-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathonlineBagging.py
138 lines (125 loc) · 4.02 KB
/
onlineBagging.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
from random import shuffle
import numpy as np
from sklearn.metrics import f1_score, precision_score, recall_score
from sklearn.naive_bayes import MultinomialNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn import svm
from sklearn import tree
from sklearn import linear_model
from sklearn import preprocessing
from sklearn.ensemble import RandomForestClassifier
import pandas
from sklearn.ensemble import AdaBoostClassifier
from sklearn.model_selection import cross_val_score
from sklearn.ensemble import BaggingClassifier
import csv
from collections import Counter
import time
global train_data
global train_class
global test_data
global test_class
global models
global kArr
def f1score(y_true,y_pred):
f1=f1_score(y_true, y_pred, average='macro')
return f1
def precision(y_true,y_pred):
pre=precision_score(y_true, y_pred, average='macro')
return pre
def recall(y_true,y_pred):
recall=recall_score(y_true, y_pred, average='macro')
return recall
def LoadData1(path):
global train_data
global train_class
global test_data
global test_class
data = []
with open(path, 'rb') as csvfile:
data1 = csv.reader(csvfile, delimiter=',', quotechar='|')
for each in data1:
X = []
for x in each:
#print x
if (x=="vhigh" or x == "5more" or x == "more"):
x=3
elif (x=="high" or x == "big" or x == "4"):
x=2
elif (x == "med" or x == "3"):
x=1
elif (x == "low" or x == "small" or x == "2"):
x=0
X.append(x)
if (X[-1] == "acc"):
for i in range(3):
data.append(X)
elif (X[-1] == "good"):
for i in range(17):
data.append(X)
elif (X[-1] == "vgood"):
for i in range(18):
data.append(X)
else:
data.append(X)
shuffle(data)
size = int(len(data) * 0.8)
train_data = data[0:size]
test_data = data[size:len(data)]
train_class = np.array(train_data)[:, len(train_data[0]) - 1]
train_data = np.array(train_data)[:, range(0, len(train_data[0]) - 1)]
test_class = np.array(test_data)[:, len(test_data[0]) - 1]
test_data = np.array(test_data)[:, range(0, len(test_data[0]) - 1)]
train_data = [[int(j) for j in i] for i in train_data]
test_data = [[int(j) for j in i] for i in test_data]
def addModels():
global models
for i in range(0,100):
models.append(linear_model.Perceptron())
def fit(data,classdata):
global models
global kArr
global train_class
for i in range(0, 100):
k = np.random.poisson(1, 1)[0]
if (k>999):
k = 999
kArr[k]+=1
for j in range(0,k):
models[i].partial_fit(data, classdata, classes=["vgood","good","acc","unacc"])
def predict(test_data):
prediction = []
for i in range(0, 100):
prediction.append(models[i].predict(test_data))
prediction = np.array(prediction).transpose()
Final = []
for each in prediction:
Final.append(Counter(each).most_common(1)[0][0])
#print (test_class, Final)
print ("Precision is ", precision(test_class, np.array(Final)))
print ("Recall is ", recall(test_class, np.array(Final)))
print ("F1 score is ", f1score(test_class, np.array(Final)))
def main():
global models
global kArr
models = []
kArr = [0]*1000
LoadData1("./car.data.txt")
addModels()
start = 0
end = len(train_data)
offset = 20
count = 0
start_time = time.time()
while(start < end):
if (count%40 == 0):
print (count)
count += 1
data = train_data[start:start + offset]
classdata = train_class[start:start + offset]
start += offset
fit(data,classdata)
predict(test_data)
print(time.time()-start_time)
#print('kArr',kArr)
if __name__ == "__main__":main()