-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathAkashi2016.py
105 lines (76 loc) · 2.71 KB
/
Akashi2016.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import numpy as np
import cv2
import jax
from jax import jit, random, device_put
import jax.numpy as jnp
import os
from tqdm import tqdm
import time
folder = 'SHIQ'
@jit
def separate_ds(W, I, H, lamb, i_s, A):
W_bar = W / jnp.linalg.norm(W, 2, axis=0)
H = H * (W_bar.conjugate().transpose(1,0)@I) / \
(W_bar.conjugate().transpose(1,0)@W_bar@H+lamb)
H_d = H[1:,:]
Vl = I-(i_s@H[:1,:])
Vl = jnp.where(Vl > 0, Vl, 0)
W_d_bar = W_bar[:,1:]
W_d = W_d_bar * (Vl @ H_d.conjugate().transpose(1,0) + \
W_d_bar * (A @ W_d_bar @ H_d @ H_d.conjugate().transpose(1,0))) / \
(W_d_bar @ H_d @ H_d.conjugate().transpose(1,0) + \
W_d_bar * (A @ Vl @ H_d.conjugate().transpose(1,0)))
W = jnp.concatenate([i_s, W_d], axis=1)
F_t = 0.5 * jnp.linalg.norm((I-W@H),'fro') + lamb * jnp.sum(H[:])
return W, H, F_t
def process(image_path):
I = cv2.imread(os.path.join(folder, image_path), cv2.IMREAD_COLOR)
n_row, n_col, n_ch = I.shape
M = 3
N = n_row * n_col
R = 7
I = I.reshape(N,M).conjugate().transpose(1,0)
i_s = jnp.ones((3,1), dtype=np.uint8)/jnp.sqrt(3)
H = 254 * random.uniform(key, minval=0, maxval=1, shape=(R,N)) + 1
W_d = 254 * random.uniform(key, minval=0, maxval=1, shape=(3,R-1)) + 1
W_d = W_d / jnp.linalg.norm(W_d, 2, axis=0)
W_d = device_put(W_d)
W = jnp.concatenate([i_s, W_d], axis=1)
W = device_put(W)
A = jnp.ones(M).astype(np.uint8)
A = device_put(A)
lamb = 3
eps = jnp.exp(-18)
F_t_1 = jnp.inf
i = 0
max_iter = 10000
start = time.time()
while True:
W, H, F_t = separate_ds(W,I,H,lamb,i_s,A)
if (jnp.abs(F_t-F_t_1) < eps * jnp.abs(F_t)) or (i >= max_iter):
break
F_t_1 = F_t
i += 1
W_d = W[:, 1:]
#H_s = H[:1,:]
H_d = H[1:,:]
#I_s = i_s @ H_s
I_d = W_d @ H_d
#I_s = I_s.conjugate().transpose(1,0).reshape(n_row, n_col, n_ch) / 255
I_d = I_d.conjugate().transpose(1,0).reshape(n_row, n_col, n_ch) / 255
#I_s = jnp.clip(I_s, 0,1)*255
I_d = jnp.clip(I_d, 0,1)*255
gpus = jax.devices('cuda')
I = I.conjugate().transpose(1,0).reshape(n_row, n_col, n_ch)
I_s = np.asarray(device_put(I-I_d, gpus[0]))
I_d = np.asarray(device_put(I_d, gpus[0]))
name = os.path.basename(image_path)
# cv2.imwrite('python_specular_2016.png', I_s)
cv2.imwrite(os.path.join('result', name), I_d)
if __name__ == '__main__':
# process('test.jpg')
key = random.PRNGKey(0)
imgs = os.listdir(folder)
for img in tqdm(imgs):
process(img)
# p_map(process, imgs)