Complete the implementation of load_data
and get_model
in traffic.py
- The
load_data
function should accept as an argumentdata_dir
, representing the path to a directory where the data is stored, and return image arrays and labels for each image in the data set- You may assume that
data_dir
will contain one directory named after each category, numbered0
throughNUM_CATEGORIES - 1
. Inside each category directory will be some number of image files. - Use the OpenCV-Python module (
cv2
) to read each image as anumpy.ndarray
(anumpy
multidimensional array). To pass these images into a neural network, the images will need to be the same size, so be sure to resize each image to have widthIMG_WIDTH
and heightIMG_HEIGHT
- The function should return a tuple
(images, labels)
.images
should be a list of all of the images in the data set, where each image is represented as anumpy.ndarray
of the appropriate size.labels
should be a list of integers, representing the category number for each of the corresponding images in theimages
list - Your function should be platform-independent: that is to say, it should work regardless of operating system. Note that on macOS, the
/
character is used to separate path components, while the\
character is used on Windows. Useos.sep
andos.path.join
as needed instead of using your platform’s specific separator character
- You may assume that
- The
get_model
function should return a compiled neural network model- You may assume that the input to the neural network will be of the shape
(IMG_WIDTH, IMG_HEIGHT, 3)
(that is, an array representing an image of widthIMG_WIDTH
, heightIMG_HEIGHT
, and3
values for each pixel for red, green, and blue) - The output layer of the neural network should have
NUM_CATEGORIES
units, one for each of the traffic sign categories - The number of layers and the types of layers you include in between are up to you. You may wish to experiment with:
- different numbers of convolutional and pooling layers
- different numbers and sizes of filters for convolutional layers
- different pool sizes for pooling layers
- different numbers and sizes of hidden layers
- dropout
- You may assume that the input to the neural network will be of the shape
Ultimately, much of this project is about exploring documentation and investigating different options in cv2
and tensorflow
and seeing what results you get when you try them!
You should not modify anything else in traffic.py
other than the functions the specification calls for you to implement, though you may write additional functions and/or import other Python standard library modules. You may also import numpy
or pandas
, if familiar with them, but you should not use any other third-party Python modules. You may modify the global variables defined at the top of the file to test your program with other values
- Check out the official Tensorflow Keras overview for some guidelines for the syntax of building neural network layers. You may find the lecture source code useful as well
- The OpenCV-Python documentation may prove helpful for reading images as arrays and then resizing them
- Once you’ve resized an image
img
, you can verify its dimensions by printing the value ofimg.shape
. If you’ve resized the image correctly, its shape should be(30, 30, 3)
(assumingIMG_WIDTH
andIMG_HEIGHT
are both30
) - If you’d like to practice with a smaller data set, you can download the modified dataset that contains only 3 different types of road signs instead of 43 through the link in the
data
directory