-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
247 lines (192 loc) · 9.14 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import torch
from torch import nn
from matplotlib import pyplot as plt
from matplotlib_inline import backend_inline
from torch.optim import lr_scheduler
from dataload import load_minst, load_cifar_10
from layers import UnitStepLayer
from models import LeNet_300_100, LeNet_5_Caffe, MaskedLSTM, LSTM, MaskedVgg, MaskedWideResNet
from train import train_net, train_1epoch, train_rnn, train_rnn_1epoch
def set_axes(axes, xlabel, ylabel, xlim, ylim, xscale, yscale):
"""Set the axes for matplotlib.
Defined in :numref:`sec_calculus`"""
axes.set_xlabel(xlabel)
axes.set_ylabel(ylabel)
axes.set_xscale(xscale)
axes.set_yscale(yscale)
axes.set_xlim(xlim)
axes.set_ylim(ylim)
axes.grid()
def plot(X, Y=None, xlabel=None, ylabel=None, legend=None, xlim=None,
ylim=None, xscale='linear', yscale='linear',
fmts=('-b', '-C1', '-g', '-r', '-m', '-C5'), figsize=(3.5, 2.5), axes=None, twins=False, ylim2=None):
backend_inline.set_matplotlib_formats('svg')
plt.rcParams['figure.figsize'] = figsize
axes = axes if axes else plt.gca()
# Return True if `X` (tensor or list) has 1 axis
def has_one_axis(X):
return (hasattr(X, "ndim") and X.ndim == 1 or isinstance(X, list)
and not hasattr(X[0], "__len__"))
if has_one_axis(X):
X = [X]
if Y is None:
X, Y = [[]] * len(X), X
elif has_one_axis(Y):
Y = [Y]
if len(X) != len(Y):
X = X * len(Y)
axes.cla()
if twins:
ax2 = axes.twinx()
ax2.set_ylim(ylim2)
ax2.set_ylabel(ylabel[1])
i = 0
ax = axes
f = []
for x, y, fmt in zip(X, Y, fmts):
if twins and (i > 0):
ax = ax2
if len(x):
h, = ax.plot(x, y, fmt)
else:
h, = ax.plot(y, fmt)
f.append(h)
i += 1
ax.legend(f, legend)
set_axes(axes, xlabel, ylabel[0], xlim, ylim, xscale, yscale)
def plot_all(epoch, acc, model_remain, layer_remain, xlabel, legend, figsize=(7.5, 3.5), ylim2=[0.93, 0.99]):
fig, axes = plt.subplots(1, 2, figsize=figsize)
plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=0.55)
plot(torch.arange(epoch) + 1, [model_remain, acc], xlabel=xlabel, ylabel=['model remain ratio', 'test acc'],
legend=['model remain ratio', 'test acc'], xlim=[1, epoch], axes=axes[0], twins=True, ylim2=ylim2)
plot(torch.arange(epoch) + 1, layer_remain, xlabel=xlabel, ylabel=['layer remain ratio'], legend=legend,
xlim=[1, epoch], axes=axes[1])
# plt.show()
class Tester:
@staticmethod
def test_usl():
a = torch.tensor([-2, -0.7, -0.1, 0, 0.5, 1], requires_grad=True)
usl = UnitStepLayer()
out = usl(a)
out.backward(torch.ones_like(a))
assert torch.tensor([0, 0.4, 1.6, 2, 0.4, 0.4]).equal(a.grad)
@staticmethod
def test_lenet_300_100(alpha=0.0005):
epoch, batch_size, lr = 20, 64, 0.01
net = LeNet_300_100()
loss = nn.CrossEntropyLoss()
trainer = torch.optim.SGD(net.parameters(), lr=lr, momentum=0.9)
train_iter, test_iter = load_minst(batch_size, flatten=True)
acc, model_remain, layer_remain = train_net(net, loss, trainer, alpha, train_iter, test_iter, epoch)
plot_all(epoch, acc, model_remain, layer_remain, 'epoch', ['fc1', 'fc2', 'fc3'])
plt.savefig("res/lenet-300-100.png")
@staticmethod
def test_lenet_5(alpha=0.0005):
epoch, batch_size, lr = 20, 64, 0.01
net = LeNet_5_Caffe()
loss = nn.CrossEntropyLoss()
trainer = torch.optim.SGD(net.parameters(), lr=lr, momentum=0.9)
train_iter, test_iter = load_minst(batch_size)
acc, model_remain, layer_remain = train_net(net, loss, trainer, alpha, train_iter, test_iter, epoch)
plot_all(epoch, acc, model_remain, layer_remain, 'epoch', ['conv1', 'conv2', 'fc1', 'fc2'], ylim2=[0.97, 1])
plt.savefig("res/lenet-5.png")
@staticmethod
def test_lenet_1epoch(alpha=0.0005):
batch_size, lr = 64, 0.01
net = LeNet_300_100()
loss = nn.CrossEntropyLoss()
trainer = torch.optim.SGD(net.parameters(), lr=lr, momentum=0.9)
train_iter, _ = load_minst(batch_size, flatten=True)
steps = len(train_iter)
layer_remain = train_1epoch(net, loss, trainer, alpha, train_iter)
plot(torch.arange(steps) + 1, layer_remain, xlabel='train steps', ylabel=['layer remain ratio'],
legend=['fc1', 'fc2', 'fc3'], xlim=[1, steps])
# plt.show()
plt.savefig("res/1epoch.png")
@staticmethod
def test_masked_lstm(hidden_size, file, alpha=0.001):
epoch, batch_size, lr = 20, 100, 0.001
net = MaskedLSTM(28, hidden_size, 2, 10)
net.init_lstm_state(batch_size, hidden_size)
loss = nn.CrossEntropyLoss()
trainer = torch.optim.Adam(net.parameters(), lr=lr)
train_iter, test_iter = load_minst(batch_size, rnn=True)
acc, model_remain, layer_remain = train_rnn(net, loss, trainer, alpha, train_iter, test_iter, epoch)
plot_all(epoch, acc, model_remain, layer_remain, 'epoch', ['lstm1', 'lstm2', 'fc'], ylim2=[0.97, 0.99])
plt.savefig(file)
@staticmethod
def test_masked_lstm_1epoch(hidden_size, file, alpha=0.001):
batch_size, lr = 100, 0.001
net = MaskedLSTM(28, hidden_size, 2, 10)
net.init_lstm_state(batch_size, hidden_size)
loss = nn.CrossEntropyLoss()
trainer = torch.optim.Adam(net.parameters(), lr=lr)
train_iter, test_iter = load_minst(batch_size, rnn=True)
steps = 600
acc, model_remain, layer_remain = train_rnn_1epoch(net, loss, trainer, alpha, train_iter, test_iter)
plot(torch.arange(steps) + 1, layer_remain, xlabel='train steps', ylabel=['layer remain ratio'],
legend=['lstm1', 'lstm2', 'fc'], xlim=[1, steps])
plt.savefig(file)
@staticmethod
def test_lstm(hidden_size, file, alpha=0.001):
epoch, batch_size, lr = 20, 100, 0.001
net = LSTM(28, hidden_size, 2, 10)
net.init_lstm_state(batch_size, hidden_size)
loss = nn.CrossEntropyLoss()
trainer = torch.optim.Adam(net.parameters(), lr=lr)
train_iter, test_iter = load_minst(batch_size, rnn=True)
acc, model_remain, layer_remain = train_rnn(net, loss, trainer, alpha, train_iter, test_iter, epoch)
plot_all(epoch, acc, model_remain, layer_remain, 'epoch', ['lstm1', 'lstm2', 'fc'], ylim2=[0.97, 0.99])
plt.savefig(file)
@staticmethod
def test_masked_vgg16(lr=0.01, alpha=5e-6):
epoch, batch_size = 160, 64
net = MaskedVgg()
loss = nn.CrossEntropyLoss()
trainer = torch.optim.SGD(net.parameters(), lr=lr, momentum=0.9)
scheduler = lr_scheduler.MultiStepLR(trainer, milestones=[80, 120], gamma=0.1)
train_iter, test_iter = load_cifar_10(batch_size)
acc, model_remain, layer_remain = train_net(net, loss, trainer, alpha, train_iter, test_iter, epoch, scheduler)
plot_all(epoch, acc, model_remain, layer_remain[[0, 2, 4, 7, 13, -1]], 'epoch',
['conv1', 'conv2', 'conv3', 'conv4', 'fc1', 'fc2'], ylim2=[0.3, 1.])
plt.savefig("res/vgg-16.png")
@staticmethod
def test_masked_wideres(wide_f, lr=0.1, alpha=5e-6):
epoch, batch_size = 160, 64
net = MaskedWideResNet(wide_f)
loss = nn.CrossEntropyLoss()
trainer = torch.optim.SGD(net.parameters(), lr=lr, momentum=0.9)
scheduler = lr_scheduler.MultiStepLR(trainer, milestones=[80, 120], gamma=0.1)
train_iter, test_iter = load_cifar_10(batch_size)
acc, model_remain, layer_remain = train_net(net, loss, trainer, alpha, train_iter, test_iter, epoch,
scheduler)
plot_all(epoch, acc, model_remain, layer_remain[[0, 1, 3, 5, 6, -1]], 'epoch',
['conv1', 'conv2', 'conv3', 'conv4', 'conv5', 'fc'], ylim2=[0.3, 1.])
plt.savefig("res/wide_res.png")
@staticmethod
def test_diff_a(wide_f, lr=0.1):
epoch, batch_size = 160, 64
test_acc, model_remains = [], []
train_iter, test_iter = load_cifar_10(batch_size)
loss = nn.CrossEntropyLoss()
alphas = torch.tensor([1e-7, 1e-6, 1e-5, 1e-4])
for alpha in alphas:
print(alpha)
net = MaskedWideResNet(wide_f)
trainer = torch.optim.SGD(net.parameters(), lr=lr, momentum=0.9)
scheduler = lr_scheduler.MultiStepLR(trainer, milestones=[80, 120], gamma=0.1)
acc, model_remain, _ = train_net(net, loss, trainer, alpha, train_iter, test_iter, epoch, scheduler)
test_acc.append(acc[-1])
model_remains.append(model_remain[-1])
plot(alphas, [torch.tensor(model_remains), torch.tensor(test_acc)], xlabel='alpha',
ylabel=['model remain ratio', 'test_acc'], legend=['model remain ratio', 'test_acc'],
twins=True, ylim2=[0.8, 0.95], xscale='log')
plt.save("res/diff_a.png")
@staticmethod
def test_model():
net = MaskedWideResNet(8)
X = torch.randn((2, 3, 32, 32))
for layer in net:
X = layer(X)
print(X.shape)
input()