-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtraining.py
147 lines (123 loc) · 5.79 KB
/
training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# -*- coding: utf-8 -*-
"""
Created on Thu Sep 20 20:19:50 2018
@author: USER
"""
import cv2
import fiturTekstur as ft
import fiturWarna as fw
import csv
import segmentasiWarna as sg
import numpy as np
import time
import os
def resizeImg(image):
#img = cv2.imread(filename)
small = cv2.resize(image, (0,0),fx=0.1,fy=0.1)
return small
start_time = time.time()
np.seterr(all='warn')
Y = 1
with open('data/dataTekstur.csv', 'a') as myfile:
wr = csv.writer(myfile, delimiter=',')
for filename in os.listdir("D:\\KULIAH\SEMESTER VII\\SKRIPSI - OFFLINE\\Ahmad Fauzi A _ Akhmad Muzanni S\\Segmentasi_All\\"):
if (Y <2000):
#filename = '001_0001_XiaomiRedmiNote4X.jpg'
#strFile = 'D:\\KULIAH\\SEMESTER VII\\SKRIPSI - OFFLINE\\Ahmad Fauzi A _ Akhmad Muzanni S\\All\\001_0001_XiaomiRedmiNote4X.jpg'
strFile = 'D:\\KULIAH\\SEMESTER VII\\SKRIPSI - OFFLINE\\Ahmad Fauzi A _ Akhmad Muzanni S\\Segmentasi_All\\'+filename
rgbImg = cv2.imread(strFile)
#rgbImg = resizeImg(rgbImg)
#cv2.imshow('ASLI',rgbImg)
print(filename[:8])
# TEXTURE FEATURE EXTRACTION
coMatrix0, coMatrix45, coMatrix90, coMatrix135 = ft.getCoMatrix(rgbImg)
sumCoMatrix0 = ft.sumCM(coMatrix0)
sumCoMatrix45 = ft.sumCM(coMatrix45)
sumCoMatrix90 = ft.sumCM(coMatrix90)
sumCoMatrix135 = ft.sumCM(coMatrix135)
meanX0, meanY0, varX0, varY0, energy0, entropy0, contrast0, dissimilarity0, homogeneity0, correlation0 = ft.getFeature(coMatrix0, sumCoMatrix0)
meanX45, meanY45, varX45, varY45, energy45, entropy45, contrast45, dissimilarity45, homogeneity45, correlation45 = ft.getFeature(coMatrix45, sumCoMatrix45)
meanX90, meanY90, varX90, varY90, energy90, entropy90, contrast90, dissimilarity90, homogeneity90, correlation90 = ft.getFeature(coMatrix90, sumCoMatrix90)
meanX135, meanY135, varX135, varY135, energy135, entropy135, contrast135, dissimilarity135, homogeneity135, correlation135 = ft.getFeature(coMatrix135, sumCoMatrix135)
fiturTekstur = []
fiturTekstur.append(meanX0)
fiturTekstur.append(meanY0)
fiturTekstur.append(varX0)
fiturTekstur.append(varY0)
fiturTekstur.append(energy0)
fiturTekstur.append(entropy0)
fiturTekstur.append(contrast0)
fiturTekstur.append(dissimilarity0)
fiturTekstur.append(homogeneity0)
fiturTekstur.append(correlation0)
fiturTekstur.append(meanX45)
fiturTekstur.append(meanY45)
fiturTekstur.append(varX45)
fiturTekstur.append(varY45)
fiturTekstur.append(energy45)
fiturTekstur.append(entropy45)
fiturTekstur.append(contrast45)
fiturTekstur.append(dissimilarity45)
fiturTekstur.append(homogeneity45)
fiturTekstur.append(correlation45)
fiturTekstur.append(meanX90)
fiturTekstur.append(meanY90)
fiturTekstur.append(varX90)
fiturTekstur.append(varY90)
fiturTekstur.append(energy90)
fiturTekstur.append(entropy90)
fiturTekstur.append(contrast90)
fiturTekstur.append(dissimilarity90)
fiturTekstur.append(homogeneity90)
fiturTekstur.append(correlation90)
fiturTekstur.append(meanX135)
fiturTekstur.append(meanY135)
fiturTekstur.append(varX135)
fiturTekstur.append(varY135)
fiturTekstur.append(energy135)
fiturTekstur.append(entropy135)
fiturTekstur.append(contrast135)
fiturTekstur.append(dissimilarity135)
fiturTekstur.append(homogeneity135)
fiturTekstur.append(correlation135)
#print(fiturTekstur)
# COLOR FEATURE EXTRACTION
#Lab = fw.convBGRtoLAB(rgbImg)
'''
segmentImg = sg.segmentation(rgbImg)
#meanL, varL, skewL = fw.getColorMoment(segmentImg[:,:,0])
#meanA, varA, skewA = fw.getColorMoment(segmentImg[:,:,1])
#meanB, varB, skewB = fw.getColorMoment(segmentImg[:,:,2])
meanL, varL, skewL, kurtL = fw.getColorMoment(segmentImg[:,:,0])
meanA, varA, skewA, kurtA = fw.getColorMoment(segmentImg[:,:,1])
meanB, varB, skewB, kurtB = fw.getColorMoment(segmentImg[:,:,2])
fiturWarna = []
fiturWarna.append(meanL)
fiturWarna.append(varL)
fiturWarna.append(skewL)
fiturWarna.append(kurtL)
fiturWarna.append(meanA)
fiturWarna.append(varA)
fiturWarna.append(skewA)
fiturWarna.append(kurtA)
fiturWarna.append(meanB)
fiturWarna.append(varB)
fiturWarna.append(skewB)
fiturWarna.append(kurtB)
#print(fiturWarna)
#cv2.imshow('SEGMENTASI',segmentImg)
'''
fitur = []
fitur.append(filename[:8])
for i in fiturTekstur:
fitur.append(i)
#for i in fiturWarna:
#fitur.append(i)
#cv2.imwrite('D:\\KULIAH\\SEMESTER VII\\SKRIPSI - OFFLINE\\Ahmad Fauzi A _ Akhmad Muzanni S\\Segmentasi_All\\'+filename[:8]+'.jpg',segmentImg)
#fitur = fitur.extend(fiturTekstur)
#fitur = fitur.extend(fiturWarna)
wr.writerow(fitur)
print(time.time() - start_time)
Y+=1
print(time.time() - start_time)
cv2.waitKey(0)