forked from yanqiangmiffy/Cellphone-Behavior
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathload_data.py
307 lines (259 loc) · 13.7 KB
/
load_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
import numpy as np
import pandas as pd
from tensorflow.keras.preprocessing import sequence
from tensorflow.keras.utils import to_categorical
from sklearn.preprocessing import MinMaxScaler
from tqdm import tqdm
from scipy.signal import resample
from scipy.stats import skew
from scipy.stats import kurtosis
from scipy.stats import mode
import os
data_path = 'data/'
train = pd.read_csv(data_path + 'sensor_train.csv')
test = pd.read_csv(data_path + 'sensor_test.csv')
y_train = train.groupby('fragment_id')['behavior_id'].min()
train_size = len(train)
# y_train = train.drop_duplicates(subset=['fragment_id']).reset_index(drop=True)['behavior_id'].values
# y_train = to_categorical(y_train)
print("y_train.shape:", y_train.shape)
data = pd.concat([train, test], sort=False)
data['acc'] = (data.acc_x ** 2 + data.acc_y ** 2 + data.acc_z ** 2) ** .5
data['accg'] = (data.acc_xg ** 2 + data.acc_yg ** 2 + data.acc_zg ** 2) ** .5
#
# data['acc1'] = (data['acc_x'] ** 2 + data['acc_y'] ** 2) ** 0.5
# data['accg1'] = (data['acc_xg'] ** 2 + data['acc_yg'] ** 2) ** 0.5
#
# data['acc2'] = (data['acc_x'] ** 2 + data['acc_z'] ** 2) ** 0.5
# data['accg2'] = (data['acc_xg'] ** 2 + data['acc_zg'] ** 2) ** 0.5
#
# # data['acc3'] = (data['acc_y'] ** 2 + data['acc_z'] ** 2) ** 0.5
# # data['accg3'] = (data['acc_yg'] ** 2 + data['acc_zg'] ** 2) ** 0.5 # y - z系列 under 4%%
#
#
# data['acc_sub'] = ((data['acc_xg'] - data['acc_x']) ** 2 + (data['acc_yg'] - data['acc_y']) ** 2 + (
# data['acc_zg'] - data['acc_z']) ** 2) ** 0.5
# data['acc_sub1'] = ((data['acc_xg'] - data['acc_x']) ** 2 + (data['acc_yg'] - data['acc_y']) ** 2) ** 0.5
# data['acc_sub2'] = ((data['acc_xg'] - data['acc_x']) ** 2 + (data['acc_zg'] - data['acc_z']) ** 2) ** 0.5
# # data['acc_sub3'] = ((data['acc_yg'] - data['acc_y']) ** 2 + (data['acc_zg'] - data['acc_z'])**2) ** 0.5
#
#
# data['accxg_diff_accx'] = data['acc_xg'] - data['acc_x']
# data['accyg_diff_accy'] = data['acc_yg'] - data['acc_y']
# data['acczg_diff_accz'] = data['acc_zg'] - data['acc_z']
# abs
train, test = data[:train_size], data[train_size:]
no_fea = ['fragment_id', 'behavior_id', 'time_point', 'inv_fragment_id', 'inv_behavior_id', 'inv_time_point']
use_fea = [fea for fea in data.columns if fea not in no_fea]
print("use_fea", use_fea)
num_cols = len(use_fea)
# for col in use_fea:
# print(col)
# min_max_scaler = MinMaxScaler()
# data[[col]] = min_max_scaler.fit(data[[col]])
# train[[col]]=min_max_scaler.transform(train[[col]])
# test[[col]]=min_max_scaler.transform(test[[col]])
def load_lstm_data():
# =============训练集=================
train_sequences = list()
for index, group in train.groupby(by='fragment_id'):
train_sequences.append(group[use_fea].values)
# 找到序列的最大长度
len_sequences = []
for one_seq in train_sequences:
len_sequences.append(len(one_seq))
# 填充序列
to_pad = 61
train_new_seq = []
for one_seq in train_sequences:
len_one_seq = len(one_seq)
last_val = one_seq[-1]
n = to_pad - len_one_seq
# to_concat = np.repeat(last_val, n).reshape(len(use_fea), n).transpose()
# new_one_seq = np.concatenate([one_seq, to_concat])
if n != 0:
to_concat = one_seq[:n]
new_one_seq = np.concatenate([one_seq, to_concat])
else:
new_one_seq = one_seq
train_new_seq.append(new_one_seq)
train_final_seq = np.stack(train_new_seq)
# final_seq.shape (314, 129, 4)
print("train_final_seq.shape", train_final_seq.shape)
# 进行截断
seq_len = 60
train_final_seq = sequence.pad_sequences(train_final_seq, maxlen=seq_len, padding='post',
dtype='float', truncating='post')
print("train_final_seq.shape", train_final_seq.shape)
# =============测试集=================
test_sequences = list()
for index, group in test.groupby(by='fragment_id'):
test_sequences.append(group[use_fea].values)
for one_seq in test_sequences:
len_sequences.append(len(one_seq))
print(pd.Series(len_sequences).describe()) # 最长的序列有61个
# 填充到最大长度
to_pad = 61
test_new_seq = []
for one_seq in test_sequences:
len_one_seq = len(one_seq)
last_val = one_seq[-1]
n = to_pad - len_one_seq
# to_concat = np.repeat(last_val, n).reshape(len(use_fea), n).transpose()
# new_one_seq = np.concatenate([one_seq, to_concat])
if n != 0:
to_concat = one_seq[:n]
new_one_seq = np.concatenate([one_seq, to_concat])
else:
new_one_seq = one_seq
test_new_seq.append(new_one_seq)
test_final_seq = np.stack(test_new_seq)
print("test_final_seq.shape", test_final_seq.shape)
# 进行截断
seq_len = 60
test_final_seq = sequence.pad_sequences(test_final_seq, maxlen=seq_len, padding='post',
dtype='float', truncating='post')
print("test_final_seq.shape", test_final_seq.shape)
return train_final_seq, y_train, test_final_seq, seq_len, len(use_fea)
def load_cnn_data():
x = np.zeros((7292, 60, num_cols, 1))
t = np.zeros((7500, 60, num_cols, 1))
for i in tqdm(range(7292)):
tmp = train[train.fragment_id == i][:60]
x[i, :, :, 0] = resample(tmp[use_fea], 60, np.array(tmp.time_point))[0]
for i in tqdm(range(7500)):
tmp = test[test.fragment_id == i][:60]
t[i, :, :, 0] = resample(tmp[use_fea], 60, np.array(tmp.time_point))[0]
return x, y_train, t, x.shape[1], x.shape[2], x.shape[3]
def load_features_data(feature_id=1):
if feature_id == 1:
if not os.path.exists('data/df_train_test_features.csv'):
data_path = 'data/'
df_train = pd.read_csv(data_path + 'sensor_train.csv')
df_test = pd.read_csv(data_path + 'sensor_test.csv')
df_train['flag'] = 'train'
df_test['flag'] = 'test'
df_test['behavior_id'] = -1
df_train_test = pd.concat([df_train, df_test])
df_train_test['acc_all'] = (df_train_test['acc_x'] ** 2 + df_train_test['acc_y'] ** 2 + df_train_test[
'acc_z'] ** 2) ** 0.5
df_train_test['acc_allg'] = (df_train_test['acc_xg'] ** 2 + df_train_test['acc_yg'] ** 2 + df_train_test[
'acc_zg'] ** 2) ** 0.5
agg_func = lambda x: list(x)
map_agg_func = {
'time_point': agg_func,
'acc_all': agg_func,
'acc_allg': agg_func,
'acc_x': agg_func,
'acc_y': agg_func,
'acc_z': agg_func,
'acc_xg': agg_func,
'acc_yg': agg_func,
'acc_zg': agg_func
}
df_train_test_list = df_train_test.groupby(['flag', 'fragment_id', 'behavior_id']).agg(
map_agg_func).reset_index()
map_features_fun = {
# 时域
'time_sum': lambda x: np.sum(x),
'time_mean': lambda x: np.mean(x),
'time_std': lambda x: np.std(x),
'time_var': lambda x: np.var(x),
'time_max': lambda x: np.max(x),
'time_min': lambda x: np.min(x),
'time_median': lambda x: np.median(x),
'time_energy': lambda x: np.sum(np.power(x, 2)),
'time_mad': lambda x: np.mean(np.absolute(x - np.mean(x))),
'time_percent_9': lambda x: np.percentile(x, 0.9),
'time_percent_75': lambda x: np.percentile(x, 0.75),
'time_percent_25': lambda x: np.percentile(x, 0.25),
'time_percent_1': lambda x: np.percentile(x, 0.1),
'time_percent_75_25': lambda x: np.percentile(x, 75) - np.percentile(x, 25),
'time_range': lambda x: np.max(x) - np.min(x),
'time_zcr': lambda x: (np.diff(np.sign(x)) != 0).sum(),
'time_mcr': lambda x: (np.diff(np.sign(x - np.mean(x))) != 0).sum(),
'time_minind': lambda x: np.argmin(x),
'time_maxind': lambda x: np.argmax(x),
'time_skew': lambda x: skew(x),
'time_kurtosis': lambda x: kurtosis(x),
'time_zero_big': lambda x: np.sum(np.sign(x) > 0),
'time_zero_small': lambda x: np.sum(np.sign(x) < 0),
'time_len': lambda x: np.size(x),
# 频域
'fft_dc': lambda x: np.abs(np.fft.fft(x))[0],
'fft_mean': lambda x: np.mean(np.abs(np.fft.fft(x))[1:int(len(x) / 2) + 1]),
'fft_var': lambda x: np.var(np.abs(np.fft.fft(x))[1:int(len(x) / 2) + 1]),
'fft_std': lambda x: np.std(np.abs(np.fft.fft(x))[1:int(len(x) / 2) + 1]),
'fft_sum': lambda x: np.sum(np.abs(np.fft.fft(x))[1:int(len(x) / 2) + 1]),
'fft_entropy': lambda x: -1.0 * np.sum(np.log2(
np.abs(np.fft.fft(x))[1:int(len(x) / 2) + 1] / np.sum(
np.abs(np.fft.fft(x))[1:int(len(x) / 2) + 1]))),
'fft_energy': lambda x: np.sum(np.power(np.abs(np.fft.fft(x))[1:int(len(x) / 2) + 1], 2)),
'fft_skew': lambda x: skew(np.abs(np.fft.fft(x))[1:int(len(x) / 2) + 1]),
'fft_kurtosis': lambda x: kurtosis(np.abs(np.fft.fft(x))[1:int(len(x) / 2) + 1]),
'fft_max': lambda x: np.max(np.abs(np.fft.fft(x))[1:int(len(x) / 2) + 1]),
'fft_min': lambda x: np.min(np.abs(np.fft.fft(x))[1:int(len(x) / 2) + 1]),
'fft_maxind': lambda x: np.argmax(np.abs(np.fft.fft(x))[1:int(len(x) / 2) + 1]),
'fft_minind': lambda x: np.argmin(np.abs(np.fft.fft(x))[1:int(len(x) / 2) + 1])
}
df_train_test_features = df_train_test_list[['flag', 'fragment_id', 'behavior_id']]
for col in ['acc_all', 'acc_allg', 'acc_x', 'acc_y', 'acc_z', 'acc_xg', 'acc_yg', 'acc_zg']:
for f_name, f_fun in tqdm(map_features_fun.items()):
df_train_test_features[col + '_' + f_name] = df_train_test_list[col].map(f_fun)
df_train_test_features.to_csv('data/df_train_test_features.csv', index=None)
else:
df_train_test_features = pd.read_csv('data/df_train_test_features.csv')
cols = [c for c in df_train_test_features.columns if c not in ['flag', 'fragment_id', 'behavior_id']]
for col in cols:
try:
min_max_scaler = MinMaxScaler()
df_train_test_features[[col]] = min_max_scaler.fit_transform(df_train_test_features[[col]])
except Exception as e:
print(e, col)
cols.remove(col)
X_train = df_train_test_features[df_train_test_features['flag'] == 'train'][cols].values
y_train = df_train_test_features[df_train_test_features['flag'] == 'train']['behavior_id'].values
X_test = df_train_test_features[df_train_test_features['flag'] == 'test'][cols].values
return X_train, y_train, X_test
elif feature_id == 2:
data_path = 'data/'
data_train = pd.read_csv(data_path + 'sensor_train.csv')
data_test = pd.read_csv(data_path + 'sensor_test.csv')
data_test['fragment_id'] += 10000
label = 'behavior_id'
data = pd.concat([data_train, data_test], sort=False)
df = data.drop_duplicates(subset=['fragment_id']).reset_index(drop=True)[['fragment_id', 'behavior_id']]
# data['acc'] = (data['acc_x'] ** 2 + data['acc_y'] ** 2 + data['acc_z'] ** 2) ** 0.5
# data['accg'] = (data['acc_xg'] ** 2 + data['acc_yg'] ** 2 + data['acc_zg'] ** 2) ** 0.5
# for f in tqdm([f for f in data.columns if 'acc' in f]):
# for stat in ['min', 'mean', 'median', 'std']:
# df[f + '_' + stat] = data.groupby('fragment_id')[f].agg(stat).values
data['acc'] = (data['acc_x'] ** 2 + data['acc_y'] ** 2 + data['acc_z'] ** 2) ** 0.5
data['accg'] = (data['acc_xg'] ** 2 + data['acc_yg'] ** 2 + data['acc_zg'] ** 2) ** 0.5
data['accxy'] = (data['acc_x'] ** 2 + data['acc_y'] ** 2) ** 0.5
data['accyz'] = (data['acc_y'] ** 2 + data['acc_z'] ** 2) ** 0.5
data['accxz'] = (data['acc_x'] ** 2 + data['acc_z'] ** 2) ** 0.5
data['accxyg'] = (data['acc_xg'] ** 2 + data['acc_yg'] ** 2) ** 0.5
data['accyzg'] = (data['acc_yg'] ** 2 + data['acc_zg'] ** 2) ** 0.5
data['accxzg'] = (data['acc_xg'] ** 2 + data['acc_zg'] ** 2) ** 0.5
# data['acc_sub'] = ((data['acc_xg'] - data['acc_x']) ** 2 + (data['acc_yg'] - data['acc_y']) ** 2 + (data['acc_zg'] - data['acc_z']) ** 2) ** 0.5
# data['acc_subxy'] = ((data['acc_xg'] - data['acc_x']) ** 2 + (data['acc_yg'] - data['acc_y']) ** 2) ** 0.5
# data['acc_subxz'] = ((data['acc_xg'] - data['acc_x']) ** 2 + (data['acc_zg'] - data['acc_z']) ** 2) ** 0.5
# data['acc_subyz'] = ((data['acc_yg'] - data['acc_y']) ** 2 + (data['acc_zg'] - data['acc_z']) ** 2) ** 0.5
# 统计特征
for f in tqdm([f for f in data.columns if 'acc' in f]):
for stat in ['min', 'mean', 'median', 'std']: # skew
df['{}_{}'.format(f, stat)] = data.groupby('fragment_id')[f].agg(stat).values
train_df = df[df[label].isna() == False].reset_index(drop=True)
test_df = df[df[label].isna() == True].reset_index(drop=True)
drop_feat = []
used_feat = [f for f in train_df.columns if f not in (['fragment_id', label] + drop_feat)]
print(len(used_feat))
print(used_feat)
train_x = train_df[used_feat].values
train_y = train_df[label].values
test_x = test_df[used_feat].values
return train_x, train_y, test_x
def load_y():
return y_train
# train_lstm, y1, test_lstm, seq_len, _ = load_lstm_data()