 or (not x3) or x4) and (x1 or (not x2) or (not x4)) and ((not x1) or (not x2) or (not x3));
33
}
44

algorithms/grover/grover_max_cut/grover_max_cut.qmod

+1-1
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
qfunc expr_predicate(x0: qnum<1, False, 0>, x1: qnum<1, False, 0>, x2: qnum<1, False, 0>, x3: qnum<1, False, 0>, x4: qnum<1, False, 0>, res: qbit) {
1+
qfunc expr_predicate(x0: qnum<1, False, 0>, x1: qnum<1, False, 0>, x2: qnum<1, False, 0>, x3: qnum<1, False, 0>, x4: qnum<1, False, 0>, res: qbit[1]) {
22
res ^= ((((((((((((2 * x0) * x1) + ((2 * x0) * x2)) - (2 * x0)) + ((2 * x1) * x2)) + ((2 * x1) * x3)) - (3 * x1)) + ((2 * x2) * x4)) - (3 * x2)) + ((2 * x3) * x4)) - (2 * x3)) - (2 * x4)) <= (-4);
33
}
44

algorithms/hhl/hhl/hhl.qmod

+10-10
Original file line numberDiff line numberDiff line change
@@ -21,10 +21,10 @@ qfunc my_matrix_inversion_flexible<unitary_with_power: qfunc <arg0: int>(arg1: q
2121

2222
qfunc main(output res: qbit[floor(log(4, 2))], output indicator: qbit) {
2323
prepare_amplitudes<[
24-
0.18257418583505536,
25-
0.3651483716701107,
26-
0.7302967433402214,
27-
0.5477225575051661
24+
0.1825741858,
25+
0.3651483717,
26+
0.7302967433,
27+
0.5477225575
2828
], 0.0>(res);
2929
my_matrix_inversion_flexible<lambda<pw>(arg1) {
3030
suzuki_trotter1_with_power_logic<[
@@ -34,19 +34,19 @@ qfunc main(output res: qbit[floor(log(4, 2))], output indicator: qbit) {
3434
},
3535
PauliTerm {
3636
pauli=[Pauli::I, Pauli::Z],
37-
coefficient=-0.05249999999999999
37+
coefficient=-0.0525
3838
},
3939
PauliTerm {
4040
pauli=[Pauli::I, Pauli::X],
41-
coefficient=-0.030000000000000002
41+
coefficient=-0.03
4242
},
4343
PauliTerm {
4444
pauli=[Pauli::Z, Pauli::I],
45-
coefficient=-0.017499999999999988
45+
coefficient=-0.0175
4646
},
4747
PauliTerm {
4848
pauli=[Pauli::Z, Pauli::Z],
49-
coefficient=-0.057499999999999996
49+
coefficient=-0.0575
5050
},
5151
PauliTerm {
5252
pauli=[Pauli::Z, Pauli::X],
@@ -58,7 +58,7 @@ qfunc main(output res: qbit[floor(log(4, 2))], output indicator: qbit) {
5858
},
5959
PauliTerm {
6060
pauli=[Pauli::X, Pauli::Z],
61-
coefficient=0.045000000000000005
61+
coefficient=0.045
6262
},
6363
PauliTerm {
6464
pauli=[Pauli::X, Pauli::X],
@@ -68,6 +68,6 @@ qfunc main(output res: qbit[floor(log(4, 2))], output indicator: qbit) {
6868
pauli=[Pauli::Y, Pauli::Y],
6969
coefficient=-0.06
7070
}
71-
], pw, 4, 1.8, -6.283185307179586>(arg1);
71+
], pw, 4, 1.8, -6.2831853072>(arg1);
7272
}, 4>(res, indicator);
7373
}

algorithms/qml/qgan/qgan_bars_and_strips.ipynb

+4-4
Original file line numberDiff line numberDiff line change
@@ -899,7 +899,7 @@
899899
},
900900
"source": [
901901
"<center>\n",
902-
"<img src=\"https://classiq-docs-images.s3.amazonaws.com/qgan_circuit.png\" style=\"width:100%\">\n",
902+
"<img src=\"https://docs.classiq.io/resources/qgan_circuit.png\" style=\"width:100%\">\n",
903903
"<figcaption align = \"middle\"> Hierarchical view of the quantum circuit for the QGAN generator. The circuit consists of an angle encoding layer, an ansatz layer, and a post-processing layer </figcaption>\n",
904904
"</center>"
905905
]
@@ -916,7 +916,7 @@
916916
},
917917
"source": [
918918
"<center>\n",
919-
"<img src=\"https://classiq-docs-images.s3.amazonaws.com/qgan_angle_encoder.png\" style=\"width:100%\">\n",
919+
"<img src=\"https://docs.classiq.io/resources/qgan_angle_encoder.png\" style=\"width:100%\">\n",
920920
"<figcaption align = \"middle\"> Angle encoding layer consists of two consecutive noncommuting rotations encoding a single datum. </figcaption>\n",
921921
"</center>"
922922
]
@@ -933,7 +933,7 @@
933933
},
934934
"source": [
935935
"<center>\n",
936-
"<img src=\"https://classiq-docs-images.s3.amazonaws.com/qgan_anzats.png\" style=\"width:100%\">\n",
936+
"<img src=\"https://docs.classiq.io/resources/qgan_anzats.png\" style=\"width:100%\">\n",
937937
"<figcaption align = \"middle\"> Ansatz layer including parametrized rotation followed by a pair-wise entangler via RZZ gate sequence. </figcaption>\n",
938938
"</center>"
939939
]
@@ -1153,7 +1153,7 @@
11531153
},
11541154
"source": [
11551155
"<center>\n",
1156-
"<img src=\"https://classiq-docs-images.s3.amazonaws.com/qgan_training.png\" style=\"width:100%\">\n",
1156+
"<img src=\"https://docs.classiq.io/resources/qgan_training.png\" style=\"width:100%\">\n",
11571157
"<figcaption align = \"middle\"> Example of two training sessions. The first (green) line depicts a process in which the loss function estimator is raising, a clear indication that the learning session does not seem to converge to the desired result. The second (orange) shows the convergence of both. The two components compete to improve their performance. </figcaption>\n",
11581158
"</center>"
11591159
]

algorithms/qml/qsvm/qsvm.qmod

-2
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,6 @@ qfunc main(output qbv: qbit[]) {
44
}
55

66
cscope ```
7-
87
qsvm_results = qsvm_full_run(
98
train_data=[[2.112186432983832, 0.44678210208296076], [1.4302388641836115, 2.0500863077201803], [1.7195292520528696, 2.155495109429753], [2.350606859600729, 1.3521944997967792], [2.1639392550749834, 2.858154321993804], [0.7415213200617944, 0.9960941727006177], [1.7052044687627945, 1.746156268650723], [1.154481655851151, 1.6296850849870834], [1.178550834103221, 2.4896666171792288], [1.4354595109691861, 2.4579563949501426], [1.302182045580439, 1.8007507228484583], [1.9572970134814875, 1.9123582698010868], [1.6106791225734967, 1.2793841361849436], [1.290997768246414, 0.7328787758880366], [1.4520918763727126, 1.5493209353369237], [1.3969974236871332, 1.8014514945519902], [1.977199796578803, 2.3384223503638606], [1.1275811281170995, 2.324466934392206], [1.3866941108254505, 1.529613601296024], [0.8031123903491375, 1.5721256347123322], [2.6790428274664535, 4.987426996112025], [2.4933103414105124, 5.14388063922973], [2.3501842146874936, 4.917084078977774], [4.178707007615895, 4.460515918834162], [2.948493219124173, 5.4123702911268765], [2.984282159194407, 5.1227667518958695], [2.5769216299750366, 4.508558046516978], [3.592064487915955, 5.555048347762887], [2.396370386221024, 4.870008037808379], [3.0969491698930156, 5.34962991789807], [2.755586029403162, 5.688202501088769], [3.396770558929631, 5.388148675378706], [2.9479167412155634, 5.8933575622716505], [2.613003217938794, 4.706244309823174], [3.1892281958306725, 5.524828040588774], [3.4174852452652087, 4.9812521745298435], [3.236577921191584, 4.888258645409059], [3.354555258869891, 5.034232387617792], [2.886158263159518, 5.167880953936314], [3.0219487270064307, 5.351739891114873]],
109
train_labels=[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
@@ -13,5 +12,4 @@ qsvm_results = qsvm_full_run(
1312
predict_data=[[0.9811440346538475, 1.5462800543732582], [2.1949262869084927, 1.0358013632909908], [1.7048706634628803, 1.4014678085835548], [1.2739358806925953, 0.6115754338877866], [0.6174425005849159, 2.0358927355135936], [1.6523417482007734, 0.9222481821966263], [0.7300525863052175, 1.1710853402857748], [0.4577747116111941, 1.7493595496304872], [1.8241751561761508, 1.3534955118043435], [1.3886315659624247, 2.494784307703368], [1.6905896718904094, 1.0768485551382758], [1.3895240864715106, 1.8568024446745914], [1.6585755659513455, 1.7036356008862523], [0.9046474633499264, 1.1392302611294014], [0.7130388391077676, 1.984915340265877], [1.5709575191408134, 1.637503844388876], [0.8284554279130794, 2.109172285606834], [0.8853853711248996, 2.135029086981866], [1.0023940082413283, 2.8048949846403453], [1.2388998395125284, 2.391540984718196], [3.018728391028778, 4.845684719753612], [3.083629721212037, 5.1506663321503074], [3.7531491079435564, 5.091859232676953], [3.5309511753612988, 5.564397956886731], [3.523385073048796, 4.553258712777688], [2.394841287844583, 5.355288217100166], [3.191156247800532, 5.401910488982688], [2.8343038553971556, 5.439747738100138], [3.343281609521619, 5.024999185517319], [3.1542441151785208, 5.204696355131997], [3.658408764046296, 4.611626765508735], [3.3619284175956508, 5.0769972783189035], [3.596483291054488, 5.052226481991641], [2.9701097616320284, 5.531682243130713], [2.731096182040875, 4.745566004089044], [2.9982944633987256, 5.714256270854997], [3.1948091030692796, 6.070899492245685], [3.392895177777541, 4.2886647074932345], [4.332973785345426, 5.53678658538905], [3.1821907341696787, 5.6621112375151235]]
1413
)
1514
save({'qsvm_results': qsvm_results})
16-
1715
```
Original file line numberDiff line numberDiff line change
@@ -1,19 +1,18 @@
11
qfunc main(output qbv: qbit[]) {
22
allocate<2>(qbv);
33
pauli_feature_map<QSVMFeatureMapPauli {
4-
paulis = [
4+
paulis=[
55
[Pauli::Z],
66
[Pauli::Z, Pauli::Z]
77
],
8-
entanglement = QSVMFeatureMapEntanglement::CIRCULAR,
9-
alpha = 2,
10-
reps = 2,
11-
feature_dimension = 2
8+
entanglement=QSVMFeatureMapEntanglement::CIRCULAR,
9+
alpha=2,
10+
reps=2,
11+
feature_dimension=2
1212
}>(qbv);
1313
}
1414

1515
cscope ```
16-
1716
qsvm_results = qsvm_full_run(
1817
train_data=[[2.0734511513692637, 5.843362335677016], [4.0212385965949355, 4.523893421169302], [1.9477874452256718, 1.6964600329384885], [3.9584067435231396, 2.8274333882308142], [4.272566008882119, 5.6548667764616285], [2.1362830044410597, 1.7592918860102844], [3.832743037379548, 0.3769911184307752], [2.450442269800039, 1.884955592153876], [5.969026041820608, 2.7646015351590183], [5.026548245743669, 1.3194689145077132], [4.775220833456486, 2.9530970943744057], [6.157521601035995, 1.6964600329384885], [4.1469023027385274, 1.6336281798666925], [5.215043804959057, 3.0159289474462017], [3.769911184307752, 3.0787608005179976], [3.769911184307752, 5.215043804959057], [2.324778563656447, 3.832743037379548], [5.089380098815465, 1.2566370614359172], [2.0734511513692637, 1.5079644737231008], [2.1362830044410597, 0.5026548245743669], [2.9530970943744057, 1.2566370614359172], [0.3769911184307752, 2.0734511513692637], [6.031857894892403, 5.717698629533424], [5.026548245743669, 0.7539822368615504], [4.900884539600078, 2.324778563656447], [1.6336281798666925, 6.031857894892403], [5.906194188748811, 4.39822971502571], [0.12566370614359174, 2.1362830044410597], [0.6911503837897546, 4.39822971502571], [3.0787608005179976, 4.586725274241099], [5.215043804959057, 4.71238898038469], [1.6964600329384885, 3.832743037379548], [0.25132741228718347, 1.9477874452256718], [3.204424506661589, 5.46637121724624], [4.71238898038469, 0.7539822368615504], [4.775220833456486, 0.8796459430051422], [3.1415926535897936, 2.6389378290154264], [5.026548245743669, 2.5761059759436304], [5.46637121724624, 6.157521601035995], [4.9637163926718735, 0.25132741228718347]],
1918
train_labels=[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
@@ -22,5 +21,4 @@ qsvm_results = qsvm_full_run(
2221
predict_data=[[1.8221237390820801, 1.3194689145077132], [3.8955748904513436, 2.7646015351590183], [3.6442474781641603, 2.324778563656447], [0.942477796076938, 0.3141592653589793], [2.5761059759436304, 1.0053096491487339], [4.586725274241099, 2.324778563656447], [1.6964600329384885, 3.769911184307752], [3.0787608005179976, 1.7592918860102844], [6.031857894892403, 5.277875658030853], [5.906194188748811, 4.209734155810323]]
2322
)
2423
save({'qsvm_results': qsvm_results})
25-
2624
```

0 commit comments

Comments
 (0)