-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathonlineBoosting.py
196 lines (178 loc) · 5.85 KB
/
onlineBoosting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
from random import shuffle
import numpy as np
from collections import defaultdict
from sklearn.metrics import f1_score, precision_score, recall_score
from sklearn.naive_bayes import MultinomialNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn import svm
from sklearn import tree
from sklearn import linear_model
from sklearn import preprocessing
from sklearn.ensemble import RandomForestClassifier
import pandas
from sklearn.ensemble import AdaBoostClassifier
from sklearn.model_selection import cross_val_score
from sklearn.ensemble import BaggingClassifier
import csv
from collections import Counter
import time
global train_data
global train_class
global test_data
global test_class
global models
global kArr
global wrongWeight #= [0 for i in range(self.M)]
global correctWeight #= [0 for i in range(self.M)]
global epsilon #= [0 for i in range(self.M)]
global M
def f1score(y_true,y_pred):
f1=f1_score(y_true, y_pred, average='macro')
return f1
def precision(y_true,y_pred):
pre = precision_score(y_true, y_pred, average='macro')
return pre
def recall(y_true,y_pred):
recall = recall_score(y_true, y_pred, average='macro')
return recall
def LoadData1(path):
global train_data
global train_class
global test_data
global test_class
data = []
with open(path, 'rb') as csvfile:
data1 = csv.reader(csvfile, delimiter=',', quotechar='|')
for each in data1:
X = []
for x in each:
#print x
if (x == "vhigh" or x == "5more" or x == "more"):
x=3
elif (x == "high" or x == "big" or x == "4"):
x=2
elif (x == "med" or x == "3"):
x=1
elif (x == "low" or x == "small" or x == "2"):
x=0
X.append(x)
if (X[-1] == "acc"):
for i in range(3):
data.append(X)
elif (X[-1] == "good"):
for i in range(17):
data.append(X)
elif (X[-1] == "vgood"):
for i in range(18):
data.append(X)
else:
data.append(X)
shuffle(data)
size = int(len(data) * 0.8)
train_data = data[0:size]
test_data = data[size:len(data)]
train_class = np.array(train_data)[:, len(train_data[0]) - 1]
train_data = np.array(train_data)[:, range(0, len(train_data[0]) - 1)]
test_class = np.array(test_data)[:, len(test_data[0]) - 1]
test_data = np.array(test_data)[:, range(0, len(test_data[0]) - 1)]
train_data = [[int(j) for j in i] for i in train_data]
test_data = [[int(j) for j in i] for i in test_data]
def addModels():
global models
global M
for i in range(0,M):
models.append(linear_model.Perceptron())#linear_model.Perceptron()//class_weight="balanced"
def fit(data,classdata):
global models
global train_class
global M
global wrongWeight
global correctWeight
global epsilon
lam = 1.0
for i in range(0, M):
k = np.random.poisson(lam)
if not k:
continue
for j in range(0,k):
models[i].partial_fit(data, classdata, classes=["vgood","good","acc","unacc"])
prediction = models[i].predict(data)
if compare(prediction, classdata):
correctWeight[i] += lam
lam *= (correctWeight[i] + wrongWeight[i]) / \
(2 * correctWeight[i])
else:
wrongWeight[i] += lam
lam *= (correctWeight[i] + wrongWeight[i]) / \
(2 * wrongWeight[i])
#print("For" + str(i) + ' Accuracy %f' % (f1score(classdata, prediction)))
def initial_fit(data,classdata):
global models
global train_class
global M
global wrongWeight
global correctWeight
global epsilon
lam = 1.0
for i in range(0, M):
models[i].partial_fit(data, classdata, classes=["vgood","good","acc","unacc"])
def predict(test_data):
prediction = []
for i in range(0, 100):
prediction.append(models[i].predict(test_data))
prediction = np.array(prediction).transpose()
Final = []
for each in prediction:
Final.append(Counter(each).most_common(1)[0][0])
#print (test_class, Final)
print ("Precision is ", precision(test_class, np.array(Final)))
print ("Recall is ", recall(test_class, np.array(Final)))
print ("F1 score is ", f1score(test_class, np.array(Final)))
def compare(data,classdata):
if(len(data)!=len(classdata)):
return False
else:
for i in range(0,len(data)):
if(data[i]!=classdata[i]):
return False
return True
# def predict(self, features):
# label_weights = defaultdict(int)
# for i in range(0, M):
# epsilon = (correctWeight[i] + 1e-16) / \
# (wrongWeight[i] + 1e-16)
# weight = log(epsilon)
# label = models[i].predict(features)
# label_weights[label] += weight
# return max(label_weights.iterkeys(), key=(lambda key: label_weights[key]))
def main():
global models
global kArr
global M
global wrongWeight
global correctWeight
global epsilon
M = 100
models = []
kArr = [0]*1000
LoadData1("./car.data.txt")
addModels()
wrongWeight = [0 for i in range(M)]
correctWeight = [0 for i in range(M)]
epsilon = [0 for i in range(M)]
start = 0
end = len(train_data)
offset = 1
count = 0
start_time = time.time()
while(start < end):
if (count %400 ==0):
print(count, 'iteration')
count += 1
data = train_data[start:start + offset]
classdata = train_class[start:start + offset]
start += offset
fit(data, classdata)
predict(test_data)
print(time.time()-start_time)
if __name__ == "__main__":main()