forked from kingbone9/LAIC2021
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbert_attention_zero.py
252 lines (213 loc) · 10.7 KB
/
bert_attention_zero.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
#!/usr/bin/python
# author kingbone
import torch
import torch.utils.checkpoint
import torch.nn as nn
import torch.nn.functional as F
import math
import os
import warnings
from dataclasses import dataclass
from typing import Optional, Tuple
from transformers.models.bert.modeling_bert import (
BertConfig, BertIntermediate, BertOutput, BertPreTrainedModel, BertModel
)
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
_CHECKPOINT_FOR_DOC = "bert-base-uncased"
_CONFIG_FOR_DOC = "BertConfig"
_TOKENIZER_FOR_DOC = "BertTokenizer"
class SelfOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
class Attention(nn.Module):
def __init__(self, config, n_labels):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})"
)
self.n_labels = n_labels
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(*new_x_shape) # batch, seq_len, n_heads, head_size
return x.permute(0, 2, 1, 3) # batch, n_heads, seq_len, head_size
def forward(self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_value=None,
output_attentions=False,
labels_embedding=None,
):
device = hidden_states.device
batch_size = hidden_states.size(0)
# hidden_states(batch_size,seq_length,hidden_size) labels_embedding(batch_size,labels_num,hidden_size)
hidden_states = torch.cat((labels_embedding, hidden_states), dim=1)
temp = torch.zeros(batch_size, 1, 1, 148).to(device)
mixed_query_layer = self.query(hidden_states[:, :self.n_labels, :])
mixed_key_layer = self.key(hidden_states)
mixed_value_layer = self.value(hidden_states)
query_layer = self.transpose_for_scores(mixed_query_layer)
key_layer = self.transpose_for_scores(mixed_key_layer)
value_layer = self.transpose_for_scores(mixed_value_layer)
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
# (batch, n_heads, labels_num, seq_length+labels_num)
attention_scores = attention_scores / math.sqrt(self.all_head_size)
if attention_mask is not None:
attention_mask = torch.cat((temp, attention_mask), dim=-1)
attention_scores = attention_scores + attention_mask
attention_probs = nn.Softmax(dim=-1)(attention_scores)
attention_probs = self.dropout(attention_probs)
context_layer = torch.matmul(attention_probs, value_layer) # (batch, n_heads, labels_num, hidden_size)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape) # (batch, labels_num, hidden_size)
return context_layer
class FinalLayer(nn.Module):
def __init__(self, config, n_labels):
super().__init__()
self.n_labels = n_labels
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.attention = Attention(config, n_labels)
self.intermediate = BertIntermediate(config)
self.output = BertOutput(config)
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_value=None,
output_attentions=False,
labels_embedding=None,
):
self_attn = self.attention(
hidden_states,
attention_mask=attention_mask,
labels_embedding=labels_embedding
) # (batch, n_labels, hidden_size)
intermediate_output = self.intermediate(self_attn)
context_output = self.output(intermediate_output, self_attn) # (batch, n_labels, hidden_size)
batch_size = context_output.size(0)
context_output = context_output.view(batch_size, -1) # (batch, n_labels * hidden_size)
return context_output
class Linear_Classifier(nn.Module):
def __init__(self, config, labels_num):
super().__init__()
self.out_mesh_dstrbtn = nn.Linear(config.hidden_size * labels_num, labels_num)
nn.init.xavier_uniform_(self.out_mesh_dstrbtn.weight)
def forward(self, context_vectors):
output_dstrbtn = self.out_mesh_dstrbtn(context_vectors) # (batch, n_labels)
output_dstrbtn = output_dstrbtn.unsqueeze(-1)
return output_dstrbtn
class BertForClassification(BertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = 148
self.config = config
self.bert = BertModel(config)
self.attn_layer = FinalLayer(config, self.num_labels)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = Linear_Classifier(config, self.num_labels)
self.max_pool = nn.MaxPool1d(4)
self.init_weights()
def forward(
self,
input_ids=None, # 输入的id,模型会帮你把id转成embedding
attention_mask=None, # attention里的mask
token_type_ids=None, # [CLS]A[SEP]B[SEP]
position_ids=None, # 位置id
head_mask=None, # 哪个head需要被mask掉
inputs_embeds=None, # 可以选择不输入id,直接输入embedding
labels_embedding=None,
):
if labels_embedding is not None:
batch_size = input_ids.size(0)
labels_embedding = labels_embedding.expand(batch_size, -1, -1)
encoder_outputs1 = self.bert(
input_ids=input_ids[:, :500],
attention_mask=attention_mask[:, :500],
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
)
encoder_outputs2 = self.bert(
input_ids=input_ids[:, 500:1000],
attention_mask=attention_mask[:, 500:1000],
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
)
encoder_outputs3 = self.bert(
input_ids=input_ids[:, 1000:1500],
attention_mask=attention_mask[:, 1000:1500],
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
)
encoder_outputs4 = self.bert(
input_ids=input_ids[:, 1500:2000],
attention_mask=attention_mask[:, 1500:2000],
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
)
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) # batch, 1, 1, seq_len
extended_attention_mask = extended_attention_mask.to(
dtype=next(self.parameters()).dtype) # fp16 compatibility
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
attn_outputs1 = F.elu(self.attn_layer(encoder_outputs1[0],
attention_mask=extended_attention_mask[:, :, :, :500],
labels_embedding=labels_embedding))
attn_outputs2 = F.elu(self.attn_layer(encoder_outputs2[0],
attention_mask=extended_attention_mask[:, :, :, 500:1000],
labels_embedding=labels_embedding))
attn_outputs3 = F.elu(self.attn_layer(encoder_outputs3[0],
attention_mask=extended_attention_mask[:, :, :, 1000:1500],
labels_embedding=labels_embedding))
attn_outputs4 = F.elu(self.attn_layer(encoder_outputs4[0],
attention_mask=extended_attention_mask[:, :, :, 1500:2000],
labels_embedding=labels_embedding))
attn_outputs1 = self.dropout(attn_outputs1)
attn_outputs2 = self.dropout(attn_outputs2)
attn_outputs3 = self.dropout(attn_outputs3)
attn_outputs4 = self.dropout(attn_outputs4)
logits1 = self.classifier(attn_outputs1)
logits2 = self.classifier(attn_outputs2)
logits3 = self.classifier(attn_outputs3)
logits4 = self.classifier(attn_outputs4)
logits = torch.cat((logits1, logits2, logits3, logits4), 2)
logits = self.max_pool(logits).squeeze(-1)
outputs = (logits,)
return outputs # logits, pooled_output, sequence_output
else:
encoder_outputs = self.bert(
input_ids=input_ids[:, :500],
attention_mask=attention_mask[:, :500],
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
)
return encoder_outputs[1]