-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcram.pyx
250 lines (216 loc) · 8.08 KB
/
cram.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
cimport numpy as np
import numpy as np
import scipy.sparse as sp
cimport c_cram
# startup numpy
np.import_array()
np.import_ufunc()
# some info translations
cdef int i, j, idx
N = c_cram.pyne_cram_transmute_info.n
NNZ = c_cram.pyne_cram_transmute_info.nnz
cpdef dict C_IJ = {}
for idx in range(c_cram.pyne_cram_transmute_info.nnz):
C_IJ[c_cram.pyne_cram_transmute_info.i[idx], c_cram.pyne_cram_transmute_info.j[idx]] = idx
IJ = C_IJ
cpdef list C_NUCS = []
for idx in range(c_cram.pyne_cram_transmute_info.n):
b = c_cram.pyne_cram_transmute_info.nucs[idx]
s = b.decode()
C_NUCS.append(s)
NUCS= C_NUCS
NUCS_IDX = {nuc: idx for idx, nuc in enumerate(NUCS)}
cdef np.npy_intp npy_nnz = c_cram.pyne_cram_transmute_info.nnz
ROWS = np.PyArray_SimpleNewFromData(1, &npy_nnz, np.NPY_INT, c_cram.pyne_cram_transmute_info.i)
COLS = np.PyArray_SimpleNewFromData(1, &npy_nnz, np.NPY_INT, c_cram.pyne_cram_transmute_info.j)
DECAY_MATRIX = np.PyArray_SimpleNewFromData(1, &npy_nnz, np.NPY_DOUBLE, c_cram.pyne_cram_transmute_info.decay_matrix)
def ones(dtype='f8'):
"""Returns a CSR matrix of ones with the given sparsity pattern."""
data = np.ones(c_cram.pyne_cram_transmute_info.nnz, dtype=dtype)
mat = sp.csr_matrix((data, (ROWS, COLS)))
return mat
def flatten_sparse_matrix(mat):
"""Flattens a sparse matrix to a solvable form."""
rows, cols, vals = sp.find(mat)
cdef int nmat = len(rows)
cdef np.ndarray A = np.zeros(c_cram.pyne_cram_transmute_info.nnz, dtype=mat.dtype)
cdef int n
for n in range(nmat):
idx = C_IJ.get((rows[n], cols[n]), None)
if idx is not None:
A[idx] = vals[n]
return A
def csr_from_flat(A):
"""Converts a flatten matrix into a CSR sparse matrix."""
return sp.csr_matrix((A, (ROWS, COLS)))
def asflat(A):
"""Returns a flat version of the matrix. Does nothing if the matrix is already flat."""
if not sp.issparse(A):
pass
elif A.nnz != c_cram.pyne_cram_transmute_info.nnz or not sp.isspmatrix_csr(A):
A = flatten_sparse_matrix(A)
else:
# is CSR with right shape
A = A.data
return A
def solve(A, b):
"""Solves Ax = b for x."""
A = asflat(A)
b_flat = b.flatten()
# solve for type
if A.dtype == np.complex128:
x = np.empty(c_cram.pyne_cram_transmute_info.n, dtype=np.complex128)
c_cram.pyne_cram_solve_complex(<double complex*> np.PyArray_DATA(A),
<double complex*> np.PyArray_DATA(b),
<double complex*> np.PyArray_DATA(x))
elif A.dtype == np.float64:
x = np.empty(c_cram.pyne_cram_transmute_info.n, dtype=np.float64)
c_cram.pyne_cram_solve_double(<double*> np.PyArray_DATA(A),
<double*> np.PyArray_DATA(b),
<double*> np.PyArray_DATA(x))
else:
raise ValueError("dtype not recognized.")
x.shape = b.shape
return x
def diag_add(A, theta):
"""Returns a flat matrix which represents A + theta*I."""
dtype = np.common_type(A, np.array(theta))
r = np.array(asflat(A), dtype=dtype)
if dtype == np.complex128:
c_cram.pyne_cram_diag_add_complex(<double complex*> np.PyArray_DATA(r), theta)
elif dtype == np.float64:
c_cram.pyne_cram_diag_add_double(<double*> np.PyArray_DATA(r), theta)
else:
raise ValueError("dtype not recognized.")
return r
def dot(A, x):
"""Takes the dot product of Ax and returns y."""
A = asflat(A)
# solve for type
if A.dtype == np.complex128:
y = np.empty(c_cram.pyne_cram_transmute_info.n, dtype=np.complex128)
c_cram.pyne_cram_dot_complex(<double complex*> np.PyArray_DATA(A),
<double complex*> np.PyArray_DATA(x),
<double complex*> np.PyArray_DATA(y))
elif A.dtype == np.float64:
y = np.empty(c_cram.pyne_cram_transmute_info.n, dtype=np.float64)
c_cram.pyne_cram_dot_double(<double*> np.PyArray_DATA(A),
<double*> np.PyArray_DATA(x),
<double*> np.PyArray_DATA(y))
else:
raise ValueError("dtype not recognized.")
return y
def scalar_times_vector(alpha, v):
"""Returns alpha*v, there alpha is a scalar and v is a vector"""
dtype = np.common_type(v, np.array(alpha))
r = np.array(asflat(v), dtype=dtype)
if dtype == np.complex128:
y = np.empty(c_cram.pyne_cram_transmute_info.n, dtype=np.complex128)
c_cram.pyne_cram_scalar_times_vector_complex(
alpha,
<double complex*> np.PyArray_DATA(r)
)
elif dtype == np.float64:
y = np.empty(c_cram.pyne_cram_transmute_info.n, dtype=np.float64)
c_cram.pyne_cram_scalar_times_vector_double(
alpha,
<double*> np.PyArray_DATA(r)
)
else:
raise NotImplementedError(v.dtype)
r.shape = v.shape
return r
def expm_multiply6(A, b):
A = np.asarray(A, dtype=np.float64)
b = np.asarray(b, dtype=np.float64)
x = np.empty(c_cram.pyne_cram_transmute_info.n, dtype=np.float64)
c_cram.pyne_cram_expm_multiply6(
<double*> np.PyArray_DATA(A),
<double*> np.PyArray_DATA(b),
<double*> np.PyArray_DATA(x)
)
x.shape = b.shape
return x
def expm_multiply8(A, b):
A = np.asarray(A, dtype=np.float64)
b = np.asarray(b, dtype=np.float64)
x = np.empty(c_cram.pyne_cram_transmute_info.n, dtype=np.float64)
c_cram.pyne_cram_expm_multiply8(
<double*> np.PyArray_DATA(A),
<double*> np.PyArray_DATA(b),
<double*> np.PyArray_DATA(x)
)
x.shape = b.shape
return x
def expm_multiply10(A, b):
A = np.asarray(A, dtype=np.float64)
b = np.asarray(b, dtype=np.float64)
x = np.empty(c_cram.pyne_cram_transmute_info.n, dtype=np.float64)
c_cram.pyne_cram_expm_multiply10(
<double*> np.PyArray_DATA(A),
<double*> np.PyArray_DATA(b),
<double*> np.PyArray_DATA(x)
)
x.shape = b.shape
return x
def expm_multiply12(A, b):
A = np.asarray(A, dtype=np.float64)
b = np.asarray(b, dtype=np.float64)
x = np.empty(c_cram.pyne_cram_transmute_info.n, dtype=np.float64)
c_cram.pyne_cram_expm_multiply12(
<double*> np.PyArray_DATA(A),
<double*> np.PyArray_DATA(b),
<double*> np.PyArray_DATA(x)
)
x.shape = b.shape
return x
def expm_multiply14(A, b):
A = np.asarray(A, dtype=np.float64)
b = np.asarray(b, dtype=np.float64)
x = np.empty(c_cram.pyne_cram_transmute_info.n, dtype=np.float64)
c_cram.pyne_cram_expm_multiply14(
<double*> np.PyArray_DATA(A),
<double*> np.PyArray_DATA(b),
<double*> np.PyArray_DATA(x)
)
x.shape = b.shape
return x
def expm_multiply16(A, b):
A = np.asarray(A, dtype=np.float64)
b = np.asarray(b, dtype=np.float64)
x = np.empty(c_cram.pyne_cram_transmute_info.n, dtype=np.float64)
c_cram.pyne_cram_expm_multiply16(
<double*> np.PyArray_DATA(A),
<double*> np.PyArray_DATA(b),
<double*> np.PyArray_DATA(x)
)
x.shape = b.shape
return x
def expm_multiply18(A, b):
A = np.asarray(A, dtype=np.float64)
b = np.asarray(b, dtype=np.float64)
x = np.empty(c_cram.pyne_cram_transmute_info.n, dtype=np.float64)
c_cram.pyne_cram_expm_multiply18(
<double*> np.PyArray_DATA(A),
<double*> np.PyArray_DATA(b),
<double*> np.PyArray_DATA(x)
)
x.shape = b.shape
return x
def expmI14(A):
"""
Computes exp(-A)*I
"""
cdef int offset, i
A = asflat(A)
x = np.empty((N, N), dtype=np.float64)
for i in range(c_cram.pyne_cram_transmute_info.n):
b = np.zeros(c_cram.pyne_cram_transmute_info.n, dtype=np.float64)
b[i] = 1.0
offset = i*c_cram.pyne_cram_transmute_info.n*sizeof(double)
c_cram.pyne_cram_expm_multiply14(
<double*> np.PyArray_DATA(A),
<double*> np.PyArray_DATA(b),
<double*> (np.PyArray_DATA(x) + offset),
)
return x