forked from yanqiangmiffy/Cellphone-Behavior
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathhar_en.py
194 lines (168 loc) · 7.98 KB
/
har_en.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
#!/usr/bin/env python
# -*- coding:utf-8 _*-
from sklearn.metrics import *
from tensorflow.keras import Model
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint, CSVLogger, ReduceLROnPlateau
from tensorflow.keras.layers import *
from sklearn.model_selection import StratifiedKFold
from load_data import *
from load_inv_data import *
from utils import *
os.environ['CUDA_VISIBLE_DEVICES'] = '1'
# 创建路径
if not os.path.exists('./result'):
os.mkdir('./result')
if not os.path.exists('./models'):
os.mkdir('./models')
if not os.path.exists('./logs'):
os.mkdir('./logs')
# gpus = tf.config.experimental.list_physical_devices(device_type='GPU')
# print(gpus)
# if gpus:
# gpu0 = gpus[0] # 如果有多个GPU,仅使用第0个GPU
# tf.config.experimental.set_memory_growth(gpu0, True) # 设置GPU显存用量按需使用
# # 或者也可以设置GPU显存为固定使用量(例如:4G)
# # tf.config.experimental.set_virtual_device_configuration(gpu0,
# # [tf.config.experimental.VirtualDeviceConfiguration(memory_limit=4096)])
# tf.config.set_visible_devices([gpu0], "GPU")
train_features, _, test_features = load_features_data(feature_id=2)
train_lstm, y1, test_lstm, seq_len, _ = load_lstm_data()
train_lstm_inv, _, test_lstm_inv, _, _ = load_lstm_inv_data()
y = load_y()
def multi_conv2d(input_forward):
input = Reshape((60, train_lstm.shape[2], 1), input_shape=(60, train_lstm.shape[2]))(input_forward)
X = Conv2D(filters=64,
kernel_size=(3, 3),
activation='relu',
padding='same')(input)
X = BatchNormalization()(X)
X = Conv2D(filters=128,
kernel_size=(3, 3),
activation='relu',
padding='same')(X)
X = BatchNormalization()(X)
X = MaxPooling2D()(X)
X = Dropout(0.2)(X)
X = Conv2D(filters=256,
kernel_size=(3, 3),
activation='relu',
padding='same')(X)
# X = BatchNormalization()(X)
X = Dropout(0.3)(X)
X = Conv2D(filters=512,
kernel_size=(3, 3),
activation='relu',
padding='same')(X)
# X = BatchNormalization()(X)
X = GlobalAveragePooling2D()(X)
X = Dropout(0.5)(X)
# X = BatchNormalization()(Dropout(0.2)(Dense(128, activation='relu')(Flatten()(X))))
return X
def Net():
input_forward = Input(shape=(60, train_lstm.shape[2]))
input_backward = Input(shape=(60, train_lstm.shape[2]))
X_forward = multi_conv2d(input_forward)
X_backward = multi_conv2d(input_backward)
feainput = Input(shape=(train_features.shape[1],))
dense = Dense(32, activation='relu')(feainput)
dense = BatchNormalization()(dense)
dense = Dropout(0.2)(dense)
dense = Dense(64, activation='relu')(dense)
dense = Dropout(0.2)(dense)
dense = Dense(128, activation='relu')(dense)
dense = Dropout(0.2)(dense)
dense = Dense(256, activation='relu')(dense)
dense = BatchNormalization()(dense)
output = Concatenate(axis=-1)([X_forward, X_backward, dense])
output = BatchNormalization()(Dropout(0.2)(Dense(640, activation='relu')(Flatten()(output))))
output = Dense(19, activation='softmax')(output)
return Model([input_forward, input_backward, feainput], output)
acc_scores = []
combo_scores = []
proba_t = np.zeros((7500, 19))
kfold = StratifiedKFold(5, shuffle=True, random_state=42)
# 类别权重设置
class_weight = np.array([0.03304992, 0.09270433, 0.05608886, 0.04552935, 0.05965442,
0.04703785, 0.10175535, 0.03236423, 0.0449808, 0.0393582,
0.03236423, 0.06157433, 0.10065826, 0.03990675, 0.01727921,
0.06555129, 0.04731212, 0.03551838, 0.04731212])
for fold, (train_index, valid_index) in enumerate(kfold.split(train_lstm, y)):
print("{}train {}th fold{}".format('==' * 20, fold + 1, '==' * 20))
y_ = to_categorical(y, num_classes=19)
model = Net()
model.compile(loss='categorical_crossentropy',
optimizer='rmsprop',
metrics=['acc'])
model.summary()
plateau = ReduceLROnPlateau(monitor="val_acc",
verbose=1,
mode='max',
factor=0.5,
patience=20)
early_stopping = EarlyStopping(monitor='val_acc',
verbose=1,
mode='max',
patience=30)
checkpoint = ModelCheckpoint(f'models/fold{fold}.h5',
monitor='val_acc',
verbose=0,
mode='max',
save_best_only=True)
csv_logger = CSVLogger('logs/log.csv', separator=',', append=True)
x_train_lstm = train_lstm[train_index]
y_train_lstm = y_[train_index]
x_train_copy = np.copy(x_train_lstm)
y_train_copy = np.copy(y_train_lstm)
x_en, y_en = data_enhance('noise', x_train_copy, y_train_copy)
x_train_lstm = np.r_[x_train_lstm, x_en]
y_train_lstm = np.r_[y_train_lstm, y_en]
x_train_lstminv = train_lstm_inv[train_index]
y_train_lstminv = y_[train_index]
x_train_copy = np.copy(x_train_lstminv)
y_train_copy = np.copy(y_train_lstminv)
x_en, y_en = data_enhance('noise', x_train_copy, y_train_copy)
x_train_lstminv = np.r_[x_train_lstminv, x_en]
y_train_lstminv = np.r_[y_train_lstminv, y_en]
x_train_features = train_features[train_index]
y_train_features = y_[train_index]
x_train_copy = np.copy(x_train_features)
y_train_copy = np.copy(y_train_features)
x_en, y_en = data_enhance('noise', x_train_copy, y_train_copy)
x_train_features = np.r_[x_train_features, x_en]
y_train_features = np.r_[y_train_features, y_en]
from sklearn.utils import shuffle
x_train_lstm, x_train_lstminv, x_train_features, y_train_lstminv = shuffle(x_train_lstm, x_train_lstminv,
x_train_features, y_train_lstminv)
print('Data enhanced (%s) => %d' % (' '.join('noise'), len(x_train_lstminv)))
history = model.fit([x_train_lstm,
x_train_lstminv,
x_train_features],
y_train_lstminv,
epochs=500,
batch_size=256,
verbose=1,
shuffle=True,
class_weight=dict(enumerate((1 - class_weight) ** 3)),
validation_data=([train_lstm[valid_index],
train_lstm_inv[valid_index],
train_features[valid_index]],
y_[valid_index]),
callbacks=[plateau, early_stopping, checkpoint, csv_logger])
model.load_weights(f'models/fold{fold}.h5')
proba_x = model.predict([train_lstm[valid_index], train_lstm_inv[valid_index], train_features[valid_index]],
verbose=0, batch_size=1024)
proba_t += model.predict([test_lstm, test_lstm_inv, test_features], verbose=0, batch_size=1024) / 5.
oof_y = np.argmax(proba_x, axis=1)
score1 = accuracy_score(y[valid_index], oof_y)
# print('accuracy_score',score1)
score = sum(acc_combo(y_true, y_pred) for y_true, y_pred in zip(y[valid_index], oof_y)) / oof_y.shape[0]
print('accuracy_score', score1, 'acc_combo', score)
acc_scores.append(score1)
combo_scores.append(score)
print("5kflod mean acc score:{}".format(np.mean(acc_scores)))
print("5kflod mean combo score:{}".format(np.mean(combo_scores)))
sub = pd.read_csv('data/提交结果示例.csv')
sub.behavior_id = np.argmax(proba_t, axis=1)
sub.to_csv('result/har_acc{}_combo{}.csv'.format(np.mean(acc_scores), np.mean(combo_scores)), index=False)
pd.DataFrame(proba_t, columns=['pred_{}'.format(i) for i in range(19)]).to_csv(
'result/har_proba_t_{}.csv'.format(np.mean(acc_scores)), index=False)