-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathquotas.py
293 lines (235 loc) · 12.4 KB
/
quotas.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
# Group members:
# Antonella Buccione - 3015999
# Jacopo Bugini - 3027525
# Andrea Maccarrone - 3013402
# Sebastiano Moro - 3017824
from mesa import Agent, Model
from mesa.time import RandomActivation
from mesa.space import MultiGrid
import numpy as np
from mesa.datacollection import DataCollector
class Worker_quotas(Agent):
def __init__(self, unique_id, model, level=0, age=23, education=max(np.random.randn(1)[0]+2.5,0),total_tenure=0):
super().__init__(unique_id, model)
self.gender = np.random.choice(['M','F'], p=([1/2]*2))
self.level = level
self.education = education
self.age = age
self.skills = np.random.randn(1)[0]*1.5
self.level_tenure = 0
self.total_tenure = total_tenure
self.trials = 0
self.aspiration = 0
self.aspiration_boost = 0
self.value = 0
def update(self):
# age
self.age+=1/12
# trials
if self.level==0 and self.trials<4:
self.trials+=1/12
if self.trials>=4:
return
# tenure update
if self.level>0:
self.total_tenure+=1/12
self.level_tenure+=1/12
# aspiration & value
if self.gender=='F':
self.aspiration = 3*(self.level+1)*(self.education) + np.log(self.level_tenure+1)/2 - self.trials - 3*self.model.gap_perceived/(self.level+1)
self.value = 3*(self.level+1)*(self.education + self.skills) + np.log(self.level_tenure+1)/2 - max(0, (self.age-40))
else:
self.aspiration = 3*(self.level+1)*(self.education) + np.log(self.level_tenure+1)/2 - self.trials
self.value = 3*(self.level+1)*(self.education + self.skills) + np.log(self.level_tenure+1)/2 - max(0, (self.age-40))
def change_aspiration(self):
# Neighbors
if np.random.rand()<1/12:
neighbors = [neighbor for neighbor in self.model.grid.neighbor_iter(self.pos) if neighbor.aspiration >= self.aspiration]
self.tot_neig = len(list(neighbors))
if self.tot_neig > 0:
female_neig=len([neighbor for neighbor in self.model.grid.neighbor_iter(self.pos) if neighbor.gender=='F' and neighbor.aspiration >= self.aspiration])
if self.gender=='M':
average_aspiration=np.mean([neighbor.aspiration for neighbor in self.model.grid.neighbor_iter(self.pos) if neighbor.aspiration >= self.aspiration])
self.aspiration= self.aspiration*self.model.alpha + average_aspiration*(1-self.model.alpha)
elif self.gender=='F'and female_neig>0:
average_aspiration=np.mean([neighbor.aspiration for neighbor in self.model.grid.neighbor_iter(self.pos) if neighbor.gender=='F' and neighbor.aspiration >= self.aspiration])
self.aspiration= self.aspiration*self.model.alpha + average_aspiration*(1-self.model.alpha)
def training(self):
if np.random.rand()<(1/24) and self.age<35 and self.gender=='M':
self.education*=max(1.01,np.random.randn(1)[0]*0.2+1)
elif np.random.rand()<(1/48) and self.age<35 and self.gender=='F':
self.education*=max(1.01,np.random.randn(1)[0]*0.2+1)
def maternity(self):
if np.random.rand()<(3/1000) and self.gender=='F'and self.age<35 and self.level<2:
self.trials=4
def seek_job(self):
if self.trials>=4:
return
possible_jobs=[j for j in self.model.jobschedule.agents]
desired_jobs=[job for job in possible_jobs if job.level==self.level+1 \
and self.level_tenure >= job.tenure_required \
and self.education >= job.education_required \
and self.aspiration*0.75<=job.wage \
and self.aspiration*1.25>=job.wage]
if len(desired_jobs)>0:
other_agent = self.random.choice(desired_jobs)
other_agent.candidates.append(self)
def step(self):
self.update()
self.maternity()
self.change_aspiration()
self.training()
self.seek_job()
class JobOffer_quotas(Agent):
def __init__(self, unique_id, model,p=[0.73/0.9,0.12/0.9,0.05/0.9]):
super().__init__(unique_id, model)
self.level=np.random.choice([i+1 for i in range(3)], p=p)
self.candidates=[]
# education
if self.level==1:
self.education_required=np.random.choice([2,3], p=[0.2,0.8])
elif self.level == 2:
self.education_required=np.random.choice([3,4], p=[0.3,0.7])
elif self.level == 3:
self.education_required=np.random.choice([4,5], p=[0.5,0.5])
self.ranking = np.random.randn(1)[0]*1.5
# tenure
self.tenure_required=0
if self.level == 2:
self.tenure_required=12
elif self.level == 3:
self.tenure_required=10
self.wage = 3*self.level * (self.education_required + self.ranking) + np.log(self.tenure_required+1)/2
def choose_candidate(self):
# Gender quotas
if np.random.rand()<(1/3):
self.candidates=[agent for agent in self.candidates if agent.gender == 'F']
if len(self.candidates)>0:
best_candidate=self.candidates[0]
for cand in self.candidates:
if cand.value>best_candidate.value:
best_candidate=cand
best_candidate.level+=1
best_candidate.level_tenure=0
def step(self):
self.choose_candidate()
def average_aspiration_M(model):
return np.mean([agent.aspiration for agent in model.schedule.agents if agent.gender=='M'])
def average_aspiration_F(model):
return np.mean([agent.aspiration for agent in model.schedule.agents if agent.gender=='F'])
def average_level_M(model):
return np.mean([agent.level for agent in model.schedule.agents if agent.gender=='M'])
def average_level_F(model):
return np.mean([agent.level for agent in model.schedule.agents if agent.gender=='F'])
def average_agents_M(model):
return sum([1/model.num_agents for agent in model.schedule.agents if agent.gender=='M'])
def average_agents_F(model):
return sum([1/model.num_agents for agent in model.schedule.agents if agent.gender=='F'])
def average_tenure_M(model):
return np.mean([agent.level_tenure for agent in model.schedule.agents if agent.gender=='M'])
def average_tenure_F(model):
return np.mean([agent.level_tenure for agent in model.schedule.agents if agent.gender=='F'])
def average_age_F(model):
return np.mean([agent.age for agent in model.schedule.agents if agent.gender=='F'])
def average_age_M(model):
return np.mean([agent.age for agent in model.schedule.agents if agent.gender=='M'])
def average_skills_F(model):
return np.mean([agent.skills for agent in model.schedule.agents if agent.gender=='F'])
def average_skills_M(model):
return np.mean([agent.skills for agent in model.schedule.agents if agent.gender=='M'])
def average_value_F(model):
return np.mean([agent.value for agent in model.schedule.agents if agent.gender == 'F'])
def average_value_M(model):
return np.mean([agent.value for agent in model.schedule.agents if agent.gender == 'M'])
def average_value(model):
return np.mean([agent.value for agent in model.schedule.agents])
def male_level_distribution(model):
tot=sum([1 for agent in model.schedule.agents if agent.gender=='M'])
return {i:sum([1/tot for agent in model.schedule.agents if agent.gender=='M' and agent.level==i]) for i in range(4)}
def female_level_distribution(model):
tot=sum([1 for agent in model.schedule.agents if agent.gender=='F'])
return {i:sum([1/tot for agent in model.schedule.agents if agent.gender=='F' and agent.level==i]) for i in range(4)}
def male_skill_distribution(model):
return {i:np.mean([agent.skills for agent in model.schedule.agents if agent.gender=='M' and agent.level==i]) for i in range(4)}
def female_skill_distribution(model):
return {i:np.mean([agent.skills for agent in model.schedule.agents if agent.gender=='F' and agent.level==i]) for i in range(4)}
def male_value_distribution(model):
return {i:np.mean([agent.value for agent in model.schedule.agents if agent.gender=='M' and agent.level==i]) for i in range(4)}
def female_value_distribution(model):
return {i:np.mean([agent.value for agent in model.schedule.agents if agent.gender=='F' and agent.level==i]) for i in range(4)}
class LabourMarket_quotas(Model):
def __init__(self, N, width, height, M=0.4):
self.num_agents = N
self.total_agents_count = N
self.gap_perceived=0
self.alpha=0.6
self.p_initial=[0.1,0.73,0.12,0.05]
self.num_jobs=int(N*M)
self.grid = MultiGrid(width, height, True)
self.schedule=RandomActivation(self)
# Create agents
for i in range(self.num_agents):
level = np.random.choice([0, 1, 2, 3], p=self.p_initial)
education = max(0,np.random.randn(1)[0]+level+1)
age = max(23,np.random.randn(1)[0]*12+44)
total_tenure=max(0,np.random.randn(1)[0]*10+25)
a = Worker_quotas(i, self, level, age, education,total_tenure)
self.schedule.add(a)
if a.gender == 'M':
a.level = np.random.choice([0, 1, 2, 3], p=[0.09,0.71,0.14,0.06])
elif a.gender == 'F':
a.level = np.random.choice([0, 1, 2, 3], p=[0.12,0.76,0.10,0.02])
x = self.random.randrange(self.grid.width)
y = self.random.randrange(self.grid.height)
self.grid.place_agent(a, (x, y))
self.datacollector = DataCollector(
model_reporters={'aspiration_M': average_aspiration_M,'aspiration_F': average_aspiration_F,
'level_M': average_level_M,'level_F': average_level_F,
'agents_M': average_agents_M,'agents_F': average_agents_F,
'tenure_M': average_tenure_M,'tenure_F': average_tenure_F,
'age_M': average_age_M,'age_F': average_age_F,
'skills_M': average_skills_M,'skills_F': average_skills_F,
'average_value':average_value,
'average_value_M':average_value_M,'average_value_F':average_value_F,
'male_level_distribution': male_level_distribution,
'female_level_distribution': female_level_distribution,
'male_skill_distribution': male_skill_distribution,
'female_skill_distribution': female_skill_distribution,
'male_value_distribution': male_value_distribution,
'female_value_distribution': female_value_distribution})
def update_gap_perceived(self):
self.gap_perceived = average_level_M(self)-average_level_F(self)
def add_agents(self):
new_entry = len([agent for agent in self.schedule.agents if agent.trials >= 4 \
or (agent.total_tenure + agent.age) >= 100 \
or agent.age > 60 \
or agent.total_tenure > 40])
if new_entry > 0:
for i in range(new_entry):
self.total_agents_count+=1
a = Worker_quotas(self.total_agents_count, self)
self.schedule.add(a)
x = self.random.randrange(self.grid.width)
y = self.random.randrange(self.grid.height)
self.grid.place_agent(a, (x, y))
self.num_agents+=1
def remove_agents(self):
old_agents=[agent for agent in self.schedule.agents if agent.trials >= 4 \
or (agent.total_tenure + agent.age) >= 100 \
or agent.age > 60 \
or agent.total_tenure > 40]
if len(old_agents) > 0:
for i in old_agents:
self.schedule.remove(i)
self.num_agents-=1
def step(self):
self.add_agents()
self.remove_agents()
self.jobschedule = RandomActivation(self)
for i in range(self.num_jobs):
j = JobOffer_quotas(i, self)
self.jobschedule.add(j)
self.update_gap_perceived()
self.schedule.step()
self.jobschedule.step()
self.datacollector.collect(self)