-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathproject_AI.py
190 lines (169 loc) · 6.92 KB
/
project_AI.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
# -*- coding: utf-8 -*-
"""
Created on Tue Dec 13 23:52:02 2016
@author: jyothsna
"""
import random as rn
import numpy as np
from sklearn.metrics import f1_score, precision_score, recall_score
from sklearn.naive_bayes import MultinomialNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn import svm
from sklearn import tree
from sklearn import linear_model
from sklearn import preprocessing
from sklearn.ensemble import RandomForestClassifier
import pandas
#import matplotlib.pyplot as plt
from sklearn.ensemble import AdaBoostClassifier
from sklearn.model_selection import cross_val_score
from sklearn.ensemble import BaggingClassifier
from sklearn.linear_model import SGDClassifier
from sklearn.linear_model import Perceptron
import time
from random import shuffle
import csv
global train_data
global train_class
global test_data
global test_class
def f1score(y_true,y_pred):
f1=f1_score(y_true, y_pred, average='macro')
return f1
def precision(y_true,y_pred):
pre=precision_score(y_true, y_pred, average='macro')
return pre
def recall(y_true,y_pred):
recall=recall_score(y_true, y_pred, average='macro')
return recall
#knn cannot be done with boosting
def Boosting():
classifiers=[#MultinomialNB(),
#svm.SVC(kernel="poly", C=1),
#linear_model.LogisticRegression(penalty='l2',C=250),
#RandomForestClassifier(n_estimators=55),
#tree.DecisionTreeClassifier(),
SGDClassifier(loss="hinge", penalty="l2"),
Perceptron(penalty='l2', alpha=0.00001, fit_intercept=True)
]
classifier_names=['sgd','perceptron']#['NaiveBayes','SVM','LogisticRegression','RandomForest','DecisionTree']
i=0
for classifier in classifiers:
clf=AdaBoostClassifier(base_estimator=classifier, n_estimators=100,algorithm='SAMME')
start = time.time()
clf.fit(train_data,train_class)
prediction = clf.predict(test_data)
end = time.time()
#scores = cross_val_score(clf, train_data, train_class)
print('Adaboost '+classifier_names[i]+' F1 %f,Recall %f, Precision %f,time %f'%( f1score(test_class,prediction) , precision(test_class,prediction) , recall(test_class,prediction), end-start ))
i=i+1
def Bagging():
classifiers=[#MultinomialNB(),
#svm.SVC(kernel="poly", C=1),
#linear_model.LogisticRegression(penalty='l2',C=250),
#RandomForestClassifier(n_estimators=55),
#tree.DecisionTreeClassifier(),
#KNeighborsClassifier(n_neighbors=6),
SGDClassifier(loss="hinge", penalty="l2"),
Perceptron(penalty='l2', alpha=0.00001, fit_intercept=True)]
classifier_names=['sgd','perceptron']#['NaiveBayes','SVM','LogisticRegression','RandomForest','DecisionTree','knn']
i=0
for classifier in classifiers:
clf=BaggingClassifier(classifier, n_estimators=100)
start = time.time()
clf.fit(train_data,train_class)
prediction = clf.predict(test_data)
end=time.time()
print('Bagging '+classifier_names[i]+' F1 %f,Recall %f, Precision %f,time %f'%( f1score(test_class,prediction) , precision(test_class,prediction) , recall(test_class,prediction), end-start ))
i=i+1
def classification():
classifiers=[#MultinomialNB(),
#svm.SVC(kernel="poly", C=1),
#linear_model.LogisticRegression(penalty='l2',C=250),
#RandomForestClassifier(n_estimators=55),
#tree.DecisionTreeClassifier(),
#KNeighborsClassifier(n_neighbors=6),
SGDClassifier(loss="hinge", penalty="l2"),
Perceptron(penalty='l2', alpha=0.00001, fit_intercept=True)]
classifier_names=['sgd','perceptron']#['NaiveBayes','SVM','LogisticRegression','RandomForest','DecisionTree','knn','sgd','perceptron']
i=0
for classifier in classifiers:
clf=classifier
start = time.time()
clf.fit(train_data,train_class)
end = time.time()
prediction = clf.predict(test_data)
#scores = cross_val_score(clf, train_data, train_class)
print(classifier_names[i]+' F1 %f,Recall %f, Precision %f,time %f'%( f1score(test_class,prediction) , precision(test_class,prediction) , recall(test_class,prediction), end-start ))
i=i+1
def LoadData1(path):
global train_data
global train_class
global test_data
global test_class
data = pandas.read_csv(path, sep=",", header = None)
data=data.replace(['vhigh', 'high', 'med', 'low',
'2', '3', '4', '5more','more',
'small', 'big'],
[4,3,2,1,2,3,4,6,6,1,3])
#print(data)
data=data.apply(preprocessing.LabelEncoder().fit_transform)
data=data.values.tolist()
rn.shuffle(data)
#deviding the data in to test set and training set
size=int(len(data)*0.9)
train_data=data[0:size]
test_data=data[size:len(data)]
train_class=np.array(train_data)[:,len(train_data[0])-1]
train_data=np.array(train_data)[:,range(0,len(train_data[0])-1)]
test_class=np.array(test_data)[:,len(test_data[0])-1]
test_data=np.array(test_data)[:,range(0,len(test_data[0])-1)]
def LoadData1(path):
global train_data
global train_class
global test_data
global test_class
data = []
with open(path, 'rb') as csvfile:
data1 = csv.reader(csvfile, delimiter=',', quotechar='|')
for each in data1:
X = []
for x in each:
#print x
if (x=="vhigh" or x == "5more" or x == "more"):
x=3
elif (x=="high" or x == "big" or x == "4"):
x=2
elif (x == "med" or x == "3"):
x=1
elif (x == "low" or x == "small" or x == "2"):
x=0
X.append(x)
if (X[-1] == "acc"):
for i in range(3):
data.append(X)
elif (X[-1] == "good"):
for i in range(17):
data.append(X)
elif (X[-1] == "vgood"):
for i in range(18):
data.append(X)
else:
data.append(X)
shuffle(data)
size = int(len(data) * 0.8)
train_data = data[0:size]
test_data = data[size:len(data)]
train_class = np.array(train_data)[:, len(train_data[0]) - 1]
train_data = np.array(train_data)[:, range(0, len(train_data[0]) - 1)]
test_class = np.array(test_data)[:, len(test_data[0]) - 1]
test_data = np.array(test_data)[:, range(0, len(test_data[0]) - 1)]
train_data = [[int(j) for j in i] for i in train_data]
test_data = [[int(j) for j in i] for i in test_data]
def main():
LoadData1("car.data.txt")
Boosting()
Bagging()
classification()
print('main')
if __name__ == "__main__":main()