forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPaddingKernel.cpp
443 lines (390 loc) · 16.6 KB
/
PaddingKernel.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <ATen/core/Tensor.h>
#include <ATen/Dispatch.h>
#include <ATen/Parallel.h>
#include <ATen/cpu/vec/vec.h>
#include <ATen/native/Padding.h>
#include <ATen/native/cpu/utils.h>
#include <c10/util/irange.h>
namespace at::native {
namespace {
struct PaddingParams {
int ndim;
int64_t nbatch;
int64_t channels;
// use vectorized logic on width when output index is in [pad, input_witdh + pad),
// applies only to Channels First format when pad_l and pad_r are both positive.
bool is_padding_positive_width;
c10::SmallVector<int64_t, 3u> ishape;
c10::SmallVector<int64_t, 3u> oshape;
c10::SmallVector<int64_t, 3u> pads;
c10::SmallVector<int64_t, 3u> offsets;
PaddingParams(const Tensor& input, const Tensor& output, IntArrayRef padding) {
ndim = padding.size() / 2;
bool is_batch = input.dim() == ndim + 2;
nbatch = is_batch ? input.size(0) : 1;
channels = is_batch ? input.size(1) : input.size(0);
is_padding_positive_width = padding[0] >= 0 && padding[1] >=0;
// handle sizes with batch-mode and non-batch-mode
int ind = is_batch ? 2 : 1;
for (const auto d : c10::irange(ndim)) {
ishape.emplace_back(input.size(ind + d));
oshape.emplace_back(output.size(ind + d));
}
// padding is organized in order of:
// { left, right, top, bottom, front, back }
//
// re-organize into order of:
// { depth, height, width}
//
if (ndim == 1) {
pads.emplace_back(padding[0]);
} else if (ndim == 2) {
pads.emplace_back(padding[2]);
pads.emplace_back(padding[0]);
} else {
pads.emplace_back(padding[4]);
pads.emplace_back(padding[2]);
pads.emplace_back(padding[0]);
}
for (const auto d : c10::irange(ndim)) {
int64_t pad = pads[d];
auto i_start = std::max(int64_t(0), -pad);
auto o_start = std::max(int64_t(0), pad);
offsets.emplace_back(i_start - o_start);
}
};
};
struct ReflectionPad {
static int64_t index(int64_t j, int64_t size, int64_t pad, int64_t offset) {
int64_t i;
if (j < pad) {
i = pad * 2 - j;
} else if (j >= pad && j < size + pad) {
i = j;
} else {
i = (size + pad - 1) * 2 - j;
}
return i + offset;
}
};
struct ReplicationPad {
static int64_t index(int64_t j, int64_t size, int64_t pad, int64_t offset) {
int64_t i;
if (j < pad) {
i = pad;
} else if (j >= pad && j < size + pad) {
i = j;
} else {
i = size + pad - 1;
}
return i + offset;
}
};
template <typename scalar_t>
static inline void copy_stub(scalar_t* out, const scalar_t* in, int64_t size) {
using Vec = Vectorized<scalar_t>;
int64_t d = 0;
for (; d < size - (size % Vec::size()); d += Vec::size()) {
Vec in_vec = Vec::loadu(in + d);
in_vec.store(out + d);
}
#if !defined(_MSC_VER) && !defined(COMPILING_FOR_MIN_SIZE)
# pragma unroll
#endif
for (; d < size; d++) {
out[d] = in[d];
}
}
template <typename scalar_t>
static inline void add_stub(scalar_t* grad_in, const scalar_t* grad_out, int64_t size) {
using Vec = Vectorized<scalar_t>;
int64_t d = 0;
for (; d < size - (size % Vec::size()); d += Vec::size()) {
Vec grad_vec = Vec::loadu(grad_in + d) + Vec::loadu(grad_out + d);
grad_vec.store(grad_in + d);
}
#if !defined(_MSC_VER) && !defined(COMPILING_FOR_MIN_SIZE)
# pragma unroll
#endif
for (; d < size; d++) {
grad_in[d] += grad_out[d];
}
}
template <typename scalar_t, typename PaddingType>
void cpu_padding(
const Tensor& output_,
const Tensor& input_,
PaddingParams& p) {
auto input = input_.contiguous();
auto output = output_.contiguous();
auto input_data = input.data_ptr<scalar_t>();
auto output_data = output.data_ptr<scalar_t>();
// fold nbatch and channels into single dimension for channels first.
int64_t channels = p.nbatch * p.channels;
int ndim = p.ndim;
int64_t input_depth = ndim == 3 ? p.ishape[ndim - 3] : 1;
int64_t input_height = ndim >=2 ? p.ishape[ndim - 2] : 1;
int64_t input_width = p.ishape[ndim - 1];
int64_t output_depth = ndim == 3 ? p.oshape[ndim - 3] : 1;
int64_t output_height = ndim >= 2 ? p.oshape[ndim - 2] : 1;
int64_t output_width = p.oshape[ndim - 1];
int64_t pad_d = ndim == 3 ? p.pads[ndim - 3] : 0;
int64_t pad_h = ndim >= 2 ? p.pads[ndim - 2] : 0;
int64_t pad_w = p.pads[ndim - 1];
int64_t offset_d = ndim == 3 ? p.offsets[ndim - 3] : 0;
int64_t offset_h = ndim >= 2 ? p.offsets[ndim - 2] : 0;
int64_t offset_w = p.offsets[ndim - 1];
// do vectorized copy whe output is overlapped with input on W,
// only applies to positive padding
auto loop = [=](scalar_t* out, scalar_t* in, bool positive_padding) {
if (positive_padding) {
for (const auto ow : c10::irange(pad_w)) {
int64_t iw = PaddingType::index(ow, input_width, pad_w, offset_w);
out[ow] = in[iw];
}
copy_stub(out + pad_w, in, input_width);
for (const auto ow : c10::irange(input_width + pad_w, output_width)) {
int64_t iw = PaddingType::index(ow, input_width, pad_w, offset_w);
out[ow] = in[iw];
}
} else {
for (const auto ow : c10::irange(output_width)) {
int64_t iw = PaddingType::index(ow, input_width, pad_w, offset_w);
out[ow] = in[iw];
}
}
};
if (ndim == 1) {
// parallel on N,C,W
at::parallel_for(0, channels * output_width, 1, [&](int64_t begin, int64_t end) {
int64_t c{0}, ow{0};
data_index_init(begin, c, channels, ow, output_width);
for (const auto i : c10::irange(begin, end)) {
int64_t iw = PaddingType::index(ow, input_width, pad_w, offset_w);
output_data[i] = input_data[c * input_width + iw];
data_index_step(c, channels, ow, output_width);
}
});
} else if (ndim == 2) {
// parallel on N,C,H, vectorize on W
at::parallel_for(0, channels * output_height, 1, [&](int64_t begin, int64_t end) {
int64_t c{0}, oh{0};
data_index_init(begin, c, channels, oh, output_height);
for (const auto i : c10::irange(begin, end)) {
int64_t ih = PaddingType::index(oh, input_height, pad_h, offset_h);
scalar_t* output_ptr = output_data + i * output_width;
scalar_t* input_ptr = input_data + c * input_height * input_width + ih * input_width;
loop(output_ptr, input_ptr, p.is_padding_positive_width);
data_index_step(c, channels, oh, output_height);
}
});
} else if (ndim == 3) {
// parallel on N,C,D,H, vectorize on W
at::parallel_for(0, channels * output_depth * output_height, 1, [&](int64_t begin, int64_t end) {
int64_t c{0}, od{0}, oh{0};
data_index_init(begin, c, channels, od, output_depth, oh, output_height);
for (const auto i : c10::irange(begin, end)) {
int64_t id = PaddingType::index(od, input_depth, pad_d, offset_d);
int64_t ih = PaddingType::index(oh, input_height, pad_h, offset_h);
scalar_t* output_ptr = output_data + i * output_width;
scalar_t* input_ptr = input_data + c * input_depth * input_height * input_width +
id * input_height * input_width + ih * input_width;
loop(output_ptr, input_ptr, p.is_padding_positive_width);
data_index_step(c, channels, od, output_depth, oh, output_height);
}
});
} else {
TORCH_INTERNAL_ASSERT(false, "expect input dim to be 1d, 2d or 3d.");
}
if (!output_.is_contiguous()) {
output_.copy_(output);
}
}
template <typename scalar_t, typename PaddingType>
void cpu_padding_backward(
const Tensor& grad_input_,
const Tensor& grad_output_,
PaddingParams& p) {
auto grad_output = grad_output_.contiguous();
auto grad_input = grad_input_.contiguous();
auto grad_output_data = grad_output.data_ptr<scalar_t>();
auto grad_input_data = grad_input.data_ptr<scalar_t>();
// fold nbatch and channels into single dimension for channels first.
int64_t channels = p.nbatch * p.channels;
int ndim = p.ndim;
int64_t input_depth = ndim == 3 ? p.ishape[ndim - 3] : 1;
int64_t input_height = ndim >=2 ? p.ishape[ndim - 2] : 1;
int64_t input_width = p.ishape[ndim - 1];
int64_t output_depth = ndim == 3 ? p.oshape[ndim - 3] : 1;
int64_t output_height = ndim >= 2 ? p.oshape[ndim - 2] : 1;
int64_t output_width = p.oshape[ndim - 1];
int64_t pad_d = ndim == 3 ? p.pads[ndim - 3] : 0;
int64_t pad_h = ndim >= 2 ? p.pads[ndim - 2] : 0;
int64_t pad_w = p.pads[ndim - 1];
int64_t offset_d = ndim == 3 ? p.offsets[ndim - 3] : 0;
int64_t offset_h = ndim >= 2 ? p.offsets[ndim - 2] : 0;
int64_t offset_w = p.offsets[ndim - 1];
if (ndim == 1) {
// parallel on N,C, sequential on W
at::parallel_for(0, channels, 1, [&](int64_t begin, int64_t end) {
for (const auto c : c10::irange(begin, end)) {
for (const auto ow : c10::irange(output_width)) {
int64_t iw = PaddingType::index(ow, input_width, pad_w, offset_w);
grad_input_data[c * input_width + iw] += grad_output_data[c * output_width + ow];
}
}
});
} else if (ndim == 2) {
// parallel on N,C, sequential on H,W
at::parallel_for(0, channels, 1, [&](int64_t begin, int64_t end) {
for (const auto c : c10::irange(begin, end)) {
scalar_t* grad_output_ptr = grad_output_data + c * output_height * output_width;
scalar_t* grad_input_ptr = grad_input_data + c * input_height * input_width;
for (const auto oh : c10::irange(output_height)) {
int64_t ih = PaddingType::index(oh, input_height, pad_h, offset_h);
for (const auto ow : c10::irange(output_width)) {
int64_t iw = PaddingType::index(ow, input_width, pad_w, offset_w);
grad_input_ptr[ih * input_width + iw] += grad_output_ptr[oh * output_width + ow];
}
}
}
});
} else if (p.ndim == 3) {
// parallel on N,C, sequential on D,H,W
at::parallel_for(0, channels, 1, [&](int64_t begin, int64_t end) {
for (const auto c : c10::irange(begin, end)) {
scalar_t* grad_output_ptr = grad_output_data + c * output_depth *output_height * output_width;
scalar_t* grad_input_ptr = grad_input_data + c * input_depth * input_height * input_width;
for (const auto od : c10::irange(output_depth)) {
int64_t id = PaddingType::index(od, input_depth, pad_d, offset_d);
for (const auto oh : c10::irange(output_height)) {
int64_t ih = PaddingType::index(oh, input_height, pad_h, offset_h);
for (const auto ow : c10::irange(output_width)) {
int64_t iw = PaddingType::index(ow, input_width, pad_w, offset_w);
grad_input_ptr[id * input_height * input_width + ih * input_width + iw] +=
grad_output_ptr[od * output_height * output_width + oh * output_width + ow];
}
}
}
}
});
} else {
TORCH_INTERNAL_ASSERT(false, "expect input dim to be 1d, 2d, or 3d.");
}
if (!grad_input_.is_contiguous()) {
grad_input_.copy_(grad_input);
}
}
// reflection padding
void reflection_pad1d_kernel_impl(const Tensor& output, const Tensor& input, IntArrayRef padding) {
PaddingParams param{input, output, padding};
if (input.is_quantized()) {
AT_DISPATCH_QINT_TYPES(input.scalar_type(), "qreflection_pad1d", [&] {
cpu_padding<scalar_t, ReflectionPad>(output, input, param);
});
} else {
AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES(input.scalar_type(), "reflection_pad1d", [&] {
cpu_padding<scalar_t, ReflectionPad>(output, input, param);
});
}
}
void reflection_pad1d_backward_kernel_impl(
const Tensor& grad_input, const Tensor& grad_output, IntArrayRef padding) {
PaddingParams param{grad_input, grad_output, padding};
AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES(grad_output.scalar_type(), "reflection_pad1d_backward", [&] {
cpu_padding_backward<scalar_t, ReflectionPad>(grad_input, grad_output, param);
});
}
void reflection_pad2d_kernel_impl(const Tensor& output, const Tensor& input, IntArrayRef padding) {
PaddingParams param{input, output, padding};
if (input.is_quantized()) {
// original quantized impl doesn't have channels last support,
// if this is intended, make a switch here.
AT_DISPATCH_QINT_TYPES(input.scalar_type(), "qreflection_pad2d", [&] {
cpu_padding<scalar_t, ReflectionPad>(output, input, param);
});
} else {
AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES(input.scalar_type(), "reflection_pad2d", [&] {
cpu_padding<scalar_t, ReflectionPad>(output, input, param);
});
}
}
void reflection_pad2d_backward_kernel_impl(
const Tensor& grad_input, const Tensor& grad_output, IntArrayRef padding) {
PaddingParams param{grad_input, grad_output, padding};
AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES(grad_output.scalar_type(), "reflection_pad2d_backward", [&] {
cpu_padding_backward<scalar_t, ReflectionPad>(grad_input, grad_output, param);
});
}
void reflection_pad3d_kernel_impl(const Tensor& output, const Tensor& input, IntArrayRef padding) {
PaddingParams param{input, output, padding};
AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES_AND2(kHalf, kBFloat16, input.scalar_type(),
"reflection_pad3d", [&] {
cpu_padding<scalar_t, ReflectionPad>(output, input, param);
});
}
void reflection_pad3d_backward_kernel_impl(
const Tensor& grad_input, const Tensor& grad_output, IntArrayRef padding) {
PaddingParams param{grad_input, grad_output, padding};
AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES_AND2(kHalf, kBFloat16, grad_output.scalar_type(),
"reflection_pad3d_backward", [&] {
cpu_padding_backward<scalar_t, ReflectionPad>(grad_input, grad_output, param);
});
}
// replication padding
void replication_pad1d_kernel_impl(const Tensor& output, const Tensor& input, IntArrayRef padding) {
PaddingParams param{input, output, padding};
AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES(input.scalar_type(), "replication_pad1d", [&] {
cpu_padding<scalar_t, ReplicationPad>(output, input, param);
});
}
void replication_pad1d_backward_kernel_impl(
const Tensor& grad_input, const Tensor& grad_output, IntArrayRef padding) {
PaddingParams param{grad_input, grad_output, padding};
AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES(grad_output.scalar_type(), "replication_pad1d_backward", [&] {
cpu_padding_backward<scalar_t, ReplicationPad>(grad_input, grad_output, param);
});
}
void replication_pad2d_kernel_impl(const Tensor& output, const Tensor& input, IntArrayRef padding) {
PaddingParams param{input, output, padding};
AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES(input.scalar_type(), "replication_pad2d", [&] {
cpu_padding<scalar_t, ReplicationPad>(output, input, param);
});
}
void replication_pad2d_backward_kernel_impl(
const Tensor& grad_input, const Tensor& grad_output, IntArrayRef padding) {
PaddingParams param{grad_input, grad_output, padding};
AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES(grad_output.scalar_type(), "replication_pad2d_backward", [&] {
cpu_padding_backward<scalar_t, ReplicationPad>(grad_input, grad_output, param);
});
}
void replication_pad3d_kernel_impl(const Tensor& output, const Tensor& input, IntArrayRef padding) {
PaddingParams param{input, output, padding};
AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES(input.scalar_type(), "replication_pad3d", [&] {
cpu_padding<scalar_t, ReplicationPad>(output, input, param);
});
}
void replication_pad3d_backward_kernel_impl(
const Tensor& grad_input, const Tensor& grad_output, IntArrayRef padding) {
PaddingParams param{grad_input, grad_output, padding};
AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES(grad_output.scalar_type(), "replication_pad3d_backward", [&] {
cpu_padding_backward<scalar_t, ReplicationPad>(grad_input, grad_output, param);
});
}
} // anonymous namespace
// reflection padding
REGISTER_DISPATCH(reflection_pad1d_kernel, &reflection_pad1d_kernel_impl);
REGISTER_DISPATCH(reflection_pad1d_backward_kernel, &reflection_pad1d_backward_kernel_impl);
REGISTER_DISPATCH(reflection_pad2d_kernel, &reflection_pad2d_kernel_impl);
REGISTER_DISPATCH(reflection_pad2d_backward_kernel, &reflection_pad2d_backward_kernel_impl);
REGISTER_DISPATCH(reflection_pad3d_kernel, &reflection_pad3d_kernel_impl);
REGISTER_DISPATCH(reflection_pad3d_backward_kernel, &reflection_pad3d_backward_kernel_impl);
// replication padding
REGISTER_DISPATCH(replication_pad1d_kernel, &replication_pad1d_kernel_impl);
REGISTER_DISPATCH(replication_pad1d_backward_kernel, &replication_pad1d_backward_kernel_impl);
REGISTER_DISPATCH(replication_pad2d_kernel, &replication_pad2d_kernel_impl);
REGISTER_DISPATCH(replication_pad2d_backward_kernel, &replication_pad2d_backward_kernel_impl);
REGISTER_DISPATCH(replication_pad3d_kernel, &replication_pad3d_kernel_impl);
REGISTER_DISPATCH(replication_pad3d_backward_kernel, &replication_pad3d_backward_kernel_impl);
} // at::native