-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdetector.py
675 lines (536 loc) · 21.3 KB
/
detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
from __future__ import division
import traceback
from pylab import *
import skimage as ski
from skimage import data, io, filters, exposure, measure
from skimage.filters import rank
from skimage import img_as_float, img_as_ubyte
from skimage.morphology import disk
import skimage.morphology as mp
from skimage import util
from skimage.color import rgb2hsv, hsv2rgb, rgb2gray, gray2rgb
from skimage.filters.edges import convolve
from matplotlib import pylab as plt
import numpy as np
from skimage import feature
from numpy import array
from IPython.display import display
from ipywidgets import interact, interactive, fixed
from ipywidgets import *
from ipykernel.pylab.backend_inline import flush_figures
from multiprocessing.pool import ThreadPool
from skimage.transform import hough_circle, hough_circle_peaks
from skimage.draw import circle_perimeter
from skimage.filters import threshold_otsu
from skimage.segmentation import clear_border
from skimage.measure import label, regionprops
from skimage.morphology import closing, square
from skimage.color import label2rgb
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
import cv2
dicesToRead = [
'01', '02', '03', '04', '05',
'06', '07', '08', '09', '10',
'11', '12', '13', '14', '15',
'16','17', '19', '20'
]
# dicesToRead = [
# '17',
# '11',
# '01',
# '14',
# '07',
# '06'
# '08',
# '09',
# '16',
# '06',
# '19',
# '20',
# '13'
# '15'
# '05'
# '22'
# '26'
# ]
params_for_dices = [
{'gamma': 0.4, 'sig': 2.7, 'l': 91, 'u': 90, 'edgeFunc': lambda img, p: get_edges(img, p)},
{'sig': 4, 'low': 0.05, 'high': 0.3, 'edgeFunc': lambda img, p: just_canny_and_dilation(img, p)},
{'tresh': 0.8, 'edgeFunc': lambda img, p: get_by_hsv_value(img, p)},
{'edgeFunc': lambda img, p: splashing_image(img, p)},
{'gamma': 5, 'tresh': 0.05, 'edgeFunc': lambda img, p: sobel_and_scharr_connected(img, p)},
{'l': 10, 'u': 90, 'edgeFunc': lambda img, p: high_percentile_shrink(img, p)}
]
params_for_dotes = [
{'sig': 0.4, 'low': 0.1, 'high': 0.3, 'edgeFunc': lambda img, p: just_canny_and_dilation(img, p)},
{'gamma': 1, 'sig': 1, 'l': 0, 'u': 100, 'edgeFunc': lambda img, p: get_edges(img, p)},
{'edgeFunc': lambda img, p: double_sobel(img, p)},
{'edgeFunc': lambda img, p: negative_on_v_and_canny(img, p)},
]
dices = [io.imread('./dices/dice{0}.jpg'.format(i)) for i in dicesToRead]
def draw_dice_image(i, img):
plt.subplot(1, 2, i)
plt.imshow(img)
allresults = []
def show_all_labels():
fig = plt.figure(facecolor="black", figsize=(60, 60))
for i, res in enumerate(allresults):
label = get_labels(res)
draw_dice_image_aligned(len(allresults), i, label)
def draw_dice_image_aligned(total, i, img):
in_row = int(sqrt(total)) + 1
ax = plt.subplot(in_row, 5, i + 1)
plt.imshow(img)
return ax
def d_s_l(img1, imres):
label_image = get_labels(imres)
debug_show(img1, label_image)
def debug_show(img1, img2):
draw_dice_image(1, img1)
draw_dice_image(2, img2)
plt.show()
def get_by_hsv_value(img, p):
img = rgb2hsv(img)
img[img[:, :, 2] > p['tresh']] = 1
img[img[:, :, 2] <= p['tresh']] = 0
img = rgb2gray(img)
img = ski.morphology.erosion(img, square(2))
img = ski.morphology.erosion(img, square(3))
img = ski.morphology.opening(img)
return img
def get_edges(img, p):
img = rgb2gray(img)
if 'l' in p and 'u' in p:
pp, pk = np.percentile(img, (p['l'], p['u']))
img = exposure.rescale_intensity(img, in_range=(pp, pk))
if 'gamma' in p:
img = exposure.adjust_gamma(img, p['gamma'])
img = ski.feature.canny(img, sigma=p['sig'])
return img
def just_canny_and_dilation(img, p):
img = rgb2gray(img)
img = ski.morphology.dilation(img)
img = ski.feature.canny(img, sigma=p['sig'], low_threshold=p['low'], high_threshold=p['high'])
return img
def high_percentile_shrink(img, p):
temp = rgb2gray(img)
temp = temp ** 3
temp = ski.exposure.equalize_adapthist(temp)
if np.average(temp) > 0.5:
temp = 1 - temp
temp = apply_threshold(temp)
return temp
def sobel_and_scharr_connected(img, p):
temp = img
temp = rgb2gray(temp)
temp = temp ** p['gamma']
temp1 = ski.filters.sobel(temp)
temp2 = ski.filters.scharr(temp)
temp = temp1 + temp2
temp[temp > p['tresh']] = 1
temp = ski.morphology.dilation(temp)
return temp
def splashing_image(img, p):
temp = -img
temp = rgb2gray(temp)
temp = (temp * 2) ** 0.5 / 2
temp = ski.morphology.erosion(temp, square(10))
temp = 1 - temp
temp = filters.median(temp, square(25))
temp = apply_threshold(temp)
temp = filters.median(temp, square(50))
return temp
def dots_filter(img, p):
# temp = rgb2gray(img)
# # temp = filters.median(temp, square(10))
# temp = (temp / 255) ** .05
# pp, pk = np.percentile(temp, (20, 80))
# temp = exposure.rescale_intensity(temp, in_range=(pp, pk))
# temp = exposure.equalize_adapthist(temp)
# temp = apply_threshold(temp)
# if np.average(temp) < 0.6:
# temp = 1 - temp
temp = rgb2hsv(img)
temp = temp[:, :, 2]
pp, pk = np.percentile(temp, (20, 80))
temp = exposure.rescale_intensity(temp, in_range=(pp, pk))
temp = apply_threshold(temp)
if np.average(temp) < 0.6:
temp = 1 - temp
return temp
def negative_on_v_and_canny(img, p):
temp = rgb2hsv(img)
temp = 1 - temp[:, :, 2]
temp = filters.median(temp)
temp = ski.morphology.erosion(temp)
temp = (temp / 255) ** 2
temp = ski.morphology.closing(temp)
temp = apply_threshold(temp)
temp = ski.morphology.dilation(temp, square(2))
temp = ski.feature.canny(temp, 0.9)
return temp
def double_sobel(img, p):
temp = rgb2gray(img)
temp = ski.filters.median(temp, square(10))
temp1 = apply_threshold(temp)
temp = rgb2gray(img) - temp1
temp[temp < 0] = 0
temp = ski.filters.median(temp, square(13))
temp = apply_threshold(temp)
temp = 1 - temp
temp = temp1 - temp
temp[temp < 0] = 0
temp = ski.filters.median(temp, square(13))
temp = ski.feature.canny(temp, sigma=2)
temp = apply_threshold(temp)
temp = ski.morphology.dilation(temp, square(10))
temp = ski.feature.canny(temp, sigma=0.2)
return temp
def apply_threshold(img):
if not is_one_value_image(img):
thresh = threshold_otsu(img)
img[img <= thresh] = 0
img[img > thresh] = 1
return img
def get_rectangles_with_dim(rectangles, dim_upper):
values = [x for x in rectangles if dim_upper >= x["width"] / x["height"] >= 1 / dim_upper]
sort_by_key(values, 'rarea')
return values
def sort_by_key(values, key, rev=True):
values.sort(key=lambda x: x[key], reverse=rev)
def try_to_find_dices(img):
filtered_dices = []
for p in params_for_dices:
try:
dices_candidates = look_for_dices(img, p)
filtered_dices.extend(dices_candidates)
except ValueError:
pass
return filtered_dices
def look_for_dices(img, params):
image = params['edgeFunc'](img, params)
regions = find_regions(image)
return filter_dices(regions)
def parse_image(img):
dices_candidates = try_to_find_dices(img)
fig, ax = plt.subplots(figsize=(10, 6))
if len(dices_candidates) > 0:
dices = filter_dices_after_discovering(dices_candidates, img)
dots_on_dices = prepare_dice_to_draw(dices, img)
dices_to_draw = filter_dices_to_draw(zip(dots_on_dices, dices))
draw_dices(ax, dices_to_draw, img)
ax.imshow(img)
def filter_dices_after_discovering(candidates, img):
min_coverage = .0025
width, height = len(img), len(img[0])
image_area = width * height
filtered = [x for x in candidates if x['rarea'] > image_area * min_coverage]
filtered = remove_with_single_color(filtered, img)
sort_by_key(filtered, 'rarea')
filtered = remove_outliers_on_field(filtered, 'width', 1.6, False)
filtered = remove_outliers_on_field(filtered, 'height', 1.6, False)
filtered = remove_outliers_on_field(filtered, 'rarea', 1.8, False)
dices = merge_if_multiple_same_detections(filtered)
dices = remove_outliers_on_field(dices, 'rarea', 1.8, False)
return dices
def merge_if_multiple_same_detections(candidates):
# needed 2x loops, because there is possibility that two
# areas are very close, are connected with another, but in one loop wont connect,
# for example 3 rectangles a - b - c, common part a, b == 60%, b, c == 60%, a,c == 20 -> 20 is too low
candidates = concat_if_condition_met(candidates, lambda c1, c2: is_overlaped_by(c1, c2))
candidates = concat_if_condition_met(candidates, lambda c1, c2: is_overlaped_by(c1, c2))
return candidates
def is_overlaped_by(c1, c2):
return has_lower_real_area(c1, c2) and has_common_field(c1, c2, 0.25)
def is_the_same(c1, c2, accept=0):
return (c1['minx'] - accept <= c2['minx'] <= c1['minx'] + accept and
c1['miny'] - accept <= c2['miny'] <= c1['miny'] + accept and
c1['maxx'] - accept <= c2['maxx'] <= c1['maxx'] + accept and
c1['maxy'] - accept <= c2['maxy'] <= c1['maxy'] + accept)
def remove_with_single_color(candidates, img):
filtered = [x for x in candidates if is_multi_color(get_img_fragment(x, img))]
return filtered
def is_multi_color(img):
img_copy = np.copy(img)
vals = []
ar_range = int(255 / 5) + 1
for x in range(len(img_copy)):
for y in range(len(img_copy[0])):
res = discrete_colors(ar_range, img_copy, x, y)
vals.append(res)
unique_vals = len(set(vals))
return not exposure.is_low_contrast(img_copy) and unique_vals > 10
def discrete_colors(range, img, x, y):
r = discrete_val(img[x][y][0], range)
g = discrete_val(img[x][y][1], range)
b = discrete_val(img[x][y][2], range)
img[x][y] = [r, g, b]
return b, g, r
def discrete_val(val, range):
return int(val / range) * range
def concat_if_condition_met(candidates, condition):
res = []
for c1 in candidates:
should_add = True
for c2 in candidates:
if condition(c1, c2):
extend_dice_area(c2, c1)
should_add = False
if should_add:
res.append(c1)
return res
def has_common_field(f1, f2, field_ratio):
min_x = max(0, min(f1['maxx'], f2['maxx']) - max(f1['minx'], f2['minx']))
min_y = max(0, min(f1['maxy'], f2['maxy']) - max(f1['miny'], f2['miny']))
common_part = min_x * min_y
minimum_real_area = min(f1['rarea'], f2['rarea'])
return common_part >= minimum_real_area * field_ratio
def extend_dice_area(extended, consumed):
extended['minx'] = min(extended['minx'], consumed['minx'])
extended['maxx'] = max(extended['maxx'], consumed['maxx'])
extended['miny'] = min(extended['miny'], consumed['miny'])
extended['maxy'] = max(extended['maxy'], consumed['maxy'])
extended['height'] = extended['maxy'] - extended['miny']
extended['width'] = extended['maxx'] - extended['minx']
extended['rarea'] = extended['width'] * extended['height']
extended['rect'].set_x(extended['minx'])
extended['rect'].set_y(extended['miny'])
extended['rect'].set_width(extended['width'])
extended['rect'].set_height(extended['height'])
def filter_dices_to_draw(candidates):
candidates = [(dts, dcs) for (dts, dcs) in candidates if len(dts) > 0]
return candidates
def prepare_dice_to_draw(dices_region, img):
dots = []
for dice_reg in dices_region:
dots_on_dice = find_on_dice(img, dice_reg)
for dot in dots_on_dice:
move_rectangle(dot, dice_reg)
dots.append(dots_on_dice)
return dots
def move_rectangle(container, cords):
new_x = container['rect'].get_x() + cords['minx']
new_y = container['rect'].get_y() + cords['miny']
container['rect'].set_xy((new_x, new_y))
def draw_dices(ax, dices, img):
for (dots, dice) in dices:
dots_amount = len(dots)
for dot in dots:
ax.add_patch(dot['rect'])
size = len(img) / 250
cv2.putText(img, str(dots_amount), (dice['minx'], dice['miny']), 2, fontScale=size,
color=(0, 140, 150), thickness=max(int(size), 2))
ax.add_patch(dice['rect'])
def filter_dices(regions):
values = []
for region in regions:
validate_region(region, values, lambda rect: rect['area'] >= 70, 'orange')
values = get_rectangles_with_dim(values, 2)
return values
def find_regions(image):
label_image = get_labels(image)
return regionprops(label_image)
def get_labels(image):
thresh = 0
if not is_one_value_image(image):
thresh = threshold_otsu(image)
bw = closing(image > thresh, square(2))
cleared = clear_border(bw)
label_image = label(cleared)
return label_image
def validate_region(region, values, validation_fun, color='blue'):
miny, minx, maxy, maxx = region.bbox
height = maxy - miny
width = maxx - minx
rect = mpatches.Rectangle((minx, miny), width, height,
fill=False, edgecolor=color, linewidth=2)
rect_repr = {"minx": minx, "miny": miny, "maxx": maxx, "maxy": maxy, "rect": rect, "area": region.area,
"width": width, "height": height, 'rarea': width * height, 'fill': region.convex_area}
if validation_fun(rect_repr):
values.append(rect_repr)
def is_one_value_image(img):
return len(list(set([x for sublist in img for x in sublist]))) <= 1
def get_regions_from_dice(dice_img, par):
regions = []
for p in par:
img = p['edgeFunc'](dice_img, p)
allresults.append(img)
if not is_one_value_image(img):
regions.extend(find_regions(img))
return regions
def find_on_dice(org_img, dice):
dice_img_copy = get_img_fragment(dice, org_img)
regions = get_regions_from_dice(dice_img_copy, params_for_dotes)
valid_regions = []
img_size = len(dice_img_copy) * len(dice_img_copy[0])
for region in regions:
validate_region(region, valid_regions, lambda rect: img_size * .005 <= rect['rarea'] <= img_size * .15)
if len(valid_regions) > 0:
return filter_dots(valid_regions, dice, dice_img_copy)
return []
def get_img_fragment(cords, org_img):
return org_img[cords['miny']:cords['maxy'], cords['minx']:cords['maxx']]
def filter_dots(filtered, dice, img):
ratio = 1.4
filtered = get_rectangles_with_dim(filtered, ratio)
filtered = remove_too_small_and_too_big(filtered, dice)
filtered = remove_in_corners(filtered, dice)
filtered = remove_mistaken_dots(filtered, ratio)
# filtered = look_for_dots_on_img(filtered, img)
filtered = concat_if_condition_met(filtered, lambda c1, c2: has_lower_real_area(c1, c2) and does_include(c1, c2, 2))
filtered = merge_if_multiple_same_detections(filtered)
filtered = get_rectangles_with_dim(filtered, ratio)
filtered = remove_outliers_on_field(filtered, [('fill', 1.15), ('rarea', 1.15), ('area', 1.18)])
filtered = remove_the_farthest_if_more_than_six(filtered)
return filtered
def look_for_dots_on_img(filtered, img):
res = []
for f in filtered:
scalar = 0.0
width_bound = int(f['width'] * scalar)
height_bound = int(f['height'] * scalar)
cor = {
'minx': max(0, f['minx'] - width_bound),
'maxx': min(len(img[0]) - 1, f['maxx'] + width_bound),
'miny': max(0, f['miny'] - height_bound),
'maxy': min(len(img) - 1, f['maxy'] + height_bound),
}
min_dim = int(min(cor['maxx'] - cor['minx'], cor['maxy'] - cor['miny']) / 2)
if min_dim > 0:
fragment = get_img_fragment(cor, img)
edges = dots_filter(fragment, {})
if is_filled_circle(edges):
res.append(f)
return res
def is_filled_circle(zero_one_img):
max_x = len(zero_one_img) - 1
max_y = len(zero_one_img[0]) - 1
cx = int(max_x / 2)
cy = int(max_y / 2)
r = int(min(cx, cy))
inside = []
outside = []
for x in range(0, max_x + 1):
for y in range(0, max_y + 1):
current_r = sqrt((cx - x) ** 2 + (cy - y) ** 2)
if current_r <= r*0.75:
inside.append(zero_one_img[x][y])
elif current_r >= r*1.25:
outside.append(zero_one_img[x][y])
if len(inside) == 0:
return False
inside_color = sum(inside)/len(inside)
outside_color = 1 - inside_color
if len(outside) > 0:
outside_color = sum(outside)/len(outside)
return ((0.85 <= inside_color and outside_color <= 0.4) or
(0.85 <= outside_color and inside_color <= 0.4))
def remove_outliers_on_field(filtered, fields, accept_ratio=None, should_sort=True, percent=0.25, allow_more=False):
if len(filtered) == 0:
return []
if type(fields) is str and accept_ratio is not None:
fields = [(fields, accept_ratio)]
indexes = []
for (field_name, ration) in fields:
field_values = get_by_field_name(filtered, field_name)
if should_sort:
field_values.sort(reverse=True)
comparing_idx = int(len(field_values) * percent)
to_compare = field_values[comparing_idx]
dif = round(to_compare * (ration - 1))
indexes.extend([i for (i, f) in enumerate(filtered)
if f[field_name] >= to_compare - dif and (allow_more or to_compare + dif >= f[field_name])])
indexes = list(set(indexes))
return [filtered[i] for i in indexes]
def remove_too_small_and_too_big(filtered, dice):
return [x for x in filtered if dice['rarea'] / 6 >= x['rarea'] >= dice['rarea'] * 0.005]
def remove_in_corners(filtered, dice, bound_lim=0.05):
res = []
width_bound = max(dice['width'] * bound_lim, 5)
height_bound = max(5, dice['height'] * bound_lim)
for f in filtered:
if not ((width_bound > f['minx'] and height_bound > f['miny']) or
(width_bound > f['minx'] and dice['height'] - height_bound < f['maxy']) or
(dice['width'] - width_bound < f['maxx'] and height_bound > f['miny']) or
(dice['width'] - width_bound < f['maxx'] and dice['height'] - height_bound < f['maxy']) or
f['minx'] <= 1 or f['maxx'] >= dice['width'] - 1 or
f['miny'] <= 1 or f['maxy'] >= dice['height'] - 1):
res.append(f)
return res
def remove_the_farthest_if_more_than_six(filtered):
for f in filtered:
f['center'] = {
'x': int((f['minx'] + f['maxx']) / 2),
'y': int((f['miny'] + f['maxy']) / 2)
}
for f1 in filtered:
f1['total_dist'] = 0
for f2 in filtered:
f1['total_dist'] += get_distance_between(f1, f2)
sort_by_key(filtered, 'total_dist', False)
if len(filtered) > 6:
filtered = filtered[0:6]
return filtered
def get_distance_between(f1, f2):
return sqrt(
abs(f1['center']['x'] - f2['center']['x']) ** 2 +
abs(f1['center']['y'] - f2['center']['y']) ** 2
)
def remove_smaller_than_half_of_the_biggest(filtered):
rareas = get_by_field_name(filtered, 'rarea')
if len(rareas) < 1:
return []
max_area = max(rareas)
filtered = [f for f in filtered if f['rarea'] > 0.5 * max_area]
return filtered
def remove_mistaken_dots(filtered, ratio):
by_rarea = get_by_field_name(filtered, 'rarea')
if len(by_rarea) < 1:
return []
center_point = np.percentile(by_rarea, 80)
filtered_first = [f for f in filtered if center_point * 1 / ratio <= f['rarea'] <= center_point * ratio]
if len(filtered_first) < 0.3 * len(filtered):
ratio = ratio ** 2
filtered_first = [f for f in filtered if center_point * 1 / ratio <= f['rarea'] <= center_point * ratio]
if len(filtered_first) < 0.3 * len(filtered):
center_point = sum(by_rarea) / len(by_rarea)
filtered = [f for f in filtered if center_point * 1 / ratio <= f['rarea'] <= center_point * ratio]
else:
filtered = filtered_first
return filtered
def get_by_field_name(filtered, field_name):
return [f[field_name] for f in filtered]
def remove_overlaped(filtered):
res = []
for i1, f1 in enumerate(filtered):
isOk = True
for i2, f2 in enumerate(filtered[i1:]):
if has_lower_real_area(f1, f2) and does_include(f1, f2, 2):
isOk = False
break
if isOk:
res.append(f1)
return res
def has_lower_real_area(smaller, bigger):
return not(is_the_same(smaller, bigger)) and is_smaller(smaller, bigger)
def is_smaller(smaller, bigger):
return smaller['rarea'] <= bigger['rarea']
def does_include(inner, outer, corners):
return sum([
outer['miny'] <= inner['miny'] <= outer['maxy'] and outer['minx'] <= inner['minx'] <= outer['maxx'],
outer['miny'] <= inner['maxy'] <= outer['maxy'] and outer['minx'] <= inner['minx'] <= outer['maxx'],
outer['miny'] <= inner['miny'] <= outer['maxy'] and outer['minx'] <= inner['maxx'] <= outer['maxx'],
outer['miny'] <= inner['maxy'] <= outer['maxy'] and outer['minx'] <= inner['maxx'] <= outer['maxx']
]) >= corners
def look_for_dices_on_image():
for i, image in enumerate(dices):
try:
parse_image(image)
except Exception:
print("error with {0}".format(i))
traceback.print_exc()
plt.tight_layout()
plt.show()
plt.close()
look_for_dices_on_image()