This is for detecting taget object(human) at Tsukuba Challenge 2016.
- コード重複多すぎ
- スケーリングパラメータのハードコートは良くない
- PCL 1.7+
- boost
- ROS(indigo)
This package is using 3D pointcloud(pointcloud2) to recognize.
$ roslaunch target_object_detector target_object_detector.launch
- tf(/map, /base_link and sensor_frame)
- /amcl_pose (geometry_msgs/PoseWithCovarianceStamped)
- /hokuyo3d/hokuyo_cloud2
First, make dataset/traian
directory in this pkg. Then move there.
roscd target_object_detector
mkdir -p dataset/train
cd dataset/train
Run the segmentation node in the directory.
rosrun target_object_detector segment_cluster_creator_node
Take a poingcloud by running the robot or play bag file include pointclioud2
msg.
You will get a lot of pcd files in the directory.
Next, classify the pcd files.
rosrun target_object_detector train_data_create_tool
After classified all pcd files, you will get train.csv
in the directory.
Third, making svm model.
roscd targe_object_detector/src/libsvm/tools/
python easy.py path/to/train.csv