-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreport_cleaning.py
199 lines (164 loc) · 8.19 KB
/
report_cleaning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import os
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from transformers import set_seed
from datasets import Dataset
import argparse
from transformers import Seq2SeqTrainer, Seq2SeqTrainingArguments, DataCollatorForSeq2Seq
import torch
import pandas as pd
import numpy as np
from CXRMetric.CheXbert.src.label import label
MISSING = 0
POSITIVE = 1
NEGATIVE = 2
UNCERTAIN = 3
def parse_args():
"""Parse the arguments."""
parser = argparse.ArgumentParser()
parser.add_argument("--chexbert_path", type=str, default=None,
help="Path to the CheXbert model")
parser.add_argument("--dataset_path", type=str, default=None,
help="Path to the CSV file of sentences to clean. Ensure there is a `report` column")
parser.add_argument("--output_dir", type=str, default="./report_cleaning",
help="Path to save the running results.")
parser.add_argument("--outfile", type=str, default="clean_output.csv",
help="Name of the output file.")
parser.add_argument("--per_device_eval_batch_size", type=int, default=32,
help="Batch size to use for testing.")
parser.add_argument("--model_id", type=str, default="google/flan-t5-XXL",
help="Model id to use for training.")
parser.add_argument("--generation_max_length", type=int, default=200,
help="Maximum length to use for generation")
parser.add_argument("--top_k", type=int, default=1,
help="Top k to use for generation.")
parser.add_argument("--seed", type=int, default=42,
help="Seed to use for training.")
parser.add_argument("--deepspeed", type=str, default=None,
help="Path to deepspeed config file.")
parser.add_argument(
"--bf16",
type=bool,
default=True if torch.cuda.get_device_capability()[0] == 8 else False,
help="Whether to use bf16.",
)
args = parser.parse_known_args()
return args
# Checks which examples' labels have been changed due to cleaning
def labels_changed(args, y_gt, y_gt_neg, output_list):
df_gen = pd.DataFrame(output_list, columns=['report'])
df_gen = df_gen.replace('REMOVED', '_')
pre_chexb_path = os.path.join(args.output_dir, 'gen_pre_chexbert.csv')
df_gen.to_csv(pre_chexb_path, index=False)
y_gen = label(args.chexbert_path, pre_chexb_path, use_gpu=False)
y_gen = np.array(y_gen).T
y_gen_neg = y_gen.copy()
y_gen[(y_gen == NEGATIVE) | (y_gen == UNCERTAIN)] = 0
y_gen_neg[(y_gen_neg == POSITIVE) | (y_gen_neg == UNCERTAIN)] = 0
y_gen_neg[y_gen_neg == NEGATIVE] = 1
os.system('rm {}'.format(pre_chexb_path))
pos_is_diff = np.logical_xor(y_gt, y_gen).any(axis=1)
neg_is_diff = np.logical_xor(y_gt_neg, y_gen_neg).any(axis=1)
assert len(pos_is_diff) == len(output_list)
label_is_diff = np.logical_or(pos_is_diff, neg_is_diff)
return label_is_diff
def label_heuristic(args, output_list):
gt_pos_path = os.path.join(args.output_dir, "gt_pos_labels.pt")
gt_neg_path = os.path.join(args.output_dir, "gt_neg_labels.pt")
if not (os.path.exists(gt_pos_path) and os.path.exists(gt_neg_path)):
data_full = pd.read_csv(args.dataset_path).fillna('_')
pre_chexb_path = os.path.join(args.output_dir, "gt_pre_chexbert.csv")
data_full[['report']].to_csv(pre_chexb_path, index=False)
y_gt = label(args.chexbert_path, pre_chexb_path, use_gpu=False)
y_gt = np.array(y_gt).T
y_gt_neg = y_gt.copy()
y_gt[(y_gt == NEGATIVE) | (y_gt == UNCERTAIN)] = 0
y_gt_neg[(y_gt_neg == POSITIVE) | (y_gt_neg == UNCERTAIN)] = 0
y_gt_neg[y_gt_neg == NEGATIVE] = 1
torch.save(y_gt, gt_pos_path)
torch.save(y_gt_neg, gt_neg_path)
y_gt = torch.load(gt_pos_path)
y_gt_neg = torch.load(gt_neg_path)
label_is_diff = labels_changed(args, y_gt, y_gt_neg, output_list)
return label_is_diff
def predict(args, model, tokenizer, data_collator,
instructions, examples, report_list, outfile):
def preprocess_function(examples):
model_inputs = tokenizer(examples["input_text"],
return_tensors="pt", padding=True)
model_inputs["labels"] = model_inputs.input_ids.detach().clone() # dummy target, copy from inputs
return model_inputs
input_list = [instructions.format(EXAMPLES=examples, INPUT_QUERY=input_sent)
for input_sent in report_list]
dataset = Dataset.from_dict({"input_text": input_list})
dataset = dataset.map(preprocess_function, batched=True,
load_from_cache_file=False,
remove_columns=["input_text"],
desc="Running tokenizer on dataset")
output_dir = args.output_dir
os.makedirs(output_dir, exist_ok=True)
training_args = Seq2SeqTrainingArguments(
output_dir=output_dir,
per_device_eval_batch_size=args.per_device_eval_batch_size,
predict_with_generate=True,
generation_max_length=args.generation_max_length,
fp16=False, # T5 overflows with fp16
bf16=args.bf16, # Use BF16 if available
deepspeed=args.deepspeed,
logging_dir=f"{output_dir}/logs",
logging_strategy="steps",
logging_steps=500,
)
# Create Trainer instance
trainer = Seq2SeqTrainer(
model=model,
args=training_args,
train_dataset=dataset,
eval_dataset=dataset,
data_collator=data_collator,
)
predict_results = trainer.predict(dataset,
max_length=args.generation_max_length,
top_k=args.top_k)
if trainer.is_world_process_zero():
preds = np.where(predict_results.predictions != -100,
predict_results.predictions,
tokenizer.pad_token_id)
predictions = tokenizer.batch_decode(preds,
skip_special_tokens=True,
clean_up_tokenization_spaces=True)
label_is_diff = label_heuristic(args, predictions)
for i in range(len(label_is_diff)):
if label_is_diff[i]:
predictions[i] = report_list[i]
df_res = pd.DataFrame(predictions, columns=['report'])
df_res.to_csv(os.path.join(output_dir, outfile), index=False)
if __name__ == '__main__':
args, _ = parse_args()
set_seed(args.seed)
model_name = args.model_id
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
model = model.eval()
embedding_size = model.get_input_embeddings().weight.shape[0]
if len(tokenizer) > embedding_size:
model.resize_token_embeddings(len(tokenizer))
data_collator = DataCollatorForSeq2Seq(tokenizer,
model=model,
label_pad_token_id=tokenizer.pad_token_id,
pad_to_multiple_of=8)
data = pd.read_csv(args.dataset_path)
report_list = list(data["report"])
RULES = [1, 2, 3, 4, 5, 6, 7]
for i in RULES:
rule = 'rewrite' + str(i)
print(rule)
instruct_path = './prompts/report_clean_rules/{}_instructions.txt'.format(rule)
examples_path = './prompts/report_clean_rules/{}_sen_fewshot.txt'.format(rule)
outfile = '{}_intermediate.csv'.format(rule)
instructions = open(instruct_path).read()
examples = open(examples_path).read()
predict(args, model, tokenizer, data_collator,
instructions, examples, report_list, outfile)
torch.distributed.barrier()
report_list = pd.read_csv(os.path.join(args.output_dir, outfile))['report'].to_list()
# deepspeed --num_gpus=4 report_cleaning.py --chexbert_path /data/dangnguyen/report_generation/models/chexbert.pth --dataset_path /data/dangnguyen/report_generation/mimic_data/report_cleaning/test_cleaning_gt_200.csv --output_dir /data/dangnguyen/report_generation/mimic_data/report_cleaning/github_ready/