-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsummary.py
46 lines (44 loc) · 1.99 KB
/
summary.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
import numpy as np
from pruned_layers import *
def summary(net):
assert isinstance(net, nn.Module)
print("Layer id\tType\t\tParameter\tNon-zero parameter\tSparsity(\%)")
layer_id = 0
num_total_params = 0
num_total_nonzero_params = 0
for n, m in net.named_modules():
if isinstance(m, PruneLinear):
weight = m.linear.weight.data.cpu().numpy()
weight = weight.flatten()
num_parameters = weight.shape[0]
num_nonzero_parameters = (weight != 0).sum()
sparisty = 1 - num_nonzero_parameters / num_parameters
layer_id += 1
print("%d\t\tLinear\t\t%d\t\t%d\t\t\t%f" %(layer_id, num_parameters, num_nonzero_parameters, sparisty))
num_total_params += num_parameters
num_total_nonzero_params += num_nonzero_parameters
elif isinstance(m, PrunedConv):
weight = m.conv.weight.data.cpu().numpy()
weight = weight.flatten()
num_parameters = weight.shape[0]
num_nonzero_parameters = (weight != 0).sum()
sparisty = 1 - num_nonzero_parameters / num_parameters
layer_id += 1
print("%d\t\tConvolutional\t%d\t\t%d\t\t\t%f" % (layer_id, num_parameters, num_nonzero_parameters, sparisty))
num_total_params += num_parameters
num_total_nonzero_params += num_nonzero_parameters
elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.BatchNorm1d):
layer_id += 1
print("%d\t\tBatchNorm\tN/A\t\tN/A\t\t\tN/A" % (layer_id))
elif isinstance(m, nn.ReLU):
layer_id += 1
print("%d\t\tReLU\t\tN/A\t\tN/A\t\t\tN/A" % (layer_id))
print("Total nonzero parameters: %d" %num_total_nonzero_params)
print("Total parameters: %d" %num_total_params)
total_sparisty = 1. - num_total_nonzero_params / num_total_params
print("Total sparsity: %f" %total_sparisty)
#####